xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision 5ba0a3be6ecc3a0b0d52c2a818b05564c6b42510)
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57 
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64 
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION					\
69 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
70 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
71 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
72 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76 
77 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
78 
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT		(5*HZ)
81 
82 static char version[] =
83 	"Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85 
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88 		   "BCM57710/57711/57711E/"
89 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90 		   "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96 
97 
98 int num_queues;
99 module_param(num_queues, int, 0);
100 MODULE_PARM_DESC(num_queues,
101 		 " Set number of queues (default is as a number of CPUs)");
102 
103 static int disable_tpa;
104 module_param(disable_tpa, int, 0);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106 
107 #define INT_MODE_INTx			1
108 #define INT_MODE_MSI			2
109 int int_mode;
110 module_param(int_mode, int, 0);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112 				"(1 INT#x; 2 MSI)");
113 
114 static int dropless_fc;
115 module_param(dropless_fc, int, 0);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117 
118 static int mrrs = -1;
119 module_param(mrrs, int, 0);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121 
122 static int debug;
123 module_param(debug, int, 0);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125 
126 
127 
128 struct workqueue_struct *bnx2x_wq;
129 
130 enum bnx2x_board_type {
131 	BCM57710 = 0,
132 	BCM57711,
133 	BCM57711E,
134 	BCM57712,
135 	BCM57712_MF,
136 	BCM57800,
137 	BCM57800_MF,
138 	BCM57810,
139 	BCM57810_MF,
140 	BCM57840_O,
141 	BCM57840_4_10,
142 	BCM57840_2_20,
143 	BCM57840_MFO,
144 	BCM57840_MF,
145 	BCM57811,
146 	BCM57811_MF
147 };
148 
149 /* indexed by board_type, above */
150 static struct {
151 	char *name;
152 } board_info[] = {
153 	{ "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
154 	{ "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
155 	{ "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
156 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
157 	{ "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
158 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
159 	{ "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
160 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
161 	{ "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
162 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
163 	{ "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
164 	{ "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
165 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
166 	{ "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
167 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
168 	{ "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
169 };
170 
171 #ifndef PCI_DEVICE_ID_NX2_57710
172 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711
175 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57711E
178 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712
181 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57712_MF
184 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800
187 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57800_MF
190 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810
193 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57810_MF
196 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_O
199 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
202 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
205 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
208 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57840_MF
211 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57811
214 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57811_MF
217 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
218 #endif
219 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
220 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
221 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
222 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
223 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
224 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
225 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
226 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
227 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
228 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
229 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
230 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
231 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
232 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
233 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
234 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
235 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
236 	{ 0 }
237 };
238 
239 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
240 
241 /* Global resources for unloading a previously loaded device */
242 #define BNX2X_PREV_WAIT_NEEDED 1
243 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
244 static LIST_HEAD(bnx2x_prev_list);
245 /****************************************************************************
246 * General service functions
247 ****************************************************************************/
248 
249 static void __storm_memset_dma_mapping(struct bnx2x *bp,
250 				       u32 addr, dma_addr_t mapping)
251 {
252 	REG_WR(bp,  addr, U64_LO(mapping));
253 	REG_WR(bp,  addr + 4, U64_HI(mapping));
254 }
255 
256 static void storm_memset_spq_addr(struct bnx2x *bp,
257 				  dma_addr_t mapping, u16 abs_fid)
258 {
259 	u32 addr = XSEM_REG_FAST_MEMORY +
260 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
261 
262 	__storm_memset_dma_mapping(bp, addr, mapping);
263 }
264 
265 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
266 				  u16 pf_id)
267 {
268 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
269 		pf_id);
270 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
271 		pf_id);
272 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
273 		pf_id);
274 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
275 		pf_id);
276 }
277 
278 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
279 				 u8 enable)
280 {
281 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
282 		enable);
283 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
284 		enable);
285 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
286 		enable);
287 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
288 		enable);
289 }
290 
291 static void storm_memset_eq_data(struct bnx2x *bp,
292 				 struct event_ring_data *eq_data,
293 				u16 pfid)
294 {
295 	size_t size = sizeof(struct event_ring_data);
296 
297 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
298 
299 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
300 }
301 
302 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
303 				 u16 pfid)
304 {
305 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
306 	REG_WR16(bp, addr, eq_prod);
307 }
308 
309 /* used only at init
310  * locking is done by mcp
311  */
312 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
313 {
314 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
315 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
316 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
317 			       PCICFG_VENDOR_ID_OFFSET);
318 }
319 
320 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
321 {
322 	u32 val;
323 
324 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
325 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
326 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
327 			       PCICFG_VENDOR_ID_OFFSET);
328 
329 	return val;
330 }
331 
332 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
333 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
334 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
335 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
336 #define DMAE_DP_DST_NONE	"dst_addr [none]"
337 
338 
339 /* copy command into DMAE command memory and set DMAE command go */
340 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
341 {
342 	u32 cmd_offset;
343 	int i;
344 
345 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
346 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
347 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
348 	}
349 	REG_WR(bp, dmae_reg_go_c[idx], 1);
350 }
351 
352 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
353 {
354 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
355 			   DMAE_CMD_C_ENABLE);
356 }
357 
358 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
359 {
360 	return opcode & ~DMAE_CMD_SRC_RESET;
361 }
362 
363 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
364 			     bool with_comp, u8 comp_type)
365 {
366 	u32 opcode = 0;
367 
368 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
369 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
370 
371 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
372 
373 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
374 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
375 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
376 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
377 
378 #ifdef __BIG_ENDIAN
379 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
380 #else
381 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
382 #endif
383 	if (with_comp)
384 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
385 	return opcode;
386 }
387 
388 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
389 				      struct dmae_command *dmae,
390 				      u8 src_type, u8 dst_type)
391 {
392 	memset(dmae, 0, sizeof(struct dmae_command));
393 
394 	/* set the opcode */
395 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
396 					 true, DMAE_COMP_PCI);
397 
398 	/* fill in the completion parameters */
399 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
400 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
401 	dmae->comp_val = DMAE_COMP_VAL;
402 }
403 
404 /* issue a dmae command over the init-channel and wailt for completion */
405 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
406 				      struct dmae_command *dmae)
407 {
408 	u32 *wb_comp = bnx2x_sp(bp, wb_comp);
409 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
410 	int rc = 0;
411 
412 	/*
413 	 * Lock the dmae channel. Disable BHs to prevent a dead-lock
414 	 * as long as this code is called both from syscall context and
415 	 * from ndo_set_rx_mode() flow that may be called from BH.
416 	 */
417 	spin_lock_bh(&bp->dmae_lock);
418 
419 	/* reset completion */
420 	*wb_comp = 0;
421 
422 	/* post the command on the channel used for initializations */
423 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
424 
425 	/* wait for completion */
426 	udelay(5);
427 	while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
428 
429 		if (!cnt ||
430 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
431 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
432 			BNX2X_ERR("DMAE timeout!\n");
433 			rc = DMAE_TIMEOUT;
434 			goto unlock;
435 		}
436 		cnt--;
437 		udelay(50);
438 	}
439 	if (*wb_comp & DMAE_PCI_ERR_FLAG) {
440 		BNX2X_ERR("DMAE PCI error!\n");
441 		rc = DMAE_PCI_ERROR;
442 	}
443 
444 unlock:
445 	spin_unlock_bh(&bp->dmae_lock);
446 	return rc;
447 }
448 
449 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
450 		      u32 len32)
451 {
452 	struct dmae_command dmae;
453 
454 	if (!bp->dmae_ready) {
455 		u32 *data = bnx2x_sp(bp, wb_data[0]);
456 
457 		if (CHIP_IS_E1(bp))
458 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
459 		else
460 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
461 		return;
462 	}
463 
464 	/* set opcode and fixed command fields */
465 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
466 
467 	/* fill in addresses and len */
468 	dmae.src_addr_lo = U64_LO(dma_addr);
469 	dmae.src_addr_hi = U64_HI(dma_addr);
470 	dmae.dst_addr_lo = dst_addr >> 2;
471 	dmae.dst_addr_hi = 0;
472 	dmae.len = len32;
473 
474 	/* issue the command and wait for completion */
475 	bnx2x_issue_dmae_with_comp(bp, &dmae);
476 }
477 
478 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
479 {
480 	struct dmae_command dmae;
481 
482 	if (!bp->dmae_ready) {
483 		u32 *data = bnx2x_sp(bp, wb_data[0]);
484 		int i;
485 
486 		if (CHIP_IS_E1(bp))
487 			for (i = 0; i < len32; i++)
488 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
489 		else
490 			for (i = 0; i < len32; i++)
491 				data[i] = REG_RD(bp, src_addr + i*4);
492 
493 		return;
494 	}
495 
496 	/* set opcode and fixed command fields */
497 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
498 
499 	/* fill in addresses and len */
500 	dmae.src_addr_lo = src_addr >> 2;
501 	dmae.src_addr_hi = 0;
502 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
503 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
504 	dmae.len = len32;
505 
506 	/* issue the command and wait for completion */
507 	bnx2x_issue_dmae_with_comp(bp, &dmae);
508 }
509 
510 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
511 				      u32 addr, u32 len)
512 {
513 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
514 	int offset = 0;
515 
516 	while (len > dmae_wr_max) {
517 		bnx2x_write_dmae(bp, phys_addr + offset,
518 				 addr + offset, dmae_wr_max);
519 		offset += dmae_wr_max * 4;
520 		len -= dmae_wr_max;
521 	}
522 
523 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
524 }
525 
526 static int bnx2x_mc_assert(struct bnx2x *bp)
527 {
528 	char last_idx;
529 	int i, rc = 0;
530 	u32 row0, row1, row2, row3;
531 
532 	/* XSTORM */
533 	last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
534 			   XSTORM_ASSERT_LIST_INDEX_OFFSET);
535 	if (last_idx)
536 		BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
537 
538 	/* print the asserts */
539 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
540 
541 		row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
542 			      XSTORM_ASSERT_LIST_OFFSET(i));
543 		row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
544 			      XSTORM_ASSERT_LIST_OFFSET(i) + 4);
545 		row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
546 			      XSTORM_ASSERT_LIST_OFFSET(i) + 8);
547 		row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
548 			      XSTORM_ASSERT_LIST_OFFSET(i) + 12);
549 
550 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
551 			BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
552 				  i, row3, row2, row1, row0);
553 			rc++;
554 		} else {
555 			break;
556 		}
557 	}
558 
559 	/* TSTORM */
560 	last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
561 			   TSTORM_ASSERT_LIST_INDEX_OFFSET);
562 	if (last_idx)
563 		BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
564 
565 	/* print the asserts */
566 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
567 
568 		row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
569 			      TSTORM_ASSERT_LIST_OFFSET(i));
570 		row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
571 			      TSTORM_ASSERT_LIST_OFFSET(i) + 4);
572 		row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
573 			      TSTORM_ASSERT_LIST_OFFSET(i) + 8);
574 		row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
575 			      TSTORM_ASSERT_LIST_OFFSET(i) + 12);
576 
577 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
578 			BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
579 				  i, row3, row2, row1, row0);
580 			rc++;
581 		} else {
582 			break;
583 		}
584 	}
585 
586 	/* CSTORM */
587 	last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
588 			   CSTORM_ASSERT_LIST_INDEX_OFFSET);
589 	if (last_idx)
590 		BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
591 
592 	/* print the asserts */
593 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
594 
595 		row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
596 			      CSTORM_ASSERT_LIST_OFFSET(i));
597 		row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
598 			      CSTORM_ASSERT_LIST_OFFSET(i) + 4);
599 		row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
600 			      CSTORM_ASSERT_LIST_OFFSET(i) + 8);
601 		row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
602 			      CSTORM_ASSERT_LIST_OFFSET(i) + 12);
603 
604 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
605 			BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
606 				  i, row3, row2, row1, row0);
607 			rc++;
608 		} else {
609 			break;
610 		}
611 	}
612 
613 	/* USTORM */
614 	last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
615 			   USTORM_ASSERT_LIST_INDEX_OFFSET);
616 	if (last_idx)
617 		BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
618 
619 	/* print the asserts */
620 	for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
621 
622 		row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
623 			      USTORM_ASSERT_LIST_OFFSET(i));
624 		row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
625 			      USTORM_ASSERT_LIST_OFFSET(i) + 4);
626 		row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
627 			      USTORM_ASSERT_LIST_OFFSET(i) + 8);
628 		row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
629 			      USTORM_ASSERT_LIST_OFFSET(i) + 12);
630 
631 		if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
632 			BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
633 				  i, row3, row2, row1, row0);
634 			rc++;
635 		} else {
636 			break;
637 		}
638 	}
639 
640 	return rc;
641 }
642 
643 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
644 {
645 	u32 addr, val;
646 	u32 mark, offset;
647 	__be32 data[9];
648 	int word;
649 	u32 trace_shmem_base;
650 	if (BP_NOMCP(bp)) {
651 		BNX2X_ERR("NO MCP - can not dump\n");
652 		return;
653 	}
654 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
655 		(bp->common.bc_ver & 0xff0000) >> 16,
656 		(bp->common.bc_ver & 0xff00) >> 8,
657 		(bp->common.bc_ver & 0xff));
658 
659 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
660 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
661 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
662 
663 	if (BP_PATH(bp) == 0)
664 		trace_shmem_base = bp->common.shmem_base;
665 	else
666 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
667 	addr = trace_shmem_base - 0x800;
668 
669 	/* validate TRCB signature */
670 	mark = REG_RD(bp, addr);
671 	if (mark != MFW_TRACE_SIGNATURE) {
672 		BNX2X_ERR("Trace buffer signature is missing.");
673 		return ;
674 	}
675 
676 	/* read cyclic buffer pointer */
677 	addr += 4;
678 	mark = REG_RD(bp, addr);
679 	mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
680 			+ ((mark + 0x3) & ~0x3) - 0x08000000;
681 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
682 
683 	printk("%s", lvl);
684 	for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
685 		for (word = 0; word < 8; word++)
686 			data[word] = htonl(REG_RD(bp, offset + 4*word));
687 		data[8] = 0x0;
688 		pr_cont("%s", (char *)data);
689 	}
690 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
691 		for (word = 0; word < 8; word++)
692 			data[word] = htonl(REG_RD(bp, offset + 4*word));
693 		data[8] = 0x0;
694 		pr_cont("%s", (char *)data);
695 	}
696 	printk("%s" "end of fw dump\n", lvl);
697 }
698 
699 static void bnx2x_fw_dump(struct bnx2x *bp)
700 {
701 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
702 }
703 
704 void bnx2x_panic_dump(struct bnx2x *bp)
705 {
706 	int i;
707 	u16 j;
708 	struct hc_sp_status_block_data sp_sb_data;
709 	int func = BP_FUNC(bp);
710 #ifdef BNX2X_STOP_ON_ERROR
711 	u16 start = 0, end = 0;
712 	u8 cos;
713 #endif
714 
715 	bp->stats_state = STATS_STATE_DISABLED;
716 	bp->eth_stats.unrecoverable_error++;
717 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
718 
719 	BNX2X_ERR("begin crash dump -----------------\n");
720 
721 	/* Indices */
722 	/* Common */
723 	BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
724 		  bp->def_idx, bp->def_att_idx, bp->attn_state,
725 		  bp->spq_prod_idx, bp->stats_counter);
726 	BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
727 		  bp->def_status_blk->atten_status_block.attn_bits,
728 		  bp->def_status_blk->atten_status_block.attn_bits_ack,
729 		  bp->def_status_blk->atten_status_block.status_block_id,
730 		  bp->def_status_blk->atten_status_block.attn_bits_index);
731 	BNX2X_ERR("     def (");
732 	for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
733 		pr_cont("0x%x%s",
734 			bp->def_status_blk->sp_sb.index_values[i],
735 			(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
736 
737 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
738 		*((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
739 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
740 			i*sizeof(u32));
741 
742 	pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
743 	       sp_sb_data.igu_sb_id,
744 	       sp_sb_data.igu_seg_id,
745 	       sp_sb_data.p_func.pf_id,
746 	       sp_sb_data.p_func.vnic_id,
747 	       sp_sb_data.p_func.vf_id,
748 	       sp_sb_data.p_func.vf_valid,
749 	       sp_sb_data.state);
750 
751 
752 	for_each_eth_queue(bp, i) {
753 		struct bnx2x_fastpath *fp = &bp->fp[i];
754 		int loop;
755 		struct hc_status_block_data_e2 sb_data_e2;
756 		struct hc_status_block_data_e1x sb_data_e1x;
757 		struct hc_status_block_sm  *hc_sm_p =
758 			CHIP_IS_E1x(bp) ?
759 			sb_data_e1x.common.state_machine :
760 			sb_data_e2.common.state_machine;
761 		struct hc_index_data *hc_index_p =
762 			CHIP_IS_E1x(bp) ?
763 			sb_data_e1x.index_data :
764 			sb_data_e2.index_data;
765 		u8 data_size, cos;
766 		u32 *sb_data_p;
767 		struct bnx2x_fp_txdata txdata;
768 
769 		/* Rx */
770 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
771 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
772 			  fp->rx_comp_prod,
773 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
774 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
775 			  fp->rx_sge_prod, fp->last_max_sge,
776 			  le16_to_cpu(fp->fp_hc_idx));
777 
778 		/* Tx */
779 		for_each_cos_in_tx_queue(fp, cos)
780 		{
781 			txdata = *fp->txdata_ptr[cos];
782 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
783 				  i, txdata.tx_pkt_prod,
784 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
785 				  txdata.tx_bd_cons,
786 				  le16_to_cpu(*txdata.tx_cons_sb));
787 		}
788 
789 		loop = CHIP_IS_E1x(bp) ?
790 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
791 
792 		/* host sb data */
793 
794 		if (IS_FCOE_FP(fp))
795 			continue;
796 
797 		BNX2X_ERR("     run indexes (");
798 		for (j = 0; j < HC_SB_MAX_SM; j++)
799 			pr_cont("0x%x%s",
800 			       fp->sb_running_index[j],
801 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
802 
803 		BNX2X_ERR("     indexes (");
804 		for (j = 0; j < loop; j++)
805 			pr_cont("0x%x%s",
806 			       fp->sb_index_values[j],
807 			       (j == loop - 1) ? ")" : " ");
808 		/* fw sb data */
809 		data_size = CHIP_IS_E1x(bp) ?
810 			sizeof(struct hc_status_block_data_e1x) :
811 			sizeof(struct hc_status_block_data_e2);
812 		data_size /= sizeof(u32);
813 		sb_data_p = CHIP_IS_E1x(bp) ?
814 			(u32 *)&sb_data_e1x :
815 			(u32 *)&sb_data_e2;
816 		/* copy sb data in here */
817 		for (j = 0; j < data_size; j++)
818 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
819 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
820 				j * sizeof(u32));
821 
822 		if (!CHIP_IS_E1x(bp)) {
823 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
824 				sb_data_e2.common.p_func.pf_id,
825 				sb_data_e2.common.p_func.vf_id,
826 				sb_data_e2.common.p_func.vf_valid,
827 				sb_data_e2.common.p_func.vnic_id,
828 				sb_data_e2.common.same_igu_sb_1b,
829 				sb_data_e2.common.state);
830 		} else {
831 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
832 				sb_data_e1x.common.p_func.pf_id,
833 				sb_data_e1x.common.p_func.vf_id,
834 				sb_data_e1x.common.p_func.vf_valid,
835 				sb_data_e1x.common.p_func.vnic_id,
836 				sb_data_e1x.common.same_igu_sb_1b,
837 				sb_data_e1x.common.state);
838 		}
839 
840 		/* SB_SMs data */
841 		for (j = 0; j < HC_SB_MAX_SM; j++) {
842 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
843 				j, hc_sm_p[j].__flags,
844 				hc_sm_p[j].igu_sb_id,
845 				hc_sm_p[j].igu_seg_id,
846 				hc_sm_p[j].time_to_expire,
847 				hc_sm_p[j].timer_value);
848 		}
849 
850 		/* Indecies data */
851 		for (j = 0; j < loop; j++) {
852 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
853 			       hc_index_p[j].flags,
854 			       hc_index_p[j].timeout);
855 		}
856 	}
857 
858 #ifdef BNX2X_STOP_ON_ERROR
859 	/* Rings */
860 	/* Rx */
861 	for_each_valid_rx_queue(bp, i) {
862 		struct bnx2x_fastpath *fp = &bp->fp[i];
863 
864 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
865 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
866 		for (j = start; j != end; j = RX_BD(j + 1)) {
867 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
868 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
869 
870 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
871 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
872 		}
873 
874 		start = RX_SGE(fp->rx_sge_prod);
875 		end = RX_SGE(fp->last_max_sge);
876 		for (j = start; j != end; j = RX_SGE(j + 1)) {
877 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
878 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
879 
880 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
881 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
882 		}
883 
884 		start = RCQ_BD(fp->rx_comp_cons - 10);
885 		end = RCQ_BD(fp->rx_comp_cons + 503);
886 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
887 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
888 
889 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
890 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
891 		}
892 	}
893 
894 	/* Tx */
895 	for_each_valid_tx_queue(bp, i) {
896 		struct bnx2x_fastpath *fp = &bp->fp[i];
897 		for_each_cos_in_tx_queue(fp, cos) {
898 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
899 
900 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
901 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
902 			for (j = start; j != end; j = TX_BD(j + 1)) {
903 				struct sw_tx_bd *sw_bd =
904 					&txdata->tx_buf_ring[j];
905 
906 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
907 					  i, cos, j, sw_bd->skb,
908 					  sw_bd->first_bd);
909 			}
910 
911 			start = TX_BD(txdata->tx_bd_cons - 10);
912 			end = TX_BD(txdata->tx_bd_cons + 254);
913 			for (j = start; j != end; j = TX_BD(j + 1)) {
914 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
915 
916 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
917 					  i, cos, j, tx_bd[0], tx_bd[1],
918 					  tx_bd[2], tx_bd[3]);
919 			}
920 		}
921 	}
922 #endif
923 	bnx2x_fw_dump(bp);
924 	bnx2x_mc_assert(bp);
925 	BNX2X_ERR("end crash dump -----------------\n");
926 }
927 
928 /*
929  * FLR Support for E2
930  *
931  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
932  * initialization.
933  */
934 #define FLR_WAIT_USEC		10000	/* 10 miliseconds */
935 #define FLR_WAIT_INTERVAL	50	/* usec */
936 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
937 
938 struct pbf_pN_buf_regs {
939 	int pN;
940 	u32 init_crd;
941 	u32 crd;
942 	u32 crd_freed;
943 };
944 
945 struct pbf_pN_cmd_regs {
946 	int pN;
947 	u32 lines_occup;
948 	u32 lines_freed;
949 };
950 
951 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
952 				     struct pbf_pN_buf_regs *regs,
953 				     u32 poll_count)
954 {
955 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
956 	u32 cur_cnt = poll_count;
957 
958 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
959 	crd = crd_start = REG_RD(bp, regs->crd);
960 	init_crd = REG_RD(bp, regs->init_crd);
961 
962 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
963 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
964 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
965 
966 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
967 	       (init_crd - crd_start))) {
968 		if (cur_cnt--) {
969 			udelay(FLR_WAIT_INTERVAL);
970 			crd = REG_RD(bp, regs->crd);
971 			crd_freed = REG_RD(bp, regs->crd_freed);
972 		} else {
973 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
974 			   regs->pN);
975 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
976 			   regs->pN, crd);
977 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
978 			   regs->pN, crd_freed);
979 			break;
980 		}
981 	}
982 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
983 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
984 }
985 
986 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
987 				     struct pbf_pN_cmd_regs *regs,
988 				     u32 poll_count)
989 {
990 	u32 occup, to_free, freed, freed_start;
991 	u32 cur_cnt = poll_count;
992 
993 	occup = to_free = REG_RD(bp, regs->lines_occup);
994 	freed = freed_start = REG_RD(bp, regs->lines_freed);
995 
996 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
997 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
998 
999 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1000 		if (cur_cnt--) {
1001 			udelay(FLR_WAIT_INTERVAL);
1002 			occup = REG_RD(bp, regs->lines_occup);
1003 			freed = REG_RD(bp, regs->lines_freed);
1004 		} else {
1005 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1006 			   regs->pN);
1007 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1008 			   regs->pN, occup);
1009 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1010 			   regs->pN, freed);
1011 			break;
1012 		}
1013 	}
1014 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1015 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1016 }
1017 
1018 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1019 				    u32 expected, u32 poll_count)
1020 {
1021 	u32 cur_cnt = poll_count;
1022 	u32 val;
1023 
1024 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1025 		udelay(FLR_WAIT_INTERVAL);
1026 
1027 	return val;
1028 }
1029 
1030 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1031 					   char *msg, u32 poll_cnt)
1032 {
1033 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1034 	if (val != 0) {
1035 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1036 		return 1;
1037 	}
1038 	return 0;
1039 }
1040 
1041 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1042 {
1043 	/* adjust polling timeout */
1044 	if (CHIP_REV_IS_EMUL(bp))
1045 		return FLR_POLL_CNT * 2000;
1046 
1047 	if (CHIP_REV_IS_FPGA(bp))
1048 		return FLR_POLL_CNT * 120;
1049 
1050 	return FLR_POLL_CNT;
1051 }
1052 
1053 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1054 {
1055 	struct pbf_pN_cmd_regs cmd_regs[] = {
1056 		{0, (CHIP_IS_E3B0(bp)) ?
1057 			PBF_REG_TQ_OCCUPANCY_Q0 :
1058 			PBF_REG_P0_TQ_OCCUPANCY,
1059 		    (CHIP_IS_E3B0(bp)) ?
1060 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1061 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1062 		{1, (CHIP_IS_E3B0(bp)) ?
1063 			PBF_REG_TQ_OCCUPANCY_Q1 :
1064 			PBF_REG_P1_TQ_OCCUPANCY,
1065 		    (CHIP_IS_E3B0(bp)) ?
1066 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1067 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1068 		{4, (CHIP_IS_E3B0(bp)) ?
1069 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1070 			PBF_REG_P4_TQ_OCCUPANCY,
1071 		    (CHIP_IS_E3B0(bp)) ?
1072 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1073 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1074 	};
1075 
1076 	struct pbf_pN_buf_regs buf_regs[] = {
1077 		{0, (CHIP_IS_E3B0(bp)) ?
1078 			PBF_REG_INIT_CRD_Q0 :
1079 			PBF_REG_P0_INIT_CRD ,
1080 		    (CHIP_IS_E3B0(bp)) ?
1081 			PBF_REG_CREDIT_Q0 :
1082 			PBF_REG_P0_CREDIT,
1083 		    (CHIP_IS_E3B0(bp)) ?
1084 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1085 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1086 		{1, (CHIP_IS_E3B0(bp)) ?
1087 			PBF_REG_INIT_CRD_Q1 :
1088 			PBF_REG_P1_INIT_CRD,
1089 		    (CHIP_IS_E3B0(bp)) ?
1090 			PBF_REG_CREDIT_Q1 :
1091 			PBF_REG_P1_CREDIT,
1092 		    (CHIP_IS_E3B0(bp)) ?
1093 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1094 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1095 		{4, (CHIP_IS_E3B0(bp)) ?
1096 			PBF_REG_INIT_CRD_LB_Q :
1097 			PBF_REG_P4_INIT_CRD,
1098 		    (CHIP_IS_E3B0(bp)) ?
1099 			PBF_REG_CREDIT_LB_Q :
1100 			PBF_REG_P4_CREDIT,
1101 		    (CHIP_IS_E3B0(bp)) ?
1102 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1103 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1104 	};
1105 
1106 	int i;
1107 
1108 	/* Verify the command queues are flushed P0, P1, P4 */
1109 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1110 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1111 
1112 
1113 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1114 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1115 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1116 }
1117 
1118 #define OP_GEN_PARAM(param) \
1119 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1120 
1121 #define OP_GEN_TYPE(type) \
1122 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1123 
1124 #define OP_GEN_AGG_VECT(index) \
1125 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1126 
1127 
1128 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1129 					 u32 poll_cnt)
1130 {
1131 	struct sdm_op_gen op_gen = {0};
1132 
1133 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1134 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1135 	int ret = 0;
1136 
1137 	if (REG_RD(bp, comp_addr)) {
1138 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1139 		return 1;
1140 	}
1141 
1142 	op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1143 	op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1144 	op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1145 	op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1146 
1147 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1148 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1149 
1150 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1151 		BNX2X_ERR("FW final cleanup did not succeed\n");
1152 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1153 		   (REG_RD(bp, comp_addr)));
1154 		ret = 1;
1155 	}
1156 	/* Zero completion for nxt FLR */
1157 	REG_WR(bp, comp_addr, 0);
1158 
1159 	return ret;
1160 }
1161 
1162 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1163 {
1164 	u16 status;
1165 
1166 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1167 	return status & PCI_EXP_DEVSTA_TRPND;
1168 }
1169 
1170 /* PF FLR specific routines
1171 */
1172 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1173 {
1174 
1175 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1176 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1177 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1178 			"CFC PF usage counter timed out",
1179 			poll_cnt))
1180 		return 1;
1181 
1182 
1183 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1184 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1185 			DORQ_REG_PF_USAGE_CNT,
1186 			"DQ PF usage counter timed out",
1187 			poll_cnt))
1188 		return 1;
1189 
1190 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1191 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1192 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1193 			"QM PF usage counter timed out",
1194 			poll_cnt))
1195 		return 1;
1196 
1197 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1198 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1199 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1200 			"Timers VNIC usage counter timed out",
1201 			poll_cnt))
1202 		return 1;
1203 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1204 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1205 			"Timers NUM_SCANS usage counter timed out",
1206 			poll_cnt))
1207 		return 1;
1208 
1209 	/* Wait DMAE PF usage counter to zero */
1210 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1211 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1212 			"DMAE dommand register timed out",
1213 			poll_cnt))
1214 		return 1;
1215 
1216 	return 0;
1217 }
1218 
1219 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1220 {
1221 	u32 val;
1222 
1223 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1224 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1225 
1226 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1227 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1228 
1229 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1230 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1231 
1232 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1233 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1234 
1235 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1236 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1237 
1238 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1239 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1240 
1241 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1242 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1243 
1244 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1245 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1246 	   val);
1247 }
1248 
1249 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1250 {
1251 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1252 
1253 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1254 
1255 	/* Re-enable PF target read access */
1256 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1257 
1258 	/* Poll HW usage counters */
1259 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1260 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1261 		return -EBUSY;
1262 
1263 	/* Zero the igu 'trailing edge' and 'leading edge' */
1264 
1265 	/* Send the FW cleanup command */
1266 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1267 		return -EBUSY;
1268 
1269 	/* ATC cleanup */
1270 
1271 	/* Verify TX hw is flushed */
1272 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1273 
1274 	/* Wait 100ms (not adjusted according to platform) */
1275 	msleep(100);
1276 
1277 	/* Verify no pending pci transactions */
1278 	if (bnx2x_is_pcie_pending(bp->pdev))
1279 		BNX2X_ERR("PCIE Transactions still pending\n");
1280 
1281 	/* Debug */
1282 	bnx2x_hw_enable_status(bp);
1283 
1284 	/*
1285 	 * Master enable - Due to WB DMAE writes performed before this
1286 	 * register is re-initialized as part of the regular function init
1287 	 */
1288 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1289 
1290 	return 0;
1291 }
1292 
1293 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1294 {
1295 	int port = BP_PORT(bp);
1296 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1297 	u32 val = REG_RD(bp, addr);
1298 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1299 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1300 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1301 
1302 	if (msix) {
1303 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1304 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1305 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1306 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1307 		if (single_msix)
1308 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1309 	} else if (msi) {
1310 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1311 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1312 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1313 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1314 	} else {
1315 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1316 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1317 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1318 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1319 
1320 		if (!CHIP_IS_E1(bp)) {
1321 			DP(NETIF_MSG_IFUP,
1322 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1323 
1324 			REG_WR(bp, addr, val);
1325 
1326 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1327 		}
1328 	}
1329 
1330 	if (CHIP_IS_E1(bp))
1331 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1332 
1333 	DP(NETIF_MSG_IFUP,
1334 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1335 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1336 
1337 	REG_WR(bp, addr, val);
1338 	/*
1339 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1340 	 */
1341 	mmiowb();
1342 	barrier();
1343 
1344 	if (!CHIP_IS_E1(bp)) {
1345 		/* init leading/trailing edge */
1346 		if (IS_MF(bp)) {
1347 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1348 			if (bp->port.pmf)
1349 				/* enable nig and gpio3 attention */
1350 				val |= 0x1100;
1351 		} else
1352 			val = 0xffff;
1353 
1354 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1355 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1356 	}
1357 
1358 	/* Make sure that interrupts are indeed enabled from here on */
1359 	mmiowb();
1360 }
1361 
1362 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1363 {
1364 	u32 val;
1365 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1366 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1367 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1368 
1369 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1370 
1371 	if (msix) {
1372 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1373 			 IGU_PF_CONF_SINGLE_ISR_EN);
1374 		val |= (IGU_PF_CONF_FUNC_EN |
1375 			IGU_PF_CONF_MSI_MSIX_EN |
1376 			IGU_PF_CONF_ATTN_BIT_EN);
1377 
1378 		if (single_msix)
1379 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1380 	} else if (msi) {
1381 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1382 		val |= (IGU_PF_CONF_FUNC_EN |
1383 			IGU_PF_CONF_MSI_MSIX_EN |
1384 			IGU_PF_CONF_ATTN_BIT_EN |
1385 			IGU_PF_CONF_SINGLE_ISR_EN);
1386 	} else {
1387 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1388 		val |= (IGU_PF_CONF_FUNC_EN |
1389 			IGU_PF_CONF_INT_LINE_EN |
1390 			IGU_PF_CONF_ATTN_BIT_EN |
1391 			IGU_PF_CONF_SINGLE_ISR_EN);
1392 	}
1393 
1394 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1395 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1396 
1397 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1398 
1399 	if (val & IGU_PF_CONF_INT_LINE_EN)
1400 		pci_intx(bp->pdev, true);
1401 
1402 	barrier();
1403 
1404 	/* init leading/trailing edge */
1405 	if (IS_MF(bp)) {
1406 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1407 		if (bp->port.pmf)
1408 			/* enable nig and gpio3 attention */
1409 			val |= 0x1100;
1410 	} else
1411 		val = 0xffff;
1412 
1413 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1414 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1415 
1416 	/* Make sure that interrupts are indeed enabled from here on */
1417 	mmiowb();
1418 }
1419 
1420 void bnx2x_int_enable(struct bnx2x *bp)
1421 {
1422 	if (bp->common.int_block == INT_BLOCK_HC)
1423 		bnx2x_hc_int_enable(bp);
1424 	else
1425 		bnx2x_igu_int_enable(bp);
1426 }
1427 
1428 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1429 {
1430 	int port = BP_PORT(bp);
1431 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1432 	u32 val = REG_RD(bp, addr);
1433 
1434 	/*
1435 	 * in E1 we must use only PCI configuration space to disable
1436 	 * MSI/MSIX capablility
1437 	 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1438 	 */
1439 	if (CHIP_IS_E1(bp)) {
1440 		/*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1441 		 *  Use mask register to prevent from HC sending interrupts
1442 		 *  after we exit the function
1443 		 */
1444 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1445 
1446 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1447 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1448 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1449 	} else
1450 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1451 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1452 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1453 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1454 
1455 	DP(NETIF_MSG_IFDOWN,
1456 	   "write %x to HC %d (addr 0x%x)\n",
1457 	   val, port, addr);
1458 
1459 	/* flush all outstanding writes */
1460 	mmiowb();
1461 
1462 	REG_WR(bp, addr, val);
1463 	if (REG_RD(bp, addr) != val)
1464 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1465 }
1466 
1467 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1468 {
1469 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1470 
1471 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1472 		 IGU_PF_CONF_INT_LINE_EN |
1473 		 IGU_PF_CONF_ATTN_BIT_EN);
1474 
1475 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1476 
1477 	/* flush all outstanding writes */
1478 	mmiowb();
1479 
1480 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1481 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1482 		BNX2X_ERR("BUG! proper val not read from IGU!\n");
1483 }
1484 
1485 static void bnx2x_int_disable(struct bnx2x *bp)
1486 {
1487 	if (bp->common.int_block == INT_BLOCK_HC)
1488 		bnx2x_hc_int_disable(bp);
1489 	else
1490 		bnx2x_igu_int_disable(bp);
1491 }
1492 
1493 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1494 {
1495 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1496 	int i, offset;
1497 
1498 	if (disable_hw)
1499 		/* prevent the HW from sending interrupts */
1500 		bnx2x_int_disable(bp);
1501 
1502 	/* make sure all ISRs are done */
1503 	if (msix) {
1504 		synchronize_irq(bp->msix_table[0].vector);
1505 		offset = 1;
1506 		if (CNIC_SUPPORT(bp))
1507 			offset++;
1508 		for_each_eth_queue(bp, i)
1509 			synchronize_irq(bp->msix_table[offset++].vector);
1510 	} else
1511 		synchronize_irq(bp->pdev->irq);
1512 
1513 	/* make sure sp_task is not running */
1514 	cancel_delayed_work(&bp->sp_task);
1515 	cancel_delayed_work(&bp->period_task);
1516 	flush_workqueue(bnx2x_wq);
1517 }
1518 
1519 /* fast path */
1520 
1521 /*
1522  * General service functions
1523  */
1524 
1525 /* Return true if succeeded to acquire the lock */
1526 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1527 {
1528 	u32 lock_status;
1529 	u32 resource_bit = (1 << resource);
1530 	int func = BP_FUNC(bp);
1531 	u32 hw_lock_control_reg;
1532 
1533 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1534 	   "Trying to take a lock on resource %d\n", resource);
1535 
1536 	/* Validating that the resource is within range */
1537 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1538 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1539 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1540 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1541 		return false;
1542 	}
1543 
1544 	if (func <= 5)
1545 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1546 	else
1547 		hw_lock_control_reg =
1548 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1549 
1550 	/* Try to acquire the lock */
1551 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1552 	lock_status = REG_RD(bp, hw_lock_control_reg);
1553 	if (lock_status & resource_bit)
1554 		return true;
1555 
1556 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1557 	   "Failed to get a lock on resource %d\n", resource);
1558 	return false;
1559 }
1560 
1561 /**
1562  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1563  *
1564  * @bp:	driver handle
1565  *
1566  * Returns the recovery leader resource id according to the engine this function
1567  * belongs to. Currently only only 2 engines is supported.
1568  */
1569 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1570 {
1571 	if (BP_PATH(bp))
1572 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1573 	else
1574 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1575 }
1576 
1577 /**
1578  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1579  *
1580  * @bp: driver handle
1581  *
1582  * Tries to aquire a leader lock for current engine.
1583  */
1584 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1585 {
1586 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1587 }
1588 
1589 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1590 
1591 
1592 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1593 {
1594 	struct bnx2x *bp = fp->bp;
1595 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1596 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1597 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1598 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1599 
1600 	DP(BNX2X_MSG_SP,
1601 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1602 	   fp->index, cid, command, bp->state,
1603 	   rr_cqe->ramrod_cqe.ramrod_type);
1604 
1605 	switch (command) {
1606 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1607 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1608 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1609 		break;
1610 
1611 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1612 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1613 		drv_cmd = BNX2X_Q_CMD_SETUP;
1614 		break;
1615 
1616 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1617 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1618 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1619 		break;
1620 
1621 	case (RAMROD_CMD_ID_ETH_HALT):
1622 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1623 		drv_cmd = BNX2X_Q_CMD_HALT;
1624 		break;
1625 
1626 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1627 		DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1628 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1629 		break;
1630 
1631 	case (RAMROD_CMD_ID_ETH_EMPTY):
1632 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1633 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1634 		break;
1635 
1636 	default:
1637 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1638 			  command, fp->index);
1639 		return;
1640 	}
1641 
1642 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1643 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1644 		/* q_obj->complete_cmd() failure means that this was
1645 		 * an unexpected completion.
1646 		 *
1647 		 * In this case we don't want to increase the bp->spq_left
1648 		 * because apparently we haven't sent this command the first
1649 		 * place.
1650 		 */
1651 #ifdef BNX2X_STOP_ON_ERROR
1652 		bnx2x_panic();
1653 #else
1654 		return;
1655 #endif
1656 
1657 	smp_mb__before_atomic_inc();
1658 	atomic_inc(&bp->cq_spq_left);
1659 	/* push the change in bp->spq_left and towards the memory */
1660 	smp_mb__after_atomic_inc();
1661 
1662 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1663 
1664 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1665 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1666 		/* if Q update ramrod is completed for last Q in AFEX vif set
1667 		 * flow, then ACK MCP at the end
1668 		 *
1669 		 * mark pending ACK to MCP bit.
1670 		 * prevent case that both bits are cleared.
