xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80 
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT		(5*HZ)
83 
84 static char version[] =
85 	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87 
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 		   "BCM57710/57711/57711E/"
91 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 		   "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98 
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
101 MODULE_PARM_DESC(num_queues,
102 		 " Set number of queues (default is as a number of CPUs)");
103 
104 static int disable_tpa;
105 module_param(disable_tpa, int, 0444);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107 
108 static int int_mode;
109 module_param(int_mode, int, 0444);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 				"(1 INT#x; 2 MSI)");
112 
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0444);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116 
117 static int mrrs = -1;
118 module_param(mrrs, int, 0444);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120 
121 static int debug;
122 module_param(debug, int, 0444);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124 
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127 
128 struct bnx2x_mac_vals {
129 	u32 xmac_addr;
130 	u32 xmac_val;
131 	u32 emac_addr;
132 	u32 emac_val;
133 	u32 umac_addr[2];
134 	u32 umac_val[2];
135 	u32 bmac_addr;
136 	u32 bmac_val[2];
137 };
138 
139 enum bnx2x_board_type {
140 	BCM57710 = 0,
141 	BCM57711,
142 	BCM57711E,
143 	BCM57712,
144 	BCM57712_MF,
145 	BCM57712_VF,
146 	BCM57800,
147 	BCM57800_MF,
148 	BCM57800_VF,
149 	BCM57810,
150 	BCM57810_MF,
151 	BCM57810_VF,
152 	BCM57840_4_10,
153 	BCM57840_2_20,
154 	BCM57840_MF,
155 	BCM57840_VF,
156 	BCM57811,
157 	BCM57811_MF,
158 	BCM57840_O,
159 	BCM57840_MFO,
160 	BCM57811_VF
161 };
162 
163 /* indexed by board_type, above */
164 static struct {
165 	char *name;
166 } board_info[] = {
167 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
169 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
170 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
171 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
174 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
177 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
180 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
181 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
184 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189 
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
252 #endif
253 
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 	{ 0 }
280 };
281 
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283 
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288 
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293 
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297 
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299 
300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 				       u32 addr, dma_addr_t mapping)
302 {
303 	REG_WR(bp,  addr, U64_LO(mapping));
304 	REG_WR(bp,  addr + 4, U64_HI(mapping));
305 }
306 
307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 				  dma_addr_t mapping, u16 abs_fid)
309 {
310 	u32 addr = XSEM_REG_FAST_MEMORY +
311 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312 
313 	__storm_memset_dma_mapping(bp, addr, mapping);
314 }
315 
316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 				  u16 pf_id)
318 {
319 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 		pf_id);
321 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 		pf_id);
323 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 		pf_id);
325 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 		pf_id);
327 }
328 
329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 				 u8 enable)
331 {
332 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 		enable);
334 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 		enable);
336 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 		enable);
338 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 		enable);
340 }
341 
342 static void storm_memset_eq_data(struct bnx2x *bp,
343 				 struct event_ring_data *eq_data,
344 				u16 pfid)
345 {
346 	size_t size = sizeof(struct event_ring_data);
347 
348 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349 
350 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352 
353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 				 u16 pfid)
355 {
356 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 	REG_WR16(bp, addr, eq_prod);
358 }
359 
360 /* used only at init
361  * locking is done by mcp
362  */
363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 			       PCICFG_VENDOR_ID_OFFSET);
369 }
370 
371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 	u32 val;
374 
375 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 			       PCICFG_VENDOR_ID_OFFSET);
379 
380 	return val;
381 }
382 
383 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE	"dst_addr [none]"
388 
389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 			  struct dmae_command *dmae, int msglvl)
391 {
392 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 	int i;
394 
395 	switch (dmae->opcode & DMAE_COMMAND_DST) {
396 	case DMAE_CMD_DST_PCI:
397 		if (src_type == DMAE_CMD_SRC_PCI)
398 			DP(msglvl, "DMAE: opcode 0x%08x\n"
399 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
404 			   dmae->comp_val);
405 		else
406 			DP(msglvl, "DMAE: opcode 0x%08x\n"
407 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 			   dmae->opcode, dmae->src_addr_lo >> 2,
410 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
412 			   dmae->comp_val);
413 		break;
414 	case DMAE_CMD_DST_GRC:
415 		if (src_type == DMAE_CMD_SRC_PCI)
416 			DP(msglvl, "DMAE: opcode 0x%08x\n"
417 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 			   dmae->len, dmae->dst_addr_lo >> 2,
421 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
422 			   dmae->comp_val);
423 		else
424 			DP(msglvl, "DMAE: opcode 0x%08x\n"
425 			   "src [%08x], len [%d*4], dst [%08x]\n"
426 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 			   dmae->opcode, dmae->src_addr_lo >> 2,
428 			   dmae->len, dmae->dst_addr_lo >> 2,
429 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
430 			   dmae->comp_val);
431 		break;
432 	default:
433 		if (src_type == DMAE_CMD_SRC_PCI)
434 			DP(msglvl, "DMAE: opcode 0x%08x\n"
435 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
436 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 			   dmae->comp_val);
440 		else
441 			DP(msglvl, "DMAE: opcode 0x%08x\n"
442 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
443 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
444 			   dmae->opcode, dmae->src_addr_lo >> 2,
445 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 			   dmae->comp_val);
447 		break;
448 	}
449 
450 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 		   i, *(((u32 *)dmae) + i));
453 }
454 
455 /* copy command into DMAE command memory and set DMAE command go */
456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 	u32 cmd_offset;
459 	int i;
460 
461 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 	}
465 	REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467 
468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 			   DMAE_CMD_C_ENABLE);
472 }
473 
474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 	return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478 
479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 			     bool with_comp, u8 comp_type)
481 {
482 	u32 opcode = 0;
483 
484 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
486 
487 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488 
489 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493 
494 #ifdef __BIG_ENDIAN
495 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 	if (with_comp)
500 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 	return opcode;
502 }
503 
504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 				      struct dmae_command *dmae,
506 				      u8 src_type, u8 dst_type)
507 {
508 	memset(dmae, 0, sizeof(struct dmae_command));
509 
510 	/* set the opcode */
511 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 					 true, DMAE_COMP_PCI);
513 
514 	/* fill in the completion parameters */
515 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 	dmae->comp_val = DMAE_COMP_VAL;
518 }
519 
520 /* issue a dmae command over the init-channel and wait for completion */
521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 			       u32 *comp)
523 {
524 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 	int rc = 0;
526 
527 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528 
529 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 	 * as long as this code is called both from syscall context and
531 	 * from ndo_set_rx_mode() flow that may be called from BH.
532 	 */
533 
534 	spin_lock_bh(&bp->dmae_lock);
535 
536 	/* reset completion */
537 	*comp = 0;
538 
539 	/* post the command on the channel used for initializations */
540 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541 
542 	/* wait for completion */
543 	udelay(5);
544 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545 
546 		if (!cnt ||
547 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 			BNX2X_ERR("DMAE timeout!\n");
550 			rc = DMAE_TIMEOUT;
551 			goto unlock;
552 		}
553 		cnt--;
554 		udelay(50);
555 	}
556 	if (*comp & DMAE_PCI_ERR_FLAG) {
557 		BNX2X_ERR("DMAE PCI error!\n");
558 		rc = DMAE_PCI_ERROR;
559 	}
560 
561 unlock:
562 
563 	spin_unlock_bh(&bp->dmae_lock);
564 
565 	return rc;
566 }
567 
568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 		      u32 len32)
570 {
571 	int rc;
572 	struct dmae_command dmae;
573 
574 	if (!bp->dmae_ready) {
575 		u32 *data = bnx2x_sp(bp, wb_data[0]);
576 
577 		if (CHIP_IS_E1(bp))
578 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 		else
580 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 		return;
582 	}
583 
584 	/* set opcode and fixed command fields */
585 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586 
587 	/* fill in addresses and len */
588 	dmae.src_addr_lo = U64_LO(dma_addr);
589 	dmae.src_addr_hi = U64_HI(dma_addr);
590 	dmae.dst_addr_lo = dst_addr >> 2;
591 	dmae.dst_addr_hi = 0;
592 	dmae.len = len32;
593 
594 	/* issue the command and wait for completion */
595 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 	if (rc) {
597 		BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 		bnx2x_panic();
600 #endif
601 	}
602 }
603 
604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 	int rc;
607 	struct dmae_command dmae;
608 
609 	if (!bp->dmae_ready) {
610 		u32 *data = bnx2x_sp(bp, wb_data[0]);
611 		int i;
612 
613 		if (CHIP_IS_E1(bp))
614 			for (i = 0; i < len32; i++)
615 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 		else
617 			for (i = 0; i < len32; i++)
618 				data[i] = REG_RD(bp, src_addr + i*4);
619 
620 		return;
621 	}
622 
623 	/* set opcode and fixed command fields */
624 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625 
626 	/* fill in addresses and len */
627 	dmae.src_addr_lo = src_addr >> 2;
628 	dmae.src_addr_hi = 0;
629 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 	dmae.len = len32;
632 
633 	/* issue the command and wait for completion */
634 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 	if (rc) {
636 		BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 		bnx2x_panic();
639 #endif
640 	}
641 }
642 
643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 				      u32 addr, u32 len)
645 {
646 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 	int offset = 0;
648 
649 	while (len > dmae_wr_max) {
650 		bnx2x_write_dmae(bp, phys_addr + offset,
651 				 addr + offset, dmae_wr_max);
652 		offset += dmae_wr_max * 4;
653 		len -= dmae_wr_max;
654 	}
655 
656 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658 
659 enum storms {
660 	   XSTORM,
661 	   TSTORM,
662 	   CSTORM,
663 	   USTORM,
664 	   MAX_STORMS
665 };
666 
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669 
670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 					      enum storms storm,
672 					      int entry)
673 {
674 	switch (storm) {
675 	case XSTORM:
676 		return XSTORM_ASSERT_LIST_OFFSET(entry);
677 	case TSTORM:
678 		return TSTORM_ASSERT_LIST_OFFSET(entry);
679 	case CSTORM:
680 		return CSTORM_ASSERT_LIST_OFFSET(entry);
681 	case USTORM:
682 		return USTORM_ASSERT_LIST_OFFSET(entry);
683 	case MAX_STORMS:
684 	default:
685 		BNX2X_ERR("unknown storm\n");
686 	}
687 	return -EINVAL;
688 }
689 
690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 	char last_idx;
693 	int i, j, rc = 0;
694 	enum storms storm;
695 	u32 regs[REGS_IN_ENTRY];
696 	u32 bar_storm_intmem[STORMS_NUM] = {
697 		BAR_XSTRORM_INTMEM,
698 		BAR_TSTRORM_INTMEM,
699 		BAR_CSTRORM_INTMEM,
700 		BAR_USTRORM_INTMEM
701 	};
702 	u32 storm_assert_list_index[STORMS_NUM] = {
703 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 		USTORM_ASSERT_LIST_INDEX_OFFSET
707 	};
708 	char *storms_string[STORMS_NUM] = {
709 		"XSTORM",
710 		"TSTORM",
711 		"CSTORM",
712 		"USTORM"
713 	};
714 
715 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 				   storm_assert_list_index[storm]);
718 		if (last_idx)
719 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 				  storms_string[storm], last_idx);
721 
722 		/* print the asserts */
723 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 			/* read a single assert entry */
725 			for (j = 0; j < REGS_IN_ENTRY; j++)
726 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 					  bnx2x_get_assert_list_entry(bp,
728 								      storm,
729 								      i) +
730 					  sizeof(u32) * j);
731 
732 			/* log entry if it contains a valid assert */
733 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 					  storms_string[storm], i, regs[3],
736 					  regs[2], regs[1], regs[0]);
737 				rc++;
738 			} else {
739 				break;
740 			}
741 		}
742 	}
743 
744 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 		  CHIP_IS_E1(bp) ? "everest1" :
746 		  CHIP_IS_E1H(bp) ? "everest1h" :
747 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 		  BCM_5710_FW_MAJOR_VERSION,
749 		  BCM_5710_FW_MINOR_VERSION,
750 		  BCM_5710_FW_REVISION_VERSION);
751 
752 	return rc;
753 }
754 
755 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
756 #define SCRATCH_BUFFER_SIZE(bp)	\
757 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758 
759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 	u32 addr, val;
762 	u32 mark, offset;
763 	__be32 data[9];
764 	int word;
765 	u32 trace_shmem_base;
766 	if (BP_NOMCP(bp)) {
767 		BNX2X_ERR("NO MCP - can not dump\n");
768 		return;
769 	}
770 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 		(bp->common.bc_ver & 0xff0000) >> 16,
772 		(bp->common.bc_ver & 0xff00) >> 8,
773 		(bp->common.bc_ver & 0xff));
774 
775 	if (pci_channel_offline(bp->pdev)) {
776 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777 		return;
778 	}
779 
780 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783 
784 	if (BP_PATH(bp) == 0)
785 		trace_shmem_base = bp->common.shmem_base;
786 	else
787 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788 
789 	/* sanity */
790 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792 				SCRATCH_BUFFER_SIZE(bp)) {
793 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794 			  trace_shmem_base);
795 		return;
796 	}
797 
798 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799 
800 	/* validate TRCB signature */
801 	mark = REG_RD(bp, addr);
802 	if (mark != MFW_TRACE_SIGNATURE) {
803 		BNX2X_ERR("Trace buffer signature is missing.");
804 		return ;
805 	}
806 
807 	/* read cyclic buffer pointer */
808 	addr += 4;
809 	mark = REG_RD(bp, addr);
810 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811 	if (mark >= trace_shmem_base || mark < addr + 4) {
812 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813 		return;
814 	}
815 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816 
817 	printk("%s", lvl);
818 
819 	/* dump buffer after the mark */
820 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821 		for (word = 0; word < 8; word++)
822 			data[word] = htonl(REG_RD(bp, offset + 4*word));
823 		data[8] = 0x0;
824 		pr_cont("%s", (char *)data);
825 	}
826 
827 	/* dump buffer before the mark */
828 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829 		for (word = 0; word < 8; word++)
830 			data[word] = htonl(REG_RD(bp, offset + 4*word));
831 		data[8] = 0x0;
832 		pr_cont("%s", (char *)data);
833 	}
834 	printk("%s" "end of fw dump\n", lvl);
835 }
836 
837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841 
842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844 	int port = BP_PORT(bp);
845 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846 	u32 val = REG_RD(bp, addr);
847 
848 	/* in E1 we must use only PCI configuration space to disable
849 	 * MSI/MSIX capability
850 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851 	 */
852 	if (CHIP_IS_E1(bp)) {
853 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854 		 * Use mask register to prevent from HC sending interrupts
855 		 * after we exit the function
856 		 */
857 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858 
859 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 	} else
863 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867 
868 	DP(NETIF_MSG_IFDOWN,
869 	   "write %x to HC %d (addr 0x%x)\n",
870 	   val, port, addr);
871 
872 	/* flush all outstanding writes */
873 	mmiowb();
874 
875 	REG_WR(bp, addr, val);
876 	if (REG_RD(bp, addr) != val)
877 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
878 }
879 
880 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 {
882 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883 
884 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
885 		 IGU_PF_CONF_INT_LINE_EN |
886 		 IGU_PF_CONF_ATTN_BIT_EN);
887 
888 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889 
890 	/* flush all outstanding writes */
891 	mmiowb();
892 
893 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
894 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
895 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
896 }
897 
898 static void bnx2x_int_disable(struct bnx2x *bp)
899 {
900 	if (bp->common.int_block == INT_BLOCK_HC)
901 		bnx2x_hc_int_disable(bp);
902 	else
903 		bnx2x_igu_int_disable(bp);
904 }
905 
906 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
907 {
908 	int i;
909 	u16 j;
910 	struct hc_sp_status_block_data sp_sb_data;
911 	int func = BP_FUNC(bp);
912 #ifdef BNX2X_STOP_ON_ERROR
913 	u16 start = 0, end = 0;
914 	u8 cos;
915 #endif
916 	if (IS_PF(bp) && disable_int)
917 		bnx2x_int_disable(bp);
918 
919 	bp->stats_state = STATS_STATE_DISABLED;
920 	bp->eth_stats.unrecoverable_error++;
921 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
922 
923 	BNX2X_ERR("begin crash dump -----------------\n");
924 
925 	/* Indices */
926 	/* Common */
927 	if (IS_PF(bp)) {
928 		struct host_sp_status_block *def_sb = bp->def_status_blk;
929 		int data_size, cstorm_offset;
930 
931 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
932 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
933 			  bp->spq_prod_idx, bp->stats_counter);
934 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
935 			  def_sb->atten_status_block.attn_bits,
936 			  def_sb->atten_status_block.attn_bits_ack,
937 			  def_sb->atten_status_block.status_block_id,
938 			  def_sb->atten_status_block.attn_bits_index);
939 		BNX2X_ERR("     def (");
940 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
941 			pr_cont("0x%x%s",
942 				def_sb->sp_sb.index_values[i],
943 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
944 
945 		data_size = sizeof(struct hc_sp_status_block_data) /
946 			    sizeof(u32);
947 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
948 		for (i = 0; i < data_size; i++)
949 			*((u32 *)&sp_sb_data + i) =
950 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
951 					   i * sizeof(u32));
952 
953 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
954 			sp_sb_data.igu_sb_id,
955 			sp_sb_data.igu_seg_id,
956 			sp_sb_data.p_func.pf_id,
957 			sp_sb_data.p_func.vnic_id,
958 			sp_sb_data.p_func.vf_id,
959 			sp_sb_data.p_func.vf_valid,
960 			sp_sb_data.state);
961 	}
962 
963 	for_each_eth_queue(bp, i) {
964 		struct bnx2x_fastpath *fp = &bp->fp[i];
965 		int loop;
966 		struct hc_status_block_data_e2 sb_data_e2;
967 		struct hc_status_block_data_e1x sb_data_e1x;
968 		struct hc_status_block_sm  *hc_sm_p =
969 			CHIP_IS_E1x(bp) ?
970 			sb_data_e1x.common.state_machine :
971 			sb_data_e2.common.state_machine;
972 		struct hc_index_data *hc_index_p =
973 			CHIP_IS_E1x(bp) ?
974 			sb_data_e1x.index_data :
975 			sb_data_e2.index_data;
976 		u8 data_size, cos;
977 		u32 *sb_data_p;
978 		struct bnx2x_fp_txdata txdata;
979 
980 		if (!bp->fp)
981 			break;
982 
983 		if (!fp->rx_cons_sb)
984 			continue;
985 
986 		/* Rx */
987 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
989 			  fp->rx_comp_prod,
990 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992 			  fp->rx_sge_prod, fp->last_max_sge,
993 			  le16_to_cpu(fp->fp_hc_idx));
994 
995 		/* Tx */
996 		for_each_cos_in_tx_queue(fp, cos)
997 		{
998 			if (!fp->txdata_ptr[cos])
999 				break;
1000 
1001 			txdata = *fp->txdata_ptr[cos];
1002 
1003 			if (!txdata.tx_cons_sb)
1004 				continue;
1005 
1006 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1007 				  i, txdata.tx_pkt_prod,
1008 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1009 				  txdata.tx_bd_cons,
1010 				  le16_to_cpu(*txdata.tx_cons_sb));
1011 		}
1012 
1013 		loop = CHIP_IS_E1x(bp) ?
1014 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1015 
1016 		/* host sb data */
1017 
1018 		if (IS_FCOE_FP(fp))
1019 			continue;
1020 
1021 		BNX2X_ERR("     run indexes (");
1022 		for (j = 0; j < HC_SB_MAX_SM; j++)
1023 			pr_cont("0x%x%s",
1024 			       fp->sb_running_index[j],
1025 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1026 
1027 		BNX2X_ERR("     indexes (");
1028 		for (j = 0; j < loop; j++)
1029 			pr_cont("0x%x%s",
1030 			       fp->sb_index_values[j],
1031 			       (j == loop - 1) ? ")" : " ");
1032 
1033 		/* VF cannot access FW refelection for status block */
1034 		if (IS_VF(bp))
1035 			continue;
1036 
1037 		/* fw sb data */
1038 		data_size = CHIP_IS_E1x(bp) ?
1039 			sizeof(struct hc_status_block_data_e1x) :
1040 			sizeof(struct hc_status_block_data_e2);
1041 		data_size /= sizeof(u32);
1042 		sb_data_p = CHIP_IS_E1x(bp) ?
1043 			(u32 *)&sb_data_e1x :
1044 			(u32 *)&sb_data_e2;
1045 		/* copy sb data in here */
1046 		for (j = 0; j < data_size; j++)
1047 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1048 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1049 				j * sizeof(u32));
1050 
1051 		if (!CHIP_IS_E1x(bp)) {
1052 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1053 				sb_data_e2.common.p_func.pf_id,
1054 				sb_data_e2.common.p_func.vf_id,
1055 				sb_data_e2.common.p_func.vf_valid,
1056 				sb_data_e2.common.p_func.vnic_id,
1057 				sb_data_e2.common.same_igu_sb_1b,
1058 				sb_data_e2.common.state);
1059 		} else {
1060 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1061 				sb_data_e1x.common.p_func.pf_id,
1062 				sb_data_e1x.common.p_func.vf_id,
1063 				sb_data_e1x.common.p_func.vf_valid,
1064 				sb_data_e1x.common.p_func.vnic_id,
1065 				sb_data_e1x.common.same_igu_sb_1b,
1066 				sb_data_e1x.common.state);
1067 		}
1068 
1069 		/* SB_SMs data */
1070 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1071 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1072 				j, hc_sm_p[j].__flags,
1073 				hc_sm_p[j].igu_sb_id,
1074 				hc_sm_p[j].igu_seg_id,
1075 				hc_sm_p[j].time_to_expire,
1076 				hc_sm_p[j].timer_value);
1077 		}
1078 
1079 		/* Indices data */
1080 		for (j = 0; j < loop; j++) {
1081 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1082 			       hc_index_p[j].flags,
1083 			       hc_index_p[j].timeout);
1084 		}
1085 	}
1086 
1087 #ifdef BNX2X_STOP_ON_ERROR
1088 	if (IS_PF(bp)) {
1089 		/* event queue */
1090 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1091 		for (i = 0; i < NUM_EQ_DESC; i++) {
1092 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1093 
1094 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1095 				  i, bp->eq_ring[i].message.opcode,
1096 				  bp->eq_ring[i].message.error);
1097 			BNX2X_ERR("data: %x %x %x\n",
1098 				  data[0], data[1], data[2]);
1099 		}
1100 	}
1101 
1102 	/* Rings */
1103 	/* Rx */
1104 	for_each_valid_rx_queue(bp, i) {
1105 		struct bnx2x_fastpath *fp = &bp->fp[i];
1106 
1107 		if (!bp->fp)
1108 			break;
1109 
1110 		if (!fp->rx_cons_sb)
1111 			continue;
1112 
1113 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1114 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1115 		for (j = start; j != end; j = RX_BD(j + 1)) {
1116 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1117 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1118 
1119 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1120 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1121 		}
1122 
1123 		start = RX_SGE(fp->rx_sge_prod);
1124 		end = RX_SGE(fp->last_max_sge);
1125 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1126 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1127 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1128 
1129 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1130 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1131 		}
1132 
1133 		start = RCQ_BD(fp->rx_comp_cons - 10);
1134 		end = RCQ_BD(fp->rx_comp_cons + 503);
1135 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1136 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1137 
1138 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1139 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1140 		}
1141 	}
1142 
1143 	/* Tx */
1144 	for_each_valid_tx_queue(bp, i) {
1145 		struct bnx2x_fastpath *fp = &bp->fp[i];
1146 
1147 		if (!bp->fp)
1148 			break;
1149 
1150 		for_each_cos_in_tx_queue(fp, cos) {
1151 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1152 
1153 			if (!fp->txdata_ptr[cos])
1154 				break;
1155 
1156 			if (!txdata->tx_cons_sb)
1157 				continue;
1158 
1159 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1160 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1161 			for (j = start; j != end; j = TX_BD(j + 1)) {
1162 				struct sw_tx_bd *sw_bd =
1163 					&txdata->tx_buf_ring[j];
1164 
1165 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1166 					  i, cos, j, sw_bd->skb,
1167 					  sw_bd->first_bd);
1168 			}
1169 
1170 			start = TX_BD(txdata->tx_bd_cons - 10);
1171 			end = TX_BD(txdata->tx_bd_cons + 254);
1172 			for (j = start; j != end; j = TX_BD(j + 1)) {
1173 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1174 
1175 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1176 					  i, cos, j, tx_bd[0], tx_bd[1],
1177 					  tx_bd[2], tx_bd[3]);
1178 			}
1179 		}
1180 	}
1181 #endif
1182 	if (IS_PF(bp)) {
1183 		bnx2x_fw_dump(bp);
1184 		bnx2x_mc_assert(bp);
1185 	}
1186 	BNX2X_ERR("end crash dump -----------------\n");
1187 }
1188 
1189 /*
1190  * FLR Support for E2
1191  *
1192  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1193  * initialization.
1194  */
1195 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1196 #define FLR_WAIT_INTERVAL	50	/* usec */
1197 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1198 
1199 struct pbf_pN_buf_regs {
1200 	int pN;
1201 	u32 init_crd;
1202 	u32 crd;
1203 	u32 crd_freed;
1204 };
1205 
1206 struct pbf_pN_cmd_regs {
1207 	int pN;
1208 	u32 lines_occup;
1209 	u32 lines_freed;
1210 };
1211 
1212 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1213 				     struct pbf_pN_buf_regs *regs,
1214 				     u32 poll_count)
1215 {
1216 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1217 	u32 cur_cnt = poll_count;
1218 
1219 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1220 	crd = crd_start = REG_RD(bp, regs->crd);
1221 	init_crd = REG_RD(bp, regs->init_crd);
1222 
1223 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1224 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1225 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1226 
1227 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1228 	       (init_crd - crd_start))) {
1229 		if (cur_cnt--) {
1230 			udelay(FLR_WAIT_INTERVAL);
1231 			crd = REG_RD(bp, regs->crd);
1232 			crd_freed = REG_RD(bp, regs->crd_freed);
1233 		} else {
1234 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1235 			   regs->pN);
1236 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1237 			   regs->pN, crd);
1238 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1239 			   regs->pN, crd_freed);
1240 			break;
1241 		}
1242 	}
1243 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1244 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1245 }
1246 
1247 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1248 				     struct pbf_pN_cmd_regs *regs,
1249 				     u32 poll_count)
1250 {
1251 	u32 occup, to_free, freed, freed_start;
1252 	u32 cur_cnt = poll_count;
1253 
1254 	occup = to_free = REG_RD(bp, regs->lines_occup);
1255 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1256 
1257 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1258 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1259 
1260 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1261 		if (cur_cnt--) {
1262 			udelay(FLR_WAIT_INTERVAL);
1263 			occup = REG_RD(bp, regs->lines_occup);
1264 			freed = REG_RD(bp, regs->lines_freed);
1265 		} else {
1266 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1267 			   regs->pN);
1268 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1269 			   regs->pN, occup);
1270 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1271 			   regs->pN, freed);
1272 			break;
1273 		}
1274 	}
1275 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1276 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1277 }
1278 
1279 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1280 				    u32 expected, u32 poll_count)
1281 {
1282 	u32 cur_cnt = poll_count;
1283 	u32 val;
1284 
1285 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1286 		udelay(FLR_WAIT_INTERVAL);
1287 
1288 	return val;
1289 }
1290 
1291 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1292 				    char *msg, u32 poll_cnt)
1293 {
1294 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1295 	if (val != 0) {
1296 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1297 		return 1;
1298 	}
1299 	return 0;
1300 }
1301 
1302 /* Common routines with VF FLR cleanup */
1303 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1304 {
1305 	/* adjust polling timeout */
1306 	if (CHIP_REV_IS_EMUL(bp))
1307 		return FLR_POLL_CNT * 2000;
1308 
1309 	if (CHIP_REV_IS_FPGA(bp))
1310 		return FLR_POLL_CNT * 120;
1311 
1312 	return FLR_POLL_CNT;
1313 }
1314 
1315 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1316 {
1317 	struct pbf_pN_cmd_regs cmd_regs[] = {
1318 		{0, (CHIP_IS_E3B0(bp)) ?
1319 			PBF_REG_TQ_OCCUPANCY_Q0 :
1320 			PBF_REG_P0_TQ_OCCUPANCY,
1321 		    (CHIP_IS_E3B0(bp)) ?
1322 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1323 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1324 		{1, (CHIP_IS_E3B0(bp)) ?
1325 			PBF_REG_TQ_OCCUPANCY_Q1 :
1326 			PBF_REG_P1_TQ_OCCUPANCY,
1327 		    (CHIP_IS_E3B0(bp)) ?
1328 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1329 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1330 		{4, (CHIP_IS_E3B0(bp)) ?
1331 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1332 			PBF_REG_P4_TQ_OCCUPANCY,
1333 		    (CHIP_IS_E3B0(bp)) ?
1334 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1335 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1336 	};
1337 
1338 	struct pbf_pN_buf_regs buf_regs[] = {
1339 		{0, (CHIP_IS_E3B0(bp)) ?
1340 			PBF_REG_INIT_CRD_Q0 :
1341 			PBF_REG_P0_INIT_CRD ,
1342 		    (CHIP_IS_E3B0(bp)) ?
1343 			PBF_REG_CREDIT_Q0 :
1344 			PBF_REG_P0_CREDIT,
1345 		    (CHIP_IS_E3B0(bp)) ?
1346 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1347 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1348 		{1, (CHIP_IS_E3B0(bp)) ?
1349 			PBF_REG_INIT_CRD_Q1 :
1350 			PBF_REG_P1_INIT_CRD,
1351 		    (CHIP_IS_E3B0(bp)) ?
1352 			PBF_REG_CREDIT_Q1 :
1353 			PBF_REG_P1_CREDIT,
1354 		    (CHIP_IS_E3B0(bp)) ?
1355 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1356 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1357 		{4, (CHIP_IS_E3B0(bp)) ?
1358 			PBF_REG_INIT_CRD_LB_Q :
1359 			PBF_REG_P4_INIT_CRD,
1360 		    (CHIP_IS_E3B0(bp)) ?
1361 			PBF_REG_CREDIT_LB_Q :
1362 			PBF_REG_P4_CREDIT,
1363 		    (CHIP_IS_E3B0(bp)) ?
1364 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1365 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1366 	};
1367 
1368 	int i;
1369 
1370 	/* Verify the command queues are flushed P0, P1, P4 */
1371 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1372 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1373 
1374 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1375 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1376 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1377 }
1378 
1379 #define OP_GEN_PARAM(param) \
1380 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1381 
1382 #define OP_GEN_TYPE(type) \
1383 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1384 
1385 #define OP_GEN_AGG_VECT(index) \
1386 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1387 
1388 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1389 {
1390 	u32 op_gen_command = 0;
1391 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1392 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1393 	int ret = 0;
1394 
1395 	if (REG_RD(bp, comp_addr)) {
1396 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1397 		return 1;
1398 	}
1399 
1400 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1401 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1402 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1403 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1404 
1405 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1406 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1407 
1408 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1409 		BNX2X_ERR("FW final cleanup did not succeed\n");
1410 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1411 		   (REG_RD(bp, comp_addr)));
1412 		bnx2x_panic();
1413 		return 1;
1414 	}
1415 	/* Zero completion for next FLR */
1416 	REG_WR(bp, comp_addr, 0);
1417 
1418 	return ret;
1419 }
1420 
1421 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1422 {
1423 	u16 status;
1424 
1425 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1426 	return status & PCI_EXP_DEVSTA_TRPND;
1427 }
1428 
1429 /* PF FLR specific routines
1430 */
1431 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1432 {
1433 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1434 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1435 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1436 			"CFC PF usage counter timed out",
1437 			poll_cnt))
1438 		return 1;
1439 
1440 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1441 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1442 			DORQ_REG_PF_USAGE_CNT,
1443 			"DQ PF usage counter timed out",
1444 			poll_cnt))
1445 		return 1;
1446 
1447 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1448 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1449 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1450 			"QM PF usage counter timed out",
1451 			poll_cnt))
1452 		return 1;
1453 
1454 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1455 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1456 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1457 			"Timers VNIC usage counter timed out",
1458 			poll_cnt))
1459 		return 1;
1460 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1462 			"Timers NUM_SCANS usage counter timed out",
1463 			poll_cnt))
1464 		return 1;
1465 
1466 	/* Wait DMAE PF usage counter to zero */
1467 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1468 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1469 			"DMAE command register timed out",
1470 			poll_cnt))
1471 		return 1;
1472 
1473 	return 0;
1474 }
1475 
1476 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1477 {
1478 	u32 val;
1479 
1480 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1481 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1482 
1483 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1484 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1485 
1486 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1487 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1488 
1489 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1490 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1491 
1492 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1493 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1494 
1495 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1496 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1497 
1498 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1499 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1500 
1501 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1502 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1503 	   val);
1504 }
1505 
1506 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1507 {
1508 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1509 
1510 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1511 
1512 	/* Re-enable PF target read access */
1513 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1514 
1515 	/* Poll HW usage counters */
1516 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1517 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1518 		return -EBUSY;
1519 
1520 	/* Zero the igu 'trailing edge' and 'leading edge' */
1521 
1522 	/* Send the FW cleanup command */
1523 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1524 		return -EBUSY;
1525 
1526 	/* ATC cleanup */
1527 
1528 	/* Verify TX hw is flushed */
1529 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1530 
1531 	/* Wait 100ms (not adjusted according to platform) */
1532 	msleep(100);
1533 
1534 	/* Verify no pending pci transactions */
1535 	if (bnx2x_is_pcie_pending(bp->pdev))
1536 		BNX2X_ERR("PCIE Transactions still pending\n");
1537 
1538 	/* Debug */
1539 	bnx2x_hw_enable_status(bp);
1540 
1541 	/*
1542 	 * Master enable - Due to WB DMAE writes performed before this
1543 	 * register is re-initialized as part of the regular function init
1544 	 */
1545 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1546 
1547 	return 0;
1548 }
1549 
1550 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1551 {
1552 	int port = BP_PORT(bp);
1553 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1554 	u32 val = REG_RD(bp, addr);
1555 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1556 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1557 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1558 
1559 	if (msix) {
1560 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1561 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1562 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1563 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1564 		if (single_msix)
1565 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1566 	} else if (msi) {
1567 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1568 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1571 	} else {
1572 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1573 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1574 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1575 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576 
1577 		if (!CHIP_IS_E1(bp)) {
1578 			DP(NETIF_MSG_IFUP,
1579 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1580 
1581 			REG_WR(bp, addr, val);
1582 
1583 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1584 		}
1585 	}
1586 
1587 	if (CHIP_IS_E1(bp))
1588 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1589 
1590 	DP(NETIF_MSG_IFUP,
1591 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1592 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1593 
1594 	REG_WR(bp, addr, val);
1595 	/*
1596 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1597 	 */
1598 	mmiowb();
1599 	barrier();
1600 
1601 	if (!CHIP_IS_E1(bp)) {
1602 		/* init leading/trailing edge */
1603 		if (IS_MF(bp)) {
1604 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1605 			if (bp->port.pmf)
1606 				/* enable nig and gpio3 attention */
1607 				val |= 0x1100;
1608 		} else
1609 			val = 0xffff;
1610 
1611 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1612 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1613 	}
1614 
1615 	/* Make sure that interrupts are indeed enabled from here on */
1616 	mmiowb();
1617 }
1618 
1619 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1620 {
1621 	u32 val;
1622 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1623 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1624 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1625 
1626 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1627 
1628 	if (msix) {
1629 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1630 			 IGU_PF_CONF_SINGLE_ISR_EN);
1631 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1632 			IGU_PF_CONF_ATTN_BIT_EN);
1633 
1634 		if (single_msix)
1635 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1636 	} else if (msi) {
1637 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1638 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1639 			IGU_PF_CONF_ATTN_BIT_EN |
1640 			IGU_PF_CONF_SINGLE_ISR_EN);
1641 	} else {
1642 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1643 		val |= (IGU_PF_CONF_INT_LINE_EN |
1644 			IGU_PF_CONF_ATTN_BIT_EN |
1645 			IGU_PF_CONF_SINGLE_ISR_EN);
1646 	}
1647 
1648 	/* Clean previous status - need to configure igu prior to ack*/
1649 	if ((!msix) || single_msix) {
1650 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1651 		bnx2x_ack_int(bp);
1652 	}
1653 
1654 	val |= IGU_PF_CONF_FUNC_EN;
1655 
1656 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1657 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1658 
1659 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660 
1661 	if (val & IGU_PF_CONF_INT_LINE_EN)
1662 		pci_intx(bp->pdev, true);
1663 
1664 	barrier();
1665 
1666 	/* init leading/trailing edge */
1667 	if (IS_MF(bp)) {
1668 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1669 		if (bp->port.pmf)
1670 			/* enable nig and gpio3 attention */
1671 			val |= 0x1100;
1672 	} else
1673 		val = 0xffff;
1674 
1675 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1676 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1677 
1678 	/* Make sure that interrupts are indeed enabled from here on */
1679 	mmiowb();
1680 }
1681 
1682 void bnx2x_int_enable(struct bnx2x *bp)
1683 {
1684 	if (bp->common.int_block == INT_BLOCK_HC)
1685 		bnx2x_hc_int_enable(bp);
1686 	else
1687 		bnx2x_igu_int_enable(bp);
1688 }
1689 
1690 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1691 {
1692 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1693 	int i, offset;
1694 
1695 	if (disable_hw)
1696 		/* prevent the HW from sending interrupts */
1697 		bnx2x_int_disable(bp);
1698 
1699 	/* make sure all ISRs are done */
1700 	if (msix) {
1701 		synchronize_irq(bp->msix_table[0].vector);
1702 		offset = 1;
1703 		if (CNIC_SUPPORT(bp))
1704 			offset++;
1705 		for_each_eth_queue(bp, i)
1706 			synchronize_irq(bp->msix_table[offset++].vector);
1707 	} else
1708 		synchronize_irq(bp->pdev->irq);
1709 
1710 	/* make sure sp_task is not running */
1711 	cancel_delayed_work(&bp->sp_task);
1712 	cancel_delayed_work(&bp->period_task);
1713 	flush_workqueue(bnx2x_wq);
1714 }
1715 
1716 /* fast path */
1717 
1718 /*
1719  * General service functions
1720  */
1721 
1722 /* Return true if succeeded to acquire the lock */
1723 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1724 {
1725 	u32 lock_status;
1726 	u32 resource_bit = (1 << resource);
1727 	int func = BP_FUNC(bp);
1728 	u32 hw_lock_control_reg;
1729 
1730 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731 	   "Trying to take a lock on resource %d\n", resource);
1732 
1733 	/* Validating that the resource is within range */
1734 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1735 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1736 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1737 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1738 		return false;
1739 	}
1740 
1741 	if (func <= 5)
1742 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1743 	else
1744 		hw_lock_control_reg =
1745 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1746 
1747 	/* Try to acquire the lock */
1748 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1749 	lock_status = REG_RD(bp, hw_lock_control_reg);
1750 	if (lock_status & resource_bit)
1751 		return true;
1752 
1753 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1754 	   "Failed to get a lock on resource %d\n", resource);
1755 	return false;
1756 }
1757 
1758 /**
1759  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1760  *
1761  * @bp:	driver handle
1762  *
1763  * Returns the recovery leader resource id according to the engine this function
1764  * belongs to. Currently only only 2 engines is supported.
1765  */
1766 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1767 {
1768 	if (BP_PATH(bp))
1769 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1770 	else
1771 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1772 }
1773 
1774 /**
1775  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1776  *
1777  * @bp: driver handle
1778  *
1779  * Tries to acquire a leader lock for current engine.
1780  */
1781 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1782 {
1783 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 }
1785 
1786 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1787 
1788 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1789 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1790 {
1791 	/* Set the interrupt occurred bit for the sp-task to recognize it
1792 	 * must ack the interrupt and transition according to the IGU
1793 	 * state machine.
1794 	 */
1795 	atomic_set(&bp->interrupt_occurred, 1);
1796 
1797 	/* The sp_task must execute only after this bit
1798 	 * is set, otherwise we will get out of sync and miss all
1799 	 * further interrupts. Hence, the barrier.
1800 	 */
1801 	smp_wmb();
1802 
1803 	/* schedule sp_task to workqueue */
1804 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 }
1806 
1807 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1808 {
1809 	struct bnx2x *bp = fp->bp;
1810 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1811 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1812 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1813 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1814 
1815 	DP(BNX2X_MSG_SP,
1816 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1817 	   fp->index, cid, command, bp->state,
1818 	   rr_cqe->ramrod_cqe.ramrod_type);
1819 
1820 	/* If cid is within VF range, replace the slowpath object with the
1821 	 * one corresponding to this VF
1822 	 */
1823 	if (cid >= BNX2X_FIRST_VF_CID  &&
1824 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1825 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1826 
1827 	switch (command) {
1828 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1829 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1830 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1831 		break;
1832 
1833 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1834 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1835 		drv_cmd = BNX2X_Q_CMD_SETUP;
1836 		break;
1837 
1838 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1839 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1840 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1841 		break;
1842 
1843 	case (RAMROD_CMD_ID_ETH_HALT):
1844 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1845 		drv_cmd = BNX2X_Q_CMD_HALT;
1846 		break;
1847 
1848 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1849 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1850 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1851 		break;
1852 
1853 	case (RAMROD_CMD_ID_ETH_EMPTY):
1854 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1855 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1856 		break;
1857 
1858 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1859 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1860 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1861 		break;
1862 
1863 	default:
1864 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1865 			  command, fp->index);
1866 		return;
1867 	}
1868 
1869 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1870 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1871 		/* q_obj->complete_cmd() failure means that this was
1872 		 * an unexpected completion.
1873 		 *
1874 		 * In this case we don't want to increase the bp->spq_left
1875 		 * because apparently we haven't sent this command the first
1876 		 * place.
1877 		 */
1878 #ifdef BNX2X_STOP_ON_ERROR
1879 		bnx2x_panic();
1880 #else
1881 		return;
1882 #endif
1883 
1884 	smp_mb__before_atomic();
1885 	atomic_inc(&bp->cq_spq_left);
1886 	/* push the change in bp->spq_left and towards the memory */
1887 	smp_mb__after_atomic();
1888 
1889 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1890 
1891 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1892 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1893 		/* if Q update ramrod is completed for last Q in AFEX vif set
1894 		 * flow, then ACK MCP at the end
1895 		 *
1896 		 * mark pending ACK to MCP bit.
1897 		 * prevent case that both bits are cleared.
1898 		 * At the end of load/unload driver checks that
1899 		 * sp_state is cleared, and this order prevents
1900 		 * races
1901 		 */
1902 		smp_mb__before_atomic();
1903 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1904 		wmb();
1905 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1906 		smp_mb__after_atomic();
1907 
1908 		/* schedule the sp task as mcp ack is required */
1909 		bnx2x_schedule_sp_task(bp);
1910 	}
1911 
1912 	return;
1913 }
1914 
1915 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1916 {
1917 	struct bnx2x *bp = netdev_priv(dev_instance);
1918 	u16 status = bnx2x_ack_int(bp);
1919 	u16 mask;
1920 	int i;
1921 	u8 cos;
1922 
1923 	/* Return here if interrupt is shared and it's not for us */
1924 	if (unlikely(status == 0)) {
1925 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1926 		return IRQ_NONE;
1927 	}
1928 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1929 
1930 #ifdef BNX2X_STOP_ON_ERROR
1931 	if (unlikely(bp->panic))
1932 		return IRQ_HANDLED;
1933 #endif
1934 
1935 	for_each_eth_queue(bp, i) {
1936 		struct bnx2x_fastpath *fp = &bp->fp[i];
1937 
1938 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1939 		if (status & mask) {
1940 			/* Handle Rx or Tx according to SB id */
1941 			for_each_cos_in_tx_queue(fp, cos)
1942 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1943 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1944 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1945 			status &= ~mask;
1946 		}
1947 	}
1948 
1949 	if (CNIC_SUPPORT(bp)) {
1950 		mask = 0x2;
1951 		if (status & (mask | 0x1)) {
1952 			struct cnic_ops *c_ops = NULL;
1953 
1954 			rcu_read_lock();
1955 			c_ops = rcu_dereference(bp->cnic_ops);
1956 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1957 				      CNIC_DRV_STATE_HANDLES_IRQ))
1958 				c_ops->cnic_handler(bp->cnic_data, NULL);
1959 			rcu_read_unlock();
1960 
1961 			status &= ~mask;
1962 		}
1963 	}
1964 
1965 	if (unlikely(status & 0x1)) {
1966 
1967 		/* schedule sp task to perform default status block work, ack
1968 		 * attentions and enable interrupts.