1671 		 * At the end of load/unload driver checks that
1672 		 * sp_state is cleaerd, and this order prevents
1673 		 * races
1674 		 */
1675 		smp_mb__before_clear_bit();
1676 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1677 		wmb();
1678 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1679 		smp_mb__after_clear_bit();
1680 
1681 		/* schedule workqueue to send ack to MCP */
1682 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1683 	}
1684 
1685 	return;
1686 }
1687 
1688 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1689 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1690 {
1691 	u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1692 
1693 	bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1694 				 start);
1695 }
1696 
1697 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1698 {
1699 	struct bnx2x *bp = netdev_priv(dev_instance);
1700 	u16 status = bnx2x_ack_int(bp);
1701 	u16 mask;
1702 	int i;
1703 	u8 cos;
1704 
1705 	/* Return here if interrupt is shared and it's not for us */
1706 	if (unlikely(status == 0)) {
1707 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1708 		return IRQ_NONE;
1709 	}
1710 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1711 
1712 #ifdef BNX2X_STOP_ON_ERROR
1713 	if (unlikely(bp->panic))
1714 		return IRQ_HANDLED;
1715 #endif
1716 
1717 	for_each_eth_queue(bp, i) {
1718 		struct bnx2x_fastpath *fp = &bp->fp[i];
1719 
1720 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1721 		if (status & mask) {
1722 			/* Handle Rx or Tx according to SB id */
1723 			prefetch(fp->rx_cons_sb);
1724 			for_each_cos_in_tx_queue(fp, cos)
1725 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1726 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1727 			napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1728 			status &= ~mask;
1729 		}
1730 	}
1731 
1732 	if (CNIC_SUPPORT(bp)) {
1733 		mask = 0x2;
1734 		if (status & (mask | 0x1)) {
1735 			struct cnic_ops *c_ops = NULL;
1736 
1737 			if (likely(bp->state == BNX2X_STATE_OPEN)) {
1738 				rcu_read_lock();
1739 				c_ops = rcu_dereference(bp->cnic_ops);
1740 				if (c_ops)
1741 					c_ops->cnic_handler(bp->cnic_data,
1742 							    NULL);
1743 				rcu_read_unlock();
1744 			}
1745 
1746 			status &= ~mask;
1747 		}
1748 	}
1749 
1750 	if (unlikely(status & 0x1)) {
1751 		queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1752 
1753 		status &= ~0x1;
1754 		if (!status)
1755 			return IRQ_HANDLED;
1756 	}
1757 
1758 	if (unlikely(status))
1759 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1760 		   status);
1761 
1762 	return IRQ_HANDLED;
1763 }
1764 
1765 /* Link */
1766 
1767 /*
1768  * General service functions
1769  */
1770 
1771 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1772 {
1773 	u32 lock_status;
1774 	u32 resource_bit = (1 << resource);
1775 	int func = BP_FUNC(bp);
1776 	u32 hw_lock_control_reg;
1777 	int cnt;
1778 
1779 	/* Validating that the resource is within range */
1780 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1781 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1782 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1783 		return -EINVAL;
1784 	}
1785 
1786 	if (func <= 5) {
1787 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1788 	} else {
1789 		hw_lock_control_reg =
1790 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1791 	}
1792 
1793 	/* Validating that the resource is not already taken */
1794 	lock_status = REG_RD(bp, hw_lock_control_reg);
1795 	if (lock_status & resource_bit) {
1796 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1797 		   lock_status, resource_bit);
1798 		return -EEXIST;
1799 	}
1800 
1801 	/* Try for 5 second every 5ms */
1802 	for (cnt = 0; cnt < 1000; cnt++) {
1803 		/* Try to acquire the lock */
1804 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1805 		lock_status = REG_RD(bp, hw_lock_control_reg);
1806 		if (lock_status & resource_bit)
1807 			return 0;
1808 
1809 		msleep(5);
1810 	}
1811 	BNX2X_ERR("Timeout\n");
1812 	return -EAGAIN;
1813 }
1814 
1815 int bnx2x_release_leader_lock(struct bnx2x *bp)
1816 {
1817 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1818 }
1819 
1820 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1821 {
1822 	u32 lock_status;
1823 	u32 resource_bit = (1 << resource);
1824 	int func = BP_FUNC(bp);
1825 	u32 hw_lock_control_reg;
1826 
1827 	/* Validating that the resource is within range */
1828 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1829 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1830 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1831 		return -EINVAL;
1832 	}
1833 
1834 	if (func <= 5) {
1835 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1836 	} else {
1837 		hw_lock_control_reg =
1838 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1839 	}
1840 
1841 	/* Validating that the resource is currently taken */
1842 	lock_status = REG_RD(bp, hw_lock_control_reg);
1843 	if (!(lock_status & resource_bit)) {
1844 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1845 		   lock_status, resource_bit);
1846 		return -EFAULT;
1847 	}
1848 
1849 	REG_WR(bp, hw_lock_control_reg, resource_bit);
1850 	return 0;
1851 }
1852 
1853 
1854 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1855 {
1856 	/* The GPIO should be swapped if swap register is set and active */
1857 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1858 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1859 	int gpio_shift = gpio_num +
1860 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1861 	u32 gpio_mask = (1 << gpio_shift);
1862 	u32 gpio_reg;
1863 	int value;
1864 
1865 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1866 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1867 		return -EINVAL;
1868 	}
1869 
1870 	/* read GPIO value */
1871 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1872 
1873 	/* get the requested pin value */
1874 	if ((gpio_reg & gpio_mask) == gpio_mask)
1875 		value = 1;
1876 	else
1877 		value = 0;
1878 
1879 	DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1880 
1881 	return value;
1882 }
1883 
1884 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1885 {
1886 	/* The GPIO should be swapped if swap register is set and active */
1887 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1888 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1889 	int gpio_shift = gpio_num +
1890 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1891 	u32 gpio_mask = (1 << gpio_shift);
1892 	u32 gpio_reg;
1893 
1894 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1895 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1896 		return -EINVAL;
1897 	}
1898 
1899 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1900 	/* read GPIO and mask except the float bits */
1901 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1902 
1903 	switch (mode) {
1904 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1905 		DP(NETIF_MSG_LINK,
1906 		   "Set GPIO %d (shift %d) -> output low\n",
1907 		   gpio_num, gpio_shift);
1908 		/* clear FLOAT and set CLR */
1909 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1910 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1911 		break;
1912 
1913 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1914 		DP(NETIF_MSG_LINK,
1915 		   "Set GPIO %d (shift %d) -> output high\n",
1916 		   gpio_num, gpio_shift);
1917 		/* clear FLOAT and set SET */
1918 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1919 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1920 		break;
1921 
1922 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1923 		DP(NETIF_MSG_LINK,
1924 		   "Set GPIO %d (shift %d) -> input\n",
1925 		   gpio_num, gpio_shift);
1926 		/* set FLOAT */
1927 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1928 		break;
1929 
1930 	default:
1931 		break;
1932 	}
1933 
1934 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1935 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1936 
1937 	return 0;
1938 }
1939 
1940 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1941 {
1942 	u32 gpio_reg = 0;
1943 	int rc = 0;
1944 
1945 	/* Any port swapping should be handled by caller. */
1946 
1947 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1948 	/* read GPIO and mask except the float bits */
1949 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1950 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1951 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1952 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1953 
1954 	switch (mode) {
1955 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1956 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1957 		/* set CLR */
1958 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1959 		break;
1960 
1961 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1962 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1963 		/* set SET */
1964 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1965 		break;
1966 
1967 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1969 		/* set FLOAT */
1970 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1971 		break;
1972 
1973 	default:
1974 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1975 		rc = -EINVAL;
1976 		break;
1977 	}
1978 
1979 	if (rc == 0)
1980 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1981 
1982 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1983 
1984 	return rc;
1985 }
1986 
1987 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1988 {
1989 	/* The GPIO should be swapped if swap register is set and active */
1990 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1991 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1992 	int gpio_shift = gpio_num +
1993 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1994 	u32 gpio_mask = (1 << gpio_shift);
1995 	u32 gpio_reg;
1996 
1997 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
1998 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1999 		return -EINVAL;
2000 	}
2001 
2002 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2003 	/* read GPIO int */
2004 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2005 
2006 	switch (mode) {
2007 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2008 		DP(NETIF_MSG_LINK,
2009 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2010 		   gpio_num, gpio_shift);
2011 		/* clear SET and set CLR */
2012 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2013 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2014 		break;
2015 
2016 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2017 		DP(NETIF_MSG_LINK,
2018 		   "Set GPIO INT %d (shift %d) -> output high\n",
2019 		   gpio_num, gpio_shift);
2020 		/* clear CLR and set SET */
2021 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2022 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2023 		break;
2024 
2025 	default:
2026 		break;
2027 	}
2028 
2029 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2030 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2031 
2032 	return 0;
2033 }
2034 
2035 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2036 {
2037 	u32 spio_reg;
2038 
2039 	/* Only 2 SPIOs are configurable */
2040 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2041 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2042 		return -EINVAL;
2043 	}
2044 
2045 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2046 	/* read SPIO and mask except the float bits */
2047 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2048 
2049 	switch (mode) {
2050 	case MISC_SPIO_OUTPUT_LOW:
2051 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2052 		/* clear FLOAT and set CLR */
2053 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2054 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2055 		break;
2056 
2057 	case MISC_SPIO_OUTPUT_HIGH:
2058 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2059 		/* clear FLOAT and set SET */
2060 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2061 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2062 		break;
2063 
2064 	case MISC_SPIO_INPUT_HI_Z:
2065 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2066 		/* set FLOAT */
2067 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2068 		break;
2069 
2070 	default:
2071 		break;
2072 	}
2073 
2074 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2075 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2076 
2077 	return 0;
2078 }
2079 
2080 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2081 {
2082 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2083 	switch (bp->link_vars.ieee_fc &
2084 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2085 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2086 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2087 						   ADVERTISED_Pause);
2088 		break;
2089 
2090 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2091 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2092 						  ADVERTISED_Pause);
2093 		break;
2094 
2095 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2096 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2097 		break;
2098 
2099 	default:
2100 		bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2101 						   ADVERTISED_Pause);
2102 		break;
2103 	}
2104 }
2105 
2106 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2107 {
2108 	/* Initialize link parameters structure variables
2109 	 * It is recommended to turn off RX FC for jumbo frames
2110 	 *  for better performance
2111 	 */
2112 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2113 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2114 	else
2115 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2116 }
2117 
2118 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2119 {
2120 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2121 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2122 
2123 	if (!BP_NOMCP(bp)) {
2124 		bnx2x_set_requested_fc(bp);
2125 		bnx2x_acquire_phy_lock(bp);
2126 
2127 		if (load_mode == LOAD_DIAG) {
2128 			struct link_params *lp = &bp->link_params;
2129 			lp->loopback_mode = LOOPBACK_XGXS;
2130 			/* do PHY loopback at 10G speed, if possible */
2131 			if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2132 				if (lp->speed_cap_mask[cfx_idx] &
2133 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2134 					lp->req_line_speed[cfx_idx] =
2135 					SPEED_10000;
2136 				else
2137 					lp->req_line_speed[cfx_idx] =
2138 					SPEED_1000;
2139 			}
2140 		}
2141 
2142 		if (load_mode == LOAD_LOOPBACK_EXT) {
2143 			struct link_params *lp = &bp->link_params;
2144 			lp->loopback_mode = LOOPBACK_EXT;
2145 		}
2146 
2147 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2148 
2149 		bnx2x_release_phy_lock(bp);
2150 
2151 		bnx2x_calc_fc_adv(bp);
2152 
2153 		if (bp->link_vars.link_up) {
2154 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2155 			bnx2x_link_report(bp);
2156 		}
2157 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2158 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2159 		return rc;
2160 	}
2161 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2162 	return -EINVAL;
2163 }
2164 
2165 void bnx2x_link_set(struct bnx2x *bp)
2166 {
2167 	if (!BP_NOMCP(bp)) {
2168 		bnx2x_acquire_phy_lock(bp);
2169 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2170 		bnx2x_release_phy_lock(bp);
2171 
2172 		bnx2x_calc_fc_adv(bp);
2173 	} else
2174 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2175 }
2176 
2177 static void bnx2x__link_reset(struct bnx2x *bp)
2178 {
2179 	if (!BP_NOMCP(bp)) {
2180 		bnx2x_acquire_phy_lock(bp);
2181 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2182 		bnx2x_release_phy_lock(bp);
2183 	} else
2184 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2185 }
2186 
2187 void bnx2x_force_link_reset(struct bnx2x *bp)
2188 {
2189 	bnx2x_acquire_phy_lock(bp);
2190 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2191 	bnx2x_release_phy_lock(bp);
2192 }
2193 
2194 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2195 {
2196 	u8 rc = 0;
2197 
2198 	if (!BP_NOMCP(bp)) {
2199 		bnx2x_acquire_phy_lock(bp);
2200 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2201 				     is_serdes);
2202 		bnx2x_release_phy_lock(bp);
2203 	} else
2204 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2205 
2206 	return rc;
2207 }
2208 
2209 
2210 /* Calculates the sum of vn_min_rates.
2211    It's needed for further normalizing of the min_rates.
2212    Returns:
2213      sum of vn_min_rates.
2214        or
2215      0 - if all the min_rates are 0.
2216      In the later case fainess algorithm should be deactivated.
2217      If not all min_rates are zero then those that are zeroes will be set to 1.
2218  */
2219 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2220 				      struct cmng_init_input *input)
2221 {
2222 	int all_zero = 1;
2223 	int vn;
2224 
2225 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2226 		u32 vn_cfg = bp->mf_config[vn];
2227 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2228 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2229 
2230 		/* Skip hidden vns */
2231 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2232 			vn_min_rate = 0;
2233 		/* If min rate is zero - set it to 1 */
2234 		else if (!vn_min_rate)
2235 			vn_min_rate = DEF_MIN_RATE;
2236 		else
2237 			all_zero = 0;
2238 
2239 		input->vnic_min_rate[vn] = vn_min_rate;
2240 	}
2241 
2242 	/* if ETS or all min rates are zeros - disable fairness */
2243 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2244 		input->flags.cmng_enables &=
2245 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2246 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2247 	} else if (all_zero) {
2248 		input->flags.cmng_enables &=
2249 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2250 		DP(NETIF_MSG_IFUP,
2251 		   "All MIN values are zeroes fairness will be disabled\n");
2252 	} else
2253 		input->flags.cmng_enables |=
2254 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2255 }
2256 
2257 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2258 				    struct cmng_init_input *input)
2259 {
2260 	u16 vn_max_rate;
2261 	u32 vn_cfg = bp->mf_config[vn];
2262 
2263 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2264 		vn_max_rate = 0;
2265 	else {
2266 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2267 
2268 		if (IS_MF_SI(bp)) {
2269 			/* maxCfg in percents of linkspeed */
2270 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2271 		} else /* SD modes */
2272 			/* maxCfg is absolute in 100Mb units */
2273 			vn_max_rate = maxCfg * 100;
2274 	}
2275 
2276 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2277 
2278 	input->vnic_max_rate[vn] = vn_max_rate;
2279 }
2280 
2281 
2282 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2283 {
2284 	if (CHIP_REV_IS_SLOW(bp))
2285 		return CMNG_FNS_NONE;
2286 	if (IS_MF(bp))
2287 		return CMNG_FNS_MINMAX;
2288 
2289 	return CMNG_FNS_NONE;
2290 }
2291 
2292 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2293 {
2294 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2295 
2296 	if (BP_NOMCP(bp))
2297 		return; /* what should be the default bvalue in this case */
2298 
2299 	/* For 2 port configuration the absolute function number formula
2300 	 * is:
2301 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2302 	 *
2303 	 *      and there are 4 functions per port
2304 	 *
2305 	 * For 4 port configuration it is
2306 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2307 	 *
2308 	 *      and there are 2 functions per port
2309 	 */
2310 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2311 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2312 
2313 		if (func >= E1H_FUNC_MAX)
2314 			break;
2315 
2316 		bp->mf_config[vn] =
2317 			MF_CFG_RD(bp, func_mf_config[func].config);
2318 	}
2319 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2320 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2321 		bp->flags |= MF_FUNC_DIS;
2322 	} else {
2323 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2324 		bp->flags &= ~MF_FUNC_DIS;
2325 	}
2326 }
2327 
2328 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2329 {
2330 	struct cmng_init_input input;
2331 	memset(&input, 0, sizeof(struct cmng_init_input));
2332 
2333 	input.port_rate = bp->link_vars.line_speed;
2334 
2335 	if (cmng_type == CMNG_FNS_MINMAX) {
2336 		int vn;
2337 
2338 		/* read mf conf from shmem */
2339 		if (read_cfg)
2340 			bnx2x_read_mf_cfg(bp);
2341 
2342 		/* vn_weight_sum and enable fairness if not 0 */
2343 		bnx2x_calc_vn_min(bp, &input);
2344 
2345 		/* calculate and set min-max rate for each vn */
2346 		if (bp->port.pmf)
2347 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2348 				bnx2x_calc_vn_max(bp, vn, &input);
2349 
2350 		/* always enable rate shaping and fairness */
2351 		input.flags.cmng_enables |=
2352 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2353 
2354 		bnx2x_init_cmng(&input, &bp->cmng);
2355 		return;
2356 	}
2357 
2358 	/* rate shaping and fairness are disabled */
2359 	DP(NETIF_MSG_IFUP,
2360 	   "rate shaping and fairness are disabled\n");
2361 }
2362 
2363 static void storm_memset_cmng(struct bnx2x *bp,
2364 			      struct cmng_init *cmng,
2365 			      u8 port)
2366 {
2367 	int vn;
2368 	size_t size = sizeof(struct cmng_struct_per_port);
2369 
2370 	u32 addr = BAR_XSTRORM_INTMEM +
2371 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2372 
2373 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2374 
2375 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2376 		int func = func_by_vn(bp, vn);
2377 
2378 		addr = BAR_XSTRORM_INTMEM +
2379 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2380 		size = sizeof(struct rate_shaping_vars_per_vn);
2381 		__storm_memset_struct(bp, addr, size,
2382 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2383 
2384 		addr = BAR_XSTRORM_INTMEM +
2385 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2386 		size = sizeof(struct fairness_vars_per_vn);
2387 		__storm_memset_struct(bp, addr, size,
2388 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2389 	}
2390 }
2391 
2392 /* This function is called upon link interrupt */
2393 static void bnx2x_link_attn(struct bnx2x *bp)
2394 {
2395 	/* Make sure that we are synced with the current statistics */
2396 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2397 
2398 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2399 
2400 	if (bp->link_vars.link_up) {
2401 
2402 		/* dropless flow control */
2403 		if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2404 			int port = BP_PORT(bp);
2405 			u32 pause_enabled = 0;
2406 
2407 			if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2408 				pause_enabled = 1;
2409 
2410 			REG_WR(bp, BAR_USTRORM_INTMEM +
2411 			       USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2412 			       pause_enabled);
2413 		}
2414 
2415 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2416 			struct host_port_stats *pstats;
2417 
2418 			pstats = bnx2x_sp(bp, port_stats);
2419 			/* reset old mac stats */
2420 			memset(&(pstats->mac_stx[0]), 0,
2421 			       sizeof(struct mac_stx));
2422 		}
2423 		if (bp->state == BNX2X_STATE_OPEN)
2424 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2425 	}
2426 
2427 	if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2428 		int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2429 
2430 		if (cmng_fns != CMNG_FNS_NONE) {
2431 			bnx2x_cmng_fns_init(bp, false, cmng_fns);
2432 			storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2433 		} else
2434 			/* rate shaping and fairness are disabled */
2435 			DP(NETIF_MSG_IFUP,
2436 			   "single function mode without fairness\n");
2437 	}
2438 
2439 	__bnx2x_link_report(bp);
2440 
2441 	if (IS_MF(bp))
2442 		bnx2x_link_sync_notify(bp);
2443 }
2444 
2445 void bnx2x__link_status_update(struct bnx2x *bp)
2446 {
2447 	if (bp->state != BNX2X_STATE_OPEN)
2448 		return;
2449 
2450 	/* read updated dcb configuration */
2451 	bnx2x_dcbx_pmf_update(bp);
2452 
2453 	bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2454 
2455 	if (bp->link_vars.link_up)
2456 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2457 	else
2458 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2459 
2460 	/* indicate link status */
2461 	bnx2x_link_report(bp);
2462 }
2463 
2464 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2465 				  u16 vlan_val, u8 allowed_prio)
2466 {
2467 	struct bnx2x_func_state_params func_params = {0};
2468 	struct bnx2x_func_afex_update_params *f_update_params =
2469 		&func_params.params.afex_update;
2470 
2471 	func_params.f_obj = &bp->func_obj;
2472 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2473 
2474 	/* no need to wait for RAMROD completion, so don't
2475 	 * set RAMROD_COMP_WAIT flag
2476 	 */
2477 
2478 	f_update_params->vif_id = vifid;
2479 	f_update_params->afex_default_vlan = vlan_val;
2480 	f_update_params->allowed_priorities = allowed_prio;
2481 
2482 	/* if ramrod can not be sent, response to MCP immediately */
2483 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2484 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2485 
2486 	return 0;
2487 }
2488 
2489 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2490 					  u16 vif_index, u8 func_bit_map)
2491 {
2492 	struct bnx2x_func_state_params func_params = {0};
2493 	struct bnx2x_func_afex_viflists_params *update_params =
2494 		&func_params.params.afex_viflists;
2495 	int rc;
2496 	u32 drv_msg_code;
2497 
2498 	/* validate only LIST_SET and LIST_GET are received from switch */
2499 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2500 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2501 			  cmd_type);
2502 
2503 	func_params.f_obj = &bp->func_obj;
2504 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2505 
2506 	/* set parameters according to cmd_type */
2507 	update_params->afex_vif_list_command = cmd_type;
2508 	update_params->vif_list_index = cpu_to_le16(vif_index);
2509 	update_params->func_bit_map =
2510 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2511 	update_params->func_to_clear = 0;
2512 	drv_msg_code =
2513 		(cmd_type == VIF_LIST_RULE_GET) ?
2514 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2515 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2516 
2517 	/* if ramrod can not be sent, respond to MCP immediately for
2518 	 * SET and GET requests (other are not triggered from MCP)
2519 	 */
2520 	rc = bnx2x_func_state_change(bp, &func_params);
2521 	if (rc < 0)
2522 		bnx2x_fw_command(bp, drv_msg_code, 0);
2523 
2524 	return 0;
2525 }
2526 
2527 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2528 {
2529 	struct afex_stats afex_stats;
2530 	u32 func = BP_ABS_FUNC(bp);
2531 	u32 mf_config;
2532 	u16 vlan_val;
2533 	u32 vlan_prio;
2534 	u16 vif_id;
2535 	u8 allowed_prio;
2536 	u8 vlan_mode;
2537 	u32 addr_to_write, vifid, addrs, stats_type, i;
2538 
2539 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2540 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2541 		DP(BNX2X_MSG_MCP,
2542 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2543 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2544 	}
2545 
2546 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2547 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2548 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2549 		DP(BNX2X_MSG_MCP,
2550 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2551 		   vifid, addrs);
2552 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2553 					       addrs);
2554 	}
2555 
2556 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2557 		addr_to_write = SHMEM2_RD(bp,
2558 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2559 		stats_type = SHMEM2_RD(bp,
2560 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2561 
2562 		DP(BNX2X_MSG_MCP,
2563 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2564 		   addr_to_write);
2565 
2566 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2567 
2568 		/* write response to scratchpad, for MCP */
2569 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2570 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2571 			       *(((u32 *)(&afex_stats))+i));
2572 
2573 		/* send ack message to MCP */
2574 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2575 	}
2576 
2577 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2578 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2579 		bp->mf_config[BP_VN(bp)] = mf_config;
2580 		DP(BNX2X_MSG_MCP,
2581 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2582 		   mf_config);
2583 
2584 		/* if VIF_SET is "enabled" */
2585 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2586 			/* set rate limit directly to internal RAM */
2587 			struct cmng_init_input cmng_input;
2588 			struct rate_shaping_vars_per_vn m_rs_vn;
2589 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2590 			u32 addr = BAR_XSTRORM_INTMEM +
2591 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2592 
2593 			bp->mf_config[BP_VN(bp)] = mf_config;
2594 
2595 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2596 			m_rs_vn.vn_counter.rate =
2597 				cmng_input.vnic_max_rate[BP_VN(bp)];
2598 			m_rs_vn.vn_counter.quota =
2599 				(m_rs_vn.vn_counter.rate *
2600 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2601 
2602 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2603 
2604 			/* read relevant values from mf_cfg struct in shmem */
2605 			vif_id =
2606 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2607 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2608 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2609 			vlan_val =
2610 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2611 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2612 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2613 			vlan_prio = (mf_config &
2614 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2615 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2616 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2617 			vlan_mode =
2618 				(MF_CFG_RD(bp,
2619 					   func_mf_config[func].afex_config) &
2620 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2621 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2622 			allowed_prio =
2623 				(MF_CFG_RD(bp,
2624 					   func_mf_config[func].afex_config) &
2625 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2626 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2627 
2628 			/* send ramrod to FW, return in case of failure */
2629 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2630 						   allowed_prio))
2631 				return;
2632 
2633 			bp->afex_def_vlan_tag = vlan_val;
2634 			bp->afex_vlan_mode = vlan_mode;
2635 		} else {
2636 			/* notify link down because BP->flags is disabled */
2637 			bnx2x_link_report(bp);
2638 
2639 			/* send INVALID VIF ramrod to FW */
2640 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2641 
2642 			/* Reset the default afex VLAN */
2643 			bp->afex_def_vlan_tag = -1;
2644 		}
2645 	}
2646 }
2647 
2648 static void bnx2x_pmf_update(struct bnx2x *bp)
2649 {
2650 	int port = BP_PORT(bp);
2651 	u32 val;
2652 
2653 	bp->port.pmf = 1;
2654 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2655 
2656 	/*
2657 	 * We need the mb() to ensure the ordering between the writing to
2658 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2659 	 */
2660 	smp_mb();
2661 
2662 	/* queue a periodic task */
2663 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2664 
2665 	bnx2x_dcbx_pmf_update(bp);
2666 
2667 	/* enable nig attention */
2668 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2669 	if (bp->common.int_block == INT_BLOCK_HC) {
2670 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2671 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2672 	} else if (!CHIP_IS_E1x(bp)) {
2673 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2674 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2675 	}
2676 
2677 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2678 }
2679 
2680 /* end of Link */
2681 
2682 /* slow path */
2683 
2684 /*
2685  * General service functions
2686  */
2687 
2688 /* send the MCP a request, block until there is a reply */
2689 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2690 {
2691 	int mb_idx = BP_FW_MB_IDX(bp);
2692 	u32 seq;
2693 	u32 rc = 0;
2694 	u32 cnt = 1;
2695 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2696 
2697 	mutex_lock(&bp->fw_mb_mutex);
2698 	seq = ++bp->fw_seq;
2699 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2700 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2701 
2702 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2703 			(command | seq), param);
2704 
2705 	do {
2706 		/* let the FW do it's magic ... */
2707 		msleep(delay);
2708 
2709 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2710 
2711 		/* Give the FW up to 5 second (500*10ms) */
2712 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2713 
2714 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2715 	   cnt*delay, rc, seq);
2716 
2717 	/* is this a reply to our command? */
2718 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2719 		rc &= FW_MSG_CODE_MASK;
2720 	else {
2721 		/* FW BUG! */
2722 		BNX2X_ERR("FW failed to respond!\n");
2723 		bnx2x_fw_dump(bp);
2724 		rc = 0;
2725 	}
2726 	mutex_unlock(&bp->fw_mb_mutex);
2727 
2728 	return rc;
2729 }
2730 
2731 
2732 static void storm_memset_func_cfg(struct bnx2x *bp,
2733 				 struct tstorm_eth_function_common_config *tcfg,
2734 				 u16 abs_fid)
2735 {
2736 	size_t size = sizeof(struct tstorm_eth_function_common_config);
2737 
2738 	u32 addr = BAR_TSTRORM_INTMEM +
2739 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2740 
2741 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2742 }
2743 
2744 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2745 {
2746 	if (CHIP_IS_E1x(bp)) {
2747 		struct tstorm_eth_function_common_config tcfg = {0};
2748 
2749 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
2750 	}
2751 
2752 	/* Enable the function in the FW */
2753 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2754 	storm_memset_func_en(bp, p->func_id, 1);
2755 
2756 	/* spq */
2757 	if (p->func_flgs & FUNC_FLG_SPQ) {
2758 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2759 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
2760 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2761 	}
2762 }
2763 
2764 /**
2765  * bnx2x_get_tx_only_flags - Return common flags
2766  *
2767  * @bp		device handle
2768  * @fp		queue handle
2769  * @zero_stats	TRUE if statistics zeroing is needed
2770  *
2771  * Return the flags that are common for the Tx-only and not normal connections.
2772  */
2773 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2774 					    struct bnx2x_fastpath *fp,
2775 					    bool zero_stats)
2776 {
2777 	unsigned long flags = 0;
2778 
2779 	/* PF driver will always initialize the Queue to an ACTIVE state */
2780 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2781 
2782 	/* tx only connections collect statistics (on the same index as the
2783 	 *  parent connection). The statistics are zeroed when the parent
2784 	 *  connection is initialized.
2785 	 */
2786 
2787 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
2788 	if (zero_stats)
2789 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2790 
2791 
2792 	return flags;
2793 }
2794 
2795 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2796 				       struct bnx2x_fastpath *fp,
2797 				       bool leading)
2798 {
2799 	unsigned long flags = 0;
2800 
2801 	/* calculate other queue flags */
2802 	if (IS_MF_SD(bp))
2803 		__set_bit(BNX2X_Q_FLG_OV, &flags);
2804 
2805 	if (IS_FCOE_FP(fp)) {
2806 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
2807 		/* For FCoE - force usage of default priority (for afex) */
2808 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2809 	}
2810 
2811 	if (!fp->disable_tpa) {
2812 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
2813 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2814 		if (fp->mode == TPA_MODE_GRO)
2815 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2816 	}
2817 
2818 	if (leading) {
2819 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2820 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
2821 	}
2822 
2823 	/* Always set HW VLAN stripping */
2824 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
2825 
2826 	/* configure silent vlan removal */
2827 	if (IS_MF_AFEX(bp))
2828 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2829 
2830 
2831 	return flags | bnx2x_get_common_flags(bp, fp, true);
2832 }
2833 
2834 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2835 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2836 	u8 cos)
2837 {
2838 	gen_init->stat_id = bnx2x_stats_id(fp);
2839 	gen_init->spcl_id = fp->cl_id;
2840 
2841 	/* Always use mini-jumbo MTU for FCoE L2 ring */
2842 	if (IS_FCOE_FP(fp))
2843 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2844 	else
2845 		gen_init->mtu = bp->dev->mtu;
2846 
2847 	gen_init->cos = cos;
2848 }
2849 
2850 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2851 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2852 	struct bnx2x_rxq_setup_params *rxq_init)
2853 {
2854 	u8 max_sge = 0;
2855 	u16 sge_sz = 0;
2856 	u16 tpa_agg_size = 0;
2857 
2858 	if (!fp->disable_tpa) {
2859 		pause->sge_th_lo = SGE_TH_LO(bp);
2860 		pause->sge_th_hi = SGE_TH_HI(bp);
2861 
2862 		/* validate SGE ring has enough to cross high threshold */
2863 		WARN_ON(bp->dropless_fc &&
2864 				pause->sge_th_hi + FW_PREFETCH_CNT >
2865 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2866 
2867 		tpa_agg_size = min_t(u32,
2868 			(min_t(u32, 8, MAX_SKB_FRAGS) *
2869 			SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2870 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2871 			SGE_PAGE_SHIFT;
2872 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2873 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2874 		sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2875 				    0xffff);
2876 	}
2877 
2878 	/* pause - not for e1 */
2879 	if (!CHIP_IS_E1(bp)) {
2880 		pause->bd_th_lo = BD_TH_LO(bp);
2881 		pause->bd_th_hi = BD_TH_HI(bp);
2882 
2883 		pause->rcq_th_lo = RCQ_TH_LO(bp);
2884 		pause->rcq_th_hi = RCQ_TH_HI(bp);
2885 		/*
2886 		 * validate that rings have enough entries to cross
2887 		 * high thresholds
2888 		 */
2889 		WARN_ON(bp->dropless_fc &&
2890 				pause->bd_th_hi + FW_PREFETCH_CNT >
2891 				bp->rx_ring_size);
2892 		WARN_ON(bp->dropless_fc &&
2893 				pause->rcq_th_hi + FW_PREFETCH_CNT >
2894 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2895 
2896 		pause->pri_map = 1;
2897 	}
2898 
2899 	/* rxq setup */
2900 	rxq_init->dscr_map = fp->rx_desc_mapping;
2901 	rxq_init->sge_map = fp->rx_sge_mapping;
2902 	rxq_init->rcq_map = fp->rx_comp_mapping;
2903 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2904 
2905 	/* This should be a maximum number of data bytes that may be
2906 	 * placed on the BD (not including paddings).
2907 	 */
2908 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2909 		BNX2X_FW_RX_ALIGN_END -	IP_HEADER_ALIGNMENT_PADDING;
2910 
2911 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
2912 	rxq_init->tpa_agg_sz = tpa_agg_size;
2913 	rxq_init->sge_buf_sz = sge_sz;
2914 	rxq_init->max_sges_pkt = max_sge;
2915 	rxq_init->rss_engine_id = BP_FUNC(bp);
2916 	rxq_init->mcast_engine_id = BP_FUNC(bp);
2917 
2918 	/* Maximum number or simultaneous TPA aggregation for this Queue.
2919 	 *
2920 	 * For PF Clients it should be the maximum avaliable number.
2921 	 * VF driver(s) may want to define it to a smaller value.
2922 	 */
2923 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2924 
2925 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2926 	rxq_init->fw_sb_id = fp->fw_sb_id;
2927 
2928 	if (IS_FCOE_FP(fp))
2929 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2930 	else
2931 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2932 	/* configure silent vlan removal
2933 	 * if multi function mode is afex, then mask default vlan
2934 	 */
2935 	if (IS_MF_AFEX(bp)) {
2936 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2937 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
2938 	}
2939 }
2940 
2941 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2942 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2943 	u8 cos)
2944 {
2945 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2946 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2947 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2948 	txq_init->fw_sb_id = fp->fw_sb_id;
2949 
2950 	/*
2951 	 * set the tss leading client id for TX classfication ==
2952 	 * leading RSS client id
2953 	 */
2954 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2955 
2956 	if (IS_FCOE_FP(fp)) {
2957 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2958 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2959 	}
2960 }
2961 
2962 static void bnx2x_pf_init(struct bnx2x *bp)
2963 {
2964 	struct bnx2x_func_init_params func_init = {0};
2965 	struct event_ring_data eq_data = { {0} };
2966 	u16 flags;
2967 
2968 	if (!CHIP_IS_E1x(bp)) {
2969 		/* reset IGU PF statistics: MSIX + ATTN */
2970 		/* PF */
2971 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2972 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2973 			   (CHIP_MODE_IS_4_PORT(bp) ?
2974 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2975 		/* ATTN */
2976 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2977 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2978 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2979 			   (CHIP_MODE_IS_4_PORT(bp) ?
2980 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
2981 	}
2982 
2983 	/* function setup flags */
2984 	flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2985 
2986 	/* This flag is relevant for E1x only.
2987 	 * E2 doesn't have a TPA configuration in a function level.
2988 	 */
2989 	flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2990 
2991 	func_init.func_flgs = flags;
2992 	func_init.pf_id = BP_FUNC(bp);
2993 	func_init.func_id = BP_FUNC(bp);
2994 	func_init.spq_map = bp->spq_mapping;
2995 	func_init.spq_prod = bp->spq_prod_idx;
2996 
2997 	bnx2x_func_init(bp, &func_init);
2998 
2999 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3000 
3001 	/*
3002 	 * Congestion management values depend on the link rate
3003 	 * There is no active link so initial link rate is set to 10 Gbps.
3004 	 * When the link comes up The congestion management values are
3005 	 * re-calculated according to the actual link rate.
3006 	 */
3007 	bp->link_vars.line_speed = SPEED_10000;
3008 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3009 
3010 	/* Only the PMF sets the HW */
3011 	if (bp->port.pmf)
3012 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3013 
3014 	/* init Event Queue */
3015 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3016 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3017 	eq_data.producer = bp->eq_prod;
3018 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3019 	eq_data.sb_id = DEF_SB_ID;
3020 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3021 }
3022 
3023 
3024 static void bnx2x_e1h_disable(struct bnx2x *bp)
3025 {
3026 	int port = BP_PORT(bp);
3027 
3028 	bnx2x_tx_disable(bp);
3029 
3030 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3031 }
3032 
3033 static void bnx2x_e1h_enable(struct bnx2x *bp)
3034 {
3035 	int port = BP_PORT(bp);
3036 
3037 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3038 
3039 	/* Tx queue should be only reenabled */
3040 	netif_tx_wake_all_queues(bp->dev);
3041 
3042 	/*
3043 	 * Should not call netif_carrier_on since it will be called if the link
3044 	 * is up when checking for link state
3045 	 */
3046 }
3047 
3048 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3049 
3050 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3051 {
3052 	struct eth_stats_info *ether_stat =
3053 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3054 
3055 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3056 		ETH_STAT_INFO_VERSION_LEN);
3057 
3058 	bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3059 					DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3060 					ether_stat->mac_local);
3061 
3062 	ether_stat->mtu_size = bp->dev->mtu;
3063 
3064 	if (bp->dev->features & NETIF_F_RXCSUM)
3065 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3066 	if (bp->dev->features & NETIF_F_TSO)
3067 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3068 	ether_stat->feature_flags |= bp->common.boot_mode;
3069 
3070 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3071 
3072 	ether_stat->txq_size = bp->tx_ring_size;
3073 	ether_stat->rxq_size = bp->rx_ring_size;
3074 }
3075 
3076 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3077 {
3078 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3079 	struct fcoe_stats_info *fcoe_stat =
3080 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3081 
3082 	if (!CNIC_LOADED(bp))
3083 		return;
3084 
3085 	memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3086 	       bp->fip_mac, ETH_ALEN);
3087 
3088 	fcoe_stat->qos_priority =
3089 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3090 
3091 	/* insert FCoE stats from ramrod response */
3092 	if (!NO_FCOE(bp)) {
3093 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3094 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3095 			tstorm_queue_statistics;
3096 
3097 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3098 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3099 			xstorm_queue_statistics;
3100 
3101 		struct fcoe_statistics_params *fw_fcoe_stat =
3102 			&bp->fw_stats_data->fcoe;
3103 
3104 		ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3105 		       fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3106 
3107 		ADD_64(fcoe_stat->rx_bytes_hi,
3108 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3109 		       fcoe_stat->rx_bytes_lo,
3110 		       fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3111 
3112 		ADD_64(fcoe_stat->rx_bytes_hi,
3113 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3114 		       fcoe_stat->rx_bytes_lo,
3115 		       fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3116 
3117 		ADD_64(fcoe_stat->rx_bytes_hi,
3118 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3119 		       fcoe_stat->rx_bytes_lo,
3120 		       fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3121 
3122 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3123 		       fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3124 
3125 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3126 		       fcoe_q_tstorm_stats->rcv_ucast_pkts);
3127 
3128 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3129 		       fcoe_q_tstorm_stats->rcv_bcast_pkts);
3130 
3131 		ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3132 		       fcoe_q_tstorm_stats->rcv_mcast_pkts);
3133 
3134 		ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3135 		       fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3136 
3137 		ADD_64(fcoe_stat->tx_bytes_hi,
3138 		       fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3139 		       fcoe_stat->tx_bytes_lo,
3140 		       fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3141 
3142 		ADD_64(fcoe_stat->tx_bytes_hi,
3143 		       fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3144 		       fcoe_stat->tx_bytes_lo,
3145 		       fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3146 
3147 		ADD_64(fcoe_stat->tx_bytes_hi,
3148 		       fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3149 		       fcoe_stat->tx_bytes_lo,
3150 		       fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3151 
3152 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3153 		       fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3154 
3155 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3156 		       fcoe_q_xstorm_stats->ucast_pkts_sent);
3157 
3158 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3159 		       fcoe_q_xstorm_stats->bcast_pkts_sent);
3160 
3161 		ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3162 		       fcoe_q_xstorm_stats->mcast_pkts_sent);
3163 	}
3164 
3165 	/* ask L5 driver to add data to the struct */
3166 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3167 }
3168 
3169 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3170 {
3171 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3172 	struct iscsi_stats_info *iscsi_stat =
3173 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3174 
3175 	if (!CNIC_LOADED(bp))
3176 		return;
3177 
3178 	memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3179 	       bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3180 
3181 	iscsi_stat->qos_priority =
3182 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3183 
3184 	/* ask L5 driver to add data to the struct */
3185 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3186 }
3187 
3188 /* called due to MCP event (on pmf):
3189  *	reread new bandwidth configuration
3190  *	configure FW
3191  *	notify others function about the change
3192  */
3193 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3194 {
3195 	if (bp->link_vars.link_up) {
3196 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3197 		bnx2x_link_sync_notify(bp);
3198 	}
3199 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3200 }
3201 
3202 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3203 {
3204 	bnx2x_config_mf_bw(bp);
3205 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3206 }
3207 
3208 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3209 {
3210 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3211 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3212 }
3213 
3214 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3215 {
3216 	enum drv_info_opcode op_code;
3217 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3218 
3219 	/* if drv_info version supported by MFW doesn't match - send NACK */
3220 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3221 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3222 		return;
3223 	}
3224 
3225 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3226 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3227 
3228 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3229 	       sizeof(union drv_info_to_mcp));
3230 
3231 	switch (op_code) {
3232 	case ETH_STATS_OPCODE:
3233 		bnx2x_drv_info_ether_stat(bp);
3234 		break;
3235 	case FCOE_STATS_OPCODE:
3236 		bnx2x_drv_info_fcoe_stat(bp);
3237 		break;
3238 	case ISCSI_STATS_OPCODE:
3239 		bnx2x_drv_info_iscsi_stat(bp);
3240 		break;
3241 	default:
3242 		/* if op code isn't supported - send NACK */
3243 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3244 		return;
3245 	}
3246 
3247 	/* if we got drv_info attn from MFW then these fields are defined in
3248 	 * shmem2 for sure
3249 	 */
3250 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3251 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3252 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3253 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3254 
3255 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3256 }
3257 
3258 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3259 {
3260 	DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3261 
3262 	if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3263 
3264 		/*
3265 		 * This is the only place besides the function initialization
3266 		 * where the bp->flags can change so it is done without any
3267 		 * locks
3268 		 */
3269 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3270 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3271 			bp->flags |= MF_FUNC_DIS;
3272 
3273 			bnx2x_e1h_disable(bp);
3274 		} else {
3275 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3276 			bp->flags &= ~MF_FUNC_DIS;
3277 
3278 			bnx2x_e1h_enable(bp);
3279 		}
3280 		dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3281 	}
3282 	if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3283 		bnx2x_config_mf_bw(bp);
3284 		dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3285 	}
3286 
3287 	/* Report results to MCP */
3288 	if (dcc_event)
3289 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3290 	else
3291 		bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3292 }
3293 
3294 /* must be called under the spq lock */
3295 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3296 {
3297 	struct eth_spe *next_spe = bp->spq_prod_bd;
3298 
3299 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3300 		bp->spq_prod_bd = bp->spq;
3301 		bp->spq_prod_idx = 0;
3302 		DP(BNX2X_MSG_SP, "end of spq\n");
3303 	} else {
3304 		bp->spq_prod_bd++;
3305 		bp->spq_prod_idx++;
3306 	}
3307 	return next_spe;
3308 }
3309 
3310 /* must be called under the spq lock */
3311 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3312 {
3313 	int func = BP_FUNC(bp);
3314 
3315 	/*
3316 	 * Make sure that BD data is updated before writing the producer:
3317 	 * BD data is written to the memory, the producer is read from the
3318 	 * memory, thus we need a full memory barrier to ensure the ordering.
3319 	 */
3320 	mb();
3321 
3322 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3323 		 bp->spq_prod_idx);
3324 	mmiowb();
3325 }
3326 
3327 /**
3328  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3329  *
3330  * @cmd:	command to check
3331  * @cmd_type:	command type
3332  */
3333 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3334 {
3335 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3336 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3337 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3338 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3339 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3340 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3341 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3342 		return true;
3343 	else
3344 		return false;
3345 
3346 }
3347 
3348 
3349 /**
3350  * bnx2x_sp_post - place a single command on an SP ring
3351  *
3352  * @bp:		driver handle
3353  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3354  * @cid:	SW CID the command is related to
3355  * @data_hi:	command private data address (high 32 bits)
3356  * @data_lo:	command private data address (low 32 bits)
3357  * @cmd_type:	command type (e.g. NONE, ETH)
3358  *
3359  * SP data is handled as if it's always an address pair, thus data fields are
3360  * not swapped to little endian in upper functions. Instead this function swaps
3361  * data as if it's two u32 fields.
3362  */
3363 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3364 		  u32 data_hi, u32 data_lo, int cmd_type)
3365 {
3366 	struct eth_spe *spe;
3367 	u16 type;
3368 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3369 
3370 #ifdef BNX2X_STOP_ON_ERROR
3371 	if (unlikely(bp->panic)) {
3372 		BNX2X_ERR("Can't post SP when there is panic\n");
3373 		return -EIO;
3374 	}
3375 #endif
3376 
3377 	spin_lock_bh(&bp->spq_lock);
3378 
3379 	if (common) {
3380 		if (!atomic_read(&bp->eq_spq_left)) {
3381 			BNX2X_ERR("BUG! EQ ring full!\n");
3382 			spin_unlock_bh(&bp->spq_lock);
3383 			bnx2x_panic();
3384 			return -EBUSY;
3385 		}
3386 	} else if (!atomic_read(&bp->cq_spq_left)) {
3387 			BNX2X_ERR("BUG! SPQ ring full!\n");
3388 			spin_unlock_bh(&bp->spq_lock);
3389 			bnx2x_panic();
3390 			return -EBUSY;
3391 	}
3392 
3393 	spe = bnx2x_sp_get_next(bp);
3394 
3395 	/* CID needs port number to be encoded int it */
3396 	spe->hdr.conn_and_cmd_data =
3397 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3398 				    HW_CID(bp, cid));
3399 
3400 	type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3401 
3402 	type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3403 		 SPE_HDR_FUNCTION_ID);
3404 
3405 	spe->hdr.type = cpu_to_le16(type);
3406 
3407 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3408 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3409 
3410 	/*
3411 	 * It's ok if the actual decrement is issued towards the memory
3412 	 * somewhere between the spin_lock and spin_unlock. Thus no
3413 	 * more explict memory barrier is needed.
3414 	 */
3415 	if (common)
3416 		atomic_dec(&bp->eq_spq_left);
3417 	else
3418 		atomic_dec(&bp->cq_spq_left);
3419 
3420 
3421 	DP(BNX2X_MSG_SP,
3422 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3423 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3424 	   (u32)(U64_LO(bp->spq_mapping) +
3425 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3426 	   HW_CID(bp, cid), data_hi, data_lo, type,
3427 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3428 
3429 	bnx2x_sp_prod_update(bp);
3430 	spin_unlock_bh(&bp->spq_lock);
3431 	return 0;
3432 }
3433 
3434 /* acquire split MCP access lock register */
3435 static int bnx2x_acquire_alr(struct bnx2x *bp)
3436 {
3437 	u32 j, val;
3438 	int rc = 0;
3439 
3440 	might_sleep();
3441 	for (j = 0; j < 1000; j++) {
3442 		val = (1UL << 31);
3443 		REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3444 		val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3445 		if (val & (1L << 31))
3446 			break;
3447 
3448 		msleep(5);
3449 	}
3450 	if (!(val & (1L << 31))) {
3451 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3452 		rc = -EBUSY;
3453 	}
3454 
3455 	return rc;
3456 }
3457 
3458 /* release split MCP access lock register */
3459 static void bnx2x_release_alr(struct bnx2x *bp)
3460 {
3461 	REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3462 }
3463 
3464 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3465 #define BNX2X_DEF_SB_IDX	0x0002
3466 
3467 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3468 {
3469 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3470 	u16 rc = 0;
3471 
3472 	barrier(); /* status block is written to by the chip */
3473 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3474 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3475 		rc |= BNX2X_DEF_SB_ATT_IDX;
3476 	}
3477 
3478 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3479 		bp->def_idx = def_sb->sp_sb.running_index;
3480 		rc |= BNX2X_DEF_SB_IDX;
3481 	}
3482 
3483 	/* Do not reorder: indecies reading should complete before handling */
3484 	barrier();
3485 	return rc;
3486 }
3487 
3488 /*
3489  * slow path service functions
3490  */
3491 
3492 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3493 {
3494 	int port = BP_PORT(bp);
3495 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3496 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3497 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3498 				       NIG_REG_MASK_INTERRUPT_PORT0;
3499 	u32 aeu_mask;
3500 	u32 nig_mask = 0;
3501 	u32 reg_addr;
3502 
3503 	if (bp->attn_state & asserted)
3504 		BNX2X_ERR("IGU ERROR\n");
3505 
3506 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3507 	aeu_mask = REG_RD(bp, aeu_addr);
3508 
3509 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3510 	   aeu_mask, asserted);
3511 	aeu_mask &= ~(asserted & 0x3ff);
3512 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3513 
3514 	REG_WR(bp, aeu_addr, aeu_mask);
3515 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3516 
3517 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3518 	bp->attn_state |= asserted;
3519 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3520 
3521 	if (asserted & ATTN_HARD_WIRED_MASK) {
3522 		if (asserted & ATTN_NIG_FOR_FUNC) {
3523 
3524 			bnx2x_acquire_phy_lock(bp);
3525 
3526 			/* save nig interrupt mask */
3527 			nig_mask = REG_RD(bp, nig_int_mask_addr);
3528 
3529 			/* If nig_mask is not set, no need to call the update
3530 			 * function.
3531 			 */
3532 			if (nig_mask) {
3533 				REG_WR(bp, nig_int_mask_addr, 0);
3534 
3535 				bnx2x_link_attn(bp);
3536 			}
3537 
3538 			/* handle unicore attn? */
3539 		}
3540 		if (asserted & ATTN_SW_TIMER_4_FUNC)
3541 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3542 
3543 		if (asserted & GPIO_2_FUNC)
3544 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3545 
3546 		if (asserted & GPIO_3_FUNC)
3547 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3548 
3549 		if (asserted & GPIO_4_FUNC)
3550 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3551 
3552 		if (port == 0) {
3553 			if (asserted & ATTN_GENERAL_ATTN_1) {
3554 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3555 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3556 			}
3557 			if (asserted & ATTN_GENERAL_ATTN_2) {
3558 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3559 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3560 			}
3561 			if (asserted & ATTN_GENERAL_ATTN_3) {
3562 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3563 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3564 			}
3565 		} else {
3566 			if (asserted & ATTN_GENERAL_ATTN_4) {
3567 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3568 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3569 			}
3570 			if (asserted & ATTN_GENERAL_ATTN_5) {
3571 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3572 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3573 			}
3574 			if (asserted & ATTN_GENERAL_ATTN_6) {
3575 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3576 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3577 			}
3578 		}
3579 
3580 	} /* if hardwired */
3581 
3582 	if (bp->common.int_block == INT_BLOCK_HC)
3583 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
3584 			    COMMAND_REG_ATTN_BITS_SET);
3585 	else
3586 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3587 
3588 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3589 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3590 	REG_WR(bp, reg_addr, asserted);
3591 
3592 	/* now set back the mask */
3593 	if (asserted & ATTN_NIG_FOR_FUNC) {
3594 		/* Verify that IGU ack through BAR was written before restoring
3595 		 * NIG mask. This loop should exit after 2-3 iterations max.
3596 		 */
3597 		if (bp->common.int_block != INT_BLOCK_HC) {
3598 			u32 cnt = 0, igu_acked;
3599 			do {
3600 				igu_acked = REG_RD(bp,
3601 						   IGU_REG_ATTENTION_ACK_BITS);
3602 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3603 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
3604 			if (!igu_acked)
3605 				DP(NETIF_MSG_HW,
3606 				   "Failed to verify IGU ack on time\n");
3607 			barrier();
3608 		}
3609 		REG_WR(bp, nig_int_mask_addr, nig_mask);
3610 		bnx2x_release_phy_lock(bp);
3611 	}
3612 }
3613 
3614 static void bnx2x_fan_failure(struct bnx2x *bp)
3615 {
3616 	int port = BP_PORT(bp);
3617 	u32 ext_phy_config;
3618 	/* mark the failure */
3619 	ext_phy_config =
3620 		SHMEM_RD(bp,
3621 			 dev_info.port_hw_config[port].external_phy_config);
3622 
3623 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3624 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3625 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3626 		 ext_phy_config);
3627 
3628 	/* log the failure */
3629 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3630 			    "Please contact OEM Support for assistance\n");
3631 
3632 	/*
3633 	 * Scheudle device reset (unload)
3634 	 * This is due to some boards consuming sufficient power when driver is
3635 	 * up to overheat if fan fails.
3636 	 */
3637 	smp_mb__before_clear_bit();
3638 	set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3639 	smp_mb__after_clear_bit();
3640 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
3641 
3642 }
3643 
3644 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3645 {
3646 	int port = BP_PORT(bp);
3647 	int reg_offset;
3648 	u32 val;
3649 
3650 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3651 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3652 
3653 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3654 
3655 		val = REG_RD(bp, reg_offset);
3656 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3657 		REG_WR(bp, reg_offset, val);
3658 
3659 		BNX2X_ERR("SPIO5 hw attention\n");
3660 
3661 		/* Fan failure attention */
3662 		bnx2x_hw_reset_phy(&bp->link_params);
3663 		bnx2x_fan_failure(bp);
3664 	}
3665 
3666 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3667 		bnx2x_acquire_phy_lock(bp);
3668 		bnx2x_handle_module_detect_int(&bp->link_params);
3669 		bnx2x_release_phy_lock(bp);
3670 	}
3671 
3672 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
3673 
3674 		val = REG_RD(bp, reg_offset);
3675 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3676 		REG_WR(bp, reg_offset, val);
3677 
3678 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3679 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3680 		bnx2x_panic();
3681 	}
3682 }
3683 
3684 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3685 {
3686 	u32 val;
3687 
3688 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3689 
3690 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3691 		BNX2X_ERR("DB hw attention 0x%x\n", val);
3692 		/* DORQ discard attention */
3693 		if (val & 0x2)
3694 			BNX2X_ERR("FATAL error from DORQ\n");
3695 	}
3696 
3697 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
3698 
3699 		int port = BP_PORT(bp);
3700 		int reg_offset;
3701 
3702 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3703 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3704 
3705 		val = REG_RD(bp, reg_offset);
3706 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3707 		REG_WR(bp, reg_offset, val);
3708 
3709 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3710 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3711 		bnx2x_panic();
3712 	}
3713 }
3714 
3715 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3716 {
3717 	u32 val;
3718 
3719 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3720 
3721 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3722 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
3723 		/* CFC error attention */
3724 		if (val & 0x2)
3725 			BNX2X_ERR("FATAL error from CFC\n");
3726 	}
3727 
3728 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3729 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3730 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3731 		/* RQ_USDMDP_FIFO_OVERFLOW */
3732 		if (val & 0x18000)
3733 			BNX2X_ERR("FATAL error from PXP\n");
3734 
3735 		if (!CHIP_IS_E1x(bp)) {
3736 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3737 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3738 		}
3739 	}
3740 
3741 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
3742 
3743 		int port = BP_PORT(bp);
3744 		int reg_offset;
3745 
3746 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3747 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3748 
3749 		val = REG_RD(bp, reg_offset);
3750 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3751 		REG_WR(bp, reg_offset, val);
3752 
3753 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3754 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3755 		bnx2x_panic();
3756 	}
3757 }
3758 
3759 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3760 {
3761 	u32 val;
3762 
3763 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3764 
3765 		if (attn & BNX2X_PMF_LINK_ASSERT) {
3766 			int func = BP_FUNC(bp);
3767 
3768 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3769 			bnx2x_read_mf_cfg(bp);
3770 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3771 					func_mf_config[BP_ABS_FUNC(bp)].config);
3772 			val = SHMEM_RD(bp,
3773 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
3774 			if (val & DRV_STATUS_DCC_EVENT_MASK)
3775 				bnx2x_dcc_event(bp,
3776 					    (val & DRV_STATUS_DCC_EVENT_MASK));
3777 
3778 			if (val & DRV_STATUS_SET_MF_BW)
3779 				bnx2x_set_mf_bw(bp);
3780 
3781 			if (val & DRV_STATUS_DRV_INFO_REQ)
3782 				bnx2x_handle_drv_info_req(bp);
3783 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3784 				bnx2x_pmf_update(bp);
3785 
3786 			if (bp->port.pmf &&
3787 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3788 				bp->dcbx_enabled > 0)
3789 				/* start dcbx state machine */
3790 				bnx2x_dcbx_set_params(bp,
3791 					BNX2X_DCBX_STATE_NEG_RECEIVED);
3792 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
3793 				bnx2x_handle_afex_cmd(bp,
3794 					val & DRV_STATUS_AFEX_EVENT_MASK);
3795 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3796 				bnx2x_handle_eee_event(bp);
3797 			if (bp->link_vars.periodic_flags &
3798 			    PERIODIC_FLAGS_LINK_EVENT) {
3799 				/*  sync with link */
3800 				bnx2x_acquire_phy_lock(bp);
3801 				bp->link_vars.periodic_flags &=
3802 					~PERIODIC_FLAGS_LINK_EVENT;
3803 				bnx2x_release_phy_lock(bp);
3804 				if (IS_MF(bp))
3805 					bnx2x_link_sync_notify(bp);
3806 				bnx2x_link_report(bp);
3807 			}
3808 			/* Always call it here: bnx2x_link_report() will
3809 			 * prevent the link indication duplication.
3810 			 */
3811 			bnx2x__link_status_update(bp);
3812 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
3813 
3814 			BNX2X_ERR("MC assert!\n");
3815 			bnx2x_mc_assert(bp);
3816 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3817 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3818 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3819 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3820 			bnx2x_panic();
3821 
3822 		} else if (attn & BNX2X_MCP_ASSERT) {
3823 
3824 			BNX2X_ERR("MCP assert!\n");
3825 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3826 			bnx2x_fw_dump(bp);
3827 
3828 		} else
3829 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3830 	}
3831 
3832 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3833 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3834 		if (attn & BNX2X_GRC_TIMEOUT) {
3835 			val = CHIP_IS_E1(bp) ? 0 :
3836 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3837 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
3838 		}
3839 		if (attn & BNX2X_GRC_RSV) {
3840 			val = CHIP_IS_E1(bp) ? 0 :
3841 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3842 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
3843 		}
3844 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3845 	}
3846 }
3847 
3848 /*
3849  * Bits map:
3850  * 0-7   - Engine0 load counter.
3851  * 8-15  - Engine1 load counter.
3852  * 16    - Engine0 RESET_IN_PROGRESS bit.
3853  * 17    - Engine1 RESET_IN_PROGRESS bit.
3854  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3855  *         on the engine
3856  * 19    - Engine1 ONE_IS_LOADED.
3857  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3858  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3859  *         just the one belonging to its engine).
3860  *
3861  */
3862 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
3863 
3864 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
3865 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
3866 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
3867 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
3868 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
3869 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
3870 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
3871 
3872 /*
3873  * Set the GLOBAL_RESET bit.
3874  *
3875  * Should be run under rtnl lock
3876  */
3877 void bnx2x_set_reset_global(struct bnx2x *bp)
3878 {
3879 	u32 val;
3880 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3881 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3882 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3883 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3884 }
3885 
3886 /*
3887  * Clear the GLOBAL_RESET bit.
3888  *
3889  * Should be run under rtnl lock
3890  */
3891 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3892 {
3893 	u32 val;
3894 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3895 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3896 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3897 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3898 }
3899 
3900 /*
3901  * Checks the GLOBAL_RESET bit.
3902  *
3903  * should be run under rtnl lock
3904  */
3905 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3906 {
3907 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3908 
3909 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3910 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3911 }
3912 
3913 /*
3914  * Clear RESET_IN_PROGRESS bit for the current engine.
3915  *
3916  * Should be run under rtnl lock
3917  */
3918 static void bnx2x_set_reset_done(struct bnx2x *bp)
3919 {
3920 	u32 val;
3921 	u32 bit = BP_PATH(bp) ?
3922 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3923 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3924 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3925 
3926 	/* Clear the bit */
3927 	val &= ~bit;
3928 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3929 
3930 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3931 }
3932 
3933 /*
3934  * Set RESET_IN_PROGRESS for the current engine.
3935  *
3936  * should be run under rtnl lock
3937  */
3938 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3939 {
3940 	u32 val;
3941 	u32 bit = BP_PATH(bp) ?
3942 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3943 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3944 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3945 
3946 	/* Set the bit */
3947 	val |= bit;
3948 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3949 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3950 }
3951 
3952 /*
3953  * Checks the RESET_IN_PROGRESS bit for the given engine.
3954  * should be run under rtnl lock
3955  */
3956 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3957 {
3958 	u32 val	= REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3959 	u32 bit = engine ?
3960 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3961 
3962 	/* return false if bit is set */
3963 	return (val & bit) ? false : true;
3964 }
3965 
3966 /*
3967  * set pf load for the current pf.
3968  *
3969  * should be run under rtnl lock
3970  */
3971 void bnx2x_set_pf_load(struct bnx2x *bp)
3972 {
3973 	u32 val1, val;
3974 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3975 			     BNX2X_PATH0_LOAD_CNT_MASK;
3976 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3977 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
3978 
3979 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3980 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3981 
3982 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3983 
3984 	/* get the current counter value */
3985 	val1 = (val & mask) >> shift;
3986 
3987 	/* set bit of that PF */
3988 	val1 |= (1 << bp->pf_num);
3989 
3990 	/* clear the old value */
3991 	val &= ~mask;
3992 
3993 	/* set the new one */
3994 	val |= ((val1 << shift) & mask);
3995 
3996 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3997 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3998 }
3999 
4000 /**
4001  * bnx2x_clear_pf_load - clear pf load mark
4002  *
4003  * @bp:		driver handle
4004  *
4005  * Should be run under rtnl lock.
4006  * Decrements the load counter for the current engine. Returns
4007  * whether other functions are still loaded
4008  */
4009 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4010 {
4011 	u32 val1, val;
4012 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4013 			     BNX2X_PATH0_LOAD_CNT_MASK;
4014 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4015 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4016 
4017 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4018 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4019 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4020 
4021 	/* get the current counter value */
4022 	val1 = (val & mask) >> shift;
4023 
4024 	/* clear bit of that PF */
4025 	val1 &= ~(1 << bp->pf_num);
4026 
4027 	/* clear the old value */
4028 	val &= ~mask;
4029 
4030 	/* set the new one */
4031 	val |= ((val1 << shift) & mask);
4032 
4033 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4034 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4035 	return val1 != 0;
4036 }
4037 
4038 /*
4039  * Read the load status for the current engine.
4040  *
4041  * should be run under rtnl lock
4042  */
4043 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4044 {
4045 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4046 			     BNX2X_PATH0_LOAD_CNT_MASK);
4047 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4048 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4049 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4050 
4051 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4052 
4053 	val = (val & mask) >> shift;
4054 
4055 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4056 	   engine, val);
4057 
4058 	return val != 0;
4059 }
4060 
4061 static void _print_next_block(int idx, const char *blk)
4062 {
4063 	pr_cont("%s%s", idx ? ", " : "", blk);
4064 }
4065 
4066 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4067 					   bool print)
4068 {
4069 	int i = 0;
4070 	u32 cur_bit = 0;
4071 	for (i = 0; sig; i++) {
4072 		cur_bit = ((u32)0x1 << i);
4073 		if (sig & cur_bit) {
4074 			switch (cur_bit) {
4075 			case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4076 				if (print)
4077 					_print_next_block(par_num++, "BRB");
4078 				break;
4079 			case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4080 				if (print)
4081 					_print_next_block(par_num++, "PARSER");
4082 				break;
4083 			case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4084 				if (print)
4085 					_print_next_block(par_num++, "TSDM");
4086 				break;
4087 			case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4088 				if (print)
4089 					_print_next_block(par_num++,
4090 							  "SEARCHER");
4091 				break;
4092 			case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4093 				if (print)
4094 					_print_next_block(par_num++, "TCM");
4095 				break;
4096 			case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4097 				if (print)
4098 					_print_next_block(par_num++, "TSEMI");
4099 				break;
4100 			case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4101 				if (print)
4102 					_print_next_block(par_num++, "XPB");
4103 				break;
4104 			}
4105 
4106 			/* Clear the bit */
4107 			sig &= ~cur_bit;
4108 		}
4109 	}
4110 
4111 	return par_num;
4112 }
4113 
4114 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4115 					   bool *global, bool print)
4116 {
4117 	int i = 0;
4118 	u32 cur_bit = 0;
4119 	for (i = 0; sig; i++) {
4120 		cur_bit = ((u32)0x1 << i);
4121 		if (sig & cur_bit) {
4122 			switch (cur_bit) {
4123 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4124 				if (print)
4125 					_print_next_block(par_num++, "PBF");
4126 				break;
4127 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4128 				if (print)
4129 					_print_next_block(par_num++, "QM");
4130 				break;
4131 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4132 				if (print)
4133 					_print_next_block(par_num++, "TM");
4134 				break;
4135 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4136 				if (print)
4137 					_print_next_block(par_num++, "XSDM");
4138 				break;
4139 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4140 				if (print)
4141 					_print_next_block(par_num++, "XCM");
4142 				break;
4143 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4144 				if (print)
4145 					_print_next_block(par_num++, "XSEMI");
4146 				break;
4147 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4148 				if (print)
4149 					_print_next_block(par_num++,
4150 							  "DOORBELLQ");
4151 				break;
4152 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4153 				if (print)
4154 					_print_next_block(par_num++, "NIG");
4155 				break;
4156 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4157 				if (print)
4158 					_print_next_block(par_num++,
4159 							  "VAUX PCI CORE");
4160 				*global = true;
4161 				break;
4162 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4163 				if (print)
4164 					_print_next_block(par_num++, "DEBUG");
4165 				break;
4166 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4167 				if (print)
4168 					_print_next_block(par_num++, "USDM");
4169 				break;
4170 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4171 				if (print)
4172 					_print_next_block(par_num++, "UCM");
4173 				break;
4174 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4175 				if (print)
4176 					_print_next_block(par_num++, "USEMI");
4177 				break;
4178 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4179 				if (print)
4180 					_print_next_block(par_num++, "UPB");
4181 				break;
4182 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4183 				if (print)
4184 					_print_next_block(par_num++, "CSDM");
4185 				break;
4186 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4187 				if (print)
4188 					_print_next_block(par_num++, "CCM");
4189 				break;
4190 			}
4191 
4192 			/* Clear the bit */
4193 			sig &= ~cur_bit;
4194 		}
4195 	}
4196 
4197 	return par_num;
4198 }
4199 
4200 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4201 					   bool print)
4202 {
4203 	int i = 0;
4204 	u32 cur_bit = 0;
4205 	for (i = 0; sig; i++) {
4206 		cur_bit = ((u32)0x1 << i);
4207 		if (sig & cur_bit) {
4208 			switch (cur_bit) {
4209 			case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4210 				if (print)
4211 					_print_next_block(par_num++, "CSEMI");
4212 				break;
4213 			case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4214 				if (print)
4215 					_print_next_block(par_num++, "PXP");
4216 				break;
4217 			case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4218 				if (print)
4219 					_print_next_block(par_num++,
4220 					"PXPPCICLOCKCLIENT");
4221 				break;
4222 			case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4223 				if (print)
4224 					_print_next_block(par_num++, "CFC");
4225 				break;
4226 			case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4227 				if (print)
4228 					_print_next_block(par_num++, "CDU");
4229 				break;
4230 			case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4231 				if (print)
4232 					_print_next_block(par_num++, "DMAE");
4233 				break;
4234 			case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4235 				if (print)
4236 					_print_next_block(par_num++, "IGU");
4237 				break;
4238 			case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4239 				if (print)
4240 					_print_next_block(par_num++, "MISC");
4241 				break;
4242 			}
4243 
4244 			/* Clear the bit */
4245 			sig &= ~cur_bit;
4246 		}
4247 	}
4248 
4249 	return par_num;
4250 }
4251 
4252 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4253 					   bool *global, bool print)
4254 {
4255 	int i = 0;
4256 	u32 cur_bit = 0;
4257 	for (i = 0; sig; i++) {
4258 		cur_bit = ((u32)0x1 << i);
4259 		if (sig & cur_bit) {
4260 			switch (cur_bit) {
4261 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4262 				if (print)
4263 					_print_next_block(par_num++, "MCP ROM");
4264 				*global = true;
4265 				break;
4266 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4267 				if (print)
4268 					_print_next_block(par_num++,
4269 							  "MCP UMP RX");
4270 				*global = true;
4271 				break;
4272 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4273 				if (print)
4274 					_print_next_block(par_num++,
4275 							  "MCP UMP TX");
4276 				*global = true;
4277 				break;
4278 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4279 				if (print)
4280 					_print_next_block(par_num++,
4281 							  "MCP SCPAD");
4282 				*global = true;
4283 				break;
4284 			}
4285 
4286 			/* Clear the bit */
4287 			sig &= ~cur_bit;
4288 		}
4289 	}
4290 
4291 	return par_num;
4292 }
4293 
4294 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4295 					   bool print)
4296 {
4297 	int i = 0;
4298 	u32 cur_bit = 0;
4299 	for (i = 0; sig; i++) {
4300 		cur_bit = ((u32)0x1 << i);
4301 		if (sig & cur_bit) {
4302 			switch (cur_bit) {
4303 			case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4304 				if (print)
4305 					_print_next_block(par_num++, "PGLUE_B");
4306 				break;
4307 			case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4308 				if (print)
4309 					_print_next_block(par_num++, "ATC");
4310 				break;
4311 			}
4312 
4313 			/* Clear the bit */
4314 			sig &= ~cur_bit;
4315 		}
4316 	}
4317 
4318 	return par_num;
4319 }
4320 
4321 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4322 			      u32 *sig)
4323 {
4324 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4325 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4326 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4327 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4328 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4329 		int par_num = 0;
4330 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4331 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4332 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4333 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4334 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4335 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4336 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4337 		if (print)
4338 			netdev_err(bp->dev,
4339 				   "Parity errors detected in blocks: ");
4340 		par_num = bnx2x_check_blocks_with_parity0(
4341 			sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4342 		par_num = bnx2x_check_blocks_with_parity1(
4343 			sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4344 		par_num = bnx2x_check_blocks_with_parity2(
4345 			sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4346 		par_num = bnx2x_check_blocks_with_parity3(
4347 			sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4348 		par_num = bnx2x_check_blocks_with_parity4(
4349 			sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4350 
4351 		if (print)
4352 			pr_cont("\n");
4353 
4354 		return true;
4355 	} else
4356 		return false;
4357 }
4358 
4359 /**
4360  * bnx2x_chk_parity_attn - checks for parity attentions.
4361  *
4362  * @bp:		driver handle
4363  * @global:	true if there was a global attention
4364  * @print:	show parity attention in syslog
4365  */
4366 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4367 {
4368 	struct attn_route attn = { {0} };
4369 	int port = BP_PORT(bp);
4370 
4371 	attn.sig[0] = REG_RD(bp,
4372 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4373 			     port*4);
4374 	attn.sig[1] = REG_RD(bp,
4375 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4376 			     port*4);
4377 	attn.sig[2] = REG_RD(bp,
4378 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4379 			     port*4);
4380 	attn.sig[3] = REG_RD(bp,
4381 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4382 			     port*4);
4383 
4384 	if (!CHIP_IS_E1x(bp))
4385 		attn.sig[4] = REG_RD(bp,
4386 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4387 				     port*4);
4388 
4389 	return bnx2x_parity_attn(bp, global, print, attn.sig);
4390 }
4391 
4392 
4393 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4394 {
4395 	u32 val;
4396 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4397 
4398 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4399 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4400 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4401 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4402 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4403 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4404 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4405 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4406 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4407 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4408 		if (val &
4409 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4410 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4411 		if (val &
4412 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4413 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4414 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4415 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4416 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4417 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4418 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4419 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4420 	}
4421 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4422 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4423 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
4424 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4425 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4426 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4427 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4428 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4429 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4430 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4431 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4432 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4433 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4434 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4435 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4436 	}
4437 
4438 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4439 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4440 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4441 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4442 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4443 	}
4444 
4445 }
4446 
4447 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4448 {
4449 	struct attn_route attn, *group_mask;
4450 	int port = BP_PORT(bp);
4451 	int index;
4452 	u32 reg_addr;
4453 	u32 val;
4454 	u32 aeu_mask;
4455 	bool global = false;
4456 
4457 	/* need to take HW lock because MCP or other port might also
4458 	   try to handle this event */
4459 	bnx2x_acquire_alr(bp);
4460 
4461 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
4462 #ifndef BNX2X_STOP_ON_ERROR
4463 		bp->recovery_state = BNX2X_RECOVERY_INIT;
4464 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
4465 		/* Disable HW interrupts */
4466 		bnx2x_int_disable(bp);
4467 		/* In case of parity errors don't handle attentions so that
4468 		 * other function would "see" parity errors.
4469 		 */
4470 #else
4471 		bnx2x_panic();
4472 #endif
4473 		bnx2x_release_alr(bp);
4474 		return;
4475 	}
4476 
4477 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4478 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4479 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4480 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4481 	if (!CHIP_IS_E1x(bp))
4482 		attn.sig[4] =
4483 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4484 	else
4485 		attn.sig[4] = 0;
4486 
4487 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4488 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4489 
4490 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4491 		if (deasserted & (1 << index)) {
4492 			group_mask = &bp->attn_group[index];
4493 
4494 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4495 			   index,
4496 			   group_mask->sig[0], group_mask->sig[1],
4497 			   group_mask->sig[2], group_mask->sig[3],
4498 			   group_mask->sig[4]);
4499 
4500 			bnx2x_attn_int_deasserted4(bp,
4501 					attn.sig[4] & group_mask->sig[4]);
4502 			bnx2x_attn_int_deasserted3(bp,
4503 					attn.sig[3] & group_mask->sig[3]);
4504 			bnx2x_attn_int_deasserted1(bp,
4505 					attn.sig[1] & group_mask->sig[1]);
4506 			bnx2x_attn_int_deasserted2(bp,
4507 					attn.sig[2] & group_mask->sig[2]);
4508 			bnx2x_attn_int_deasserted0(bp,
4509 					attn.sig[0] & group_mask->sig[0]);
4510 		}
4511 	}
4512 
4513 	bnx2x_release_alr(bp);
4514 
4515 	if (bp->common.int_block == INT_BLOCK_HC)
4516 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4517 			    COMMAND_REG_ATTN_BITS_CLR);
4518 	else
4519 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4520 
4521 	val = ~deasserted;
4522 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4523 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4524 	REG_WR(bp, reg_addr, val);
4525 
4526 	if (~bp->attn_state & deasserted)
4527 		BNX2X_ERR("IGU ERROR\n");
4528 
4529 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4530 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
4531 
4532 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4533 	aeu_mask = REG_RD(bp, reg_addr);
4534 
4535 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4536 	   aeu_mask, deasserted);
4537 	aeu_mask |= (deasserted & 0x3ff);
4538 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4539 
4540 	REG_WR(bp, reg_addr, aeu_mask);
4541 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4542 
4543 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4544 	bp->attn_state &= ~deasserted;
4545 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4546 }
4547 
4548 static void bnx2x_attn_int(struct bnx2x *bp)
4549 {
4550 	/* read local copy of bits */
4551 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4552 								attn_bits);
4553 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4554 								attn_bits_ack);
4555 	u32 attn_state = bp->attn_state;
4556 
4557 	/* look for changed bits */
4558 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4559 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4560 
4561 	DP(NETIF_MSG_HW,
4562 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4563 	   attn_bits, attn_ack, asserted, deasserted);
4564 
4565 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4566 		BNX2X_ERR("BAD attention state\n");
4567 
4568 	/* handle bits that were raised */
4569 	if (asserted)
4570 		bnx2x_attn_int_asserted(bp, asserted);
4571 
4572 	if (deasserted)
4573 		bnx2x_attn_int_deasserted(bp, deasserted);
4574 }
4575 
4576 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4577 		      u16 index, u8 op, u8 update)
4578 {
4579 	u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4580 
4581 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4582 			     igu_addr);
4583 }
4584 
4585 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4586 {
4587 	/* No memory barriers */
4588 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4589 	mmiowb(); /* keep prod updates ordered */
4590 }
4591 
4592 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4593 				      union event_ring_elem *elem)
4594 {
4595 	u8 err = elem->message.error;
4596 
4597 	if (!bp->cnic_eth_dev.starting_cid  ||
4598 	    (cid < bp->cnic_eth_dev.starting_cid &&
4599 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
4600 		return 1;
4601 
4602 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4603 
4604 	if (unlikely(err)) {
4605 
4606 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4607 			  cid);
4608 		bnx2x_panic_dump(bp);
4609 	}
4610 	bnx2x_cnic_cfc_comp(bp, cid, err);
4611 	return 0;
4612 }
4613 
4614 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4615 {
4616 	struct bnx2x_mcast_ramrod_params rparam;
4617 	int rc;
4618 
4619 	memset(&rparam, 0, sizeof(rparam));
4620 
4621 	rparam.mcast_obj = &bp->mcast_obj;
4622 
4623 	netif_addr_lock_bh(bp->dev);
4624 
4625 	/* Clear pending state for the last command */
4626 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4627 
4628 	/* If there are pending mcast commands - send them */
4629 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4630 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4631 		if (rc < 0)
4632 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4633 				  rc);
4634 	}
4635 
4636 	netif_addr_unlock_bh(bp->dev);
4637 }
4638 
4639 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4640 					    union event_ring_elem *elem)
4641 {
4642 	unsigned long ramrod_flags = 0;
4643 	int rc = 0;
4644 	u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4645 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4646 
4647 	/* Always push next commands out, don't wait here */
4648 	__set_bit(RAMROD_CONT, &ramrod_flags);
4649 
4650 	switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4651 	case BNX2X_FILTER_MAC_PENDING:
4652 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4653 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4654 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4655 		else
4656 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4657 
4658 		break;
4659 	case BNX2X_FILTER_MCAST_PENDING:
4660 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4661 		/* This is only relevant for 57710 where multicast MACs are
4662 		 * configured as unicast MACs using the same ramrod.
4663 		 */
4664 		bnx2x_handle_mcast_eqe(bp);
4665 		return;
4666 	default:
4667 		BNX2X_ERR("Unsupported classification command: %d\n",
4668 			  elem->message.data.eth_event.echo);
4669 		return;
4670 	}
4671 
4672 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4673 
4674 	if (rc < 0)
4675 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4676 	else if (rc > 0)
4677 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4678 
4679 }
4680 
4681 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4682 
4683 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4684 {
4685 	netif_addr_lock_bh(bp->dev);
4686 
4687 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4688 
4689 	/* Send rx_mode command again if was requested */
4690 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4691 		bnx2x_set_storm_rx_mode(bp);
4692 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4693 				    &bp->sp_state))
4694 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
4695 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4696 				    &bp->sp_state))
4697 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
4698 
4699 	netif_addr_unlock_bh(bp->dev);
4700 }
4701 
4702 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4703 					      union event_ring_elem *elem)
4704 {
4705 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4706 		DP(BNX2X_MSG_SP,
4707 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4708 		   elem->message.data.vif_list_event.func_bit_map);
4709 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4710 			elem->message.data.vif_list_event.func_bit_map);
4711 	} else if (elem->message.data.vif_list_event.echo ==
4712 		   VIF_LIST_RULE_SET) {
4713 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4714 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4715 	}
4716 }
4717 
4718 /* called with rtnl_lock */
4719 static void bnx2x_after_function_update(struct bnx2x *bp)
4720 {
4721 	int q, rc;
4722 	struct bnx2x_fastpath *fp;
4723 	struct bnx2x_queue_state_params queue_params = {NULL};
4724 	struct bnx2x_queue_update_params *q_update_params =
4725 		&queue_params.params.update;
4726 
4727 	/* Send Q update command with afex vlan removal values	for all Qs */
4728 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4729 
4730 	/* set silent vlan removal values according to vlan mode */
4731 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4732 		  &q_update_params->update_flags);
4733 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4734 		  &q_update_params->update_flags);
4735 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4736 
4737 	/* in access mode mark mask and value are 0 to strip all vlans */
4738 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4739 		q_update_params->silent_removal_value = 0;
4740 		q_update_params->silent_removal_mask = 0;
4741 	} else {
4742 		q_update_params->silent_removal_value =
4743 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
4744 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
4745 	}
4746 
4747 	for_each_eth_queue(bp, q) {
4748 		/* Set the appropriate Queue object */
4749 		fp = &bp->fp[q];
4750 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4751 
4752 		/* send the ramrod */
4753 		rc = bnx2x_queue_state_change(bp, &queue_params);
4754 		if (rc < 0)
4755 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4756 				  q);
4757 	}
4758 
4759 	if (!NO_FCOE(bp)) {
4760 		fp = &bp->fp[FCOE_IDX(bp)];
4761 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4762 
4763 		/* clear pending completion bit */
4764 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4765 
4766 		/* mark latest Q bit */
4767 		smp_mb__before_clear_bit();
4768 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4769 		smp_mb__after_clear_bit();
4770 
4771 		/* send Q update ramrod for FCoE Q */
4772 		rc = bnx2x_queue_state_change(bp, &queue_params);
4773 		if (rc < 0)
4774 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4775 				  q);
4776 	} else {
4777 		/* If no FCoE ring - ACK MCP now */
4778 		bnx2x_link_report(bp);
4779 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4780 	}
4781 }
4782 
4783 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4784 	struct bnx2x *bp, u32 cid)
4785 {
4786 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4787 
4788 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4789 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
4790 	else
4791 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4792 }
4793 
4794 static void bnx2x_eq_int(struct bnx2x *bp)
4795 {
4796 	u16 hw_cons, sw_cons, sw_prod;
4797 	union event_ring_elem *elem;
4798 	u8 echo;
4799 	u32 cid;
4800 	u8 opcode;
4801 	int spqe_cnt = 0;
4802 	struct bnx2x_queue_sp_obj *q_obj;
4803 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4804 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4805 
4806 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4807 
4808 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4809 	 * when we get the the next-page we nned to adjust so the loop
4810 	 * condition below will be met. The next element is the size of a
4811 	 * regular element and hence incrementing by 1
4812 	 */
4813 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4814 		hw_cons++;
4815 
4816 	/* This function may never run in parallel with itself for a
4817 	 * specific bp, thus there is no need in "paired" read memory
4818 	 * barrier here.
4819 	 */
4820 	sw_cons = bp->eq_cons;
4821 	sw_prod = bp->eq_prod;
4822 
4823 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4824 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4825 
4826 	for (; sw_cons != hw_cons;
4827 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4828 
4829 
4830 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4831 
4832 		cid = SW_CID(elem->message.data.cfc_del_event.cid);
4833 		opcode = elem->message.opcode;
4834 
4835 
4836 		/* handle eq element */
4837 		switch (opcode) {
4838 		case EVENT_RING_OPCODE_STAT_QUERY:
4839 			DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4840 			   "got statistics comp event %d\n",
4841 			   bp->stats_comp++);
4842 			/* nothing to do with stats comp */
4843 			goto next_spqe;
4844 
4845 		case EVENT_RING_OPCODE_CFC_DEL:
4846 			/* handle according to cid range */
4847 			/*
4848 			 * we may want to verify here that the bp state is
4849 			 * HALTING
4850 			 */
4851 			DP(BNX2X_MSG_SP,
4852 			   "got delete ramrod for MULTI[%d]\n", cid);
4853 
4854 			if (CNIC_LOADED(bp) &&
4855 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4856 				goto next_spqe;
4857 
4858 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
4859 
4860 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4861 				break;
4862 
4863 
4864 
4865 			goto next_spqe;
4866 
4867 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
4868 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4869 			if (f_obj->complete_cmd(bp, f_obj,
4870 						BNX2X_F_CMD_TX_STOP))
4871 				break;
4872 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4873 			goto next_spqe;
4874 
4875 		case EVENT_RING_OPCODE_START_TRAFFIC:
4876 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4877 			if (f_obj->complete_cmd(bp, f_obj,
4878 						BNX2X_F_CMD_TX_START))
4879 				break;
4880 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4881 			goto next_spqe;
4882 
4883 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4884 			echo = elem->message.data.function_update_event.echo;
4885 			if (echo == SWITCH_UPDATE) {
4886 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4887 				   "got FUNC_SWITCH_UPDATE ramrod\n");
4888 				if (f_obj->complete_cmd(
4889 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
4890 					break;
4891 
4892 			} else {
4893 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4894 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
4895 				f_obj->complete_cmd(bp, f_obj,
4896 						    BNX2X_F_CMD_AFEX_UPDATE);
4897 
4898 				/* We will perform the Queues update from
4899 				 * sp_rtnl task as all Queue SP operations
4900 				 * should run under rtnl_lock.
4901 				 */
4902 				smp_mb__before_clear_bit();
4903 				set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4904 					&bp->sp_rtnl_state);
4905 				smp_mb__after_clear_bit();
4906 
4907 				schedule_delayed_work(&bp->sp_rtnl_task, 0);
4908 			}
4909 
4910 			goto next_spqe;
4911 
4912 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4913 			f_obj->complete_cmd(bp, f_obj,
4914 					    BNX2X_F_CMD_AFEX_VIFLISTS);
4915 			bnx2x_after_afex_vif_lists(bp, elem);
4916 			goto next_spqe;
4917 		case EVENT_RING_OPCODE_FUNCTION_START:
4918 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4919 			   "got FUNC_START ramrod\n");
4920 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4921 				break;
4922 
4923 			goto next_spqe;
4924 
4925 		case EVENT_RING_OPCODE_FUNCTION_STOP:
4926 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4927 			   "got FUNC_STOP ramrod\n");
4928 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4929 				break;
4930 
4931 			goto next_spqe;
4932 		}
4933 
4934 		switch (opcode | bp->state) {
4935 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4936 		      BNX2X_STATE_OPEN):
4937 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4938 		      BNX2X_STATE_OPENING_WAIT4_PORT):
4939 			cid = elem->message.data.eth_event.echo &
4940 				BNX2X_SWCID_MASK;
4941 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4942 			   cid);
4943 			rss_raw->clear_pending(rss_raw);
4944 			break;
4945 
4946 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4947 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4948 		case (EVENT_RING_OPCODE_SET_MAC |
4949 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4950 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4951 		      BNX2X_STATE_OPEN):
4952 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4953 		      BNX2X_STATE_DIAG):
4954 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4955 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4956 			DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4957 			bnx2x_handle_classification_eqe(bp, elem);
4958 			break;
4959 
4960 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4961 		      BNX2X_STATE_OPEN):
4962 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4963 		      BNX2X_STATE_DIAG):
4964 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
4965 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4966 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4967 			bnx2x_handle_mcast_eqe(bp);
4968 			break;
4969 
4970 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4971 		      BNX2X_STATE_OPEN):
4972 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4973 		      BNX2X_STATE_DIAG):
4974 		case (EVENT_RING_OPCODE_FILTERS_RULES |
4975 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
4976 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4977 			bnx2x_handle_rx_mode_eqe(bp);
4978 			break;
4979 		default:
4980 			/* unknown event log error and continue */
4981 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4982 				  elem->message.opcode, bp->state);
4983 		}
4984 next_spqe:
4985 		spqe_cnt++;
4986 	} /* for */
4987 
4988 	smp_mb__before_atomic_inc();
4989 	atomic_add(spqe_cnt, &bp->eq_spq_left);
4990 
4991 	bp->eq_cons = sw_cons;
4992 	bp->eq_prod = sw_prod;
4993 	/* Make sure that above mem writes were issued towards the memory */
4994 	smp_wmb();
4995 
4996 	/* update producer */
4997 	bnx2x_update_eq_prod(bp, bp->eq_prod);
4998 }
4999 
5000 static void bnx2x_sp_task(struct work_struct *work)
5001 {
5002 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5003 	u16 status;
5004 
5005 	status = bnx2x_update_dsb_idx(bp);
5006 /*	if (status == 0)				     */
5007 /*		BNX2X_ERR("spurious slowpath interrupt!\n"); */
5008 
5009 	DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
5010 
5011 	/* HW attentions */
5012 	if (status & BNX2X_DEF_SB_ATT_IDX) {
5013 		bnx2x_attn_int(bp);
5014 		status &= ~BNX2X_DEF_SB_ATT_IDX;
5015 	}
5016 
5017 	/* SP events: STAT_QUERY and others */
5018 	if (status & BNX2X_DEF_SB_IDX) {
5019 		struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5020 
5021 		if (FCOE_INIT(bp) &&
5022 		    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5023 			/*
5024 			 * Prevent local bottom-halves from running as
5025 			 * we are going to change the local NAPI list.