1969 		 */
1970 		bnx2x_schedule_sp_task(bp);
1971 
1972 		status &= ~0x1;
1973 		if (!status)
1974 			return IRQ_HANDLED;
1975 	}
1976 
1977 	if (unlikely(status))
1978 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1979 		   status);
1980 
1981 	return IRQ_HANDLED;
1982 }
1983 
1984 /* Link */
1985 
1986 /*
1987  * General service functions
1988  */
1989 
1990 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1991 {
1992 	u32 lock_status;
1993 	u32 resource_bit = (1 << resource);
1994 	int func = BP_FUNC(bp);
1995 	u32 hw_lock_control_reg;
1996 	int cnt;
1997 
1998 	/* Validating that the resource is within range */
1999 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2000 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2001 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2002 		return -EINVAL;
2003 	}
2004 
2005 	if (func <= 5) {
2006 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2007 	} else {
2008 		hw_lock_control_reg =
2009 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010 	}
2011 
2012 	/* Validating that the resource is not already taken */
2013 	lock_status = REG_RD(bp, hw_lock_control_reg);
2014 	if (lock_status & resource_bit) {
2015 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2016 		   lock_status, resource_bit);
2017 		return -EEXIST;
2018 	}
2019 
2020 	/* Try for 5 second every 5ms */
2021 	for (cnt = 0; cnt < 1000; cnt++) {
2022 		/* Try to acquire the lock */
2023 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2024 		lock_status = REG_RD(bp, hw_lock_control_reg);
2025 		if (lock_status & resource_bit)
2026 			return 0;
2027 
2028 		usleep_range(5000, 10000);
2029 	}
2030 	BNX2X_ERR("Timeout\n");
2031 	return -EAGAIN;
2032 }
2033 
2034 int bnx2x_release_leader_lock(struct bnx2x *bp)
2035 {
2036 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 }
2038 
2039 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2040 {
2041 	u32 lock_status;
2042 	u32 resource_bit = (1 << resource);
2043 	int func = BP_FUNC(bp);
2044 	u32 hw_lock_control_reg;
2045 
2046 	/* Validating that the resource is within range */
2047 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2048 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2049 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2050 		return -EINVAL;
2051 	}
2052 
2053 	if (func <= 5) {
2054 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2055 	} else {
2056 		hw_lock_control_reg =
2057 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058 	}
2059 
2060 	/* Validating that the resource is currently taken */
2061 	lock_status = REG_RD(bp, hw_lock_control_reg);
2062 	if (!(lock_status & resource_bit)) {
2063 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2064 			  lock_status, resource_bit);
2065 		return -EFAULT;
2066 	}
2067 
2068 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2069 	return 0;
2070 }
2071 
2072 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2073 {
2074 	/* The GPIO should be swapped if swap register is set and active */
2075 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2076 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2077 	int gpio_shift = gpio_num +
2078 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2079 	u32 gpio_mask = (1 << gpio_shift);
2080 	u32 gpio_reg;
2081 	int value;
2082 
2083 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2084 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2085 		return -EINVAL;
2086 	}
2087 
2088 	/* read GPIO value */
2089 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2090 
2091 	/* get the requested pin value */
2092 	if ((gpio_reg & gpio_mask) == gpio_mask)
2093 		value = 1;
2094 	else
2095 		value = 0;
2096 
2097 	return value;
2098 }
2099 
2100 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2101 {
2102 	/* The GPIO should be swapped if swap register is set and active */
2103 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2104 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2105 	int gpio_shift = gpio_num +
2106 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2107 	u32 gpio_mask = (1 << gpio_shift);
2108 	u32 gpio_reg;
2109 
2110 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2111 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2112 		return -EINVAL;
2113 	}
2114 
2115 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2116 	/* read GPIO and mask except the float bits */
2117 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2118 
2119 	switch (mode) {
2120 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2121 		DP(NETIF_MSG_LINK,
2122 		   "Set GPIO %d (shift %d) -> output low\n",
2123 		   gpio_num, gpio_shift);
2124 		/* clear FLOAT and set CLR */
2125 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2126 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2127 		break;
2128 
2129 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2130 		DP(NETIF_MSG_LINK,
2131 		   "Set GPIO %d (shift %d) -> output high\n",
2132 		   gpio_num, gpio_shift);
2133 		/* clear FLOAT and set SET */
2134 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2135 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2136 		break;
2137 
2138 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2139 		DP(NETIF_MSG_LINK,
2140 		   "Set GPIO %d (shift %d) -> input\n",
2141 		   gpio_num, gpio_shift);
2142 		/* set FLOAT */
2143 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2144 		break;
2145 
2146 	default:
2147 		break;
2148 	}
2149 
2150 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2151 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2152 
2153 	return 0;
2154 }
2155 
2156 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2157 {
2158 	u32 gpio_reg = 0;
2159 	int rc = 0;
2160 
2161 	/* Any port swapping should be handled by caller. */
2162 
2163 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2164 	/* read GPIO and mask except the float bits */
2165 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2166 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2167 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2168 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2169 
2170 	switch (mode) {
2171 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2172 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2173 		/* set CLR */
2174 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2175 		break;
2176 
2177 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2178 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2179 		/* set SET */
2180 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2181 		break;
2182 
2183 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2184 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2185 		/* set FLOAT */
2186 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2187 		break;
2188 
2189 	default:
2190 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2191 		rc = -EINVAL;
2192 		break;
2193 	}
2194 
2195 	if (rc == 0)
2196 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2197 
2198 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2199 
2200 	return rc;
2201 }
2202 
2203 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2204 {
2205 	/* The GPIO should be swapped if swap register is set and active */
2206 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2207 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2208 	int gpio_shift = gpio_num +
2209 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2210 	u32 gpio_mask = (1 << gpio_shift);
2211 	u32 gpio_reg;
2212 
2213 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2214 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2215 		return -EINVAL;
2216 	}
2217 
2218 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2219 	/* read GPIO int */
2220 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2221 
2222 	switch (mode) {
2223 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2224 		DP(NETIF_MSG_LINK,
2225 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2226 		   gpio_num, gpio_shift);
2227 		/* clear SET and set CLR */
2228 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2229 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2230 		break;
2231 
2232 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2233 		DP(NETIF_MSG_LINK,
2234 		   "Set GPIO INT %d (shift %d) -> output high\n",
2235 		   gpio_num, gpio_shift);
2236 		/* clear CLR and set SET */
2237 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2238 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2239 		break;
2240 
2241 	default:
2242 		break;
2243 	}
2244 
2245 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2246 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2247 
2248 	return 0;
2249 }
2250 
2251 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2252 {
2253 	u32 spio_reg;
2254 
2255 	/* Only 2 SPIOs are configurable */
2256 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2257 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2258 		return -EINVAL;
2259 	}
2260 
2261 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2262 	/* read SPIO and mask except the float bits */
2263 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2264 
2265 	switch (mode) {
2266 	case MISC_SPIO_OUTPUT_LOW:
2267 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2268 		/* clear FLOAT and set CLR */
2269 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2270 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2271 		break;
2272 
2273 	case MISC_SPIO_OUTPUT_HIGH:
2274 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2275 		/* clear FLOAT and set SET */
2276 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2277 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2278 		break;
2279 
2280 	case MISC_SPIO_INPUT_HI_Z:
2281 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2282 		/* set FLOAT */
2283 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2284 		break;
2285 
2286 	default:
2287 		break;
2288 	}
2289 
2290 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2291 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2292 
2293 	return 0;
2294 }
2295 
2296 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2297 {
2298 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2299 
2300 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2301 					   ADVERTISED_Pause);
2302 	switch (bp->link_vars.ieee_fc &
2303 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2304 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2305 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2306 						  ADVERTISED_Pause);
2307 		break;
2308 
2309 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2310 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2311 		break;
2312 
2313 	default:
2314 		break;
2315 	}
2316 }
2317 
2318 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2319 {
2320 	/* Initialize link parameters structure variables
2321 	 * It is recommended to turn off RX FC for jumbo frames
2322 	 *  for better performance
2323 	 */
2324 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2325 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2326 	else
2327 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 }
2329 
2330 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2331 {
2332 	u32 pause_enabled = 0;
2333 
2334 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2335 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2336 			pause_enabled = 1;
2337 
2338 		REG_WR(bp, BAR_USTRORM_INTMEM +
2339 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2340 		       pause_enabled);
2341 	}
2342 
2343 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2344 	   pause_enabled ? "enabled" : "disabled");
2345 }
2346 
2347 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2348 {
2349 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2350 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2351 
2352 	if (!BP_NOMCP(bp)) {
2353 		bnx2x_set_requested_fc(bp);
2354 		bnx2x_acquire_phy_lock(bp);
2355 
2356 		if (load_mode == LOAD_DIAG) {
2357 			struct link_params *lp = &bp->link_params;
2358 			lp->loopback_mode = LOOPBACK_XGXS;
2359 			/* Prefer doing PHY loopback at highest speed */
2360 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2361 				if (lp->speed_cap_mask[cfx_idx] &
2362 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2363 					lp->req_line_speed[cfx_idx] =
2364 					SPEED_20000;
2365 				else if (lp->speed_cap_mask[cfx_idx] &
2366 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2367 						lp->req_line_speed[cfx_idx] =
2368 						SPEED_10000;
2369 				else
2370 					lp->req_line_speed[cfx_idx] =
2371 					SPEED_1000;
2372 			}
2373 		}
2374 
2375 		if (load_mode == LOAD_LOOPBACK_EXT) {
2376 			struct link_params *lp = &bp->link_params;
2377 			lp->loopback_mode = LOOPBACK_EXT;
2378 		}
2379 
2380 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2381 
2382 		bnx2x_release_phy_lock(bp);
2383 
2384 		bnx2x_init_dropless_fc(bp);
2385 
2386 		bnx2x_calc_fc_adv(bp);
2387 
2388 		if (bp->link_vars.link_up) {
2389 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2390 			bnx2x_link_report(bp);
2391 		}
2392 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2393 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2394 		return rc;
2395 	}
2396 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2397 	return -EINVAL;
2398 }
2399 
2400 void bnx2x_link_set(struct bnx2x *bp)
2401 {
2402 	if (!BP_NOMCP(bp)) {
2403 		bnx2x_acquire_phy_lock(bp);
2404 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2405 		bnx2x_release_phy_lock(bp);
2406 
2407 		bnx2x_init_dropless_fc(bp);
2408 
2409 		bnx2x_calc_fc_adv(bp);
2410 	} else
2411 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 }
2413 
2414 static void bnx2x__link_reset(struct bnx2x *bp)
2415 {
2416 	if (!BP_NOMCP(bp)) {
2417 		bnx2x_acquire_phy_lock(bp);
2418 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2419 		bnx2x_release_phy_lock(bp);
2420 	} else
2421 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 }
2423 
2424 void bnx2x_force_link_reset(struct bnx2x *bp)
2425 {
2426 	bnx2x_acquire_phy_lock(bp);
2427 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2428 	bnx2x_release_phy_lock(bp);
2429 }
2430 
2431 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2432 {
2433 	u8 rc = 0;
2434 
2435 	if (!BP_NOMCP(bp)) {
2436 		bnx2x_acquire_phy_lock(bp);
2437 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2438 				     is_serdes);
2439 		bnx2x_release_phy_lock(bp);
2440 	} else
2441 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2442 
2443 	return rc;
2444 }
2445 
2446 /* Calculates the sum of vn_min_rates.
2447    It's needed for further normalizing of the min_rates.
2448    Returns:
2449      sum of vn_min_rates.
2450        or
2451      0 - if all the min_rates are 0.
2452      In the later case fairness algorithm should be deactivated.
2453      If not all min_rates are zero then those that are zeroes will be set to 1.
2454  */
2455 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2456 				      struct cmng_init_input *input)
2457 {
2458 	int all_zero = 1;
2459 	int vn;
2460 
2461 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2462 		u32 vn_cfg = bp->mf_config[vn];
2463 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2464 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2465 
2466 		/* Skip hidden vns */
2467 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2468 			vn_min_rate = 0;
2469 		/* If min rate is zero - set it to 1 */
2470 		else if (!vn_min_rate)
2471 			vn_min_rate = DEF_MIN_RATE;
2472 		else
2473 			all_zero = 0;
2474 
2475 		input->vnic_min_rate[vn] = vn_min_rate;
2476 	}
2477 
2478 	/* if ETS or all min rates are zeros - disable fairness */
2479 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2480 		input->flags.cmng_enables &=
2481 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2483 	} else if (all_zero) {
2484 		input->flags.cmng_enables &=
2485 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2486 		DP(NETIF_MSG_IFUP,
2487 		   "All MIN values are zeroes fairness will be disabled\n");
2488 	} else
2489 		input->flags.cmng_enables |=
2490 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 }
2492 
2493 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2494 				    struct cmng_init_input *input)
2495 {
2496 	u16 vn_max_rate;
2497 	u32 vn_cfg = bp->mf_config[vn];
2498 
2499 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2500 		vn_max_rate = 0;
2501 	else {
2502 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2503 
2504 		if (IS_MF_PERCENT_BW(bp)) {
2505 			/* maxCfg in percents of linkspeed */
2506 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2507 		} else /* SD modes */
2508 			/* maxCfg is absolute in 100Mb units */
2509 			vn_max_rate = maxCfg * 100;
2510 	}
2511 
2512 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2513 
2514 	input->vnic_max_rate[vn] = vn_max_rate;
2515 }
2516 
2517 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2518 {
2519 	if (CHIP_REV_IS_SLOW(bp))
2520 		return CMNG_FNS_NONE;
2521 	if (IS_MF(bp))
2522 		return CMNG_FNS_MINMAX;
2523 
2524 	return CMNG_FNS_NONE;
2525 }
2526 
2527 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2528 {
2529 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2530 
2531 	if (BP_NOMCP(bp))
2532 		return; /* what should be the default value in this case */
2533 
2534 	/* For 2 port configuration the absolute function number formula
2535 	 * is:
2536 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2537 	 *
2538 	 *      and there are 4 functions per port
2539 	 *
2540 	 * For 4 port configuration it is
2541 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2542 	 *
2543 	 *      and there are 2 functions per port
2544 	 */
2545 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2546 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2547 
2548 		if (func >= E1H_FUNC_MAX)
2549 			break;
2550 
2551 		bp->mf_config[vn] =
2552 			MF_CFG_RD(bp, func_mf_config[func].config);
2553 	}
2554 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2555 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2556 		bp->flags |= MF_FUNC_DIS;
2557 	} else {
2558 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2559 		bp->flags &= ~MF_FUNC_DIS;
2560 	}
2561 }
2562 
2563 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2564 {
2565 	struct cmng_init_input input;
2566 	memset(&input, 0, sizeof(struct cmng_init_input));
2567 
2568 	input.port_rate = bp->link_vars.line_speed;
2569 
2570 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2571 		int vn;
2572 
2573 		/* read mf conf from shmem */
2574 		if (read_cfg)
2575 			bnx2x_read_mf_cfg(bp);
2576 
2577 		/* vn_weight_sum and enable fairness if not 0 */
2578 		bnx2x_calc_vn_min(bp, &input);
2579 
2580 		/* calculate and set min-max rate for each vn */
2581 		if (bp->port.pmf)
2582 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2583 				bnx2x_calc_vn_max(bp, vn, &input);
2584 
2585 		/* always enable rate shaping and fairness */
2586 		input.flags.cmng_enables |=
2587 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2588 
2589 		bnx2x_init_cmng(&input, &bp->cmng);
2590 		return;
2591 	}
2592 
2593 	/* rate shaping and fairness are disabled */
2594 	DP(NETIF_MSG_IFUP,
2595 	   "rate shaping and fairness are disabled\n");
2596 }
2597 
2598 static void storm_memset_cmng(struct bnx2x *bp,
2599 			      struct cmng_init *cmng,
2600 			      u8 port)
2601 {
2602 	int vn;
2603 	size_t size = sizeof(struct cmng_struct_per_port);
2604 
2605 	u32 addr = BAR_XSTRORM_INTMEM +
2606 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2607 
2608 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2609 
2610 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2611 		int func = func_by_vn(bp, vn);
2612 
2613 		addr = BAR_XSTRORM_INTMEM +
2614 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2615 		size = sizeof(struct rate_shaping_vars_per_vn);
2616 		__storm_memset_struct(bp, addr, size,
2617 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2618 
2619 		addr = BAR_XSTRORM_INTMEM +
2620 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2621 		size = sizeof(struct fairness_vars_per_vn);
2622 		__storm_memset_struct(bp, addr, size,
2623 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2624 	}
2625 }
2626 
2627 /* init cmng mode in HW according to local configuration */
2628 void bnx2x_set_local_cmng(struct bnx2x *bp)
2629 {
2630 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2631 
2632 	if (cmng_fns != CMNG_FNS_NONE) {
2633 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2634 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2635 	} else {
2636 		/* rate shaping and fairness are disabled */
2637 		DP(NETIF_MSG_IFUP,
2638 		   "single function mode without fairness\n");
2639 	}
2640 }
2641 
2642 /* This function is called upon link interrupt */
2643 static void bnx2x_link_attn(struct bnx2x *bp)
2644 {
2645 	/* Make sure that we are synced with the current statistics */
2646 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2647 
2648 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2649 
2650 	bnx2x_init_dropless_fc(bp);
2651 
2652 	if (bp->link_vars.link_up) {
2653 
2654 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2655 			struct host_port_stats *pstats;
2656 
2657 			pstats = bnx2x_sp(bp, port_stats);
2658 			/* reset old mac stats */
2659 			memset(&(pstats->mac_stx[0]), 0,
2660 			       sizeof(struct mac_stx));
2661 		}
2662 		if (bp->state == BNX2X_STATE_OPEN)
2663 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664 	}
2665 
2666 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2667 		bnx2x_set_local_cmng(bp);
2668 
2669 	__bnx2x_link_report(bp);
2670 
2671 	if (IS_MF(bp))
2672 		bnx2x_link_sync_notify(bp);
2673 }
2674 
2675 void bnx2x__link_status_update(struct bnx2x *bp)
2676 {
2677 	if (bp->state != BNX2X_STATE_OPEN)
2678 		return;
2679 
2680 	/* read updated dcb configuration */
2681 	if (IS_PF(bp)) {
2682 		bnx2x_dcbx_pmf_update(bp);
2683 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2684 		if (bp->link_vars.link_up)
2685 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2686 		else
2687 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2688 			/* indicate link status */
2689 		bnx2x_link_report(bp);
2690 
2691 	} else { /* VF */
2692 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2693 					  SUPPORTED_10baseT_Full |
2694 					  SUPPORTED_100baseT_Half |
2695 					  SUPPORTED_100baseT_Full |
2696 					  SUPPORTED_1000baseT_Full |
2697 					  SUPPORTED_2500baseX_Full |
2698 					  SUPPORTED_10000baseT_Full |
2699 					  SUPPORTED_TP |
2700 					  SUPPORTED_FIBRE |
2701 					  SUPPORTED_Autoneg |
2702 					  SUPPORTED_Pause |
2703 					  SUPPORTED_Asym_Pause);
2704 		bp->port.advertising[0] = bp->port.supported[0];
2705 
2706 		bp->link_params.bp = bp;
2707 		bp->link_params.port = BP_PORT(bp);
2708 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2709 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2710 		bp->link_params.req_line_speed[0] = SPEED_10000;
2711 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2712 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2713 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2714 		bp->link_vars.line_speed = SPEED_10000;
2715 		bp->link_vars.link_status =
2716 			(LINK_STATUS_LINK_UP |
2717 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2718 		bp->link_vars.link_up = 1;
2719 		bp->link_vars.duplex = DUPLEX_FULL;
2720 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2721 		__bnx2x_link_report(bp);
2722 
2723 		bnx2x_sample_bulletin(bp);
2724 
2725 		/* if bulletin board did not have an update for link status
2726 		 * __bnx2x_link_report will report current status
2727 		 * but it will NOT duplicate report in case of already reported
2728 		 * during sampling bulletin board.
2729 		 */
2730 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2731 	}
2732 }
2733 
2734 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2735 				  u16 vlan_val, u8 allowed_prio)
2736 {
2737 	struct bnx2x_func_state_params func_params = {NULL};
2738 	struct bnx2x_func_afex_update_params *f_update_params =
2739 		&func_params.params.afex_update;
2740 
2741 	func_params.f_obj = &bp->func_obj;
2742 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2743 
2744 	/* no need to wait for RAMROD completion, so don't
2745 	 * set RAMROD_COMP_WAIT flag
2746 	 */
2747 
2748 	f_update_params->vif_id = vifid;
2749 	f_update_params->afex_default_vlan = vlan_val;
2750 	f_update_params->allowed_priorities = allowed_prio;
2751 
2752 	/* if ramrod can not be sent, response to MCP immediately */
2753 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2754 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2755 
2756 	return 0;
2757 }
2758 
2759 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2760 					  u16 vif_index, u8 func_bit_map)
2761 {
2762 	struct bnx2x_func_state_params func_params = {NULL};
2763 	struct bnx2x_func_afex_viflists_params *update_params =
2764 		&func_params.params.afex_viflists;
2765 	int rc;
2766 	u32 drv_msg_code;
2767 
2768 	/* validate only LIST_SET and LIST_GET are received from switch */
2769 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2770 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771 			  cmd_type);
2772 
2773 	func_params.f_obj = &bp->func_obj;
2774 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2775 
2776 	/* set parameters according to cmd_type */
2777 	update_params->afex_vif_list_command = cmd_type;
2778 	update_params->vif_list_index = vif_index;
2779 	update_params->func_bit_map =
2780 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2781 	update_params->func_to_clear = 0;
2782 	drv_msg_code =
2783 		(cmd_type == VIF_LIST_RULE_GET) ?
2784 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2785 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2786 
2787 	/* if ramrod can not be sent, respond to MCP immediately for
2788 	 * SET and GET requests (other are not triggered from MCP)
2789 	 */
2790 	rc = bnx2x_func_state_change(bp, &func_params);
2791 	if (rc < 0)
2792 		bnx2x_fw_command(bp, drv_msg_code, 0);
2793 
2794 	return 0;
2795 }
2796 
2797 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2798 {
2799 	struct afex_stats afex_stats;
2800 	u32 func = BP_ABS_FUNC(bp);
2801 	u32 mf_config;
2802 	u16 vlan_val;
2803 	u32 vlan_prio;
2804 	u16 vif_id;
2805 	u8 allowed_prio;
2806 	u8 vlan_mode;
2807 	u32 addr_to_write, vifid, addrs, stats_type, i;
2808 
2809 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2810 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2811 		DP(BNX2X_MSG_MCP,
2812 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2813 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814 	}
2815 
2816 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2817 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2819 		DP(BNX2X_MSG_MCP,
2820 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2821 		   vifid, addrs);
2822 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2823 					       addrs);
2824 	}
2825 
2826 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2827 		addr_to_write = SHMEM2_RD(bp,
2828 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2829 		stats_type = SHMEM2_RD(bp,
2830 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2831 
2832 		DP(BNX2X_MSG_MCP,
2833 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834 		   addr_to_write);
2835 
2836 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2837 
2838 		/* write response to scratchpad, for MCP */
2839 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2840 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2841 			       *(((u32 *)(&afex_stats))+i));
2842 
2843 		/* send ack message to MCP */
2844 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845 	}
2846 
2847 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2848 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2849 		bp->mf_config[BP_VN(bp)] = mf_config;
2850 		DP(BNX2X_MSG_MCP,
2851 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852 		   mf_config);
2853 
2854 		/* if VIF_SET is "enabled" */
2855 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2856 			/* set rate limit directly to internal RAM */
2857 			struct cmng_init_input cmng_input;
2858 			struct rate_shaping_vars_per_vn m_rs_vn;
2859 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2860 			u32 addr = BAR_XSTRORM_INTMEM +
2861 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2862 
2863 			bp->mf_config[BP_VN(bp)] = mf_config;
2864 
2865 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2866 			m_rs_vn.vn_counter.rate =
2867 				cmng_input.vnic_max_rate[BP_VN(bp)];
2868 			m_rs_vn.vn_counter.quota =
2869 				(m_rs_vn.vn_counter.rate *
2870 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2871 
2872 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2873 
2874 			/* read relevant values from mf_cfg struct in shmem */
2875 			vif_id =
2876 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2878 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2879 			vlan_val =
2880 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2881 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2882 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2883 			vlan_prio = (mf_config &
2884 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2885 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2886 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2887 			vlan_mode =
2888 				(MF_CFG_RD(bp,
2889 					   func_mf_config[func].afex_config) &
2890 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2891 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2892 			allowed_prio =
2893 				(MF_CFG_RD(bp,
2894 					   func_mf_config[func].afex_config) &
2895 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2896 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2897 
2898 			/* send ramrod to FW, return in case of failure */
2899 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2900 						   allowed_prio))
2901 				return;
2902 
2903 			bp->afex_def_vlan_tag = vlan_val;
2904 			bp->afex_vlan_mode = vlan_mode;
2905 		} else {
2906 			/* notify link down because BP->flags is disabled */
2907 			bnx2x_link_report(bp);
2908 
2909 			/* send INVALID VIF ramrod to FW */
2910 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2911 
2912 			/* Reset the default afex VLAN */
2913 			bp->afex_def_vlan_tag = -1;
2914 		}
2915 	}
2916 }
2917 
2918 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2919 {
2920 	struct bnx2x_func_switch_update_params *switch_update_params;
2921 	struct bnx2x_func_state_params func_params;
2922 
2923 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2924 	switch_update_params = &func_params.params.switch_update;
2925 	func_params.f_obj = &bp->func_obj;
2926 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2927 
2928 	/* Prepare parameters for function state transitions */
2929 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2930 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2931 
2932 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2933 		int func = BP_ABS_FUNC(bp);
2934 		u32 val;
2935 
2936 		/* Re-learn the S-tag from shmem */
2937 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2938 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2939 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2940 			bp->mf_ov = val;
2941 		} else {
2942 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2943 			goto fail;
2944 		}
2945 
2946 		/* Configure new S-tag in LLH */
2947 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2948 		       bp->mf_ov);
2949 
2950 		/* Send Ramrod to update FW of change */
2951 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2952 			  &switch_update_params->changes);
2953 		switch_update_params->vlan = bp->mf_ov;
2954 
2955 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2956 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2957 				  bp->mf_ov);
2958 			goto fail;
2959 		} else {
2960 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2961 			   bp->mf_ov);
2962 		}
2963 	} else {
2964 		goto fail;
2965 	}
2966 
2967 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2968 	return;
2969 fail:
2970 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2971 }
2972 
2973 static void bnx2x_pmf_update(struct bnx2x *bp)
2974 {
2975 	int port = BP_PORT(bp);
2976 	u32 val;
2977 
2978 	bp->port.pmf = 1;
2979 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2980 
2981 	/*
2982 	 * We need the mb() to ensure the ordering between the writing to
2983 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2984 	 */
2985 	smp_mb();
2986 
2987 	/* queue a periodic task */
2988 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2989 
2990 	bnx2x_dcbx_pmf_update(bp);
2991 
2992 	/* enable nig attention */
2993 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2994 	if (bp->common.int_block == INT_BLOCK_HC) {
2995 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2996 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2997 	} else if (!CHIP_IS_E1x(bp)) {
2998 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2999 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3000 	}
3001 
3002 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3003 }
3004 
3005 /* end of Link */
3006 
3007 /* slow path */
3008 
3009 /*
3010  * General service functions
3011  */
3012 
3013 /* send the MCP a request, block until there is a reply */
3014 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3015 {
3016 	int mb_idx = BP_FW_MB_IDX(bp);
3017 	u32 seq;
3018 	u32 rc = 0;
3019 	u32 cnt = 1;
3020 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3021 
3022 	mutex_lock(&bp->fw_mb_mutex);
3023 	seq = ++bp->fw_seq;
3024 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3025 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3026 
3027 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3028 			(command | seq), param);
3029 
3030 	do {
3031 		/* let the FW do it's magic ... */
3032 		msleep(delay);
3033 
3034 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3035 
3036 		/* Give the FW up to 5 second (500*10ms) */
3037 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3038 
3039 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3040 	   cnt*delay, rc, seq);
3041 
3042 	/* is this a reply to our command? */
3043 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3044 		rc &= FW_MSG_CODE_MASK;
3045 	else {
3046 		/* FW BUG! */
3047 		BNX2X_ERR("FW failed to respond!\n");
3048 		bnx2x_fw_dump(bp);
3049 		rc = 0;
3050 	}
3051 	mutex_unlock(&bp->fw_mb_mutex);
3052 
3053 	return rc;
3054 }
3055 
3056 static void storm_memset_func_cfg(struct bnx2x *bp,
3057 				 struct tstorm_eth_function_common_config *tcfg,
3058 				 u16 abs_fid)
3059 {
3060 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3061 
3062 	u32 addr = BAR_TSTRORM_INTMEM +
3063 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3064 
3065 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3066 }
3067 
3068 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3069 {
3070 	if (CHIP_IS_E1x(bp)) {
3071 		struct tstorm_eth_function_common_config tcfg = {0};
3072 
3073 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3074 	}
3075 
3076 	/* Enable the function in the FW */
3077 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3078 	storm_memset_func_en(bp, p->func_id, 1);
3079 
3080 	/* spq */
3081 	if (p->spq_active) {
3082 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3083 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3084 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3085 	}
3086 }
3087 
3088 /**
3089  * bnx2x_get_common_flags - Return common flags
3090  *
3091  * @bp		device handle
3092  * @fp		queue handle
3093  * @zero_stats	TRUE if statistics zeroing is needed
3094  *
3095  * Return the flags that are common for the Tx-only and not normal connections.
3096  */
3097 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3098 					    struct bnx2x_fastpath *fp,
3099 					    bool zero_stats)
3100 {
3101 	unsigned long flags = 0;
3102 
3103 	/* PF driver will always initialize the Queue to an ACTIVE state */
3104 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3105 
3106 	/* tx only connections collect statistics (on the same index as the
3107 	 * parent connection). The statistics are zeroed when the parent
3108 	 * connection is initialized.
3109 	 */
3110 
3111 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3112 	if (zero_stats)
3113 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3114 
3115 	if (bp->flags & TX_SWITCHING)
3116 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3117 
3118 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3119 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3120 
3121 #ifdef BNX2X_STOP_ON_ERROR
3122 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3123 #endif
3124 
3125 	return flags;
3126 }
3127 
3128 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3129 				       struct bnx2x_fastpath *fp,
3130 				       bool leading)
3131 {
3132 	unsigned long flags = 0;
3133 
3134 	/* calculate other queue flags */
3135 	if (IS_MF_SD(bp))
3136 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3137 
3138 	if (IS_FCOE_FP(fp)) {
3139 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3140 		/* For FCoE - force usage of default priority (for afex) */
3141 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3142 	}
3143 
3144 	if (fp->mode != TPA_MODE_DISABLED) {
3145 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3146 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3147 		if (fp->mode == TPA_MODE_GRO)
3148 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3149 	}
3150 
3151 	if (leading) {
3152 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3153 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3154 	}
3155 
3156 	/* Always set HW VLAN stripping */
3157 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3158 
3159 	/* configure silent vlan removal */
3160 	if (IS_MF_AFEX(bp))
3161 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3162 
3163 	return flags | bnx2x_get_common_flags(bp, fp, true);
3164 }
3165 
3166 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3167 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3168 	u8 cos)
3169 {
3170 	gen_init->stat_id = bnx2x_stats_id(fp);
3171 	gen_init->spcl_id = fp->cl_id;
3172 
3173 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3174 	if (IS_FCOE_FP(fp))
3175 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3176 	else
3177 		gen_init->mtu = bp->dev->mtu;
3178 
3179 	gen_init->cos = cos;
3180 
3181 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3182 }
3183 
3184 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3185 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3186 	struct bnx2x_rxq_setup_params *rxq_init)
3187 {
3188 	u8 max_sge = 0;
3189 	u16 sge_sz = 0;
3190 	u16 tpa_agg_size = 0;
3191 
3192 	if (fp->mode != TPA_MODE_DISABLED) {
3193 		pause->sge_th_lo = SGE_TH_LO(bp);
3194 		pause->sge_th_hi = SGE_TH_HI(bp);
3195 
3196 		/* validate SGE ring has enough to cross high threshold */
3197 		WARN_ON(bp->dropless_fc &&
3198 				pause->sge_th_hi + FW_PREFETCH_CNT >
3199 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3200 
3201 		tpa_agg_size = TPA_AGG_SIZE;
3202 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3203 			SGE_PAGE_SHIFT;
3204 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3205 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3206 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3207 	}
3208 
3209 	/* pause - not for e1 */
3210 	if (!CHIP_IS_E1(bp)) {
3211 		pause->bd_th_lo = BD_TH_LO(bp);
3212 		pause->bd_th_hi = BD_TH_HI(bp);
3213 
3214 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3215 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3216 		/*
3217 		 * validate that rings have enough entries to cross
3218 		 * high thresholds
3219 		 */
3220 		WARN_ON(bp->dropless_fc &&
3221 				pause->bd_th_hi + FW_PREFETCH_CNT >
3222 				bp->rx_ring_size);
3223 		WARN_ON(bp->dropless_fc &&
3224 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3225 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3226 
3227 		pause->pri_map = 1;
3228 	}
3229 
3230 	/* rxq setup */
3231 	rxq_init->dscr_map = fp->rx_desc_mapping;
3232 	rxq_init->sge_map = fp->rx_sge_mapping;
3233 	rxq_init->rcq_map = fp->rx_comp_mapping;
3234 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3235 
3236 	/* This should be a maximum number of data bytes that may be
3237 	 * placed on the BD (not including paddings).
3238 	 */
3239 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3240 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3241 
3242 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3243 	rxq_init->tpa_agg_sz = tpa_agg_size;
3244 	rxq_init->sge_buf_sz = sge_sz;
3245 	rxq_init->max_sges_pkt = max_sge;
3246 	rxq_init->rss_engine_id = BP_FUNC(bp);
3247 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3248 
3249 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3250 	 *
3251 	 * For PF Clients it should be the maximum available number.
3252 	 * VF driver(s) may want to define it to a smaller value.
3253 	 */
3254 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3255 
3256 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3257 	rxq_init->fw_sb_id = fp->fw_sb_id;
3258 
3259 	if (IS_FCOE_FP(fp))
3260 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3261 	else
3262 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3263 	/* configure silent vlan removal
3264 	 * if multi function mode is afex, then mask default vlan
3265 	 */
3266 	if (IS_MF_AFEX(bp)) {
3267 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3268 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3269 	}
3270 }
3271 
3272 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3273 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3274 	u8 cos)
3275 {
3276 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3277 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3278 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3279 	txq_init->fw_sb_id = fp->fw_sb_id;
3280 
3281 	/*
3282 	 * set the tss leading client id for TX classification ==
3283 	 * leading RSS client id
3284 	 */
3285 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3286 
3287 	if (IS_FCOE_FP(fp)) {
3288 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3289 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3290 	}
3291 }
3292 
3293 static void bnx2x_pf_init(struct bnx2x *bp)
3294 {
3295 	struct bnx2x_func_init_params func_init = {0};
3296 	struct event_ring_data eq_data = { {0} };
3297 
3298 	if (!CHIP_IS_E1x(bp)) {
3299 		/* reset IGU PF statistics: MSIX + ATTN */
3300 		/* PF */
3301 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3302 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3303 			   (CHIP_MODE_IS_4_PORT(bp) ?
3304 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3305 		/* ATTN */
3306 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3307 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3308 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3309 			   (CHIP_MODE_IS_4_PORT(bp) ?
3310 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3311 	}
3312 
3313 	func_init.spq_active = true;
3314 	func_init.pf_id = BP_FUNC(bp);
3315 	func_init.func_id = BP_FUNC(bp);
3316 	func_init.spq_map = bp->spq_mapping;
3317 	func_init.spq_prod = bp->spq_prod_idx;
3318 
3319 	bnx2x_func_init(bp, &func_init);
3320 
3321 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3322 
3323 	/*
3324 	 * Congestion management values depend on the link rate
3325 	 * There is no active link so initial link rate is set to 10 Gbps.
3326 	 * When the link comes up The congestion management values are
3327 	 * re-calculated according to the actual link rate.
3328 	 */
3329 	bp->link_vars.line_speed = SPEED_10000;
3330 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3331 
3332 	/* Only the PMF sets the HW */
3333 	if (bp->port.pmf)
3334 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3335 
3336 	/* init Event Queue - PCI bus guarantees correct endianity*/
3337 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3338 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3339 	eq_data.producer = bp->eq_prod;
3340 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3341 	eq_data.sb_id = DEF_SB_ID;
3342 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3343 }
3344 
3345 static void bnx2x_e1h_disable(struct bnx2x *bp)
3346 {
3347 	int port = BP_PORT(bp);
3348 
3349 	bnx2x_tx_disable(bp);
3350 
3351 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3352 }
3353 
3354 static void bnx2x_e1h_enable(struct bnx2x *bp)
3355 {
3356 	int port = BP_PORT(bp);
3357 
3358 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3359 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3360 
3361 	/* Tx queue should be only re-enabled */
3362 	netif_tx_wake_all_queues(bp->dev);
3363 
3364 	/*
3365 	 * Should not call netif_carrier_on since it will be called if the link
3366 	 * is up when checking for link state
3367 	 */
3368 }
3369 
3370 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3371 
3372 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3373 {
3374 	struct eth_stats_info *ether_stat =
3375 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3376 	struct bnx2x_vlan_mac_obj *mac_obj =
3377 		&bp->sp_objs->mac_obj;
3378 	int i;
3379 
3380 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3381 		ETH_STAT_INFO_VERSION_LEN);
3382 
3383 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3384 	 * mac_local field in ether_stat struct. The base address is offset by 2
3385 	 * bytes to account for the field being 8 bytes but a mac address is
3386 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3387 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3388 	 * allocated by the ether_stat struct, so the macs will land in their
3389 	 * proper positions.
3390 	 */
3391 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3392 		memset(ether_stat->mac_local + i, 0,
3393 		       sizeof(ether_stat->mac_local[0]));
3394 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3395 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3396 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3397 				ETH_ALEN);
3398 	ether_stat->mtu_size = bp->dev->mtu;
3399 	if (bp->dev->features & NETIF_F_RXCSUM)
3400 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3401 	if (bp->dev->features & NETIF_F_TSO)
3402 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3403 	ether_stat->feature_flags |= bp->common.boot_mode;
3404 
3405 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3406 
3407 	ether_stat->txq_size = bp->tx_ring_size;
3408 	ether_stat->rxq_size = bp->rx_ring_size;
3409 
3410 #ifdef CONFIG_BNX2X_SRIOV
3411 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3412 #endif
3413 }
3414 
3415 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3416 {
3417 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3418 	struct fcoe_stats_info *fcoe_stat =
3419 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3420 
3421 	if (!CNIC_LOADED(bp))
3422 		return;
3423 
3424 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3425 
3426 	fcoe_stat->qos_priority =
3427 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3428 
3429 	/* insert FCoE stats from ramrod response */
3430 	if (!NO_FCOE(bp)) {
3431 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3432 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3433 			tstorm_queue_statistics;
3434 
3435 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3436 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3437 			xstorm_queue_statistics;
3438 
3439 		struct fcoe_statistics_params *fw_fcoe_stat =
3440 			&bp->fw_stats_data->fcoe;
3441 
3442 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3443 			  fcoe_stat->rx_bytes_lo,
3444 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3445 
3446 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3447 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3448 			  fcoe_stat->rx_bytes_lo,
3449 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3450 
3451 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3452 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3453 			  fcoe_stat->rx_bytes_lo,
3454 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3455 
3456 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3457 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3458 			  fcoe_stat->rx_bytes_lo,
3459 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3460 
3461 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462 			  fcoe_stat->rx_frames_lo,
3463 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3464 
3465 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466 			  fcoe_stat->rx_frames_lo,
3467 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3468 
3469 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3470 			  fcoe_stat->rx_frames_lo,
3471 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3472 
3473 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3474 			  fcoe_stat->rx_frames_lo,
3475 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3476 
3477 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3478 			  fcoe_stat->tx_bytes_lo,
3479 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3480 
3481 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3482 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3483 			  fcoe_stat->tx_bytes_lo,
3484 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3485 
3486 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3487 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3488 			  fcoe_stat->tx_bytes_lo,
3489 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3490 
3491 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3492 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3493 			  fcoe_stat->tx_bytes_lo,
3494 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3495 
3496 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497 			  fcoe_stat->tx_frames_lo,
3498 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3499 
3500 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501 			  fcoe_stat->tx_frames_lo,
3502 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3503 
3504 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3505 			  fcoe_stat->tx_frames_lo,
3506 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3507 
3508 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3509 			  fcoe_stat->tx_frames_lo,
3510 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3511 	}
3512 
3513 	/* ask L5 driver to add data to the struct */
3514 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3515 }
3516 
3517 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3518 {
3519 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3520 	struct iscsi_stats_info *iscsi_stat =
3521 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3522 
3523 	if (!CNIC_LOADED(bp))
3524 		return;
3525 
3526 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3527 	       ETH_ALEN);
3528 
3529 	iscsi_stat->qos_priority =
3530 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3531 
3532 	/* ask L5 driver to add data to the struct */
3533 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3534 }
3535 
3536 /* called due to MCP event (on pmf):
3537  *	reread new bandwidth configuration
3538  *	configure FW
3539  *	notify others function about the change
3540  */
3541 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3542 {
3543 	/* Workaround for MFW bug.
3544 	 * MFW is not supposed to generate BW attention in
3545 	 * single function mode.
3546 	 */
3547 	if (!IS_MF(bp)) {
3548 		DP(BNX2X_MSG_MCP,
3549 		   "Ignoring MF BW config in single function mode\n");
3550 		return;
3551 	}
3552 
3553 	if (bp->link_vars.link_up) {
3554 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3555 		bnx2x_link_sync_notify(bp);
3556 	}
3557 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3558 }
3559 
3560 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3561 {
3562 	bnx2x_config_mf_bw(bp);
3563 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3564 }
3565 
3566 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3567 {
3568 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3569 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3570 }
3571 
3572 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3573 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3574 
3575 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3576 {
3577 	enum drv_info_opcode op_code;
3578 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3579 	bool release = false;
3580 	int wait;
3581 
3582 	/* if drv_info version supported by MFW doesn't match - send NACK */
3583 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3584 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3585 		return;
3586 	}
3587 
3588 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3589 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3590 
3591 	/* Must prevent other flows from accessing drv_info_to_mcp */
3592 	mutex_lock(&bp->drv_info_mutex);
3593 
3594 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3595 	       sizeof(union drv_info_to_mcp));
3596 
3597 	switch (op_code) {
3598 	case ETH_STATS_OPCODE:
3599 		bnx2x_drv_info_ether_stat(bp);
3600 		break;
3601 	case FCOE_STATS_OPCODE:
3602 		bnx2x_drv_info_fcoe_stat(bp);
3603 		break;
3604 	case ISCSI_STATS_OPCODE:
3605 		bnx2x_drv_info_iscsi_stat(bp);
3606 		break;
3607 	default:
3608 		/* if op code isn't supported - send NACK */
3609 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3610 		goto out;
3611 	}
3612 
3613 	/* if we got drv_info attn from MFW then these fields are defined in
3614 	 * shmem2 for sure
3615 	 */
3616 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3617 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3618 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3619 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3620 
3621 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3622 
3623 	/* Since possible management wants both this and get_driver_version
3624 	 * need to wait until management notifies us it finished utilizing
3625 	 * the buffer.