5026 			 */
5027 			local_bh_disable();
5028 			napi_schedule(&bnx2x_fcoe(bp, napi));
5029 			local_bh_enable();
5030 		}
5031 
5032 		/* Handle EQ completions */
5033 		bnx2x_eq_int(bp);
5034 
5035 		bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5036 			le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5037 
5038 		status &= ~BNX2X_DEF_SB_IDX;
5039 	}
5040 
5041 	if (unlikely(status))
5042 		DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5043 		   status);
5044 
5045 	bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5046 	     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5047 
5048 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5049 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5050 			       &bp->sp_state)) {
5051 		bnx2x_link_report(bp);
5052 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5053 	}
5054 }
5055 
5056 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5057 {
5058 	struct net_device *dev = dev_instance;
5059 	struct bnx2x *bp = netdev_priv(dev);
5060 
5061 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5062 		     IGU_INT_DISABLE, 0);
5063 
5064 #ifdef BNX2X_STOP_ON_ERROR
5065 	if (unlikely(bp->panic))
5066 		return IRQ_HANDLED;
5067 #endif
5068 
5069 	if (CNIC_LOADED(bp)) {
5070 		struct cnic_ops *c_ops;
5071 
5072 		rcu_read_lock();
5073 		c_ops = rcu_dereference(bp->cnic_ops);
5074 		if (c_ops)
5075 			c_ops->cnic_handler(bp->cnic_data, NULL);
5076 		rcu_read_unlock();
5077 	}
5078 
5079 	queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5080 
5081 	return IRQ_HANDLED;
5082 }
5083 
5084 /* end of slow path */
5085 
5086 
5087 void bnx2x_drv_pulse(struct bnx2x *bp)
5088 {
5089 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5090 		 bp->fw_drv_pulse_wr_seq);
5091 }
5092 
5093 
5094 static void bnx2x_timer(unsigned long data)
5095 {
5096 	struct bnx2x *bp = (struct bnx2x *) data;
5097 
5098 	if (!netif_running(bp->dev))
5099 		return;
5100 
5101 	if (!BP_NOMCP(bp)) {
5102 		int mb_idx = BP_FW_MB_IDX(bp);
5103 		u32 drv_pulse;
5104 		u32 mcp_pulse;
5105 
5106 		++bp->fw_drv_pulse_wr_seq;
5107 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5108 		/* TBD - add SYSTEM_TIME */
5109 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5110 		bnx2x_drv_pulse(bp);
5111 
5112 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5113 			     MCP_PULSE_SEQ_MASK);
5114 		/* The delta between driver pulse and mcp response
5115 		 * should be 1 (before mcp response) or 0 (after mcp response)
5116 		 */
5117 		if ((drv_pulse != mcp_pulse) &&
5118 		    (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5119 			/* someone lost a heartbeat... */
5120 			BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5121 				  drv_pulse, mcp_pulse);
5122 		}
5123 	}
5124 
5125 	if (bp->state == BNX2X_STATE_OPEN)
5126 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5127 
5128 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5129 }
5130 
5131 /* end of Statistics */
5132 
5133 /* nic init */
5134 
5135 /*
5136  * nic init service functions
5137  */
5138 
5139 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5140 {
5141 	u32 i;
5142 	if (!(len%4) && !(addr%4))
5143 		for (i = 0; i < len; i += 4)
5144 			REG_WR(bp, addr + i, fill);
5145 	else
5146 		for (i = 0; i < len; i++)
5147 			REG_WR8(bp, addr + i, fill);
5148 
5149 }
5150 
5151 /* helper: writes FP SP data to FW - data_size in dwords */
5152 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5153 				int fw_sb_id,
5154 				u32 *sb_data_p,
5155 				u32 data_size)
5156 {
5157 	int index;
5158 	for (index = 0; index < data_size; index++)
5159 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5160 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5161 			sizeof(u32)*index,
5162 			*(sb_data_p + index));
5163 }
5164 
5165 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5166 {
5167 	u32 *sb_data_p;
5168 	u32 data_size = 0;
5169 	struct hc_status_block_data_e2 sb_data_e2;
5170 	struct hc_status_block_data_e1x sb_data_e1x;
5171 
5172 	/* disable the function first */
5173 	if (!CHIP_IS_E1x(bp)) {
5174 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5175 		sb_data_e2.common.state = SB_DISABLED;
5176 		sb_data_e2.common.p_func.vf_valid = false;
5177 		sb_data_p = (u32 *)&sb_data_e2;
5178 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5179 	} else {
5180 		memset(&sb_data_e1x, 0,
5181 		       sizeof(struct hc_status_block_data_e1x));
5182 		sb_data_e1x.common.state = SB_DISABLED;
5183 		sb_data_e1x.common.p_func.vf_valid = false;
5184 		sb_data_p = (u32 *)&sb_data_e1x;
5185 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5186 	}
5187 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5188 
5189 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5190 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5191 			CSTORM_STATUS_BLOCK_SIZE);
5192 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5193 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5194 			CSTORM_SYNC_BLOCK_SIZE);
5195 }
5196 
5197 /* helper:  writes SP SB data to FW */
5198 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5199 		struct hc_sp_status_block_data *sp_sb_data)
5200 {
5201 	int func = BP_FUNC(bp);
5202 	int i;
5203 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5204 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5205 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5206 			i*sizeof(u32),
5207 			*((u32 *)sp_sb_data + i));
5208 }
5209 
5210 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5211 {
5212 	int func = BP_FUNC(bp);
5213 	struct hc_sp_status_block_data sp_sb_data;
5214 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5215 
5216 	sp_sb_data.state = SB_DISABLED;
5217 	sp_sb_data.p_func.vf_valid = false;
5218 
5219 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5220 
5221 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5222 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5223 			CSTORM_SP_STATUS_BLOCK_SIZE);
5224 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5225 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5226 			CSTORM_SP_SYNC_BLOCK_SIZE);
5227 
5228 }
5229 
5230 
5231 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5232 					   int igu_sb_id, int igu_seg_id)
5233 {
5234 	hc_sm->igu_sb_id = igu_sb_id;
5235 	hc_sm->igu_seg_id = igu_seg_id;
5236 	hc_sm->timer_value = 0xFF;
5237 	hc_sm->time_to_expire = 0xFFFFFFFF;
5238 }
5239 
5240 
5241 /* allocates state machine ids. */
5242 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5243 {
5244 	/* zero out state machine indices */
5245 	/* rx indices */
5246 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5247 
5248 	/* tx indices */
5249 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5250 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5251 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5252 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5253 
5254 	/* map indices */
5255 	/* rx indices */
5256 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5257 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5258 
5259 	/* tx indices */
5260 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5261 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5262 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5263 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5264 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5265 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5266 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5267 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5268 }
5269 
5270 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5271 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5272 {
5273 	int igu_seg_id;
5274 
5275 	struct hc_status_block_data_e2 sb_data_e2;
5276 	struct hc_status_block_data_e1x sb_data_e1x;
5277 	struct hc_status_block_sm  *hc_sm_p;
5278 	int data_size;
5279 	u32 *sb_data_p;
5280 
5281 	if (CHIP_INT_MODE_IS_BC(bp))
5282 		igu_seg_id = HC_SEG_ACCESS_NORM;
5283 	else
5284 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5285 
5286 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5287 
5288 	if (!CHIP_IS_E1x(bp)) {
5289 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5290 		sb_data_e2.common.state = SB_ENABLED;
5291 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5292 		sb_data_e2.common.p_func.vf_id = vfid;
5293 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5294 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5295 		sb_data_e2.common.same_igu_sb_1b = true;
5296 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5297 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5298 		hc_sm_p = sb_data_e2.common.state_machine;
5299 		sb_data_p = (u32 *)&sb_data_e2;
5300 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5301 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5302 	} else {
5303 		memset(&sb_data_e1x, 0,
5304 		       sizeof(struct hc_status_block_data_e1x));
5305 		sb_data_e1x.common.state = SB_ENABLED;
5306 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5307 		sb_data_e1x.common.p_func.vf_id = 0xff;
5308 		sb_data_e1x.common.p_func.vf_valid = false;
5309 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5310 		sb_data_e1x.common.same_igu_sb_1b = true;
5311 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5312 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5313 		hc_sm_p = sb_data_e1x.common.state_machine;
5314 		sb_data_p = (u32 *)&sb_data_e1x;
5315 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5316 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5317 	}
5318 
5319 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5320 				       igu_sb_id, igu_seg_id);
5321 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5322 				       igu_sb_id, igu_seg_id);
5323 
5324 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5325 
5326 	/* write indecies to HW */
5327 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5328 }
5329 
5330 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5331 				     u16 tx_usec, u16 rx_usec)
5332 {
5333 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5334 				    false, rx_usec);
5335 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5336 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5337 				       tx_usec);
5338 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5339 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5340 				       tx_usec);
5341 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5342 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5343 				       tx_usec);
5344 }
5345 
5346 static void bnx2x_init_def_sb(struct bnx2x *bp)
5347 {
5348 	struct host_sp_status_block *def_sb = bp->def_status_blk;
5349 	dma_addr_t mapping = bp->def_status_blk_mapping;
5350 	int igu_sp_sb_index;
5351 	int igu_seg_id;
5352 	int port = BP_PORT(bp);
5353 	int func = BP_FUNC(bp);
5354 	int reg_offset, reg_offset_en5;
5355 	u64 section;
5356 	int index;
5357 	struct hc_sp_status_block_data sp_sb_data;
5358 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5359 
5360 	if (CHIP_INT_MODE_IS_BC(bp)) {
5361 		igu_sp_sb_index = DEF_SB_IGU_ID;
5362 		igu_seg_id = HC_SEG_ACCESS_DEF;
5363 	} else {
5364 		igu_sp_sb_index = bp->igu_dsb_id;
5365 		igu_seg_id = IGU_SEG_ACCESS_DEF;
5366 	}
5367 
5368 	/* ATTN */
5369 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5370 					    atten_status_block);
5371 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5372 
5373 	bp->attn_state = 0;
5374 
5375 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5376 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5377 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5378 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5379 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5380 		int sindex;
5381 		/* take care of sig[0]..sig[4] */
5382 		for (sindex = 0; sindex < 4; sindex++)
5383 			bp->attn_group[index].sig[sindex] =
5384 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5385 
5386 		if (!CHIP_IS_E1x(bp))
5387 			/*
5388 			 * enable5 is separate from the rest of the registers,
5389 			 * and therefore the address skip is 4
5390 			 * and not 16 between the different groups
5391 			 */
5392 			bp->attn_group[index].sig[4] = REG_RD(bp,
5393 					reg_offset_en5 + 0x4*index);
5394 		else
5395 			bp->attn_group[index].sig[4] = 0;
5396 	}
5397 
5398 	if (bp->common.int_block == INT_BLOCK_HC) {
5399 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5400 				     HC_REG_ATTN_MSG0_ADDR_L);
5401 
5402 		REG_WR(bp, reg_offset, U64_LO(section));
5403 		REG_WR(bp, reg_offset + 4, U64_HI(section));
5404 	} else if (!CHIP_IS_E1x(bp)) {
5405 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5406 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5407 	}
5408 
5409 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5410 					    sp_sb);
5411 
5412 	bnx2x_zero_sp_sb(bp);
5413 
5414 	sp_sb_data.state		= SB_ENABLED;
5415 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
5416 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
5417 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
5418 	sp_sb_data.igu_seg_id		= igu_seg_id;
5419 	sp_sb_data.p_func.pf_id		= func;
5420 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
5421 	sp_sb_data.p_func.vf_id		= 0xff;
5422 
5423 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5424 
5425 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5426 }
5427 
5428 void bnx2x_update_coalesce(struct bnx2x *bp)
5429 {
5430 	int i;
5431 
5432 	for_each_eth_queue(bp, i)
5433 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5434 					 bp->tx_ticks, bp->rx_ticks);
5435 }
5436 
5437 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5438 {
5439 	spin_lock_init(&bp->spq_lock);
5440 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5441 
5442 	bp->spq_prod_idx = 0;
5443 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5444 	bp->spq_prod_bd = bp->spq;
5445 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5446 }
5447 
5448 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5449 {
5450 	int i;
5451 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
5452 		union event_ring_elem *elem =
5453 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5454 
5455 		elem->next_page.addr.hi =
5456 			cpu_to_le32(U64_HI(bp->eq_mapping +
5457 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5458 		elem->next_page.addr.lo =
5459 			cpu_to_le32(U64_LO(bp->eq_mapping +
5460 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5461 	}
5462 	bp->eq_cons = 0;
5463 	bp->eq_prod = NUM_EQ_DESC;
5464 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
5465 	/* we want a warning message before it gets rought... */
5466 	atomic_set(&bp->eq_spq_left,
5467 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5468 }
5469 
5470 
5471 /* called with netif_addr_lock_bh() */
5472 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5473 			 unsigned long rx_mode_flags,
5474 			 unsigned long rx_accept_flags,
5475 			 unsigned long tx_accept_flags,
5476 			 unsigned long ramrod_flags)
5477 {
5478 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
5479 	int rc;
5480 
5481 	memset(&ramrod_param, 0, sizeof(ramrod_param));
5482 
5483 	/* Prepare ramrod parameters */
5484 	ramrod_param.cid = 0;
5485 	ramrod_param.cl_id = cl_id;
5486 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5487 	ramrod_param.func_id = BP_FUNC(bp);
5488 
5489 	ramrod_param.pstate = &bp->sp_state;
5490 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5491 
5492 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5493 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5494 
5495 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5496 
5497 	ramrod_param.ramrod_flags = ramrod_flags;
5498 	ramrod_param.rx_mode_flags = rx_mode_flags;
5499 
5500 	ramrod_param.rx_accept_flags = rx_accept_flags;
5501 	ramrod_param.tx_accept_flags = tx_accept_flags;
5502 
5503 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5504 	if (rc < 0) {
5505 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5506 		return;
5507 	}
5508 }
5509 
5510 /* called with netif_addr_lock_bh() */
5511 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5512 {
5513 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5514 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5515 
5516 	if (!NO_FCOE(bp))
5517 
5518 		/* Configure rx_mode of FCoE Queue */
5519 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5520 
5521 	switch (bp->rx_mode) {
5522 	case BNX2X_RX_MODE_NONE:
5523 		/*
5524 		 * 'drop all' supersedes any accept flags that may have been
5525 		 * passed to the function.
5526 		 */
5527 		break;
5528 	case BNX2X_RX_MODE_NORMAL:
5529 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5530 		__set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5531 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5532 
5533 		/* internal switching mode */
5534 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5535 		__set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5536 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5537 
5538 		break;
5539 	case BNX2X_RX_MODE_ALLMULTI:
5540 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5541 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5542 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5543 
5544 		/* internal switching mode */
5545 		__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5546 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5547 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5548 
5549 		break;
5550 	case BNX2X_RX_MODE_PROMISC:
5551 		/* According to deffinition of SI mode, iface in promisc mode
5552 		 * should receive matched and unmatched (in resolution of port)
5553 		 * unicast packets.
5554 		 */
5555 		__set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5556 		__set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5557 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5558 		__set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5559 
5560 		/* internal switching mode */
5561 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5562 		__set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5563 
5564 		if (IS_MF_SI(bp))
5565 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5566 		else
5567 			__set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5568 
5569 		break;
5570 	default:
5571 		BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5572 		return;
5573 	}
5574 
5575 	if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5576 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5577 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5578 	}
5579 
5580 	__set_bit(RAMROD_RX, &ramrod_flags);
5581 	__set_bit(RAMROD_TX, &ramrod_flags);
5582 
5583 	bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5584 			    tx_accept_flags, ramrod_flags);
5585 }
5586 
5587 static void bnx2x_init_internal_common(struct bnx2x *bp)
5588 {
5589 	int i;
5590 
5591 	if (IS_MF_SI(bp))
5592 		/*
5593 		 * In switch independent mode, the TSTORM needs to accept
5594 		 * packets that failed classification, since approximate match
5595 		 * mac addresses aren't written to NIG LLH
5596 		 */
5597 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5598 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5599 	else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5600 		REG_WR8(bp, BAR_TSTRORM_INTMEM +
5601 			    TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5602 
5603 	/* Zero this manually as its initialization is
5604 	   currently missing in the initTool */
5605 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5606 		REG_WR(bp, BAR_USTRORM_INTMEM +
5607 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
5608 	if (!CHIP_IS_E1x(bp)) {
5609 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5610 			CHIP_INT_MODE_IS_BC(bp) ?
5611 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5612 	}
5613 }
5614 
5615 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5616 {
5617 	switch (load_code) {
5618 	case FW_MSG_CODE_DRV_LOAD_COMMON:
5619 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5620 		bnx2x_init_internal_common(bp);
5621 		/* no break */
5622 
5623 	case FW_MSG_CODE_DRV_LOAD_PORT:
5624 		/* nothing to do */
5625 		/* no break */
5626 
5627 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5628 		/* internal memory per function is
5629 		   initialized inside bnx2x_pf_init */
5630 		break;
5631 
5632 	default:
5633 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5634 		break;
5635 	}
5636 }
5637 
5638 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5639 {
5640 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5641 }
5642 
5643 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5644 {
5645 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5646 }
5647 
5648 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5649 {
5650 	if (CHIP_IS_E1x(fp->bp))
5651 		return BP_L_ID(fp->bp) + fp->index;
5652 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
5653 		return bnx2x_fp_igu_sb_id(fp);
5654 }
5655 
5656 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5657 {
5658 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5659 	u8 cos;
5660 	unsigned long q_type = 0;
5661 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5662 	fp->rx_queue = fp_idx;
5663 	fp->cid = fp_idx;
5664 	fp->cl_id = bnx2x_fp_cl_id(fp);
5665 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5666 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5667 	/* qZone id equals to FW (per path) client id */
5668 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5669 
5670 	/* init shortcut */
5671 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5672 
5673 	/* Setup SB indicies */
5674 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5675 
5676 	/* Configure Queue State object */
5677 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5678 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5679 
5680 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5681 
5682 	/* init tx data */
5683 	for_each_cos_in_tx_queue(fp, cos) {
5684 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5685 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5686 				  FP_COS_TO_TXQ(fp, cos, bp),
5687 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
5688 		cids[cos] = fp->txdata_ptr[cos]->cid;
5689 	}
5690 
5691 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5692 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5693 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
5694 
5695 	/**
5696 	 * Configure classification DBs: Always enable Tx switching
5697 	 */
5698 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5699 
5700 	DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5701 		   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5702 		   fp->igu_sb_id);
5703 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5704 		      fp->fw_sb_id, fp->igu_sb_id);
5705 
5706 	bnx2x_update_fpsb_idx(fp);
5707 }
5708 
5709 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5710 {
5711 	int i;
5712 
5713 	for (i = 1; i <= NUM_TX_RINGS; i++) {
5714 		struct eth_tx_next_bd *tx_next_bd =
5715 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5716 
5717 		tx_next_bd->addr_hi =
5718 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5719 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5720 		tx_next_bd->addr_lo =
5721 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5722 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5723 	}
5724 
5725 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5726 	txdata->tx_db.data.zero_fill1 = 0;
5727 	txdata->tx_db.data.prod = 0;
5728 
5729 	txdata->tx_pkt_prod = 0;
5730 	txdata->tx_pkt_cons = 0;
5731 	txdata->tx_bd_prod = 0;
5732 	txdata->tx_bd_cons = 0;
5733 	txdata->tx_pkt = 0;
5734 }
5735 
5736 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5737 {
5738 	int i;
5739 
5740 	for_each_tx_queue_cnic(bp, i)
5741 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
5742 }
5743 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5744 {
5745 	int i;
5746 	u8 cos;
5747 
5748 	for_each_eth_queue(bp, i)
5749 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
5750 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5751 }
5752 
5753 void bnx2x_nic_init_cnic(struct bnx2x *bp)
5754 {
5755 	if (!NO_FCOE(bp))
5756 		bnx2x_init_fcoe_fp(bp);
5757 
5758 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5759 		      BNX2X_VF_ID_INVALID, false,
5760 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5761 
5762 	/* ensure status block indices were read */
5763 	rmb();
5764 	bnx2x_init_rx_rings_cnic(bp);
5765 	bnx2x_init_tx_rings_cnic(bp);
5766 
5767 	/* flush all */
5768 	mb();
5769 	mmiowb();
5770 }
5771 
5772 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5773 {
5774 	int i;
5775 
5776 	for_each_eth_queue(bp, i)
5777 		bnx2x_init_eth_fp(bp, i);
5778 	/* Initialize MOD_ABS interrupts */
5779 	bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5780 			       bp->common.shmem_base, bp->common.shmem2_base,
5781 			       BP_PORT(bp));
5782 	/* ensure status block indices were read */
5783 	rmb();
5784 
5785 	bnx2x_init_def_sb(bp);
5786 	bnx2x_update_dsb_idx(bp);
5787 	bnx2x_init_rx_rings(bp);
5788 	bnx2x_init_tx_rings(bp);
5789 	bnx2x_init_sp_ring(bp);
5790 	bnx2x_init_eq_ring(bp);
5791 	bnx2x_init_internal(bp, load_code);
5792 	bnx2x_pf_init(bp);
5793 	bnx2x_stats_init(bp);
5794 
5795 	/* flush all before enabling interrupts */
5796 	mb();
5797 	mmiowb();
5798 
5799 	bnx2x_int_enable(bp);
5800 
5801 	/* Check for SPIO5 */
5802 	bnx2x_attn_int_deasserted0(bp,
5803 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5804 				   AEU_INPUTS_ATTN_BITS_SPIO5);
5805 }
5806 
5807 /* end of nic init */
5808 
5809 /*
5810  * gzip service functions
5811  */
5812 
5813 static int bnx2x_gunzip_init(struct bnx2x *bp)
5814 {
5815 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5816 					    &bp->gunzip_mapping, GFP_KERNEL);
5817 	if (bp->gunzip_buf  == NULL)
5818 		goto gunzip_nomem1;
5819 
5820 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5821 	if (bp->strm  == NULL)
5822 		goto gunzip_nomem2;
5823 
5824 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5825 	if (bp->strm->workspace == NULL)
5826 		goto gunzip_nomem3;
5827 
5828 	return 0;
5829 
5830 gunzip_nomem3:
5831 	kfree(bp->strm);
5832 	bp->strm = NULL;
5833 
5834 gunzip_nomem2:
5835 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5836 			  bp->gunzip_mapping);
5837 	bp->gunzip_buf = NULL;
5838 
5839 gunzip_nomem1:
5840 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5841 	return -ENOMEM;
5842 }
5843 
5844 static void bnx2x_gunzip_end(struct bnx2x *bp)
5845 {
5846 	if (bp->strm) {
5847 		vfree(bp->strm->workspace);
5848 		kfree(bp->strm);
5849 		bp->strm = NULL;
5850 	}
5851 
5852 	if (bp->gunzip_buf) {
5853 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5854 				  bp->gunzip_mapping);
5855 		bp->gunzip_buf = NULL;
5856 	}
5857 }
5858 
5859 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5860 {
5861 	int n, rc;
5862 
5863 	/* check gzip header */
5864 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5865 		BNX2X_ERR("Bad gzip header\n");
5866 		return -EINVAL;
5867 	}
5868 
5869 	n = 10;
5870 
5871 #define FNAME				0x8
5872 
5873 	if (zbuf[3] & FNAME)
5874 		while ((zbuf[n++] != 0) && (n < len));
5875 
5876 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5877 	bp->strm->avail_in = len - n;
5878 	bp->strm->next_out = bp->gunzip_buf;
5879 	bp->strm->avail_out = FW_BUF_SIZE;
5880 
5881 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5882 	if (rc != Z_OK)
5883 		return rc;
5884 
5885 	rc = zlib_inflate(bp->strm, Z_FINISH);
5886 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
5887 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
5888 			   bp->strm->msg);
5889 
5890 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5891 	if (bp->gunzip_outlen & 0x3)
5892 		netdev_err(bp->dev,
5893 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5894 				bp->gunzip_outlen);
5895 	bp->gunzip_outlen >>= 2;
5896 
5897 	zlib_inflateEnd(bp->strm);
5898 
5899 	if (rc == Z_STREAM_END)
5900 		return 0;
5901 
5902 	return rc;
5903 }
5904 
5905 /* nic load/unload */
5906 
5907 /*
5908  * General service functions
5909  */
5910 
5911 /* send a NIG loopback debug packet */
5912 static void bnx2x_lb_pckt(struct bnx2x *bp)
5913 {
5914 	u32 wb_write[3];
5915 
5916 	/* Ethernet source and destination addresses */
5917 	wb_write[0] = 0x55555555;
5918 	wb_write[1] = 0x55555555;
5919 	wb_write[2] = 0x20;		/* SOP */
5920 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5921 
5922 	/* NON-IP protocol */
5923 	wb_write[0] = 0x09000000;
5924 	wb_write[1] = 0x55555555;
5925 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
5926 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5927 }
5928 
5929 /* some of the internal memories
5930  * are not directly readable from the driver
5931  * to test them we send debug packets
5932  */
5933 static int bnx2x_int_mem_test(struct bnx2x *bp)
5934 {
5935 	int factor;
5936 	int count, i;
5937 	u32 val = 0;
5938 
5939 	if (CHIP_REV_IS_FPGA(bp))
5940 		factor = 120;
5941 	else if (CHIP_REV_IS_EMUL(bp))
5942 		factor = 200;
5943 	else
5944 		factor = 1;
5945 
5946 	/* Disable inputs of parser neighbor blocks */
5947 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5948 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5949 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5950 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5951 
5952 	/*  Write 0 to parser credits for CFC search request */
5953 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5954 
5955 	/* send Ethernet packet */
5956 	bnx2x_lb_pckt(bp);
5957 
5958 	/* TODO do i reset NIG statistic? */
5959 	/* Wait until NIG register shows 1 packet of size 0x10 */
5960 	count = 1000 * factor;
5961 	while (count) {
5962 
5963 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5964 		val = *bnx2x_sp(bp, wb_data[0]);
5965 		if (val == 0x10)
5966 			break;
5967 
5968 		msleep(10);
5969 		count--;
5970 	}
5971 	if (val != 0x10) {
5972 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5973 		return -1;
5974 	}
5975 
5976 	/* Wait until PRS register shows 1 packet */
5977 	count = 1000 * factor;
5978 	while (count) {
5979 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5980 		if (val == 1)
5981 			break;
5982 
5983 		msleep(10);
5984 		count--;
5985 	}
5986 	if (val != 0x1) {
5987 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5988 		return -2;
5989 	}
5990 
5991 	/* Reset and init BRB, PRS */
5992 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5993 	msleep(50);
5994 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5995 	msleep(50);
5996 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5997 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5998 
5999 	DP(NETIF_MSG_HW, "part2\n");
6000 
6001 	/* Disable inputs of parser neighbor blocks */
6002 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6003 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6004 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6005 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6006 
6007 	/* Write 0 to parser credits for CFC search request */
6008 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6009 
6010 	/* send 10 Ethernet packets */
6011 	for (i = 0; i < 10; i++)
6012 		bnx2x_lb_pckt(bp);
6013 
6014 	/* Wait until NIG register shows 10 + 1
6015 	   packets of size 11*0x10 = 0xb0 */
6016 	count = 1000 * factor;
6017 	while (count) {
6018 
6019 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6020 		val = *bnx2x_sp(bp, wb_data[0]);
6021 		if (val == 0xb0)
6022 			break;
6023 
6024 		msleep(10);
6025 		count--;
6026 	}
6027 	if (val != 0xb0) {
6028 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6029 		return -3;
6030 	}
6031 
6032 	/* Wait until PRS register shows 2 packets */
6033 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6034 	if (val != 2)
6035 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6036 
6037 	/* Write 1 to parser credits for CFC search request */
6038 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6039 
6040 	/* Wait until PRS register shows 3 packets */
6041 	msleep(10 * factor);
6042 	/* Wait until NIG register shows 1 packet of size 0x10 */
6043 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6044 	if (val != 3)
6045 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6046 
6047 	/* clear NIG EOP FIFO */
6048 	for (i = 0; i < 11; i++)
6049 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6050 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6051 	if (val != 1) {
6052 		BNX2X_ERR("clear of NIG failed\n");
6053 		return -4;
6054 	}
6055 
6056 	/* Reset and init BRB, PRS, NIG */
6057 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6058 	msleep(50);
6059 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6060 	msleep(50);
6061 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6062 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6063 	if (!CNIC_SUPPORT(bp))
6064 		/* set NIC mode */
6065 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6066 
6067 	/* Enable inputs of parser neighbor blocks */
6068 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6069 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6070 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6071 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6072 
6073 	DP(NETIF_MSG_HW, "done\n");
6074 
6075 	return 0; /* OK */
6076 }
6077 
6078 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6079 {
6080 	u32 val;
6081 
6082 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6083 	if (!CHIP_IS_E1x(bp))
6084 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6085 	else
6086 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6087 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6088 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6089 	/*
6090 	 * mask read length error interrupts in brb for parser
6091 	 * (parsing unit and 'checksum and crc' unit)
6092 	 * these errors are legal (PU reads fixed length and CAC can cause
6093 	 * read length error on truncated packets)
6094 	 */
6095 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6096 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6097 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6098 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6099 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6100 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6101 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6102 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6103 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6104 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6105 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6106 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6107 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6108 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6109 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6110 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6111 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6112 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6113 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6114 
6115 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6116 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6117 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6118 	if (!CHIP_IS_E1x(bp))
6119 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6120 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6121 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6122 
6123 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6124 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6125 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6126 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6127 
6128 	if (!CHIP_IS_E1x(bp))
6129 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6130 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6131 
6132 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6133 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6134 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6135 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6136 }
6137 
6138 static void bnx2x_reset_common(struct bnx2x *bp)
6139 {
6140 	u32 val = 0x1400;
6141 
6142 	/* reset_common */
6143 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6144 	       0xd3ffff7f);
6145 
6146 	if (CHIP_IS_E3(bp)) {
6147 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6148 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6149 	}
6150 
6151 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6152 }
6153 
6154 static void bnx2x_setup_dmae(struct bnx2x *bp)
6155 {
6156 	bp->dmae_ready = 0;
6157 	spin_lock_init(&bp->dmae_lock);
6158 }
6159 
6160 static void bnx2x_init_pxp(struct bnx2x *bp)
6161 {
6162 	u16 devctl;
6163 	int r_order, w_order;
6164 
6165 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6166 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6167 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6168 	if (bp->mrrs == -1)
6169 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6170 	else {
6171 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6172 		r_order = bp->mrrs;
6173 	}
6174 
6175 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6176 }
6177 
6178 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6179 {
6180 	int is_required;
6181 	u32 val;
6182 	int port;
6183 
6184 	if (BP_NOMCP(bp))
6185 		return;
6186 
6187 	is_required = 0;
6188 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6189 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6190 
6191 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6192 		is_required = 1;
6193 
6194 	/*
6195 	 * The fan failure mechanism is usually related to the PHY type since
6196 	 * the power consumption of the board is affected by the PHY. Currently,
6197 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6198 	 */
6199 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6200 		for (port = PORT_0; port < PORT_MAX; port++) {
6201 			is_required |=
6202 				bnx2x_fan_failure_det_req(
6203 					bp,
6204 					bp->common.shmem_base,
6205 					bp->common.shmem2_base,
6206 					port);
6207 		}
6208 
6209 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6210 
6211 	if (is_required == 0)
6212 		return;
6213 
6214 	/* Fan failure is indicated by SPIO 5 */
6215 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6216 
6217 	/* set to active low mode */
6218 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6219 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6220 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6221 
6222 	/* enable interrupt to signal the IGU */
6223 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6224 	val |= MISC_SPIO_SPIO5;
6225 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6226 }
6227 
6228 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6229 {
6230 	u32 offset = 0;
6231 
6232 	if (CHIP_IS_E1(bp))
6233 		return;
6234 	if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6235 		return;
6236 
6237 	switch (BP_ABS_FUNC(bp)) {
6238 	case 0:
6239 		offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6240 		break;
6241 	case 1:
6242 		offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6243 		break;
6244 	case 2:
6245 		offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6246 		break;
6247 	case 3:
6248 		offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6249 		break;
6250 	case 4:
6251 		offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6252 		break;
6253 	case 5:
6254 		offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6255 		break;
6256 	case 6:
6257 		offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6258 		break;
6259 	case 7:
6260 		offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6261 		break;
6262 	default:
6263 		return;
6264 	}
6265 
6266 	REG_WR(bp, offset, pretend_func_num);
6267 	REG_RD(bp, offset);
6268 	DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6269 }
6270 
6271 void bnx2x_pf_disable(struct bnx2x *bp)
6272 {
6273 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6274 	val &= ~IGU_PF_CONF_FUNC_EN;
6275 
6276 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6277 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6278 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6279 }
6280 
6281 static void bnx2x__common_init_phy(struct bnx2x *bp)
6282 {
6283 	u32 shmem_base[2], shmem2_base[2];
6284 	/* Avoid common init in case MFW supports LFA */
6285 	if (SHMEM2_RD(bp, size) >
6286 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6287 		return;
6288 	shmem_base[0] =  bp->common.shmem_base;
6289 	shmem2_base[0] = bp->common.shmem2_base;
6290 	if (!CHIP_IS_E1x(bp)) {
6291 		shmem_base[1] =
6292 			SHMEM2_RD(bp, other_shmem_base_addr);
6293 		shmem2_base[1] =
6294 			SHMEM2_RD(bp, other_shmem2_base_addr);
6295 	}
6296 	bnx2x_acquire_phy_lock(bp);
6297 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6298 			      bp->common.chip_id);
6299 	bnx2x_release_phy_lock(bp);
6300 }
6301 
6302 /**
6303  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6304  *
6305  * @bp:		driver handle
6306  */
6307 static int bnx2x_init_hw_common(struct bnx2x *bp)
6308 {
6309 	u32 val;
6310 
6311 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6312 
6313 	/*
6314 	 * take the UNDI lock to protect undi_unload flow from accessing
6315 	 * registers while we're resetting the chip
6316 	 */
6317 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6318 
6319 	bnx2x_reset_common(bp);
6320 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6321 
6322 	val = 0xfffc;
6323 	if (CHIP_IS_E3(bp)) {
6324 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6325 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6326 	}
6327 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6328 
6329 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6330 
6331 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6332 
6333 	if (!CHIP_IS_E1x(bp)) {
6334 		u8 abs_func_id;
6335 
6336 		/**
6337 		 * 4-port mode or 2-port mode we need to turn of master-enable
6338 		 * for everyone, after that, turn it back on for self.
6339 		 * so, we disregard multi-function or not, and always disable
6340 		 * for all functions on the given path, this means 0,2,4,6 for
6341 		 * path 0 and 1,3,5,7 for path 1
6342 		 */
6343 		for (abs_func_id = BP_PATH(bp);
6344 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6345 			if (abs_func_id == BP_ABS_FUNC(bp)) {
6346 				REG_WR(bp,
6347 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6348 				    1);
6349 				continue;
6350 			}
6351 
6352 			bnx2x_pretend_func(bp, abs_func_id);
6353 			/* clear pf enable */
6354 			bnx2x_pf_disable(bp);
6355 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6356 		}
6357 	}
6358 
6359 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6360 	if (CHIP_IS_E1(bp)) {
6361 		/* enable HW interrupt from PXP on USDM overflow
6362 		   bit 16 on INT_MASK_0 */
6363 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6364 	}
6365 
6366 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6367 	bnx2x_init_pxp(bp);
6368 
6369 #ifdef __BIG_ENDIAN
6370 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6371 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6372 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6373 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6374 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6375 	/* make sure this value is 0 */
6376 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6377 
6378 /*	REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6379 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6380 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6381 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6382 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6383 #endif
6384 
6385 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
6386 
6387 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6388 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6389 
6390 	/* let the HW do it's magic ... */
6391 	msleep(100);
6392 	/* finish PXP init */
6393 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6394 	if (val != 1) {
6395 		BNX2X_ERR("PXP2 CFG failed\n");
6396 		return -EBUSY;
6397 	}
6398 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6399 	if (val != 1) {
6400 		BNX2X_ERR("PXP2 RD_INIT failed\n");
6401 		return -EBUSY;
6402 	}
6403 
6404 	/* Timers bug workaround E2 only. We need to set the entire ILT to
6405 	 * have entries with value "0" and valid bit on.
6406 	 * This needs to be done by the first PF that is loaded in a path
6407 	 * (i.e. common phase)
6408 	 */
6409 	if (!CHIP_IS_E1x(bp)) {
6410 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6411  * (i.e. vnic3) to start even if it is marked as "scan-off".
6412  * This occurs when a different function (func2,3) is being marked
6413  * as "scan-off". Real-life scenario for example: if a driver is being
6414  * load-unloaded while func6,7 are down. This will cause the timer to access
6415  * the ilt, translate to a logical address and send a request to read/write.
6416  * Since the ilt for the function that is down is not valid, this will cause
6417  * a translation error which is unrecoverable.
6418  * The Workaround is intended to make sure that when this happens nothing fatal
6419  * will occur. The workaround:
6420  *	1.  First PF driver which loads on a path will:
6421  *		a.  After taking the chip out of reset, by using pretend,
6422  *		    it will write "0" to the following registers of
6423  *		    the other vnics.
6424  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6425  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6426  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6427  *		    And for itself it will write '1' to
6428  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6429  *		    dmae-operations (writing to pram for example.)
6430  *		    note: can be done for only function 6,7 but cleaner this
6431  *			  way.
6432  *		b.  Write zero+valid to the entire ILT.
6433  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6434  *		    VNIC3 (of that port). The range allocated will be the
6435  *		    entire ILT. This is needed to prevent  ILT range error.
6436  *	2.  Any PF driver load flow:
6437  *		a.  ILT update with the physical addresses of the allocated
6438  *		    logical pages.
6439  *		b.  Wait 20msec. - note that this timeout is needed to make
6440  *		    sure there are no requests in one of the PXP internal
6441  *		    queues with "old" ILT addresses.
6442  *		c.  PF enable in the PGLC.
6443  *		d.  Clear the was_error of the PF in the PGLC. (could have
6444  *		    occured while driver was down)
6445  *		e.  PF enable in the CFC (WEAK + STRONG)
6446  *		f.  Timers scan enable
6447  *	3.  PF driver unload flow:
6448  *		a.  Clear the Timers scan_en.
6449  *		b.  Polling for scan_on=0 for that PF.
6450  *		c.  Clear the PF enable bit in the PXP.
6451  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
6452  *		e.  Write zero+valid to all ILT entries (The valid bit must
6453  *		    stay set)
6454  *		f.  If this is VNIC 3 of a port then also init
6455  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
6456  *		    to the last enrty in the ILT.
6457  *
6458  *	Notes:
6459  *	Currently the PF error in the PGLC is non recoverable.
6460  *	In the future the there will be a recovery routine for this error.
6461  *	Currently attention is masked.
6462  *	Having an MCP lock on the load/unload process does not guarantee that
6463  *	there is no Timer disable during Func6/7 enable. This is because the
6464  *	Timers scan is currently being cleared by the MCP on FLR.
6465  *	Step 2.d can be done only for PF6/7 and the driver can also check if
6466  *	there is error before clearing it. But the flow above is simpler and
6467  *	more general.
6468  *	All ILT entries are written by zero+valid and not just PF6/7
6469  *	ILT entries since in the future the ILT entries allocation for
6470  *	PF-s might be dynamic.
6471  */
6472 		struct ilt_client_info ilt_cli;
6473 		struct bnx2x_ilt ilt;
6474 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6475 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6476 
6477 		/* initialize dummy TM client */
6478 		ilt_cli.start = 0;
6479 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6480 		ilt_cli.client_num = ILT_CLIENT_TM;
6481 
6482 		/* Step 1: set zeroes to all ilt page entries with valid bit on
6483 		 * Step 2: set the timers first/last ilt entry to point
6484 		 * to the entire range to prevent ILT range error for 3rd/4th
6485 		 * vnic	(this code assumes existance of the vnic)
6486 		 *
6487 		 * both steps performed by call to bnx2x_ilt_client_init_op()
6488 		 * with dummy TM client
6489 		 *
6490 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6491 		 * and his brother are split registers
6492 		 */
6493 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6494 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6495 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6496 
6497 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6498 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6499 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6500 	}
6501 
6502 
6503 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6504 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6505 
6506 	if (!CHIP_IS_E1x(bp)) {
6507 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6508 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6509 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6510 
6511 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6512 
6513 		/* let the HW do it's magic ... */
6514 		do {
6515 			msleep(200);
6516 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6517 		} while (factor-- && (val != 1));
6518 
6519 		if (val != 1) {
6520 			BNX2X_ERR("ATC_INIT failed\n");
6521 			return -EBUSY;
6522 		}
6523 	}
6524 
6525 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6526 
6527 	/* clean the DMAE memory */
6528 	bp->dmae_ready = 1;
6529 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6530 
6531 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6532 
6533 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6534 
6535 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6536 
6537 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6538 
6539 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6540 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6541 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6542 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6543 
6544 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6545 
6546 
6547 	/* QM queues pointers table */
6548 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6549 
6550 	/* soft reset pulse */
6551 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
6552 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
6553 
6554 	if (CNIC_SUPPORT(bp))
6555 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6556 
6557 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6558 	REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6559 	if (!CHIP_REV_IS_SLOW(bp))
6560 		/* enable hw interrupt from doorbell Q */
6561 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6562 
6563 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6564 
6565 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6566 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6567 
6568 	if (!CHIP_IS_E1(bp))
6569 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6570 
6571 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6572 		if (IS_MF_AFEX(bp)) {
6573 			/* configure that VNTag and VLAN headers must be
6574 			 * received in afex mode
6575 			 */
6576 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6577 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6578 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6579 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6580 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6581 		} else {
6582 			/* Bit-map indicating which L2 hdrs may appear
6583 			 * after the basic Ethernet header
6584 			 */
6585 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6586 			       bp->path_has_ovlan ? 7 : 6);
6587 		}
6588 	}
6589 
6590 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6591 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6592 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6593 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6594 
6595 	if (!CHIP_IS_E1x(bp)) {
6596 		/* reset VFC memories */
6597 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6598 			   VFC_MEMORIES_RST_REG_CAM_RST |
6599 			   VFC_MEMORIES_RST_REG_RAM_RST);
6600 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6601 			   VFC_MEMORIES_RST_REG_CAM_RST |
6602 			   VFC_MEMORIES_RST_REG_RAM_RST);
6603 
6604 		msleep(20);
6605 	}
6606 
6607 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6608 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6609 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6610 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6611 
6612 	/* sync semi rtc */
6613 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6614 	       0x80000000);
6615 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6616 	       0x80000000);
6617 
6618 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6619 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6620 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6621 
6622 	if (!CHIP_IS_E1x(bp)) {
6623 		if (IS_MF_AFEX(bp)) {
6624 			/* configure that VNTag and VLAN headers must be
6625 			 * sent in afex mode
6626 			 */
6627 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6628 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6629 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6630 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6631 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6632 		} else {
6633 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6634 			       bp->path_has_ovlan ? 7 : 6);
6635 		}
6636 	}
6637 
6638 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
6639 
6640 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6641 
6642 	if (CNIC_SUPPORT(bp)) {
6643 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6644 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6645 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6646 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6647 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6648 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6649 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6650 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6651 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6652 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6653 	}
6654 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
6655 
6656 	if (sizeof(union cdu_context) != 1024)
6657 		/* we currently assume that a context is 1024 bytes */
6658 		dev_alert(&bp->pdev->dev,
6659 			  "please adjust the size of cdu_context(%ld)\n",
6660 			  (long)sizeof(union cdu_context));
6661 
6662 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6663 	val = (4 << 24) + (0 << 12) + 1024;
6664 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6665 
6666 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6667 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6668 	/* enable context validation interrupt from CFC */
6669 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6670 
6671 	/* set the thresholds to prevent CFC/CDU race */
6672 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6673 
6674 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6675 
6676 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6677 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6678 
6679 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6680 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6681 
6682 	/* Reset PCIE errors for debug */
6683 	REG_WR(bp, 0x2814, 0xffffffff);
6684 	REG_WR(bp, 0x3820, 0xffffffff);
6685 
6686 	if (!CHIP_IS_E1x(bp)) {
6687 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6688 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6689 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6690 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6691 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6692 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6693 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6694 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6695 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6696 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6697 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6698 	}
6699 
6700 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6701 	if (!CHIP_IS_E1(bp)) {
6702 		/* in E3 this done in per-port section */
6703 		if (!CHIP_IS_E3(bp))
6704 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6705 	}
6706 	if (CHIP_IS_E1H(bp))
6707 		/* not applicable for E2 (and above ...) */
6708 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6709 
6710 	if (CHIP_REV_IS_SLOW(bp))
6711 		msleep(200);
6712 
6713 	/* finish CFC init */
6714 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6715 	if (val != 1) {
6716 		BNX2X_ERR("CFC LL_INIT failed\n");
6717 		return -EBUSY;
6718 	}
6719 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6720 	if (val != 1) {
6721 		BNX2X_ERR("CFC AC_INIT failed\n");
6722 		return -EBUSY;
6723 	}
6724 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6725 	if (val != 1) {
6726 		BNX2X_ERR("CFC CAM_INIT failed\n");
6727 		return -EBUSY;
6728 	}
6729 	REG_WR(bp, CFC_REG_DEBUG0, 0);
6730 
6731 	if (CHIP_IS_E1(bp)) {
6732 		/* read NIG statistic
6733 		   to see if this is our first up since powerup */
6734 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6735 		val = *bnx2x_sp(bp, wb_data[0]);
6736 
6737 		/* do internal memory self test */
6738 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
6739 			BNX2X_ERR("internal mem self test failed\n");
6740 			return -EBUSY;
6741 		}
6742 	}
6743 
6744 	bnx2x_setup_fan_failure_detection(bp);
6745 
6746 	/* clear PXP2 attentions */
6747 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6748 
6749 	bnx2x_enable_blocks_attention(bp);
6750 	bnx2x_enable_blocks_parity(bp);
6751 
6752 	if (!BP_NOMCP(bp)) {
6753 		if (CHIP_IS_E1x(bp))
6754 			bnx2x__common_init_phy(bp);
6755 	} else
6756 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6757 
6758 	return 0;
6759 }
6760 
6761 /**
6762  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6763  *
6764  * @bp:		driver handle
6765  */
6766 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6767 {
6768 	int rc = bnx2x_init_hw_common(bp);
6769 
6770 	if (rc)
6771 		return rc;
6772 
6773 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
6774 	if (!BP_NOMCP(bp))
6775 		bnx2x__common_init_phy(bp);
6776 
6777 	return 0;
6778 }
6779 
6780 static int bnx2x_init_hw_port(struct bnx2x *bp)
6781 {
6782 	int port = BP_PORT(bp);
6783 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6784 	u32 low, high;
6785 	u32 val;
6786 
6787 
6788 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6789 
6790 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6791 
6792 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6793 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6794 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6795 
6796 	/* Timers bug workaround: disables the pf_master bit in pglue at
6797 	 * common phase, we need to enable it here before any dmae access are
6798 	 * attempted. Therefore we manually added the enable-master to the
6799 	 * port phase (it also happens in the function phase)
6800 	 */
6801 	if (!CHIP_IS_E1x(bp))
6802 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6803 
6804 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6805 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6806 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6807 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
6808 
6809 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6810 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6811 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6812 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6813 
6814 	/* QM cid (connection) count */
6815 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6816 
6817 	if (CNIC_SUPPORT(bp)) {
6818 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
6819 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6820 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6821 	}
6822 
6823 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6824 
6825 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6826 
6827 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6828 
6829 		if (IS_MF(bp))
6830 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6831 		else if (bp->dev->mtu > 4096) {
6832 			if (bp->flags & ONE_PORT_FLAG)
6833 				low = 160;
6834 			else {
6835 				val = bp->dev->mtu;
6836 				/* (24*1024 + val*4)/256 */
6837 				low = 96 + (val/64) +
6838 						((val % 64) ? 1 : 0);
6839 			}
6840 		} else
6841 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6842 		high = low + 56;	/* 14*1024/256 */
6843 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6844 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6845 	}
6846 
6847 	if (CHIP_MODE_IS_4_PORT(bp))
6848 		REG_WR(bp, (BP_PORT(bp) ?
6849 			    BRB1_REG_MAC_GUARANTIED_1 :
6850 			    BRB1_REG_MAC_GUARANTIED_0), 40);
6851 
6852 
6853 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6854 	if (CHIP_IS_E3B0(bp)) {
6855 		if (IS_MF_AFEX(bp)) {
6856 			/* configure headers for AFEX mode */
6857 			REG_WR(bp, BP_PORT(bp) ?
6858 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6859 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6860 			REG_WR(bp, BP_PORT(bp) ?
6861 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6862 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6863 			REG_WR(bp, BP_PORT(bp) ?