3626 	 */
3627 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3628 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3629 	} else if (!bp->drv_info_mng_owner) {
3630 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3631 
3632 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3633 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3634 
3635 			/* Management is done; need to clear indication */
3636 			if (indication & bit) {
3637 				SHMEM2_WR(bp, mfw_drv_indication,
3638 					  indication & ~bit);
3639 				release = true;
3640 				break;
3641 			}
3642 
3643 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3644 		}
3645 	}
3646 	if (!release) {
3647 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3648 		bp->drv_info_mng_owner = true;
3649 	}
3650 
3651 out:
3652 	mutex_unlock(&bp->drv_info_mutex);
3653 }
3654 
3655 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3656 {
3657 	u8 vals[4];
3658 	int i = 0;
3659 
3660 	if (bnx2x_format) {
3661 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3662 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3663 		if (i > 0)
3664 			vals[0] -= '0';
3665 	} else {
3666 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3667 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3668 	}
3669 
3670 	while (i < 4)
3671 		vals[i++] = 0;
3672 
3673 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3674 }
3675 
3676 void bnx2x_update_mng_version(struct bnx2x *bp)
3677 {
3678 	u32 iscsiver = DRV_VER_NOT_LOADED;
3679 	u32 fcoever = DRV_VER_NOT_LOADED;
3680 	u32 ethver = DRV_VER_NOT_LOADED;
3681 	int idx = BP_FW_MB_IDX(bp);
3682 	u8 *version;
3683 
3684 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3685 		return;
3686 
3687 	mutex_lock(&bp->drv_info_mutex);
3688 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3689 	if (bp->drv_info_mng_owner)
3690 		goto out;
3691 
3692 	if (bp->state != BNX2X_STATE_OPEN)
3693 		goto out;
3694 
3695 	/* Parse ethernet driver version */
3696 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3697 	if (!CNIC_LOADED(bp))
3698 		goto out;
3699 
3700 	/* Try getting storage driver version via cnic */
3701 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3702 	       sizeof(union drv_info_to_mcp));
3703 	bnx2x_drv_info_iscsi_stat(bp);
3704 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3705 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3706 
3707 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3708 	       sizeof(union drv_info_to_mcp));
3709 	bnx2x_drv_info_fcoe_stat(bp);
3710 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3711 	fcoever = bnx2x_update_mng_version_utility(version, false);
3712 
3713 out:
3714 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3715 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3716 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3717 
3718 	mutex_unlock(&bp->drv_info_mutex);
3719 
3720 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3721 	   ethver, iscsiver, fcoever);
3722 }
3723 
3724 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3725 {
3726 	u32 drv_ver;
3727 	u32 valid_dump;
3728 
3729 	if (!SHMEM2_HAS(bp, drv_info))
3730 		return;
3731 
3732 	/* Update Driver load time, possibly broken in y2038 */
3733 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3734 
3735 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3736 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3737 
3738 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3739 
3740 	/* Check & notify On-Chip dump. */
3741 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3742 
3743 	if (valid_dump & FIRST_DUMP_VALID)
3744 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3745 
3746 	if (valid_dump & SECOND_DUMP_VALID)
3747 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3748 }
3749 
3750 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3751 {
3752 	u32 cmd_ok, cmd_fail;
3753 
3754 	/* sanity */
3755 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3756 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3757 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3758 		return;
3759 	}
3760 
3761 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3762 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3763 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3764 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3765 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3766 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3767 	}
3768 
3769 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3770 
3771 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3772 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3773 		/* This is the only place besides the function initialization
3774 		 * where the bp->flags can change so it is done without any
3775 		 * locks
3776 		 */
3777 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3778 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3779 			bp->flags |= MF_FUNC_DIS;
3780 
3781 			bnx2x_e1h_disable(bp);
3782 		} else {
3783 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3784 			bp->flags &= ~MF_FUNC_DIS;
3785 
3786 			bnx2x_e1h_enable(bp);
3787 		}
3788 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3789 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3790 	}
3791 
3792 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3793 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3794 		bnx2x_config_mf_bw(bp);
3795 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3796 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3797 	}
3798 
3799 	/* Report results to MCP */
3800 	if (event)
3801 		bnx2x_fw_command(bp, cmd_fail, 0);
3802 	else
3803 		bnx2x_fw_command(bp, cmd_ok, 0);
3804 }
3805 
3806 /* must be called under the spq lock */
3807 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3808 {
3809 	struct eth_spe *next_spe = bp->spq_prod_bd;
3810 
3811 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3812 		bp->spq_prod_bd = bp->spq;
3813 		bp->spq_prod_idx = 0;
3814 		DP(BNX2X_MSG_SP, "end of spq\n");
3815 	} else {
3816 		bp->spq_prod_bd++;
3817 		bp->spq_prod_idx++;
3818 	}
3819 	return next_spe;
3820 }
3821 
3822 /* must be called under the spq lock */
3823 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3824 {
3825 	int func = BP_FUNC(bp);
3826 
3827 	/*
3828 	 * Make sure that BD data is updated before writing the producer:
3829 	 * BD data is written to the memory, the producer is read from the
3830 	 * memory, thus we need a full memory barrier to ensure the ordering.
3831 	 */
3832 	mb();
3833 
3834 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3835 			 bp->spq_prod_idx);
3836 	mmiowb();
3837 }
3838 
3839 /**
3840  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3841  *
3842  * @cmd:	command to check
3843  * @cmd_type:	command type
3844  */
3845 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3846 {
3847 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3848 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3849 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3850 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3851 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3852 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3853 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3854 		return true;
3855 	else
3856 		return false;
3857 }
3858 
3859 /**
3860  * bnx2x_sp_post - place a single command on an SP ring
3861  *
3862  * @bp:		driver handle
3863  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3864  * @cid:	SW CID the command is related to
3865  * @data_hi:	command private data address (high 32 bits)
3866  * @data_lo:	command private data address (low 32 bits)
3867  * @cmd_type:	command type (e.g. NONE, ETH)
3868  *
3869  * SP data is handled as if it's always an address pair, thus data fields are
3870  * not swapped to little endian in upper functions. Instead this function swaps
3871  * data as if it's two u32 fields.
3872  */
3873 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3874 		  u32 data_hi, u32 data_lo, int cmd_type)
3875 {
3876 	struct eth_spe *spe;
3877 	u16 type;
3878 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3879 
3880 #ifdef BNX2X_STOP_ON_ERROR
3881 	if (unlikely(bp->panic)) {
3882 		BNX2X_ERR("Can't post SP when there is panic\n");
3883 		return -EIO;
3884 	}
3885 #endif
3886 
3887 	spin_lock_bh(&bp->spq_lock);
3888 
3889 	if (common) {
3890 		if (!atomic_read(&bp->eq_spq_left)) {
3891 			BNX2X_ERR("BUG! EQ ring full!\n");
3892 			spin_unlock_bh(&bp->spq_lock);
3893 			bnx2x_panic();
3894 			return -EBUSY;
3895 		}
3896 	} else if (!atomic_read(&bp->cq_spq_left)) {
3897 			BNX2X_ERR("BUG! SPQ ring full!\n");
3898 			spin_unlock_bh(&bp->spq_lock);
3899 			bnx2x_panic();
3900 			return -EBUSY;
3901 	}
3902 
3903 	spe = bnx2x_sp_get_next(bp);
3904 
3905 	/* CID needs port number to be encoded int it */
3906 	spe->hdr.conn_and_cmd_data =
3907 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3908 				    HW_CID(bp, cid));
3909 
3910 	/* In some cases, type may already contain the func-id
3911 	 * mainly in SRIOV related use cases, so we add it here only
3912 	 * if it's not already set.
3913 	 */
3914 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3915 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3916 			SPE_HDR_CONN_TYPE;
3917 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3918 			 SPE_HDR_FUNCTION_ID);
3919 	} else {
3920 		type = cmd_type;
3921 	}
3922 
3923 	spe->hdr.type = cpu_to_le16(type);
3924 
3925 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3926 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3927 
3928 	/*
3929 	 * It's ok if the actual decrement is issued towards the memory
3930 	 * somewhere between the spin_lock and spin_unlock. Thus no
3931 	 * more explicit memory barrier is needed.
3932 	 */
3933 	if (common)
3934 		atomic_dec(&bp->eq_spq_left);
3935 	else
3936 		atomic_dec(&bp->cq_spq_left);
3937 
3938 	DP(BNX2X_MSG_SP,
3939 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3940 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3941 	   (u32)(U64_LO(bp->spq_mapping) +
3942 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3943 	   HW_CID(bp, cid), data_hi, data_lo, type,
3944 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3945 
3946 	bnx2x_sp_prod_update(bp);
3947 	spin_unlock_bh(&bp->spq_lock);
3948 	return 0;
3949 }
3950 
3951 /* acquire split MCP access lock register */
3952 static int bnx2x_acquire_alr(struct bnx2x *bp)
3953 {
3954 	u32 j, val;
3955 	int rc = 0;
3956 
3957 	might_sleep();
3958 	for (j = 0; j < 1000; j++) {
3959 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3960 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3961 		if (val & MCPR_ACCESS_LOCK_LOCK)
3962 			break;
3963 
3964 		usleep_range(5000, 10000);
3965 	}
3966 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3967 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3968 		rc = -EBUSY;
3969 	}
3970 
3971 	return rc;
3972 }
3973 
3974 /* release split MCP access lock register */
3975 static void bnx2x_release_alr(struct bnx2x *bp)
3976 {
3977 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3978 }
3979 
3980 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3981 #define BNX2X_DEF_SB_IDX	0x0002
3982 
3983 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3984 {
3985 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3986 	u16 rc = 0;
3987 
3988 	barrier(); /* status block is written to by the chip */
3989 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3990 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3991 		rc |= BNX2X_DEF_SB_ATT_IDX;
3992 	}
3993 
3994 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3995 		bp->def_idx = def_sb->sp_sb.running_index;
3996 		rc |= BNX2X_DEF_SB_IDX;
3997 	}
3998 
3999 	/* Do not reorder: indices reading should complete before handling */
4000 	barrier();
4001 	return rc;
4002 }
4003 
4004 /*
4005  * slow path service functions
4006  */
4007 
4008 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4009 {
4010 	int port = BP_PORT(bp);
4011 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4012 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4013 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4014 				       NIG_REG_MASK_INTERRUPT_PORT0;
4015 	u32 aeu_mask;
4016 	u32 nig_mask = 0;
4017 	u32 reg_addr;
4018 
4019 	if (bp->attn_state & asserted)
4020 		BNX2X_ERR("IGU ERROR\n");
4021 
4022 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4023 	aeu_mask = REG_RD(bp, aeu_addr);
4024 
4025 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4026 	   aeu_mask, asserted);
4027 	aeu_mask &= ~(asserted & 0x3ff);
4028 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4029 
4030 	REG_WR(bp, aeu_addr, aeu_mask);
4031 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4032 
4033 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4034 	bp->attn_state |= asserted;
4035 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4036 
4037 	if (asserted & ATTN_HARD_WIRED_MASK) {
4038 		if (asserted & ATTN_NIG_FOR_FUNC) {
4039 
4040 			bnx2x_acquire_phy_lock(bp);
4041 
4042 			/* save nig interrupt mask */
4043 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4044 
4045 			/* If nig_mask is not set, no need to call the update
4046 			 * function.
4047 			 */
4048 			if (nig_mask) {
4049 				REG_WR(bp, nig_int_mask_addr, 0);
4050 
4051 				bnx2x_link_attn(bp);
4052 			}
4053 
4054 			/* handle unicore attn? */
4055 		}
4056 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4057 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4058 
4059 		if (asserted & GPIO_2_FUNC)
4060 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4061 
4062 		if (asserted & GPIO_3_FUNC)
4063 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4064 
4065 		if (asserted & GPIO_4_FUNC)
4066 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4067 
4068 		if (port == 0) {
4069 			if (asserted & ATTN_GENERAL_ATTN_1) {
4070 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4071 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4072 			}
4073 			if (asserted & ATTN_GENERAL_ATTN_2) {
4074 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4075 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4076 			}
4077 			if (asserted & ATTN_GENERAL_ATTN_3) {
4078 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4079 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4080 			}
4081 		} else {
4082 			if (asserted & ATTN_GENERAL_ATTN_4) {
4083 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4084 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4085 			}
4086 			if (asserted & ATTN_GENERAL_ATTN_5) {
4087 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4088 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4089 			}
4090 			if (asserted & ATTN_GENERAL_ATTN_6) {
4091 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4092 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4093 			}
4094 		}
4095 
4096 	} /* if hardwired */
4097 
4098 	if (bp->common.int_block == INT_BLOCK_HC)
4099 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4100 			    COMMAND_REG_ATTN_BITS_SET);
4101 	else
4102 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4103 
4104 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4105 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4106 	REG_WR(bp, reg_addr, asserted);
4107 
4108 	/* now set back the mask */
4109 	if (asserted & ATTN_NIG_FOR_FUNC) {
4110 		/* Verify that IGU ack through BAR was written before restoring
4111 		 * NIG mask. This loop should exit after 2-3 iterations max.
4112 		 */
4113 		if (bp->common.int_block != INT_BLOCK_HC) {
4114 			u32 cnt = 0, igu_acked;
4115 			do {
4116 				igu_acked = REG_RD(bp,
4117 						   IGU_REG_ATTENTION_ACK_BITS);
4118 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4119 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4120 			if (!igu_acked)
4121 				DP(NETIF_MSG_HW,
4122 				   "Failed to verify IGU ack on time\n");
4123 			barrier();
4124 		}
4125 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4126 		bnx2x_release_phy_lock(bp);
4127 	}
4128 }
4129 
4130 static void bnx2x_fan_failure(struct bnx2x *bp)
4131 {
4132 	int port = BP_PORT(bp);
4133 	u32 ext_phy_config;
4134 	/* mark the failure */
4135 	ext_phy_config =
4136 		SHMEM_RD(bp,
4137 			 dev_info.port_hw_config[port].external_phy_config);
4138 
4139 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4140 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4141 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4142 		 ext_phy_config);
4143 
4144 	/* log the failure */
4145 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4146 			    "Please contact OEM Support for assistance\n");
4147 
4148 	/* Schedule device reset (unload)
4149 	 * This is due to some boards consuming sufficient power when driver is
4150 	 * up to overheat if fan fails.
4151 	 */
4152 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4153 }
4154 
4155 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4156 {
4157 	int port = BP_PORT(bp);
4158 	int reg_offset;
4159 	u32 val;
4160 
4161 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4162 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4163 
4164 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4165 
4166 		val = REG_RD(bp, reg_offset);
4167 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4168 		REG_WR(bp, reg_offset, val);
4169 
4170 		BNX2X_ERR("SPIO5 hw attention\n");
4171 
4172 		/* Fan failure attention */
4173 		bnx2x_hw_reset_phy(&bp->link_params);
4174 		bnx2x_fan_failure(bp);
4175 	}
4176 
4177 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4178 		bnx2x_acquire_phy_lock(bp);
4179 		bnx2x_handle_module_detect_int(&bp->link_params);
4180 		bnx2x_release_phy_lock(bp);
4181 	}
4182 
4183 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4184 
4185 		val = REG_RD(bp, reg_offset);
4186 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4187 		REG_WR(bp, reg_offset, val);
4188 
4189 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4190 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4191 		bnx2x_panic();
4192 	}
4193 }
4194 
4195 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4196 {
4197 	u32 val;
4198 
4199 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4200 
4201 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4202 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4203 		/* DORQ discard attention */
4204 		if (val & 0x2)
4205 			BNX2X_ERR("FATAL error from DORQ\n");
4206 	}
4207 
4208 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4209 
4210 		int port = BP_PORT(bp);
4211 		int reg_offset;
4212 
4213 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4214 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4215 
4216 		val = REG_RD(bp, reg_offset);
4217 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4218 		REG_WR(bp, reg_offset, val);
4219 
4220 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4221 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4222 		bnx2x_panic();
4223 	}
4224 }
4225 
4226 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4227 {
4228 	u32 val;
4229 
4230 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4231 
4232 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4233 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4234 		/* CFC error attention */
4235 		if (val & 0x2)
4236 			BNX2X_ERR("FATAL error from CFC\n");
4237 	}
4238 
4239 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4240 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4241 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4242 		/* RQ_USDMDP_FIFO_OVERFLOW */
4243 		if (val & 0x18000)
4244 			BNX2X_ERR("FATAL error from PXP\n");
4245 
4246 		if (!CHIP_IS_E1x(bp)) {
4247 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4248 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4249 		}
4250 	}
4251 
4252 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4253 
4254 		int port = BP_PORT(bp);
4255 		int reg_offset;
4256 
4257 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4258 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4259 
4260 		val = REG_RD(bp, reg_offset);
4261 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4262 		REG_WR(bp, reg_offset, val);
4263 
4264 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4265 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4266 		bnx2x_panic();
4267 	}
4268 }
4269 
4270 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4271 {
4272 	u32 val;
4273 
4274 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4275 
4276 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4277 			int func = BP_FUNC(bp);
4278 
4279 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4280 			bnx2x_read_mf_cfg(bp);
4281 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4282 					func_mf_config[BP_ABS_FUNC(bp)].config);
4283 			val = SHMEM_RD(bp,
4284 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4285 
4286 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4287 				   DRV_STATUS_OEM_EVENT_MASK))
4288 				bnx2x_oem_event(bp,
4289 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4290 						DRV_STATUS_OEM_EVENT_MASK)));
4291 
4292 			if (val & DRV_STATUS_SET_MF_BW)
4293 				bnx2x_set_mf_bw(bp);
4294 
4295 			if (val & DRV_STATUS_DRV_INFO_REQ)
4296 				bnx2x_handle_drv_info_req(bp);
4297 
4298 			if (val & DRV_STATUS_VF_DISABLED)
4299 				bnx2x_schedule_iov_task(bp,
4300 							BNX2X_IOV_HANDLE_FLR);
4301 
4302 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4303 				bnx2x_pmf_update(bp);
4304 
4305 			if (bp->port.pmf &&
4306 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4307 				bp->dcbx_enabled > 0)
4308 				/* start dcbx state machine */
4309 				bnx2x_dcbx_set_params(bp,
4310 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4311 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4312 				bnx2x_handle_afex_cmd(bp,
4313 					val & DRV_STATUS_AFEX_EVENT_MASK);
4314 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4315 				bnx2x_handle_eee_event(bp);
4316 
4317 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4318 				bnx2x_schedule_sp_rtnl(bp,
4319 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4320 
4321 			if (bp->link_vars.periodic_flags &
4322 			    PERIODIC_FLAGS_LINK_EVENT) {
4323 				/*  sync with link */
4324 				bnx2x_acquire_phy_lock(bp);
4325 				bp->link_vars.periodic_flags &=
4326 					~PERIODIC_FLAGS_LINK_EVENT;
4327 				bnx2x_release_phy_lock(bp);
4328 				if (IS_MF(bp))
4329 					bnx2x_link_sync_notify(bp);
4330 				bnx2x_link_report(bp);
4331 			}
4332 			/* Always call it here: bnx2x_link_report() will
4333 			 * prevent the link indication duplication.
4334 			 */
4335 			bnx2x__link_status_update(bp);
4336 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4337 
4338 			BNX2X_ERR("MC assert!\n");
4339 			bnx2x_mc_assert(bp);
4340 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4341 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4342 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4343 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4344 			bnx2x_panic();
4345 
4346 		} else if (attn & BNX2X_MCP_ASSERT) {
4347 
4348 			BNX2X_ERR("MCP assert!\n");
4349 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4350 			bnx2x_fw_dump(bp);
4351 
4352 		} else
4353 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4354 	}
4355 
4356 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4357 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4358 		if (attn & BNX2X_GRC_TIMEOUT) {
4359 			val = CHIP_IS_E1(bp) ? 0 :
4360 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4361 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4362 		}
4363 		if (attn & BNX2X_GRC_RSV) {
4364 			val = CHIP_IS_E1(bp) ? 0 :
4365 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4366 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4367 		}
4368 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4369 	}
4370 }
4371 
4372 /*
4373  * Bits map:
4374  * 0-7   - Engine0 load counter.
4375  * 8-15  - Engine1 load counter.
4376  * 16    - Engine0 RESET_IN_PROGRESS bit.
4377  * 17    - Engine1 RESET_IN_PROGRESS bit.
4378  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4379  *         on the engine
4380  * 19    - Engine1 ONE_IS_LOADED.
4381  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4382  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4383  *         just the one belonging to its engine).
4384  *
4385  */
4386 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4387 
4388 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4389 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4390 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4391 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4392 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4393 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4394 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4395 
4396 /*
4397  * Set the GLOBAL_RESET bit.
4398  *
4399  * Should be run under rtnl lock
4400  */
4401 void bnx2x_set_reset_global(struct bnx2x *bp)
4402 {
4403 	u32 val;
4404 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4406 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4407 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408 }
4409 
4410 /*
4411  * Clear the GLOBAL_RESET bit.
4412  *
4413  * Should be run under rtnl lock
4414  */
4415 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4416 {
4417 	u32 val;
4418 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4419 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4420 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4421 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4422 }
4423 
4424 /*
4425  * Checks the GLOBAL_RESET bit.
4426  *
4427  * should be run under rtnl lock
4428  */
4429 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4430 {
4431 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432 
4433 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4434 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4435 }
4436 
4437 /*
4438  * Clear RESET_IN_PROGRESS bit for the current engine.
4439  *
4440  * Should be run under rtnl lock
4441  */
4442 static void bnx2x_set_reset_done(struct bnx2x *bp)
4443 {
4444 	u32 val;
4445 	u32 bit = BP_PATH(bp) ?
4446 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4447 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4448 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4449 
4450 	/* Clear the bit */
4451 	val &= ~bit;
4452 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4453 
4454 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455 }
4456 
4457 /*
4458  * Set RESET_IN_PROGRESS for the current engine.
4459  *
4460  * should be run under rtnl lock
4461  */
4462 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4463 {
4464 	u32 val;
4465 	u32 bit = BP_PATH(bp) ?
4466 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4467 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4468 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4469 
4470 	/* Set the bit */
4471 	val |= bit;
4472 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4473 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4474 }
4475 
4476 /*
4477  * Checks the RESET_IN_PROGRESS bit for the given engine.
4478  * should be run under rtnl lock
4479  */
4480 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4481 {
4482 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4483 	u32 bit = engine ?
4484 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4485 
4486 	/* return false if bit is set */
4487 	return (val & bit) ? false : true;
4488 }
4489 
4490 /*
4491  * set pf load for the current pf.
4492  *
4493  * should be run under rtnl lock
4494  */
4495 void bnx2x_set_pf_load(struct bnx2x *bp)
4496 {
4497 	u32 val1, val;
4498 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4499 			     BNX2X_PATH0_LOAD_CNT_MASK;
4500 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4501 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4502 
4503 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4504 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4505 
4506 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4507 
4508 	/* get the current counter value */
4509 	val1 = (val & mask) >> shift;
4510 
4511 	/* set bit of that PF */
4512 	val1 |= (1 << bp->pf_num);
4513 
4514 	/* clear the old value */
4515 	val &= ~mask;
4516 
4517 	/* set the new one */
4518 	val |= ((val1 << shift) & mask);
4519 
4520 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4521 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4522 }
4523 
4524 /**
4525  * bnx2x_clear_pf_load - clear pf load mark
4526  *
4527  * @bp:		driver handle
4528  *
4529  * Should be run under rtnl lock.
4530  * Decrements the load counter for the current engine. Returns
4531  * whether other functions are still loaded
4532  */
4533 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4534 {
4535 	u32 val1, val;
4536 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4537 			     BNX2X_PATH0_LOAD_CNT_MASK;
4538 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4539 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4540 
4541 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4542 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4543 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4544 
4545 	/* get the current counter value */
4546 	val1 = (val & mask) >> shift;
4547 
4548 	/* clear bit of that PF */
4549 	val1 &= ~(1 << bp->pf_num);
4550 
4551 	/* clear the old value */
4552 	val &= ~mask;
4553 
4554 	/* set the new one */
4555 	val |= ((val1 << shift) & mask);
4556 
4557 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4558 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4559 	return val1 != 0;
4560 }
4561 
4562 /*
4563  * Read the load status for the current engine.
4564  *
4565  * should be run under rtnl lock
4566  */
4567 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4568 {
4569 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4570 			     BNX2X_PATH0_LOAD_CNT_MASK);
4571 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4572 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4573 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4574 
4575 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4576 
4577 	val = (val & mask) >> shift;
4578 
4579 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4580 	   engine, val);
4581 
4582 	return val != 0;
4583 }
4584 
4585 static void _print_parity(struct bnx2x *bp, u32 reg)
4586 {
4587 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4588 }
4589 
4590 static void _print_next_block(int idx, const char *blk)
4591 {
4592 	pr_cont("%s%s", idx ? ", " : "", blk);
4593 }
4594 
4595 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4596 					    int *par_num, bool print)
4597 {
4598 	u32 cur_bit;
4599 	bool res;
4600 	int i;
4601 
4602 	res = false;
4603 
4604 	for (i = 0; sig; i++) {
4605 		cur_bit = (0x1UL << i);
4606 		if (sig & cur_bit) {
4607 			res |= true; /* Each bit is real error! */
4608 
4609 			if (print) {
4610 				switch (cur_bit) {
4611 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4612 					_print_next_block((*par_num)++, "BRB");
4613 					_print_parity(bp,
4614 						      BRB1_REG_BRB1_PRTY_STS);
4615 					break;
4616 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4617 					_print_next_block((*par_num)++,
4618 							  "PARSER");
4619 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4620 					break;
4621 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4622 					_print_next_block((*par_num)++, "TSDM");
4623 					_print_parity(bp,
4624 						      TSDM_REG_TSDM_PRTY_STS);
4625 					break;
4626 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4627 					_print_next_block((*par_num)++,
4628 							  "SEARCHER");
4629 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4630 					break;
4631 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4632 					_print_next_block((*par_num)++, "TCM");
4633 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4634 					break;
4635 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4636 					_print_next_block((*par_num)++,
4637 							  "TSEMI");
4638 					_print_parity(bp,
4639 						      TSEM_REG_TSEM_PRTY_STS_0);
4640 					_print_parity(bp,
4641 						      TSEM_REG_TSEM_PRTY_STS_1);
4642 					break;
4643 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4644 					_print_next_block((*par_num)++, "XPB");
4645 					_print_parity(bp, GRCBASE_XPB +
4646 							  PB_REG_PB_PRTY_STS);
4647 					break;
4648 				}
4649 			}
4650 
4651 			/* Clear the bit */
4652 			sig &= ~cur_bit;
4653 		}
4654 	}
4655 
4656 	return res;
4657 }
4658 
4659 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4660 					    int *par_num, bool *global,
4661 					    bool print)
4662 {
4663 	u32 cur_bit;
4664 	bool res;
4665 	int i;
4666 
4667 	res = false;
4668 
4669 	for (i = 0; sig; i++) {
4670 		cur_bit = (0x1UL << i);
4671 		if (sig & cur_bit) {
4672 			res |= true; /* Each bit is real error! */
4673 			switch (cur_bit) {
4674 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4675 				if (print) {
4676 					_print_next_block((*par_num)++, "PBF");
4677 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4678 				}
4679 				break;
4680 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4681 				if (print) {
4682 					_print_next_block((*par_num)++, "QM");
4683 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4684 				}
4685 				break;
4686 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4687 				if (print) {
4688 					_print_next_block((*par_num)++, "TM");
4689 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4690 				}
4691 				break;
4692 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4693 				if (print) {
4694 					_print_next_block((*par_num)++, "XSDM");
4695 					_print_parity(bp,
4696 						      XSDM_REG_XSDM_PRTY_STS);
4697 				}
4698 				break;
4699 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4700 				if (print) {
4701 					_print_next_block((*par_num)++, "XCM");
4702 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4703 				}
4704 				break;
4705 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4706 				if (print) {
4707 					_print_next_block((*par_num)++,
4708 							  "XSEMI");
4709 					_print_parity(bp,
4710 						      XSEM_REG_XSEM_PRTY_STS_0);
4711 					_print_parity(bp,
4712 						      XSEM_REG_XSEM_PRTY_STS_1);
4713 				}
4714 				break;
4715 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4716 				if (print) {
4717 					_print_next_block((*par_num)++,
4718 							  "DOORBELLQ");
4719 					_print_parity(bp,
4720 						      DORQ_REG_DORQ_PRTY_STS);
4721 				}
4722 				break;
4723 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4724 				if (print) {
4725 					_print_next_block((*par_num)++, "NIG");
4726 					if (CHIP_IS_E1x(bp)) {
4727 						_print_parity(bp,
4728 							NIG_REG_NIG_PRTY_STS);
4729 					} else {
4730 						_print_parity(bp,
4731 							NIG_REG_NIG_PRTY_STS_0);
4732 						_print_parity(bp,
4733 							NIG_REG_NIG_PRTY_STS_1);
4734 					}
4735 				}
4736 				break;
4737 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4738 				if (print)
4739 					_print_next_block((*par_num)++,
4740 							  "VAUX PCI CORE");
4741 				*global = true;
4742 				break;
4743 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4744 				if (print) {
4745 					_print_next_block((*par_num)++,
4746 							  "DEBUG");
4747 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4748 				}
4749 				break;
4750 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4751 				if (print) {
4752 					_print_next_block((*par_num)++, "USDM");
4753 					_print_parity(bp,
4754 						      USDM_REG_USDM_PRTY_STS);
4755 				}
4756 				break;
4757 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4758 				if (print) {
4759 					_print_next_block((*par_num)++, "UCM");
4760 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4761 				}
4762 				break;
4763 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4764 				if (print) {
4765 					_print_next_block((*par_num)++,
4766 							  "USEMI");
4767 					_print_parity(bp,
4768 						      USEM_REG_USEM_PRTY_STS_0);
4769 					_print_parity(bp,
4770 						      USEM_REG_USEM_PRTY_STS_1);
4771 				}
4772 				break;
4773 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4774 				if (print) {
4775 					_print_next_block((*par_num)++, "UPB");
4776 					_print_parity(bp, GRCBASE_UPB +
4777 							  PB_REG_PB_PRTY_STS);
4778 				}
4779 				break;
4780 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4781 				if (print) {
4782 					_print_next_block((*par_num)++, "CSDM");
4783 					_print_parity(bp,
4784 						      CSDM_REG_CSDM_PRTY_STS);
4785 				}
4786 				break;
4787 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4788 				if (print) {
4789 					_print_next_block((*par_num)++, "CCM");
4790 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4791 				}
4792 				break;
4793 			}
4794 
4795 			/* Clear the bit */
4796 			sig &= ~cur_bit;
4797 		}
4798 	}
4799 
4800 	return res;
4801 }
4802 
4803 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4804 					    int *par_num, bool print)
4805 {
4806 	u32 cur_bit;
4807 	bool res;
4808 	int i;
4809 
4810 	res = false;
4811 
4812 	for (i = 0; sig; i++) {
4813 		cur_bit = (0x1UL << i);
4814 		if (sig & cur_bit) {
4815 			res = true; /* Each bit is real error! */
4816 			if (print) {
4817 				switch (cur_bit) {
4818 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4819 					_print_next_block((*par_num)++,
4820 							  "CSEMI");
4821 					_print_parity(bp,
4822 						      CSEM_REG_CSEM_PRTY_STS_0);
4823 					_print_parity(bp,
4824 						      CSEM_REG_CSEM_PRTY_STS_1);
4825 					break;
4826 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4827 					_print_next_block((*par_num)++, "PXP");
4828 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4829 					_print_parity(bp,
4830 						      PXP2_REG_PXP2_PRTY_STS_0);
4831 					_print_parity(bp,
4832 						      PXP2_REG_PXP2_PRTY_STS_1);
4833 					break;
4834 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4835 					_print_next_block((*par_num)++,
4836 							  "PXPPCICLOCKCLIENT");
4837 					break;
4838 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4839 					_print_next_block((*par_num)++, "CFC");
4840 					_print_parity(bp,
4841 						      CFC_REG_CFC_PRTY_STS);
4842 					break;
4843 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4844 					_print_next_block((*par_num)++, "CDU");
4845 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4846 					break;
4847 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4848 					_print_next_block((*par_num)++, "DMAE");
4849 					_print_parity(bp,
4850 						      DMAE_REG_DMAE_PRTY_STS);
4851 					break;
4852 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4853 					_print_next_block((*par_num)++, "IGU");
4854 					if (CHIP_IS_E1x(bp))
4855 						_print_parity(bp,
4856 							HC_REG_HC_PRTY_STS);
4857 					else
4858 						_print_parity(bp,
4859 							IGU_REG_IGU_PRTY_STS);
4860 					break;
4861 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4862 					_print_next_block((*par_num)++, "MISC");
4863 					_print_parity(bp,
4864 						      MISC_REG_MISC_PRTY_STS);
4865 					break;
4866 				}
4867 			}
4868 
4869 			/* Clear the bit */
4870 			sig &= ~cur_bit;
4871 		}
4872 	}
4873 
4874 	return res;
4875 }
4876 
4877 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4878 					    int *par_num, bool *global,
4879 					    bool print)
4880 {
4881 	bool res = false;
4882 	u32 cur_bit;
4883 	int i;
4884 
4885 	for (i = 0; sig; i++) {
4886 		cur_bit = (0x1UL << i);
4887 		if (sig & cur_bit) {
4888 			switch (cur_bit) {
4889 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4890 				if (print)
4891 					_print_next_block((*par_num)++,
4892 							  "MCP ROM");
4893 				*global = true;
4894 				res = true;
4895 				break;
4896 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4897 				if (print)
4898 					_print_next_block((*par_num)++,
4899 							  "MCP UMP RX");
4900 				*global = true;
4901 				res = true;
4902 				break;
4903 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4904 				if (print)
4905 					_print_next_block((*par_num)++,
4906 							  "MCP UMP TX");
4907 				*global = true;
4908 				res = true;
4909 				break;
4910 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4911 				(*par_num)++;
4912 				/* clear latched SCPAD PATIRY from MCP */
4913 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4914 				       1UL << 10);
4915 				break;
4916 			}
4917 
4918 			/* Clear the bit */
4919 			sig &= ~cur_bit;
4920 		}
4921 	}
4922 
4923 	return res;
4924 }
4925 
4926 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4927 					    int *par_num, bool print)
4928 {
4929 	u32 cur_bit;
4930 	bool res;
4931 	int i;
4932 
4933 	res = false;
4934 
4935 	for (i = 0; sig; i++) {
4936 		cur_bit = (0x1UL << i);
4937 		if (sig & cur_bit) {
4938 			res = true; /* Each bit is real error! */
4939 			if (print) {
4940 				switch (cur_bit) {
4941 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4942 					_print_next_block((*par_num)++,
4943 							  "PGLUE_B");
4944 					_print_parity(bp,
4945 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4946 					break;
4947 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4948 					_print_next_block((*par_num)++, "ATC");
4949 					_print_parity(bp,
4950 						      ATC_REG_ATC_PRTY_STS);
4951 					break;
4952 				}
4953 			}
4954 			/* Clear the bit */
4955 			sig &= ~cur_bit;
4956 		}
4957 	}
4958 
4959 	return res;
4960 }
4961 
4962 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4963 			      u32 *sig)
4964 {
4965 	bool res = false;
4966 
4967 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4968 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4969 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4970 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4971 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4972 		int par_num = 0;
4973 
4974 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4975 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4976 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4977 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4978 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4979 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4980 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4981 		if (print) {
4982 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4983 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4984 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4985 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4986 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4987 				netdev_err(bp->dev,
4988 					   "Parity errors detected in blocks: ");
4989 			} else {
4990 				print = false;
4991 			}
4992 		}
4993 		res |= bnx2x_check_blocks_with_parity0(bp,
4994 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4995 		res |= bnx2x_check_blocks_with_parity1(bp,
4996 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4997 		res |= bnx2x_check_blocks_with_parity2(bp,
4998 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4999 		res |= bnx2x_check_blocks_with_parity3(bp,
5000 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5001 		res |= bnx2x_check_blocks_with_parity4(bp,
5002 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5003 
5004 		if (print)
5005 			pr_cont("\n");
5006 	}
5007 
5008 	return res;
5009 }
5010 
5011 /**
5012  * bnx2x_chk_parity_attn - checks for parity attentions.
5013  *
5014  * @bp:		driver handle
5015  * @global:	true if there was a global attention
5016  * @print:	show parity attention in syslog
5017  */
5018 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5019 {
5020 	struct attn_route attn = { {0} };
5021 	int port = BP_PORT(bp);
5022 
5023 	attn.sig[0] = REG_RD(bp,
5024 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5025 			     port*4);
5026 	attn.sig[1] = REG_RD(bp,
5027 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5028 			     port*4);
5029 	attn.sig[2] = REG_RD(bp,
5030 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5031 			     port*4);
5032 	attn.sig[3] = REG_RD(bp,
5033 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5034 			     port*4);
5035 	/* Since MCP attentions can't be disabled inside the block, we need to
5036 	 * read AEU registers to see whether they're currently disabled
5037 	 */
5038 	attn.sig[3] &= ((REG_RD(bp,
5039 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5040 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5041 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5042 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5043 
5044 	if (!CHIP_IS_E1x(bp))
5045 		attn.sig[4] = REG_RD(bp,
5046 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5047 				     port*4);
5048 
5049 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5050 }
5051 
5052 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5053 {
5054 	u32 val;
5055 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5056 
5057 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5058 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5059 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5060 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5061 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5062 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5063 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5064 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5065 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5066 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5067 		if (val &
5068 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5069 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5070 		if (val &
5071 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5072 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5073 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5074 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5075 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5076 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5077 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5078 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5079 	}
5080 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5081 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5082 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5083 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5084 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5085 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5086 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5087 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5088 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5089 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5090 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5091 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5092 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5093 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5094 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5095 	}
5096 
5097 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5098 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5099 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5100 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5101 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5102 	}
5103 }
5104 
5105 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5106 {
5107 	struct attn_route attn, *group_mask;
5108 	int port = BP_PORT(bp);
5109 	int index;
5110 	u32 reg_addr;
5111 	u32 val;
5112 	u32 aeu_mask;
5113 	bool global = false;
5114 
5115 	/* need to take HW lock because MCP or other port might also
5116 	   try to handle this event */
5117 	bnx2x_acquire_alr(bp);
5118 
5119 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5120 #ifndef BNX2X_STOP_ON_ERROR
5121 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5122 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5123 		/* Disable HW interrupts */
5124 		bnx2x_int_disable(bp);
5125 		/* In case of parity errors don't handle attentions so that
5126 		 * other function would "see" parity errors.
5127 		 */
5128 #else
5129 		bnx2x_panic();
5130 #endif
5131 		bnx2x_release_alr(bp);
5132 		return;
5133 	}
5134 
5135 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5136 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5137 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5138 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5139 	if (!CHIP_IS_E1x(bp))
5140 		attn.sig[4] =
5141 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5142 	else
5143 		attn.sig[4] = 0;
5144 
5145 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5146 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5147 
5148 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5149 		if (deasserted & (1 << index)) {
5150 			group_mask = &bp->attn_group[index];
5151 
5152 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5153 			   index,
5154 			   group_mask->sig[0], group_mask->sig[1],
5155 			   group_mask->sig[2], group_mask->sig[3],
5156 			   group_mask->sig[4]);
5157 
5158 			bnx2x_attn_int_deasserted4(bp,
5159 					attn.sig[4] & group_mask->sig[4]);
5160 			bnx2x_attn_int_deasserted3(bp,
5161 					attn.sig[3] & group_mask->sig[3]);
5162 			bnx2x_attn_int_deasserted1(bp,
5163 					attn.sig[1] & group_mask->sig[1]);
5164 			bnx2x_attn_int_deasserted2(bp,
5165 					attn.sig[2] & group_mask->sig[2]);
5166 			bnx2x_attn_int_deasserted0(bp,
5167 					attn.sig[0] & group_mask->sig[0]);
5168 		}
5169 	}
5170 
5171 	bnx2x_release_alr(bp);
5172 
5173 	if (bp->common.int_block == INT_BLOCK_HC)
5174 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5175 			    COMMAND_REG_ATTN_BITS_CLR);
5176 	else
5177 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5178 
5179 	val = ~deasserted;
5180 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5181 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5182 	REG_WR(bp, reg_addr, val);
5183 
5184 	if (~bp->attn_state & deasserted)
5185 		BNX2X_ERR("IGU ERROR\n");
5186 
5187 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5188 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5189 
5190 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5191 	aeu_mask = REG_RD(bp, reg_addr);
5192 
5193 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5194 	   aeu_mask, deasserted);
5195 	aeu_mask |= (deasserted & 0x3ff);
5196 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5197 
5198 	REG_WR(bp, reg_addr, aeu_mask);
5199 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5200 
5201 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5202 	bp->attn_state &= ~deasserted;
5203 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5204 }
5205 
5206 static void bnx2x_attn_int(struct bnx2x *bp)
5207 {
5208 	/* read local copy of bits */
5209 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5210 								attn_bits);
5211 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5212 								attn_bits_ack);
5213 	u32 attn_state = bp->attn_state;
5214 
5215 	/* look for changed bits */
5216 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5217 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5218 
5219 	DP(NETIF_MSG_HW,
5220 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5221 	   attn_bits, attn_ack, asserted, deasserted);
5222 
5223 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5224 		BNX2X_ERR("BAD attention state\n");
5225 
5226 	/* handle bits that were raised */
5227 	if (asserted)
5228 		bnx2x_attn_int_asserted(bp, asserted);
5229 
5230 	if (deasserted)
5231 		bnx2x_attn_int_deasserted(bp, deasserted);
5232 }
5233 
5234 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5235 		      u16 index, u8 op, u8 update)
5236 {
5237 	u32 igu_addr = bp->igu_base_addr;
5238 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5239 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5240 			     igu_addr);
5241 }
5242 
5243 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5244 {
5245 	/* No memory barriers */
5246 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5247 	mmiowb(); /* keep prod updates ordered */
5248 }
5249 
5250 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5251 				      union event_ring_elem *elem)
5252 {
5253 	u8 err = elem->message.error;
5254 
5255 	if (!bp->cnic_eth_dev.starting_cid  ||
5256 	    (cid < bp->cnic_eth_dev.starting_cid &&
5257 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5258 		return 1;
5259 
5260 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5261 
5262 	if (unlikely(err)) {
5263 
5264 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5265 			  cid);
5266 		bnx2x_panic_dump(bp, false);
5267 	}
5268 	bnx2x_cnic_cfc_comp(bp, cid, err);
5269 	return 0;
5270 }
5271 
5272 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5273 {
5274 	struct bnx2x_mcast_ramrod_params rparam;
5275 	int rc;
5276 
5277 	memset(&rparam, 0, sizeof(rparam));
5278 
5279 	rparam.mcast_obj = &bp->mcast_obj;
5280 
5281 	netif_addr_lock_bh(bp->dev);
5282 
5283 	/* Clear pending state for the last command */
5284 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5285 
5286 	/* If there are pending mcast commands - send them */
5287 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5288 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5289 		if (rc < 0)
5290 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5291 				  rc);
5292 	}
5293 
5294 	netif_addr_unlock_bh(bp->dev);
5295 }
5296 
5297 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5298 					    union event_ring_elem *elem)
5299 {
5300 	unsigned long ramrod_flags = 0;
5301 	int rc = 0;
5302 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5303 	u32 cid = echo & BNX2X_SWCID_MASK;
5304 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5305 
5306 	/* Always push next commands out, don't wait here */
5307 	__set_bit(RAMROD_CONT, &ramrod_flags);
5308 
5309 	switch (echo >> BNX2X_SWCID_SHIFT) {
5310 	case BNX2X_FILTER_MAC_PENDING:
5311 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5312 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5313 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5314 		else
5315 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5316 
5317 		break;
5318 	case BNX2X_FILTER_VLAN_PENDING:
5319 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5320 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5321 		break;
5322 	case BNX2X_FILTER_MCAST_PENDING:
5323 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5324 		/* This is only relevant for 57710 where multicast MACs are
5325 		 * configured as unicast MACs using the same ramrod.