6864 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6865 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6866 		} else {
6867 			/* Ovlan exists only if we are in multi-function +
6868 			 * switch-dependent mode, in switch-independent there
6869 			 * is no ovlan headers
6870 			 */
6871 			REG_WR(bp, BP_PORT(bp) ?
6872 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6873 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6874 			       (bp->path_has_ovlan ? 7 : 6));
6875 		}
6876 	}
6877 
6878 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6879 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6880 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6881 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6882 
6883 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6884 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6885 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6886 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6887 
6888 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6889 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6890 
6891 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6892 
6893 	if (CHIP_IS_E1x(bp)) {
6894 		/* configure PBF to work without PAUSE mtu 9000 */
6895 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6896 
6897 		/* update threshold */
6898 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6899 		/* update init credit */
6900 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6901 
6902 		/* probe changes */
6903 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6904 		udelay(50);
6905 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6906 	}
6907 
6908 	if (CNIC_SUPPORT(bp))
6909 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6910 
6911 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6912 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6913 
6914 	if (CHIP_IS_E1(bp)) {
6915 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6916 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6917 	}
6918 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
6919 
6920 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6921 
6922 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6923 	/* init aeu_mask_attn_func_0/1:
6924 	 *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6925 	 *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6926 	 *             bits 4-7 are used for "per vn group attention" */
6927 	val = IS_MF(bp) ? 0xF7 : 0x7;
6928 	/* Enable DCBX attention for all but E1 */
6929 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6930 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6931 
6932 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6933 
6934 	if (!CHIP_IS_E1x(bp)) {
6935 		/* Bit-map indicating which L2 hdrs may appear after the
6936 		 * basic Ethernet header
6937 		 */
6938 		if (IS_MF_AFEX(bp))
6939 			REG_WR(bp, BP_PORT(bp) ?
6940 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6941 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6942 		else
6943 			REG_WR(bp, BP_PORT(bp) ?
6944 			       NIG_REG_P1_HDRS_AFTER_BASIC :
6945 			       NIG_REG_P0_HDRS_AFTER_BASIC,
6946 			       IS_MF_SD(bp) ? 7 : 6);
6947 
6948 		if (CHIP_IS_E3(bp))
6949 			REG_WR(bp, BP_PORT(bp) ?
6950 				   NIG_REG_LLH1_MF_MODE :
6951 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
6952 	}
6953 	if (!CHIP_IS_E3(bp))
6954 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6955 
6956 	if (!CHIP_IS_E1(bp)) {
6957 		/* 0x2 disable mf_ov, 0x1 enable */
6958 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6959 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
6960 
6961 		if (!CHIP_IS_E1x(bp)) {
6962 			val = 0;
6963 			switch (bp->mf_mode) {
6964 			case MULTI_FUNCTION_SD:
6965 				val = 1;
6966 				break;
6967 			case MULTI_FUNCTION_SI:
6968 			case MULTI_FUNCTION_AFEX:
6969 				val = 2;
6970 				break;
6971 			}
6972 
6973 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6974 						  NIG_REG_LLH0_CLS_TYPE), val);
6975 		}
6976 		{
6977 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6978 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6979 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6980 		}
6981 	}
6982 
6983 
6984 	/* If SPIO5 is set to generate interrupts, enable it for this port */
6985 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6986 	if (val & MISC_SPIO_SPIO5) {
6987 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6988 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6989 		val = REG_RD(bp, reg_addr);
6990 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6991 		REG_WR(bp, reg_addr, val);
6992 	}
6993 
6994 	return 0;
6995 }
6996 
6997 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6998 {
6999 	int reg;
7000 	u32 wb_write[2];
7001 
7002 	if (CHIP_IS_E1(bp))
7003 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7004 	else
7005 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7006 
7007 	wb_write[0] = ONCHIP_ADDR1(addr);
7008 	wb_write[1] = ONCHIP_ADDR2(addr);
7009 	REG_WR_DMAE(bp, reg, wb_write, 2);
7010 }
7011 
7012 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
7013 				   u8 idu_sb_id, bool is_Pf)
7014 {
7015 	u32 data, ctl, cnt = 100;
7016 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7017 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7018 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7019 	u32 sb_bit =  1 << (idu_sb_id%32);
7020 	u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7021 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7022 
7023 	/* Not supported in BC mode */
7024 	if (CHIP_INT_MODE_IS_BC(bp))
7025 		return;
7026 
7027 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7028 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7029 		IGU_REGULAR_CLEANUP_SET				|
7030 		IGU_REGULAR_BCLEANUP;
7031 
7032 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7033 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7034 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7035 
7036 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7037 			 data, igu_addr_data);
7038 	REG_WR(bp, igu_addr_data, data);
7039 	mmiowb();
7040 	barrier();
7041 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7042 			  ctl, igu_addr_ctl);
7043 	REG_WR(bp, igu_addr_ctl, ctl);
7044 	mmiowb();
7045 	barrier();
7046 
7047 	/* wait for clean up to finish */
7048 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7049 		msleep(20);
7050 
7051 
7052 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7053 		DP(NETIF_MSG_HW,
7054 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7055 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7056 	}
7057 }
7058 
7059 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7060 {
7061 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7062 }
7063 
7064 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7065 {
7066 	u32 i, base = FUNC_ILT_BASE(func);
7067 	for (i = base; i < base + ILT_PER_FUNC; i++)
7068 		bnx2x_ilt_wr(bp, i, 0);
7069 }
7070 
7071 
7072 static void bnx2x_init_searcher(struct bnx2x *bp)
7073 {
7074 	int port = BP_PORT(bp);
7075 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7076 	/* T1 hash bits value determines the T1 number of entries */
7077 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7078 }
7079 
7080 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7081 {
7082 	int rc;
7083 	struct bnx2x_func_state_params func_params = {NULL};
7084 	struct bnx2x_func_switch_update_params *switch_update_params =
7085 		&func_params.params.switch_update;
7086 
7087 	/* Prepare parameters for function state transitions */
7088 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7089 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7090 
7091 	func_params.f_obj = &bp->func_obj;
7092 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7093 
7094 	/* Function parameters */
7095 	switch_update_params->suspend = suspend;
7096 
7097 	rc = bnx2x_func_state_change(bp, &func_params);
7098 
7099 	return rc;
7100 }
7101 
7102 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7103 {
7104 	int rc, i, port = BP_PORT(bp);
7105 	int vlan_en = 0, mac_en[NUM_MACS];
7106 
7107 
7108 	/* Close input from network */
7109 	if (bp->mf_mode == SINGLE_FUNCTION) {
7110 		bnx2x_set_rx_filter(&bp->link_params, 0);
7111 	} else {
7112 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7113 				   NIG_REG_LLH0_FUNC_EN);
7114 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7115 			  NIG_REG_LLH0_FUNC_EN, 0);
7116 		for (i = 0; i < NUM_MACS; i++) {
7117 			mac_en[i] = REG_RD(bp, port ?
7118 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7119 					      4 * i) :
7120 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7121 					      4 * i));
7122 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7123 					      4 * i) :
7124 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7125 		}
7126 	}
7127 
7128 	/* Close BMC to host */
7129 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7130 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7131 
7132 	/* Suspend Tx switching to the PF. Completion of this ramrod
7133 	 * further guarantees that all the packets of that PF / child
7134 	 * VFs in BRB were processed by the Parser, so it is safe to
7135 	 * change the NIC_MODE register.
7136 	 */
7137 	rc = bnx2x_func_switch_update(bp, 1);
7138 	if (rc) {
7139 		BNX2X_ERR("Can't suspend tx-switching!\n");
7140 		return rc;
7141 	}
7142 
7143 	/* Change NIC_MODE register */
7144 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7145 
7146 	/* Open input from network */
7147 	if (bp->mf_mode == SINGLE_FUNCTION) {
7148 		bnx2x_set_rx_filter(&bp->link_params, 1);
7149 	} else {
7150 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7151 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7152 		for (i = 0; i < NUM_MACS; i++) {
7153 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7154 					      4 * i) :
7155 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7156 				  mac_en[i]);
7157 		}
7158 	}
7159 
7160 	/* Enable BMC to host */
7161 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7162 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7163 
7164 	/* Resume Tx switching to the PF */
7165 	rc = bnx2x_func_switch_update(bp, 0);
7166 	if (rc) {
7167 		BNX2X_ERR("Can't resume tx-switching!\n");
7168 		return rc;
7169 	}
7170 
7171 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7172 	return 0;
7173 }
7174 
7175 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7176 {
7177 	int rc;
7178 
7179 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7180 
7181 	if (CONFIGURE_NIC_MODE(bp)) {
7182 		/* Configrue searcher as part of function hw init */
7183 		bnx2x_init_searcher(bp);
7184 
7185 		/* Reset NIC mode */
7186 		rc = bnx2x_reset_nic_mode(bp);
7187 		if (rc)
7188 			BNX2X_ERR("Can't change NIC mode!\n");
7189 		return rc;
7190 	}
7191 
7192 	return 0;
7193 }
7194 
7195 static int bnx2x_init_hw_func(struct bnx2x *bp)
7196 {
7197 	int port = BP_PORT(bp);
7198 	int func = BP_FUNC(bp);
7199 	int init_phase = PHASE_PF0 + func;
7200 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7201 	u16 cdu_ilt_start;
7202 	u32 addr, val;
7203 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7204 	int i, main_mem_width, rc;
7205 
7206 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7207 
7208 	/* FLR cleanup - hmmm */
7209 	if (!CHIP_IS_E1x(bp)) {
7210 		rc = bnx2x_pf_flr_clnup(bp);
7211 		if (rc)
7212 			return rc;
7213 	}
7214 
7215 	/* set MSI reconfigure capability */
7216 	if (bp->common.int_block == INT_BLOCK_HC) {
7217 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7218 		val = REG_RD(bp, addr);
7219 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7220 		REG_WR(bp, addr, val);
7221 	}
7222 
7223 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7224 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7225 
7226 	ilt = BP_ILT(bp);
7227 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7228 
7229 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7230 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7231 		ilt->lines[cdu_ilt_start + i].page_mapping =
7232 			bp->context[i].cxt_mapping;
7233 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7234 	}
7235 	bnx2x_ilt_init_op(bp, INITOP_SET);
7236 
7237 	if (!CONFIGURE_NIC_MODE(bp)) {
7238 		bnx2x_init_searcher(bp);
7239 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7240 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7241 	} else {
7242 		/* Set NIC mode */
7243 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7244 		DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7245 
7246 	}
7247 
7248 	if (!CHIP_IS_E1x(bp)) {
7249 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7250 
7251 		/* Turn on a single ISR mode in IGU if driver is going to use
7252 		 * INT#x or MSI
7253 		 */
7254 		if (!(bp->flags & USING_MSIX_FLAG))
7255 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7256 		/*
7257 		 * Timers workaround bug: function init part.
7258 		 * Need to wait 20msec after initializing ILT,
7259 		 * needed to make sure there are no requests in
7260 		 * one of the PXP internal queues with "old" ILT addresses
7261 		 */
7262 		msleep(20);
7263 		/*
7264 		 * Master enable - Due to WB DMAE writes performed before this
7265 		 * register is re-initialized as part of the regular function
7266 		 * init
7267 		 */
7268 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7269 		/* Enable the function in IGU */
7270 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7271 	}
7272 
7273 	bp->dmae_ready = 1;
7274 
7275 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7276 
7277 	if (!CHIP_IS_E1x(bp))
7278 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7279 
7280 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7281 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7282 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7283 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7284 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7285 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7286 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7287 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7288 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7289 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7290 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7291 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7292 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7293 
7294 	if (!CHIP_IS_E1x(bp))
7295 		REG_WR(bp, QM_REG_PF_EN, 1);
7296 
7297 	if (!CHIP_IS_E1x(bp)) {
7298 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7299 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7300 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7301 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7302 	}
7303 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7304 
7305 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
7306 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7307 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7308 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7309 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7310 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7311 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7312 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7313 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7314 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7315 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7316 	if (!CHIP_IS_E1x(bp))
7317 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7318 
7319 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7320 
7321 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7322 
7323 	if (!CHIP_IS_E1x(bp))
7324 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7325 
7326 	if (IS_MF(bp)) {
7327 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7328 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7329 	}
7330 
7331 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7332 
7333 	/* HC init per function */
7334 	if (bp->common.int_block == INT_BLOCK_HC) {
7335 		if (CHIP_IS_E1H(bp)) {
7336 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7337 
7338 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7339 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7340 		}
7341 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
7342 
7343 	} else {
7344 		int num_segs, sb_idx, prod_offset;
7345 
7346 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7347 
7348 		if (!CHIP_IS_E1x(bp)) {
7349 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7350 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7351 		}
7352 
7353 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7354 
7355 		if (!CHIP_IS_E1x(bp)) {
7356 			int dsb_idx = 0;
7357 			/**
7358 			 * Producer memory:
7359 			 * E2 mode: address 0-135 match to the mapping memory;
7360 			 * 136 - PF0 default prod; 137 - PF1 default prod;
7361 			 * 138 - PF2 default prod; 139 - PF3 default prod;
7362 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
7363 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
7364 			 * 144-147 reserved.
7365 			 *
7366 			 * E1.5 mode - In backward compatible mode;
7367 			 * for non default SB; each even line in the memory
7368 			 * holds the U producer and each odd line hold
7369 			 * the C producer. The first 128 producers are for
7370 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7371 			 * producers are for the DSB for each PF.
7372 			 * Each PF has five segments: (the order inside each
7373 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7374 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7375 			 * 144-147 attn prods;
7376 			 */
7377 			/* non-default-status-blocks */
7378 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7379 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7380 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7381 				prod_offset = (bp->igu_base_sb + sb_idx) *
7382 					num_segs;
7383 
7384 				for (i = 0; i < num_segs; i++) {
7385 					addr = IGU_REG_PROD_CONS_MEMORY +
7386 							(prod_offset + i) * 4;
7387 					REG_WR(bp, addr, 0);
7388 				}
7389 				/* send consumer update with value 0 */
7390 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7391 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7392 				bnx2x_igu_clear_sb(bp,
7393 						   bp->igu_base_sb + sb_idx);
7394 			}
7395 
7396 			/* default-status-blocks */
7397 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7398 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7399 
7400 			if (CHIP_MODE_IS_4_PORT(bp))
7401 				dsb_idx = BP_FUNC(bp);
7402 			else
7403 				dsb_idx = BP_VN(bp);
7404 
7405 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7406 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
7407 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
7408 
7409 			/*
7410 			 * igu prods come in chunks of E1HVN_MAX (4) -
7411 			 * does not matters what is the current chip mode
7412 			 */
7413 			for (i = 0; i < (num_segs * E1HVN_MAX);
7414 			     i += E1HVN_MAX) {
7415 				addr = IGU_REG_PROD_CONS_MEMORY +
7416 							(prod_offset + i)*4;
7417 				REG_WR(bp, addr, 0);
7418 			}
7419 			/* send consumer update with 0 */
7420 			if (CHIP_INT_MODE_IS_BC(bp)) {
7421 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7422 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7423 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7424 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
7425 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7426 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
7427 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7428 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
7429 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7430 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7431 			} else {
7432 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7433 					     USTORM_ID, 0, IGU_INT_NOP, 1);
7434 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
7435 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
7436 			}
7437 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7438 
7439 			/* !!! these should become driver const once
7440 			   rf-tool supports split-68 const */
7441 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7442 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7443 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7444 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7445 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7446 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7447 		}
7448 	}
7449 
7450 	/* Reset PCIE errors for debug */
7451 	REG_WR(bp, 0x2114, 0xffffffff);
7452 	REG_WR(bp, 0x2120, 0xffffffff);
7453 
7454 	if (CHIP_IS_E1x(bp)) {
7455 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7456 		main_mem_base = HC_REG_MAIN_MEMORY +
7457 				BP_PORT(bp) * (main_mem_size * 4);
7458 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7459 		main_mem_width = 8;
7460 
7461 		val = REG_RD(bp, main_mem_prty_clr);
7462 		if (val)
7463 			DP(NETIF_MSG_HW,
7464 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7465 			   val);
7466 
7467 		/* Clear "false" parity errors in MSI-X table */
7468 		for (i = main_mem_base;
7469 		     i < main_mem_base + main_mem_size * 4;
7470 		     i += main_mem_width) {
7471 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
7472 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7473 					 i, main_mem_width / 4);
7474 		}
7475 		/* Clear HC parity attention */
7476 		REG_RD(bp, main_mem_prty_clr);
7477 	}
7478 
7479 #ifdef BNX2X_STOP_ON_ERROR
7480 	/* Enable STORMs SP logging */
7481 	REG_WR8(bp, BAR_USTRORM_INTMEM +
7482 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7483 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
7484 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7485 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
7486 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7487 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
7488 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7489 #endif
7490 
7491 	bnx2x_phy_probe(&bp->link_params);
7492 
7493 	return 0;
7494 }
7495 
7496 
7497 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7498 {
7499 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7500 
7501 	if (!CHIP_IS_E1x(bp))
7502 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7503 			       sizeof(struct host_hc_status_block_e2));
7504 	else
7505 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7506 			       sizeof(struct host_hc_status_block_e1x));
7507 
7508 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7509 }
7510 
7511 void bnx2x_free_mem(struct bnx2x *bp)
7512 {
7513 	int i;
7514 
7515 	/* fastpath */
7516 	bnx2x_free_fp_mem(bp);
7517 	/* end of fastpath */
7518 
7519 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7520 		       sizeof(struct host_sp_status_block));
7521 
7522 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7523 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7524 
7525 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7526 		       sizeof(struct bnx2x_slowpath));
7527 
7528 	for (i = 0; i < L2_ILT_LINES(bp); i++)
7529 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7530 			       bp->context[i].size);
7531 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7532 
7533 	BNX2X_FREE(bp->ilt->lines);
7534 
7535 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7536 
7537 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7538 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
7539 }
7540 
7541 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7542 {
7543 	int num_groups;
7544 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7545 
7546 	/* number of queues for statistics is number of eth queues + FCoE */
7547 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7548 
7549 	/* Total number of FW statistics requests =
7550 	 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7551 	 * num of queues
7552 	 */
7553 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7554 
7555 
7556 	/* Request is built from stats_query_header and an array of
7557 	 * stats_query_cmd_group each of which contains
7558 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7559 	 * configured in the stats_query_header.
7560 	 */
7561 	num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7562 		     (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7563 
7564 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7565 			num_groups * sizeof(struct stats_query_cmd_group);
7566 
7567 	/* Data for statistics requests + stats_conter
7568 	 *
7569 	 * stats_counter holds per-STORM counters that are incremented
7570 	 * when STORM has finished with the current request.
7571 	 *
7572 	 * memory for FCoE offloaded statistics are counted anyway,
7573 	 * even if they will not be sent.
7574 	 */
7575 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7576 		sizeof(struct per_pf_stats) +
7577 		sizeof(struct fcoe_statistics_params) +
7578 		sizeof(struct per_queue_stats) * num_queue_stats +
7579 		sizeof(struct stats_counter);
7580 
7581 	BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7582 			bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7583 
7584 	/* Set shortcuts */
7585 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7586 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7587 
7588 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7589 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7590 
7591 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7592 				   bp->fw_stats_req_sz;
7593 	return 0;
7594 
7595 alloc_mem_err:
7596 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7597 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7598 	BNX2X_ERR("Can't allocate memory\n");
7599 	return -ENOMEM;
7600 }
7601 
7602 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7603 {
7604 	if (!CHIP_IS_E1x(bp))
7605 		/* size = the status block + ramrod buffers */
7606 		BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7607 				sizeof(struct host_hc_status_block_e2));
7608 	else
7609 		BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7610 				&bp->cnic_sb_mapping,
7611 				sizeof(struct
7612 				       host_hc_status_block_e1x));
7613 
7614 	if (CONFIGURE_NIC_MODE(bp))
7615 		/* allocate searcher T2 table, as it wan't allocated before */
7616 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7617 
7618 	/* write address to which L5 should insert its values */
7619 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
7620 		&bp->slowpath->drv_info_to_mcp;
7621 
7622 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7623 		goto alloc_mem_err;
7624 
7625 	return 0;
7626 
7627 alloc_mem_err:
7628 	bnx2x_free_mem_cnic(bp);
7629 	BNX2X_ERR("Can't allocate memory\n");
7630 	return -ENOMEM;
7631 }
7632 
7633 int bnx2x_alloc_mem(struct bnx2x *bp)
7634 {
7635 	int i, allocated, context_size;
7636 
7637 	if (!CONFIGURE_NIC_MODE(bp))
7638 		/* allocate searcher T2 table */
7639 		BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7640 
7641 	BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7642 			sizeof(struct host_sp_status_block));
7643 
7644 	BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7645 			sizeof(struct bnx2x_slowpath));
7646 
7647 	/* Allocated memory for FW statistics  */
7648 	if (bnx2x_alloc_fw_stats_mem(bp))
7649 		goto alloc_mem_err;
7650 
7651 	/* Allocate memory for CDU context:
7652 	 * This memory is allocated separately and not in the generic ILT
7653 	 * functions because CDU differs in few aspects:
7654 	 * 1. There are multiple entities allocating memory for context -
7655 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7656 	 * its own ILT lines.
7657 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
7658 	 * for the other ILT clients), to be efficient we want to support
7659 	 * allocation of sub-page-size in the last entry.
7660 	 * 3. Context pointers are used by the driver to pass to FW / update
7661 	 * the context (for the other ILT clients the pointers are used just to
7662 	 * free the memory during unload).
7663 	 */
7664 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7665 
7666 	for (i = 0, allocated = 0; allocated < context_size; i++) {
7667 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7668 					  (context_size - allocated));
7669 		BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7670 				&bp->context[i].cxt_mapping,
7671 				bp->context[i].size);
7672 		allocated += bp->context[i].size;
7673 	}
7674 	BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7675 
7676 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7677 		goto alloc_mem_err;
7678 
7679 	/* Slow path ring */
7680 	BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7681 
7682 	/* EQ */
7683 	BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7684 			BCM_PAGE_SIZE * NUM_EQ_PAGES);
7685 
7686 
7687 	/* fastpath */
7688 	/* need to be done at the end, since it's self adjusting to amount
7689 	 * of memory available for RSS queues
7690 	 */
7691 	if (bnx2x_alloc_fp_mem(bp))
7692 		goto alloc_mem_err;
7693 	return 0;
7694 
7695 alloc_mem_err:
7696 	bnx2x_free_mem(bp);
7697 	BNX2X_ERR("Can't allocate memory\n");
7698 	return -ENOMEM;
7699 }
7700 
7701 /*
7702  * Init service functions
7703  */
7704 
7705 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7706 		      struct bnx2x_vlan_mac_obj *obj, bool set,
7707 		      int mac_type, unsigned long *ramrod_flags)
7708 {
7709 	int rc;
7710 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7711 
7712 	memset(&ramrod_param, 0, sizeof(ramrod_param));
7713 
7714 	/* Fill general parameters */
7715 	ramrod_param.vlan_mac_obj = obj;
7716 	ramrod_param.ramrod_flags = *ramrod_flags;
7717 
7718 	/* Fill a user request section if needed */
7719 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7720 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7721 
7722 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7723 
7724 		/* Set the command: ADD or DEL */
7725 		if (set)
7726 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7727 		else
7728 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7729 	}
7730 
7731 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7732 
7733 	if (rc == -EEXIST) {
7734 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7735 		/* do not treat adding same MAC as error */
7736 		rc = 0;
7737 	} else if (rc < 0)
7738 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7739 
7740 	return rc;
7741 }
7742 
7743 int bnx2x_del_all_macs(struct bnx2x *bp,
7744 		       struct bnx2x_vlan_mac_obj *mac_obj,
7745 		       int mac_type, bool wait_for_comp)
7746 {
7747 	int rc;
7748 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7749 
7750 	/* Wait for completion of requested */
7751 	if (wait_for_comp)
7752 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7753 
7754 	/* Set the mac type of addresses we want to clear */
7755 	__set_bit(mac_type, &vlan_mac_flags);
7756 
7757 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7758 	if (rc < 0)
7759 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7760 
7761 	return rc;
7762 }
7763 
7764 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7765 {
7766 	unsigned long ramrod_flags = 0;
7767 
7768 	if (is_zero_ether_addr(bp->dev->dev_addr) &&
7769 	    (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7770 		DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7771 		   "Ignoring Zero MAC for STORAGE SD mode\n");
7772 		return 0;
7773 	}
7774 
7775 	DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7776 
7777 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7778 	/* Eth MAC is set on RSS leading client (fp[0]) */
7779 	return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7780 				 set, BNX2X_ETH_MAC, &ramrod_flags);
7781 }
7782 
7783 int bnx2x_setup_leading(struct bnx2x *bp)
7784 {
7785 	return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7786 }
7787 
7788 /**
7789  * bnx2x_set_int_mode - configure interrupt mode
7790  *
7791  * @bp:		driver handle
7792  *
7793  * In case of MSI-X it will also try to enable MSI-X.
7794  */
7795 void bnx2x_set_int_mode(struct bnx2x *bp)
7796 {
7797 	switch (int_mode) {
7798 	case INT_MODE_MSI:
7799 		bnx2x_enable_msi(bp);
7800 		/* falling through... */
7801 	case INT_MODE_INTx:
7802 		bp->num_ethernet_queues = 1;
7803 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
7804 		BNX2X_DEV_INFO("set number of queues to 1\n");
7805 		break;
7806 	default:
7807 		/* if we can't use MSI-X we only need one fp,
7808 		 * so try to enable MSI-X with the requested number of fp's
7809 		 * and fallback to MSI or legacy INTx with one fp
7810 		 */
7811 		if (bnx2x_enable_msix(bp) ||
7812 		    bp->flags & USING_SINGLE_MSIX_FLAG) {
7813 			/* failed to enable multiple MSI-X */
7814 			BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7815 				       bp->num_queues,
7816 				       1 + bp->num_cnic_queues);
7817 
7818 			bp->num_queues = 1 + bp->num_cnic_queues;
7819 
7820 			/* Try to enable MSI */
7821 			if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7822 			    !(bp->flags & DISABLE_MSI_FLAG))
7823 				bnx2x_enable_msi(bp);
7824 		}
7825 		break;
7826 	}
7827 }
7828 
7829 /* must be called prioir to any HW initializations */
7830 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7831 {
7832 	return L2_ILT_LINES(bp);
7833 }
7834 
7835 void bnx2x_ilt_set_info(struct bnx2x *bp)
7836 {
7837 	struct ilt_client_info *ilt_client;
7838 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7839 	u16 line = 0;
7840 
7841 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7842 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7843 
7844 	/* CDU */
7845 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7846 	ilt_client->client_num = ILT_CLIENT_CDU;
7847 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
7848 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7849 	ilt_client->start = line;
7850 	line += bnx2x_cid_ilt_lines(bp);
7851 
7852 	if (CNIC_SUPPORT(bp))
7853 		line += CNIC_ILT_LINES;
7854 	ilt_client->end = line - 1;
7855 
7856 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7857 	   ilt_client->start,
7858 	   ilt_client->end,
7859 	   ilt_client->page_size,
7860 	   ilt_client->flags,
7861 	   ilog2(ilt_client->page_size >> 12));
7862 
7863 	/* QM */
7864 	if (QM_INIT(bp->qm_cid_count)) {
7865 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
7866 		ilt_client->client_num = ILT_CLIENT_QM;
7867 		ilt_client->page_size = QM_ILT_PAGE_SZ;
7868 		ilt_client->flags = 0;
7869 		ilt_client->start = line;
7870 
7871 		/* 4 bytes for each cid */
7872 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7873 							 QM_ILT_PAGE_SZ);
7874 
7875 		ilt_client->end = line - 1;
7876 
7877 		DP(NETIF_MSG_IFUP,
7878 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7879 		   ilt_client->start,
7880 		   ilt_client->end,
7881 		   ilt_client->page_size,
7882 		   ilt_client->flags,
7883 		   ilog2(ilt_client->page_size >> 12));
7884 
7885 	}
7886 
7887 	if (CNIC_SUPPORT(bp)) {
7888 		/* SRC */
7889 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7890 		ilt_client->client_num = ILT_CLIENT_SRC;
7891 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
7892 		ilt_client->flags = 0;
7893 		ilt_client->start = line;
7894 		line += SRC_ILT_LINES;
7895 		ilt_client->end = line - 1;
7896 
7897 		DP(NETIF_MSG_IFUP,
7898 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7899 		   ilt_client->start,
7900 		   ilt_client->end,
7901 		   ilt_client->page_size,
7902 		   ilt_client->flags,
7903 		   ilog2(ilt_client->page_size >> 12));
7904 
7905 		/* TM */
7906 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
7907 		ilt_client->client_num = ILT_CLIENT_TM;
7908 		ilt_client->page_size = TM_ILT_PAGE_SZ;
7909 		ilt_client->flags = 0;
7910 		ilt_client->start = line;
7911 		line += TM_ILT_LINES;
7912 		ilt_client->end = line - 1;
7913 
7914 		DP(NETIF_MSG_IFUP,
7915 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7916 		   ilt_client->start,
7917 		   ilt_client->end,
7918 		   ilt_client->page_size,
7919 		   ilt_client->flags,
7920 		   ilog2(ilt_client->page_size >> 12));
7921 	}
7922 
7923 	BUG_ON(line > ILT_MAX_LINES);
7924 }
7925 
7926 /**
7927  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7928  *
7929  * @bp:			driver handle
7930  * @fp:			pointer to fastpath
7931  * @init_params:	pointer to parameters structure
7932  *
7933  * parameters configured:
7934  *      - HC configuration
7935  *      - Queue's CDU context
7936  */
7937 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7938 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7939 {
7940 
7941 	u8 cos;
7942 	int cxt_index, cxt_offset;
7943 
7944 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
7945 	if (!IS_FCOE_FP(fp)) {
7946 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7947 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7948 
7949 		/* If HC is supporterd, enable host coalescing in the transition
7950 		 * to INIT state.
7951 		 */
7952 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7953 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7954 
7955 		/* HC rate */
7956 		init_params->rx.hc_rate = bp->rx_ticks ?
7957 			(1000000 / bp->rx_ticks) : 0;
7958 		init_params->tx.hc_rate = bp->tx_ticks ?
7959 			(1000000 / bp->tx_ticks) : 0;
7960 
7961 		/* FW SB ID */
7962 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7963 			fp->fw_sb_id;
7964 
7965 		/*
7966 		 * CQ index among the SB indices: FCoE clients uses the default
7967 		 * SB, therefore it's different.
7968 		 */
7969 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7970 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7971 	}
7972 
7973 	/* set maximum number of COSs supported by this queue */
7974 	init_params->max_cos = fp->max_cos;
7975 
7976 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7977 	    fp->index, init_params->max_cos);
7978 
7979 	/* set the context pointers queue object */
7980 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7981 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7982 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7983 				ILT_PAGE_CIDS);
7984 		init_params->cxts[cos] =
7985 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
7986 	}
7987 }
7988 
7989 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7990 			struct bnx2x_queue_state_params *q_params,
7991 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7992 			int tx_index, bool leading)
7993 {
7994 	memset(tx_only_params, 0, sizeof(*tx_only_params));
7995 
7996 	/* Set the command */
7997 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7998 
7999 	/* Set tx-only QUEUE flags: don't zero statistics */
8000 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8001 
8002 	/* choose the index of the cid to send the slow path on */
8003 	tx_only_params->cid_index = tx_index;
8004 
8005 	/* Set general TX_ONLY_SETUP parameters */
8006 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8007 
8008 	/* Set Tx TX_ONLY_SETUP parameters */
8009 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8010 
8011 	DP(NETIF_MSG_IFUP,
8012 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8013 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8014 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8015 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8016 
8017 	/* send the ramrod */
8018 	return bnx2x_queue_state_change(bp, q_params);
8019 }
8020 
8021 
8022 /**
8023  * bnx2x_setup_queue - setup queue
8024  *
8025  * @bp:		driver handle
8026  * @fp:		pointer to fastpath
8027  * @leading:	is leading
8028  *
8029  * This function performs 2 steps in a Queue state machine
8030  *      actually: 1) RESET->INIT 2) INIT->SETUP
8031  */
8032 
8033 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8034 		       bool leading)
8035 {
8036 	struct bnx2x_queue_state_params q_params = {NULL};
8037 	struct bnx2x_queue_setup_params *setup_params =
8038 						&q_params.params.setup;
8039 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8040 						&q_params.params.tx_only;
8041 	int rc;
8042 	u8 tx_index;
8043 
8044 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8045 
8046 	/* reset IGU state skip FCoE L2 queue */
8047 	if (!IS_FCOE_FP(fp))
8048 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8049 			     IGU_INT_ENABLE, 0);
8050 
8051 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8052 	/* We want to wait for completion in this context */
8053 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8054 
8055 	/* Prepare the INIT parameters */
8056 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8057 
8058 	/* Set the command */
8059 	q_params.cmd = BNX2X_Q_CMD_INIT;
8060 
8061 	/* Change the state to INIT */
8062 	rc = bnx2x_queue_state_change(bp, &q_params);
8063 	if (rc) {
8064 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8065 		return rc;
8066 	}
8067 
8068 	DP(NETIF_MSG_IFUP, "init complete\n");
8069 
8070 
8071 	/* Now move the Queue to the SETUP state... */
8072 	memset(setup_params, 0, sizeof(*setup_params));
8073 
8074 	/* Set QUEUE flags */
8075 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8076 
8077 	/* Set general SETUP parameters */
8078 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8079 				FIRST_TX_COS_INDEX);
8080 
8081 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8082 			    &setup_params->rxq_params);
8083 
8084 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8085 			   FIRST_TX_COS_INDEX);
8086 
8087 	/* Set the command */
8088 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8089 
8090 	if (IS_FCOE_FP(fp))
8091 		bp->fcoe_init = true;
8092 
8093 	/* Change the state to SETUP */
8094 	rc = bnx2x_queue_state_change(bp, &q_params);
8095 	if (rc) {
8096 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8097 		return rc;
8098 	}
8099 
8100 	/* loop through the relevant tx-only indices */
8101 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8102 	      tx_index < fp->max_cos;
8103 	      tx_index++) {
8104 
8105 		/* prepare and send tx-only ramrod*/
8106 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8107 					  tx_only_params, tx_index, leading);
8108 		if (rc) {
8109 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8110 				  fp->index, tx_index);
8111 			return rc;
8112 		}
8113 	}
8114 
8115 	return rc;
8116 }
8117 
8118 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8119 {
8120 	struct bnx2x_fastpath *fp = &bp->fp[index];
8121 	struct bnx2x_fp_txdata *txdata;
8122 	struct bnx2x_queue_state_params q_params = {NULL};
8123 	int rc, tx_index;
8124 
8125 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8126 
8127 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8128 	/* We want to wait for completion in this context */
8129 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8130 
8131 
8132 	/* close tx-only connections */
8133 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8134 	     tx_index < fp->max_cos;
8135 	     tx_index++){
8136 
8137 		/* ascertain this is a normal queue*/
8138 		txdata = fp->txdata_ptr[tx_index];
8139 
8140 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8141 							txdata->txq_index);
8142 
8143 		/* send halt terminate on tx-only connection */
8144 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8145 		memset(&q_params.params.terminate, 0,
8146 		       sizeof(q_params.params.terminate));
8147 		q_params.params.terminate.cid_index = tx_index;
8148 
8149 		rc = bnx2x_queue_state_change(bp, &q_params);
8150 		if (rc)
8151 			return rc;
8152 
8153 		/* send halt terminate on tx-only connection */
8154 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8155 		memset(&q_params.params.cfc_del, 0,
8156 		       sizeof(q_params.params.cfc_del));
8157 		q_params.params.cfc_del.cid_index = tx_index;
8158 		rc = bnx2x_queue_state_change(bp, &q_params);
8159 		if (rc)
8160 			return rc;
8161 	}
8162 	/* Stop the primary connection: */
8163 	/* ...halt the connection */
8164 	q_params.cmd = BNX2X_Q_CMD_HALT;
8165 	rc = bnx2x_queue_state_change(bp, &q_params);
8166 	if (rc)
8167 		return rc;
8168 
8169 	/* ...terminate the connection */
8170 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8171 	memset(&q_params.params.terminate, 0,
8172 	       sizeof(q_params.params.terminate));
8173 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8174 	rc = bnx2x_queue_state_change(bp, &q_params);
8175 	if (rc)
8176 		return rc;
8177 	/* ...delete cfc entry */
8178 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8179 	memset(&q_params.params.cfc_del, 0,
8180 	       sizeof(q_params.params.cfc_del));
8181 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8182 	return bnx2x_queue_state_change(bp, &q_params);
8183 }
8184 
8185 
8186 static void bnx2x_reset_func(struct bnx2x *bp)
8187 {
8188 	int port = BP_PORT(bp);
8189 	int func = BP_FUNC(bp);
8190 	int i;
8191 
8192 	/* Disable the function in the FW */
8193 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8194 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8195 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8196 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8197 
8198 	/* FP SBs */
8199 	for_each_eth_queue(bp, i) {
8200 		struct bnx2x_fastpath *fp = &bp->fp[i];
8201 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8202 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8203 			   SB_DISABLED);
8204 	}
8205 
8206 	if (CNIC_LOADED(bp))
8207 		/* CNIC SB */
8208 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8209 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8210 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8211 
8212 	/* SP SB */
8213 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8214 		   CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8215 		   SB_DISABLED);
8216 
8217 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8218 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8219 		       0);
8220 
8221 	/* Configure IGU */
8222 	if (bp->common.int_block == INT_BLOCK_HC) {
8223 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8224 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8225 	} else {
8226 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8227 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8228 	}
8229 
8230 	if (CNIC_LOADED(bp)) {
8231 		/* Disable Timer scan */
8232 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8233 		/*
8234 		 * Wait for at least 10ms and up to 2 second for the timers
8235 		 * scan to complete
8236 		 */
8237 		for (i = 0; i < 200; i++) {
8238 			msleep(10);
8239 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8240 				break;
8241 		}
8242 	}
8243 	/* Clear ILT */
8244 	bnx2x_clear_func_ilt(bp, func);
8245 
8246 	/* Timers workaround bug for E2: if this is vnic-3,
8247 	 * we need to set the entire ilt range for this timers.
8248 	 */
8249 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8250 		struct ilt_client_info ilt_cli;
8251 		/* use dummy TM client */
8252 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8253 		ilt_cli.start = 0;
8254 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8255 		ilt_cli.client_num = ILT_CLIENT_TM;
8256 
8257 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8258 	}
8259 
8260 	/* this assumes that reset_port() called before reset_func()*/
8261 	if (!CHIP_IS_E1x(bp))
8262 		bnx2x_pf_disable(bp);
8263 
8264 	bp->dmae_ready = 0;
8265 }
8266 
8267 static void bnx2x_reset_port(struct bnx2x *bp)
8268 {
8269 	int port = BP_PORT(bp);
8270 	u32 val;
8271 
8272 	/* Reset physical Link */
8273 	bnx2x__link_reset(bp);
8274 
8275 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8276 
8277 	/* Do not rcv packets to BRB */
8278 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8279 	/* Do not direct rcv packets that are not for MCP to the BRB */
8280 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8281 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8282 
8283 	/* Configure AEU */
8284 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8285 
8286 	msleep(100);
8287 	/* Check for BRB port occupancy */
8288 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8289 	if (val)
8290 		DP(NETIF_MSG_IFDOWN,
8291 		   "BRB1 is not empty  %d blocks are occupied\n", val);
8292 
8293 	/* TODO: Close Doorbell port? */
8294 }
8295 
8296 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8297 {
8298 	struct bnx2x_func_state_params func_params = {NULL};
8299 
8300 	/* Prepare parameters for function state transitions */
8301 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8302 
8303 	func_params.f_obj = &bp->func_obj;
8304 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
8305 
8306 	func_params.params.hw_init.load_phase = load_code;
8307 
8308 	return bnx2x_func_state_change(bp, &func_params);
8309 }
8310 
8311 static int bnx2x_func_stop(struct bnx2x *bp)
8312 {
8313 	struct bnx2x_func_state_params func_params = {NULL};
8314 	int rc;
8315 
8316 	/* Prepare parameters for function state transitions */
8317 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8318 	func_params.f_obj = &bp->func_obj;
8319 	func_params.cmd = BNX2X_F_CMD_STOP;
8320 
8321 	/*
8322 	 * Try to stop the function the 'good way'. If fails (in case
8323 	 * of a parity error during bnx2x_chip_cleanup()) and we are
8324 	 * not in a debug mode, perform a state transaction in order to
8325 	 * enable further HW_RESET transaction.
8326 	 */
8327 	rc = bnx2x_func_state_change(bp, &func_params);
8328 	if (rc) {
8329 #ifdef BNX2X_STOP_ON_ERROR
8330 		return rc;
8331 #else
8332 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8333 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8334 		return bnx2x_func_state_change(bp, &func_params);
8335 #endif
8336 	}
8337 
8338 	return 0;
8339 }
8340 
8341 /**
8342  * bnx2x_send_unload_req - request unload mode from the MCP.
8343  *
8344  * @bp:			driver handle
8345  * @unload_mode:	requested function's unload mode
8346  *
8347  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8348  */
8349 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8350 {
8351 	u32 reset_code = 0;
8352 	int port = BP_PORT(bp);
8353 
8354 	/* Select the UNLOAD request mode */
8355 	if (unload_mode == UNLOAD_NORMAL)
8356 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8357 
8358 	else if (bp->flags & NO_WOL_FLAG)
8359 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8360 
8361 	else if (bp->wol) {
8362 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8363 		u8 *mac_addr = bp->dev->dev_addr;
8364 		u32 val;
8365 		u16 pmc;
8366 
8367 		/* The mac address is written to entries 1-4 to
8368 		 * preserve entry 0 which is used by the PMF
8369 		 */
8370 		u8 entry = (BP_VN(bp) + 1)*8;
8371 
8372 		val = (mac_addr[0] << 8) | mac_addr[1];
8373 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8374 
8375 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8376 		      (mac_addr[4] << 8) | mac_addr[5];
8377 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8378 
8379 		/* Enable the PME and clear the status */
8380 		pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8381 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8382 		pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8383 
8384 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8385 
8386 	} else
8387 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8388 
8389 	/* Send the request to the MCP */
8390 	if (!BP_NOMCP(bp))
8391 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
8392 	else {
8393 		int path = BP_PATH(bp);
8394 
8395 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8396 		   path, load_count[path][0], load_count[path][1],
8397 		   load_count[path][2]);
8398 		load_count[path][0]--;
8399 		load_count[path][1 + port]--;
8400 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8401 		   path, load_count[path][0], load_count[path][1],
8402 		   load_count[path][2]);
8403 		if (load_count[path][0] == 0)
8404 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8405 		else if (load_count[path][1 + port] == 0)
8406 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8407 		else
8408 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8409 	}
8410 
8411 	return reset_code;
8412 }
8413 
8414 /**
8415  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8416  *
8417  * @bp:		driver handle
8418  * @keep_link:		true iff link should be kept up
8419  */
8420 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8421 {
8422 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8423 
8424 	/* Report UNLOAD_DONE to MCP */
8425 	if (!BP_NOMCP(bp))
8426 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8427 }
8428 
8429 static int bnx2x_func_wait_started(struct bnx2x *bp)
8430 {
8431 	int tout = 50;
8432 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8433 
8434 	if (!bp->port.pmf)
8435 		return 0;
8436 
8437 	/*
8438 	 * (assumption: No Attention from MCP at this stage)
8439 	 * PMF probably in the middle of TXdisable/enable transaction
8440 	 * 1. Sync IRS for default SB
8441 	 * 2. Sync SP queue - this guarantes us that attention handling started
8442 	 * 3. Wait, that TXdisable/enable transaction completes
8443 	 *
8444 	 * 1+2 guranty that if DCBx attention was scheduled it already changed
8445 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8446 	 * received complettion for the transaction the state is TX_STOPPED.
8447 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
8448 	 * transaction.
8449 	 */
8450 
8451 	/* make sure default SB ISR is done */
8452 	if (msix)
8453 		synchronize_irq(bp->msix_table[0].vector);
8454 	else
8455 		synchronize_irq(bp->pdev->irq);
8456 
8457 	flush_workqueue(bnx2x_wq);
8458 
8459 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8460 				BNX2X_F_STATE_STARTED && tout--)
8461 		msleep(20);
8462 
8463 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8464 						BNX2X_F_STATE_STARTED) {
8465 #ifdef BNX2X_STOP_ON_ERROR
8466 		BNX2X_ERR("Wrong function state\n");
8467 		return -EBUSY;
8468 #else
8469 		/*
8470 		 * Failed to complete the transaction in a "good way"
8471 		 * Force both transactions with CLR bit
8472 		 */
8473 		struct bnx2x_func_state_params func_params = {NULL};
8474 
8475 		DP(NETIF_MSG_IFDOWN,
8476 		   "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8477 
8478 		func_params.f_obj = &bp->func_obj;
8479 		__set_bit(RAMROD_DRV_CLR_ONLY,
8480 					&func_params.ramrod_flags);
8481 
8482 		/* STARTED-->TX_ST0PPED */
8483 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
8484 		bnx2x_func_state_change(bp, &func_params);
8485 
8486 		/* TX_ST0PPED-->STARTED */
8487 		func_params.cmd = BNX2X_F_CMD_TX_START;
8488 		return bnx2x_func_state_change(bp, &func_params);
8489 #endif
8490 	}
8491 
8492 	return 0;
8493 }
8494 
8495 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8496 {
8497 	int port = BP_PORT(bp);
8498 	int i, rc = 0;
8499 	u8 cos;
8500 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
8501 	u32 reset_code;
8502 
8503 	/* Wait until tx fastpath tasks complete */
8504 	for_each_tx_queue(bp, i) {
8505 		struct bnx2x_fastpath *fp = &bp->fp[i];
8506 
8507 		for_each_cos_in_tx_queue(fp, cos)
8508 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8509 #ifdef BNX2X_STOP_ON_ERROR
8510 		if (rc)
8511 			return;
8512 #endif
8513 	}
8514 
8515 	/* Give HW time to discard old tx messages */
8516 	usleep_range(1000, 1000);
8517 
8518 	/* Clean all ETH MACs */
8519 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8520 				false);
8521 	if (rc < 0)
8522 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8523 
8524 	/* Clean up UC list  */
8525 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8526 				true);
8527 	if (rc < 0)
8528 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8529 			  rc);
8530 
8531 	/* Disable LLH */
8532 	if (!CHIP_IS_E1(bp))
8533 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8534 
8535 	/* Set "drop all" (stop Rx).