5326 		 */
5327 		bnx2x_handle_mcast_eqe(bp);
5328 		return;
5329 	default:
5330 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5331 		return;
5332 	}
5333 
5334 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5335 
5336 	if (rc < 0)
5337 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5338 	else if (rc > 0)
5339 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5340 }
5341 
5342 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5343 
5344 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5345 {
5346 	netif_addr_lock_bh(bp->dev);
5347 
5348 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5349 
5350 	/* Send rx_mode command again if was requested */
5351 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5352 		bnx2x_set_storm_rx_mode(bp);
5353 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5354 				    &bp->sp_state))
5355 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5356 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5357 				    &bp->sp_state))
5358 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5359 
5360 	netif_addr_unlock_bh(bp->dev);
5361 }
5362 
5363 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5364 					      union event_ring_elem *elem)
5365 {
5366 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5367 		DP(BNX2X_MSG_SP,
5368 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5369 		   elem->message.data.vif_list_event.func_bit_map);
5370 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5371 			elem->message.data.vif_list_event.func_bit_map);
5372 	} else if (elem->message.data.vif_list_event.echo ==
5373 		   VIF_LIST_RULE_SET) {
5374 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5375 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5376 	}
5377 }
5378 
5379 /* called with rtnl_lock */
5380 static void bnx2x_after_function_update(struct bnx2x *bp)
5381 {
5382 	int q, rc;
5383 	struct bnx2x_fastpath *fp;
5384 	struct bnx2x_queue_state_params queue_params = {NULL};
5385 	struct bnx2x_queue_update_params *q_update_params =
5386 		&queue_params.params.update;
5387 
5388 	/* Send Q update command with afex vlan removal values for all Qs */
5389 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5390 
5391 	/* set silent vlan removal values according to vlan mode */
5392 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5393 		  &q_update_params->update_flags);
5394 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5395 		  &q_update_params->update_flags);
5396 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5397 
5398 	/* in access mode mark mask and value are 0 to strip all vlans */
5399 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5400 		q_update_params->silent_removal_value = 0;
5401 		q_update_params->silent_removal_mask = 0;
5402 	} else {
5403 		q_update_params->silent_removal_value =
5404 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5405 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5406 	}
5407 
5408 	for_each_eth_queue(bp, q) {
5409 		/* Set the appropriate Queue object */
5410 		fp = &bp->fp[q];
5411 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5412 
5413 		/* send the ramrod */
5414 		rc = bnx2x_queue_state_change(bp, &queue_params);
5415 		if (rc < 0)
5416 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5417 				  q);
5418 	}
5419 
5420 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5421 		fp = &bp->fp[FCOE_IDX(bp)];
5422 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5423 
5424 		/* clear pending completion bit */
5425 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5426 
5427 		/* mark latest Q bit */
5428 		smp_mb__before_atomic();
5429 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5430 		smp_mb__after_atomic();
5431 
5432 		/* send Q update ramrod for FCoE Q */
5433 		rc = bnx2x_queue_state_change(bp, &queue_params);
5434 		if (rc < 0)
5435 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5436 				  q);
5437 	} else {
5438 		/* If no FCoE ring - ACK MCP now */
5439 		bnx2x_link_report(bp);
5440 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5441 	}
5442 }
5443 
5444 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5445 	struct bnx2x *bp, u32 cid)
5446 {
5447 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5448 
5449 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5450 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5451 	else
5452 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5453 }
5454 
5455 static void bnx2x_eq_int(struct bnx2x *bp)
5456 {
5457 	u16 hw_cons, sw_cons, sw_prod;
5458 	union event_ring_elem *elem;
5459 	u8 echo;
5460 	u32 cid;
5461 	u8 opcode;
5462 	int rc, spqe_cnt = 0;
5463 	struct bnx2x_queue_sp_obj *q_obj;
5464 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5465 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5466 
5467 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5468 
5469 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5470 	 * when we get the next-page we need to adjust so the loop
5471 	 * condition below will be met. The next element is the size of a
5472 	 * regular element and hence incrementing by 1
5473 	 */
5474 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5475 		hw_cons++;
5476 
5477 	/* This function may never run in parallel with itself for a
5478 	 * specific bp, thus there is no need in "paired" read memory
5479 	 * barrier here.
5480 	 */
5481 	sw_cons = bp->eq_cons;
5482 	sw_prod = bp->eq_prod;
5483 
5484 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5485 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5486 
5487 	for (; sw_cons != hw_cons;
5488 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5489 
5490 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5491 
5492 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5493 		if (!rc) {
5494 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5495 			   rc);
5496 			goto next_spqe;
5497 		}
5498 
5499 		opcode = elem->message.opcode;
5500 
5501 		/* handle eq element */
5502 		switch (opcode) {
5503 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5504 			bnx2x_vf_mbx_schedule(bp,
5505 					      &elem->message.data.vf_pf_event);
5506 			continue;
5507 
5508 		case EVENT_RING_OPCODE_STAT_QUERY:
5509 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5510 			       "got statistics comp event %d\n",
5511 			       bp->stats_comp++);
5512 			/* nothing to do with stats comp */
5513 			goto next_spqe;
5514 
5515 		case EVENT_RING_OPCODE_CFC_DEL:
5516 			/* handle according to cid range */
5517 			/*
5518 			 * we may want to verify here that the bp state is
5519 			 * HALTING
5520 			 */
5521 
5522 			/* elem CID originates from FW; actually LE */
5523 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5524 
5525 			DP(BNX2X_MSG_SP,
5526 			   "got delete ramrod for MULTI[%d]\n", cid);
5527 
5528 			if (CNIC_LOADED(bp) &&
5529 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5530 				goto next_spqe;
5531 
5532 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5533 
5534 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5535 				break;
5536 
5537 			goto next_spqe;
5538 
5539 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5540 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5541 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5542 			if (f_obj->complete_cmd(bp, f_obj,
5543 						BNX2X_F_CMD_TX_STOP))
5544 				break;
5545 			goto next_spqe;
5546 
5547 		case EVENT_RING_OPCODE_START_TRAFFIC:
5548 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5549 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5550 			if (f_obj->complete_cmd(bp, f_obj,
5551 						BNX2X_F_CMD_TX_START))
5552 				break;
5553 			goto next_spqe;
5554 
5555 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5556 			echo = elem->message.data.function_update_event.echo;
5557 			if (echo == SWITCH_UPDATE) {
5558 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5559 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5560 				if (f_obj->complete_cmd(
5561 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5562 					break;
5563 
5564 			} else {
5565 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5566 
5567 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5568 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5569 				f_obj->complete_cmd(bp, f_obj,
5570 						    BNX2X_F_CMD_AFEX_UPDATE);
5571 
5572 				/* We will perform the Queues update from
5573 				 * sp_rtnl task as all Queue SP operations
5574 				 * should run under rtnl_lock.
5575 				 */
5576 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5577 			}
5578 
5579 			goto next_spqe;
5580 
5581 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5582 			f_obj->complete_cmd(bp, f_obj,
5583 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5584 			bnx2x_after_afex_vif_lists(bp, elem);
5585 			goto next_spqe;
5586 		case EVENT_RING_OPCODE_FUNCTION_START:
5587 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5588 			   "got FUNC_START ramrod\n");
5589 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5590 				break;
5591 
5592 			goto next_spqe;
5593 
5594 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5595 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5596 			   "got FUNC_STOP ramrod\n");
5597 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5598 				break;
5599 
5600 			goto next_spqe;
5601 
5602 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5603 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5604 			   "got set_timesync ramrod completion\n");
5605 			if (f_obj->complete_cmd(bp, f_obj,
5606 						BNX2X_F_CMD_SET_TIMESYNC))
5607 				break;
5608 			goto next_spqe;
5609 		}
5610 
5611 		switch (opcode | bp->state) {
5612 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5613 		      BNX2X_STATE_OPEN):
5614 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5615 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5616 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5617 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5618 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5619 			   SW_CID(elem->message.data.eth_event.echo));
5620 			rss_raw->clear_pending(rss_raw);
5621 			break;
5622 
5623 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5624 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5625 		case (EVENT_RING_OPCODE_SET_MAC |
5626 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5627 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5628 		      BNX2X_STATE_OPEN):
5629 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5630 		      BNX2X_STATE_DIAG):
5631 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5632 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5633 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5634 			bnx2x_handle_classification_eqe(bp, elem);
5635 			break;
5636 
5637 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5638 		      BNX2X_STATE_OPEN):
5639 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5640 		      BNX2X_STATE_DIAG):
5641 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5642 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5643 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5644 			bnx2x_handle_mcast_eqe(bp);
5645 			break;
5646 
5647 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5648 		      BNX2X_STATE_OPEN):
5649 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5650 		      BNX2X_STATE_DIAG):
5651 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5652 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5653 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5654 			bnx2x_handle_rx_mode_eqe(bp);
5655 			break;
5656 		default:
5657 			/* unknown event log error and continue */
5658 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5659 				  elem->message.opcode, bp->state);
5660 		}
5661 next_spqe:
5662 		spqe_cnt++;
5663 	} /* for */
5664 
5665 	smp_mb__before_atomic();
5666 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5667 
5668 	bp->eq_cons = sw_cons;
5669 	bp->eq_prod = sw_prod;
5670 	/* Make sure that above mem writes were issued towards the memory */
5671 	smp_wmb();
5672 
5673 	/* update producer */
5674 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5675 }
5676 
5677 static void bnx2x_sp_task(struct work_struct *work)
5678 {
5679 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5680 
5681 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5682 
5683 	/* make sure the atomic interrupt_occurred has been written */
5684 	smp_rmb();
5685 	if (atomic_read(&bp->interrupt_occurred)) {
5686 
5687 		/* what work needs to be performed? */
5688 		u16 status = bnx2x_update_dsb_idx(bp);
5689 
5690 		DP(BNX2X_MSG_SP, "status %x\n", status);
5691 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5692 		atomic_set(&bp->interrupt_occurred, 0);
5693 
5694 		/* HW attentions */
5695 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5696 			bnx2x_attn_int(bp);
5697 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5698 		}
5699 
5700 		/* SP events: STAT_QUERY and others */
5701 		if (status & BNX2X_DEF_SB_IDX) {
5702 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5703 
5704 			if (FCOE_INIT(bp) &&
5705 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5706 				/* Prevent local bottom-halves from running as
5707 				 * we are going to change the local NAPI list.
5708 				 */
5709 				local_bh_disable();
5710 				napi_schedule(&bnx2x_fcoe(bp, napi));
5711 				local_bh_enable();
5712 			}
5713 
5714 			/* Handle EQ completions */
5715 			bnx2x_eq_int(bp);
5716 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5717 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5718 
5719 			status &= ~BNX2X_DEF_SB_IDX;
5720 		}
5721 
5722 		/* if status is non zero then perhaps something went wrong */
5723 		if (unlikely(status))
5724 			DP(BNX2X_MSG_SP,
5725 			   "got an unknown interrupt! (status 0x%x)\n", status);
5726 
5727 		/* ack status block only if something was actually handled */
5728 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5729 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5730 	}
5731 
5732 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5733 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5734 			       &bp->sp_state)) {
5735 		bnx2x_link_report(bp);
5736 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5737 	}
5738 }
5739 
5740 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5741 {
5742 	struct net_device *dev = dev_instance;
5743 	struct bnx2x *bp = netdev_priv(dev);
5744 
5745 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5746 		     IGU_INT_DISABLE, 0);
5747 
5748 #ifdef BNX2X_STOP_ON_ERROR
5749 	if (unlikely(bp->panic))
5750 		return IRQ_HANDLED;
5751 #endif
5752 
5753 	if (CNIC_LOADED(bp)) {
5754 		struct cnic_ops *c_ops;
5755 
5756 		rcu_read_lock();
5757 		c_ops = rcu_dereference(bp->cnic_ops);
5758 		if (c_ops)
5759 			c_ops->cnic_handler(bp->cnic_data, NULL);
5760 		rcu_read_unlock();
5761 	}
5762 
5763 	/* schedule sp task to perform default status block work, ack
5764 	 * attentions and enable interrupts.
5765 	 */
5766 	bnx2x_schedule_sp_task(bp);
5767 
5768 	return IRQ_HANDLED;
5769 }
5770 
5771 /* end of slow path */
5772 
5773 void bnx2x_drv_pulse(struct bnx2x *bp)
5774 {
5775 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5776 		 bp->fw_drv_pulse_wr_seq);
5777 }
5778 
5779 static void bnx2x_timer(struct timer_list *t)
5780 {
5781 	struct bnx2x *bp = from_timer(bp, t, timer);
5782 
5783 	if (!netif_running(bp->dev))
5784 		return;
5785 
5786 	if (IS_PF(bp) &&
5787 	    !BP_NOMCP(bp)) {
5788 		int mb_idx = BP_FW_MB_IDX(bp);
5789 		u16 drv_pulse;
5790 		u16 mcp_pulse;
5791 
5792 		++bp->fw_drv_pulse_wr_seq;
5793 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5794 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5795 		bnx2x_drv_pulse(bp);
5796 
5797 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5798 			     MCP_PULSE_SEQ_MASK);
5799 		/* The delta between driver pulse and mcp response
5800 		 * should not get too big. If the MFW is more than 5 pulses
5801 		 * behind, we should worry about it enough to generate an error
5802 		 * log.
5803 		 */
5804 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5805 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5806 				  drv_pulse, mcp_pulse);
5807 	}
5808 
5809 	if (bp->state == BNX2X_STATE_OPEN)
5810 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5811 
5812 	/* sample pf vf bulletin board for new posts from pf */
5813 	if (IS_VF(bp))
5814 		bnx2x_timer_sriov(bp);
5815 
5816 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5817 }
5818 
5819 /* end of Statistics */
5820 
5821 /* nic init */
5822 
5823 /*
5824  * nic init service functions
5825  */
5826 
5827 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5828 {
5829 	u32 i;
5830 	if (!(len%4) && !(addr%4))
5831 		for (i = 0; i < len; i += 4)
5832 			REG_WR(bp, addr + i, fill);
5833 	else
5834 		for (i = 0; i < len; i++)
5835 			REG_WR8(bp, addr + i, fill);
5836 }
5837 
5838 /* helper: writes FP SP data to FW - data_size in dwords */
5839 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5840 				int fw_sb_id,
5841 				u32 *sb_data_p,
5842 				u32 data_size)
5843 {
5844 	int index;
5845 	for (index = 0; index < data_size; index++)
5846 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5847 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5848 			sizeof(u32)*index,
5849 			*(sb_data_p + index));
5850 }
5851 
5852 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5853 {
5854 	u32 *sb_data_p;
5855 	u32 data_size = 0;
5856 	struct hc_status_block_data_e2 sb_data_e2;
5857 	struct hc_status_block_data_e1x sb_data_e1x;
5858 
5859 	/* disable the function first */
5860 	if (!CHIP_IS_E1x(bp)) {
5861 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5862 		sb_data_e2.common.state = SB_DISABLED;
5863 		sb_data_e2.common.p_func.vf_valid = false;
5864 		sb_data_p = (u32 *)&sb_data_e2;
5865 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5866 	} else {
5867 		memset(&sb_data_e1x, 0,
5868 		       sizeof(struct hc_status_block_data_e1x));
5869 		sb_data_e1x.common.state = SB_DISABLED;
5870 		sb_data_e1x.common.p_func.vf_valid = false;
5871 		sb_data_p = (u32 *)&sb_data_e1x;
5872 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5873 	}
5874 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5875 
5876 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5877 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5878 			CSTORM_STATUS_BLOCK_SIZE);
5879 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5880 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5881 			CSTORM_SYNC_BLOCK_SIZE);
5882 }
5883 
5884 /* helper:  writes SP SB data to FW */
5885 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5886 		struct hc_sp_status_block_data *sp_sb_data)
5887 {
5888 	int func = BP_FUNC(bp);
5889 	int i;
5890 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5891 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5892 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5893 			i*sizeof(u32),
5894 			*((u32 *)sp_sb_data + i));
5895 }
5896 
5897 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5898 {
5899 	int func = BP_FUNC(bp);
5900 	struct hc_sp_status_block_data sp_sb_data;
5901 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5902 
5903 	sp_sb_data.state = SB_DISABLED;
5904 	sp_sb_data.p_func.vf_valid = false;
5905 
5906 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5907 
5908 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5909 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5910 			CSTORM_SP_STATUS_BLOCK_SIZE);
5911 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5912 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5913 			CSTORM_SP_SYNC_BLOCK_SIZE);
5914 }
5915 
5916 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5917 					   int igu_sb_id, int igu_seg_id)
5918 {
5919 	hc_sm->igu_sb_id = igu_sb_id;
5920 	hc_sm->igu_seg_id = igu_seg_id;
5921 	hc_sm->timer_value = 0xFF;
5922 	hc_sm->time_to_expire = 0xFFFFFFFF;
5923 }
5924 
5925 /* allocates state machine ids. */
5926 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5927 {
5928 	/* zero out state machine indices */
5929 	/* rx indices */
5930 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5931 
5932 	/* tx indices */
5933 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5934 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5935 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5936 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5937 
5938 	/* map indices */
5939 	/* rx indices */
5940 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5941 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5942 
5943 	/* tx indices */
5944 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5945 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5947 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5948 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5949 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5950 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5951 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952 }
5953 
5954 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5955 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5956 {
5957 	int igu_seg_id;
5958 
5959 	struct hc_status_block_data_e2 sb_data_e2;
5960 	struct hc_status_block_data_e1x sb_data_e1x;
5961 	struct hc_status_block_sm  *hc_sm_p;
5962 	int data_size;
5963 	u32 *sb_data_p;
5964 
5965 	if (CHIP_INT_MODE_IS_BC(bp))
5966 		igu_seg_id = HC_SEG_ACCESS_NORM;
5967 	else
5968 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5969 
5970 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5971 
5972 	if (!CHIP_IS_E1x(bp)) {
5973 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5974 		sb_data_e2.common.state = SB_ENABLED;
5975 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5976 		sb_data_e2.common.p_func.vf_id = vfid;
5977 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5978 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5979 		sb_data_e2.common.same_igu_sb_1b = true;
5980 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5981 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5982 		hc_sm_p = sb_data_e2.common.state_machine;
5983 		sb_data_p = (u32 *)&sb_data_e2;
5984 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5985 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5986 	} else {
5987 		memset(&sb_data_e1x, 0,
5988 		       sizeof(struct hc_status_block_data_e1x));
5989 		sb_data_e1x.common.state = SB_ENABLED;
5990 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5991 		sb_data_e1x.common.p_func.vf_id = 0xff;
5992 		sb_data_e1x.common.p_func.vf_valid = false;
5993 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5994 		sb_data_e1x.common.same_igu_sb_1b = true;
5995 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5996 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5997 		hc_sm_p = sb_data_e1x.common.state_machine;
5998 		sb_data_p = (u32 *)&sb_data_e1x;
5999 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6000 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6001 	}
6002 
6003 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6004 				       igu_sb_id, igu_seg_id);
6005 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6006 				       igu_sb_id, igu_seg_id);
6007 
6008 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6009 
6010 	/* write indices to HW - PCI guarantees endianity of regpairs */
6011 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6012 }
6013 
6014 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6015 				     u16 tx_usec, u16 rx_usec)
6016 {
6017 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6018 				    false, rx_usec);
6019 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6020 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6021 				       tx_usec);
6022 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6023 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6024 				       tx_usec);
6025 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6026 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6027 				       tx_usec);
6028 }
6029 
6030 static void bnx2x_init_def_sb(struct bnx2x *bp)
6031 {
6032 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6033 	dma_addr_t mapping = bp->def_status_blk_mapping;
6034 	int igu_sp_sb_index;
6035 	int igu_seg_id;
6036 	int port = BP_PORT(bp);
6037 	int func = BP_FUNC(bp);
6038 	int reg_offset, reg_offset_en5;
6039 	u64 section;
6040 	int index;
6041 	struct hc_sp_status_block_data sp_sb_data;
6042 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6043 
6044 	if (CHIP_INT_MODE_IS_BC(bp)) {
6045 		igu_sp_sb_index = DEF_SB_IGU_ID;
6046 		igu_seg_id = HC_SEG_ACCESS_DEF;
6047 	} else {
6048 		igu_sp_sb_index = bp->igu_dsb_id;
6049 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6050 	}
6051 
6052 	/* ATTN */
6053 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6054 					    atten_status_block);
6055 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6056 
6057 	bp->attn_state = 0;
6058 
6059 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6060 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6061 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6062 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6063 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6064 		int sindex;
6065 		/* take care of sig[0]..sig[4] */
6066 		for (sindex = 0; sindex < 4; sindex++)
6067 			bp->attn_group[index].sig[sindex] =
6068 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6069 
6070 		if (!CHIP_IS_E1x(bp))
6071 			/*
6072 			 * enable5 is separate from the rest of the registers,
6073 			 * and therefore the address skip is 4
6074 			 * and not 16 between the different groups
6075 			 */
6076 			bp->attn_group[index].sig[4] = REG_RD(bp,
6077 					reg_offset_en5 + 0x4*index);
6078 		else
6079 			bp->attn_group[index].sig[4] = 0;
6080 	}
6081 
6082 	if (bp->common.int_block == INT_BLOCK_HC) {
6083 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6084 				     HC_REG_ATTN_MSG0_ADDR_L);
6085 
6086 		REG_WR(bp, reg_offset, U64_LO(section));
6087 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6088 	} else if (!CHIP_IS_E1x(bp)) {
6089 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6090 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6091 	}
6092 
6093 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6094 					    sp_sb);
6095 
6096 	bnx2x_zero_sp_sb(bp);
6097 
6098 	/* PCI guarantees endianity of regpairs */
6099 	sp_sb_data.state		= SB_ENABLED;
6100 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6101 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6102 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6103 	sp_sb_data.igu_seg_id		= igu_seg_id;
6104 	sp_sb_data.p_func.pf_id		= func;
6105 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6106 	sp_sb_data.p_func.vf_id		= 0xff;
6107 
6108 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6109 
6110 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6111 }
6112 
6113 void bnx2x_update_coalesce(struct bnx2x *bp)
6114 {
6115 	int i;
6116 
6117 	for_each_eth_queue(bp, i)
6118 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6119 					 bp->tx_ticks, bp->rx_ticks);
6120 }
6121 
6122 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6123 {
6124 	spin_lock_init(&bp->spq_lock);
6125 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6126 
6127 	bp->spq_prod_idx = 0;
6128 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6129 	bp->spq_prod_bd = bp->spq;
6130 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6131 }
6132 
6133 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6134 {
6135 	int i;
6136 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6137 		union event_ring_elem *elem =
6138 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6139 
6140 		elem->next_page.addr.hi =
6141 			cpu_to_le32(U64_HI(bp->eq_mapping +
6142 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6143 		elem->next_page.addr.lo =
6144 			cpu_to_le32(U64_LO(bp->eq_mapping +
6145 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6146 	}
6147 	bp->eq_cons = 0;
6148 	bp->eq_prod = NUM_EQ_DESC;
6149 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6150 	/* we want a warning message before it gets wrought... */
6151 	atomic_set(&bp->eq_spq_left,
6152 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6153 }
6154 
6155 /* called with netif_addr_lock_bh() */
6156 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6157 			       unsigned long rx_mode_flags,
6158 			       unsigned long rx_accept_flags,
6159 			       unsigned long tx_accept_flags,
6160 			       unsigned long ramrod_flags)
6161 {
6162 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6163 	int rc;
6164 
6165 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6166 
6167 	/* Prepare ramrod parameters */
6168 	ramrod_param.cid = 0;
6169 	ramrod_param.cl_id = cl_id;
6170 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6171 	ramrod_param.func_id = BP_FUNC(bp);
6172 
6173 	ramrod_param.pstate = &bp->sp_state;
6174 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6175 
6176 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6177 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6178 
6179 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6180 
6181 	ramrod_param.ramrod_flags = ramrod_flags;
6182 	ramrod_param.rx_mode_flags = rx_mode_flags;
6183 
6184 	ramrod_param.rx_accept_flags = rx_accept_flags;
6185 	ramrod_param.tx_accept_flags = tx_accept_flags;
6186 
6187 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6188 	if (rc < 0) {
6189 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6190 		return rc;
6191 	}
6192 
6193 	return 0;
6194 }
6195 
6196 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6197 				   unsigned long *rx_accept_flags,
6198 				   unsigned long *tx_accept_flags)
6199 {
6200 	/* Clear the flags first */
6201 	*rx_accept_flags = 0;
6202 	*tx_accept_flags = 0;
6203 
6204 	switch (rx_mode) {
6205 	case BNX2X_RX_MODE_NONE:
6206 		/*
6207 		 * 'drop all' supersedes any accept flags that may have been
6208 		 * passed to the function.
6209 		 */
6210 		break;
6211 	case BNX2X_RX_MODE_NORMAL:
6212 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6213 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6214 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6215 
6216 		/* internal switching mode */
6217 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6218 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6219 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6220 
6221 		if (bp->accept_any_vlan) {
6222 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6223 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6224 		}
6225 
6226 		break;
6227 	case BNX2X_RX_MODE_ALLMULTI:
6228 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6229 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6230 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6231 
6232 		/* internal switching mode */
6233 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6234 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6235 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6236 
6237 		if (bp->accept_any_vlan) {
6238 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6239 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6240 		}
6241 
6242 		break;
6243 	case BNX2X_RX_MODE_PROMISC:
6244 		/* According to definition of SI mode, iface in promisc mode
6245 		 * should receive matched and unmatched (in resolution of port)
6246 		 * unicast packets.
6247 		 */
6248 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6249 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6250 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6251 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6252 
6253 		/* internal switching mode */
6254 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6255 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6256 
6257 		if (IS_MF_SI(bp))
6258 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6259 		else
6260 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6261 
6262 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6263 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6264 
6265 		break;
6266 	default:
6267 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6268 		return -EINVAL;
6269 	}
6270 
6271 	return 0;
6272 }
6273 
6274 /* called with netif_addr_lock_bh() */
6275 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6276 {
6277 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6278 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6279 	int rc;
6280 
6281 	if (!NO_FCOE(bp))
6282 		/* Configure rx_mode of FCoE Queue */
6283 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6284 
6285 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6286 				     &tx_accept_flags);
6287 	if (rc)
6288 		return rc;
6289 
6290 	__set_bit(RAMROD_RX, &ramrod_flags);
6291 	__set_bit(RAMROD_TX, &ramrod_flags);
6292 
6293 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6294 				   rx_accept_flags, tx_accept_flags,
6295 				   ramrod_flags);
6296 }
6297 
6298 static void bnx2x_init_internal_common(struct bnx2x *bp)
6299 {
6300 	int i;
6301 
6302 	/* Zero this manually as its initialization is
6303 	   currently missing in the initTool */
6304 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6305 		REG_WR(bp, BAR_USTRORM_INTMEM +
6306 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6307 	if (!CHIP_IS_E1x(bp)) {
6308 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6309 			CHIP_INT_MODE_IS_BC(bp) ?
6310 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6311 	}
6312 }
6313 
6314 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6315 {
6316 	switch (load_code) {
6317 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6318 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6319 		bnx2x_init_internal_common(bp);
6320 		/* no break */
6321 
6322 	case FW_MSG_CODE_DRV_LOAD_PORT:
6323 		/* nothing to do */
6324 		/* no break */
6325 
6326 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6327 		/* internal memory per function is
6328 		   initialized inside bnx2x_pf_init */
6329 		break;
6330 
6331 	default:
6332 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6333 		break;
6334 	}
6335 }
6336 
6337 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6338 {
6339 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6340 }
6341 
6342 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6343 {
6344 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6345 }
6346 
6347 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6348 {
6349 	if (CHIP_IS_E1x(fp->bp))
6350 		return BP_L_ID(fp->bp) + fp->index;
6351 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6352 		return bnx2x_fp_igu_sb_id(fp);
6353 }
6354 
6355 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6356 {
6357 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6358 	u8 cos;
6359 	unsigned long q_type = 0;
6360 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6361 	fp->rx_queue = fp_idx;
6362 	fp->cid = fp_idx;
6363 	fp->cl_id = bnx2x_fp_cl_id(fp);
6364 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6365 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6366 	/* qZone id equals to FW (per path) client id */
6367 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6368 
6369 	/* init shortcut */
6370 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6371 
6372 	/* Setup SB indices */
6373 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6374 
6375 	/* Configure Queue State object */
6376 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6377 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6378 
6379 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6380 
6381 	/* init tx data */
6382 	for_each_cos_in_tx_queue(fp, cos) {
6383 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6384 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6385 				  FP_COS_TO_TXQ(fp, cos, bp),
6386 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6387 		cids[cos] = fp->txdata_ptr[cos]->cid;
6388 	}
6389 
6390 	/* nothing more for vf to do here */
6391 	if (IS_VF(bp))
6392 		return;
6393 
6394 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6395 		      fp->fw_sb_id, fp->igu_sb_id);
6396 	bnx2x_update_fpsb_idx(fp);
6397 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6398 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6399 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6400 
6401 	/**
6402 	 * Configure classification DBs: Always enable Tx switching
6403 	 */
6404 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6405 
6406 	DP(NETIF_MSG_IFUP,
6407 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6408 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6409 	   fp->igu_sb_id);
6410 }
6411 
6412 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6413 {
6414 	int i;
6415 
6416 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6417 		struct eth_tx_next_bd *tx_next_bd =
6418 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6419 
6420 		tx_next_bd->addr_hi =
6421 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6422 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6423 		tx_next_bd->addr_lo =
6424 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6425 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6426 	}
6427 
6428 	*txdata->tx_cons_sb = cpu_to_le16(0);
6429 
6430 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6431 	txdata->tx_db.data.zero_fill1 = 0;
6432 	txdata->tx_db.data.prod = 0;
6433 
6434 	txdata->tx_pkt_prod = 0;
6435 	txdata->tx_pkt_cons = 0;
6436 	txdata->tx_bd_prod = 0;
6437 	txdata->tx_bd_cons = 0;
6438 	txdata->tx_pkt = 0;
6439 }
6440 
6441 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6442 {
6443 	int i;
6444 
6445 	for_each_tx_queue_cnic(bp, i)
6446 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6447 }
6448 
6449 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6450 {
6451 	int i;
6452 	u8 cos;
6453 
6454 	for_each_eth_queue(bp, i)
6455 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6456 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6457 }
6458 
6459 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6460 {
6461 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6462 	unsigned long q_type = 0;
6463 
6464 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6465 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6466 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6467 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6468 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6469 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6470 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6471 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6472 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6473 			  fp);
6474 
6475 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6476 
6477 	/* qZone id equals to FW (per path) client id */
6478 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6479 	/* init shortcut */
6480 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6481 		bnx2x_rx_ustorm_prods_offset(fp);
6482 
6483 	/* Configure Queue State object */
6484 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6485 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6486 
6487 	/* No multi-CoS for FCoE L2 client */
6488 	BUG_ON(fp->max_cos != 1);
6489 
6490 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6491 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6492 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6493 
6494 	DP(NETIF_MSG_IFUP,
6495 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6496 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6497 	   fp->igu_sb_id);
6498 }
6499 
6500 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6501 {
6502 	if (!NO_FCOE(bp))
6503 		bnx2x_init_fcoe_fp(bp);
6504 
6505 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6506 		      BNX2X_VF_ID_INVALID, false,
6507 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6508 
6509 	/* ensure status block indices were read */
6510 	rmb();
6511 	bnx2x_init_rx_rings_cnic(bp);
6512 	bnx2x_init_tx_rings_cnic(bp);
6513 
6514 	/* flush all */
6515 	mb();
6516 	mmiowb();
6517 }
6518 
6519 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6520 {
6521 	int i;
6522 
6523 	/* Setup NIC internals and enable interrupts */
6524 	for_each_eth_queue(bp, i)
6525 		bnx2x_init_eth_fp(bp, i);
6526 
6527 	/* ensure status block indices were read */
6528 	rmb();
6529 	bnx2x_init_rx_rings(bp);
6530 	bnx2x_init_tx_rings(bp);
6531 
6532 	if (IS_PF(bp)) {
6533 		/* Initialize MOD_ABS interrupts */
6534 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6535 				       bp->common.shmem_base,
6536 				       bp->common.shmem2_base, BP_PORT(bp));
6537 
6538 		/* initialize the default status block and sp ring */
6539 		bnx2x_init_def_sb(bp);
6540 		bnx2x_update_dsb_idx(bp);
6541 		bnx2x_init_sp_ring(bp);
6542 	} else {
6543 		bnx2x_memset_stats(bp);
6544 	}
6545 }
6546 
6547 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6548 {
6549 	bnx2x_init_eq_ring(bp);
6550 	bnx2x_init_internal(bp, load_code);
6551 	bnx2x_pf_init(bp);
6552 	bnx2x_stats_init(bp);
6553 
6554 	/* flush all before enabling interrupts */
6555 	mb();
6556 	mmiowb();
6557 
6558 	bnx2x_int_enable(bp);
6559 
6560 	/* Check for SPIO5 */
6561 	bnx2x_attn_int_deasserted0(bp,
6562 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6563 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6564 }
6565 
6566 /* gzip service functions */
6567 static int bnx2x_gunzip_init(struct bnx2x *bp)
6568 {
6569 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6570 					    &bp->gunzip_mapping, GFP_KERNEL);
6571 	if (bp->gunzip_buf  == NULL)
6572 		goto gunzip_nomem1;
6573 
6574 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6575 	if (bp->strm  == NULL)
6576 		goto gunzip_nomem2;
6577 
6578 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6579 	if (bp->strm->workspace == NULL)
6580 		goto gunzip_nomem3;
6581 
6582 	return 0;
6583 
6584 gunzip_nomem3:
6585 	kfree(bp->strm);
6586 	bp->strm = NULL;
6587 
6588 gunzip_nomem2:
6589 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6590 			  bp->gunzip_mapping);
6591 	bp->gunzip_buf = NULL;
6592 
6593 gunzip_nomem1:
6594 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6595 	return -ENOMEM;
6596 }
6597 
6598 static void bnx2x_gunzip_end(struct bnx2x *bp)
6599 {
6600 	if (bp->strm) {
6601 		vfree(bp->strm->workspace);
6602 		kfree(bp->strm);
6603 		bp->strm = NULL;
6604 	}
6605 
6606 	if (bp->gunzip_buf) {
6607 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6608 				  bp->gunzip_mapping);
6609 		bp->gunzip_buf = NULL;
6610 	}
6611 }
6612 
6613 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6614 {
6615 	int n, rc;
6616 
6617 	/* check gzip header */
6618 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6619 		BNX2X_ERR("Bad gzip header\n");
6620 		return -EINVAL;
6621 	}
6622 
6623 	n = 10;
6624 
6625 #define FNAME				0x8
6626 
6627 	if (zbuf[3] & FNAME)
6628 		while ((zbuf[n++] != 0) && (n < len));
6629 
6630 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6631 	bp->strm->avail_in = len - n;
6632 	bp->strm->next_out = bp->gunzip_buf;
6633 	bp->strm->avail_out = FW_BUF_SIZE;
6634 
6635 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6636 	if (rc != Z_OK)
6637 		return rc;
6638 
6639 	rc = zlib_inflate(bp->strm, Z_FINISH);
6640 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6641 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6642 			   bp->strm->msg);
6643 
6644 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6645 	if (bp->gunzip_outlen & 0x3)
6646 		netdev_err(bp->dev,
6647 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6648 				bp->gunzip_outlen);
6649 	bp->gunzip_outlen >>= 2;
6650 
6651 	zlib_inflateEnd(bp->strm);
6652 
6653 	if (rc == Z_STREAM_END)
6654 		return 0;
6655 
6656 	return rc;
6657 }
6658 
6659 /* nic load/unload */
6660 
6661 /*
6662  * General service functions
6663  */
6664 
6665 /* send a NIG loopback debug packet */
6666 static void bnx2x_lb_pckt(struct bnx2x *bp)
6667 {
6668 	u32 wb_write[3];
6669 
6670 	/* Ethernet source and destination addresses */
6671 	wb_write[0] = 0x55555555;
6672 	wb_write[1] = 0x55555555;
6673 	wb_write[2] = 0x20;		/* SOP */
6674 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6675 
6676 	/* NON-IP protocol */
6677 	wb_write[0] = 0x09000000;
6678 	wb_write[1] = 0x55555555;
6679 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6680 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6681 }
6682 
6683 /* some of the internal memories
6684  * are not directly readable from the driver
6685  * to test them we send debug packets
6686  */
6687 static int bnx2x_int_mem_test(struct bnx2x *bp)
6688 {
6689 	int factor;
6690 	int count, i;
6691 	u32 val = 0;
6692 
6693 	if (CHIP_REV_IS_FPGA(bp))
6694 		factor = 120;
6695 	else if (CHIP_REV_IS_EMUL(bp))
6696 		factor = 200;
6697 	else
6698 		factor = 1;
6699 
6700 	/* Disable inputs of parser neighbor blocks */
6701 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6702 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6703 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6704 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6705 
6706 	/*  Write 0 to parser credits for CFC search request */
6707 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6708 
6709 	/* send Ethernet packet */
6710 	bnx2x_lb_pckt(bp);
6711 
6712 	/* TODO do i reset NIG statistic? */
6713 	/* Wait until NIG register shows 1 packet of size 0x10 */
6714 	count = 1000 * factor;
6715 	while (count) {
6716 
6717 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6718 		val = *bnx2x_sp(bp, wb_data[0]);
6719 		if (val == 0x10)
6720 			break;
6721 
6722 		usleep_range(10000, 20000);
6723 		count--;
6724 	}
6725 	if (val != 0x10) {
6726 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6727 		return -1;
6728 	}
6729 
6730 	/* Wait until PRS register shows 1 packet */
6731 	count = 1000 * factor;
6732 	while (count) {
6733 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6734 		if (val == 1)
6735 			break;
6736 
6737 		usleep_range(10000, 20000);
6738 		count--;
6739 	}
6740 	if (val != 0x1) {
6741 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6742 		return -2;
6743 	}
6744 
6745 	/* Reset and init BRB, PRS */
6746 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6747 	msleep(50);
6748 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6749 	msleep(50);
6750 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6751 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6752 
6753 	DP(NETIF_MSG_HW, "part2\n");
6754 
6755 	/* Disable inputs of parser neighbor blocks */
6756 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6757 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6758 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6759 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6760 
6761 	/* Write 0 to parser credits for CFC search request */
6762 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6763 
6764 	/* send 10 Ethernet packets */
6765 	for (i = 0; i < 10; i++)
6766 		bnx2x_lb_pckt(bp);
6767 
6768 	/* Wait until NIG register shows 10 + 1
6769 	   packets of size 11*0x10 = 0xb0 */
6770 	count = 1000 * factor;
6771 	while (count) {
6772 
6773 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6774 		val = *bnx2x_sp(bp, wb_data[0]);
6775 		if (val == 0xb0)
6776 			break;
6777 
6778 		usleep_range(10000, 20000);
6779 		count--;
6780 	}
6781 	if (val != 0xb0) {
6782 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6783 		return -3;
6784 	}
6785 
6786 	/* Wait until PRS register shows 2 packets */
6787 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6788 	if (val != 2)
6789 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6790 
6791 	/* Write 1 to parser credits for CFC search request */
6792 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6793 
6794 	/* Wait until PRS register shows 3 packets */
6795 	msleep(10 * factor);
6796 	/* Wait until NIG register shows 1 packet of size 0x10 */
6797 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6798 	if (val != 3)
6799 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6800 
6801 	/* clear NIG EOP FIFO */
6802 	for (i = 0; i < 11; i++)
6803 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6804 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6805 	if (val != 1) {
6806 		BNX2X_ERR("clear of NIG failed\n");
6807 		return -4;
6808 	}
6809 
6810 	/* Reset and init BRB, PRS, NIG */
6811 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6812 	msleep(50);
6813 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6814 	msleep(50);
6815 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6816 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6817 	if (!CNIC_SUPPORT(bp))
6818 		/* set NIC mode */
6819 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6820 
6821 	/* Enable inputs of parser neighbor blocks */
6822 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6823 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6824 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6825 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6826 
6827 	DP(NETIF_MSG_HW, "done\n");
6828 
6829 	return 0; /* OK */
6830 }
6831 
6832 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6833 {
6834 	u32 val;
6835 
6836 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6837 	if (!CHIP_IS_E1x(bp))
6838 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6839 	else
6840 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6841 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6842 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6843 	/*
6844 	 * mask read length error interrupts in brb for parser
6845 	 * (parsing unit and 'checksum and crc' unit)
6846 	 * these errors are legal (PU reads fixed length and CAC can cause
6847 	 * read length error on truncated packets)
6848 	 */
6849 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6850 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6851 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6852 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6853 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6854 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6855 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6856 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6857 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6858 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6859 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6860 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6861 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6862 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6863 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6864 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6865 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6866 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6867 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6868 
6869 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6870 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6871 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6872 	if (!CHIP_IS_E1x(bp))
6873 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6874 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6875 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6876 
6877 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6878 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6879 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6880 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6881 
6882 	if (!CHIP_IS_E1x(bp))
6883 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6884 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6885 
6886 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6887 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6888 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6889 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6890 }
6891 
6892 static void bnx2x_reset_common(struct bnx2x *bp)
6893 {
6894 	u32 val = 0x1400;
6895 
6896 	/* reset_common */
6897 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6898 	       0xd3ffff7f);
6899 
6900 	if (CHIP_IS_E3(bp)) {
6901 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6902 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6903 	}
6904 
6905 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6906 }
6907 
6908 static void bnx2x_setup_dmae(struct bnx2x *bp)
6909 {
6910 	bp->dmae_ready = 0;
6911 	spin_lock_init(&bp->dmae_lock);
6912 }
6913 
6914 static void bnx2x_init_pxp(struct bnx2x *bp)
6915 {
6916 	u16 devctl;
6917 	int r_order, w_order;
6918 
6919 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6920 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6921 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6922 	if (bp->mrrs == -1)
6923 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6924 	else {
6925 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6926 		r_order = bp->mrrs;
6927 	}
6928 
6929 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6930 }
6931 
6932 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6933 {
6934 	int is_required;
6935 	u32 val;
6936 	int port;
6937 
6938 	if (BP_NOMCP(bp))
6939 		return;
6940 
6941 	is_required = 0;
6942 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6943 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6944 
6945 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6946 		is_required = 1;
6947 
6948 	/*
6949 	 * The fan failure mechanism is usually related to the PHY type since
6950 	 * the power consumption of the board is affected by the PHY. Currently,
6951 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6952 	 */
6953 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6954 		for (port = PORT_0; port < PORT_MAX; port++) {
6955 			is_required |=
6956 				bnx2x_fan_failure_det_req(
6957 					bp,
6958 					bp->common.shmem_base,
6959 					bp->common.shmem2_base,
6960 					port);
6961 		}
6962 
6963 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6964 
6965 	if (is_required == 0)
6966 		return;
6967 
6968 	/* Fan failure is indicated by SPIO 5 */
6969 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6970 
6971 	/* set to active low mode */
6972 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6973 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6974 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6975 
6976 	/* enable interrupt to signal the IGU */
6977 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6978 	val |= MISC_SPIO_SPIO5;
6979 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6980 }
6981 
6982 void bnx2x_pf_disable(struct bnx2x *bp)
6983 {
6984 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6985 	val &= ~IGU_PF_CONF_FUNC_EN;
6986 
6987 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6988 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6989 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6990 }
6991 
6992 static void bnx2x__common_init_phy(struct bnx2x *bp)
6993 {
6994 	u32 shmem_base[2], shmem2_base[2];
6995 	/* Avoid common init in case MFW supports LFA */
6996 	if (SHMEM2_RD(bp, size) >
6997 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6998 		return;
6999 	shmem_base[0] =  bp->common.shmem_base;
7000 	shmem2_base[0] = bp->common.shmem2_base;
7001 	if (!CHIP_IS_E1x(bp)) {
7002 		shmem_base[1] =
7003 			SHMEM2_RD(bp, other_shmem_base_addr);
7004 		shmem2_base[1] =
7005 			SHMEM2_RD(bp, other_shmem2_base_addr);
7006 	}
7007 	bnx2x_acquire_phy_lock(bp);
7008 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7009 			      bp->common.chip_id);
7010 	bnx2x_release_phy_lock(bp);
7011 }
7012 
7013 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7014 {
7015 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7016 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7017 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7018 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7019 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7020 
7021 	/* make sure this value is 0 */
7022 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7023 
7024 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7025 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7026 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7027 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7028 }
7029 
7030 static void bnx2x_set_endianity(struct bnx2x *bp)
7031 {
7032 #ifdef __BIG_ENDIAN
7033 	bnx2x_config_endianity(bp, 1);
7034 #else
7035 	bnx2x_config_endianity(bp, 0);
7036 #endif
7037 }
7038 
7039 static void bnx2x_reset_endianity(struct bnx2x *bp)
7040 {
7041 	bnx2x_config_endianity(bp, 0);
7042 }
7043 
7044 /**
7045  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7046  *
7047  * @bp:		driver handle
7048  */
7049 static int bnx2x_init_hw_common(struct bnx2x *bp)
7050 {
7051 	u32 val;
7052 
7053 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7054 
7055 	/*
7056 	 * take the RESET lock to protect undi_unload flow from accessing
7057 	 * registers while we're resetting the chip
7058 	 */
7059 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7060 
7061 	bnx2x_reset_common(bp);
7062 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7063 
7064 	val = 0xfffc;
7065 	if (CHIP_IS_E3(bp)) {
7066 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7067 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7068 	}
7069 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7070 
7071 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7072 
7073 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7074 
7075 	if (!CHIP_IS_E1x(bp)) {
7076 		u8 abs_func_id;
7077 
7078 		/**
7079 		 * 4-port mode or 2-port mode we need to turn of master-enable
7080 		 * for everyone, after that, turn it back on for self.