8536 	 * We need to take a netif_addr_lock() here in order to prevent
8537 	 * a race between the completion code and this code.
8538 	 */
8539 	netif_addr_lock_bh(bp->dev);
8540 	/* Schedule the rx_mode command */
8541 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8542 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8543 	else
8544 		bnx2x_set_storm_rx_mode(bp);
8545 
8546 	/* Cleanup multicast configuration */
8547 	rparam.mcast_obj = &bp->mcast_obj;
8548 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8549 	if (rc < 0)
8550 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8551 
8552 	netif_addr_unlock_bh(bp->dev);
8553 
8554 
8555 
8556 	/*
8557 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
8558 	 * this function should perform FUNC, PORT or COMMON HW
8559 	 * reset.
8560 	 */
8561 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
8562 
8563 	/*
8564 	 * (assumption: No Attention from MCP at this stage)
8565 	 * PMF probably in the middle of TXdisable/enable transaction
8566 	 */
8567 	rc = bnx2x_func_wait_started(bp);
8568 	if (rc) {
8569 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
8570 #ifdef BNX2X_STOP_ON_ERROR
8571 		return;
8572 #endif
8573 	}
8574 
8575 	/* Close multi and leading connections
8576 	 * Completions for ramrods are collected in a synchronous way
8577 	 */
8578 	for_each_eth_queue(bp, i)
8579 		if (bnx2x_stop_queue(bp, i))
8580 #ifdef BNX2X_STOP_ON_ERROR
8581 			return;
8582 #else
8583 			goto unload_error;
8584 #endif
8585 
8586 	if (CNIC_LOADED(bp)) {
8587 		for_each_cnic_queue(bp, i)
8588 			if (bnx2x_stop_queue(bp, i))
8589 #ifdef BNX2X_STOP_ON_ERROR
8590 				return;
8591 #else
8592 				goto unload_error;
8593 #endif
8594 	}
8595 
8596 	/* If SP settings didn't get completed so far - something
8597 	 * very wrong has happen.
8598 	 */
8599 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8600 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8601 
8602 #ifndef BNX2X_STOP_ON_ERROR
8603 unload_error:
8604 #endif
8605 	rc = bnx2x_func_stop(bp);
8606 	if (rc) {
8607 		BNX2X_ERR("Function stop failed!\n");
8608 #ifdef BNX2X_STOP_ON_ERROR
8609 		return;
8610 #endif
8611 	}
8612 
8613 	/* Disable HW interrupts, NAPI */
8614 	bnx2x_netif_stop(bp, 1);
8615 	/* Delete all NAPI objects */
8616 	bnx2x_del_all_napi(bp);
8617 	if (CNIC_LOADED(bp))
8618 		bnx2x_del_all_napi_cnic(bp);
8619 
8620 	/* Release IRQs */
8621 	bnx2x_free_irq(bp);
8622 
8623 	/* Reset the chip */
8624 	rc = bnx2x_reset_hw(bp, reset_code);
8625 	if (rc)
8626 		BNX2X_ERR("HW_RESET failed\n");
8627 
8628 
8629 	/* Report UNLOAD_DONE to MCP */
8630 	bnx2x_send_unload_done(bp, keep_link);
8631 }
8632 
8633 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8634 {
8635 	u32 val;
8636 
8637 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8638 
8639 	if (CHIP_IS_E1(bp)) {
8640 		int port = BP_PORT(bp);
8641 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8642 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
8643 
8644 		val = REG_RD(bp, addr);
8645 		val &= ~(0x300);
8646 		REG_WR(bp, addr, val);
8647 	} else {
8648 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8649 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8650 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8651 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8652 	}
8653 }
8654 
8655 /* Close gates #2, #3 and #4: */
8656 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8657 {
8658 	u32 val;
8659 
8660 	/* Gates #2 and #4a are closed/opened for "not E1" only */
8661 	if (!CHIP_IS_E1(bp)) {
8662 		/* #4 */
8663 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8664 		/* #2 */
8665 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8666 	}
8667 
8668 	/* #3 */
8669 	if (CHIP_IS_E1x(bp)) {
8670 		/* Prevent interrupts from HC on both ports */
8671 		val = REG_RD(bp, HC_REG_CONFIG_1);
8672 		REG_WR(bp, HC_REG_CONFIG_1,
8673 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8674 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8675 
8676 		val = REG_RD(bp, HC_REG_CONFIG_0);
8677 		REG_WR(bp, HC_REG_CONFIG_0,
8678 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8679 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8680 	} else {
8681 		/* Prevent incomming interrupts in IGU */
8682 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8683 
8684 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8685 		       (!close) ?
8686 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8687 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8688 	}
8689 
8690 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8691 		close ? "closing" : "opening");
8692 	mmiowb();
8693 }
8694 
8695 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8696 
8697 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8698 {
8699 	/* Do some magic... */
8700 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8701 	*magic_val = val & SHARED_MF_CLP_MAGIC;
8702 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8703 }
8704 
8705 /**
8706  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8707  *
8708  * @bp:		driver handle
8709  * @magic_val:	old value of the `magic' bit.
8710  */
8711 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8712 {
8713 	/* Restore the `magic' bit value... */
8714 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8715 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
8716 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8717 }
8718 
8719 /**
8720  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8721  *
8722  * @bp:		driver handle
8723  * @magic_val:	old value of 'magic' bit.
8724  *
8725  * Takes care of CLP configurations.
8726  */
8727 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8728 {
8729 	u32 shmem;
8730 	u32 validity_offset;
8731 
8732 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8733 
8734 	/* Set `magic' bit in order to save MF config */
8735 	if (!CHIP_IS_E1(bp))
8736 		bnx2x_clp_reset_prep(bp, magic_val);
8737 
8738 	/* Get shmem offset */
8739 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8740 	validity_offset =
8741 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
8742 
8743 	/* Clear validity map flags */
8744 	if (shmem > 0)
8745 		REG_WR(bp, shmem + validity_offset, 0);
8746 }
8747 
8748 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8749 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8750 
8751 /**
8752  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8753  *
8754  * @bp:	driver handle
8755  */
8756 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8757 {
8758 	/* special handling for emulation and FPGA,
8759 	   wait 10 times longer */
8760 	if (CHIP_REV_IS_SLOW(bp))
8761 		msleep(MCP_ONE_TIMEOUT*10);
8762 	else
8763 		msleep(MCP_ONE_TIMEOUT);
8764 }
8765 
8766 /*
8767  * initializes bp->common.shmem_base and waits for validity signature to appear
8768  */
8769 static int bnx2x_init_shmem(struct bnx2x *bp)
8770 {
8771 	int cnt = 0;
8772 	u32 val = 0;
8773 
8774 	do {
8775 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8776 		if (bp->common.shmem_base) {
8777 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8778 			if (val & SHR_MEM_VALIDITY_MB)
8779 				return 0;
8780 		}
8781 
8782 		bnx2x_mcp_wait_one(bp);
8783 
8784 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8785 
8786 	BNX2X_ERR("BAD MCP validity signature\n");
8787 
8788 	return -ENODEV;
8789 }
8790 
8791 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8792 {
8793 	int rc = bnx2x_init_shmem(bp);
8794 
8795 	/* Restore the `magic' bit value */
8796 	if (!CHIP_IS_E1(bp))
8797 		bnx2x_clp_reset_done(bp, magic_val);
8798 
8799 	return rc;
8800 }
8801 
8802 static void bnx2x_pxp_prep(struct bnx2x *bp)
8803 {
8804 	if (!CHIP_IS_E1(bp)) {
8805 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8806 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8807 		mmiowb();
8808 	}
8809 }
8810 
8811 /*
8812  * Reset the whole chip except for:
8813  *      - PCIE core
8814  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8815  *              one reset bit)
8816  *      - IGU
8817  *      - MISC (including AEU)
8818  *      - GRC
8819  *      - RBCN, RBCP
8820  */
8821 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8822 {
8823 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8824 	u32 global_bits2, stay_reset2;
8825 
8826 	/*
8827 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8828 	 * (per chip) blocks.
8829 	 */
8830 	global_bits2 =
8831 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8832 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8833 
8834 	/* Don't reset the following blocks.
8835 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
8836 	 *            reset, as in 4 port device they might still be owned
8837 	 *            by the MCP (there is only one leader per path).
8838 	 */
8839 	not_reset_mask1 =
8840 		MISC_REGISTERS_RESET_REG_1_RST_HC |
8841 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8842 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
8843 
8844 	not_reset_mask2 =
8845 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8846 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8847 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8848 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8849 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8850 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8851 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8852 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8853 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
8854 		MISC_REGISTERS_RESET_REG_2_PGLC |
8855 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8856 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8857 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8858 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8859 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
8860 		MISC_REGISTERS_RESET_REG_2_UMAC1;
8861 
8862 	/*
8863 	 * Keep the following blocks in reset:
8864 	 *  - all xxMACs are handled by the bnx2x_link code.
8865 	 */
8866 	stay_reset2 =
8867 		MISC_REGISTERS_RESET_REG_2_XMAC |
8868 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8869 
8870 	/* Full reset masks according to the chip */
8871 	reset_mask1 = 0xffffffff;
8872 
8873 	if (CHIP_IS_E1(bp))
8874 		reset_mask2 = 0xffff;
8875 	else if (CHIP_IS_E1H(bp))
8876 		reset_mask2 = 0x1ffff;
8877 	else if (CHIP_IS_E2(bp))
8878 		reset_mask2 = 0xfffff;
8879 	else /* CHIP_IS_E3 */
8880 		reset_mask2 = 0x3ffffff;
8881 
8882 	/* Don't reset global blocks unless we need to */
8883 	if (!global)
8884 		reset_mask2 &= ~global_bits2;
8885 
8886 	/*
8887 	 * In case of attention in the QM, we need to reset PXP
8888 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8889 	 * because otherwise QM reset would release 'close the gates' shortly
8890 	 * before resetting the PXP, then the PSWRQ would send a write
8891 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8892 	 * read the payload data from PSWWR, but PSWWR would not
8893 	 * respond. The write queue in PGLUE would stuck, dmae commands
8894 	 * would not return. Therefore it's important to reset the second
8895 	 * reset register (containing the
8896 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8897 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8898 	 * bit).
8899 	 */
8900 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8901 	       reset_mask2 & (~not_reset_mask2));
8902 
8903 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8904 	       reset_mask1 & (~not_reset_mask1));
8905 
8906 	barrier();
8907 	mmiowb();
8908 
8909 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8910 	       reset_mask2 & (~stay_reset2));
8911 
8912 	barrier();
8913 	mmiowb();
8914 
8915 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8916 	mmiowb();
8917 }
8918 
8919 /**
8920  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8921  * It should get cleared in no more than 1s.
8922  *
8923  * @bp:	driver handle
8924  *
8925  * It should get cleared in no more than 1s. Returns 0 if
8926  * pending writes bit gets cleared.
8927  */
8928 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8929 {
8930 	u32 cnt = 1000;
8931 	u32 pend_bits = 0;
8932 
8933 	do {
8934 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8935 
8936 		if (pend_bits == 0)
8937 			break;
8938 
8939 		usleep_range(1000, 1000);
8940 	} while (cnt-- > 0);
8941 
8942 	if (cnt <= 0) {
8943 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8944 			  pend_bits);
8945 		return -EBUSY;
8946 	}
8947 
8948 	return 0;
8949 }
8950 
8951 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8952 {
8953 	int cnt = 1000;
8954 	u32 val = 0;
8955 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8956 		u32 tags_63_32 = 0;
8957 
8958 
8959 	/* Empty the Tetris buffer, wait for 1s */
8960 	do {
8961 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8962 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8963 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8964 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8965 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8966 		if (CHIP_IS_E3(bp))
8967 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
8968 
8969 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8970 		    ((port_is_idle_0 & 0x1) == 0x1) &&
8971 		    ((port_is_idle_1 & 0x1) == 0x1) &&
8972 		    (pgl_exp_rom2 == 0xffffffff) &&
8973 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
8974 			break;
8975 		usleep_range(1000, 1000);
8976 	} while (cnt-- > 0);
8977 
8978 	if (cnt <= 0) {
8979 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8980 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8981 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8982 			  pgl_exp_rom2);
8983 		return -EAGAIN;
8984 	}
8985 
8986 	barrier();
8987 
8988 	/* Close gates #2, #3 and #4 */
8989 	bnx2x_set_234_gates(bp, true);
8990 
8991 	/* Poll for IGU VQs for 57712 and newer chips */
8992 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8993 		return -EAGAIN;
8994 
8995 
8996 	/* TBD: Indicate that "process kill" is in progress to MCP */
8997 
8998 	/* Clear "unprepared" bit */
8999 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9000 	barrier();
9001 
9002 	/* Make sure all is written to the chip before the reset */
9003 	mmiowb();
9004 
9005 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9006 	 * PSWHST, GRC and PSWRD Tetris buffer.
9007 	 */
9008 	usleep_range(1000, 1000);
9009 
9010 	/* Prepare to chip reset: */
9011 	/* MCP */
9012 	if (global)
9013 		bnx2x_reset_mcp_prep(bp, &val);
9014 
9015 	/* PXP */
9016 	bnx2x_pxp_prep(bp);
9017 	barrier();
9018 
9019 	/* reset the chip */
9020 	bnx2x_process_kill_chip_reset(bp, global);
9021 	barrier();
9022 
9023 	/* Recover after reset: */
9024 	/* MCP */
9025 	if (global && bnx2x_reset_mcp_comp(bp, val))
9026 		return -EAGAIN;
9027 
9028 	/* TBD: Add resetting the NO_MCP mode DB here */
9029 
9030 	/* Open the gates #2, #3 and #4 */
9031 	bnx2x_set_234_gates(bp, false);
9032 
9033 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9034 	 * reset state, re-enable attentions. */
9035 
9036 	return 0;
9037 }
9038 
9039 static int bnx2x_leader_reset(struct bnx2x *bp)
9040 {
9041 	int rc = 0;
9042 	bool global = bnx2x_reset_is_global(bp);
9043 	u32 load_code;
9044 
9045 	/* if not going to reset MCP - load "fake" driver to reset HW while
9046 	 * driver is owner of the HW
9047 	 */
9048 	if (!global && !BP_NOMCP(bp)) {
9049 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9050 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9051 		if (!load_code) {
9052 			BNX2X_ERR("MCP response failure, aborting\n");
9053 			rc = -EAGAIN;
9054 			goto exit_leader_reset;
9055 		}
9056 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9057 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9058 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9059 			rc = -EAGAIN;
9060 			goto exit_leader_reset2;
9061 		}
9062 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9063 		if (!load_code) {
9064 			BNX2X_ERR("MCP response failure, aborting\n");
9065 			rc = -EAGAIN;
9066 			goto exit_leader_reset2;
9067 		}
9068 	}
9069 
9070 	/* Try to recover after the failure */
9071 	if (bnx2x_process_kill(bp, global)) {
9072 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9073 			  BP_PATH(bp));
9074 		rc = -EAGAIN;
9075 		goto exit_leader_reset2;
9076 	}
9077 
9078 	/*
9079 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9080 	 * state.
9081 	 */
9082 	bnx2x_set_reset_done(bp);
9083 	if (global)
9084 		bnx2x_clear_reset_global(bp);
9085 
9086 exit_leader_reset2:
9087 	/* unload "fake driver" if it was loaded */
9088 	if (!global && !BP_NOMCP(bp)) {
9089 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9090 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9091 	}
9092 exit_leader_reset:
9093 	bp->is_leader = 0;
9094 	bnx2x_release_leader_lock(bp);
9095 	smp_mb();
9096 	return rc;
9097 }
9098 
9099 static void bnx2x_recovery_failed(struct bnx2x *bp)
9100 {
9101 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9102 
9103 	/* Disconnect this device */
9104 	netif_device_detach(bp->dev);
9105 
9106 	/*
9107 	 * Block ifup for all function on this engine until "process kill"
9108 	 * or power cycle.
9109 	 */
9110 	bnx2x_set_reset_in_progress(bp);
9111 
9112 	/* Shut down the power */
9113 	bnx2x_set_power_state(bp, PCI_D3hot);
9114 
9115 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9116 
9117 	smp_mb();
9118 }
9119 
9120 /*
9121  * Assumption: runs under rtnl lock. This together with the fact
9122  * that it's called only from bnx2x_sp_rtnl() ensure that it
9123  * will never be called when netif_running(bp->dev) is false.
9124  */
9125 static void bnx2x_parity_recover(struct bnx2x *bp)
9126 {
9127 	bool global = false;
9128 	u32 error_recovered, error_unrecovered;
9129 	bool is_parity;
9130 
9131 	DP(NETIF_MSG_HW, "Handling parity\n");
9132 	while (1) {
9133 		switch (bp->recovery_state) {
9134 		case BNX2X_RECOVERY_INIT:
9135 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9136 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9137 			WARN_ON(!is_parity);
9138 
9139 			/* Try to get a LEADER_LOCK HW lock */
9140 			if (bnx2x_trylock_leader_lock(bp)) {
9141 				bnx2x_set_reset_in_progress(bp);
9142 				/*
9143 				 * Check if there is a global attention and if
9144 				 * there was a global attention, set the global
9145 				 * reset bit.
9146 				 */
9147 
9148 				if (global)
9149 					bnx2x_set_reset_global(bp);
9150 
9151 				bp->is_leader = 1;
9152 			}
9153 
9154 			/* Stop the driver */
9155 			/* If interface has been removed - break */
9156 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9157 				return;
9158 
9159 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9160 
9161 			/* Ensure "is_leader", MCP command sequence and
9162 			 * "recovery_state" update values are seen on other
9163 			 * CPUs.
9164 			 */
9165 			smp_mb();
9166 			break;
9167 
9168 		case BNX2X_RECOVERY_WAIT:
9169 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9170 			if (bp->is_leader) {
9171 				int other_engine = BP_PATH(bp) ? 0 : 1;
9172 				bool other_load_status =
9173 					bnx2x_get_load_status(bp, other_engine);
9174 				bool load_status =
9175 					bnx2x_get_load_status(bp, BP_PATH(bp));
9176 				global = bnx2x_reset_is_global(bp);
9177 
9178 				/*
9179 				 * In case of a parity in a global block, let
9180 				 * the first leader that performs a
9181 				 * leader_reset() reset the global blocks in
9182 				 * order to clear global attentions. Otherwise
9183 				 * the the gates will remain closed for that
9184 				 * engine.
9185 				 */
9186 				if (load_status ||
9187 				    (global && other_load_status)) {
9188 					/* Wait until all other functions get
9189 					 * down.
9190 					 */
9191 					schedule_delayed_work(&bp->sp_rtnl_task,
9192 								HZ/10);
9193 					return;
9194 				} else {
9195 					/* If all other functions got down -
9196 					 * try to bring the chip back to
9197 					 * normal. In any case it's an exit
9198 					 * point for a leader.
9199 					 */
9200 					if (bnx2x_leader_reset(bp)) {
9201 						bnx2x_recovery_failed(bp);
9202 						return;
9203 					}
9204 
9205 					/* If we are here, means that the
9206 					 * leader has succeeded and doesn't
9207 					 * want to be a leader any more. Try
9208 					 * to continue as a none-leader.
9209 					 */
9210 					break;
9211 				}
9212 			} else { /* non-leader */
9213 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9214 					/* Try to get a LEADER_LOCK HW lock as
9215 					 * long as a former leader may have
9216 					 * been unloaded by the user or
9217 					 * released a leadership by another
9218 					 * reason.
9219 					 */
9220 					if (bnx2x_trylock_leader_lock(bp)) {
9221 						/* I'm a leader now! Restart a
9222 						 * switch case.
9223 						 */
9224 						bp->is_leader = 1;
9225 						break;
9226 					}
9227 
9228 					schedule_delayed_work(&bp->sp_rtnl_task,
9229 								HZ/10);
9230 					return;
9231 
9232 				} else {
9233 					/*
9234 					 * If there was a global attention, wait
9235 					 * for it to be cleared.
9236 					 */
9237 					if (bnx2x_reset_is_global(bp)) {
9238 						schedule_delayed_work(
9239 							&bp->sp_rtnl_task,
9240 							HZ/10);
9241 						return;
9242 					}
9243 
9244 					error_recovered =
9245 					  bp->eth_stats.recoverable_error;
9246 					error_unrecovered =
9247 					  bp->eth_stats.unrecoverable_error;
9248 					bp->recovery_state =
9249 						BNX2X_RECOVERY_NIC_LOADING;
9250 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9251 						error_unrecovered++;
9252 						netdev_err(bp->dev,
9253 							   "Recovery failed. Power cycle needed\n");
9254 						/* Disconnect this device */
9255 						netif_device_detach(bp->dev);
9256 						/* Shut down the power */
9257 						bnx2x_set_power_state(
9258 							bp, PCI_D3hot);
9259 						smp_mb();
9260 					} else {
9261 						bp->recovery_state =
9262 							BNX2X_RECOVERY_DONE;
9263 						error_recovered++;
9264 						smp_mb();
9265 					}
9266 					bp->eth_stats.recoverable_error =
9267 						error_recovered;
9268 					bp->eth_stats.unrecoverable_error =
9269 						error_unrecovered;
9270 
9271 					return;
9272 				}
9273 			}
9274 		default:
9275 			return;
9276 		}
9277 	}
9278 }
9279 
9280 static int bnx2x_close(struct net_device *dev);
9281 
9282 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9283  * scheduled on a general queue in order to prevent a dead lock.
9284  */
9285 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9286 {
9287 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9288 
9289 	rtnl_lock();
9290 
9291 	if (!netif_running(bp->dev))
9292 		goto sp_rtnl_exit;
9293 
9294 	/* if stop on error is defined no recovery flows should be executed */
9295 #ifdef BNX2X_STOP_ON_ERROR
9296 	BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9297 		  "you will need to reboot when done\n");
9298 	goto sp_rtnl_not_reset;
9299 #endif
9300 
9301 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9302 		/*
9303 		 * Clear all pending SP commands as we are going to reset the
9304 		 * function anyway.
9305 		 */
9306 		bp->sp_rtnl_state = 0;
9307 		smp_mb();
9308 
9309 		bnx2x_parity_recover(bp);
9310 
9311 		goto sp_rtnl_exit;
9312 	}
9313 
9314 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9315 		/*
9316 		 * Clear all pending SP commands as we are going to reset the
9317 		 * function anyway.
9318 		 */
9319 		bp->sp_rtnl_state = 0;
9320 		smp_mb();
9321 
9322 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9323 		bnx2x_nic_load(bp, LOAD_NORMAL);
9324 
9325 		goto sp_rtnl_exit;
9326 	}
9327 #ifdef BNX2X_STOP_ON_ERROR
9328 sp_rtnl_not_reset:
9329 #endif
9330 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9331 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9332 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9333 		bnx2x_after_function_update(bp);
9334 	/*
9335 	 * in case of fan failure we need to reset id if the "stop on error"
9336 	 * debug flag is set, since we trying to prevent permanent overheating
9337 	 * damage
9338 	 */
9339 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9340 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9341 		netif_device_detach(bp->dev);
9342 		bnx2x_close(bp->dev);
9343 	}
9344 
9345 sp_rtnl_exit:
9346 	rtnl_unlock();
9347 }
9348 
9349 /* end of nic load/unload */
9350 
9351 static void bnx2x_period_task(struct work_struct *work)
9352 {
9353 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9354 
9355 	if (!netif_running(bp->dev))
9356 		goto period_task_exit;
9357 
9358 	if (CHIP_REV_IS_SLOW(bp)) {
9359 		BNX2X_ERR("period task called on emulation, ignoring\n");
9360 		goto period_task_exit;
9361 	}
9362 
9363 	bnx2x_acquire_phy_lock(bp);
9364 	/*
9365 	 * The barrier is needed to ensure the ordering between the writing to
9366 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9367 	 * the reading here.
9368 	 */
9369 	smp_mb();
9370 	if (bp->port.pmf) {
9371 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
9372 
9373 		/* Re-queue task in 1 sec */
9374 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9375 	}
9376 
9377 	bnx2x_release_phy_lock(bp);
9378 period_task_exit:
9379 	return;
9380 }
9381 
9382 /*
9383  * Init service functions
9384  */
9385 
9386 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9387 {
9388 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9389 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9390 	return base + (BP_ABS_FUNC(bp)) * stride;
9391 }
9392 
9393 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9394 {
9395 	u32 reg = bnx2x_get_pretend_reg(bp);
9396 
9397 	/* Flush all outstanding writes */
9398 	mmiowb();
9399 
9400 	/* Pretend to be function 0 */
9401 	REG_WR(bp, reg, 0);
9402 	REG_RD(bp, reg);	/* Flush the GRC transaction (in the chip) */
9403 
9404 	/* From now we are in the "like-E1" mode */
9405 	bnx2x_int_disable(bp);
9406 
9407 	/* Flush all outstanding writes */
9408 	mmiowb();
9409 
9410 	/* Restore the original function */
9411 	REG_WR(bp, reg, BP_ABS_FUNC(bp));
9412 	REG_RD(bp, reg);
9413 }
9414 
9415 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9416 {
9417 	if (CHIP_IS_E1(bp))
9418 		bnx2x_int_disable(bp);
9419 	else
9420 		bnx2x_undi_int_disable_e1h(bp);
9421 }
9422 
9423 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9424 {
9425 	u32 val, base_addr, offset, mask, reset_reg;
9426 	bool mac_stopped = false;
9427 	u8 port = BP_PORT(bp);
9428 
9429 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9430 
9431 	if (!CHIP_IS_E3(bp)) {
9432 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9433 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9434 		if ((mask & reset_reg) && val) {
9435 			u32 wb_data[2];
9436 			BNX2X_DEV_INFO("Disable bmac Rx\n");
9437 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9438 						: NIG_REG_INGRESS_BMAC0_MEM;
9439 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9440 						: BIGMAC_REGISTER_BMAC_CONTROL;
9441 
9442 			/*
9443 			 * use rd/wr since we cannot use dmae. This is safe
9444 			 * since MCP won't access the bus due to the request
9445 			 * to unload, and no function on the path can be
9446 			 * loaded at this time.
9447 			 */
9448 			wb_data[0] = REG_RD(bp, base_addr + offset);
9449 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9450 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9451 			REG_WR(bp, base_addr + offset, wb_data[0]);
9452 			REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9453 
9454 		}
9455 		BNX2X_DEV_INFO("Disable emac Rx\n");
9456 		REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9457 
9458 		mac_stopped = true;
9459 	} else {
9460 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9461 			BNX2X_DEV_INFO("Disable xmac Rx\n");
9462 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9463 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9464 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9465 			       val & ~(1 << 1));
9466 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9467 			       val | (1 << 1));
9468 			REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9469 			mac_stopped = true;
9470 		}
9471 		mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9472 		if (mask & reset_reg) {
9473 			BNX2X_DEV_INFO("Disable umac Rx\n");
9474 			base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9475 			REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9476 			mac_stopped = true;
9477 		}
9478 	}
9479 
9480 	if (mac_stopped)
9481 		msleep(20);
9482 
9483 }
9484 
9485 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9486 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
9487 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
9488 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
9489 
9490 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
9491 {
9492 	u16 rcq, bd;
9493 	u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9494 
9495 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9496 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9497 
9498 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9499 	REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9500 
9501 	BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9502 		       port, bd, rcq);
9503 }
9504 
9505 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
9506 {
9507 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9508 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9509 	if (!rc) {
9510 		BNX2X_ERR("MCP response failure, aborting\n");
9511 		return -EBUSY;
9512 	}
9513 
9514 	return 0;
9515 }
9516 
9517 static struct bnx2x_prev_path_list *
9518 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
9519 {
9520 	struct bnx2x_prev_path_list *tmp_list;
9521 
9522 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
9523 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9524 		    bp->pdev->bus->number == tmp_list->bus &&
9525 		    BP_PATH(bp) == tmp_list->path)
9526 			return tmp_list;
9527 
9528 	return NULL;
9529 }
9530 
9531 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
9532 {
9533 	struct bnx2x_prev_path_list *tmp_list;
9534 	int rc = false;
9535 
9536 	if (down_trylock(&bnx2x_prev_sem))
9537 		return false;
9538 
9539 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9540 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9541 		    bp->pdev->bus->number == tmp_list->bus &&
9542 		    BP_PATH(bp) == tmp_list->path) {
9543 			rc = true;
9544 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9545 				       BP_PATH(bp));
9546 			break;
9547 		}
9548 	}
9549 
9550 	up(&bnx2x_prev_sem);
9551 
9552 	return rc;
9553 }
9554 
9555 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
9556 {
9557 	struct bnx2x_prev_path_list *tmp_list;
9558 	int rc;
9559 
9560 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9561 	if (!tmp_list) {
9562 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9563 		return -ENOMEM;
9564 	}
9565 
9566 	tmp_list->bus = bp->pdev->bus->number;
9567 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9568 	tmp_list->path = BP_PATH(bp);
9569 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
9570 
9571 	rc = down_interruptible(&bnx2x_prev_sem);
9572 	if (rc) {
9573 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
9574 		kfree(tmp_list);
9575 	} else {
9576 		BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9577 				BP_PATH(bp));
9578 		list_add(&tmp_list->list, &bnx2x_prev_list);
9579 		up(&bnx2x_prev_sem);
9580 	}
9581 
9582 	return rc;
9583 }
9584 
9585 static int bnx2x_do_flr(struct bnx2x *bp)
9586 {
9587 	int i;
9588 	u16 status;
9589 	struct pci_dev *dev = bp->pdev;
9590 
9591 
9592 	if (CHIP_IS_E1x(bp)) {
9593 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9594 		return -EINVAL;
9595 	}
9596 
9597 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9598 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9599 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9600 			  bp->common.bc_ver);
9601 		return -EINVAL;
9602 	}
9603 
9604 	/* Wait for Transaction Pending bit clean */
9605 	for (i = 0; i < 4; i++) {
9606 		if (i)
9607 			msleep((1 << (i - 1)) * 100);
9608 
9609 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9610 		if (!(status & PCI_EXP_DEVSTA_TRPND))
9611 			goto clear;
9612 	}
9613 
9614 	dev_err(&dev->dev,
9615 		"transaction is not cleared; proceeding with reset anyway\n");
9616 
9617 clear:
9618 
9619 	BNX2X_DEV_INFO("Initiating FLR\n");
9620 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9621 
9622 	return 0;
9623 }
9624 
9625 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9626 {
9627 	int rc;
9628 
9629 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
9630 
9631 	/* Test if previous unload process was already finished for this path */
9632 	if (bnx2x_prev_is_path_marked(bp))
9633 		return bnx2x_prev_mcp_done(bp);
9634 
9635 	/* If function has FLR capabilities, and existing FW version matches
9636 	 * the one required, then FLR will be sufficient to clean any residue
9637 	 * left by previous driver
9638 	 */
9639 	rc = bnx2x_test_firmware_version(bp, false);
9640 
9641 	if (!rc) {
9642 		/* fw version is good */
9643 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9644 		rc = bnx2x_do_flr(bp);
9645 	}
9646 
9647 	if (!rc) {
9648 		/* FLR was performed */
9649 		BNX2X_DEV_INFO("FLR successful\n");
9650 		return 0;
9651 	}
9652 
9653 	BNX2X_DEV_INFO("Could not FLR\n");
9654 
9655 	/* Close the MCP request, return failure*/
9656 	rc = bnx2x_prev_mcp_done(bp);
9657 	if (!rc)
9658 		rc = BNX2X_PREV_WAIT_NEEDED;
9659 
9660 	return rc;
9661 }
9662 
9663 static int bnx2x_prev_unload_common(struct bnx2x *bp)
9664 {
9665 	u32 reset_reg, tmp_reg = 0, rc;
9666 	bool prev_undi = false;
9667 	/* It is possible a previous function received 'common' answer,
9668 	 * but hasn't loaded yet, therefore creating a scenario of
9669 	 * multiple functions receiving 'common' on the same path.
9670 	 */
9671 	BNX2X_DEV_INFO("Common unload Flow\n");
9672 
9673 	if (bnx2x_prev_is_path_marked(bp))
9674 		return bnx2x_prev_mcp_done(bp);
9675 
9676 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9677 
9678 	/* Reset should be performed after BRB is emptied */
9679 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9680 		u32 timer_count = 1000;
9681 
9682 		/* Close the MAC Rx to prevent BRB from filling up */
9683 		bnx2x_prev_unload_close_mac(bp);
9684 
9685 		/* Check if the UNDI driver was previously loaded
9686 		 * UNDI driver initializes CID offset for normal bell to 0x7
9687 		 */
9688 		reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9689 		if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9690 			tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9691 			if (tmp_reg == 0x7) {
9692 				BNX2X_DEV_INFO("UNDI previously loaded\n");
9693 				prev_undi = true;
9694 				/* clear the UNDI indication */
9695 				REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9696 			}
9697 		}
9698 		/* wait until BRB is empty */
9699 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9700 		while (timer_count) {
9701 			u32 prev_brb = tmp_reg;
9702 
9703 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9704 			if (!tmp_reg)
9705 				break;
9706 
9707 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9708 
9709 			/* reset timer as long as BRB actually gets emptied */
9710 			if (prev_brb > tmp_reg)
9711 				timer_count = 1000;
9712 			else
9713 				timer_count--;
9714 
9715 			/* If UNDI resides in memory, manually increment it */
9716 			if (prev_undi)
9717 				bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9718 
9719 			udelay(10);
9720 		}
9721 
9722 		if (!timer_count)
9723 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9724 
9725 	}
9726 
9727 	/* No packets are in the pipeline, path is ready for reset */
9728 	bnx2x_reset_common(bp);
9729 
9730 	rc = bnx2x_prev_mark_path(bp, prev_undi);
9731 	if (rc) {
9732 		bnx2x_prev_mcp_done(bp);
9733 		return rc;
9734 	}
9735 
9736 	return bnx2x_prev_mcp_done(bp);
9737 }
9738 
9739 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9740  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9741  * the addresses of the transaction, resulting in was-error bit set in the pci
9742  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9743  * to clear the interrupt which detected this from the pglueb and the was done
9744  * bit
9745  */
9746 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9747 {
9748 	if (!CHIP_IS_E1x(bp)) {
9749 		u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9750 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9751 			BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9752 			REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9753 			       1 << BP_FUNC(bp));
9754 		}
9755 	}
9756 }
9757 
9758 static int bnx2x_prev_unload(struct bnx2x *bp)
9759 {
9760 	int time_counter = 10;
9761 	u32 rc, fw, hw_lock_reg, hw_lock_val;
9762 	struct bnx2x_prev_path_list *prev_list;
9763 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9764 
9765 	/* clear hw from errors which may have resulted from an interrupted
9766 	 * dmae transaction.
9767 	 */
9768 	bnx2x_prev_interrupted_dmae(bp);
9769 
9770 	/* Release previously held locks */
9771 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9772 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9773 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9774 
9775 	hw_lock_val = (REG_RD(bp, hw_lock_reg));
9776 	if (hw_lock_val) {
9777 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9778 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9779 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9780 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9781 		}
9782 
9783 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
9784 		REG_WR(bp, hw_lock_reg, 0xffffffff);
9785 	} else
9786 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9787 
9788 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9789 		BNX2X_DEV_INFO("Release previously held alr\n");
9790 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9791 	}
9792 
9793 
9794 	do {
9795 		/* Lock MCP using an unload request */
9796 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9797 		if (!fw) {
9798 			BNX2X_ERR("MCP response failure, aborting\n");
9799 			rc = -EBUSY;
9800 			break;
9801 		}
9802 
9803 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9804 			rc = bnx2x_prev_unload_common(bp);
9805 			break;
9806 		}
9807 
9808 		/* non-common reply from MCP night require looping */
9809 		rc = bnx2x_prev_unload_uncommon(bp);
9810 		if (rc != BNX2X_PREV_WAIT_NEEDED)
9811 			break;
9812 
9813 		msleep(20);
9814 	} while (--time_counter);
9815 
9816 	if (!time_counter || rc) {
9817 		BNX2X_ERR("Failed unloading previous driver, aborting\n");
9818 		rc = -EBUSY;
9819 	}
9820 
9821 	/* Mark function if its port was used to boot from SAN */
9822 	prev_list = bnx2x_prev_path_get_entry(bp);
9823 	if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
9824 		bp->link_params.feature_config_flags |=
9825 			FEATURE_CONFIG_BOOT_FROM_SAN;
9826 
9827 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9828 
9829 	return rc;
9830 }
9831 
9832 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
9833 {
9834 	u32 val, val2, val3, val4, id, boot_mode;
9835 	u16 pmc;
9836 
9837 	/* Get the chip revision id and number. */
9838 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9839 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
9840 	id = ((val & 0xffff) << 16);
9841 	val = REG_RD(bp, MISC_REG_CHIP_REV);
9842 	id |= ((val & 0xf) << 12);
9843 	val = REG_RD(bp, MISC_REG_CHIP_METAL);
9844 	id |= ((val & 0xff) << 4);
9845 	val = REG_RD(bp, MISC_REG_BOND_ID);
9846 	id |= (val & 0xf);
9847 	bp->common.chip_id = id;
9848 
9849 	/* force 57811 according to MISC register */
9850 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9851 		if (CHIP_IS_57810(bp))
9852 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9853 				(bp->common.chip_id & 0x0000FFFF);
9854 		else if (CHIP_IS_57810_MF(bp))
9855 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9856 				(bp->common.chip_id & 0x0000FFFF);
9857 		bp->common.chip_id |= 0x1;
9858 	}
9859 
9860 	/* Set doorbell size */
9861 	bp->db_size = (1 << BNX2X_DB_SHIFT);
9862 
9863 	if (!CHIP_IS_E1x(bp)) {
9864 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9865 		if ((val & 1) == 0)
9866 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9867 		else
9868 			val = (val >> 1) & 1;
9869 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9870 						       "2_PORT_MODE");
9871 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9872 						 CHIP_2_PORT_MODE;
9873 
9874 		if (CHIP_MODE_IS_4_PORT(bp))
9875 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
9876 		else
9877 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
9878 	} else {
9879 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9880 		bp->pfid = bp->pf_num;			/* 0..7 */
9881 	}
9882 
9883 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9884 
9885 	bp->link_params.chip_id = bp->common.chip_id;
9886 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9887 
9888 	val = (REG_RD(bp, 0x2874) & 0x55);
9889 	if ((bp->common.chip_id & 0x1) ||
9890 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9891 		bp->flags |= ONE_PORT_FLAG;
9892 		BNX2X_DEV_INFO("single port device\n");
9893 	}
9894 
9895 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9896 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9897 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
9898 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9899 		       bp->common.flash_size, bp->common.flash_size);
9900 
9901 	bnx2x_init_shmem(bp);
9902 
9903 
9904 
9905 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9906 					MISC_REG_GENERIC_CR_1 :
9907 					MISC_REG_GENERIC_CR_0));
9908 
9909 	bp->link_params.shmem_base = bp->common.shmem_base;
9910 	bp->link_params.shmem2_base = bp->common.shmem2_base;
9911 	if (SHMEM2_RD(bp, size) >
9912 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
9913 		bp->link_params.lfa_base =
9914 		REG_RD(bp, bp->common.shmem2_base +
9915 		       (u32)offsetof(struct shmem2_region,
9916 				     lfa_host_addr[BP_PORT(bp)]));
9917 	else
9918 		bp->link_params.lfa_base = 0;
9919 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9920 		       bp->common.shmem_base, bp->common.shmem2_base);
9921 
9922 	if (!bp->common.shmem_base) {
9923 		BNX2X_DEV_INFO("MCP not active\n");
9924 		bp->flags |= NO_MCP_FLAG;
9925 		return;
9926 	}
9927 
9928 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9929 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9930 
9931 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
9932 					SHARED_HW_CFG_LED_MODE_MASK) >>
9933 				       SHARED_HW_CFG_LED_MODE_SHIFT);
9934 
9935 	bp->link_params.feature_config_flags = 0;
9936 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9937 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9938 		bp->link_params.feature_config_flags |=
9939 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9940 	else
9941 		bp->link_params.feature_config_flags &=
9942 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9943 
9944 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9945 	bp->common.bc_ver = val;
9946 	BNX2X_DEV_INFO("bc_ver %X\n", val);
9947 	if (val < BNX2X_BC_VER) {
9948 		/* for now only warn
9949 		 * later we might need to enforce this */
9950 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9951 			  BNX2X_BC_VER, val);
9952 	}
9953 	bp->link_params.feature_config_flags |=
9954 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9955 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9956 
9957 	bp->link_params.feature_config_flags |=
9958 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9959 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9960 	bp->link_params.feature_config_flags |=
9961 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
9962 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
9963 	bp->link_params.feature_config_flags |=
9964 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9965 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9966 
9967 	bp->link_params.feature_config_flags |=
9968 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
9969 		FEATURE_CONFIG_MT_SUPPORT : 0;
9970 
9971 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9972 			BC_SUPPORTS_PFC_STATS : 0;
9973 
9974 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
9975 			BC_SUPPORTS_FCOE_FEATURES : 0;
9976 
9977 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
9978 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
9979 	boot_mode = SHMEM_RD(bp,
9980 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9981 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9982 	switch (boot_mode) {
9983 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9984 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9985 		break;
9986 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9987 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9988 		break;
9989 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9990 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9991 		break;
9992 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9993 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9994 		break;
9995 	}
9996 
9997 	pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9998 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9999 
10000 	BNX2X_DEV_INFO("%sWoL capable\n",
10001 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
10002 
10003 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10004 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10005 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10006 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10007 
10008 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10009 		 val, val2, val3, val4);
10010 }
10011 
10012 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10013 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10014 
10015 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10016 {
10017 	int pfid = BP_FUNC(bp);
10018 	int igu_sb_id;
10019 	u32 val;
10020 	u8 fid, igu_sb_cnt = 0;
10021 
10022 	bp->igu_base_sb = 0xff;
10023 	if (CHIP_INT_MODE_IS_BC(bp)) {
10024 		int vn = BP_VN(bp);
10025 		igu_sb_cnt = bp->igu_sb_cnt;
10026 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10027 			FP_SB_MAX_E1x;
10028 
10029 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10030 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10031 
10032 		return 0;
10033 	}
10034 
10035 	/* IGU in normal mode - read CAM */
10036 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10037 	     igu_sb_id++) {
10038 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10039 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10040 			continue;
10041 		fid = IGU_FID(val);
10042 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
10043 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10044 				continue;
10045 			if (IGU_VEC(val) == 0)
10046 				/* default status block */
10047 				bp->igu_dsb_id = igu_sb_id;
10048 			else {
10049 				if (bp->igu_base_sb == 0xff)
10050 					bp->igu_base_sb = igu_sb_id;
10051 				igu_sb_cnt++;
10052 			}
10053 		}
10054 	}
10055 
10056 #ifdef CONFIG_PCI_MSI
10057 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
10058 	 * optional that number of CAM entries will not be equal to the value
10059 	 * advertised in PCI.