7081 		 * so, we disregard multi-function or not, and always disable
7082 		 * for all functions on the given path, this means 0,2,4,6 for
7083 		 * path 0 and 1,3,5,7 for path 1
7084 		 */
7085 		for (abs_func_id = BP_PATH(bp);
7086 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7087 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7088 				REG_WR(bp,
7089 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7090 				    1);
7091 				continue;
7092 			}
7093 
7094 			bnx2x_pretend_func(bp, abs_func_id);
7095 			/* clear pf enable */
7096 			bnx2x_pf_disable(bp);
7097 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7098 		}
7099 	}
7100 
7101 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7102 	if (CHIP_IS_E1(bp)) {
7103 		/* enable HW interrupt from PXP on USDM overflow
7104 		   bit 16 on INT_MASK_0 */
7105 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7106 	}
7107 
7108 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7109 	bnx2x_init_pxp(bp);
7110 	bnx2x_set_endianity(bp);
7111 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7112 
7113 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7114 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7115 
7116 	/* let the HW do it's magic ... */
7117 	msleep(100);
7118 	/* finish PXP init */
7119 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7120 	if (val != 1) {
7121 		BNX2X_ERR("PXP2 CFG failed\n");
7122 		return -EBUSY;
7123 	}
7124 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7125 	if (val != 1) {
7126 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7127 		return -EBUSY;
7128 	}
7129 
7130 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7131 	 * have entries with value "0" and valid bit on.
7132 	 * This needs to be done by the first PF that is loaded in a path
7133 	 * (i.e. common phase)
7134 	 */
7135 	if (!CHIP_IS_E1x(bp)) {
7136 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7137  * (i.e. vnic3) to start even if it is marked as "scan-off".
7138  * This occurs when a different function (func2,3) is being marked
7139  * as "scan-off". Real-life scenario for example: if a driver is being
7140  * load-unloaded while func6,7 are down. This will cause the timer to access
7141  * the ilt, translate to a logical address and send a request to read/write.
7142  * Since the ilt for the function that is down is not valid, this will cause
7143  * a translation error which is unrecoverable.
7144  * The Workaround is intended to make sure that when this happens nothing fatal
7145  * will occur. The workaround:
7146  *	1.  First PF driver which loads on a path will:
7147  *		a.  After taking the chip out of reset, by using pretend,
7148  *		    it will write "0" to the following registers of
7149  *		    the other vnics.
7150  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7151  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7152  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7153  *		    And for itself it will write '1' to
7154  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7155  *		    dmae-operations (writing to pram for example.)
7156  *		    note: can be done for only function 6,7 but cleaner this
7157  *			  way.
7158  *		b.  Write zero+valid to the entire ILT.
7159  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7160  *		    VNIC3 (of that port). The range allocated will be the
7161  *		    entire ILT. This is needed to prevent  ILT range error.
7162  *	2.  Any PF driver load flow:
7163  *		a.  ILT update with the physical addresses of the allocated
7164  *		    logical pages.
7165  *		b.  Wait 20msec. - note that this timeout is needed to make
7166  *		    sure there are no requests in one of the PXP internal
7167  *		    queues with "old" ILT addresses.
7168  *		c.  PF enable in the PGLC.
7169  *		d.  Clear the was_error of the PF in the PGLC. (could have
7170  *		    occurred while driver was down)
7171  *		e.  PF enable in the CFC (WEAK + STRONG)
7172  *		f.  Timers scan enable
7173  *	3.  PF driver unload flow:
7174  *		a.  Clear the Timers scan_en.
7175  *		b.  Polling for scan_on=0 for that PF.
7176  *		c.  Clear the PF enable bit in the PXP.
7177  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7178  *		e.  Write zero+valid to all ILT entries (The valid bit must
7179  *		    stay set)
7180  *		f.  If this is VNIC 3 of a port then also init
7181  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7182  *		    to the last entry in the ILT.
7183  *
7184  *	Notes:
7185  *	Currently the PF error in the PGLC is non recoverable.
7186  *	In the future the there will be a recovery routine for this error.
7187  *	Currently attention is masked.
7188  *	Having an MCP lock on the load/unload process does not guarantee that
7189  *	there is no Timer disable during Func6/7 enable. This is because the
7190  *	Timers scan is currently being cleared by the MCP on FLR.
7191  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7192  *	there is error before clearing it. But the flow above is simpler and
7193  *	more general.
7194  *	All ILT entries are written by zero+valid and not just PF6/7
7195  *	ILT entries since in the future the ILT entries allocation for
7196  *	PF-s might be dynamic.
7197  */
7198 		struct ilt_client_info ilt_cli;
7199 		struct bnx2x_ilt ilt;
7200 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7201 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7202 
7203 		/* initialize dummy TM client */
7204 		ilt_cli.start = 0;
7205 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7206 		ilt_cli.client_num = ILT_CLIENT_TM;
7207 
7208 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7209 		 * Step 2: set the timers first/last ilt entry to point
7210 		 * to the entire range to prevent ILT range error for 3rd/4th
7211 		 * vnic	(this code assumes existence of the vnic)
7212 		 *
7213 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7214 		 * with dummy TM client
7215 		 *
7216 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7217 		 * and his brother are split registers
7218 		 */
7219 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7220 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7221 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7222 
7223 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7224 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7225 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7226 	}
7227 
7228 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7229 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7230 
7231 	if (!CHIP_IS_E1x(bp)) {
7232 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7233 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7234 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7235 
7236 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7237 
7238 		/* let the HW do it's magic ... */
7239 		do {
7240 			msleep(200);
7241 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7242 		} while (factor-- && (val != 1));
7243 
7244 		if (val != 1) {
7245 			BNX2X_ERR("ATC_INIT failed\n");
7246 			return -EBUSY;
7247 		}
7248 	}
7249 
7250 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7251 
7252 	bnx2x_iov_init_dmae(bp);
7253 
7254 	/* clean the DMAE memory */
7255 	bp->dmae_ready = 1;
7256 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7257 
7258 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7259 
7260 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7261 
7262 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7263 
7264 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7265 
7266 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7267 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7268 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7269 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7270 
7271 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7272 
7273 	/* QM queues pointers table */
7274 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7275 
7276 	/* soft reset pulse */
7277 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7278 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7279 
7280 	if (CNIC_SUPPORT(bp))
7281 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7282 
7283 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7284 
7285 	if (!CHIP_REV_IS_SLOW(bp))
7286 		/* enable hw interrupt from doorbell Q */
7287 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7288 
7289 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7290 
7291 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7292 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7293 
7294 	if (!CHIP_IS_E1(bp))
7295 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7296 
7297 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7298 		if (IS_MF_AFEX(bp)) {
7299 			/* configure that VNTag and VLAN headers must be
7300 			 * received in afex mode
7301 			 */
7302 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7303 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7304 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7305 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7306 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7307 		} else {
7308 			/* Bit-map indicating which L2 hdrs may appear
7309 			 * after the basic Ethernet header
7310 			 */
7311 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7312 			       bp->path_has_ovlan ? 7 : 6);
7313 		}
7314 	}
7315 
7316 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7317 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7318 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7319 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7320 
7321 	if (!CHIP_IS_E1x(bp)) {
7322 		/* reset VFC memories */
7323 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7324 			   VFC_MEMORIES_RST_REG_CAM_RST |
7325 			   VFC_MEMORIES_RST_REG_RAM_RST);
7326 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7327 			   VFC_MEMORIES_RST_REG_CAM_RST |
7328 			   VFC_MEMORIES_RST_REG_RAM_RST);
7329 
7330 		msleep(20);
7331 	}
7332 
7333 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7334 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7335 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7336 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7337 
7338 	/* sync semi rtc */
7339 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7340 	       0x80000000);
7341 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7342 	       0x80000000);
7343 
7344 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7345 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7346 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7347 
7348 	if (!CHIP_IS_E1x(bp)) {
7349 		if (IS_MF_AFEX(bp)) {
7350 			/* configure that VNTag and VLAN headers must be
7351 			 * sent in afex mode
7352 			 */
7353 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7354 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7355 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7356 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7357 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7358 		} else {
7359 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7360 			       bp->path_has_ovlan ? 7 : 6);
7361 		}
7362 	}
7363 
7364 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7365 
7366 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7367 
7368 	if (CNIC_SUPPORT(bp)) {
7369 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7370 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7371 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7372 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7373 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7374 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7375 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7376 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7377 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7378 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7379 	}
7380 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7381 
7382 	if (sizeof(union cdu_context) != 1024)
7383 		/* we currently assume that a context is 1024 bytes */
7384 		dev_alert(&bp->pdev->dev,
7385 			  "please adjust the size of cdu_context(%ld)\n",
7386 			  (long)sizeof(union cdu_context));
7387 
7388 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7389 	val = (4 << 24) + (0 << 12) + 1024;
7390 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7391 
7392 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7393 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7394 	/* enable context validation interrupt from CFC */
7395 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7396 
7397 	/* set the thresholds to prevent CFC/CDU race */
7398 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7399 
7400 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7401 
7402 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7403 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7404 
7405 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7406 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7407 
7408 	/* Reset PCIE errors for debug */
7409 	REG_WR(bp, 0x2814, 0xffffffff);
7410 	REG_WR(bp, 0x3820, 0xffffffff);
7411 
7412 	if (!CHIP_IS_E1x(bp)) {
7413 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7414 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7415 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7416 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7417 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7418 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7419 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7420 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7421 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7422 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7423 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7424 	}
7425 
7426 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7427 	if (!CHIP_IS_E1(bp)) {
7428 		/* in E3 this done in per-port section */
7429 		if (!CHIP_IS_E3(bp))
7430 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7431 	}
7432 	if (CHIP_IS_E1H(bp))
7433 		/* not applicable for E2 (and above ...) */
7434 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7435 
7436 	if (CHIP_REV_IS_SLOW(bp))
7437 		msleep(200);
7438 
7439 	/* finish CFC init */
7440 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7441 	if (val != 1) {
7442 		BNX2X_ERR("CFC LL_INIT failed\n");
7443 		return -EBUSY;
7444 	}
7445 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7446 	if (val != 1) {
7447 		BNX2X_ERR("CFC AC_INIT failed\n");
7448 		return -EBUSY;
7449 	}
7450 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7451 	if (val != 1) {
7452 		BNX2X_ERR("CFC CAM_INIT failed\n");
7453 		return -EBUSY;
7454 	}
7455 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7456 
7457 	if (CHIP_IS_E1(bp)) {
7458 		/* read NIG statistic
7459 		   to see if this is our first up since powerup */
7460 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7461 		val = *bnx2x_sp(bp, wb_data[0]);
7462 
7463 		/* do internal memory self test */
7464 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7465 			BNX2X_ERR("internal mem self test failed\n");
7466 			return -EBUSY;
7467 		}
7468 	}
7469 
7470 	bnx2x_setup_fan_failure_detection(bp);
7471 
7472 	/* clear PXP2 attentions */
7473 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7474 
7475 	bnx2x_enable_blocks_attention(bp);
7476 	bnx2x_enable_blocks_parity(bp);
7477 
7478 	if (!BP_NOMCP(bp)) {
7479 		if (CHIP_IS_E1x(bp))
7480 			bnx2x__common_init_phy(bp);
7481 	} else
7482 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7483 
7484 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7485 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7486 
7487 	return 0;
7488 }
7489 
7490 /**
7491  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7492  *
7493  * @bp:		driver handle
7494  */
7495 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7496 {
7497 	int rc = bnx2x_init_hw_common(bp);
7498 
7499 	if (rc)
7500 		return rc;
7501 
7502 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7503 	if (!BP_NOMCP(bp))
7504 		bnx2x__common_init_phy(bp);
7505 
7506 	return 0;
7507 }
7508 
7509 static int bnx2x_init_hw_port(struct bnx2x *bp)
7510 {
7511 	int port = BP_PORT(bp);
7512 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7513 	u32 low, high;
7514 	u32 val, reg;
7515 
7516 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7517 
7518 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7519 
7520 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7521 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7522 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7523 
7524 	/* Timers bug workaround: disables the pf_master bit in pglue at
7525 	 * common phase, we need to enable it here before any dmae access are
7526 	 * attempted. Therefore we manually added the enable-master to the
7527 	 * port phase (it also happens in the function phase)
7528 	 */
7529 	if (!CHIP_IS_E1x(bp))
7530 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7531 
7532 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7533 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7534 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7535 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7536 
7537 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7538 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7539 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7540 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7541 
7542 	/* QM cid (connection) count */
7543 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7544 
7545 	if (CNIC_SUPPORT(bp)) {
7546 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7547 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7548 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7549 	}
7550 
7551 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7552 
7553 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7554 
7555 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7556 
7557 		if (IS_MF(bp))
7558 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7559 		else if (bp->dev->mtu > 4096) {
7560 			if (bp->flags & ONE_PORT_FLAG)
7561 				low = 160;
7562 			else {
7563 				val = bp->dev->mtu;
7564 				/* (24*1024 + val*4)/256 */
7565 				low = 96 + (val/64) +
7566 						((val % 64) ? 1 : 0);
7567 			}
7568 		} else
7569 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7570 		high = low + 56;	/* 14*1024/256 */
7571 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7572 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7573 	}
7574 
7575 	if (CHIP_MODE_IS_4_PORT(bp))
7576 		REG_WR(bp, (BP_PORT(bp) ?
7577 			    BRB1_REG_MAC_GUARANTIED_1 :
7578 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7579 
7580 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7581 	if (CHIP_IS_E3B0(bp)) {
7582 		if (IS_MF_AFEX(bp)) {
7583 			/* configure headers for AFEX mode */
7584 			REG_WR(bp, BP_PORT(bp) ?
7585 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7586 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7587 			REG_WR(bp, BP_PORT(bp) ?
7588 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7589 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7590 			REG_WR(bp, BP_PORT(bp) ?
7591 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7592 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7593 		} else {
7594 			/* Ovlan exists only if we are in multi-function +
7595 			 * switch-dependent mode, in switch-independent there
7596 			 * is no ovlan headers
7597 			 */
7598 			REG_WR(bp, BP_PORT(bp) ?
7599 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7600 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7601 			       (bp->path_has_ovlan ? 7 : 6));
7602 		}
7603 	}
7604 
7605 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7606 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7607 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7608 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7609 
7610 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7611 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7612 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7613 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7614 
7615 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7616 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7617 
7618 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7619 
7620 	if (CHIP_IS_E1x(bp)) {
7621 		/* configure PBF to work without PAUSE mtu 9000 */
7622 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7623 
7624 		/* update threshold */
7625 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7626 		/* update init credit */
7627 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7628 
7629 		/* probe changes */
7630 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7631 		udelay(50);
7632 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7633 	}
7634 
7635 	if (CNIC_SUPPORT(bp))
7636 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7637 
7638 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7639 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7640 
7641 	if (CHIP_IS_E1(bp)) {
7642 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7643 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7644 	}
7645 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7646 
7647 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7648 
7649 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7650 	/* init aeu_mask_attn_func_0/1:
7651 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7652 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7653 	 *             bits 4-7 are used for "per vn group attention" */
7654 	val = IS_MF(bp) ? 0xF7 : 0x7;
7655 	/* Enable DCBX attention for all but E1 */
7656 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7657 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7658 
7659 	/* SCPAD_PARITY should NOT trigger close the gates */
7660 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7661 	REG_WR(bp, reg,
7662 	       REG_RD(bp, reg) &
7663 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7664 
7665 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7666 	REG_WR(bp, reg,
7667 	       REG_RD(bp, reg) &
7668 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7669 
7670 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7671 
7672 	if (!CHIP_IS_E1x(bp)) {
7673 		/* Bit-map indicating which L2 hdrs may appear after the
7674 		 * basic Ethernet header
7675 		 */
7676 		if (IS_MF_AFEX(bp))
7677 			REG_WR(bp, BP_PORT(bp) ?
7678 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7679 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7680 		else
7681 			REG_WR(bp, BP_PORT(bp) ?
7682 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7683 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7684 			       IS_MF_SD(bp) ? 7 : 6);
7685 
7686 		if (CHIP_IS_E3(bp))
7687 			REG_WR(bp, BP_PORT(bp) ?
7688 				   NIG_REG_LLH1_MF_MODE :
7689 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7690 	}
7691 	if (!CHIP_IS_E3(bp))
7692 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7693 
7694 	if (!CHIP_IS_E1(bp)) {
7695 		/* 0x2 disable mf_ov, 0x1 enable */
7696 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7697 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7698 
7699 		if (!CHIP_IS_E1x(bp)) {
7700 			val = 0;
7701 			switch (bp->mf_mode) {
7702 			case MULTI_FUNCTION_SD:
7703 				val = 1;
7704 				break;
7705 			case MULTI_FUNCTION_SI:
7706 			case MULTI_FUNCTION_AFEX:
7707 				val = 2;
7708 				break;
7709 			}
7710 
7711 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7712 						  NIG_REG_LLH0_CLS_TYPE), val);
7713 		}
7714 		{
7715 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7716 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7717 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7718 		}
7719 	}
7720 
7721 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7722 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7723 	if (val & MISC_SPIO_SPIO5) {
7724 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7725 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7726 		val = REG_RD(bp, reg_addr);
7727 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7728 		REG_WR(bp, reg_addr, val);
7729 	}
7730 
7731 	if (CHIP_IS_E3B0(bp))
7732 		bp->flags |= PTP_SUPPORTED;
7733 
7734 	return 0;
7735 }
7736 
7737 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7738 {
7739 	int reg;
7740 	u32 wb_write[2];
7741 
7742 	if (CHIP_IS_E1(bp))
7743 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7744 	else
7745 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7746 
7747 	wb_write[0] = ONCHIP_ADDR1(addr);
7748 	wb_write[1] = ONCHIP_ADDR2(addr);
7749 	REG_WR_DMAE(bp, reg, wb_write, 2);
7750 }
7751 
7752 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7753 {
7754 	u32 data, ctl, cnt = 100;
7755 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7756 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7757 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7758 	u32 sb_bit =  1 << (idu_sb_id%32);
7759 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7760 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7761 
7762 	/* Not supported in BC mode */
7763 	if (CHIP_INT_MODE_IS_BC(bp))
7764 		return;
7765 
7766 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7767 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7768 		IGU_REGULAR_CLEANUP_SET				|
7769 		IGU_REGULAR_BCLEANUP;
7770 
7771 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7772 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7773 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7774 
7775 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7776 			 data, igu_addr_data);
7777 	REG_WR(bp, igu_addr_data, data);
7778 	mmiowb();
7779 	barrier();
7780 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7781 			  ctl, igu_addr_ctl);
7782 	REG_WR(bp, igu_addr_ctl, ctl);
7783 	mmiowb();
7784 	barrier();
7785 
7786 	/* wait for clean up to finish */
7787 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7788 		msleep(20);
7789 
7790 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7791 		DP(NETIF_MSG_HW,
7792 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7793 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7794 	}
7795 }
7796 
7797 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7798 {
7799 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7800 }
7801 
7802 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7803 {
7804 	u32 i, base = FUNC_ILT_BASE(func);
7805 	for (i = base; i < base + ILT_PER_FUNC; i++)
7806 		bnx2x_ilt_wr(bp, i, 0);
7807 }
7808 
7809 static void bnx2x_init_searcher(struct bnx2x *bp)
7810 {
7811 	int port = BP_PORT(bp);
7812 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7813 	/* T1 hash bits value determines the T1 number of entries */
7814 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7815 }
7816 
7817 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7818 {
7819 	int rc;
7820 	struct bnx2x_func_state_params func_params = {NULL};
7821 	struct bnx2x_func_switch_update_params *switch_update_params =
7822 		&func_params.params.switch_update;
7823 
7824 	/* Prepare parameters for function state transitions */
7825 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7826 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7827 
7828 	func_params.f_obj = &bp->func_obj;
7829 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7830 
7831 	/* Function parameters */
7832 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7833 		  &switch_update_params->changes);
7834 	if (suspend)
7835 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7836 			  &switch_update_params->changes);
7837 
7838 	rc = bnx2x_func_state_change(bp, &func_params);
7839 
7840 	return rc;
7841 }
7842 
7843 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7844 {
7845 	int rc, i, port = BP_PORT(bp);
7846 	int vlan_en = 0, mac_en[NUM_MACS];
7847 
7848 	/* Close input from network */
7849 	if (bp->mf_mode == SINGLE_FUNCTION) {
7850 		bnx2x_set_rx_filter(&bp->link_params, 0);
7851 	} else {
7852 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7853 				   NIG_REG_LLH0_FUNC_EN);
7854 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7855 			  NIG_REG_LLH0_FUNC_EN, 0);
7856 		for (i = 0; i < NUM_MACS; i++) {
7857 			mac_en[i] = REG_RD(bp, port ?
7858 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7859 					      4 * i) :
7860 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7861 					      4 * i));
7862 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7863 					      4 * i) :
7864 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7865 		}
7866 	}
7867 
7868 	/* Close BMC to host */
7869 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7870 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7871 
7872 	/* Suspend Tx switching to the PF. Completion of this ramrod
7873 	 * further guarantees that all the packets of that PF / child
7874 	 * VFs in BRB were processed by the Parser, so it is safe to
7875 	 * change the NIC_MODE register.
7876 	 */
7877 	rc = bnx2x_func_switch_update(bp, 1);
7878 	if (rc) {
7879 		BNX2X_ERR("Can't suspend tx-switching!\n");
7880 		return rc;
7881 	}
7882 
7883 	/* Change NIC_MODE register */
7884 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7885 
7886 	/* Open input from network */
7887 	if (bp->mf_mode == SINGLE_FUNCTION) {
7888 		bnx2x_set_rx_filter(&bp->link_params, 1);
7889 	} else {
7890 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7891 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7892 		for (i = 0; i < NUM_MACS; i++) {
7893 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7894 					      4 * i) :
7895 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7896 				  mac_en[i]);
7897 		}
7898 	}
7899 
7900 	/* Enable BMC to host */
7901 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7902 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7903 
7904 	/* Resume Tx switching to the PF */
7905 	rc = bnx2x_func_switch_update(bp, 0);
7906 	if (rc) {
7907 		BNX2X_ERR("Can't resume tx-switching!\n");
7908 		return rc;
7909 	}
7910 
7911 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7912 	return 0;
7913 }
7914 
7915 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7916 {
7917 	int rc;
7918 
7919 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7920 
7921 	if (CONFIGURE_NIC_MODE(bp)) {
7922 		/* Configure searcher as part of function hw init */
7923 		bnx2x_init_searcher(bp);
7924 
7925 		/* Reset NIC mode */
7926 		rc = bnx2x_reset_nic_mode(bp);
7927 		if (rc)
7928 			BNX2X_ERR("Can't change NIC mode!\n");
7929 		return rc;
7930 	}
7931 
7932 	return 0;
7933 }
7934 
7935 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7936  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7937  * the addresses of the transaction, resulting in was-error bit set in the pci
7938  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7939  * to clear the interrupt which detected this from the pglueb and the was done
7940  * bit
7941  */
7942 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7943 {
7944 	if (!CHIP_IS_E1x(bp))
7945 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7946 		       1 << BP_ABS_FUNC(bp));
7947 }
7948 
7949 static int bnx2x_init_hw_func(struct bnx2x *bp)
7950 {
7951 	int port = BP_PORT(bp);
7952 	int func = BP_FUNC(bp);
7953 	int init_phase = PHASE_PF0 + func;
7954 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7955 	u16 cdu_ilt_start;
7956 	u32 addr, val;
7957 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7958 	int i, main_mem_width, rc;
7959 
7960 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7961 
7962 	/* FLR cleanup - hmmm */
7963 	if (!CHIP_IS_E1x(bp)) {
7964 		rc = bnx2x_pf_flr_clnup(bp);
7965 		if (rc) {
7966 			bnx2x_fw_dump(bp);
7967 			return rc;
7968 		}
7969 	}
7970 
7971 	/* set MSI reconfigure capability */
7972 	if (bp->common.int_block == INT_BLOCK_HC) {
7973 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7974 		val = REG_RD(bp, addr);
7975 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7976 		REG_WR(bp, addr, val);
7977 	}
7978 
7979 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7980 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7981 
7982 	ilt = BP_ILT(bp);
7983 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7984 
7985 	if (IS_SRIOV(bp))
7986 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7987 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7988 
7989 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7990 	 * those of the VFs, so start line should be reset
7991 	 */
7992 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7993 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7994 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7995 		ilt->lines[cdu_ilt_start + i].page_mapping =
7996 			bp->context[i].cxt_mapping;
7997 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7998 	}
7999 
8000 	bnx2x_ilt_init_op(bp, INITOP_SET);
8001 
8002 	if (!CONFIGURE_NIC_MODE(bp)) {
8003 		bnx2x_init_searcher(bp);
8004 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8005 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8006 	} else {
8007 		/* Set NIC mode */
8008 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8009 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8010 	}
8011 
8012 	if (!CHIP_IS_E1x(bp)) {
8013 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8014 
8015 		/* Turn on a single ISR mode in IGU if driver is going to use
8016 		 * INT#x or MSI
8017 		 */
8018 		if (!(bp->flags & USING_MSIX_FLAG))
8019 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8020 		/*
8021 		 * Timers workaround bug: function init part.
8022 		 * Need to wait 20msec after initializing ILT,
8023 		 * needed to make sure there are no requests in
8024 		 * one of the PXP internal queues with "old" ILT addresses
8025 		 */
8026 		msleep(20);
8027 		/*
8028 		 * Master enable - Due to WB DMAE writes performed before this
8029 		 * register is re-initialized as part of the regular function
8030 		 * init
8031 		 */
8032 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8033 		/* Enable the function in IGU */
8034 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8035 	}
8036 
8037 	bp->dmae_ready = 1;
8038 
8039 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8040 
8041 	bnx2x_clean_pglue_errors(bp);
8042 
8043 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8044 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8045 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8047 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8048 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8050 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8051 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8052 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8053 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8054 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8056 
8057 	if (!CHIP_IS_E1x(bp))
8058 		REG_WR(bp, QM_REG_PF_EN, 1);
8059 
8060 	if (!CHIP_IS_E1x(bp)) {
8061 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8062 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8063 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 	}
8066 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8067 
8068 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8069 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8070 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8071 
8072 	bnx2x_iov_init_dq(bp);
8073 
8074 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8075 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8076 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8077 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8078 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8079 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8080 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8081 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8082 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8083 	if (!CHIP_IS_E1x(bp))
8084 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8085 
8086 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8087 
8088 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8089 
8090 	if (!CHIP_IS_E1x(bp))
8091 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8092 
8093 	if (IS_MF(bp)) {
8094 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8095 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8096 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8097 			       bp->mf_ov);
8098 		}
8099 	}
8100 
8101 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8102 
8103 	/* HC init per function */
8104 	if (bp->common.int_block == INT_BLOCK_HC) {
8105 		if (CHIP_IS_E1H(bp)) {
8106 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8107 
8108 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8109 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8110 		}
8111 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8112 
8113 	} else {
8114 		int num_segs, sb_idx, prod_offset;
8115 
8116 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8117 
8118 		if (!CHIP_IS_E1x(bp)) {
8119 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8120 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8121 		}
8122 
8123 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8124 
8125 		if (!CHIP_IS_E1x(bp)) {
8126 			int dsb_idx = 0;
8127 			/**
8128 			 * Producer memory:
8129 			 * E2 mode: address 0-135 match to the mapping memory;
8130 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8131 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8132 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8133 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8134 			 * 144-147 reserved.
8135 			 *
8136 			 * E1.5 mode - In backward compatible mode;
8137 			 * for non default SB; each even line in the memory
8138 			 * holds the U producer and each odd line hold
8139 			 * the C producer. The first 128 producers are for
8140 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8141 			 * producers are for the DSB for each PF.
8142 			 * Each PF has five segments: (the order inside each
8143 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8144 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8145 			 * 144-147 attn prods;
8146 			 */
8147 			/* non-default-status-blocks */
8148 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8149 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8150 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8151 				prod_offset = (bp->igu_base_sb + sb_idx) *
8152 					num_segs;
8153 
8154 				for (i = 0; i < num_segs; i++) {
8155 					addr = IGU_REG_PROD_CONS_MEMORY +
8156 							(prod_offset + i) * 4;
8157 					REG_WR(bp, addr, 0);
8158 				}
8159 				/* send consumer update with value 0 */
8160 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8161 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8162 				bnx2x_igu_clear_sb(bp,
8163 						   bp->igu_base_sb + sb_idx);
8164 			}
8165 
8166 			/* default-status-blocks */
8167 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8168 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8169 
8170 			if (CHIP_MODE_IS_4_PORT(bp))
8171 				dsb_idx = BP_FUNC(bp);
8172 			else
8173 				dsb_idx = BP_VN(bp);
8174 
8175 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8176 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8177 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8178 
8179 			/*
8180 			 * igu prods come in chunks of E1HVN_MAX (4) -
8181 			 * does not matters what is the current chip mode
8182 			 */
8183 			for (i = 0; i < (num_segs * E1HVN_MAX);
8184 			     i += E1HVN_MAX) {
8185 				addr = IGU_REG_PROD_CONS_MEMORY +
8186 							(prod_offset + i)*4;
8187 				REG_WR(bp, addr, 0);
8188 			}
8189 			/* send consumer update with 0 */
8190 			if (CHIP_INT_MODE_IS_BC(bp)) {
8191 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8193 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8195 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8197 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8199 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8201 			} else {
8202 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8203 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8204 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8205 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8206 			}
8207 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8208 
8209 			/* !!! These should become driver const once
8210 			   rf-tool supports split-68 const */
8211 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8212 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8213 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8214 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8215 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8216 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8217 		}
8218 	}
8219 
8220 	/* Reset PCIE errors for debug */
8221 	REG_WR(bp, 0x2114, 0xffffffff);
8222 	REG_WR(bp, 0x2120, 0xffffffff);
8223 
8224 	if (CHIP_IS_E1x(bp)) {
8225 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8226 		main_mem_base = HC_REG_MAIN_MEMORY +
8227 				BP_PORT(bp) * (main_mem_size * 4);
8228 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8229 		main_mem_width = 8;
8230 
8231 		val = REG_RD(bp, main_mem_prty_clr);
8232 		if (val)
8233 			DP(NETIF_MSG_HW,
8234 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8235 			   val);
8236 
8237 		/* Clear "false" parity errors in MSI-X table */
8238 		for (i = main_mem_base;
8239 		     i < main_mem_base + main_mem_size * 4;
8240 		     i += main_mem_width) {
8241 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8242 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8243 					 i, main_mem_width / 4);
8244 		}
8245 		/* Clear HC parity attention */
8246 		REG_RD(bp, main_mem_prty_clr);
8247 	}
8248 
8249 #ifdef BNX2X_STOP_ON_ERROR
8250 	/* Enable STORMs SP logging */
8251 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8252 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8253 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8254 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8255 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8256 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8258 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259 #endif
8260 
8261 	bnx2x_phy_probe(&bp->link_params);
8262 
8263 	return 0;
8264 }
8265 
8266 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8267 {
8268 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8269 
8270 	if (!CHIP_IS_E1x(bp))
8271 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8272 			       sizeof(struct host_hc_status_block_e2));
8273 	else
8274 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8275 			       sizeof(struct host_hc_status_block_e1x));
8276 
8277 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8278 }
8279 
8280 void bnx2x_free_mem(struct bnx2x *bp)
8281 {
8282 	int i;
8283 
8284 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8285 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8286 
8287 	if (IS_VF(bp))
8288 		return;
8289 
8290 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8291 		       sizeof(struct host_sp_status_block));
8292 
8293 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8294 		       sizeof(struct bnx2x_slowpath));
8295 
8296 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8297 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8298 			       bp->context[i].size);
8299 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8300 
8301 	BNX2X_FREE(bp->ilt->lines);
8302 
8303 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8304 
8305 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8306 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8307 
8308 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8309 
8310 	bnx2x_iov_free_mem(bp);
8311 }
8312 
8313 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8314 {
8315 	if (!CHIP_IS_E1x(bp)) {
8316 		/* size = the status block + ramrod buffers */
8317 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8318 						    sizeof(struct host_hc_status_block_e2));
8319 		if (!bp->cnic_sb.e2_sb)
8320 			goto alloc_mem_err;
8321 	} else {
8322 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8323 						     sizeof(struct host_hc_status_block_e1x));
8324 		if (!bp->cnic_sb.e1x_sb)
8325 			goto alloc_mem_err;
8326 	}
8327 
8328 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8329 		/* allocate searcher T2 table, as it wasn't allocated before */
8330 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8331 		if (!bp->t2)
8332 			goto alloc_mem_err;
8333 	}
8334 
8335 	/* write address to which L5 should insert its values */
8336 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8337 		&bp->slowpath->drv_info_to_mcp;
8338 
8339 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8340 		goto alloc_mem_err;
8341 
8342 	return 0;
8343 
8344 alloc_mem_err:
8345 	bnx2x_free_mem_cnic(bp);
8346 	BNX2X_ERR("Can't allocate memory\n");
8347 	return -ENOMEM;
8348 }
8349 
8350 int bnx2x_alloc_mem(struct bnx2x *bp)
8351 {
8352 	int i, allocated, context_size;
8353 
8354 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8355 		/* allocate searcher T2 table */
8356 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8357 		if (!bp->t2)
8358 			goto alloc_mem_err;
8359 	}
8360 
8361 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8362 					     sizeof(struct host_sp_status_block));
8363 	if (!bp->def_status_blk)
8364 		goto alloc_mem_err;
8365 
8366 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8367 				       sizeof(struct bnx2x_slowpath));
8368 	if (!bp->slowpath)
8369 		goto alloc_mem_err;
8370 
8371 	/* Allocate memory for CDU context:
8372 	 * This memory is allocated separately and not in the generic ILT
8373 	 * functions because CDU differs in few aspects:
8374 	 * 1. There are multiple entities allocating memory for context -
8375 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8376 	 * its own ILT lines.
8377 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8378 	 * for the other ILT clients), to be efficient we want to support
8379 	 * allocation of sub-page-size in the last entry.
8380 	 * 3. Context pointers are used by the driver to pass to FW / update
8381 	 * the context (for the other ILT clients the pointers are used just to
8382 	 * free the memory during unload).
8383 	 */
8384 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8385 
8386 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8387 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8388 					  (context_size - allocated));
8389 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8390 						      bp->context[i].size);
8391 		if (!bp->context[i].vcxt)
8392 			goto alloc_mem_err;
8393 		allocated += bp->context[i].size;
8394 	}
8395 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8396 				 GFP_KERNEL);
8397 	if (!bp->ilt->lines)
8398 		goto alloc_mem_err;
8399 
8400 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8401 		goto alloc_mem_err;
8402 
8403 	if (bnx2x_iov_alloc_mem(bp))
8404 		goto alloc_mem_err;
8405 
8406 	/* Slow path ring */
8407 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8408 	if (!bp->spq)
8409 		goto alloc_mem_err;
8410 
8411 	/* EQ */
8412 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8413 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8414 	if (!bp->eq_ring)
8415 		goto alloc_mem_err;
8416 
8417 	return 0;
8418 
8419 alloc_mem_err:
8420 	bnx2x_free_mem(bp);
8421 	BNX2X_ERR("Can't allocate memory\n");
8422 	return -ENOMEM;
8423 }
8424 
8425 /*
8426  * Init service functions
8427  */
8428 
8429 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8430 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8431 		      int mac_type, unsigned long *ramrod_flags)
8432 {
8433 	int rc;
8434 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8435 
8436 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8437 
8438 	/* Fill general parameters */
8439 	ramrod_param.vlan_mac_obj = obj;
8440 	ramrod_param.ramrod_flags = *ramrod_flags;
8441 
8442 	/* Fill a user request section if needed */
8443 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8444 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8445 
8446 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8447 
8448 		/* Set the command: ADD or DEL */
8449 		if (set)
8450 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8451 		else
8452 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8453 	}
8454 
8455 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8456 
8457 	if (rc == -EEXIST) {
8458 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8459 		/* do not treat adding same MAC as error */
8460 		rc = 0;
8461 	} else if (rc < 0)
8462 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8463 
8464 	return rc;
8465 }
8466 
8467 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8468 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8469 		       unsigned long *ramrod_flags)
8470 {
8471 	int rc;
8472 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8473 
8474 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8475 
8476 	/* Fill general parameters */
8477 	ramrod_param.vlan_mac_obj = obj;
8478 	ramrod_param.ramrod_flags = *ramrod_flags;
8479 
8480 	/* Fill a user request section if needed */
8481 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8482 		ramrod_param.user_req.u.vlan.vlan = vlan;
8483 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8484 		/* Set the command: ADD or DEL */
8485 		if (set)
8486 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8487 		else
8488 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8489 	}
8490 
8491 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8492 
8493 	if (rc == -EEXIST) {
8494 		/* Do not treat adding same vlan as error. */
8495 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8496 		rc = 0;
8497 	} else if (rc < 0) {
8498 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8499 	}
8500 
8501 	return rc;
8502 }
8503 
8504 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8505 {
8506 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8507 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8508 	struct bnx2x_vlan_entry *vlan;
8509 	int rc;
8510 
8511 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8512 	__set_bit(BNX2X_VLAN, &vlan_flags);
8513 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8514 	if (rc)
8515 		return rc;
8516 
8517 	/* Mark that hw forgot all entries */
8518 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8519 		vlan->hw = false;
8520 	bp->vlan_cnt = 0;
8521 
8522 	return 0;
8523 }
8524 
8525 int bnx2x_del_all_macs(struct bnx2x *bp,
8526 		       struct bnx2x_vlan_mac_obj *mac_obj,
8527 		       int mac_type, bool wait_for_comp)
8528 {
8529 	int rc;
8530 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8531 
8532 	/* Wait for completion of requested */
8533 	if (wait_for_comp)
8534 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8535 
8536 	/* Set the mac type of addresses we want to clear */
8537 	__set_bit(mac_type, &vlan_mac_flags);
8538 
8539 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8540 	if (rc < 0)
8541 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8542 
8543 	return rc;
8544 }
8545 
8546 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8547 {
8548 	if (IS_PF(bp)) {
8549 		unsigned long ramrod_flags = 0;
8550 
8551 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8552 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8553 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8554 					 &bp->sp_objs->mac_obj, set,
8555 					 BNX2X_ETH_MAC, &ramrod_flags);
8556 	} else { /* vf */
8557 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8558 					     bp->fp->index, set);
8559 	}
8560 }
8561 
8562 int bnx2x_setup_leading(struct bnx2x *bp)
8563 {
8564 	if (IS_PF(bp))
8565 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8566 	else /* VF */
8567 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8568 }
8569 
8570 /**
8571  * bnx2x_set_int_mode - configure interrupt mode
8572  *
8573  * @bp:		driver handle
8574  *
8575  * In case of MSI-X it will also try to enable MSI-X.
8576  */
8577 int bnx2x_set_int_mode(struct bnx2x *bp)
8578 {
8579 	int rc = 0;
8580 
8581 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8582 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8583 		return -EINVAL;
8584 	}
8585 
8586 	switch (int_mode) {
8587 	case BNX2X_INT_MODE_MSIX:
8588 		/* attempt to enable msix */
8589 		rc = bnx2x_enable_msix(bp);
8590 
8591 		/* msix attained */
8592 		if (!rc)
8593 			return 0;
8594 
8595 		/* vfs use only msix */
8596 		if (rc && IS_VF(bp))
8597 			return rc;
8598 
8599 		/* failed to enable multiple MSI-X */
8600 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8601 			       bp->num_queues,
8602 			       1 + bp->num_cnic_queues);
8603 
8604 		/* fall through */
8605 	case BNX2X_INT_MODE_MSI:
8606 		bnx2x_enable_msi(bp);
8607 
8608 		/* fall through */
8609 	case BNX2X_INT_MODE_INTX:
8610 		bp->num_ethernet_queues = 1;
8611 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8612 		BNX2X_DEV_INFO("set number of queues to 1\n");
8613 		break;
8614 	default:
8615 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8616 		return -EINVAL;
8617 	}
8618 	return 0;
8619 }
8620 
8621 /* must be called prior to any HW initializations */
8622 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8623 {
8624 	if (IS_SRIOV(bp))
8625 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8626 	return L2_ILT_LINES(bp);
8627 }
8628 
8629 void bnx2x_ilt_set_info(struct bnx2x *bp)
8630 {
8631 	struct ilt_client_info *ilt_client;
8632 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8633 	u16 line = 0;
8634 
8635 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8636 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8637 
8638 	/* CDU */
8639 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8640 	ilt_client->client_num = ILT_CLIENT_CDU;
8641 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8642 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8643 	ilt_client->start = line;
8644 	line += bnx2x_cid_ilt_lines(bp);
8645 
8646 	if (CNIC_SUPPORT(bp))
8647 		line += CNIC_ILT_LINES;
8648 	ilt_client->end = line - 1;
8649 
8650 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8651 	   ilt_client->start,
8652 	   ilt_client->end,
8653 	   ilt_client->page_size,
8654 	   ilt_client->flags,
8655 	   ilog2(ilt_client->page_size >> 12));
8656 
8657 	/* QM */
8658 	if (QM_INIT(bp->qm_cid_count)) {
8659 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8660 		ilt_client->client_num = ILT_CLIENT_QM;
8661 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8662 		ilt_client->flags = 0;
8663 		ilt_client->start = line;
8664 
8665 		/* 4 bytes for each cid */
8666 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8667 							 QM_ILT_PAGE_SZ);
8668 
8669 		ilt_client->end = line - 1;
8670 
8671 		DP(NETIF_MSG_IFUP,
8672 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8673 		   ilt_client->start,
8674 		   ilt_client->end,
8675 		   ilt_client->page_size,
8676 		   ilt_client->flags,
8677 		   ilog2(ilt_client->page_size >> 12));
8678 	}
8679 
8680 	if (CNIC_SUPPORT(bp)) {
8681 		/* SRC */
8682 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8683 		ilt_client->client_num = ILT_CLIENT_SRC;
8684 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8685 		ilt_client->flags = 0;
8686 		ilt_client->start = line;
8687 		line += SRC_ILT_LINES;
8688 		ilt_client->end = line - 1;
8689 
8690 		DP(NETIF_MSG_IFUP,
8691 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8692 		   ilt_client->start,
8693 		   ilt_client->end,
8694 		   ilt_client->page_size,
8695 		   ilt_client->flags,
8696 		   ilog2(ilt_client->page_size >> 12));
8697 
8698 		/* TM */
8699 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8700 		ilt_client->client_num = ILT_CLIENT_TM;
8701 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8702 		ilt_client->flags = 0;
8703 		ilt_client->start = line;
8704 		line += TM_ILT_LINES;
8705 		ilt_client->end = line - 1;
8706 
8707 		DP(NETIF_MSG_IFUP,
8708 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8709 		   ilt_client->start,
8710 		   ilt_client->end,
8711 		   ilt_client->page_size,
8712 		   ilt_client->flags,
8713 		   ilog2(ilt_client->page_size >> 12));
8714 	}
8715 
8716 	BUG_ON(line > ILT_MAX_LINES);
8717 }
8718 
8719 /**
8720  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8721  *
8722  * @bp:			driver handle
8723  * @fp:			pointer to fastpath
8724  * @init_params:	pointer to parameters structure
8725  *
8726  * parameters configured:
8727  *      - HC configuration
8728  *      - Queue's CDU context
8729  */
8730 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8731 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8732 {
8733 	u8 cos;
8734 	int cxt_index, cxt_offset;
8735 
8736 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8737 	if (!IS_FCOE_FP(fp)) {
8738 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8739 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8740 
8741 		/* If HC is supported, enable host coalescing in the transition
8742 		 * to INIT state.
8743 		 */
8744 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8745 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8746 
8747 		/* HC rate */
8748 		init_params->rx.hc_rate = bp->rx_ticks ?
8749 			(1000000 / bp->rx_ticks) : 0;
8750 		init_params->tx.hc_rate = bp->tx_ticks ?
8751 			(1000000 / bp->tx_ticks) : 0;
8752 
8753 		/* FW SB ID */
8754 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8755 			fp->fw_sb_id;
8756 
8757 		/*
8758 		 * CQ index among the SB indices: FCoE clients uses the default
8759 		 * SB, therefore it's different.