10060 	 * Driver should use the minimal value of both as the actual status
10061 	 * block count
10062 	 */
10063 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10064 #endif
10065 
10066 	if (igu_sb_cnt == 0) {
10067 		BNX2X_ERR("CAM configuration error\n");
10068 		return -EINVAL;
10069 	}
10070 
10071 	return 0;
10072 }
10073 
10074 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10075 {
10076 	int cfg_size = 0, idx, port = BP_PORT(bp);
10077 
10078 	/* Aggregation of supported attributes of all external phys */
10079 	bp->port.supported[0] = 0;
10080 	bp->port.supported[1] = 0;
10081 	switch (bp->link_params.num_phys) {
10082 	case 1:
10083 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10084 		cfg_size = 1;
10085 		break;
10086 	case 2:
10087 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10088 		cfg_size = 1;
10089 		break;
10090 	case 3:
10091 		if (bp->link_params.multi_phy_config &
10092 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10093 			bp->port.supported[1] =
10094 				bp->link_params.phy[EXT_PHY1].supported;
10095 			bp->port.supported[0] =
10096 				bp->link_params.phy[EXT_PHY2].supported;
10097 		} else {
10098 			bp->port.supported[0] =
10099 				bp->link_params.phy[EXT_PHY1].supported;
10100 			bp->port.supported[1] =
10101 				bp->link_params.phy[EXT_PHY2].supported;
10102 		}
10103 		cfg_size = 2;
10104 		break;
10105 	}
10106 
10107 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
10108 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10109 			   SHMEM_RD(bp,
10110 			   dev_info.port_hw_config[port].external_phy_config),
10111 			   SHMEM_RD(bp,
10112 			   dev_info.port_hw_config[port].external_phy_config2));
10113 			return;
10114 	}
10115 
10116 	if (CHIP_IS_E3(bp))
10117 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10118 	else {
10119 		switch (switch_cfg) {
10120 		case SWITCH_CFG_1G:
10121 			bp->port.phy_addr = REG_RD(
10122 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10123 			break;
10124 		case SWITCH_CFG_10G:
10125 			bp->port.phy_addr = REG_RD(
10126 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10127 			break;
10128 		default:
10129 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10130 				  bp->port.link_config[0]);
10131 			return;
10132 		}
10133 	}
10134 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10135 	/* mask what we support according to speed_cap_mask per configuration */
10136 	for (idx = 0; idx < cfg_size; idx++) {
10137 		if (!(bp->link_params.speed_cap_mask[idx] &
10138 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10139 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10140 
10141 		if (!(bp->link_params.speed_cap_mask[idx] &
10142 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10143 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10144 
10145 		if (!(bp->link_params.speed_cap_mask[idx] &
10146 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10147 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10148 
10149 		if (!(bp->link_params.speed_cap_mask[idx] &
10150 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10151 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10152 
10153 		if (!(bp->link_params.speed_cap_mask[idx] &
10154 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10155 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10156 						     SUPPORTED_1000baseT_Full);
10157 
10158 		if (!(bp->link_params.speed_cap_mask[idx] &
10159 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10160 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10161 
10162 		if (!(bp->link_params.speed_cap_mask[idx] &
10163 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10164 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10165 
10166 	}
10167 
10168 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10169 		       bp->port.supported[1]);
10170 }
10171 
10172 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10173 {
10174 	u32 link_config, idx, cfg_size = 0;
10175 	bp->port.advertising[0] = 0;
10176 	bp->port.advertising[1] = 0;
10177 	switch (bp->link_params.num_phys) {
10178 	case 1:
10179 	case 2:
10180 		cfg_size = 1;
10181 		break;
10182 	case 3:
10183 		cfg_size = 2;
10184 		break;
10185 	}
10186 	for (idx = 0; idx < cfg_size; idx++) {
10187 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10188 		link_config = bp->port.link_config[idx];
10189 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10190 		case PORT_FEATURE_LINK_SPEED_AUTO:
10191 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10192 				bp->link_params.req_line_speed[idx] =
10193 					SPEED_AUTO_NEG;
10194 				bp->port.advertising[idx] |=
10195 					bp->port.supported[idx];
10196 				if (bp->link_params.phy[EXT_PHY1].type ==
10197 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10198 					bp->port.advertising[idx] |=
10199 					(SUPPORTED_100baseT_Half |
10200 					 SUPPORTED_100baseT_Full);
10201 			} else {
10202 				/* force 10G, no AN */
10203 				bp->link_params.req_line_speed[idx] =
10204 					SPEED_10000;
10205 				bp->port.advertising[idx] |=
10206 					(ADVERTISED_10000baseT_Full |
10207 					 ADVERTISED_FIBRE);
10208 				continue;
10209 			}
10210 			break;
10211 
10212 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
10213 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10214 				bp->link_params.req_line_speed[idx] =
10215 					SPEED_10;
10216 				bp->port.advertising[idx] |=
10217 					(ADVERTISED_10baseT_Full |
10218 					 ADVERTISED_TP);
10219 			} else {
10220 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10221 					    link_config,
10222 				    bp->link_params.speed_cap_mask[idx]);
10223 				return;
10224 			}
10225 			break;
10226 
10227 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
10228 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10229 				bp->link_params.req_line_speed[idx] =
10230 					SPEED_10;
10231 				bp->link_params.req_duplex[idx] =
10232 					DUPLEX_HALF;
10233 				bp->port.advertising[idx] |=
10234 					(ADVERTISED_10baseT_Half |
10235 					 ADVERTISED_TP);
10236 			} else {
10237 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10238 					    link_config,
10239 					  bp->link_params.speed_cap_mask[idx]);
10240 				return;
10241 			}
10242 			break;
10243 
10244 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
10245 			if (bp->port.supported[idx] &
10246 			    SUPPORTED_100baseT_Full) {
10247 				bp->link_params.req_line_speed[idx] =
10248 					SPEED_100;
10249 				bp->port.advertising[idx] |=
10250 					(ADVERTISED_100baseT_Full |
10251 					 ADVERTISED_TP);
10252 			} else {
10253 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10254 					    link_config,
10255 					  bp->link_params.speed_cap_mask[idx]);
10256 				return;
10257 			}
10258 			break;
10259 
10260 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
10261 			if (bp->port.supported[idx] &
10262 			    SUPPORTED_100baseT_Half) {
10263 				bp->link_params.req_line_speed[idx] =
10264 								SPEED_100;
10265 				bp->link_params.req_duplex[idx] =
10266 								DUPLEX_HALF;
10267 				bp->port.advertising[idx] |=
10268 					(ADVERTISED_100baseT_Half |
10269 					 ADVERTISED_TP);
10270 			} else {
10271 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10272 				    link_config,
10273 				    bp->link_params.speed_cap_mask[idx]);
10274 				return;
10275 			}
10276 			break;
10277 
10278 		case PORT_FEATURE_LINK_SPEED_1G:
10279 			if (bp->port.supported[idx] &
10280 			    SUPPORTED_1000baseT_Full) {
10281 				bp->link_params.req_line_speed[idx] =
10282 					SPEED_1000;
10283 				bp->port.advertising[idx] |=
10284 					(ADVERTISED_1000baseT_Full |
10285 					 ADVERTISED_TP);
10286 			} else {
10287 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10288 				    link_config,
10289 				    bp->link_params.speed_cap_mask[idx]);
10290 				return;
10291 			}
10292 			break;
10293 
10294 		case PORT_FEATURE_LINK_SPEED_2_5G:
10295 			if (bp->port.supported[idx] &
10296 			    SUPPORTED_2500baseX_Full) {
10297 				bp->link_params.req_line_speed[idx] =
10298 					SPEED_2500;
10299 				bp->port.advertising[idx] |=
10300 					(ADVERTISED_2500baseX_Full |
10301 						ADVERTISED_TP);
10302 			} else {
10303 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10304 				    link_config,
10305 				    bp->link_params.speed_cap_mask[idx]);
10306 				return;
10307 			}
10308 			break;
10309 
10310 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
10311 			if (bp->port.supported[idx] &
10312 			    SUPPORTED_10000baseT_Full) {
10313 				bp->link_params.req_line_speed[idx] =
10314 					SPEED_10000;
10315 				bp->port.advertising[idx] |=
10316 					(ADVERTISED_10000baseT_Full |
10317 						ADVERTISED_FIBRE);
10318 			} else {
10319 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10320 				    link_config,
10321 				    bp->link_params.speed_cap_mask[idx]);
10322 				return;
10323 			}
10324 			break;
10325 		case PORT_FEATURE_LINK_SPEED_20G:
10326 			bp->link_params.req_line_speed[idx] = SPEED_20000;
10327 
10328 			break;
10329 		default:
10330 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10331 				  link_config);
10332 				bp->link_params.req_line_speed[idx] =
10333 							SPEED_AUTO_NEG;
10334 				bp->port.advertising[idx] =
10335 						bp->port.supported[idx];
10336 			break;
10337 		}
10338 
10339 		bp->link_params.req_flow_ctrl[idx] = (link_config &
10340 					 PORT_FEATURE_FLOW_CONTROL_MASK);
10341 		if (bp->link_params.req_flow_ctrl[idx] ==
10342 		    BNX2X_FLOW_CTRL_AUTO) {
10343 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
10344 				bp->link_params.req_flow_ctrl[idx] =
10345 							BNX2X_FLOW_CTRL_NONE;
10346 			else
10347 				bnx2x_set_requested_fc(bp);
10348 		}
10349 
10350 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10351 			       bp->link_params.req_line_speed[idx],
10352 			       bp->link_params.req_duplex[idx],
10353 			       bp->link_params.req_flow_ctrl[idx],
10354 			       bp->port.advertising[idx]);
10355 	}
10356 }
10357 
10358 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10359 {
10360 	mac_hi = cpu_to_be16(mac_hi);
10361 	mac_lo = cpu_to_be32(mac_lo);
10362 	memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10363 	memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10364 }
10365 
10366 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
10367 {
10368 	int port = BP_PORT(bp);
10369 	u32 config;
10370 	u32 ext_phy_type, ext_phy_config, eee_mode;
10371 
10372 	bp->link_params.bp = bp;
10373 	bp->link_params.port = port;
10374 
10375 	bp->link_params.lane_config =
10376 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10377 
10378 	bp->link_params.speed_cap_mask[0] =
10379 		SHMEM_RD(bp,
10380 			 dev_info.port_hw_config[port].speed_capability_mask);
10381 	bp->link_params.speed_cap_mask[1] =
10382 		SHMEM_RD(bp,
10383 			 dev_info.port_hw_config[port].speed_capability_mask2);
10384 	bp->port.link_config[0] =
10385 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10386 
10387 	bp->port.link_config[1] =
10388 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10389 
10390 	bp->link_params.multi_phy_config =
10391 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10392 	/* If the device is capable of WoL, set the default state according
10393 	 * to the HW
10394 	 */
10395 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10396 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10397 		   (config & PORT_FEATURE_WOL_ENABLED));
10398 
10399 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10400 		       bp->link_params.lane_config,
10401 		       bp->link_params.speed_cap_mask[0],
10402 		       bp->port.link_config[0]);
10403 
10404 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
10405 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
10406 	bnx2x_phy_probe(&bp->link_params);
10407 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10408 
10409 	bnx2x_link_settings_requested(bp);
10410 
10411 	/*
10412 	 * If connected directly, work with the internal PHY, otherwise, work
10413 	 * with the external PHY
10414 	 */
10415 	ext_phy_config =
10416 		SHMEM_RD(bp,
10417 			 dev_info.port_hw_config[port].external_phy_config);
10418 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10419 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10420 		bp->mdio.prtad = bp->port.phy_addr;
10421 
10422 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10423 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10424 		bp->mdio.prtad =
10425 			XGXS_EXT_PHY_ADDR(ext_phy_config);
10426 
10427 	/* Configure link feature according to nvram value */
10428 	eee_mode = (((SHMEM_RD(bp, dev_info.
10429 		      port_feature_config[port].eee_power_mode)) &
10430 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10431 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10432 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10433 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10434 					   EEE_MODE_ENABLE_LPI |
10435 					   EEE_MODE_OUTPUT_TIME;
10436 	} else {
10437 		bp->link_params.eee_mode = 0;
10438 	}
10439 }
10440 
10441 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10442 {
10443 	u32 no_flags = NO_ISCSI_FLAG;
10444 	int port = BP_PORT(bp);
10445 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10446 				drv_lic_key[port].max_iscsi_conn);
10447 
10448 	if (!CNIC_SUPPORT(bp)) {
10449 		bp->flags |= no_flags;
10450 		return;
10451 	}
10452 
10453 	/* Get the number of maximum allowed iSCSI connections */
10454 	bp->cnic_eth_dev.max_iscsi_conn =
10455 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10456 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10457 
10458 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10459 		       bp->cnic_eth_dev.max_iscsi_conn);
10460 
10461 	/*
10462 	 * If maximum allowed number of connections is zero -
10463 	 * disable the feature.
10464 	 */
10465 	if (!bp->cnic_eth_dev.max_iscsi_conn)
10466 		bp->flags |= no_flags;
10467 
10468 }
10469 
10470 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10471 {
10472 	/* Port info */
10473 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10474 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10475 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10476 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10477 
10478 	/* Node info */
10479 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10480 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10481 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10482 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10483 }
10484 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
10485 {
10486 	int port = BP_PORT(bp);
10487 	int func = BP_ABS_FUNC(bp);
10488 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10489 				drv_lic_key[port].max_fcoe_conn);
10490 
10491 	if (!CNIC_SUPPORT(bp)) {
10492 		bp->flags |= NO_FCOE_FLAG;
10493 		return;
10494 	}
10495 
10496 	/* Get the number of maximum allowed FCoE connections */
10497 	bp->cnic_eth_dev.max_fcoe_conn =
10498 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10499 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10500 
10501 	/* Read the WWN: */
10502 	if (!IS_MF(bp)) {
10503 		/* Port info */
10504 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10505 			SHMEM_RD(bp,
10506 				dev_info.port_hw_config[port].
10507 				 fcoe_wwn_port_name_upper);
10508 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10509 			SHMEM_RD(bp,
10510 				dev_info.port_hw_config[port].
10511 				 fcoe_wwn_port_name_lower);
10512 
10513 		/* Node info */
10514 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10515 			SHMEM_RD(bp,
10516 				dev_info.port_hw_config[port].
10517 				 fcoe_wwn_node_name_upper);
10518 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10519 			SHMEM_RD(bp,
10520 				dev_info.port_hw_config[port].
10521 				 fcoe_wwn_node_name_lower);
10522 	} else if (!IS_MF_SD(bp)) {
10523 		/*
10524 		 * Read the WWN info only if the FCoE feature is enabled for
10525 		 * this function.
10526 		 */
10527 		if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10528 			bnx2x_get_ext_wwn_info(bp, func);
10529 
10530 	} else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
10531 		bnx2x_get_ext_wwn_info(bp, func);
10532 	}
10533 
10534 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10535 
10536 	/*
10537 	 * If maximum allowed number of connections is zero -
10538 	 * disable the feature.
10539 	 */
10540 	if (!bp->cnic_eth_dev.max_fcoe_conn)
10541 		bp->flags |= NO_FCOE_FLAG;
10542 }
10543 
10544 static void bnx2x_get_cnic_info(struct bnx2x *bp)
10545 {
10546 	/*
10547 	 * iSCSI may be dynamically disabled but reading
10548 	 * info here we will decrease memory usage by driver
10549 	 * if the feature is disabled for good
10550 	 */
10551 	bnx2x_get_iscsi_info(bp);
10552 	bnx2x_get_fcoe_info(bp);
10553 }
10554 
10555 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10556 {
10557 	u32 val, val2;
10558 	int func = BP_ABS_FUNC(bp);
10559 	int port = BP_PORT(bp);
10560 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10561 	u8 *fip_mac = bp->fip_mac;
10562 
10563 	if (IS_MF(bp)) {
10564 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10565 		 * FCoE MAC then the appropriate feature should be disabled.
10566 		 * In non SD mode features configuration comes from struct
10567 		 * func_ext_config.
10568 		 */
10569 		if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10570 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10571 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10572 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10573 						 iscsi_mac_addr_upper);
10574 				val = MF_CFG_RD(bp, func_ext_config[func].
10575 						iscsi_mac_addr_lower);
10576 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
10577 				BNX2X_DEV_INFO
10578 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10579 			} else {
10580 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10581 			}
10582 
10583 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10584 				val2 = MF_CFG_RD(bp, func_ext_config[func].
10585 						 fcoe_mac_addr_upper);
10586 				val = MF_CFG_RD(bp, func_ext_config[func].
10587 						fcoe_mac_addr_lower);
10588 				bnx2x_set_mac_buf(fip_mac, val, val2);
10589 				BNX2X_DEV_INFO
10590 					("Read FCoE L2 MAC: %pM\n", fip_mac);
10591 			} else {
10592 				bp->flags |= NO_FCOE_FLAG;
10593 			}
10594 
10595 			bp->mf_ext_config = cfg;
10596 
10597 		} else { /* SD MODE */
10598 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10599 				/* use primary mac as iscsi mac */
10600 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10601 
10602 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
10603 				BNX2X_DEV_INFO
10604 					("Read iSCSI MAC: %pM\n", iscsi_mac);
10605 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10606 				/* use primary mac as fip mac */
10607 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10608 				BNX2X_DEV_INFO("SD FCoE MODE\n");
10609 				BNX2X_DEV_INFO
10610 					("Read FIP MAC: %pM\n", fip_mac);
10611 			}
10612 		}
10613 
10614 		if (IS_MF_STORAGE_SD(bp))
10615 			/* Zero primary MAC configuration */
10616 			memset(bp->dev->dev_addr, 0, ETH_ALEN);
10617 
10618 		if (IS_MF_FCOE_AFEX(bp))
10619 			/* use FIP MAC as primary MAC */
10620 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10621 
10622 	} else {
10623 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10624 				iscsi_mac_upper);
10625 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10626 			       iscsi_mac_lower);
10627 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
10628 
10629 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10630 				fcoe_fip_mac_upper);
10631 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10632 			       fcoe_fip_mac_lower);
10633 		bnx2x_set_mac_buf(fip_mac, val, val2);
10634 	}
10635 
10636 	/* Disable iSCSI OOO if MAC configuration is invalid. */
10637 	if (!is_valid_ether_addr(iscsi_mac)) {
10638 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10639 		memset(iscsi_mac, 0, ETH_ALEN);
10640 	}
10641 
10642 	/* Disable FCoE if MAC configuration is invalid. */
10643 	if (!is_valid_ether_addr(fip_mac)) {
10644 		bp->flags |= NO_FCOE_FLAG;
10645 		memset(bp->fip_mac, 0, ETH_ALEN);
10646 	}
10647 }
10648 
10649 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10650 {
10651 	u32 val, val2;
10652 	int func = BP_ABS_FUNC(bp);
10653 	int port = BP_PORT(bp);
10654 
10655 	/* Zero primary MAC configuration */
10656 	memset(bp->dev->dev_addr, 0, ETH_ALEN);
10657 
10658 	if (BP_NOMCP(bp)) {
10659 		BNX2X_ERROR("warning: random MAC workaround active\n");
10660 		eth_hw_addr_random(bp->dev);
10661 	} else if (IS_MF(bp)) {
10662 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10663 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10664 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10665 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10666 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10667 
10668 		if (CNIC_SUPPORT(bp))
10669 			bnx2x_get_cnic_mac_hwinfo(bp);
10670 	} else {
10671 		/* in SF read MACs from port configuration */
10672 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10673 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10674 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10675 
10676 		if (CNIC_SUPPORT(bp))
10677 			bnx2x_get_cnic_mac_hwinfo(bp);
10678 	}
10679 
10680 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10681 	memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10682 
10683 	if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10684 		dev_err(&bp->pdev->dev,
10685 			"bad Ethernet MAC address configuration: %pM\n"
10686 			"change it manually before bringing up the appropriate network interface\n",
10687 			bp->dev->dev_addr);
10688 }
10689 
10690 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
10691 {
10692 	int tmp;
10693 	u32 cfg;
10694 
10695 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
10696 		/* Take function: tmp = func */
10697 		tmp = BP_ABS_FUNC(bp);
10698 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
10699 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
10700 	} else {
10701 		/* Take port: tmp = port */
10702 		tmp = BP_PORT(bp);
10703 		cfg = SHMEM_RD(bp,
10704 			       dev_info.port_hw_config[tmp].generic_features);
10705 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
10706 	}
10707 	return cfg;
10708 }
10709 
10710 static int bnx2x_get_hwinfo(struct bnx2x *bp)
10711 {
10712 	int /*abs*/func = BP_ABS_FUNC(bp);
10713 	int vn;
10714 	u32 val = 0;
10715 	int rc = 0;
10716 
10717 	bnx2x_get_common_hwinfo(bp);
10718 
10719 	/*
10720 	 * initialize IGU parameters
10721 	 */
10722 	if (CHIP_IS_E1x(bp)) {
10723 		bp->common.int_block = INT_BLOCK_HC;
10724 
10725 		bp->igu_dsb_id = DEF_SB_IGU_ID;
10726 		bp->igu_base_sb = 0;
10727 	} else {
10728 		bp->common.int_block = INT_BLOCK_IGU;
10729 
10730 		/* do not allow device reset during IGU info preocessing */
10731 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10732 
10733 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10734 
10735 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10736 			int tout = 5000;
10737 
10738 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
10739 
10740 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10741 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10742 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10743 
10744 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10745 				tout--;
10746 				usleep_range(1000, 1000);
10747 			}
10748 
10749 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10750 				dev_err(&bp->pdev->dev,
10751 					"FORCING Normal Mode failed!!!\n");
10752 				bnx2x_release_hw_lock(bp,
10753 						      HW_LOCK_RESOURCE_RESET);
10754 				return -EPERM;
10755 			}
10756 		}
10757 
10758 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10759 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10760 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10761 		} else
10762 			BNX2X_DEV_INFO("IGU Normal Mode\n");
10763 
10764 		rc = bnx2x_get_igu_cam_info(bp);
10765 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10766 		if (rc)
10767 			return rc;
10768 	}
10769 
10770 	/*
10771 	 * set base FW non-default (fast path) status block id, this value is
10772 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
10773 	 * determine the id used by the FW.
10774 	 */
10775 	if (CHIP_IS_E1x(bp))
10776 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10777 	else /*
10778 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10779 	      * the same queue are indicated on the same IGU SB). So we prefer
10780 	      * FW and IGU SBs to be the same value.
10781 	      */
10782 		bp->base_fw_ndsb = bp->igu_base_sb;
10783 
10784 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10785 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10786 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
10787 
10788 	/*
10789 	 * Initialize MF configuration
10790 	 */
10791 
10792 	bp->mf_ov = 0;
10793 	bp->mf_mode = 0;
10794 	vn = BP_VN(bp);
10795 
10796 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10797 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10798 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
10799 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10800 
10801 		if (SHMEM2_HAS(bp, mf_cfg_addr))
10802 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10803 		else
10804 			bp->common.mf_cfg_base = bp->common.shmem_base +
10805 				offsetof(struct shmem_region, func_mb) +
10806 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10807 		/*
10808 		 * get mf configuration:
10809 		 * 1. existence of MF configuration
10810 		 * 2. MAC address must be legal (check only upper bytes)
10811 		 *    for  Switch-Independent mode;
10812 		 *    OVLAN must be legal for Switch-Dependent mode
10813 		 * 3. SF_MODE configures specific MF mode
10814 		 */
10815 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10816 			/* get mf configuration */
10817 			val = SHMEM_RD(bp,
10818 				       dev_info.shared_feature_config.config);
10819 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10820 
10821 			switch (val) {
10822 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10823 				val = MF_CFG_RD(bp, func_mf_config[func].
10824 						mac_upper);
10825 				/* check for legal mac (upper bytes)*/
10826 				if (val != 0xffff) {
10827 					bp->mf_mode = MULTI_FUNCTION_SI;
10828 					bp->mf_config[vn] = MF_CFG_RD(bp,
10829 						   func_mf_config[func].config);
10830 				} else
10831 					BNX2X_DEV_INFO("illegal MAC address for SI\n");
10832 				break;
10833 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10834 				if ((!CHIP_IS_E1x(bp)) &&
10835 				    (MF_CFG_RD(bp, func_mf_config[func].
10836 					       mac_upper) != 0xffff) &&
10837 				    (SHMEM2_HAS(bp,
10838 						afex_driver_support))) {
10839 					bp->mf_mode = MULTI_FUNCTION_AFEX;
10840 					bp->mf_config[vn] = MF_CFG_RD(bp,
10841 						func_mf_config[func].config);
10842 				} else {
10843 					BNX2X_DEV_INFO("can not configure afex mode\n");
10844 				}
10845 				break;
10846 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10847 				/* get OV configuration */
10848 				val = MF_CFG_RD(bp,
10849 					func_mf_config[FUNC_0].e1hov_tag);
10850 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10851 
10852 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10853 					bp->mf_mode = MULTI_FUNCTION_SD;
10854 					bp->mf_config[vn] = MF_CFG_RD(bp,
10855 						func_mf_config[func].config);
10856 				} else
10857 					BNX2X_DEV_INFO("illegal OV for SD\n");
10858 				break;
10859 			default:
10860 				/* Unknown configuration: reset mf_config */
10861 				bp->mf_config[vn] = 0;
10862 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10863 			}
10864 		}
10865 
10866 		BNX2X_DEV_INFO("%s function mode\n",
10867 			       IS_MF(bp) ? "multi" : "single");
10868 
10869 		switch (bp->mf_mode) {
10870 		case MULTI_FUNCTION_SD:
10871 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10872 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
10873 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10874 				bp->mf_ov = val;
10875 				bp->path_has_ovlan = true;
10876 
10877 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10878 					       func, bp->mf_ov, bp->mf_ov);
10879 			} else {
10880 				dev_err(&bp->pdev->dev,
10881 					"No valid MF OV for func %d, aborting\n",
10882 					func);
10883 				return -EPERM;
10884 			}
10885 			break;
10886 		case MULTI_FUNCTION_AFEX:
10887 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10888 			break;
10889 		case MULTI_FUNCTION_SI:
10890 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10891 				       func);
10892 			break;
10893 		default:
10894 			if (vn) {
10895 				dev_err(&bp->pdev->dev,
10896 					"VN %d is in a single function mode, aborting\n",
10897 					vn);
10898 				return -EPERM;
10899 			}
10900 			break;
10901 		}
10902 
10903 		/* check if other port on the path needs ovlan:
10904 		 * Since MF configuration is shared between ports
10905 		 * Possible mixed modes are only
10906 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10907 		 */
10908 		if (CHIP_MODE_IS_4_PORT(bp) &&
10909 		    !bp->path_has_ovlan &&
10910 		    !IS_MF(bp) &&
10911 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10912 			u8 other_port = !BP_PORT(bp);
10913 			u8 other_func = BP_PATH(bp) + 2*other_port;
10914 			val = MF_CFG_RD(bp,
10915 					func_mf_config[other_func].e1hov_tag);
10916 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10917 				bp->path_has_ovlan = true;
10918 		}
10919 	}
10920 
10921 	/* adjust igu_sb_cnt to MF for E1x */
10922 	if (CHIP_IS_E1x(bp) && IS_MF(bp))
10923 		bp->igu_sb_cnt /= E1HVN_MAX;
10924 
10925 	/* port info */
10926 	bnx2x_get_port_hwinfo(bp);
10927 
10928 	/* Get MAC addresses */
10929 	bnx2x_get_mac_hwinfo(bp);
10930 
10931 	bnx2x_get_cnic_info(bp);
10932 
10933 	return rc;
10934 }
10935 
10936 static void bnx2x_read_fwinfo(struct bnx2x *bp)
10937 {
10938 	int cnt, i, block_end, rodi;
10939 	char vpd_start[BNX2X_VPD_LEN+1];
10940 	char str_id_reg[VENDOR_ID_LEN+1];
10941 	char str_id_cap[VENDOR_ID_LEN+1];
10942 	char *vpd_data;
10943 	char *vpd_extended_data = NULL;
10944 	u8 len;
10945 
10946 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10947 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10948 
10949 	if (cnt < BNX2X_VPD_LEN)
10950 		goto out_not_found;
10951 
10952 	/* VPD RO tag should be first tag after identifier string, hence
10953 	 * we should be able to find it in first BNX2X_VPD_LEN chars
10954 	 */
10955 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10956 			     PCI_VPD_LRDT_RO_DATA);
10957 	if (i < 0)
10958 		goto out_not_found;
10959 
10960 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10961 		    pci_vpd_lrdt_size(&vpd_start[i]);
10962 
10963 	i += PCI_VPD_LRDT_TAG_SIZE;
10964 
10965 	if (block_end > BNX2X_VPD_LEN) {
10966 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10967 		if (vpd_extended_data  == NULL)
10968 			goto out_not_found;
10969 
10970 		/* read rest of vpd image into vpd_extended_data */
10971 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10972 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10973 				   block_end - BNX2X_VPD_LEN,
10974 				   vpd_extended_data + BNX2X_VPD_LEN);
10975 		if (cnt < (block_end - BNX2X_VPD_LEN))
10976 			goto out_not_found;
10977 		vpd_data = vpd_extended_data;
10978 	} else
10979 		vpd_data = vpd_start;
10980 
10981 	/* now vpd_data holds full vpd content in both cases */
10982 
10983 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10984 				   PCI_VPD_RO_KEYWORD_MFR_ID);
10985 	if (rodi < 0)
10986 		goto out_not_found;
10987 
10988 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
10989 
10990 	if (len != VENDOR_ID_LEN)
10991 		goto out_not_found;
10992 
10993 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10994 
10995 	/* vendor specific info */
10996 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10997 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10998 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10999 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11000 
11001 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11002 						PCI_VPD_RO_KEYWORD_VENDOR0);
11003 		if (rodi >= 0) {
11004 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
11005 
11006 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11007 
11008 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11009 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
11010 				bp->fw_ver[len] = ' ';
11011 			}
11012 		}
11013 		kfree(vpd_extended_data);
11014 		return;
11015 	}
11016 out_not_found:
11017 	kfree(vpd_extended_data);
11018 	return;
11019 }
11020 
11021 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11022 {
11023 	u32 flags = 0;
11024 
11025 	if (CHIP_REV_IS_FPGA(bp))
11026 		SET_FLAGS(flags, MODE_FPGA);
11027 	else if (CHIP_REV_IS_EMUL(bp))
11028 		SET_FLAGS(flags, MODE_EMUL);
11029 	else
11030 		SET_FLAGS(flags, MODE_ASIC);
11031 
11032 	if (CHIP_MODE_IS_4_PORT(bp))
11033 		SET_FLAGS(flags, MODE_PORT4);
11034 	else
11035 		SET_FLAGS(flags, MODE_PORT2);
11036 
11037 	if (CHIP_IS_E2(bp))
11038 		SET_FLAGS(flags, MODE_E2);
11039 	else if (CHIP_IS_E3(bp)) {
11040 		SET_FLAGS(flags, MODE_E3);
11041 		if (CHIP_REV(bp) == CHIP_REV_Ax)
11042 			SET_FLAGS(flags, MODE_E3_A0);
11043 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11044 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11045 	}
11046 
11047 	if (IS_MF(bp)) {
11048 		SET_FLAGS(flags, MODE_MF);
11049 		switch (bp->mf_mode) {
11050 		case MULTI_FUNCTION_SD:
11051 			SET_FLAGS(flags, MODE_MF_SD);
11052 			break;
11053 		case MULTI_FUNCTION_SI:
11054 			SET_FLAGS(flags, MODE_MF_SI);
11055 			break;
11056 		case MULTI_FUNCTION_AFEX:
11057 			SET_FLAGS(flags, MODE_MF_AFEX);
11058 			break;
11059 		}
11060 	} else
11061 		SET_FLAGS(flags, MODE_SF);
11062 
11063 #if defined(__LITTLE_ENDIAN)
11064 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11065 #else /*(__BIG_ENDIAN)*/
11066 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
11067 #endif
11068 	INIT_MODE_FLAGS(bp) = flags;
11069 }
11070 
11071 static int bnx2x_init_bp(struct bnx2x *bp)
11072 {
11073 	int func;
11074 	int rc;
11075 
11076 	mutex_init(&bp->port.phy_mutex);
11077 	mutex_init(&bp->fw_mb_mutex);
11078 	spin_lock_init(&bp->stats_lock);
11079 
11080 
11081 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11082 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11083 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11084 	rc = bnx2x_get_hwinfo(bp);
11085 	if (rc)
11086 		return rc;
11087 
11088 	bnx2x_set_modes_bitmap(bp);
11089 
11090 	rc = bnx2x_alloc_mem_bp(bp);
11091 	if (rc)
11092 		return rc;
11093 
11094 	bnx2x_read_fwinfo(bp);
11095 
11096 	func = BP_FUNC(bp);
11097 
11098 	/* need to reset chip if undi was active */
11099 	if (!BP_NOMCP(bp)) {
11100 		/* init fw_seq */
11101 		bp->fw_seq =
11102 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11103 							DRV_MSG_SEQ_NUMBER_MASK;
11104 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11105 
11106 		bnx2x_prev_unload(bp);
11107 	}
11108 
11109 
11110 	if (CHIP_REV_IS_FPGA(bp))
11111 		dev_err(&bp->pdev->dev, "FPGA detected\n");
11112 
11113 	if (BP_NOMCP(bp) && (func == 0))
11114 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11115 
11116 	bp->disable_tpa = disable_tpa;
11117 	bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11118 
11119 	/* Set TPA flags */
11120 	if (bp->disable_tpa) {
11121 		bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11122 		bp->dev->features &= ~NETIF_F_LRO;
11123 	} else {
11124 		bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11125 		bp->dev->features |= NETIF_F_LRO;
11126 	}
11127 
11128 	if (CHIP_IS_E1(bp))
11129 		bp->dropless_fc = 0;
11130 	else
11131 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11132 
11133 	bp->mrrs = mrrs;
11134 
11135 	bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11136 
11137 	/* make sure that the numbers are in the right granularity */
11138 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11139 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11140 
11141 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11142 
11143 	init_timer(&bp->timer);
11144 	bp->timer.expires = jiffies + bp->current_interval;
11145 	bp->timer.data = (unsigned long) bp;
11146 	bp->timer.function = bnx2x_timer;
11147 
11148 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11149 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11150 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11151 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11152 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11153 		bnx2x_dcbx_init_params(bp);
11154 	} else {
11155 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11156 	}
11157 
11158 	if (CHIP_IS_E1x(bp))
11159 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11160 	else
11161 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
11162 
11163 	/* multiple tx priority */
11164 	if (CHIP_IS_E1x(bp))
11165 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11166 	if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11167 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11168 	if (CHIP_IS_E3B0(bp))
11169 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11170 
11171 	/* We need at least one default status block for slow-path events,
11172 	 * second status block for the L2 queue, and a third status block for
11173 	 * CNIC if supproted.
11174 	 */
11175 	if (CNIC_SUPPORT(bp))
11176 		bp->min_msix_vec_cnt = 3;
11177 	else
11178 		bp->min_msix_vec_cnt = 2;
11179 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11180 
11181 	return rc;
11182 }
11183 
11184 
11185 /****************************************************************************
11186 * General service functions
11187 ****************************************************************************/
11188 
11189 /*
11190  * net_device service functions
11191  */
11192 
11193 /* called with rtnl_lock */
11194 static int bnx2x_open(struct net_device *dev)
11195 {
11196 	struct bnx2x *bp = netdev_priv(dev);
11197 	bool global = false;
11198 	int other_engine = BP_PATH(bp) ? 0 : 1;
11199 	bool other_load_status, load_status;
11200 
11201 	bp->stats_init = true;
11202 
11203 	netif_carrier_off(dev);
11204 
11205 	bnx2x_set_power_state(bp, PCI_D0);
11206 
11207 	other_load_status = bnx2x_get_load_status(bp, other_engine);
11208 	load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11209 
11210 	/*
11211 	 * If parity had happen during the unload, then attentions
11212 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11213 	 * want the first function loaded on the current engine to
11214 	 * complete the recovery.
11215 	 */
11216 	if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11217 	    bnx2x_chk_parity_attn(bp, &global, true))
11218 		do {
11219 			/*
11220 			 * If there are attentions and they are in a global
11221 			 * blocks, set the GLOBAL_RESET bit regardless whether
11222 			 * it will be this function that will complete the
11223 			 * recovery or not.
11224 			 */
11225 			if (global)
11226 				bnx2x_set_reset_global(bp);
11227 
11228 			/*
11229 			 * Only the first function on the current engine should
11230 			 * try to recover in open. In case of attentions in
11231 			 * global blocks only the first in the chip should try
11232 			 * to recover.
11233 			 */
11234 			if ((!load_status &&
11235 			     (!global || !other_load_status)) &&
11236 			    bnx2x_trylock_leader_lock(bp) &&
11237 			    !bnx2x_leader_reset(bp)) {
11238 				netdev_info(bp->dev, "Recovered in open\n");
11239 				break;
11240 			}
11241 
11242 			/* recovery has failed... */
11243 			bnx2x_set_power_state(bp, PCI_D3hot);
11244 			bp->recovery_state = BNX2X_RECOVERY_FAILED;
11245 
11246 			BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11247 				  "If you still see this message after a few retries then power cycle is required.\n");
11248 
11249 			return -EAGAIN;
11250 		} while (0);
11251 
11252 	bp->recovery_state = BNX2X_RECOVERY_DONE;
11253 	return bnx2x_nic_load(bp, LOAD_OPEN);
11254 }
11255 
11256 /* called with rtnl_lock */
11257 static int bnx2x_close(struct net_device *dev)
11258 {
11259 	struct bnx2x *bp = netdev_priv(dev);
11260 
11261 	/* Unload the driver, release IRQs */
11262 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11263 
11264 	/* Power off */
11265 	bnx2x_set_power_state(bp, PCI_D3hot);
11266 
11267 	return 0;
11268 }
11269 
11270 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11271 				      struct bnx2x_mcast_ramrod_params *p)
11272 {
11273 	int mc_count = netdev_mc_count(bp->dev);
11274 	struct bnx2x_mcast_list_elem *mc_mac =
11275 		kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11276 	struct netdev_hw_addr *ha;
11277 
11278 	if (!mc_mac)
11279 		return -ENOMEM;
11280 
11281 	INIT_LIST_HEAD(&p->mcast_list);
11282 
11283 	netdev_for_each_mc_addr(ha, bp->dev) {
11284 		mc_mac->mac = bnx2x_mc_addr(ha);
11285 		list_add_tail(&mc_mac->link, &p->mcast_list);
11286 		mc_mac++;
11287 	}
11288 
11289 	p->mcast_list_len = mc_count;
11290 
11291 	return 0;
11292 }
11293 
11294 static void bnx2x_free_mcast_macs_list(
11295 	struct bnx2x_mcast_ramrod_params *p)
11296 {
11297 	struct bnx2x_mcast_list_elem *mc_mac =
11298 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11299 				 link);
11300 
11301 	WARN_ON(!mc_mac);
11302 	kfree(mc_mac);
11303 }
11304 
11305 /**
11306  * bnx2x_set_uc_list - configure a new unicast MACs list.
11307  *
11308  * @bp: driver handle
11309  *
11310  * We will use zero (0) as a MAC type for these MACs.
11311  */
11312 static int bnx2x_set_uc_list(struct bnx2x *bp)
11313 {
11314 	int rc;
11315 	struct net_device *dev = bp->dev;
11316 	struct netdev_hw_addr *ha;
11317 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11318 	unsigned long ramrod_flags = 0;
11319 
11320 	/* First schedule a cleanup up of old configuration */
11321 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11322 	if (rc < 0) {
11323 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11324 		return rc;
11325 	}
11326 
11327 	netdev_for_each_uc_addr(ha, dev) {
11328 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11329 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
11330 		if (rc == -EEXIST) {
11331 			DP(BNX2X_MSG_SP,
11332 			   "Failed to schedule ADD operations: %d\n", rc);
11333 			/* do not treat adding same MAC as error */
11334 			rc = 0;
11335 
11336 		} else if (rc < 0) {
11337 
11338 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11339 				  rc);
11340 			return rc;
11341 		}
11342 	}
11343 
11344 	/* Execute the pending commands */
11345 	__set_bit(RAMROD_CONT, &ramrod_flags);
11346 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11347 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
11348 }
11349 
11350 static int bnx2x_set_mc_list(struct bnx2x *bp)
11351 {
11352 	struct net_device *dev = bp->dev;
11353 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
11354 	int rc = 0;
11355 
11356 	rparam.mcast_obj = &bp->mcast_obj;
11357 
11358 	/* first, clear all configured multicast MACs */
11359 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11360 	if (rc < 0) {
11361 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11362 		return rc;
11363 	}
11364 
11365 	/* then, configure a new MACs list */
11366 	if (netdev_mc_count(dev)) {
11367 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11368 		if (rc) {
11369 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11370 				  rc);
11371 			return rc;
11372 		}
11373 
11374 		/* Now add the new MACs */
11375 		rc = bnx2x_config_mcast(bp, &rparam,
11376 					BNX2X_MCAST_CMD_ADD);
11377 		if (rc < 0)
11378 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11379 				  rc);
11380 
11381 		bnx2x_free_mcast_macs_list(&rparam);
11382 	}
11383 
11384 	return rc;
11385 }
11386 
11387 
11388 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11389 void bnx2x_set_rx_mode(struct net_device *dev)
11390 {
11391 	struct bnx2x *bp = netdev_priv(dev);
11392 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11393 
11394 	if (bp->state != BNX2X_STATE_OPEN) {
11395 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11396 		return;
11397 	}
11398 
11399 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11400 
11401 	if (dev->flags & IFF_PROMISC)
11402 		rx_mode = BNX2X_RX_MODE_PROMISC;
11403 	else if ((dev->flags & IFF_ALLMULTI) ||
11404 		 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11405 		  CHIP_IS_E1(bp)))
11406 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
11407 	else {
11408 		/* some multicasts */
11409 		if (bnx2x_set_mc_list(bp) < 0)
11410 			rx_mode = BNX2X_RX_MODE_ALLMULTI;
11411 
11412 		if (bnx2x_set_uc_list(bp) < 0)
11413 			rx_mode = BNX2X_RX_MODE_PROMISC;
11414 	}
11415 
11416 	bp->rx_mode = rx_mode;
11417 	/* handle ISCSI SD mode */
11418 	if (IS_MF_ISCSI_SD(bp))
11419 		bp->rx_mode = BNX2X_RX_MODE_NONE;
11420 
11421 	/* Schedule the rx_mode command */
11422 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11423 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11424 		return;
11425 	}
11426 
11427 	bnx2x_set_storm_rx_mode(bp);
11428 }
11429 
11430 /* called with rtnl_lock */
11431 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11432 			   int devad, u16 addr)
11433 {
11434 	struct bnx2x *bp = netdev_priv(netdev);
11435 	u16 value;
11436 	int rc;
11437 
11438 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11439 	   prtad, devad, addr);
11440 
11441 	/* The HW expects different devad if CL22 is used */
11442 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11443 
11444 	bnx2x_acquire_phy_lock(bp);
11445 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11446 	bnx2x_release_phy_lock(bp);
11447 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11448 
11449 	if (!rc)
11450 		rc = value;
11451 	return rc;
11452 }
11453 
11454 /* called with rtnl_lock */
11455 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11456 			    u16 addr, u16 value)
11457 {
11458 	struct bnx2x *bp = netdev_priv(netdev);
11459 	int rc;
11460 
11461 	DP(NETIF_MSG_LINK,
11462 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11463 	   prtad, devad, addr, value);
11464 
11465 	/* The HW expects different devad if CL22 is used */
11466 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11467 
11468 	bnx2x_acquire_phy_lock(bp);
11469 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11470 	bnx2x_release_phy_lock(bp);
11471 	return rc;
11472 }
11473 
11474 /* called with rtnl_lock */
11475 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11476 {
11477 	struct bnx2x *bp = netdev_priv(dev);
11478 	struct mii_ioctl_data *mdio = if_mii(ifr);
11479 
11480 	DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11481 	   mdio->phy_id, mdio->reg_num, mdio->val_in);
11482 
11483 	if (!netif_running(dev))
11484 		return -EAGAIN;
11485 
11486 	return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11487 }
11488 
11489 #ifdef CONFIG_NET_POLL_CONTROLLER
11490 static void poll_bnx2x(struct net_device *dev)
11491 {
11492 	struct bnx2x *bp = netdev_priv(dev);
11493 	int i;
11494 
11495 	for_each_eth_queue(bp, i) {
11496 		struct bnx2x_fastpath *fp = &bp->fp[i];
11497 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11498 	}
11499 }
11500 #endif
11501 
11502 static int bnx2x_validate_addr(struct net_device *dev)
11503 {
11504 	struct bnx2x *bp = netdev_priv(dev);
11505 
11506 	if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11507 		BNX2X_ERR("Non-valid Ethernet address\n");
11508 		return -EADDRNOTAVAIL;
11509 	}
11510 	return 0;
11511 }
11512 
11513 static const struct net_device_ops bnx2x_netdev_ops = {
11514 	.ndo_open		= bnx2x_open,
11515 	.ndo_stop		= bnx2x_close,
11516 	.ndo_start_xmit		= bnx2x_start_xmit,
11517 	.ndo_select_queue	= bnx2x_select_queue,
11518 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
11519 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
11520 	.ndo_validate_addr	= bnx2x_validate_addr,
11521 	.ndo_do_ioctl		= bnx2x_ioctl,
11522 	.ndo_change_mtu		= bnx2x_change_mtu,
11523 	.ndo_fix_features	= bnx2x_fix_features,
11524 	.ndo_set_features	= bnx2x_set_features,
11525 	.ndo_tx_timeout		= bnx2x_tx_timeout,
11526 #ifdef CONFIG_NET_POLL_CONTROLLER
11527 	.ndo_poll_controller	= poll_bnx2x,
11528 #endif
11529 	.ndo_setup_tc		= bnx2x_setup_tc,
11530 
11531 #ifdef NETDEV_FCOE_WWNN
11532 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
11533 #endif
11534 };
11535 
11536 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11537 {
11538 	struct device *dev = &bp->pdev->dev;
11539 
11540 	if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11541 		bp->flags |= USING_DAC_FLAG;
11542 		if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11543 			dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11544 			return -EIO;
11545 		}
11546 	} else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11547 		dev_err(dev, "System does not support DMA, aborting\n");
11548 		return -EIO;
11549 	}
11550 
11551 	return 0;
11552 }
11553 
11554 static int bnx2x_init_dev(struct pci_dev *pdev, struct net_device *dev,
11555 			  unsigned long board_type)
11556 {
11557 	struct bnx2x *bp;
11558 	int rc;
11559 	u32 pci_cfg_dword;
11560 	bool chip_is_e1x = (board_type == BCM57710 ||
11561 			    board_type == BCM57711 ||
11562 			    board_type == BCM57711E);
11563 
11564 	SET_NETDEV_DEV(dev, &pdev->dev);
11565 	bp = netdev_priv(dev);
11566 
11567 	bp->dev = dev;
11568 	bp->pdev = pdev;
11569 	bp->flags = 0;
11570 
11571 	rc = pci_enable_device(pdev);
11572 	if (rc) {
11573 		dev_err(&bp->pdev->dev,
11574 			"Cannot enable PCI device, aborting\n");
11575 		goto err_out;
11576 	}
11577 
11578 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11579 		dev_err(&bp->pdev->dev,
11580 			"Cannot find PCI device base address, aborting\n");
11581 		rc = -ENODEV;
11582 		goto err_out_disable;
11583 	}
11584 
11585 	if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11586 		dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11587 		       " base address, aborting\n");
11588 		rc = -ENODEV;
11589 		goto err_out_disable;
11590 	}
11591 
11592 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
11593 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
11594 	    PCICFG_REVESION_ID_ERROR_VAL) {
11595 		pr_err("PCI device error, probably due to fan failure, aborting\n");
11596 		rc = -ENODEV;
11597 		goto err_out_disable;
11598 	}
11599 
11600 	if (atomic_read(&pdev->enable_cnt) == 1) {
11601 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11602 		if (rc) {
11603 			dev_err(&bp->pdev->dev,
11604 				"Cannot obtain PCI resources, aborting\n");
11605 			goto err_out_disable;
11606 		}
11607 
11608 		pci_set_master(pdev);
11609 		pci_save_state(pdev);
11610 	}
11611 
11612 	bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11613 	if (bp->pm_cap == 0) {
11614 		dev_err(&bp->pdev->dev,
11615 			"Cannot find power management capability, aborting\n");
11616 		rc = -EIO;
11617 		goto err_out_release;
11618 	}
11619 
11620 	if (!pci_is_pcie(pdev)) {
11621 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11622 		rc = -EIO;
11623 		goto err_out_release;
11624 	}
11625 
11626 	rc = bnx2x_set_coherency_mask(bp);
11627 	if (rc)
11628 		goto err_out_release;
11629 
11630 	dev->mem_start = pci_resource_start(pdev, 0);
11631 	dev->base_addr = dev->mem_start;
11632 	dev->mem_end = pci_resource_end(pdev, 0);
11633 
11634 	dev->irq = pdev->irq;
11635 
11636 	bp->regview = pci_ioremap_bar(pdev, 0);
11637 	if (!bp->regview) {
11638 		dev_err(&bp->pdev->dev,
11639 			"Cannot map register space, aborting\n");
11640 		rc = -ENOMEM;
11641 		goto err_out_release;
11642 	}
11643 
11644 	/* In E1/E1H use pci device function given by kernel.
11645 	 * In E2/E3 read physical function from ME register since these chips
11646 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
11647 	 * (depending on hypervisor).
11648 	 */
11649 	if (chip_is_e1x)
11650 		bp->pf_num = PCI_FUNC(pdev->devfn);
11651 	else {/* chip is E2/3*/
11652 		pci_read_config_dword(bp->pdev,
11653 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
11654 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11655 		    ME_REG_ABS_PF_NUM_SHIFT);
11656 	}
11657 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11658 
11659 	bnx2x_set_power_state(bp, PCI_D0);
11660 
11661 	/* clean indirect addresses */
11662 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11663 			       PCICFG_VENDOR_ID_OFFSET);
11664 	/*
11665 	 * Clean the following indirect addresses for all functions since it
11666 	 * is not used by the driver.
11667 	 */
11668 	REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11669 	REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11670 	REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11671 	REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11672 
11673 	if (chip_is_e1x) {
11674 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11675 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11676 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11677 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11678 	}
11679 
11680 	/*
11681 	 * Enable internal target-read (in case we are probed after PF FLR).
11682 	 * Must be done prior to any BAR read access. Only for 57712 and up
11683 	 */
11684 	if (!chip_is_e1x)
11685 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11686 
11687 	dev->watchdog_timeo = TX_TIMEOUT;
11688 
11689 	dev->netdev_ops = &bnx2x_netdev_ops;
11690 	bnx2x_set_ethtool_ops(dev);
11691 
11692 	dev->priv_flags |= IFF_UNICAST_FLT;
11693 
11694 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11695 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11696 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11697 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11698 
11699 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11700 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11701 
11702 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11703 	if (bp->flags & USING_DAC_FLAG)
11704 		dev->features |= NETIF_F_HIGHDMA;
11705 
11706 	/* Add Loopback capability to the device */
11707 	dev->hw_features |= NETIF_F_LOOPBACK;
11708 
11709 #ifdef BCM_DCBNL
11710 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11711 #endif
11712 
11713 	/* get_port_hwinfo() will set prtad and mmds properly */
11714 	bp->mdio.prtad = MDIO_PRTAD_NONE;
11715 	bp->mdio.mmds = 0;
11716 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11717 	bp->mdio.dev = dev;
11718 	bp->mdio.mdio_read = bnx2x_mdio_read;
11719 	bp->mdio.mdio_write = bnx2x_mdio_write;
11720 
11721 	return 0;
11722 
11723 err_out_release:
11724 	if (atomic_read(&pdev->enable_cnt) == 1)
11725 		pci_release_regions(pdev);
11726 
11727 err_out_disable:
11728 	pci_disable_device(pdev);
11729 	pci_set_drvdata(pdev, NULL);
11730 
11731 err_out:
11732 	return rc;
11733 }
11734 
11735 static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
11736 {
11737 	u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11738 
11739 	*width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11740 
11741 	/* return value of 1=2.5GHz 2=5GHz */
11742 	*speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11743 }
11744 
11745 static int bnx2x_check_firmware(struct bnx2x *bp)
11746 {
11747 	const struct firmware *firmware = bp->firmware;
11748 	struct bnx2x_fw_file_hdr *fw_hdr;
11749 	struct bnx2x_fw_file_section *sections;
11750 	u32 offset, len, num_ops;
11751 	u16 *ops_offsets;
11752 	int i;
11753 	const u8 *fw_ver;
11754 
11755 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11756 		BNX2X_ERR("Wrong FW size\n");
11757 		return -EINVAL;
11758 	}
11759 
11760 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11761 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
11762 
11763 	/* Make sure none of the offsets and sizes make us read beyond
11764 	 * the end of the firmware data */
11765 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11766 		offset = be32_to_cpu(sections[i].offset);
11767 		len = be32_to_cpu(sections[i].len);
11768 		if (offset + len > firmware->size) {
11769 			BNX2X_ERR("Section %d length is out of bounds\n", i);
11770 			return -EINVAL;
11771 		}
11772 	}
11773 
11774 	/* Likewise for the init_ops offsets */
11775 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11776 	ops_offsets = (u16 *)(firmware->data + offset);
11777 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11778 
11779 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11780 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11781 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
11782 			return -EINVAL;
11783 		}
11784 	}
11785 
11786 	/* Check FW version */
11787 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
11788 	fw_ver = firmware->data + offset;
11789 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11790 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11791 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11792 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11793 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11794 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11795 		       BCM_5710_FW_MAJOR_VERSION,
11796 		       BCM_5710_FW_MINOR_VERSION,
11797 		       BCM_5710_FW_REVISION_VERSION,
11798 		       BCM_5710_FW_ENGINEERING_VERSION);
11799 		return -EINVAL;
11800 	}
11801 
11802 	return 0;
11803 }
11804 
11805 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11806 {
11807 	const __be32 *source = (const __be32 *)_source;
11808 	u32 *target = (u32 *)_target;
11809 	u32 i;
11810 
11811 	for (i = 0; i < n/4; i++)
11812 		target[i] = be32_to_cpu(source[i]);
11813 }
11814 
11815 /*
11816    Ops array is stored in the following format:
11817    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11818  */
11819 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11820 {
11821 	const __be32 *source = (const __be32 *)_source;
11822 	struct raw_op *target = (struct raw_op *)_target;
11823 	u32 i, j, tmp;
11824 
11825 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
11826 		tmp = be32_to_cpu(source[j]);
11827 		target[i].op = (tmp >> 24) & 0xff;
11828 		target[i].offset = tmp & 0xffffff;
11829 		target[i].raw_data = be32_to_cpu(source[j + 1]);
11830 	}
11831 }
11832 
11833 /* IRO array is stored in the following format:
11834  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11835  */
11836 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11837 {
11838 	const __be32 *source = (const __be32 *)_source;
11839 	struct iro *target = (struct iro *)_target;
11840 	u32 i, j, tmp;
11841 
11842 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11843 		target[i].base = be32_to_cpu(source[j]);
11844 		j++;
11845 		tmp = be32_to_cpu(source[j]);
11846 		target[i].m1 = (tmp >> 16) & 0xffff;
11847 		target[i].m2 = tmp & 0xffff;
11848 		j++;
11849 		tmp = be32_to_cpu(source[j]);
11850 		target[i].m3 = (tmp >> 16) & 0xffff;
11851 		target[i].size = tmp & 0xffff;
11852 		j++;
11853 	}
11854 }
11855 
11856 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11857 {
11858 	const __be16 *source = (const __be16 *)_source;
11859 	u16 *target = (u16 *)_target;
11860 	u32 i;
11861 
11862 	for (i = 0; i < n/2; i++)
11863 		target[i] = be16_to_cpu(source[i]);
11864 }
11865 
11866 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
11867 do {									\
11868 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
11869 	bp->arr = kmalloc(len, GFP_KERNEL);				\
11870 	if (!bp->arr)							\
11871 		goto lbl;						\
11872 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
11873 	     (u8 *)bp->arr, len);					\
11874 } while (0)
11875 
11876 static int bnx2x_init_firmware(struct bnx2x *bp)
11877 {
11878 	const char *fw_file_name;
11879 	struct bnx2x_fw_file_hdr *fw_hdr;
11880 	int rc;
11881 
11882 	if (bp->firmware)
11883 		return 0;
11884 
11885 	if (CHIP_IS_E1(bp))
11886 		fw_file_name = FW_FILE_NAME_E1;
11887 	else if (CHIP_IS_E1H(bp))
11888 		fw_file_name = FW_FILE_NAME_E1H;
11889 	else if (!CHIP_IS_E1x(bp))
11890 		fw_file_name = FW_FILE_NAME_E2;
11891 	else {
11892 		BNX2X_ERR("Unsupported chip revision\n");
11893 		return -EINVAL;
11894 	}
11895 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11896 
11897 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11898 	if (rc) {
11899 		BNX2X_ERR("Can't load firmware file %s\n",
11900 			  fw_file_name);
11901 		goto request_firmware_exit;
11902 	}
11903 
11904 	rc = bnx2x_check_firmware(bp);
11905 	if (rc) {
11906 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11907 		goto request_firmware_exit;
11908 	}
11909 
11910 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11911 
11912 	/* Initialize the pointers to the init arrays */
11913 	/* Blob */
11914 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11915 
11916 	/* Opcodes */
11917 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11918 
11919 	/* Offsets */
11920 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11921 			    be16_to_cpu_n);
11922 
11923 	/* STORMs firmware */
11924 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11925 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11926 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11927 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11928 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11929 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11930 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11931 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
11932 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11933 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11934 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11935 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11936 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11937 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11938 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11939 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
11940 	/* IRO */
11941 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11942 
11943 	return 0;
11944 
11945 iro_alloc_err:
11946 	kfree(bp->init_ops_offsets);
11947 init_offsets_alloc_err:
11948 	kfree(bp->init_ops);
11949 init_ops_alloc_err:
11950 	kfree(bp->init_data);
11951 request_firmware_exit:
11952 	release_firmware(bp->firmware);
11953 	bp->firmware = NULL;
11954 
11955 	return rc;
11956 }
11957 
11958 static void bnx2x_release_firmware(struct bnx2x *bp)
11959 {
11960 	kfree(bp->init_ops_offsets);
11961 	kfree(bp->init_ops);
11962 	kfree(bp->init_data);
11963 	release_firmware(bp->firmware);
11964 	bp->firmware = NULL;
11965 }
11966 
11967 
11968 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11969 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11970 	.init_hw_cmn      = bnx2x_init_hw_common,
11971 	.init_hw_port     = bnx2x_init_hw_port,
11972 	.init_hw_func     = bnx2x_init_hw_func,
11973 
11974 	.reset_hw_cmn     = bnx2x_reset_common,
11975 	.reset_hw_port    = bnx2x_reset_port,
11976 	.reset_hw_func    = bnx2x_reset_func,
11977 
11978 	.gunzip_init      = bnx2x_gunzip_init,
11979 	.gunzip_end       = bnx2x_gunzip_end,
11980 
11981 	.init_fw          = bnx2x_init_firmware,
11982 	.release_fw       = bnx2x_release_firmware,
11983 };
11984 
11985 void bnx2x__init_func_obj(struct bnx2x *bp)
11986 {
11987 	/* Prepare DMAE related driver resources */
11988 	bnx2x_setup_dmae(bp);
11989 
11990 	bnx2x_init_func_obj(bp, &bp->func_obj,
11991 			    bnx2x_sp(bp, func_rdata),
11992 			    bnx2x_sp_mapping(bp, func_rdata),
11993 			    bnx2x_sp(bp, func_afex_rdata),
11994 			    bnx2x_sp_mapping(bp, func_afex_rdata),
11995 			    &bnx2x_func_sp_drv);
11996 }
11997 
11998 /* must be called after sriov-enable */
11999 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12000 {
12001 	int cid_count = BNX2X_L2_MAX_CID(bp);
12002 
12003 	if (CNIC_SUPPORT(bp))
12004 		cid_count += CNIC_CID_MAX;
12005 	return roundup(cid_count, QM_CID_ROUND);
12006 }
12007 
12008 /**
12009  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12010  *
12011  * @dev:	pci device
12012  *
12013  */
12014 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
12015 				     int cnic_cnt)
12016 {
12017 	int pos;
12018 	u16 control;
12019 
12020 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
12021 
12022 	/*
12023 	 * If MSI-X is not supported - return number of SBs needed to support
12024 	 * one fast path queue: one FP queue + SB for CNIC
12025 	 */
12026 	if (!pos)
12027 		return 1 + cnic_cnt;
12028 
12029 	/*
12030 	 * The value in the PCI configuration space is the index of the last
12031 	 * entry, namely one less than the actual size of the table, which is
12032 	 * exactly what we want to return from this function: number of all SBs
12033 	 * without the default SB.
12034 	 */
12035 	pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
12036 	return control & PCI_MSIX_FLAGS_QSIZE;
12037 }
12038 
12039 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *);
12040 
12041 static int bnx2x_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
12042 {
12043 	struct net_device *dev = NULL;
12044 	struct bnx2x *bp;
12045 	int pcie_width, pcie_speed;
12046 	int rc, max_non_def_sbs;
12047 	int rx_count, tx_count, rss_count, doorbell_size;
12048 	int cnic_cnt;
12049 	/*
12050 	 * An estimated maximum supported CoS number according to the chip
12051 	 * version.
12052 	 * We will try to roughly estimate the maximum number of CoSes this chip
12053 	 * may support in order to minimize the memory allocated for Tx
12054 	 * netdev_queue's. This number will be accurately calculated during the
12055 	 * initialization of bp->max_cos based on the chip versions AND chip
12056 	 * revision in the bnx2x_init_bp().
12057 	 */
12058 	u8 max_cos_est = 0;
12059 
12060 	switch (ent->driver_data) {
12061 	case BCM57710:
12062 	case BCM57711:
12063 	case BCM57711E:
12064 		max_cos_est = BNX2X_MULTI_TX_COS_E1X;
12065 		break;
12066 
12067 	case BCM57712:
12068 	case BCM57712_MF:
12069 		max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
12070 		break;
12071 
12072 	case BCM57800:
12073 	case BCM57800_MF:
12074 	case BCM57810:
12075 	case BCM57810_MF:
12076 	case BCM57840_O:
12077 	case BCM57840_4_10:
12078 	case BCM57840_2_20:
12079 	case BCM57840_MFO:
12080 	case BCM57840_MF:
12081 	case BCM57811:
12082 	case BCM57811_MF:
12083 		max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
12084 		break;
12085 
12086 	default:
12087 		pr_err("Unknown board_type (%ld), aborting\n",
12088 			   ent->driver_data);
12089 		return -ENODEV;
12090 	}
12091 
12092 	cnic_cnt = 1;
12093 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12094 
12095 	WARN_ON(!max_non_def_sbs);
12096 
12097 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
12098 	rss_count = max_non_def_sbs - cnic_cnt;
12099 
12100 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12101 	rx_count = rss_count + cnic_cnt;
12102 
12103 	/*
12104 	 * Maximum number of netdev Tx queues:
12105 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12106 	 */
12107 	tx_count = rss_count * max_cos_est + cnic_cnt;
12108 
12109 	/* dev zeroed in init_etherdev */
12110 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12111 	if (!dev)
12112 		return -ENOMEM;
12113 
12114 	bp = netdev_priv(dev);
12115 
12116 	bp->igu_sb_cnt = max_non_def_sbs;
12117 	bp->msg_enable = debug;
12118 	bp->cnic_support = cnic_cnt;
12119 	bp->cnic_probe = bnx2x_cnic_probe;
12120 
12121 	pci_set_drvdata(pdev, dev);
12122 
12123 	rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
12124 	if (rc < 0) {
12125 		free_netdev(dev);
12126 		return rc;
12127 	}
12128 
12129 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12130 	BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
12131 
12132 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12133 			  tx_count, rx_count);
12134 
12135 	rc = bnx2x_init_bp(bp);
12136 	if (rc)
12137 		goto init_one_exit;
12138 
12139 	/*
12140 	 * Map doorbels here as we need the real value of bp->max_cos which
12141 	 * is initialized in bnx2x_init_bp().
12142 	 */
12143 	doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12144 	if (doorbell_size > pci_resource_len(pdev, 2)) {
12145 		dev_err(&bp->pdev->dev,
12146 			"Cannot map doorbells, bar size too small, aborting\n");
12147 		rc = -ENOMEM;
12148 		goto init_one_exit;
12149 	}
12150 	bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12151 					doorbell_size);
12152 	if (!bp->doorbells) {
12153 		dev_err(&bp->pdev->dev,
12154 			"Cannot map doorbell space, aborting\n");
12155 		rc = -ENOMEM;
12156 		goto init_one_exit;
12157 	}
12158 
12159 	/* calc qm_cid_count */
12160 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12161 
12162 	/* disable FCOE L2 queue for E1x*/
12163 	if (CHIP_IS_E1x(bp))
12164 		bp->flags |= NO_FCOE_FLAG;
12165 
12166 	/* disable FCOE for 57840 device, until FW supports it */
12167 	switch (ent->driver_data) {
12168 	case BCM57840_O:
12169 	case BCM57840_4_10:
12170 	case BCM57840_2_20:
12171 	case BCM57840_MFO:
12172 	case BCM57840_MF:
12173 		bp->flags |= NO_FCOE_FLAG;
12174 	}
12175 
12176 	/* Set bp->num_queues for MSI-X mode*/
12177 	bnx2x_set_num_queues(bp);
12178 
12179 	/* Configure interrupt mode: try to enable MSI-X/MSI if
12180 	 * needed.
12181 	 */
12182 	bnx2x_set_int_mode(bp);
12183 
12184 	rc = register_netdev(dev);
12185 	if (rc) {
12186 		dev_err(&pdev->dev, "Cannot register net device\n");
12187 		goto init_one_exit;
12188 	}
12189 
12190 
12191 	if (!NO_FCOE(bp)) {
12192 		/* Add storage MAC address */
12193 		rtnl_lock();
12194 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12195 		rtnl_unlock();
12196 	}
12197 
12198 	bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12199 
12200 	BNX2X_DEV_INFO(
12201 		"%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12202 		    board_info[ent->driver_data].name,
12203 		    (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12204 		    pcie_width,
12205 		    ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12206 		     (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12207 		    "5GHz (Gen2)" : "2.5GHz",
12208 		    dev->base_addr, bp->pdev->irq, dev->dev_addr);
12209 
12210 	return 0;
12211 
12212 init_one_exit:
12213 	if (bp->regview)
12214 		iounmap(bp->regview);
12215 
12216 	if (bp->doorbells)
12217 		iounmap(bp->doorbells);
12218 
12219 	free_netdev(dev);
12220 
12221 	if (atomic_read(&pdev->enable_cnt) == 1)
12222 		pci_release_regions(pdev);
12223 
12224 	pci_disable_device(pdev);
12225 	pci_set_drvdata(pdev, NULL);
12226 
12227 	return rc;
12228 }
12229 
12230 static void bnx2x_remove_one(struct pci_dev *pdev)
12231 {
12232 	struct net_device *dev = pci_get_drvdata(pdev);
12233 	struct bnx2x *bp;
12234 
12235 	if (!dev) {
12236 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12237 		return;
12238 	}
12239 	bp = netdev_priv(dev);
12240 
12241 	/* Delete storage MAC address */
12242 	if (!NO_FCOE(bp)) {
12243 		rtnl_lock();
12244 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12245 		rtnl_unlock();
12246 	}
12247 
12248 #ifdef BCM_DCBNL
12249 	/* Delete app tlvs from dcbnl */
12250 	bnx2x_dcbnl_update_applist(bp, true);
12251 #endif
12252 
12253 	unregister_netdev(dev);
12254 
12255 	/* Power on: we can't let PCI layer write to us while we are in D3 */
12256 	bnx2x_set_power_state(bp, PCI_D0);
12257 
12258 	/* Disable MSI/MSI-X */
12259 	bnx2x_disable_msi(bp);
12260 
12261 	/* Power off */
12262 	bnx2x_set_power_state(bp, PCI_D3hot);
12263 
12264 	/* Make sure RESET task is not scheduled before continuing */
12265 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
12266 
12267 	if (bp->regview)
12268 		iounmap(bp->regview);
12269 
12270 	if (bp->doorbells)
12271 		iounmap(bp->doorbells);
12272 
12273 	bnx2x_release_firmware(bp);
12274 
12275 	bnx2x_free_mem_bp(bp);
12276 
12277 	free_netdev(dev);
12278 
12279 	if (atomic_read(&pdev->enable_cnt) == 1)
12280 		pci_release_regions(pdev);
12281 
12282 	pci_disable_device(pdev);
12283 	pci_set_drvdata(pdev, NULL);
12284 }
12285 
12286 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12287 {
12288 	int i;
12289 
12290 	bp->state = BNX2X_STATE_ERROR;
12291 
12292 	bp->rx_mode = BNX2X_RX_MODE_NONE;
12293 
12294 	if (CNIC_LOADED(bp))
12295 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12296 
12297 	/* Stop Tx */
12298 	bnx2x_tx_disable(bp);
12299 
12300 	bnx2x_netif_stop(bp, 0);
12301 	/* Delete all NAPI objects */
12302 	bnx2x_del_all_napi(bp);
12303 	if (CNIC_LOADED(bp))
12304 		bnx2x_del_all_napi_cnic(bp);
12305 
12306 	del_timer_sync(&bp->timer);
12307 
12308 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12309 
12310 	/* Release IRQs */
12311 	bnx2x_free_irq(bp);
12312 
12313 	/* Free SKBs, SGEs, TPA pool and driver internals */
12314 	bnx2x_free_skbs(bp);
12315 
12316 	for_each_rx_queue(bp, i)
12317 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12318 
12319 	bnx2x_free_mem(bp);
12320 
12321 	bp->state = BNX2X_STATE_CLOSED;
12322 
12323 	netif_carrier_off(bp->dev);
12324 
12325 	return 0;
12326 }
12327 
12328 static void bnx2x_eeh_recover(struct bnx2x *bp)
12329 {
12330 	u32 val;
12331 
12332 	mutex_init(&bp->port.phy_mutex);
12333 
12334 
12335 	val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12336 	if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12337 		!= (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12338 		BNX2X_ERR("BAD MCP validity signature\n");
12339 }
12340 
12341 /**
12342  * bnx2x_io_error_detected - called when PCI error is detected
12343  * @pdev: Pointer to PCI device
12344  * @state: The current pci connection state
12345  *
12346  * This function is called after a PCI bus error affecting
12347  * this device has been detected.
12348  */
12349 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12350 						pci_channel_state_t state)
12351 {
12352 	struct net_device *dev = pci_get_drvdata(pdev);
12353 	struct bnx2x *bp = netdev_priv(dev);
12354 
12355 	rtnl_lock();
12356 
12357 	netif_device_detach(dev);
12358 
12359 	if (state == pci_channel_io_perm_failure) {
12360 		rtnl_unlock();
12361 		return PCI_ERS_RESULT_DISCONNECT;
12362 	}
12363 
12364 	if (netif_running(dev))
12365 		bnx2x_eeh_nic_unload(bp);
12366 
12367 	pci_disable_device(pdev);
12368 
12369 	rtnl_unlock();
12370 
12371 	/* Request a slot reset */
12372 	return PCI_ERS_RESULT_NEED_RESET;
12373 }
12374 
12375 /**
12376  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12377  * @pdev: Pointer to PCI device
12378  *
12379  * Restart the card from scratch, as if from a cold-boot.
12380  */
12381 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12382 {
12383 	struct net_device *dev = pci_get_drvdata(pdev);
12384 	struct bnx2x *bp = netdev_priv(dev);
12385 
12386 	rtnl_lock();
12387 
12388 	if (pci_enable_device(pdev)) {
12389 		dev_err(&pdev->dev,
12390 			"Cannot re-enable PCI device after reset\n");
12391 		rtnl_unlock();
12392 		return PCI_ERS_RESULT_DISCONNECT;
12393 	}
12394 
12395 	pci_set_master(pdev);
12396 	pci_restore_state(pdev);
12397 
12398 	if (netif_running(dev))
12399 		bnx2x_set_power_state(bp, PCI_D0);
12400 
12401 	rtnl_unlock();
12402 
12403 	return PCI_ERS_RESULT_RECOVERED;
12404 }
12405 
12406 /**
12407  * bnx2x_io_resume - called when traffic can start flowing again
12408  * @pdev: Pointer to PCI device
12409  *
12410  * This callback is called when the error recovery driver tells us that
12411  * its OK to resume normal operation.
12412  */
12413 static void bnx2x_io_resume(struct pci_dev *pdev)
12414 {
12415 	struct net_device *dev = pci_get_drvdata(pdev);
12416 	struct bnx2x *bp = netdev_priv(dev);
12417 
12418 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12419 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12420 		return;
12421 	}
12422 
12423 	rtnl_lock();
12424 
12425 	bnx2x_eeh_recover(bp);
12426 
12427 	if (netif_running(dev))
12428 		bnx2x_nic_load(bp, LOAD_NORMAL);
12429 
12430 	netif_device_attach(dev);
12431 
12432 	rtnl_unlock();
12433 }
12434 
12435 static const struct pci_error_handlers bnx2x_err_handler = {
12436 	.error_detected = bnx2x_io_error_detected,
12437 	.slot_reset     = bnx2x_io_slot_reset,
12438 	.resume         = bnx2x_io_resume,
12439 };
12440 
12441 static struct pci_driver bnx2x_pci_driver = {
12442 	.name        = DRV_MODULE_NAME,
12443 	.id_table    = bnx2x_pci_tbl,
12444 	.probe       = bnx2x_init_one,
12445 	.remove      = bnx2x_remove_one,
12446 	.suspend     = bnx2x_suspend,
12447 	.resume      = bnx2x_resume,
12448 	.err_handler = &bnx2x_err_handler,
12449 };
12450 
12451 static int __init bnx2x_init(void)
12452 {
12453 	int ret;
12454 
12455 	pr_info("%s", version);
12456 
12457 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
12458 	if (bnx2x_wq == NULL) {
12459 		pr_err("Cannot create workqueue\n");
12460 		return -ENOMEM;
12461 	}
12462 
12463 	ret = pci_register_driver(&bnx2x_pci_driver);
12464 	if (ret) {
12465 		pr_err("Cannot register driver\n");
12466 		destroy_workqueue(bnx2x_wq);
12467 	}
12468 	return ret;
12469 }
12470 
12471 static void __exit bnx2x_cleanup(void)
12472 {
12473 	struct list_head *pos, *q;
12474 	pci_unregister_driver(&bnx2x_pci_driver);
12475 
12476 	destroy_workqueue(bnx2x_wq);
12477 
12478 	/* Free globablly allocated resources */
12479 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
12480 		struct bnx2x_prev_path_list *tmp =
12481 			list_entry(pos, struct bnx2x_prev_path_list, list);
12482 		list_del(pos);
12483 		kfree(tmp);
12484 	}
12485 }
12486 
12487 void bnx2x_notify_link_changed(struct bnx2x *bp)
12488 {
12489 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12490 }
12491 
12492 module_init(bnx2x_init);
12493 module_exit(bnx2x_cleanup);
12494 
12495 /**
12496  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12497  *
12498  * @bp:		driver handle
12499  * @set:	set or clear the CAM entry
12500  *
12501  * This function will wait until the ramdord completion returns.
12502  * Return 0 if success, -ENODEV if ramrod doesn't return.
12503  */
12504 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12505 {
12506 	unsigned long ramrod_flags = 0;
12507 
12508 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12509 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12510 				 &bp->iscsi_l2_mac_obj, true,
12511 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12512 }
12513 
12514 /* count denotes the number of new completions we have seen */
12515 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12516 {
12517 	struct eth_spe *spe;
12518 	int cxt_index, cxt_offset;
12519 
12520 #ifdef BNX2X_STOP_ON_ERROR
12521 	if (unlikely(bp->panic))
12522 		return;
12523 #endif
12524 
12525 	spin_lock_bh(&bp->spq_lock);
12526 	BUG_ON(bp->cnic_spq_pending < count);
12527 	bp->cnic_spq_pending -= count;
12528 
12529 
12530 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12531 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12532 				& SPE_HDR_CONN_TYPE) >>
12533 				SPE_HDR_CONN_TYPE_SHIFT;
12534 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12535 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12536 
12537 		/* Set validation for iSCSI L2 client before sending SETUP
12538 		 *  ramrod
12539 		 */
12540 		if (type == ETH_CONNECTION_TYPE) {
12541 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12542 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12543 					ILT_PAGE_CIDS;
12544 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12545 					(cxt_index * ILT_PAGE_CIDS);
12546 				bnx2x_set_ctx_validation(bp,
12547 					&bp->context[cxt_index].
12548 							 vcxt[cxt_offset].eth,
12549 					BNX2X_ISCSI_ETH_CID(bp));
12550 			}
12551 		}
12552 
12553 		/*
12554 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
12555 		 * and in the air. We also check that number of outstanding
12556 		 * COMMON ramrods is not more than the EQ and SPQ can
12557 		 * accommodate.
12558 		 */
12559 		if (type == ETH_CONNECTION_TYPE) {
12560 			if (!atomic_read(&bp->cq_spq_left))
12561 				break;
12562 			else
12563 				atomic_dec(&bp->cq_spq_left);
12564 		} else if (type == NONE_CONNECTION_TYPE) {
12565 			if (!atomic_read(&bp->eq_spq_left))
12566 				break;
12567 			else
12568 				atomic_dec(&bp->eq_spq_left);
12569 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
12570 			   (type == FCOE_CONNECTION_TYPE)) {
12571 			if (bp->cnic_spq_pending >=
12572 			    bp->cnic_eth_dev.max_kwqe_pending)
12573 				break;
12574 			else
12575 				bp->cnic_spq_pending++;
12576 		} else {
12577 			BNX2X_ERR("Unknown SPE type: %d\n", type);
12578 			bnx2x_panic();
12579 			break;
12580 		}
12581 
12582 		spe = bnx2x_sp_get_next(bp);
12583 		*spe = *bp->cnic_kwq_cons;
12584 
12585 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12586 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12587 
12588 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12589 			bp->cnic_kwq_cons = bp->cnic_kwq;
12590 		else
12591 			bp->cnic_kwq_cons++;
12592 	}
12593 	bnx2x_sp_prod_update(bp);
12594 	spin_unlock_bh(&bp->spq_lock);
12595 }
12596 
12597 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12598 			       struct kwqe_16 *kwqes[], u32 count)
12599 {
12600 	struct bnx2x *bp = netdev_priv(dev);
12601 	int i;
12602 
12603 #ifdef BNX2X_STOP_ON_ERROR
12604 	if (unlikely(bp->panic)) {
12605 		BNX2X_ERR("Can't post to SP queue while panic\n");
12606 		return -EIO;
12607 	}
12608 #endif
12609 
12610 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12611 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12612 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
12613 		return -EAGAIN;
12614 	}
12615 
12616 	spin_lock_bh(&bp->spq_lock);
12617 
12618 	for (i = 0; i < count; i++) {
12619 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12620 
12621 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12622 			break;
12623 
12624 		*bp->cnic_kwq_prod = *spe;
12625 
12626 		bp->cnic_kwq_pending++;
12627 
12628 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12629 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
12630 		   spe->data.update_data_addr.hi,
12631 		   spe->data.update_data_addr.lo,
12632 		   bp->cnic_kwq_pending);
12633 
12634 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12635 			bp->cnic_kwq_prod = bp->cnic_kwq;
12636 		else
12637 			bp->cnic_kwq_prod++;
12638 	}
12639 
12640 	spin_unlock_bh(&bp->spq_lock);
12641 
12642 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12643 		bnx2x_cnic_sp_post(bp, 0);
12644 
12645 	return i;
12646 }
12647 
12648 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12649 {
12650 	struct cnic_ops *c_ops;
12651 	int rc = 0;
12652 
12653 	mutex_lock(&bp->cnic_mutex);
12654 	c_ops = rcu_dereference_protected(bp->cnic_ops,
12655 					  lockdep_is_held(&bp->cnic_mutex));
12656 	if (c_ops)
12657 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12658 	mutex_unlock(&bp->cnic_mutex);
12659 
12660 	return rc;
12661 }
12662 
12663 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12664 {
12665 	struct cnic_ops *c_ops;
12666 	int rc = 0;
12667 
12668 	rcu_read_lock();
12669 	c_ops = rcu_dereference(bp->cnic_ops);
12670 	if (c_ops)
12671 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12672 	rcu_read_unlock();
12673 
12674 	return rc;
12675 }
12676 
12677 /*
12678  * for commands that have no data
12679  */
12680 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12681 {
12682 	struct cnic_ctl_info ctl = {0};
12683 
12684 	ctl.cmd = cmd;
12685 
12686 	return bnx2x_cnic_ctl_send(bp, &ctl);
12687 }
12688 
12689 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12690 {
12691 	struct cnic_ctl_info ctl = {0};
12692 
12693 	/* first we tell CNIC and only then we count this as a completion */
12694 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12695 	ctl.data.comp.cid = cid;
12696 	ctl.data.comp.error = err;
12697 
12698 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
12699 	bnx2x_cnic_sp_post(bp, 0);
12700 }
12701 
12702 
12703 /* Called with netif_addr_lock_bh() taken.
12704  * Sets an rx_mode config for an iSCSI ETH client.
12705  * Doesn't block.
12706  * Completion should be checked outside.
12707  */
12708 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12709 {
12710 	unsigned long accept_flags = 0, ramrod_flags = 0;
12711 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12712 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12713 
12714 	if (start) {
12715 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
12716 		 * because it's the only way for UIO Queue to accept
12717 		 * multicasts (in non-promiscuous mode only one Queue per
12718 		 * function will receive multicast packets (leading in our
12719 		 * case).
12720 		 */
12721 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12722 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12723 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12724 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12725 
12726 		/* Clear STOP_PENDING bit if START is requested */
12727 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12728 
12729 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12730 	} else
12731 		/* Clear START_PENDING bit if STOP is requested */
12732 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12733 
12734 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12735 		set_bit(sched_state, &bp->sp_state);
12736 	else {
12737 		__set_bit(RAMROD_RX, &ramrod_flags);
12738 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12739 				    ramrod_flags);
12740 	}
12741 }
12742 
12743 
12744 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12745 {
12746 	struct bnx2x *bp = netdev_priv(dev);
12747 	int rc = 0;
12748 
12749 	switch (ctl->cmd) {
12750 	case DRV_CTL_CTXTBL_WR_CMD: {
12751 		u32 index = ctl->data.io.offset;
12752 		dma_addr_t addr = ctl->data.io.dma_addr;
12753 
12754 		bnx2x_ilt_wr(bp, index, addr);
12755 		break;
12756 	}
12757 
12758 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12759 		int count = ctl->data.credit.credit_count;
12760 
12761 		bnx2x_cnic_sp_post(bp, count);
12762 		break;
12763 	}
12764 
12765 	/* rtnl_lock is held.  */
12766 	case DRV_CTL_START_L2_CMD: {
12767 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12768 		unsigned long sp_bits = 0;
12769 
12770 		/* Configure the iSCSI classification object */
12771 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12772 				   cp->iscsi_l2_client_id,
12773 				   cp->iscsi_l2_cid, BP_FUNC(bp),
12774 				   bnx2x_sp(bp, mac_rdata),
12775 				   bnx2x_sp_mapping(bp, mac_rdata),
12776 				   BNX2X_FILTER_MAC_PENDING,
12777 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12778 				   &bp->macs_pool);
12779 
12780 		/* Set iSCSI MAC address */
12781 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12782 		if (rc)
12783 			break;
12784 
12785 		mmiowb();
12786 		barrier();
12787 
12788 		/* Start accepting on iSCSI L2 ring */
12789 
12790 		netif_addr_lock_bh(dev);
12791 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
12792 		netif_addr_unlock_bh(dev);
12793 
12794 		/* bits to wait on */
12795 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12796 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12797 
12798 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12799 			BNX2X_ERR("rx_mode completion timed out!\n");
12800 
12801 		break;
12802 	}
12803 
12804 	/* rtnl_lock is held.  */
12805 	case DRV_CTL_STOP_L2_CMD: {
12806 		unsigned long sp_bits = 0;
12807 
12808 		/* Stop accepting on iSCSI L2 ring */
12809 		netif_addr_lock_bh(dev);
12810 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
12811 		netif_addr_unlock_bh(dev);
12812 
12813 		/* bits to wait on */
12814 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12815 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12816 
12817 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
12818 			BNX2X_ERR("rx_mode completion timed out!\n");
12819 
12820 		mmiowb();
12821 		barrier();
12822 
12823 		/* Unset iSCSI L2 MAC */
12824 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12825 					BNX2X_ISCSI_ETH_MAC, true);
12826 		break;
12827 	}
12828 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12829 		int count = ctl->data.credit.credit_count;
12830 
12831 		smp_mb__before_atomic_inc();
12832 		atomic_add(count, &bp->cq_spq_left);
12833 		smp_mb__after_atomic_inc();
12834 		break;
12835 	}
12836 	case DRV_CTL_ULP_REGISTER_CMD: {
12837 		int ulp_type = ctl->data.register_data.ulp_type;
12838 
12839 		if (CHIP_IS_E3(bp)) {
12840 			int idx = BP_FW_MB_IDX(bp);
12841 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12842 			int path = BP_PATH(bp);
12843 			int port = BP_PORT(bp);
12844 			int i;
12845 			u32 scratch_offset;
12846 			u32 *host_addr;
12847 
12848 			/* first write capability to shmem2 */
12849 			if (ulp_type == CNIC_ULP_ISCSI)
12850 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12851 			else if (ulp_type == CNIC_ULP_FCOE)
12852 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12853 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12854 
12855 			if ((ulp_type != CNIC_ULP_FCOE) ||
12856 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
12857 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
12858 				break;
12859 
12860 			/* if reached here - should write fcoe capabilities */
12861 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
12862 			if (!scratch_offset)
12863 				break;
12864 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
12865 						   fcoe_features[path][port]);
12866 			host_addr = (u32 *) &(ctl->data.register_data.
12867 					      fcoe_features);
12868 			for (i = 0; i < sizeof(struct fcoe_capabilities);
12869 			     i += 4)
12870 				REG_WR(bp, scratch_offset + i,
12871 				       *(host_addr + i/4));
12872 		}
12873 		break;
12874 	}
12875 
12876 	case DRV_CTL_ULP_UNREGISTER_CMD: {
12877 		int ulp_type = ctl->data.ulp_type;
12878 
12879 		if (CHIP_IS_E3(bp)) {
12880 			int idx = BP_FW_MB_IDX(bp);
12881 			u32 cap;
12882 
12883 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12884 			if (ulp_type == CNIC_ULP_ISCSI)
12885 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12886 			else if (ulp_type == CNIC_ULP_FCOE)
12887 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12888 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12889 		}
12890 		break;
12891 	}
12892 
12893 	default:
12894 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
12895 		rc = -EINVAL;
12896 	}
12897 
12898 	return rc;
12899 }
12900 
12901 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12902 {
12903 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12904 
12905 	if (bp->flags & USING_MSIX_FLAG) {
12906 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12907 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12908 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
12909 	} else {
12910 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12911 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12912 	}
12913 	if (!CHIP_IS_E1x(bp))
12914 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12915 	else
12916 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12917 
12918 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12919 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12920 	cp->irq_arr[1].status_blk = bp->def_status_blk;
12921 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12922 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12923 
12924 	cp->num_irq = 2;
12925 }
12926 
12927 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12928 {
12929 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12930 
12931 
12932 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12933 			     bnx2x_cid_ilt_lines(bp);
12934 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12935 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12936 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12937 
12938 	if (NO_ISCSI_OOO(bp))
12939 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12940 }
12941 
12942 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12943 			       void *data)
12944 {
12945 	struct bnx2x *bp = netdev_priv(dev);
12946 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12947 	int rc;
12948 
12949 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
12950 
12951 	if (ops == NULL) {
12952 		BNX2X_ERR("NULL ops received\n");
12953 		return -EINVAL;
12954 	}
12955 
12956 	if (!CNIC_SUPPORT(bp)) {
12957 		BNX2X_ERR("Can't register CNIC when not supported\n");
12958 		return -EOPNOTSUPP;
12959 	}
12960 
12961 	if (!CNIC_LOADED(bp)) {
12962 		rc = bnx2x_load_cnic(bp);
12963 		if (rc) {
12964 			BNX2X_ERR("CNIC-related load failed\n");
12965 			return rc;
12966 		}
12967 
12968 	}
12969 
12970 	bp->cnic_enabled = true;
12971 
12972 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12973 	if (!bp->cnic_kwq)
12974 		return -ENOMEM;
12975 
12976 	bp->cnic_kwq_cons = bp->cnic_kwq;
12977 	bp->cnic_kwq_prod = bp->cnic_kwq;
12978 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12979 
12980 	bp->cnic_spq_pending = 0;
12981 	bp->cnic_kwq_pending = 0;
12982 
12983 	bp->cnic_data = data;
12984 
12985 	cp->num_irq = 0;
12986 	cp->drv_state |= CNIC_DRV_STATE_REGD;
12987 	cp->iro_arr = bp->iro_arr;
12988 
12989 	bnx2x_setup_cnic_irq_info(bp);
12990 
12991 	rcu_assign_pointer(bp->cnic_ops, ops);
12992 
12993 	return 0;
12994 }
12995 
12996 static int bnx2x_unregister_cnic(struct net_device *dev)
12997 {
12998 	struct bnx2x *bp = netdev_priv(dev);
12999 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13000 
13001 	mutex_lock(&bp->cnic_mutex);
13002 	cp->drv_state = 0;
13003 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
13004 	mutex_unlock(&bp->cnic_mutex);
13005 	synchronize_rcu();
13006 	kfree(bp->cnic_kwq);
13007 	bp->cnic_kwq = NULL;
13008 
13009 	return 0;
13010 }
13011 
13012 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
13013 {
13014 	struct bnx2x *bp = netdev_priv(dev);
13015 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13016 
13017 	/* If both iSCSI and FCoE are disabled - return NULL in
13018 	 * order to indicate CNIC that it should not try to work
13019 	 * with this device.
13020 	 */
13021 	if (NO_ISCSI(bp) && NO_FCOE(bp))
13022 		return NULL;
13023 
13024 	cp->drv_owner = THIS_MODULE;
13025 	cp->chip_id = CHIP_ID(bp);
13026 	cp->pdev = bp->pdev;
13027 	cp->io_base = bp->regview;
13028 	cp->io_base2 = bp->doorbells;
13029 	cp->max_kwqe_pending = 8;
13030 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
13031 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13032 			     bnx2x_cid_ilt_lines(bp);
13033 	cp->ctx_tbl_len = CNIC_ILT_LINES;
13034 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13035 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
13036 	cp->drv_ctl = bnx2x_drv_ctl;
13037 	cp->drv_register_cnic = bnx2x_register_cnic;
13038 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
13039 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13040 	cp->iscsi_l2_client_id =
13041 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13042 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13043 
13044 	if (NO_ISCSI_OOO(bp))
13045 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13046 
13047 	if (NO_ISCSI(bp))
13048 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
13049 
13050 	if (NO_FCOE(bp))
13051 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
13052 
13053 	BNX2X_DEV_INFO(
13054 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
13055 	   cp->ctx_blk_size,
13056 	   cp->ctx_tbl_offset,
13057 	   cp->ctx_tbl_len,
13058 	   cp->starting_cid);
13059 	return cp;
13060 }
13061 
13062 
13063