8760 		 */
8761 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8762 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8763 	}
8764 
8765 	/* set maximum number of COSs supported by this queue */
8766 	init_params->max_cos = fp->max_cos;
8767 
8768 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8769 	    fp->index, init_params->max_cos);
8770 
8771 	/* set the context pointers queue object */
8772 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8773 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8774 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8775 				ILT_PAGE_CIDS);
8776 		init_params->cxts[cos] =
8777 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8778 	}
8779 }
8780 
8781 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8782 			struct bnx2x_queue_state_params *q_params,
8783 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8784 			int tx_index, bool leading)
8785 {
8786 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8787 
8788 	/* Set the command */
8789 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8790 
8791 	/* Set tx-only QUEUE flags: don't zero statistics */
8792 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8793 
8794 	/* choose the index of the cid to send the slow path on */
8795 	tx_only_params->cid_index = tx_index;
8796 
8797 	/* Set general TX_ONLY_SETUP parameters */
8798 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8799 
8800 	/* Set Tx TX_ONLY_SETUP parameters */
8801 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8802 
8803 	DP(NETIF_MSG_IFUP,
8804 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8805 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8806 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8807 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8808 
8809 	/* send the ramrod */
8810 	return bnx2x_queue_state_change(bp, q_params);
8811 }
8812 
8813 /**
8814  * bnx2x_setup_queue - setup queue
8815  *
8816  * @bp:		driver handle
8817  * @fp:		pointer to fastpath
8818  * @leading:	is leading
8819  *
8820  * This function performs 2 steps in a Queue state machine
8821  *      actually: 1) RESET->INIT 2) INIT->SETUP
8822  */
8823 
8824 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8825 		       bool leading)
8826 {
8827 	struct bnx2x_queue_state_params q_params = {NULL};
8828 	struct bnx2x_queue_setup_params *setup_params =
8829 						&q_params.params.setup;
8830 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8831 						&q_params.params.tx_only;
8832 	int rc;
8833 	u8 tx_index;
8834 
8835 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8836 
8837 	/* reset IGU state skip FCoE L2 queue */
8838 	if (!IS_FCOE_FP(fp))
8839 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8840 			     IGU_INT_ENABLE, 0);
8841 
8842 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8843 	/* We want to wait for completion in this context */
8844 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8845 
8846 	/* Prepare the INIT parameters */
8847 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8848 
8849 	/* Set the command */
8850 	q_params.cmd = BNX2X_Q_CMD_INIT;
8851 
8852 	/* Change the state to INIT */
8853 	rc = bnx2x_queue_state_change(bp, &q_params);
8854 	if (rc) {
8855 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8856 		return rc;
8857 	}
8858 
8859 	DP(NETIF_MSG_IFUP, "init complete\n");
8860 
8861 	/* Now move the Queue to the SETUP state... */
8862 	memset(setup_params, 0, sizeof(*setup_params));
8863 
8864 	/* Set QUEUE flags */
8865 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8866 
8867 	/* Set general SETUP parameters */
8868 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8869 				FIRST_TX_COS_INDEX);
8870 
8871 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8872 			    &setup_params->rxq_params);
8873 
8874 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8875 			   FIRST_TX_COS_INDEX);
8876 
8877 	/* Set the command */
8878 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8879 
8880 	if (IS_FCOE_FP(fp))
8881 		bp->fcoe_init = true;
8882 
8883 	/* Change the state to SETUP */
8884 	rc = bnx2x_queue_state_change(bp, &q_params);
8885 	if (rc) {
8886 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8887 		return rc;
8888 	}
8889 
8890 	/* loop through the relevant tx-only indices */
8891 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8892 	      tx_index < fp->max_cos;
8893 	      tx_index++) {
8894 
8895 		/* prepare and send tx-only ramrod*/
8896 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8897 					  tx_only_params, tx_index, leading);
8898 		if (rc) {
8899 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8900 				  fp->index, tx_index);
8901 			return rc;
8902 		}
8903 	}
8904 
8905 	return rc;
8906 }
8907 
8908 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8909 {
8910 	struct bnx2x_fastpath *fp = &bp->fp[index];
8911 	struct bnx2x_fp_txdata *txdata;
8912 	struct bnx2x_queue_state_params q_params = {NULL};
8913 	int rc, tx_index;
8914 
8915 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8916 
8917 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8918 	/* We want to wait for completion in this context */
8919 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8920 
8921 	/* close tx-only connections */
8922 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8923 	     tx_index < fp->max_cos;
8924 	     tx_index++){
8925 
8926 		/* ascertain this is a normal queue*/
8927 		txdata = fp->txdata_ptr[tx_index];
8928 
8929 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8930 							txdata->txq_index);
8931 
8932 		/* send halt terminate on tx-only connection */
8933 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8934 		memset(&q_params.params.terminate, 0,
8935 		       sizeof(q_params.params.terminate));
8936 		q_params.params.terminate.cid_index = tx_index;
8937 
8938 		rc = bnx2x_queue_state_change(bp, &q_params);
8939 		if (rc)
8940 			return rc;
8941 
8942 		/* send halt terminate on tx-only connection */
8943 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8944 		memset(&q_params.params.cfc_del, 0,
8945 		       sizeof(q_params.params.cfc_del));
8946 		q_params.params.cfc_del.cid_index = tx_index;
8947 		rc = bnx2x_queue_state_change(bp, &q_params);
8948 		if (rc)
8949 			return rc;
8950 	}
8951 	/* Stop the primary connection: */
8952 	/* ...halt the connection */
8953 	q_params.cmd = BNX2X_Q_CMD_HALT;
8954 	rc = bnx2x_queue_state_change(bp, &q_params);
8955 	if (rc)
8956 		return rc;
8957 
8958 	/* ...terminate the connection */
8959 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8960 	memset(&q_params.params.terminate, 0,
8961 	       sizeof(q_params.params.terminate));
8962 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8963 	rc = bnx2x_queue_state_change(bp, &q_params);
8964 	if (rc)
8965 		return rc;
8966 	/* ...delete cfc entry */
8967 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8968 	memset(&q_params.params.cfc_del, 0,
8969 	       sizeof(q_params.params.cfc_del));
8970 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8971 	return bnx2x_queue_state_change(bp, &q_params);
8972 }
8973 
8974 static void bnx2x_reset_func(struct bnx2x *bp)
8975 {
8976 	int port = BP_PORT(bp);
8977 	int func = BP_FUNC(bp);
8978 	int i;
8979 
8980 	/* Disable the function in the FW */
8981 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8982 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8983 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8984 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8985 
8986 	/* FP SBs */
8987 	for_each_eth_queue(bp, i) {
8988 		struct bnx2x_fastpath *fp = &bp->fp[i];
8989 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8990 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8991 			   SB_DISABLED);
8992 	}
8993 
8994 	if (CNIC_LOADED(bp))
8995 		/* CNIC SB */
8996 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8997 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8998 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8999 
9000 	/* SP SB */
9001 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9002 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9003 		SB_DISABLED);
9004 
9005 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9006 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9007 		       0);
9008 
9009 	/* Configure IGU */
9010 	if (bp->common.int_block == INT_BLOCK_HC) {
9011 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9012 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9013 	} else {
9014 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9015 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9016 	}
9017 
9018 	if (CNIC_LOADED(bp)) {
9019 		/* Disable Timer scan */
9020 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9021 		/*
9022 		 * Wait for at least 10ms and up to 2 second for the timers
9023 		 * scan to complete
9024 		 */
9025 		for (i = 0; i < 200; i++) {
9026 			usleep_range(10000, 20000);
9027 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9028 				break;
9029 		}
9030 	}
9031 	/* Clear ILT */
9032 	bnx2x_clear_func_ilt(bp, func);
9033 
9034 	/* Timers workaround bug for E2: if this is vnic-3,
9035 	 * we need to set the entire ilt range for this timers.
9036 	 */
9037 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9038 		struct ilt_client_info ilt_cli;
9039 		/* use dummy TM client */
9040 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9041 		ilt_cli.start = 0;
9042 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9043 		ilt_cli.client_num = ILT_CLIENT_TM;
9044 
9045 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9046 	}
9047 
9048 	/* this assumes that reset_port() called before reset_func()*/
9049 	if (!CHIP_IS_E1x(bp))
9050 		bnx2x_pf_disable(bp);
9051 
9052 	bp->dmae_ready = 0;
9053 }
9054 
9055 static void bnx2x_reset_port(struct bnx2x *bp)
9056 {
9057 	int port = BP_PORT(bp);
9058 	u32 val;
9059 
9060 	/* Reset physical Link */
9061 	bnx2x__link_reset(bp);
9062 
9063 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9064 
9065 	/* Do not rcv packets to BRB */
9066 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9067 	/* Do not direct rcv packets that are not for MCP to the BRB */
9068 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9069 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9070 
9071 	/* Configure AEU */
9072 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9073 
9074 	msleep(100);
9075 	/* Check for BRB port occupancy */
9076 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9077 	if (val)
9078 		DP(NETIF_MSG_IFDOWN,
9079 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9080 
9081 	/* TODO: Close Doorbell port? */
9082 }
9083 
9084 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9085 {
9086 	struct bnx2x_func_state_params func_params = {NULL};
9087 
9088 	/* Prepare parameters for function state transitions */
9089 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9090 
9091 	func_params.f_obj = &bp->func_obj;
9092 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9093 
9094 	func_params.params.hw_init.load_phase = load_code;
9095 
9096 	return bnx2x_func_state_change(bp, &func_params);
9097 }
9098 
9099 static int bnx2x_func_stop(struct bnx2x *bp)
9100 {
9101 	struct bnx2x_func_state_params func_params = {NULL};
9102 	int rc;
9103 
9104 	/* Prepare parameters for function state transitions */
9105 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9106 	func_params.f_obj = &bp->func_obj;
9107 	func_params.cmd = BNX2X_F_CMD_STOP;
9108 
9109 	/*
9110 	 * Try to stop the function the 'good way'. If fails (in case
9111 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9112 	 * not in a debug mode, perform a state transaction in order to
9113 	 * enable further HW_RESET transaction.
9114 	 */
9115 	rc = bnx2x_func_state_change(bp, &func_params);
9116 	if (rc) {
9117 #ifdef BNX2X_STOP_ON_ERROR
9118 		return rc;
9119 #else
9120 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9121 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9122 		return bnx2x_func_state_change(bp, &func_params);
9123 #endif
9124 	}
9125 
9126 	return 0;
9127 }
9128 
9129 /**
9130  * bnx2x_send_unload_req - request unload mode from the MCP.
9131  *
9132  * @bp:			driver handle
9133  * @unload_mode:	requested function's unload mode
9134  *
9135  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9136  */
9137 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9138 {
9139 	u32 reset_code = 0;
9140 	int port = BP_PORT(bp);
9141 
9142 	/* Select the UNLOAD request mode */
9143 	if (unload_mode == UNLOAD_NORMAL)
9144 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9145 
9146 	else if (bp->flags & NO_WOL_FLAG)
9147 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9148 
9149 	else if (bp->wol) {
9150 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9151 		u8 *mac_addr = bp->dev->dev_addr;
9152 		struct pci_dev *pdev = bp->pdev;
9153 		u32 val;
9154 		u16 pmc;
9155 
9156 		/* The mac address is written to entries 1-4 to
9157 		 * preserve entry 0 which is used by the PMF
9158 		 */
9159 		u8 entry = (BP_VN(bp) + 1)*8;
9160 
9161 		val = (mac_addr[0] << 8) | mac_addr[1];
9162 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9163 
9164 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9165 		      (mac_addr[4] << 8) | mac_addr[5];
9166 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9167 
9168 		/* Enable the PME and clear the status */
9169 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9170 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9171 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9172 
9173 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9174 
9175 	} else
9176 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9177 
9178 	/* Send the request to the MCP */
9179 	if (!BP_NOMCP(bp))
9180 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9181 	else {
9182 		int path = BP_PATH(bp);
9183 
9184 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9185 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9186 		   bnx2x_load_count[path][2]);
9187 		bnx2x_load_count[path][0]--;
9188 		bnx2x_load_count[path][1 + port]--;
9189 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9190 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9191 		   bnx2x_load_count[path][2]);
9192 		if (bnx2x_load_count[path][0] == 0)
9193 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9194 		else if (bnx2x_load_count[path][1 + port] == 0)
9195 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9196 		else
9197 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9198 	}
9199 
9200 	return reset_code;
9201 }
9202 
9203 /**
9204  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9205  *
9206  * @bp:		driver handle
9207  * @keep_link:		true iff link should be kept up
9208  */
9209 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9210 {
9211 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9212 
9213 	/* Report UNLOAD_DONE to MCP */
9214 	if (!BP_NOMCP(bp))
9215 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9216 }
9217 
9218 static int bnx2x_func_wait_started(struct bnx2x *bp)
9219 {
9220 	int tout = 50;
9221 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9222 
9223 	if (!bp->port.pmf)
9224 		return 0;
9225 
9226 	/*
9227 	 * (assumption: No Attention from MCP at this stage)
9228 	 * PMF probably in the middle of TX disable/enable transaction
9229 	 * 1. Sync IRS for default SB
9230 	 * 2. Sync SP queue - this guarantees us that attention handling started
9231 	 * 3. Wait, that TX disable/enable transaction completes
9232 	 *
9233 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9234 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9235 	 * received completion for the transaction the state is TX_STOPPED.
9236 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9237 	 * transaction.
9238 	 */
9239 
9240 	/* make sure default SB ISR is done */
9241 	if (msix)
9242 		synchronize_irq(bp->msix_table[0].vector);
9243 	else
9244 		synchronize_irq(bp->pdev->irq);
9245 
9246 	flush_workqueue(bnx2x_wq);
9247 	flush_workqueue(bnx2x_iov_wq);
9248 
9249 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9250 				BNX2X_F_STATE_STARTED && tout--)
9251 		msleep(20);
9252 
9253 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9254 						BNX2X_F_STATE_STARTED) {
9255 #ifdef BNX2X_STOP_ON_ERROR
9256 		BNX2X_ERR("Wrong function state\n");
9257 		return -EBUSY;
9258 #else
9259 		/*
9260 		 * Failed to complete the transaction in a "good way"
9261 		 * Force both transactions with CLR bit
9262 		 */
9263 		struct bnx2x_func_state_params func_params = {NULL};
9264 
9265 		DP(NETIF_MSG_IFDOWN,
9266 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9267 
9268 		func_params.f_obj = &bp->func_obj;
9269 		__set_bit(RAMROD_DRV_CLR_ONLY,
9270 					&func_params.ramrod_flags);
9271 
9272 		/* STARTED-->TX_ST0PPED */
9273 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9274 		bnx2x_func_state_change(bp, &func_params);
9275 
9276 		/* TX_ST0PPED-->STARTED */
9277 		func_params.cmd = BNX2X_F_CMD_TX_START;
9278 		return bnx2x_func_state_change(bp, &func_params);
9279 #endif
9280 	}
9281 
9282 	return 0;
9283 }
9284 
9285 static void bnx2x_disable_ptp(struct bnx2x *bp)
9286 {
9287 	int port = BP_PORT(bp);
9288 
9289 	/* Disable sending PTP packets to host */
9290 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9291 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9292 
9293 	/* Reset PTP event detection rules */
9294 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9295 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9296 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9297 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9298 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9299 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9300 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9301 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9302 
9303 	/* Disable the PTP feature */
9304 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9305 	       NIG_REG_P0_PTP_EN, 0x0);
9306 }
9307 
9308 /* Called during unload, to stop PTP-related stuff */
9309 static void bnx2x_stop_ptp(struct bnx2x *bp)
9310 {
9311 	/* Cancel PTP work queue. Should be done after the Tx queues are
9312 	 * drained to prevent additional scheduling.
9313 	 */
9314 	cancel_work_sync(&bp->ptp_task);
9315 
9316 	if (bp->ptp_tx_skb) {
9317 		dev_kfree_skb_any(bp->ptp_tx_skb);
9318 		bp->ptp_tx_skb = NULL;
9319 	}
9320 
9321 	/* Disable PTP in HW */
9322 	bnx2x_disable_ptp(bp);
9323 
9324 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9325 }
9326 
9327 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9328 {
9329 	int port = BP_PORT(bp);
9330 	int i, rc = 0;
9331 	u8 cos;
9332 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9333 	u32 reset_code;
9334 
9335 	/* Wait until tx fastpath tasks complete */
9336 	for_each_tx_queue(bp, i) {
9337 		struct bnx2x_fastpath *fp = &bp->fp[i];
9338 
9339 		for_each_cos_in_tx_queue(fp, cos)
9340 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9341 #ifdef BNX2X_STOP_ON_ERROR
9342 		if (rc)
9343 			return;
9344 #endif
9345 	}
9346 
9347 	/* Give HW time to discard old tx messages */
9348 	usleep_range(1000, 2000);
9349 
9350 	/* Clean all ETH MACs */
9351 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9352 				false);
9353 	if (rc < 0)
9354 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9355 
9356 	/* Clean up UC list  */
9357 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9358 				true);
9359 	if (rc < 0)
9360 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9361 			  rc);
9362 
9363 	/* The whole *vlan_obj structure may be not initialized if VLAN
9364 	 * filtering offload is not supported by hardware. Currently this is
9365 	 * true for all hardware covered by CHIP_IS_E1x().
9366 	 */
9367 	if (!CHIP_IS_E1x(bp)) {
9368 		/* Remove all currently configured VLANs */
9369 		rc = bnx2x_del_all_vlans(bp);
9370 		if (rc < 0)
9371 			BNX2X_ERR("Failed to delete all VLANs\n");
9372 	}
9373 
9374 	/* Disable LLH */
9375 	if (!CHIP_IS_E1(bp))
9376 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9377 
9378 	/* Set "drop all" (stop Rx).
9379 	 * We need to take a netif_addr_lock() here in order to prevent
9380 	 * a race between the completion code and this code.
9381 	 */
9382 	netif_addr_lock_bh(bp->dev);
9383 	/* Schedule the rx_mode command */
9384 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9385 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9386 	else if (bp->slowpath)
9387 		bnx2x_set_storm_rx_mode(bp);
9388 
9389 	/* Cleanup multicast configuration */
9390 	rparam.mcast_obj = &bp->mcast_obj;
9391 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9392 	if (rc < 0)
9393 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9394 
9395 	netif_addr_unlock_bh(bp->dev);
9396 
9397 	bnx2x_iov_chip_cleanup(bp);
9398 
9399 	/*
9400 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9401 	 * this function should perform FUNC, PORT or COMMON HW
9402 	 * reset.
9403 	 */
9404 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9405 
9406 	/*
9407 	 * (assumption: No Attention from MCP at this stage)
9408 	 * PMF probably in the middle of TX disable/enable transaction
9409 	 */
9410 	rc = bnx2x_func_wait_started(bp);
9411 	if (rc) {
9412 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9413 #ifdef BNX2X_STOP_ON_ERROR
9414 		return;
9415 #endif
9416 	}
9417 
9418 	/* Close multi and leading connections
9419 	 * Completions for ramrods are collected in a synchronous way
9420 	 */
9421 	for_each_eth_queue(bp, i)
9422 		if (bnx2x_stop_queue(bp, i))
9423 #ifdef BNX2X_STOP_ON_ERROR
9424 			return;
9425 #else
9426 			goto unload_error;
9427 #endif
9428 
9429 	if (CNIC_LOADED(bp)) {
9430 		for_each_cnic_queue(bp, i)
9431 			if (bnx2x_stop_queue(bp, i))
9432 #ifdef BNX2X_STOP_ON_ERROR
9433 				return;
9434 #else
9435 				goto unload_error;
9436 #endif
9437 	}
9438 
9439 	/* If SP settings didn't get completed so far - something
9440 	 * very wrong has happen.
9441 	 */
9442 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9443 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9444 
9445 #ifndef BNX2X_STOP_ON_ERROR
9446 unload_error:
9447 #endif
9448 	rc = bnx2x_func_stop(bp);
9449 	if (rc) {
9450 		BNX2X_ERR("Function stop failed!\n");
9451 #ifdef BNX2X_STOP_ON_ERROR
9452 		return;
9453 #endif
9454 	}
9455 
9456 	/* stop_ptp should be after the Tx queues are drained to prevent
9457 	 * scheduling to the cancelled PTP work queue. It should also be after
9458 	 * function stop ramrod is sent, since as part of this ramrod FW access
9459 	 * PTP registers.
9460 	 */
9461 	if (bp->flags & PTP_SUPPORTED) {
9462 		bnx2x_stop_ptp(bp);
9463 		if (bp->ptp_clock) {
9464 			ptp_clock_unregister(bp->ptp_clock);
9465 			bp->ptp_clock = NULL;
9466 		}
9467 	}
9468 
9469 	/* Disable HW interrupts, NAPI */
9470 	bnx2x_netif_stop(bp, 1);
9471 	/* Delete all NAPI objects */
9472 	bnx2x_del_all_napi(bp);
9473 	if (CNIC_LOADED(bp))
9474 		bnx2x_del_all_napi_cnic(bp);
9475 
9476 	/* Release IRQs */
9477 	bnx2x_free_irq(bp);
9478 
9479 	/* Reset the chip, unless PCI function is offline. If we reach this
9480 	 * point following a PCI error handling, it means device is really
9481 	 * in a bad state and we're about to remove it, so reset the chip
9482 	 * is not a good idea.
9483 	 */
9484 	if (!pci_channel_offline(bp->pdev)) {
9485 		rc = bnx2x_reset_hw(bp, reset_code);
9486 		if (rc)
9487 			BNX2X_ERR("HW_RESET failed\n");
9488 	}
9489 
9490 	/* Report UNLOAD_DONE to MCP */
9491 	bnx2x_send_unload_done(bp, keep_link);
9492 }
9493 
9494 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9495 {
9496 	u32 val;
9497 
9498 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9499 
9500 	if (CHIP_IS_E1(bp)) {
9501 		int port = BP_PORT(bp);
9502 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9503 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9504 
9505 		val = REG_RD(bp, addr);
9506 		val &= ~(0x300);
9507 		REG_WR(bp, addr, val);
9508 	} else {
9509 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9510 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9511 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9512 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9513 	}
9514 }
9515 
9516 /* Close gates #2, #3 and #4: */
9517 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9518 {
9519 	u32 val;
9520 
9521 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9522 	if (!CHIP_IS_E1(bp)) {
9523 		/* #4 */
9524 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9525 		/* #2 */
9526 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9527 	}
9528 
9529 	/* #3 */
9530 	if (CHIP_IS_E1x(bp)) {
9531 		/* Prevent interrupts from HC on both ports */
9532 		val = REG_RD(bp, HC_REG_CONFIG_1);
9533 		REG_WR(bp, HC_REG_CONFIG_1,
9534 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9535 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9536 
9537 		val = REG_RD(bp, HC_REG_CONFIG_0);
9538 		REG_WR(bp, HC_REG_CONFIG_0,
9539 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9540 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9541 	} else {
9542 		/* Prevent incoming interrupts in IGU */
9543 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9544 
9545 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9546 		       (!close) ?
9547 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9548 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9549 	}
9550 
9551 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9552 		close ? "closing" : "opening");
9553 	mmiowb();
9554 }
9555 
9556 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9557 
9558 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9559 {
9560 	/* Do some magic... */
9561 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9562 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9563 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9564 }
9565 
9566 /**
9567  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9568  *
9569  * @bp:		driver handle
9570  * @magic_val:	old value of the `magic' bit.
9571  */
9572 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9573 {
9574 	/* Restore the `magic' bit value... */
9575 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9576 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9577 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9578 }
9579 
9580 /**
9581  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9582  *
9583  * @bp:		driver handle
9584  * @magic_val:	old value of 'magic' bit.
9585  *
9586  * Takes care of CLP configurations.
9587  */
9588 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9589 {
9590 	u32 shmem;
9591 	u32 validity_offset;
9592 
9593 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9594 
9595 	/* Set `magic' bit in order to save MF config */
9596 	if (!CHIP_IS_E1(bp))
9597 		bnx2x_clp_reset_prep(bp, magic_val);
9598 
9599 	/* Get shmem offset */
9600 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9601 	validity_offset =
9602 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9603 
9604 	/* Clear validity map flags */
9605 	if (shmem > 0)
9606 		REG_WR(bp, shmem + validity_offset, 0);
9607 }
9608 
9609 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9610 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9611 
9612 /**
9613  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9614  *
9615  * @bp:	driver handle
9616  */
9617 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9618 {
9619 	/* special handling for emulation and FPGA,
9620 	   wait 10 times longer */
9621 	if (CHIP_REV_IS_SLOW(bp))
9622 		msleep(MCP_ONE_TIMEOUT*10);
9623 	else
9624 		msleep(MCP_ONE_TIMEOUT);
9625 }
9626 
9627 /*
9628  * initializes bp->common.shmem_base and waits for validity signature to appear
9629  */
9630 static int bnx2x_init_shmem(struct bnx2x *bp)
9631 {
9632 	int cnt = 0;
9633 	u32 val = 0;
9634 
9635 	do {
9636 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9637 
9638 		/* If we read all 0xFFs, means we are in PCI error state and
9639 		 * should bail out to avoid crashes on adapter's FW reads.
9640 		 */
9641 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9642 			bp->flags |= NO_MCP_FLAG;
9643 			return -ENODEV;
9644 		}
9645 
9646 		if (bp->common.shmem_base) {
9647 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9648 			if (val & SHR_MEM_VALIDITY_MB)
9649 				return 0;
9650 		}
9651 
9652 		bnx2x_mcp_wait_one(bp);
9653 
9654 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9655 
9656 	BNX2X_ERR("BAD MCP validity signature\n");
9657 
9658 	return -ENODEV;
9659 }
9660 
9661 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9662 {
9663 	int rc = bnx2x_init_shmem(bp);
9664 
9665 	/* Restore the `magic' bit value */
9666 	if (!CHIP_IS_E1(bp))
9667 		bnx2x_clp_reset_done(bp, magic_val);
9668 
9669 	return rc;
9670 }
9671 
9672 static void bnx2x_pxp_prep(struct bnx2x *bp)
9673 {
9674 	if (!CHIP_IS_E1(bp)) {
9675 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9676 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9677 		mmiowb();
9678 	}
9679 }
9680 
9681 /*
9682  * Reset the whole chip except for:
9683  *      - PCIE core
9684  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9685  *              one reset bit)
9686  *      - IGU
9687  *      - MISC (including AEU)
9688  *      - GRC
9689  *      - RBCN, RBCP
9690  */
9691 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9692 {
9693 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9694 	u32 global_bits2, stay_reset2;
9695 
9696 	/*
9697 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9698 	 * (per chip) blocks.
9699 	 */
9700 	global_bits2 =
9701 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9702 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9703 
9704 	/* Don't reset the following blocks.
9705 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9706 	 *            reset, as in 4 port device they might still be owned
9707 	 *            by the MCP (there is only one leader per path).
9708 	 */
9709 	not_reset_mask1 =
9710 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9711 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9712 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9713 
9714 	not_reset_mask2 =
9715 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9716 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9717 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9718 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9719 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9720 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9721 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9722 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9723 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9724 		MISC_REGISTERS_RESET_REG_2_PGLC |
9725 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9726 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9727 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9728 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9729 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9730 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9731 
9732 	/*
9733 	 * Keep the following blocks in reset:
9734 	 *  - all xxMACs are handled by the bnx2x_link code.
9735 	 */
9736 	stay_reset2 =
9737 		MISC_REGISTERS_RESET_REG_2_XMAC |
9738 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9739 
9740 	/* Full reset masks according to the chip */
9741 	reset_mask1 = 0xffffffff;
9742 
9743 	if (CHIP_IS_E1(bp))
9744 		reset_mask2 = 0xffff;
9745 	else if (CHIP_IS_E1H(bp))
9746 		reset_mask2 = 0x1ffff;
9747 	else if (CHIP_IS_E2(bp))
9748 		reset_mask2 = 0xfffff;
9749 	else /* CHIP_IS_E3 */
9750 		reset_mask2 = 0x3ffffff;
9751 
9752 	/* Don't reset global blocks unless we need to */
9753 	if (!global)
9754 		reset_mask2 &= ~global_bits2;
9755 
9756 	/*
9757 	 * In case of attention in the QM, we need to reset PXP
9758 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9759 	 * because otherwise QM reset would release 'close the gates' shortly
9760 	 * before resetting the PXP, then the PSWRQ would send a write
9761 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9762 	 * read the payload data from PSWWR, but PSWWR would not
9763 	 * respond. The write queue in PGLUE would stuck, dmae commands
9764 	 * would not return. Therefore it's important to reset the second
9765 	 * reset register (containing the
9766 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9767 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9768 	 * bit).
9769 	 */
9770 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9771 	       reset_mask2 & (~not_reset_mask2));
9772 
9773 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9774 	       reset_mask1 & (~not_reset_mask1));
9775 
9776 	barrier();
9777 	mmiowb();
9778 
9779 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9780 	       reset_mask2 & (~stay_reset2));
9781 
9782 	barrier();
9783 	mmiowb();
9784 
9785 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9786 	mmiowb();
9787 }
9788 
9789 /**
9790  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9791  * It should get cleared in no more than 1s.
9792  *
9793  * @bp:	driver handle
9794  *
9795  * It should get cleared in no more than 1s. Returns 0 if
9796  * pending writes bit gets cleared.
9797  */
9798 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9799 {
9800 	u32 cnt = 1000;
9801 	u32 pend_bits = 0;
9802 
9803 	do {
9804 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9805 
9806 		if (pend_bits == 0)
9807 			break;
9808 
9809 		usleep_range(1000, 2000);
9810 	} while (cnt-- > 0);
9811 
9812 	if (cnt <= 0) {
9813 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9814 			  pend_bits);
9815 		return -EBUSY;
9816 	}
9817 
9818 	return 0;
9819 }
9820 
9821 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9822 {
9823 	int cnt = 1000;
9824 	u32 val = 0;
9825 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9826 	u32 tags_63_32 = 0;
9827 
9828 	/* Empty the Tetris buffer, wait for 1s */
9829 	do {
9830 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9831 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9832 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9833 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9834 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9835 		if (CHIP_IS_E3(bp))
9836 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9837 
9838 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9839 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9840 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9841 		    (pgl_exp_rom2 == 0xffffffff) &&
9842 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9843 			break;
9844 		usleep_range(1000, 2000);
9845 	} while (cnt-- > 0);
9846 
9847 	if (cnt <= 0) {
9848 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9849 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9850 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9851 			  pgl_exp_rom2);
9852 		return -EAGAIN;
9853 	}
9854 
9855 	barrier();
9856 
9857 	/* Close gates #2, #3 and #4 */
9858 	bnx2x_set_234_gates(bp, true);
9859 
9860 	/* Poll for IGU VQs for 57712 and newer chips */
9861 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9862 		return -EAGAIN;
9863 
9864 	/* TBD: Indicate that "process kill" is in progress to MCP */
9865 
9866 	/* Clear "unprepared" bit */
9867 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9868 	barrier();
9869 
9870 	/* Make sure all is written to the chip before the reset */
9871 	mmiowb();
9872 
9873 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9874 	 * PSWHST, GRC and PSWRD Tetris buffer.
9875 	 */
9876 	usleep_range(1000, 2000);
9877 
9878 	/* Prepare to chip reset: */
9879 	/* MCP */
9880 	if (global)
9881 		bnx2x_reset_mcp_prep(bp, &val);
9882 
9883 	/* PXP */
9884 	bnx2x_pxp_prep(bp);
9885 	barrier();
9886 
9887 	/* reset the chip */
9888 	bnx2x_process_kill_chip_reset(bp, global);
9889 	barrier();
9890 
9891 	/* clear errors in PGB */
9892 	if (!CHIP_IS_E1x(bp))
9893 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9894 
9895 	/* Recover after reset: */
9896 	/* MCP */
9897 	if (global && bnx2x_reset_mcp_comp(bp, val))
9898 		return -EAGAIN;
9899 
9900 	/* TBD: Add resetting the NO_MCP mode DB here */
9901 
9902 	/* Open the gates #2, #3 and #4 */
9903 	bnx2x_set_234_gates(bp, false);
9904 
9905 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9906 	 * reset state, re-enable attentions. */
9907 
9908 	return 0;
9909 }
9910 
9911 static int bnx2x_leader_reset(struct bnx2x *bp)
9912 {
9913 	int rc = 0;
9914 	bool global = bnx2x_reset_is_global(bp);
9915 	u32 load_code;
9916 
9917 	/* if not going to reset MCP - load "fake" driver to reset HW while
9918 	 * driver is owner of the HW
9919 	 */
9920 	if (!global && !BP_NOMCP(bp)) {
9921 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9922 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9923 		if (!load_code) {
9924 			BNX2X_ERR("MCP response failure, aborting\n");
9925 			rc = -EAGAIN;
9926 			goto exit_leader_reset;
9927 		}
9928 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9929 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9930 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9931 			rc = -EAGAIN;
9932 			goto exit_leader_reset2;
9933 		}
9934 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9935 		if (!load_code) {
9936 			BNX2X_ERR("MCP response failure, aborting\n");
9937 			rc = -EAGAIN;
9938 			goto exit_leader_reset2;
9939 		}
9940 	}
9941 
9942 	/* Try to recover after the failure */
9943 	if (bnx2x_process_kill(bp, global)) {
9944 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9945 			  BP_PATH(bp));
9946 		rc = -EAGAIN;
9947 		goto exit_leader_reset2;
9948 	}
9949 
9950 	/*
9951 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9952 	 * state.
9953 	 */
9954 	bnx2x_set_reset_done(bp);
9955 	if (global)
9956 		bnx2x_clear_reset_global(bp);
9957 
9958 exit_leader_reset2:
9959 	/* unload "fake driver" if it was loaded */
9960 	if (!global && !BP_NOMCP(bp)) {
9961 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9962 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9963 	}
9964 exit_leader_reset:
9965 	bp->is_leader = 0;
9966 	bnx2x_release_leader_lock(bp);
9967 	smp_mb();
9968 	return rc;
9969 }
9970 
9971 static void bnx2x_recovery_failed(struct bnx2x *bp)
9972 {
9973 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9974 
9975 	/* Disconnect this device */
9976 	netif_device_detach(bp->dev);
9977 
9978 	/*
9979 	 * Block ifup for all function on this engine until "process kill"
9980 	 * or power cycle.
9981 	 */
9982 	bnx2x_set_reset_in_progress(bp);
9983 
9984 	/* Shut down the power */
9985 	bnx2x_set_power_state(bp, PCI_D3hot);
9986 
9987 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9988 
9989 	smp_mb();
9990 }
9991 
9992 /*
9993  * Assumption: runs under rtnl lock. This together with the fact
9994  * that it's called only from bnx2x_sp_rtnl() ensure that it
9995  * will never be called when netif_running(bp->dev) is false.
9996  */
9997 static void bnx2x_parity_recover(struct bnx2x *bp)
9998 {
9999 	bool global = false;
10000 	u32 error_recovered, error_unrecovered;
10001 	bool is_parity;
10002 
10003 	DP(NETIF_MSG_HW, "Handling parity\n");
10004 	while (1) {
10005 		switch (bp->recovery_state) {
10006 		case BNX2X_RECOVERY_INIT:
10007 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10008 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10009 			WARN_ON(!is_parity);
10010 
10011 			/* Try to get a LEADER_LOCK HW lock */
10012 			if (bnx2x_trylock_leader_lock(bp)) {
10013 				bnx2x_set_reset_in_progress(bp);
10014 				/*
10015 				 * Check if there is a global attention and if
10016 				 * there was a global attention, set the global
10017 				 * reset bit.
10018 				 */
10019 
10020 				if (global)
10021 					bnx2x_set_reset_global(bp);
10022 
10023 				bp->is_leader = 1;
10024 			}
10025 
10026 			/* Stop the driver */
10027 			/* If interface has been removed - break */
10028 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10029 				return;
10030 
10031 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10032 
10033 			/* Ensure "is_leader", MCP command sequence and
10034 			 * "recovery_state" update values are seen on other
10035 			 * CPUs.
10036 			 */
10037 			smp_mb();
10038 			break;
10039 
10040 		case BNX2X_RECOVERY_WAIT:
10041 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10042 			if (bp->is_leader) {
10043 				int other_engine = BP_PATH(bp) ? 0 : 1;
10044 				bool other_load_status =
10045 					bnx2x_get_load_status(bp, other_engine);
10046 				bool load_status =
10047 					bnx2x_get_load_status(bp, BP_PATH(bp));
10048 				global = bnx2x_reset_is_global(bp);
10049 
10050 				/*
10051 				 * In case of a parity in a global block, let
10052 				 * the first leader that performs a
10053 				 * leader_reset() reset the global blocks in
10054 				 * order to clear global attentions. Otherwise
10055 				 * the gates will remain closed for that
10056 				 * engine.
10057 				 */
10058 				if (load_status ||
10059 				    (global && other_load_status)) {
10060 					/* Wait until all other functions get
10061 					 * down.
10062 					 */
10063 					schedule_delayed_work(&bp->sp_rtnl_task,
10064 								HZ/10);
10065 					return;
10066 				} else {
10067 					/* If all other functions got down -
10068 					 * try to bring the chip back to
10069 					 * normal. In any case it's an exit
10070 					 * point for a leader.
10071 					 */
10072 					if (bnx2x_leader_reset(bp)) {
10073 						bnx2x_recovery_failed(bp);
10074 						return;
10075 					}
10076 
10077 					/* If we are here, means that the
10078 					 * leader has succeeded and doesn't
10079 					 * want to be a leader any more. Try
10080 					 * to continue as a none-leader.
10081 					 */
10082 					break;
10083 				}
10084 			} else { /* non-leader */
10085 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10086 					/* Try to get a LEADER_LOCK HW lock as
10087 					 * long as a former leader may have
10088 					 * been unloaded by the user or
10089 					 * released a leadership by another
10090 					 * reason.
10091 					 */
10092 					if (bnx2x_trylock_leader_lock(bp)) {
10093 						/* I'm a leader now! Restart a
10094 						 * switch case.
10095 						 */
10096 						bp->is_leader = 1;
10097 						break;
10098 					}
10099 
10100 					schedule_delayed_work(&bp->sp_rtnl_task,
10101 								HZ/10);
10102 					return;
10103 
10104 				} else {
10105 					/*
10106 					 * If there was a global attention, wait
10107 					 * for it to be cleared.
10108 					 */
10109 					if (bnx2x_reset_is_global(bp)) {
10110 						schedule_delayed_work(
10111 							&bp->sp_rtnl_task,
10112 							HZ/10);
10113 						return;
10114 					}
10115 
10116 					error_recovered =
10117 					  bp->eth_stats.recoverable_error;
10118 					error_unrecovered =
10119 					  bp->eth_stats.unrecoverable_error;
10120 					bp->recovery_state =
10121 						BNX2X_RECOVERY_NIC_LOADING;
10122 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10123 						error_unrecovered++;
10124 						netdev_err(bp->dev,
10125 							   "Recovery failed. Power cycle needed\n");
10126 						/* Disconnect this device */
10127 						netif_device_detach(bp->dev);
10128 						/* Shut down the power */
10129 						bnx2x_set_power_state(
10130 							bp, PCI_D3hot);
10131 						smp_mb();
10132 					} else {
10133 						bp->recovery_state =
10134 							BNX2X_RECOVERY_DONE;
10135 						error_recovered++;
10136 						smp_mb();
10137 					}
10138 					bp->eth_stats.recoverable_error =
10139 						error_recovered;
10140 					bp->eth_stats.unrecoverable_error =
10141 						error_unrecovered;
10142 
10143 					return;
10144 				}
10145 			}
10146 		default:
10147 			return;
10148 		}
10149 	}
10150 }
10151 
10152 static int bnx2x_udp_port_update(struct bnx2x *bp)
10153 {
10154 	struct bnx2x_func_switch_update_params *switch_update_params;
10155 	struct bnx2x_func_state_params func_params = {NULL};
10156 	struct bnx2x_udp_tunnel *udp_tunnel;
10157 	u16 vxlan_port = 0, geneve_port = 0;
10158 	int rc;
10159 
10160 	switch_update_params = &func_params.params.switch_update;
10161 
10162 	/* Prepare parameters for function state transitions */
10163 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10164 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10165 
10166 	func_params.f_obj = &bp->func_obj;
10167 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10168 
10169 	/* Function parameters */
10170 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10171 		  &switch_update_params->changes);
10172 
10173 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10174 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10175 		geneve_port = udp_tunnel->dst_port;
10176 		switch_update_params->geneve_dst_port = geneve_port;
10177 	}
10178 
10179 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10180 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10181 		vxlan_port = udp_tunnel->dst_port;
10182 		switch_update_params->vxlan_dst_port = vxlan_port;
10183 	}
10184 
10185 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10186 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10187 		  &switch_update_params->changes);
10188 
10189 	rc = bnx2x_func_state_change(bp, &func_params);
10190 	if (rc)
10191 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10192 			  vxlan_port, geneve_port, rc);
10193 	else
10194 		DP(BNX2X_MSG_SP,
10195 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10196 		   vxlan_port, geneve_port);
10197 
10198 	return rc;
10199 }
10200 
10201 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10202 				 enum bnx2x_udp_port_type type)
10203 {
10204 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10205 
10206 	if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10207 		return;
10208 
10209 	if (udp_port->count && udp_port->dst_port == port) {
10210 		udp_port->count++;
10211 		return;
10212 	}
10213 
10214 	if (udp_port->count) {
10215 		DP(BNX2X_MSG_SP,
10216 		   "UDP tunnel [%d] -  destination port limit reached\n",
10217 		   type);
10218 		return;
10219 	}
10220 
10221 	udp_port->dst_port = port;
10222 	udp_port->count = 1;
10223 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10224 }
10225 
10226 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10227 				 enum bnx2x_udp_port_type type)
10228 {
10229 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10230 
10231 	if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10232 		return;
10233 
10234 	if (!udp_port->count || udp_port->dst_port != port) {
10235 		DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10236 		   type);
10237 		return;
10238 	}
10239 
10240 	/* Remove reference, and make certain it's no longer in use */
10241 	udp_port->count--;
10242 	if (udp_port->count)
10243 		return;
10244 	udp_port->dst_port = 0;
10245 
10246 	if (netif_running(bp->dev))
10247 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10248 	else
10249 		DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10250 		   type, port);
10251 }
10252 
10253 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10254 				 struct udp_tunnel_info *ti)
10255 {
10256 	struct bnx2x *bp = netdev_priv(netdev);
10257 	u16 t_port = ntohs(ti->port);
10258 
10259 	switch (ti->type) {
10260 	case UDP_TUNNEL_TYPE_VXLAN:
10261 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10262 		break;
10263 	case UDP_TUNNEL_TYPE_GENEVE:
10264 		__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10265 		break;
10266 	default:
10267 		break;
10268 	}
10269 }
10270 
10271 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10272 				 struct udp_tunnel_info *ti)
10273 {
10274 	struct bnx2x *bp = netdev_priv(netdev);
10275 	u16 t_port = ntohs(ti->port);
10276 
10277 	switch (ti->type) {
10278 	case UDP_TUNNEL_TYPE_VXLAN:
10279 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10280 		break;
10281 	case UDP_TUNNEL_TYPE_GENEVE:
10282 		__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10283 		break;
10284 	default:
10285 		break;
10286 	}
10287 }
10288 
10289 static int bnx2x_close(struct net_device *dev);
10290 
10291 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10292  * scheduled on a general queue in order to prevent a dead lock.
10293  */
10294 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10295 {
10296 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10297 
10298 	rtnl_lock();
10299 
10300 	if (!netif_running(bp->dev)) {
10301 		rtnl_unlock();
10302 		return;
10303 	}
10304 
10305 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10306 #ifdef BNX2X_STOP_ON_ERROR
10307 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10308 			  "you will need to reboot when done\n");
10309 		goto sp_rtnl_not_reset;
10310 #endif
10311 		/*
10312 		 * Clear all pending SP commands as we are going to reset the
10313 		 * function anyway.
10314 		 */
10315 		bp->sp_rtnl_state = 0;
10316 		smp_mb();
10317 
10318 		bnx2x_parity_recover(bp);
10319 
10320 		rtnl_unlock();
10321 		return;
10322 	}
10323 
10324 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10325 #ifdef BNX2X_STOP_ON_ERROR
10326 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10327 			  "you will need to reboot when done\n");
10328 		goto sp_rtnl_not_reset;
10329 #endif
10330 
10331 		/*
10332 		 * Clear all pending SP commands as we are going to reset the
10333 		 * function anyway.
10334 		 */
10335 		bp->sp_rtnl_state = 0;
10336 		smp_mb();
10337 
10338 		/* Immediately indicate link as down */
10339 		bp->link_vars.link_up = 0;
10340 		bp->force_link_down = true;
10341 		netif_carrier_off(bp->dev);
10342 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10343 
10344 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10345 		/* When ret value shows failure of allocation failure,
10346 		 * the nic is rebooted again. If open still fails, a error
10347 		 * message to notify the user.
10348 		 */
10349 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10350 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10351 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10352 				BNX2X_ERR("Open the NIC fails again!\n");
10353 		}
10354 		rtnl_unlock();
10355 		return;
10356 	}
10357 #ifdef BNX2X_STOP_ON_ERROR
10358 sp_rtnl_not_reset:
10359 #endif
10360 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10361 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10362 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10363 		bnx2x_after_function_update(bp);
10364 	/*
10365 	 * in case of fan failure we need to reset id if the "stop on error"
10366 	 * debug flag is set, since we trying to prevent permanent overheating
10367 	 * damage
10368 	 */
10369 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10370 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10371 		netif_device_detach(bp->dev);
10372 		bnx2x_close(bp->dev);
10373 		rtnl_unlock();
10374 		return;
10375 	}
10376 
10377 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10378 		DP(BNX2X_MSG_SP,
10379 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10380 		bnx2x_vfpf_set_mcast(bp->dev);
10381 	}
10382 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10383 			       &bp->sp_rtnl_state)){
10384 		if (netif_carrier_ok(bp->dev)) {
10385 			bnx2x_tx_disable(bp);
10386 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10387 		}
10388 	}
10389 
10390 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10391 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10392 		bnx2x_set_rx_mode_inner(bp);
10393 	}
10394 
10395 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10396 			       &bp->sp_rtnl_state))
10397 		bnx2x_pf_set_vfs_vlan(bp);
10398 
10399 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10400 		bnx2x_dcbx_stop_hw_tx(bp);
10401 		bnx2x_dcbx_resume_hw_tx(bp);
10402 	}
10403 
10404 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10405 			       &bp->sp_rtnl_state))
10406 		bnx2x_update_mng_version(bp);
10407 
10408 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10409 		bnx2x_handle_update_svid_cmd(bp);
10410 
10411 	if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10412 			       &bp->sp_rtnl_state)) {
10413 		if (bnx2x_udp_port_update(bp)) {
10414 			/* On error, forget configuration */
10415 			memset(bp->udp_tunnel_ports, 0,
10416 			       sizeof(struct bnx2x_udp_tunnel) *
10417 			       BNX2X_UDP_PORT_MAX);
10418 		} else {
10419 			/* Since we don't store additional port information,
10420 			 * if no ports are configured for any feature ask for
10421 			 * information about currently configured ports.
10422 			 */
10423 			if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10424 			    !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10425 				udp_tunnel_get_rx_info(bp->dev);
10426 		}
10427 	}
10428 
10429 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10430 	 * can be called from other contexts as well)
10431 	 */
10432 	rtnl_unlock();
10433 
10434 	/* enable SR-IOV if applicable */
10435 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10436 					       &bp->sp_rtnl_state)) {
10437 		bnx2x_disable_sriov(bp);
10438 		bnx2x_enable_sriov(bp);
10439 	}
10440 }
10441 
10442 static void bnx2x_period_task(struct work_struct *work)
10443 {
10444 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10445 
10446 	if (!netif_running(bp->dev))
10447 		goto period_task_exit;
10448 
10449 	if (CHIP_REV_IS_SLOW(bp)) {
10450 		BNX2X_ERR("period task called on emulation, ignoring\n");
10451 		goto period_task_exit;
10452 	}
10453 
10454 	bnx2x_acquire_phy_lock(bp);
10455 	/*
10456 	 * The barrier is needed to ensure the ordering between the writing to
10457 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10458 	 * the reading here.
10459 	 */
10460 	smp_mb();
10461 	if (bp->port.pmf) {
10462 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10463 
10464 		/* Re-queue task in 1 sec */
10465 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10466 	}
10467 
10468 	bnx2x_release_phy_lock(bp);
10469 period_task_exit:
10470 	return;
10471 }
10472 
10473 /*
10474  * Init service functions
10475  */
10476 
10477 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10478 {
10479 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10480 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10481 	return base + (BP_ABS_FUNC(bp)) * stride;
10482 }
10483 
10484 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10485 					 u8 port, u32 reset_reg,
10486 					 struct bnx2x_mac_vals *vals)
10487 {
10488 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10489 	u32 base_addr;
10490 
10491 	if (!(mask & reset_reg))
10492 		return false;
10493 
10494 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10495 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10496 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10497 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10498 	REG_WR(bp, vals->umac_addr[port], 0);
10499 
10500 	return true;
10501 }
10502 
10503 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10504 					struct bnx2x_mac_vals *vals)
10505 {
10506 	u32 val, base_addr, offset, mask, reset_reg;
10507 	bool mac_stopped = false;
10508 	u8 port = BP_PORT(bp);
10509 
10510 	/* reset addresses as they also mark which values were changed */
10511 	memset(vals, 0, sizeof(*vals));
10512 
10513 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10514 
10515 	if (!CHIP_IS_E3(bp)) {
10516 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10517 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10518 		if ((mask & reset_reg) && val) {
10519 			u32 wb_data[2];
10520 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10521 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10522 						: NIG_REG_INGRESS_BMAC0_MEM;
10523 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10524 						: BIGMAC_REGISTER_BMAC_CONTROL;
10525 
10526 			/*
10527 			 * use rd/wr since we cannot use dmae. This is safe
10528 			 * since MCP won't access the bus due to the request
10529 			 * to unload, and no function on the path can be
10530 			 * loaded at this time.
10531 			 */
10532 			wb_data[0] = REG_RD(bp, base_addr + offset);
10533 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10534 			vals->bmac_addr = base_addr + offset;
10535 			vals->bmac_val[0] = wb_data[0];
10536 			vals->bmac_val[1] = wb_data[1];
10537 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10538 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10539 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10540 		}
10541 		BNX2X_DEV_INFO("Disable emac Rx\n");
10542 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10543 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10544 		REG_WR(bp, vals->emac_addr, 0);
10545 		mac_stopped = true;
10546 	} else {
10547 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10548 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10549 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10550 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10551 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10552 			       val & ~(1 << 1));
10553 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10554 			       val | (1 << 1));
10555 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10556 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10557 			REG_WR(bp, vals->xmac_addr, 0);
10558 			mac_stopped = true;
10559 		}
10560 
10561 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10562 							    reset_reg, vals);
10563 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10564 							    reset_reg, vals);
10565 	}
10566 
10567 	if (mac_stopped)
10568 		msleep(20);
10569 }
10570 
10571 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10572 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10573 					0x1848 + ((f) << 4))
10574 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10575 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10576 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10577 
10578 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10579 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10580 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10581 
10582 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10583 {
10584 	/* UNDI marks its presence in DORQ -
10585 	 * it initializes CID offset for normal bell to 0x7
10586 	 */
10587 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10588 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10589 		return false;
10590 
10591 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10592 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10593 		return true;
10594 	}
10595 
10596 	return false;
10597 }
10598 
10599 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10600 {
10601 	u16 rcq, bd;
10602 	u32 addr, tmp_reg;
10603 
10604 	if (BP_FUNC(bp) < 2)
10605 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10606 	else
10607 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10608 
10609 	tmp_reg = REG_RD(bp, addr);
10610 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10611 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10612 
10613 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10614 	REG_WR(bp, addr, tmp_reg);
10615 
10616 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10617 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10618 }
10619 
10620 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10621 {
10622 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10623 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10624 	if (!rc) {
10625 		BNX2X_ERR("MCP response failure, aborting\n");
10626 		return -EBUSY;
10627 	}
10628 
10629 	return 0;
10630 }
10631 
10632 static struct bnx2x_prev_path_list *
10633 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10634 {
10635 	struct bnx2x_prev_path_list *tmp_list;
10636 
10637 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10638 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10639 		    bp->pdev->bus->number == tmp_list->bus &&
10640 		    BP_PATH(bp) == tmp_list->path)
10641 			return tmp_list;
10642 
10643 	return NULL;
10644 }
10645 
10646 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10647 {
10648 	struct bnx2x_prev_path_list *tmp_list;
10649 	int rc;
10650 
10651 	rc = down_interruptible(&bnx2x_prev_sem);
10652 	if (rc) {
10653 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10654 		return rc;
10655 	}
10656 
10657 	tmp_list = bnx2x_prev_path_get_entry(bp);
10658 	if (tmp_list) {
10659 		tmp_list->aer = 1;
10660 		rc = 0;
10661 	} else {
10662 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10663 			  BP_PATH(bp));
10664 	}
10665 
10666 	up(&bnx2x_prev_sem);
10667 
10668 	return rc;
10669 }
10670 
10671 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10672 {
10673 	struct bnx2x_prev_path_list *tmp_list;
10674 	bool rc = false;
10675 
10676 	if (down_trylock(&bnx2x_prev_sem))
10677 		return false;
10678 
10679 	tmp_list = bnx2x_prev_path_get_entry(bp);
10680 	if (tmp_list) {
10681 		if (tmp_list->aer) {
10682 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10683 			   BP_PATH(bp));
10684 		} else {
10685 			rc = true;
10686 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10687 				       BP_PATH(bp));
10688 		}
10689 	}
10690 
10691 	up(&bnx2x_prev_sem);
10692 
10693 	return rc;
10694 }
10695 
10696 bool bnx2x_port_after_undi(struct bnx2x *bp)
10697 {
10698 	struct bnx2x_prev_path_list *entry;
10699 	bool val;
10700 
10701 	down(&bnx2x_prev_sem);
10702 
10703 	entry = bnx2x_prev_path_get_entry(bp);
10704 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10705 
10706 	up(&bnx2x_prev_sem);
10707 
10708 	return val;
10709 }
10710 
10711 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10712 {
10713 	struct bnx2x_prev_path_list *tmp_list;
10714 	int rc;
10715 
10716 	rc = down_interruptible(&bnx2x_prev_sem);
10717 	if (rc) {
10718 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10719 		return rc;
10720 	}
10721 
10722 	/* Check whether the entry for this path already exists */
10723 	tmp_list = bnx2x_prev_path_get_entry(bp);
10724 	if (tmp_list) {
10725 		if (!tmp_list->aer) {
10726 			BNX2X_ERR("Re-Marking the path.\n");
10727 		} else {
10728 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10729 			   BP_PATH(bp));
10730 			tmp_list->aer = 0;
10731 		}
10732 		up(&bnx2x_prev_sem);
10733 		return 0;
10734 	}
10735 	up(&bnx2x_prev_sem);
10736 
10737 	/* Create an entry for this path and add it */
10738 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10739 	if (!tmp_list) {
10740 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10741 		return -ENOMEM;
10742 	}
10743 
10744 	tmp_list->bus = bp->pdev->bus->number;
10745 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10746 	tmp_list->path = BP_PATH(bp);
10747 	tmp_list->aer = 0;
10748 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10749 
10750 	rc = down_interruptible(&bnx2x_prev_sem);
10751 	if (rc) {
10752 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10753 		kfree(tmp_list);
10754 	} else {
10755 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10756 		   BP_PATH(bp));
10757 		list_add(&tmp_list->list, &bnx2x_prev_list);
10758 		up(&bnx2x_prev_sem);
10759 	}
10760 
10761 	return rc;
10762 }
10763 
10764 static int bnx2x_do_flr(struct bnx2x *bp)
10765 {
10766 	struct pci_dev *dev = bp->pdev;
10767 
10768 	if (CHIP_IS_E1x(bp)) {
10769 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10770 		return -EINVAL;
10771 	}
10772 
10773 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10774 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10775 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10776 			  bp->common.bc_ver);
10777 		return -EINVAL;
10778 	}
10779 
10780 	if (!pci_wait_for_pending_transaction(dev))
10781 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10782 
10783 	BNX2X_DEV_INFO("Initiating FLR\n");
10784 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10785 
10786 	return 0;
10787 }
10788 
10789 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10790 {
10791 	int rc;
10792 
10793 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10794 
10795 	/* Test if previous unload process was already finished for this path */
10796 	if (bnx2x_prev_is_path_marked(bp))
10797 		return bnx2x_prev_mcp_done(bp);
10798 
10799 	BNX2X_DEV_INFO("Path is unmarked\n");
10800 
10801 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10802 	if (bnx2x_prev_is_after_undi(bp))
10803 		goto out;
10804 
10805 	/* If function has FLR capabilities, and existing FW version matches
10806 	 * the one required, then FLR will be sufficient to clean any residue
10807 	 * left by previous driver
10808 	 */
10809 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10810 
10811 	if (!rc) {
10812 		/* fw version is good */
10813 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10814 		rc = bnx2x_do_flr(bp);
10815 	}
10816 
10817 	if (!rc) {
10818 		/* FLR was performed */
10819 		BNX2X_DEV_INFO("FLR successful\n");
10820 		return 0;
10821 	}
10822 
10823 	BNX2X_DEV_INFO("Could not FLR\n");
10824 
10825 out:
10826 	/* Close the MCP request, return failure*/
10827 	rc = bnx2x_prev_mcp_done(bp);
10828 	if (!rc)
10829 		rc = BNX2X_PREV_WAIT_NEEDED;
10830 
10831 	return rc;
10832 }
10833 
10834 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10835 {
10836 	u32 reset_reg, tmp_reg = 0, rc;
10837 	bool prev_undi = false;
10838 	struct bnx2x_mac_vals mac_vals;
10839 
10840 	/* It is possible a previous function received 'common' answer,
10841 	 * but hasn't loaded yet, therefore creating a scenario of
10842 	 * multiple functions receiving 'common' on the same path.
10843 	 */
10844 	BNX2X_DEV_INFO("Common unload Flow\n");
10845 
10846 	memset(&mac_vals, 0, sizeof(mac_vals));
10847 
10848 	if (bnx2x_prev_is_path_marked(bp))
10849 		return bnx2x_prev_mcp_done(bp);
10850 
10851 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10852 
10853 	/* Reset should be performed after BRB is emptied */
10854 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10855 		u32 timer_count = 1000;
10856 
10857 		/* Close the MAC Rx to prevent BRB from filling up */
10858 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10859 
10860 		/* close LLH filters for both ports towards the BRB */
10861 		bnx2x_set_rx_filter(&bp->link_params, 0);
10862 		bp->link_params.port ^= 1;
10863 		bnx2x_set_rx_filter(&bp->link_params, 0);
10864 		bp->link_params.port ^= 1;
10865 
10866 		/* Check if the UNDI driver was previously loaded */
10867 		if (bnx2x_prev_is_after_undi(bp)) {
10868 			prev_undi = true;
10869 			/* clear the UNDI indication */
10870 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10871 			/* clear possible idle check errors */
10872 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10873 		}
10874 		if (!CHIP_IS_E1x(bp))
10875 			/* block FW from writing to host */
10876 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10877 
10878 		/* wait until BRB is empty */
10879 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10880 		while (timer_count) {
10881 			u32 prev_brb = tmp_reg;
10882 
10883 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10884 			if (!tmp_reg)
10885 				break;
10886 
10887 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10888 
10889 			/* reset timer as long as BRB actually gets emptied */
10890 			if (prev_brb > tmp_reg)
10891 				timer_count = 1000;
10892 			else
10893 				timer_count--;
10894 
10895 			/* If UNDI resides in memory, manually increment it */
10896 			if (prev_undi)
10897 				bnx2x_prev_unload_undi_inc(bp, 1);
10898 
10899 			udelay(10);
10900 		}
10901 
10902 		if (!timer_count)
10903 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10904 	}
10905 
10906 	/* No packets are in the pipeline, path is ready for reset */
10907 	bnx2x_reset_common(bp);
10908 
10909 	if (mac_vals.xmac_addr)
10910 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10911 	if (mac_vals.umac_addr[0])
10912 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10913 	if (mac_vals.umac_addr[1])
10914 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10915 	if (mac_vals.emac_addr)
10916 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10917 	if (mac_vals.bmac_addr) {
10918 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10919 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10920 	}
10921 
10922 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10923 	if (rc) {
10924 		bnx2x_prev_mcp_done(bp);
10925 		return rc;
10926 	}
10927 
10928 	return bnx2x_prev_mcp_done(bp);
10929 }
10930 
10931 static int bnx2x_prev_unload(struct bnx2x *bp)
10932 {
10933 	int time_counter = 10;
10934 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10935 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10936 
10937 	/* clear hw from errors which may have resulted from an interrupted
10938 	 * dmae transaction.
10939 	 */
10940 	bnx2x_clean_pglue_errors(bp);
10941 
10942 	/* Release previously held locks */
10943 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10944 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10945 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10946 
10947 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10948 	if (hw_lock_val) {
10949 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10950 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10951 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10952 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10953 		}
10954 
10955 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10956 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10957 	} else
10958 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10959 
10960 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10961 		BNX2X_DEV_INFO("Release previously held alr\n");
10962 		bnx2x_release_alr(bp);
10963 	}
10964 
10965 	do {
10966 		int aer = 0;
10967 		/* Lock MCP using an unload request */
10968 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10969 		if (!fw) {
10970 			BNX2X_ERR("MCP response failure, aborting\n");
10971 			rc = -EBUSY;
10972 			break;
10973 		}
10974 
10975 		rc = down_interruptible(&bnx2x_prev_sem);
10976 		if (rc) {
10977 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10978 				  rc);
10979 		} else {
10980 			/* If Path is marked by EEH, ignore unload status */
10981 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10982 				 bnx2x_prev_path_get_entry(bp)->aer);
10983 			up(&bnx2x_prev_sem);
10984 		}
10985 
10986 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10987 			rc = bnx2x_prev_unload_common(bp);
10988 			break;
10989 		}
10990 
10991 		/* non-common reply from MCP might require looping */
10992 		rc = bnx2x_prev_unload_uncommon(bp);
10993 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10994 			break;
10995 
10996 		msleep(20);
10997 	} while (--time_counter);
10998 
10999 	if (!time_counter || rc) {
11000 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
11001 		rc = -EPROBE_DEFER;
11002 	}
11003 
11004 	/* Mark function if its port was used to boot from SAN */
11005 	if (bnx2x_port_after_undi(bp))
11006 		bp->link_params.feature_config_flags |=
11007 			FEATURE_CONFIG_BOOT_FROM_SAN;
11008 
11009 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
11010 
11011 	return rc;
11012 }
11013 
11014 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
11015 {
11016 	u32 val, val2, val3, val4, id, boot_mode;
11017 	u16 pmc;
11018 
11019 	/* Get the chip revision id and number. */
11020 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
11021 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
11022 	id = ((val & 0xffff) << 16);
11023 	val = REG_RD(bp, MISC_REG_CHIP_REV);
11024 	id |= ((val & 0xf) << 12);
11025 
11026 	/* Metal is read from PCI regs, but we can't access >=0x400 from
11027 	 * the configuration space (so we need to reg_rd)
11028 	 */
11029 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
11030 	id |= (((val >> 24) & 0xf) << 4);
11031 	val = REG_RD(bp, MISC_REG_BOND_ID);
11032 	id |= (val & 0xf);
11033 	bp->common.chip_id = id;
11034 
11035 	/* force 57811 according to MISC register */
11036 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
11037 		if (CHIP_IS_57810(bp))
11038 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
11039 				(bp->common.chip_id & 0x0000FFFF);
11040 		else if (CHIP_IS_57810_MF(bp))
11041 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
11042 				(bp->common.chip_id & 0x0000FFFF);
11043 		bp->common.chip_id |= 0x1;
11044 	}
11045 
11046 	/* Set doorbell size */
11047 	bp->db_size = (1 << BNX2X_DB_SHIFT);
11048 
11049 	if (!CHIP_IS_E1x(bp)) {
11050 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
11051 		if ((val & 1) == 0)
11052 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
11053 		else
11054 			val = (val >> 1) & 1;
11055 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
11056 						       "2_PORT_MODE");
11057 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
11058 						 CHIP_2_PORT_MODE;
11059 
11060 		if (CHIP_MODE_IS_4_PORT(bp))
11061 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
11062 		else
11063 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
11064 	} else {
11065 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11066 		bp->pfid = bp->pf_num;			/* 0..7 */
11067 	}
11068 
11069 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11070 
11071 	bp->link_params.chip_id = bp->common.chip_id;
11072 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11073 
11074 	val = (REG_RD(bp, 0x2874) & 0x55);
11075 	if ((bp->common.chip_id & 0x1) ||
11076 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11077 		bp->flags |= ONE_PORT_FLAG;
11078 		BNX2X_DEV_INFO("single port device\n");
11079 	}
11080 
11081 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11082 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11083 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11084 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11085 		       bp->common.flash_size, bp->common.flash_size);
11086 
11087 	bnx2x_init_shmem(bp);
11088 
11089 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11090 					MISC_REG_GENERIC_CR_1 :
11091 					MISC_REG_GENERIC_CR_0));
11092 
11093 	bp->link_params.shmem_base = bp->common.shmem_base;
11094 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11095 	if (SHMEM2_RD(bp, size) >
11096 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11097 		bp->link_params.lfa_base =
11098 		REG_RD(bp, bp->common.shmem2_base +
11099 		       (u32)offsetof(struct shmem2_region,
11100 				     lfa_host_addr[BP_PORT(bp)]));
11101 	else
11102 		bp->link_params.lfa_base = 0;
11103 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11104 		       bp->common.shmem_base, bp->common.shmem2_base);
11105 
11106 	if (!bp->common.shmem_base) {
11107 		BNX2X_DEV_INFO("MCP not active\n");
11108 		bp->flags |= NO_MCP_FLAG;
11109 		return;
11110 	}
11111 
11112 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11113 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11114 
11115 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11116 					SHARED_HW_CFG_LED_MODE_MASK) >>
11117 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11118 
11119 	bp->link_params.feature_config_flags = 0;
11120 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11121 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11122 		bp->link_params.feature_config_flags |=
11123 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11124 	else
11125 		bp->link_params.feature_config_flags &=
11126 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11127 
11128 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11129 	bp->common.bc_ver = val;
11130 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11131 	if (val < BNX2X_BC_VER) {
11132 		/* for now only warn
11133 		 * later we might need to enforce this */
11134 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11135 			  BNX2X_BC_VER, val);
11136 	}
11137 	bp->link_params.feature_config_flags |=
11138 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11139 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11140 
11141 	bp->link_params.feature_config_flags |=
11142 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11143 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11144 	bp->link_params.feature_config_flags |=
11145 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11146 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11147 	bp->link_params.feature_config_flags |=
11148 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11149 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11150 
11151 	bp->link_params.feature_config_flags |=
11152 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11153 		FEATURE_CONFIG_MT_SUPPORT : 0;
11154 
11155 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11156 			BC_SUPPORTS_PFC_STATS : 0;
11157 
11158 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11159 			BC_SUPPORTS_FCOE_FEATURES : 0;
11160 
11161 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11162 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11163 
11164 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11165 			BC_SUPPORTS_RMMOD_CMD : 0;
11166 
11167 	boot_mode = SHMEM_RD(bp,
11168 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11169 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11170 	switch (boot_mode) {
11171 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11172 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11173 		break;
11174 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11175 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11176 		break;
11177 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11178 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11179 		break;
11180 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11181 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11182 		break;
11183 	}
11184 
11185 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11186 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11187 
11188 	BNX2X_DEV_INFO("%sWoL capable\n",
11189 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11190 
11191 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11192 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11193 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11194 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11195 
11196 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11197 		 val, val2, val3, val4);
11198 }
11199 
11200 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11201 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11202 
11203 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11204 {
11205 	int pfid = BP_FUNC(bp);
11206 	int igu_sb_id;
11207 	u32 val;
11208 	u8 fid, igu_sb_cnt = 0;
11209 
11210 	bp->igu_base_sb = 0xff;
11211 	if (CHIP_INT_MODE_IS_BC(bp)) {
11212 		int vn = BP_VN(bp);
11213 		igu_sb_cnt = bp->igu_sb_cnt;
11214 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11215 			FP_SB_MAX_E1x;
11216 
11217 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11218 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11219 
11220 		return 0;
11221 	}
11222 
11223 	/* IGU in normal mode - read CAM */
11224 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11225 	     igu_sb_id++) {
11226 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11227 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11228 			continue;
11229 		fid = IGU_FID(val);
11230 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11231 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11232 				continue;
11233 			if (IGU_VEC(val) == 0)
11234 				/* default status block */
11235 				bp->igu_dsb_id = igu_sb_id;
11236 			else {
11237 				if (bp->igu_base_sb == 0xff)
11238 					bp->igu_base_sb = igu_sb_id;
11239 				igu_sb_cnt++;
11240 			}
11241 		}
11242 	}
11243 
11244 #ifdef CONFIG_PCI_MSI
11245 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11246 	 * optional that number of CAM entries will not be equal to the value
11247 	 * advertised in PCI.
11248 	 * Driver should use the minimal value of both as the actual status
11249 	 * block count
11250 	 */
11251 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11252 #endif
11253 
11254 	if (igu_sb_cnt == 0) {
11255 		BNX2X_ERR("CAM configuration error\n");
11256 		return -EINVAL;
11257 	}
11258 
11259 	return 0;
11260 }
11261 
11262 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11263 {
11264 	int cfg_size = 0, idx, port = BP_PORT(bp);
11265 
11266 	/* Aggregation of supported attributes of all external phys */
11267 	bp->port.supported[0] = 0;
11268 	bp->port.supported[1] = 0;
11269 	switch (bp->link_params.num_phys) {
11270 	case 1:
11271 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11272 		cfg_size = 1;
11273 		break;
11274 	case 2:
11275 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11276 		cfg_size = 1;
11277 		break;
11278 	case 3:
11279 		if (bp->link_params.multi_phy_config &
11280 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11281 			bp->port.supported[1] =
11282 				bp->link_params.phy[EXT_PHY1].supported;
11283 			bp->port.supported[0] =
11284 				bp->link_params.phy[EXT_PHY2].supported;
11285 		} else {
11286 			bp->port.supported[0] =
11287 				bp->link_params.phy[EXT_PHY1].supported;
11288 			bp->port.supported[1] =
11289 				bp->link_params.phy[EXT_PHY2].supported;
11290 		}
11291 		cfg_size = 2;
11292 		break;
11293 	}
11294 
11295 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11296 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11297 			   SHMEM_RD(bp,
11298 			   dev_info.port_hw_config[port].external_phy_config),
11299 			   SHMEM_RD(bp,
11300 			   dev_info.port_hw_config[port].external_phy_config2));
11301 		return;
11302 	}
11303 
11304 	if (CHIP_IS_E3(bp))
11305 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11306 	else {
11307 		switch (switch_cfg) {
11308 		case SWITCH_CFG_1G:
11309 			bp->port.phy_addr = REG_RD(
11310 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11311 			break;
11312 		case SWITCH_CFG_10G:
11313 			bp->port.phy_addr = REG_RD(
11314 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11315 			break;
11316 		default:
11317 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11318 				  bp->port.link_config[0]);
11319 			return;
11320 		}
11321 	}
11322 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11323 	/* mask what we support according to speed_cap_mask per configuration */
11324 	for (idx = 0; idx < cfg_size; idx++) {
11325 		if (!(bp->link_params.speed_cap_mask[idx] &
11326 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11327 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11328 
11329 		if (!(bp->link_params.speed_cap_mask[idx] &
11330 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11331 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11332 
11333 		if (!(bp->link_params.speed_cap_mask[idx] &
11334 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11335 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11336 
11337 		if (!(bp->link_params.speed_cap_mask[idx] &
11338 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11339 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11340 
11341 		if (!(bp->link_params.speed_cap_mask[idx] &
11342 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11343 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11344 						     SUPPORTED_1000baseT_Full);
11345 
11346 		if (!(bp->link_params.speed_cap_mask[idx] &
11347 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11348 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11349 
11350 		if (!(bp->link_params.speed_cap_mask[idx] &
11351 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11352 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11353 
11354 		if (!(bp->link_params.speed_cap_mask[idx] &
11355 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11356 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11357 	}
11358 
11359 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11360 		       bp->port.supported[1]);
11361 }
11362 
11363 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11364 {
11365 	u32 link_config, idx, cfg_size = 0;
11366 	bp->port.advertising[0] = 0;
11367 	bp->port.advertising[1] = 0;
11368 	switch (bp->link_params.num_phys) {
11369 	case 1:
11370 	case 2:
11371 		cfg_size = 1;
11372 		break;
11373 	case 3:
11374 		cfg_size = 2;
11375 		break;
11376 	}
11377 	for (idx = 0; idx < cfg_size; idx++) {
11378 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11379 		link_config = bp->port.link_config[idx];
11380 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11381 		case PORT_FEATURE_LINK_SPEED_AUTO:
11382 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11383 				bp->link_params.req_line_speed[idx] =
11384 					SPEED_AUTO_NEG;
11385 				bp->port.advertising[idx] |=
11386 					bp->port.supported[idx];
11387 				if (bp->link_params.phy[EXT_PHY1].type ==
11388 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11389 					bp->port.advertising[idx] |=
11390 					(SUPPORTED_100baseT_Half |
11391 					 SUPPORTED_100baseT_Full);
11392 			} else {
11393 				/* force 10G, no AN */
11394 				bp->link_params.req_line_speed[idx] =
11395 					SPEED_10000;
11396 				bp->port.advertising[idx] |=
11397 					(ADVERTISED_10000baseT_Full |
11398 					 ADVERTISED_FIBRE);
11399 				continue;
11400 			}
11401 			break;
11402 
11403 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11404 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11405 				bp->link_params.req_line_speed[idx] =
11406 					SPEED_10;
11407 				bp->port.advertising[idx] |=
11408 					(ADVERTISED_10baseT_Full |
11409 					 ADVERTISED_TP);
11410 			} else {
11411 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11412 					    link_config,
11413 				    bp->link_params.speed_cap_mask[idx]);
11414 				return;
11415 			}
11416 			break;
11417 
11418 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11419 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11420 				bp->link_params.req_line_speed[idx] =
11421 					SPEED_10;
11422 				bp->link_params.req_duplex[idx] =
11423 					DUPLEX_HALF;
11424 				bp->port.advertising[idx] |=
11425 					(ADVERTISED_10baseT_Half |
11426 					 ADVERTISED_TP);
11427 			} else {
11428 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11429 					    link_config,
11430 					  bp->link_params.speed_cap_mask[idx]);
11431 				return;
11432 			}
11433 			break;
11434 
11435 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11436 			if (bp->port.supported[idx] &
11437 			    SUPPORTED_100baseT_Full) {
11438 				bp->link_params.req_line_speed[idx] =
11439 					SPEED_100;
11440 				bp->port.advertising[idx] |=
11441 					(ADVERTISED_100baseT_Full |
11442 					 ADVERTISED_TP);
11443 			} else {
11444 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11445 					    link_config,
11446 					  bp->link_params.speed_cap_mask[idx]);
11447 				return;
11448 			}
11449 			break;
11450 
11451 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11452 			if (bp->port.supported[idx] &
11453 			    SUPPORTED_100baseT_Half) {
11454 				bp->link_params.req_line_speed[idx] =
11455 								SPEED_100;
11456 				bp->link_params.req_duplex[idx] =
11457 								DUPLEX_HALF;
11458 				bp->port.advertising[idx] |=
11459 					(ADVERTISED_100baseT_Half |
11460 					 ADVERTISED_TP);
11461 			} else {
11462 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11463 				    link_config,
11464 				    bp->link_params.speed_cap_mask[idx]);
11465 				return;
11466 			}
11467 			break;
11468 
11469 		case PORT_FEATURE_LINK_SPEED_1G:
11470 			if (bp->port.supported[idx] &
11471 			    SUPPORTED_1000baseT_Full) {
11472 				bp->link_params.req_line_speed[idx] =
11473 					SPEED_1000;
11474 				bp->port.advertising[idx] |=
11475 					(ADVERTISED_1000baseT_Full |
11476 					 ADVERTISED_TP);
11477 			} else if (bp->port.supported[idx] &
11478 				   SUPPORTED_1000baseKX_Full) {
11479 				bp->link_params.req_line_speed[idx] =
11480 					SPEED_1000;
11481 				bp->port.advertising[idx] |=
11482 					ADVERTISED_1000baseKX_Full;
11483 			} else {
11484 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11485 				    link_config,
11486 				    bp->link_params.speed_cap_mask[idx]);
11487 				return;
11488 			}
11489 			break;
11490 
11491 		case PORT_FEATURE_LINK_SPEED_2_5G:
11492 			if (bp->port.supported[idx] &
11493 			    SUPPORTED_2500baseX_Full) {
11494 				bp->link_params.req_line_speed[idx] =
11495 					SPEED_2500;
11496 				bp->port.advertising[idx] |=
11497 					(ADVERTISED_2500baseX_Full |
11498 						ADVERTISED_TP);
11499 			} else {
11500 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11501 				    link_config,
11502 				    bp->link_params.speed_cap_mask[idx]);
11503 				return;
11504 			}
11505 			break;
11506 
11507 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11508 			if (bp->port.supported[idx] &
11509 			    SUPPORTED_10000baseT_Full) {
11510 				bp->link_params.req_line_speed[idx] =
11511 					SPEED_10000;
11512 				bp->port.advertising[idx] |=
11513 					(ADVERTISED_10000baseT_Full |
11514 						ADVERTISED_FIBRE);
11515 			} else if (bp->port.supported[idx] &
11516 				   SUPPORTED_10000baseKR_Full) {
11517 				bp->link_params.req_line_speed[idx] =
11518 					SPEED_10000;
11519 				bp->port.advertising[idx] |=
11520 					(ADVERTISED_10000baseKR_Full |
11521 						ADVERTISED_FIBRE);
11522 			} else {
11523 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11524 				    link_config,
11525 				    bp->link_params.speed_cap_mask[idx]);
11526 				return;
11527 			}
11528 			break;
11529 		case PORT_FEATURE_LINK_SPEED_20G:
11530 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11531 
11532 			break;
11533 		default:
11534 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11535 				  link_config);
11536 				bp->link_params.req_line_speed[idx] =
11537 							SPEED_AUTO_NEG;
11538 				bp->port.advertising[idx] =
11539 						bp->port.supported[idx];
11540 			break;
11541 		}
11542 
11543 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11544 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11545 		if (bp->link_params.req_flow_ctrl[idx] ==
11546 		    BNX2X_FLOW_CTRL_AUTO) {
11547 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11548 				bp->link_params.req_flow_ctrl[idx] =
11549 							BNX2X_FLOW_CTRL_NONE;
11550 			else
11551 				bnx2x_set_requested_fc(bp);
11552 		}
11553 
11554 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11555 			       bp->link_params.req_line_speed[idx],
11556 			       bp->link_params.req_duplex[idx],
11557 			       bp->link_params.req_flow_ctrl[idx],
11558 			       bp->port.advertising[idx]);
11559 	}
11560 }
11561 
11562 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11563 {
11564 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11565 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11566 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11567 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11568 }
11569 
11570 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11571 {
11572 	int port = BP_PORT(bp);
11573 	u32 config;
11574 	u32 ext_phy_type, ext_phy_config, eee_mode;
11575 
11576 	bp->link_params.bp = bp;
11577 	bp->link_params.port = port;
11578 
11579 	bp->link_params.lane_config =
11580 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11581 
11582 	bp->link_params.speed_cap_mask[0] =
11583 		SHMEM_RD(bp,
11584 			 dev_info.port_hw_config[port].speed_capability_mask) &
11585 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11586 	bp->link_params.speed_cap_mask[1] =
11587 		SHMEM_RD(bp,
11588 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11589 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11590 	bp->port.link_config[0] =
11591 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11592 
11593 	bp->port.link_config[1] =
11594 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11595 
11596 	bp->link_params.multi_phy_config =
11597 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11598 	/* If the device is capable of WoL, set the default state according
11599 	 * to the HW
11600 	 */
11601 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11602 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11603 		   (config & PORT_FEATURE_WOL_ENABLED));
11604 
11605 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11606 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11607 		bp->flags |= NO_ISCSI_FLAG;
11608 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11609 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11610 		bp->flags |= NO_FCOE_FLAG;
11611 
11612 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11613 		       bp->link_params.lane_config,
11614 		       bp->link_params.speed_cap_mask[0],
11615 		       bp->port.link_config[0]);
11616 
11617 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11618 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11619 	bnx2x_phy_probe(&bp->link_params);
11620 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11621 
11622 	bnx2x_link_settings_requested(bp);
11623 
11624 	/*
11625 	 * If connected directly, work with the internal PHY, otherwise, work
11626 	 * with the external PHY
11627 	 */
11628 	ext_phy_config =
11629 		SHMEM_RD(bp,
11630 			 dev_info.port_hw_config[port].external_phy_config);
11631 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11632 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11633 		bp->mdio.prtad = bp->port.phy_addr;
11634 
11635 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11636 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11637 		bp->mdio.prtad =
11638 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11639 
11640 	/* Configure link feature according to nvram value */
11641 	eee_mode = (((SHMEM_RD(bp, dev_info.
11642 		      port_feature_config[port].eee_power_mode)) &
11643 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11644 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11645 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11646 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11647 					   EEE_MODE_ENABLE_LPI |
11648 					   EEE_MODE_OUTPUT_TIME;
11649 	} else {
11650 		bp->link_params.eee_mode = 0;
11651 	}
11652 }
11653 
11654 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11655 {
11656 	u32 no_flags = NO_ISCSI_FLAG;
11657 	int port = BP_PORT(bp);
11658 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11659 				drv_lic_key[port].max_iscsi_conn);
11660 
11661 	if (!CNIC_SUPPORT(bp)) {
11662 		bp->flags |= no_flags;
11663 		return;
11664 	}
11665 
11666 	/* Get the number of maximum allowed iSCSI connections */
11667 	bp->cnic_eth_dev.max_iscsi_conn =
11668 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11669 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11670 
11671 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11672 		       bp->cnic_eth_dev.max_iscsi_conn);
11673 
11674 	/*
11675 	 * If maximum allowed number of connections is zero -
11676 	 * disable the feature.
11677 	 */
11678 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11679 		bp->flags |= no_flags;
11680 }
11681 
11682 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11683 {
11684 	/* Port info */
11685 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11686 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11687 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11688 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11689 
11690 	/* Node info */
11691 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11692 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11693 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11694 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11695 }
11696 
11697 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11698 {
11699 	u8 count = 0;
11700 
11701 	if (IS_MF(bp)) {
11702 		u8 fid;
11703 
11704 		/* iterate over absolute function ids for this path: */
11705 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11706 			if (IS_MF_SD(bp)) {
11707 				u32 cfg = MF_CFG_RD(bp,
11708 						    func_mf_config[fid].config);
11709 
11710 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11711 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11712 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11713 					count++;
11714 			} else {
11715 				u32 cfg = MF_CFG_RD(bp,
11716 						    func_ext_config[fid].
11717 								      func_cfg);
11718 
11719 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11720 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11721 					count++;
11722 			}
11723 		}
11724 	} else { /* SF */
11725 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11726 
11727 		for (port = 0; port < port_cnt; port++) {
11728 			u32 lic = SHMEM_RD(bp,
11729 					   drv_lic_key[port].max_fcoe_conn) ^
11730 				  FW_ENCODE_32BIT_PATTERN;
11731 			if (lic)
11732 				count++;
11733 		}
11734 	}
11735 
11736 	return count;
11737 }
11738 
11739 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11740 {
11741 	int port = BP_PORT(bp);
11742 	int func = BP_ABS_FUNC(bp);
11743 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11744 				drv_lic_key[port].max_fcoe_conn);
11745 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11746 
11747 	if (!CNIC_SUPPORT(bp)) {
11748 		bp->flags |= NO_FCOE_FLAG;
11749 		return;
11750 	}
11751 
11752 	/* Get the number of maximum allowed FCoE connections */
11753 	bp->cnic_eth_dev.max_fcoe_conn =
11754 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11755 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11756 
11757 	/* Calculate the number of maximum allowed FCoE tasks */
11758 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11759 
11760 	/* check if FCoE resources must be shared between different functions */
11761 	if (num_fcoe_func)
11762 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11763 
11764 	/* Read the WWN: */
11765 	if (!IS_MF(bp)) {
11766 		/* Port info */
11767 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11768 			SHMEM_RD(bp,
11769 				 dev_info.port_hw_config[port].
11770 				 fcoe_wwn_port_name_upper);
11771 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11772 			SHMEM_RD(bp,
11773 				 dev_info.port_hw_config[port].
11774 				 fcoe_wwn_port_name_lower);
11775 
11776 		/* Node info */
11777 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11778 			SHMEM_RD(bp,
11779 				 dev_info.port_hw_config[port].
11780 				 fcoe_wwn_node_name_upper);
11781 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11782 			SHMEM_RD(bp,
11783 				 dev_info.port_hw_config[port].
11784 				 fcoe_wwn_node_name_lower);
11785 	} else if (!IS_MF_SD(bp)) {
11786 		/* Read the WWN info only if the FCoE feature is enabled for
11787 		 * this function.
11788 		 */
11789 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11790 			bnx2x_get_ext_wwn_info(bp, func);
11791 	} else {
11792 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11793 			bnx2x_get_ext_wwn_info(bp, func);
11794 	}
11795 
11796 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11797 
11798 	/*
11799 	 * If maximum allowed number of connections is zero -
11800 	 * disable the feature.
11801 	 */
11802 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11803 		bp->flags |= NO_FCOE_FLAG;
11804 		eth_zero_addr(bp->fip_mac);
11805 	}
11806 }
11807 
11808 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11809 {
11810 	/*
11811 	 * iSCSI may be dynamically disabled but reading
11812 	 * info here we will decrease memory usage by driver
11813 	 * if the feature is disabled for good
11814 	 */
11815 	bnx2x_get_iscsi_info(bp);
11816 	bnx2x_get_fcoe_info(bp);
11817 }
11818 
11819 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11820 {
11821 	u32 val, val2;
11822 	int func = BP_ABS_FUNC(bp);
11823 	int port = BP_PORT(bp);
11824 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11825 	u8 *fip_mac = bp->fip_mac;
11826 
11827 	if (IS_MF(bp)) {
11828 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11829 		 * FCoE MAC then the appropriate feature should be disabled.
11830 		 * In non SD mode features configuration comes from struct
11831 		 * func_ext_config.
11832 		 */
11833 		if (!IS_MF_SD(bp)) {
11834 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11835 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11836 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11837 						 iscsi_mac_addr_upper);
11838 				val = MF_CFG_RD(bp, func_ext_config[func].
11839 						iscsi_mac_addr_lower);
11840 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11841 				BNX2X_DEV_INFO
11842 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11843 			} else {
11844 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11845 			}
11846 
11847 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11848 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11849 						 fcoe_mac_addr_upper);
11850 				val = MF_CFG_RD(bp, func_ext_config[func].
11851 						fcoe_mac_addr_lower);
11852 				bnx2x_set_mac_buf(fip_mac, val, val2);
11853 				BNX2X_DEV_INFO
11854 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11855 			} else {
11856 				bp->flags |= NO_FCOE_FLAG;
11857 			}
11858 
11859 			bp->mf_ext_config = cfg;
11860 
11861 		} else { /* SD MODE */
11862 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11863 				/* use primary mac as iscsi mac */
11864 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11865 
11866 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11867 				BNX2X_DEV_INFO
11868 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11869 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11870 				/* use primary mac as fip mac */
11871 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11872 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11873 				BNX2X_DEV_INFO
11874 					("Read FIP MAC: %pM\n", fip_mac);
11875 			}
11876 		}
11877 
11878 		/* If this is a storage-only interface, use SAN mac as
11879 		 * primary MAC. Notice that for SD this is already the case,
11880 		 * as the SAN mac was copied from the primary MAC.
11881 		 */
11882 		if (IS_MF_FCOE_AFEX(bp))
11883 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11884 	} else {
11885 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11886 				iscsi_mac_upper);
11887 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11888 			       iscsi_mac_lower);
11889 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11890 
11891 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11892 				fcoe_fip_mac_upper);
11893 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11894 			       fcoe_fip_mac_lower);
11895 		bnx2x_set_mac_buf(fip_mac, val, val2);
11896 	}
11897 
11898 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11899 	if (!is_valid_ether_addr(iscsi_mac)) {
11900 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11901 		eth_zero_addr(iscsi_mac);
11902 	}
11903 
11904 	/* Disable FCoE if MAC configuration is invalid. */
11905 	if (!is_valid_ether_addr(fip_mac)) {
11906 		bp->flags |= NO_FCOE_FLAG;
11907 		eth_zero_addr(bp->fip_mac);
11908 	}
11909 }
11910 
11911 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11912 {
11913 	u32 val, val2;
11914 	int func = BP_ABS_FUNC(bp);
11915 	int port = BP_PORT(bp);
11916 
11917 	/* Zero primary MAC configuration */
11918 	eth_zero_addr(bp->dev->dev_addr);
11919 
11920 	if (BP_NOMCP(bp)) {
11921 		BNX2X_ERROR("warning: random MAC workaround active\n");
11922 		eth_hw_addr_random(bp->dev);
11923 	} else if (IS_MF(bp)) {
11924 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11925 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11926 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11927 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11928 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11929 
11930 		if (CNIC_SUPPORT(bp))
11931 			bnx2x_get_cnic_mac_hwinfo(bp);
11932 	} else {
11933 		/* in SF read MACs from port configuration */
11934 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11935 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11936 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11937 
11938 		if (CNIC_SUPPORT(bp))
11939 			bnx2x_get_cnic_mac_hwinfo(bp);
11940 	}
11941 
11942 	if (!BP_NOMCP(bp)) {
11943 		/* Read physical port identifier from shmem */
11944 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11945 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11946 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11947 		bp->flags |= HAS_PHYS_PORT_ID;
11948 	}
11949 
11950 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11951 
11952 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11953 		dev_err(&bp->pdev->dev,
11954 			"bad Ethernet MAC address configuration: %pM\n"
11955 			"change it manually before bringing up the appropriate network interface\n",
11956 			bp->dev->dev_addr);
11957 }
11958 
11959 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11960 {
11961 	int tmp;
11962 	u32 cfg;
11963 
11964 	if (IS_VF(bp))
11965 		return false;
11966 
11967 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11968 		/* Take function: tmp = func */
11969 		tmp = BP_ABS_FUNC(bp);
11970 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11971 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11972 	} else {
11973 		/* Take port: tmp = port */
11974 		tmp = BP_PORT(bp);
11975 		cfg = SHMEM_RD(bp,
11976 			       dev_info.port_hw_config[tmp].generic_features);
11977 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11978 	}
11979 	return cfg;
11980 }
11981 
11982 static void validate_set_si_mode(struct bnx2x *bp)
11983 {
11984 	u8 func = BP_ABS_FUNC(bp);
11985 	u32 val;
11986 
11987 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11988 
11989 	/* check for legal mac (upper bytes) */
11990 	if (val != 0xffff) {
11991 		bp->mf_mode = MULTI_FUNCTION_SI;
11992 		bp->mf_config[BP_VN(bp)] =
11993 			MF_CFG_RD(bp, func_mf_config[func].config);
11994 	} else
11995 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11996 }
11997 
11998 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11999 {
12000 	int /*abs*/func = BP_ABS_FUNC(bp);
12001 	int vn;
12002 	u32 val = 0, val2 = 0;
12003 	int rc = 0;
12004 
12005 	/* Validate that chip access is feasible */
12006 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
12007 		dev_err(&bp->pdev->dev,
12008 			"Chip read returns all Fs. Preventing probe from continuing\n");
12009 		return -EINVAL;
12010 	}
12011 
12012 	bnx2x_get_common_hwinfo(bp);
12013 
12014 	/*
12015 	 * initialize IGU parameters
12016 	 */
12017 	if (CHIP_IS_E1x(bp)) {
12018 		bp->common.int_block = INT_BLOCK_HC;
12019 
12020 		bp->igu_dsb_id = DEF_SB_IGU_ID;
12021 		bp->igu_base_sb = 0;
12022 	} else {
12023 		bp->common.int_block = INT_BLOCK_IGU;
12024 
12025 		/* do not allow device reset during IGU info processing */
12026 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12027 
12028 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
12029 
12030 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12031 			int tout = 5000;
12032 
12033 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
12034 
12035 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
12036 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
12037 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
12038 
12039 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12040 				tout--;
12041 				usleep_range(1000, 2000);
12042 			}
12043 
12044 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12045 				dev_err(&bp->pdev->dev,
12046 					"FORCING Normal Mode failed!!!\n");
12047 				bnx2x_release_hw_lock(bp,
12048 						      HW_LOCK_RESOURCE_RESET);
12049 				return -EPERM;
12050 			}
12051 		}
12052 
12053 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12054 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
12055 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
12056 		} else
12057 			BNX2X_DEV_INFO("IGU Normal Mode\n");
12058 
12059 		rc = bnx2x_get_igu_cam_info(bp);
12060 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12061 		if (rc)
12062 			return rc;
12063 	}
12064 
12065 	/*
12066 	 * set base FW non-default (fast path) status block id, this value is
12067 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
12068 	 * determine the id used by the FW.
12069 	 */
12070 	if (CHIP_IS_E1x(bp))
12071 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12072 	else /*
12073 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12074 	      * the same queue are indicated on the same IGU SB). So we prefer
12075 	      * FW and IGU SBs to be the same value.
12076 	      */
12077 		bp->base_fw_ndsb = bp->igu_base_sb;
12078 
12079 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12080 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12081 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12082 
12083 	/*
12084 	 * Initialize MF configuration
12085 	 */
12086 	bp->mf_ov = 0;
12087 	bp->mf_mode = 0;
12088 	bp->mf_sub_mode = 0;
12089 	vn = BP_VN(bp);
12090 
12091 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12092 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12093 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12094 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12095 
12096 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12097 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12098 		else
12099 			bp->common.mf_cfg_base = bp->common.shmem_base +
12100 				offsetof(struct shmem_region, func_mb) +
12101 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12102 		/*
12103 		 * get mf configuration:
12104 		 * 1. Existence of MF configuration
12105 		 * 2. MAC address must be legal (check only upper bytes)
12106 		 *    for  Switch-Independent mode;
12107 		 *    OVLAN must be legal for Switch-Dependent mode
12108 		 * 3. SF_MODE configures specific MF mode
12109 		 */
12110 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12111 			/* get mf configuration */
12112 			val = SHMEM_RD(bp,
12113 				       dev_info.shared_feature_config.config);
12114 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12115 
12116 			switch (val) {
12117 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12118 				validate_set_si_mode(bp);
12119 				break;
12120 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12121 				if ((!CHIP_IS_E1x(bp)) &&
12122 				    (MF_CFG_RD(bp, func_mf_config[func].
12123 					       mac_upper) != 0xffff) &&
12124 				    (SHMEM2_HAS(bp,
12125 						afex_driver_support))) {
12126 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12127 					bp->mf_config[vn] = MF_CFG_RD(bp,
12128 						func_mf_config[func].config);
12129 				} else {
12130 					BNX2X_DEV_INFO("can not configure afex mode\n");
12131 				}
12132 				break;
12133 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12134 				/* get OV configuration */
12135 				val = MF_CFG_RD(bp,
12136 					func_mf_config[FUNC_0].e1hov_tag);
12137 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12138 
12139 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12140 					bp->mf_mode = MULTI_FUNCTION_SD;
12141 					bp->mf_config[vn] = MF_CFG_RD(bp,
12142 						func_mf_config[func].config);
12143 				} else
12144 					BNX2X_DEV_INFO("illegal OV for SD\n");
12145 				break;
12146 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12147 				bp->mf_mode = MULTI_FUNCTION_SD;
12148 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12149 				bp->mf_config[vn] =
12150 					MF_CFG_RD(bp,
12151 						  func_mf_config[func].config);
12152 
12153 				if (SHMEM2_HAS(bp, mtu_size)) {
12154 					int mtu_idx = BP_FW_MB_IDX(bp);
12155 					u16 mtu_size;
12156 					u32 mtu;
12157 
12158 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12159 					mtu_size = (u16)mtu;
12160 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12161 					   mtu_size, mtu);
12162 
12163 					/* if valid: update device mtu */
12164 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12165 					    (mtu_size <=
12166 					     ETH_MAX_JUMBO_PACKET_SIZE))
12167 						bp->dev->mtu = mtu_size;
12168 				}
12169 				break;
12170 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12171 				bp->mf_mode = MULTI_FUNCTION_SD;
12172 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12173 				bp->mf_config[vn] =
12174 					MF_CFG_RD(bp,
12175 						  func_mf_config[func].config);
12176 				break;
12177 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12178 				bp->mf_config[vn] = 0;
12179 				break;
12180 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12181 				val2 = SHMEM_RD(bp,
12182 					dev_info.shared_hw_config.config_3);
12183 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12184 				switch (val2) {
12185 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12186 					validate_set_si_mode(bp);
12187 					bp->mf_sub_mode =
12188 							SUB_MF_MODE_NPAR1_DOT_5;
12189 					break;
12190 				default:
12191 					/* Unknown configuration */
12192 					bp->mf_config[vn] = 0;
12193 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12194 						       val);
12195 				}
12196 				break;
12197 			default:
12198 				/* Unknown configuration: reset mf_config */
12199 				bp->mf_config[vn] = 0;
12200 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12201 			}
12202 		}
12203 
12204 		BNX2X_DEV_INFO("%s function mode\n",
12205 			       IS_MF(bp) ? "multi" : "single");
12206 
12207 		switch (bp->mf_mode) {
12208 		case MULTI_FUNCTION_SD:
12209 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12210 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12211 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12212 				bp->mf_ov = val;
12213 				bp->path_has_ovlan = true;
12214 
12215 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12216 					       func, bp->mf_ov, bp->mf_ov);
12217 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12218 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12219 				dev_err(&bp->pdev->dev,
12220 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12221 					func);
12222 				bp->path_has_ovlan = true;
12223 			} else {
12224 				dev_err(&bp->pdev->dev,
12225 					"No valid MF OV for func %d, aborting\n",
12226 					func);
12227 				return -EPERM;
12228 			}
12229 			break;
12230 		case MULTI_FUNCTION_AFEX:
12231 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12232 			break;
12233 		case MULTI_FUNCTION_SI:
12234 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12235 				       func);
12236 			break;
12237 		default:
12238 			if (vn) {
12239 				dev_err(&bp->pdev->dev,
12240 					"VN %d is in a single function mode, aborting\n",
12241 					vn);
12242 				return -EPERM;
12243 			}
12244 			break;
12245 		}
12246 
12247 		/* check if other port on the path needs ovlan:
12248 		 * Since MF configuration is shared between ports
12249 		 * Possible mixed modes are only
12250 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12251 		 */
12252 		if (CHIP_MODE_IS_4_PORT(bp) &&
12253 		    !bp->path_has_ovlan &&
12254 		    !IS_MF(bp) &&
12255 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12256 			u8 other_port = !BP_PORT(bp);
12257 			u8 other_func = BP_PATH(bp) + 2*other_port;
12258 			val = MF_CFG_RD(bp,
12259 					func_mf_config[other_func].e1hov_tag);
12260 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12261 				bp->path_has_ovlan = true;
12262 		}
12263 	}
12264 
12265 	/* adjust igu_sb_cnt to MF for E1H */
12266 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12267 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12268 
12269 	/* port info */
12270 	bnx2x_get_port_hwinfo(bp);
12271 
12272 	/* Get MAC addresses */
12273 	bnx2x_get_mac_hwinfo(bp);
12274 
12275 	bnx2x_get_cnic_info(bp);
12276 
12277 	return rc;
12278 }
12279 
12280 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12281 {
12282 	int cnt, i, block_end, rodi;
12283 	char vpd_start[BNX2X_VPD_LEN+1];
12284 	char str_id_reg[VENDOR_ID_LEN+1];
12285 	char str_id_cap[VENDOR_ID_LEN+1];
12286 	char *vpd_data;
12287 	char *vpd_extended_data = NULL;
12288 	u8 len;
12289 
12290 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12291 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12292 
12293 	if (cnt < BNX2X_VPD_LEN)
12294 		goto out_not_found;
12295 
12296 	/* VPD RO tag should be first tag after identifier string, hence
12297 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12298 	 */
12299 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12300 			     PCI_VPD_LRDT_RO_DATA);
12301 	if (i < 0)
12302 		goto out_not_found;
12303 
12304 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12305 		    pci_vpd_lrdt_size(&vpd_start[i]);
12306 
12307 	i += PCI_VPD_LRDT_TAG_SIZE;
12308 
12309 	if (block_end > BNX2X_VPD_LEN) {
12310 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12311 		if (vpd_extended_data  == NULL)
12312 			goto out_not_found;
12313 
12314 		/* read rest of vpd image into vpd_extended_data */
12315 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12316 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12317 				   block_end - BNX2X_VPD_LEN,
12318 				   vpd_extended_data + BNX2X_VPD_LEN);
12319 		if (cnt < (block_end - BNX2X_VPD_LEN))
12320 			goto out_not_found;
12321 		vpd_data = vpd_extended_data;
12322 	} else
12323 		vpd_data = vpd_start;
12324 
12325 	/* now vpd_data holds full vpd content in both cases */
12326 
12327 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12328 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12329 	if (rodi < 0)
12330 		goto out_not_found;
12331 
12332 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12333 
12334 	if (len != VENDOR_ID_LEN)
12335 		goto out_not_found;
12336 
12337 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12338 
12339 	/* vendor specific info */
12340 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12341 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12342 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12343 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12344 
12345 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12346 						PCI_VPD_RO_KEYWORD_VENDOR0);
12347 		if (rodi >= 0) {
12348 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12349 
12350 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12351 
12352 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12353 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12354 				bp->fw_ver[len] = ' ';
12355 			}
12356 		}
12357 		kfree(vpd_extended_data);
12358 		return;
12359 	}
12360 out_not_found:
12361 	kfree(vpd_extended_data);
12362 	return;
12363 }
12364 
12365 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12366 {
12367 	u32 flags = 0;
12368 
12369 	if (CHIP_REV_IS_FPGA(bp))
12370 		SET_FLAGS(flags, MODE_FPGA);
12371 	else if (CHIP_REV_IS_EMUL(bp))
12372 		SET_FLAGS(flags, MODE_EMUL);
12373 	else
12374 		SET_FLAGS(flags, MODE_ASIC);
12375 
12376 	if (CHIP_MODE_IS_4_PORT(bp))
12377 		SET_FLAGS(flags, MODE_PORT4);
12378 	else
12379 		SET_FLAGS(flags, MODE_PORT2);
12380 
12381 	if (CHIP_IS_E2(bp))
12382 		SET_FLAGS(flags, MODE_E2);
12383 	else if (CHIP_IS_E3(bp)) {
12384 		SET_FLAGS(flags, MODE_E3);
12385 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12386 			SET_FLAGS(flags, MODE_E3_A0);
12387 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12388 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12389 	}
12390 
12391 	if (IS_MF(bp)) {
12392 		SET_FLAGS(flags, MODE_MF);
12393 		switch (bp->mf_mode) {
12394 		case MULTI_FUNCTION_SD:
12395 			SET_FLAGS(flags, MODE_MF_SD);
12396 			break;
12397 		case MULTI_FUNCTION_SI:
12398 			SET_FLAGS(flags, MODE_MF_SI);
12399 			break;
12400 		case MULTI_FUNCTION_AFEX:
12401 			SET_FLAGS(flags, MODE_MF_AFEX);
12402 			break;
12403 		}
12404 	} else
12405 		SET_FLAGS(flags, MODE_SF);
12406 
12407 #if defined(__LITTLE_ENDIAN)
12408 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12409 #else /*(__BIG_ENDIAN)*/
12410 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12411 #endif
12412 	INIT_MODE_FLAGS(bp) = flags;
12413 }
12414 
12415 static int bnx2x_init_bp(struct bnx2x *bp)
12416 {
12417 	int func;
12418 	int rc;
12419 
12420 	mutex_init(&bp->port.phy_mutex);
12421 	mutex_init(&bp->fw_mb_mutex);
12422 	mutex_init(&bp->drv_info_mutex);
12423 	sema_init(&bp->stats_lock, 1);
12424 	bp->drv_info_mng_owner = false;
12425 	INIT_LIST_HEAD(&bp->vlan_reg);
12426 
12427 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12428 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12429 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12430 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12431 	if (IS_PF(bp)) {
12432 		rc = bnx2x_get_hwinfo(bp);
12433 		if (rc)
12434 			return rc;
12435 	} else {
12436 		eth_zero_addr(bp->dev->dev_addr);
12437 	}
12438 
12439 	bnx2x_set_modes_bitmap(bp);
12440 
12441 	rc = bnx2x_alloc_mem_bp(bp);
12442 	if (rc)
12443 		return rc;
12444 
12445 	bnx2x_read_fwinfo(bp);
12446 
12447 	func = BP_FUNC(bp);
12448 
12449 	/* need to reset chip if undi was active */
12450 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12451 		/* init fw_seq */
12452 		bp->fw_seq =
12453 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12454 							DRV_MSG_SEQ_NUMBER_MASK;
12455 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12456 
12457 		rc = bnx2x_prev_unload(bp);
12458 		if (rc) {
12459 			bnx2x_free_mem_bp(bp);
12460 			return rc;
12461 		}
12462 	}
12463 
12464 	if (CHIP_REV_IS_FPGA(bp))
12465 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12466 
12467 	if (BP_NOMCP(bp) && (func == 0))
12468 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12469 
12470 	bp->disable_tpa = disable_tpa;
12471 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12472 	/* Reduce memory usage in kdump environment by disabling TPA */
12473 	bp->disable_tpa |= is_kdump_kernel();
12474 
12475 	/* Set TPA flags */
12476 	if (bp->disable_tpa) {
12477 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12478 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12479 	}
12480 
12481 	if (CHIP_IS_E1(bp))
12482 		bp->dropless_fc = 0;
12483 	else
12484 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12485 
12486 	bp->mrrs = mrrs;
12487 
12488 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12489 	if (IS_VF(bp))
12490 		bp->rx_ring_size = MAX_RX_AVAIL;
12491 
12492 	/* make sure that the numbers are in the right granularity */
12493 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12494 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12495 
12496 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12497 
12498 	timer_setup(&bp->timer, bnx2x_timer, 0);
12499 	bp->timer.expires = jiffies + bp->current_interval;
12500 
12501 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12502 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12503 	    SHMEM2_HAS(bp, dcbx_en) &&
12504 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12505 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12506 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12507 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12508 		bnx2x_dcbx_init_params(bp);
12509 	} else {
12510 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12511 	}
12512 
12513 	if (CHIP_IS_E1x(bp))
12514 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12515 	else
12516 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12517 
12518 	/* multiple tx priority */
12519 	if (IS_VF(bp))
12520 		bp->max_cos = 1;
12521 	else if (CHIP_IS_E1x(bp))
12522 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12523 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12524 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12525 	else if (CHIP_IS_E3B0(bp))
12526 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12527 	else
12528 		BNX2X_ERR("unknown chip %x revision %x\n",
12529 			  CHIP_NUM(bp), CHIP_REV(bp));
12530 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12531 
12532 	/* We need at least one default status block for slow-path events,
12533 	 * second status block for the L2 queue, and a third status block for
12534 	 * CNIC if supported.
12535 	 */
12536 	if (IS_VF(bp))
12537 		bp->min_msix_vec_cnt = 1;
12538 	else if (CNIC_SUPPORT(bp))
12539 		bp->min_msix_vec_cnt = 3;
12540 	else /* PF w/o cnic */
12541 		bp->min_msix_vec_cnt = 2;
12542 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12543 
12544 	bp->dump_preset_idx = 1;
12545 
12546 	return rc;
12547 }
12548 
12549 /****************************************************************************
12550 * General service functions
12551 ****************************************************************************/
12552 
12553 /*
12554  * net_device service functions
12555  */
12556 
12557 /* called with rtnl_lock */
12558 static int bnx2x_open(struct net_device *dev)
12559 {
12560 	struct bnx2x *bp = netdev_priv(dev);
12561 	int rc;
12562 
12563 	bp->stats_init = true;
12564 
12565 	netif_carrier_off(dev);
12566 
12567 	bnx2x_set_power_state(bp, PCI_D0);
12568 
12569 	/* If parity had happen during the unload, then attentions
12570 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12571 	 * want the first function loaded on the current engine to
12572 	 * complete the recovery.
12573 	 * Parity recovery is only relevant for PF driver.
12574 	 */
12575 	if (IS_PF(bp)) {
12576 		int other_engine = BP_PATH(bp) ? 0 : 1;
12577 		bool other_load_status, load_status;
12578 		bool global = false;
12579 
12580 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12581 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12582 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12583 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12584 			do {
12585 				/* If there are attentions and they are in a
12586 				 * global blocks, set the GLOBAL_RESET bit
12587 				 * regardless whether it will be this function
12588 				 * that will complete the recovery or not.
12589 				 */
12590 				if (global)
12591 					bnx2x_set_reset_global(bp);
12592 
12593 				/* Only the first function on the current
12594 				 * engine should try to recover in open. In case
12595 				 * of attentions in global blocks only the first
12596 				 * in the chip should try to recover.
12597 				 */
12598 				if ((!load_status &&
12599 				     (!global || !other_load_status)) &&
12600 				      bnx2x_trylock_leader_lock(bp) &&
12601 				      !bnx2x_leader_reset(bp)) {
12602 					netdev_info(bp->dev,
12603 						    "Recovered in open\n");
12604 					break;
12605 				}
12606 
12607 				/* recovery has failed... */
12608 				bnx2x_set_power_state(bp, PCI_D3hot);
12609 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12610 
12611 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12612 					  "If you still see this message after a few retries then power cycle is required.\n");
12613 
12614 				return -EAGAIN;
12615 			} while (0);
12616 		}
12617 	}
12618 
12619 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12620 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12621 	if (rc)
12622 		return rc;
12623 
12624 	if (IS_PF(bp))
12625 		udp_tunnel_get_rx_info(dev);
12626 
12627 	return 0;
12628 }
12629 
12630 /* called with rtnl_lock */
12631 static int bnx2x_close(struct net_device *dev)
12632 {
12633 	struct bnx2x *bp = netdev_priv(dev);
12634 
12635 	/* Unload the driver, release IRQs */
12636 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12637 
12638 	return 0;
12639 }
12640 
12641 struct bnx2x_mcast_list_elem_group
12642 {
12643 	struct list_head mcast_group_link;
12644 	struct bnx2x_mcast_list_elem mcast_elems[];
12645 };
12646 
12647 #define MCAST_ELEMS_PER_PG \
12648 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12649 	sizeof(struct bnx2x_mcast_list_elem))
12650 
12651 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12652 {
12653 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12654 
12655 	while (!list_empty(mcast_group_list)) {
12656 		current_mcast_group = list_first_entry(mcast_group_list,
12657 				      struct bnx2x_mcast_list_elem_group,
12658 				      mcast_group_link);
12659 		list_del(&current_mcast_group->mcast_group_link);
12660 		free_page((unsigned long)current_mcast_group);
12661 	}
12662 }
12663 
12664 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12665 				      struct bnx2x_mcast_ramrod_params *p,
12666 				      struct list_head *mcast_group_list)
12667 {
12668 	struct bnx2x_mcast_list_elem *mc_mac;
12669 	struct netdev_hw_addr *ha;
12670 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12671 	int mc_count = netdev_mc_count(bp->dev);
12672 	int offset = 0;
12673 
12674 	INIT_LIST_HEAD(&p->mcast_list);
12675 	netdev_for_each_mc_addr(ha, bp->dev) {
12676 		if (!offset) {
12677 			current_mcast_group =
12678 				(struct bnx2x_mcast_list_elem_group *)
12679 				__get_free_page(GFP_ATOMIC);
12680 			if (!current_mcast_group) {
12681 				bnx2x_free_mcast_macs_list(mcast_group_list);
12682 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12683 				return -ENOMEM;
12684 			}
12685 			list_add(&current_mcast_group->mcast_group_link,
12686 				 mcast_group_list);
12687 		}
12688 		mc_mac = &current_mcast_group->mcast_elems[offset];
12689 		mc_mac->mac = bnx2x_mc_addr(ha);
12690 		list_add_tail(&mc_mac->link, &p->mcast_list);
12691 		offset++;
12692 		if (offset == MCAST_ELEMS_PER_PG)
12693 			offset = 0;
12694 	}
12695 	p->mcast_list_len = mc_count;
12696 	return 0;
12697 }
12698 
12699 /**
12700  * bnx2x_set_uc_list - configure a new unicast MACs list.
12701  *
12702  * @bp: driver handle
12703  *
12704  * We will use zero (0) as a MAC type for these MACs.
12705  */
12706 static int bnx2x_set_uc_list(struct bnx2x *bp)
12707 {
12708 	int rc;
12709 	struct net_device *dev = bp->dev;
12710 	struct netdev_hw_addr *ha;
12711 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12712 	unsigned long ramrod_flags = 0;
12713 
12714 	/* First schedule a cleanup up of old configuration */
12715 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12716 	if (rc < 0) {
12717 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12718 		return rc;
12719 	}
12720 
12721 	netdev_for_each_uc_addr(ha, dev) {
12722 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12723 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12724 		if (rc == -EEXIST) {
12725 			DP(BNX2X_MSG_SP,
12726 			   "Failed to schedule ADD operations: %d\n", rc);
12727 			/* do not treat adding same MAC as error */
12728 			rc = 0;
12729 
12730 		} else if (rc < 0) {
12731 
12732 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12733 				  rc);
12734 			return rc;
12735 		}
12736 	}
12737 
12738 	/* Execute the pending commands */
12739 	__set_bit(RAMROD_CONT, &ramrod_flags);
12740 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12741 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12742 }
12743 
12744 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12745 {
12746 	LIST_HEAD(mcast_group_list);
12747 	struct net_device *dev = bp->dev;
12748 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12749 	int rc = 0;
12750 
12751 	rparam.mcast_obj = &bp->mcast_obj;
12752 
12753 	/* first, clear all configured multicast MACs */
12754 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12755 	if (rc < 0) {
12756 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12757 		return rc;
12758 	}
12759 
12760 	/* then, configure a new MACs list */
12761 	if (netdev_mc_count(dev)) {
12762 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12763 		if (rc)
12764 			return rc;
12765 
12766 		/* Now add the new MACs */
12767 		rc = bnx2x_config_mcast(bp, &rparam,
12768 					BNX2X_MCAST_CMD_ADD);
12769 		if (rc < 0)
12770 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12771 				  rc);
12772 
12773 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12774 	}
12775 
12776 	return rc;
12777 }
12778 
12779 static int bnx2x_set_mc_list(struct bnx2x *bp)
12780 {
12781 	LIST_HEAD(mcast_group_list);
12782 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12783 	struct net_device *dev = bp->dev;
12784 	int rc = 0;
12785 
12786 	/* On older adapters, we need to flush and re-add filters */
12787 	if (CHIP_IS_E1x(bp))
12788 		return bnx2x_set_mc_list_e1x(bp);
12789 
12790 	rparam.mcast_obj = &bp->mcast_obj;
12791 
12792 	if (netdev_mc_count(dev)) {
12793 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12794 		if (rc)
12795 			return rc;
12796 
12797 		/* Override the curently configured set of mc filters */
12798 		rc = bnx2x_config_mcast(bp, &rparam,
12799 					BNX2X_MCAST_CMD_SET);
12800 		if (rc < 0)
12801 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12802 				  rc);
12803 
12804 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12805 	} else {
12806 		/* If no mc addresses are required, flush the configuration */
12807 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12808 		if (rc < 0)
12809 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12810 				  rc);
12811 	}
12812 
12813 	return rc;
12814 }
12815 
12816 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12817 static void bnx2x_set_rx_mode(struct net_device *dev)
12818 {
12819 	struct bnx2x *bp = netdev_priv(dev);
12820 
12821 	if (bp->state != BNX2X_STATE_OPEN) {
12822 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12823 		return;
12824 	} else {
12825 		/* Schedule an SP task to handle rest of change */
12826 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12827 				       NETIF_MSG_IFUP);
12828 	}
12829 }
12830 
12831 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12832 {
12833 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12834 
12835 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12836 
12837 	netif_addr_lock_bh(bp->dev);
12838 
12839 	if (bp->dev->flags & IFF_PROMISC) {
12840 		rx_mode = BNX2X_RX_MODE_PROMISC;
12841 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12842 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12843 		    CHIP_IS_E1(bp))) {
12844 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12845 	} else {
12846 		if (IS_PF(bp)) {
12847 			/* some multicasts */
12848 			if (bnx2x_set_mc_list(bp) < 0)
12849 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12850 
12851 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12852 			netif_addr_unlock_bh(bp->dev);
12853 			if (bnx2x_set_uc_list(bp) < 0)
12854 				rx_mode = BNX2X_RX_MODE_PROMISC;
12855 			netif_addr_lock_bh(bp->dev);
12856 		} else {
12857 			/* configuring mcast to a vf involves sleeping (when we
12858 			 * wait for the pf's response).
12859 			 */
12860 			bnx2x_schedule_sp_rtnl(bp,
12861 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12862 		}
12863 	}
12864 
12865 	bp->rx_mode = rx_mode;
12866 	/* handle ISCSI SD mode */
12867 	if (IS_MF_ISCSI_ONLY(bp))
12868 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12869 
12870 	/* Schedule the rx_mode command */
12871 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12872 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12873 		netif_addr_unlock_bh(bp->dev);
12874 		return;
12875 	}
12876 
12877 	if (IS_PF(bp)) {
12878 		bnx2x_set_storm_rx_mode(bp);
12879 		netif_addr_unlock_bh(bp->dev);
12880 	} else {
12881 		/* VF will need to request the PF to make this change, and so
12882 		 * the VF needs to release the bottom-half lock prior to the
12883 		 * request (as it will likely require sleep on the VF side)
12884 		 */
12885 		netif_addr_unlock_bh(bp->dev);
12886 		bnx2x_vfpf_storm_rx_mode(bp);
12887 	}
12888 }
12889 
12890 /* called with rtnl_lock */
12891 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12892 			   int devad, u16 addr)
12893 {
12894 	struct bnx2x *bp = netdev_priv(netdev);
12895 	u16 value;
12896 	int rc;
12897 
12898 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12899 	   prtad, devad, addr);
12900 
12901 	/* The HW expects different devad if CL22 is used */
12902 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12903 
12904 	bnx2x_acquire_phy_lock(bp);
12905 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12906 	bnx2x_release_phy_lock(bp);
12907 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12908 
12909 	if (!rc)
12910 		rc = value;
12911 	return rc;
12912 }
12913 
12914 /* called with rtnl_lock */
12915 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12916 			    u16 addr, u16 value)
12917 {
12918 	struct bnx2x *bp = netdev_priv(netdev);
12919 	int rc;
12920 
12921 	DP(NETIF_MSG_LINK,
12922 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12923 	   prtad, devad, addr, value);
12924 
12925 	/* The HW expects different devad if CL22 is used */
12926 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12927 
12928 	bnx2x_acquire_phy_lock(bp);
12929 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12930 	bnx2x_release_phy_lock(bp);
12931 	return rc;
12932 }
12933 
12934 /* called with rtnl_lock */
12935 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12936 {
12937 	struct bnx2x *bp = netdev_priv(dev);
12938 	struct mii_ioctl_data *mdio = if_mii(ifr);
12939 
12940 	if (!netif_running(dev))
12941 		return -EAGAIN;
12942 
12943 	switch (cmd) {
12944 	case SIOCSHWTSTAMP:
12945 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12946 	default:
12947 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12948 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12949 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12950 	}
12951 }
12952 
12953 static int bnx2x_validate_addr(struct net_device *dev)
12954 {
12955 	struct bnx2x *bp = netdev_priv(dev);
12956 
12957 	/* query the bulletin board for mac address configured by the PF */
12958 	if (IS_VF(bp))
12959 		bnx2x_sample_bulletin(bp);
12960 
12961 	if (!is_valid_ether_addr(dev->dev_addr)) {
12962 		BNX2X_ERR("Non-valid Ethernet address\n");
12963 		return -EADDRNOTAVAIL;
12964 	}
12965 	return 0;
12966 }
12967 
12968 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12969 				  struct netdev_phys_item_id *ppid)
12970 {
12971 	struct bnx2x *bp = netdev_priv(netdev);
12972 
12973 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12974 		return -EOPNOTSUPP;
12975 
12976 	ppid->id_len = sizeof(bp->phys_port_id);
12977 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12978 
12979 	return 0;
12980 }
12981 
12982 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12983 					      struct net_device *dev,
12984 					      netdev_features_t features)
12985 {
12986 	/*
12987 	 * A skb with gso_size + header length > 9700 will cause a
12988 	 * firmware panic. Drop GSO support.
12989 	 *
12990 	 * Eventually the upper layer should not pass these packets down.
12991 	 *
12992 	 * For speed, if the gso_size is <= 9000, assume there will
12993 	 * not be 700 bytes of headers and pass it through. Only do a
12994 	 * full (slow) validation if the gso_size is > 9000.
12995 	 *
12996 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12997 	 * validation in that case.)
12998 	 */
12999 	if (unlikely(skb_is_gso(skb) &&
13000 		     (skb_shinfo(skb)->gso_size > 9000) &&
13001 		     !skb_gso_validate_mac_len(skb, 9700)))
13002 		features &= ~NETIF_F_GSO_MASK;
13003 
13004 	features = vlan_features_check(skb, features);
13005 	return vxlan_features_check(skb, features);
13006 }
13007 
13008 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
13009 {
13010 	int rc;
13011 
13012 	if (IS_PF(bp)) {
13013 		unsigned long ramrod_flags = 0;
13014 
13015 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13016 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
13017 					add, &ramrod_flags);
13018 	} else {
13019 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
13020 	}
13021 
13022 	return rc;
13023 }
13024 
13025 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
13026 {
13027 	struct bnx2x_vlan_entry *vlan;
13028 	int rc = 0;
13029 
13030 	/* Configure all non-configured entries */
13031 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
13032 		if (vlan->hw)
13033 			continue;
13034 
13035 		if (bp->vlan_cnt >= bp->vlan_credit)
13036 			return -ENOBUFS;
13037 
13038 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
13039 		if (rc) {
13040 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
13041 			return rc;
13042 		}
13043 
13044 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
13045 		vlan->hw = true;
13046 		bp->vlan_cnt++;
13047 	}
13048 
13049 	return 0;
13050 }
13051 
13052 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13053 {
13054 	bool need_accept_any_vlan;
13055 
13056 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13057 
13058 	if (bp->accept_any_vlan != need_accept_any_vlan) {
13059 		bp->accept_any_vlan = need_accept_any_vlan;
13060 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13061 		   bp->accept_any_vlan ? "raised" : "cleared");
13062 		if (set_rx_mode) {
13063 			if (IS_PF(bp))
13064 				bnx2x_set_rx_mode_inner(bp);
13065 			else
13066 				bnx2x_vfpf_storm_rx_mode(bp);
13067 		}
13068 	}
13069 }
13070 
13071 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13072 {
13073 	/* Don't set rx mode here. Our caller will do it. */
13074 	bnx2x_vlan_configure(bp, false);
13075 
13076 	return 0;
13077 }
13078 
13079 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13080 {
13081 	struct bnx2x *bp = netdev_priv(dev);
13082 	struct bnx2x_vlan_entry *vlan;
13083 
13084 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13085 
13086 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13087 	if (!vlan)
13088 		return -ENOMEM;
13089 
13090 	vlan->vid = vid;
13091 	vlan->hw = false;
13092 	list_add_tail(&vlan->link, &bp->vlan_reg);
13093 
13094 	if (netif_running(dev))
13095 		bnx2x_vlan_configure(bp, true);
13096 
13097 	return 0;
13098 }
13099 
13100 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13101 {
13102 	struct bnx2x *bp = netdev_priv(dev);
13103 	struct bnx2x_vlan_entry *vlan;
13104 	bool found = false;
13105 	int rc = 0;
13106 
13107 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13108 
13109 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13110 		if (vlan->vid == vid) {
13111 			found = true;
13112 			break;
13113 		}
13114 
13115 	if (!found) {
13116 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13117 		return -EINVAL;
13118 	}
13119 
13120 	if (netif_running(dev) && vlan->hw) {
13121 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13122 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13123 		bp->vlan_cnt--;
13124 	}
13125 
13126 	list_del(&vlan->link);
13127 	kfree(vlan);
13128 
13129 	if (netif_running(dev))
13130 		bnx2x_vlan_configure(bp, true);
13131 
13132 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13133 
13134 	return rc;
13135 }
13136 
13137 static const struct net_device_ops bnx2x_netdev_ops = {
13138 	.ndo_open		= bnx2x_open,
13139 	.ndo_stop		= bnx2x_close,
13140 	.ndo_start_xmit		= bnx2x_start_xmit,
13141 	.ndo_select_queue	= bnx2x_select_queue,
13142 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13143 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13144 	.ndo_validate_addr	= bnx2x_validate_addr,
13145 	.ndo_do_ioctl		= bnx2x_ioctl,
13146 	.ndo_change_mtu		= bnx2x_change_mtu,
13147 	.ndo_fix_features	= bnx2x_fix_features,
13148 	.ndo_set_features	= bnx2x_set_features,
13149 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13150 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13151 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13152 	.ndo_setup_tc		= __bnx2x_setup_tc,
13153 #ifdef CONFIG_BNX2X_SRIOV
13154 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13155 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13156 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13157 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13158 #endif
13159 #ifdef NETDEV_FCOE_WWNN
13160 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13161 #endif
13162 
13163 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13164 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13165 	.ndo_features_check	= bnx2x_features_check,
13166 	.ndo_udp_tunnel_add	= bnx2x_udp_tunnel_add,
13167 	.ndo_udp_tunnel_del	= bnx2x_udp_tunnel_del,
13168 };
13169 
13170 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13171 {
13172 	struct device *dev = &bp->pdev->dev;
13173 
13174 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13175 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13176 		dev_err(dev, "System does not support DMA, aborting\n");
13177 		return -EIO;
13178 	}
13179 
13180 	return 0;
13181 }
13182 
13183 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13184 {
13185 	if (bp->flags & AER_ENABLED) {
13186 		pci_disable_pcie_error_reporting(bp->pdev);
13187 		bp->flags &= ~AER_ENABLED;
13188 	}
13189 }
13190 
13191 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13192 			  struct net_device *dev, unsigned long board_type)
13193 {
13194 	int rc;
13195 	u32 pci_cfg_dword;
13196 	bool chip_is_e1x = (board_type == BCM57710 ||
13197 			    board_type == BCM57711 ||
13198 			    board_type == BCM57711E);
13199 
13200 	SET_NETDEV_DEV(dev, &pdev->dev);
13201 
13202 	bp->dev = dev;
13203 	bp->pdev = pdev;
13204 
13205 	rc = pci_enable_device(pdev);
13206 	if (rc) {
13207 		dev_err(&bp->pdev->dev,
13208 			"Cannot enable PCI device, aborting\n");
13209 		goto err_out;
13210 	}
13211 
13212 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13213 		dev_err(&bp->pdev->dev,
13214 			"Cannot find PCI device base address, aborting\n");
13215 		rc = -ENODEV;
13216 		goto err_out_disable;
13217 	}
13218 
13219 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13220 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13221 		rc = -ENODEV;
13222 		goto err_out_disable;
13223 	}
13224 
13225 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13226 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13227 	    PCICFG_REVESION_ID_ERROR_VAL) {
13228 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13229 		rc = -ENODEV;
13230 		goto err_out_disable;
13231 	}
13232 
13233 	if (atomic_read(&pdev->enable_cnt) == 1) {
13234 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13235 		if (rc) {
13236 			dev_err(&bp->pdev->dev,
13237 				"Cannot obtain PCI resources, aborting\n");
13238 			goto err_out_disable;
13239 		}
13240 
13241 		pci_set_master(pdev);
13242 		pci_save_state(pdev);
13243 	}
13244 
13245 	if (IS_PF(bp)) {
13246 		if (!pdev->pm_cap) {
13247 			dev_err(&bp->pdev->dev,
13248 				"Cannot find power management capability, aborting\n");
13249 			rc = -EIO;
13250 			goto err_out_release;
13251 		}
13252 	}
13253 
13254 	if (!pci_is_pcie(pdev)) {
13255 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13256 		rc = -EIO;
13257 		goto err_out_release;
13258 	}
13259 
13260 	rc = bnx2x_set_coherency_mask(bp);
13261 	if (rc)
13262 		goto err_out_release;
13263 
13264 	dev->mem_start = pci_resource_start(pdev, 0);
13265 	dev->base_addr = dev->mem_start;
13266 	dev->mem_end = pci_resource_end(pdev, 0);
13267 
13268 	dev->irq = pdev->irq;
13269 
13270 	bp->regview = pci_ioremap_bar(pdev, 0);
13271 	if (!bp->regview) {
13272 		dev_err(&bp->pdev->dev,
13273 			"Cannot map register space, aborting\n");
13274 		rc = -ENOMEM;
13275 		goto err_out_release;
13276 	}
13277 
13278 	/* In E1/E1H use pci device function given by kernel.
13279 	 * In E2/E3 read physical function from ME register since these chips
13280 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13281 	 * (depending on hypervisor).
13282 	 */
13283 	if (chip_is_e1x) {
13284 		bp->pf_num = PCI_FUNC(pdev->devfn);
13285 	} else {
13286 		/* chip is E2/3*/
13287 		pci_read_config_dword(bp->pdev,
13288 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13289 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13290 				  ME_REG_ABS_PF_NUM_SHIFT);
13291 	}
13292 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13293 
13294 	/* clean indirect addresses */
13295 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13296 			       PCICFG_VENDOR_ID_OFFSET);
13297 
13298 	/* Set PCIe reset type to fundamental for EEH recovery */
13299 	pdev->needs_freset = 1;
13300 
13301 	/* AER (Advanced Error reporting) configuration */
13302 	rc = pci_enable_pcie_error_reporting(pdev);
13303 	if (!rc)
13304 		bp->flags |= AER_ENABLED;
13305 	else
13306 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13307 
13308 	/*
13309 	 * Clean the following indirect addresses for all functions since it
13310 	 * is not used by the driver.
13311 	 */
13312 	if (IS_PF(bp)) {
13313 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13314 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13315 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13316 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13317 
13318 		if (chip_is_e1x) {
13319 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13320 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13321 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13322 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13323 		}
13324 
13325 		/* Enable internal target-read (in case we are probed after PF
13326 		 * FLR). Must be done prior to any BAR read access. Only for
13327 		 * 57712 and up
13328 		 */
13329 		if (!chip_is_e1x)
13330 			REG_WR(bp,
13331 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13332 	}
13333 
13334 	dev->watchdog_timeo = TX_TIMEOUT;
13335 
13336 	dev->netdev_ops = &bnx2x_netdev_ops;
13337 	bnx2x_set_ethtool_ops(bp, dev);
13338 
13339 	dev->priv_flags |= IFF_UNICAST_FLT;
13340 
13341 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13342 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13343 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13344 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13345 	if (!chip_is_e1x) {
13346 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13347 				    NETIF_F_GSO_IPXIP4 |
13348 				    NETIF_F_GSO_UDP_TUNNEL |
13349 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13350 				    NETIF_F_GSO_PARTIAL;
13351 
13352 		dev->hw_enc_features =
13353 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13354 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13355 			NETIF_F_GSO_IPXIP4 |
13356 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13357 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13358 			NETIF_F_GSO_PARTIAL;
13359 
13360 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13361 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13362 	}
13363 
13364 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13365 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13366 
13367 	if (IS_PF(bp)) {
13368 		if (chip_is_e1x)
13369 			bp->accept_any_vlan = true;
13370 		else
13371 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13372 	}
13373 	/* For VF we'll know whether to enable VLAN filtering after
13374 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13375 	 */
13376 
13377 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13378 	dev->features |= NETIF_F_HIGHDMA;
13379 	if (dev->features & NETIF_F_LRO)
13380 		dev->features &= ~NETIF_F_GRO_HW;
13381 
13382 	/* Add Loopback capability to the device */
13383 	dev->hw_features |= NETIF_F_LOOPBACK;
13384 
13385 #ifdef BCM_DCBNL
13386 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13387 #endif
13388 
13389 	/* MTU range, 46 - 9600 */
13390 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13391 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13392 
13393 	/* get_port_hwinfo() will set prtad and mmds properly */
13394 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13395 	bp->mdio.mmds = 0;
13396 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13397 	bp->mdio.dev = dev;
13398 	bp->mdio.mdio_read = bnx2x_mdio_read;
13399 	bp->mdio.mdio_write = bnx2x_mdio_write;
13400 
13401 	return 0;
13402 
13403 err_out_release:
13404 	if (atomic_read(&pdev->enable_cnt) == 1)
13405 		pci_release_regions(pdev);
13406 
13407 err_out_disable:
13408 	pci_disable_device(pdev);
13409 
13410 err_out:
13411 	return rc;
13412 }
13413 
13414 static int bnx2x_check_firmware(struct bnx2x *bp)
13415 {
13416 	const struct firmware *firmware = bp->firmware;
13417 	struct bnx2x_fw_file_hdr *fw_hdr;
13418 	struct bnx2x_fw_file_section *sections;
13419 	u32 offset, len, num_ops;
13420 	__be16 *ops_offsets;
13421 	int i;
13422 	const u8 *fw_ver;
13423 
13424 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13425 		BNX2X_ERR("Wrong FW size\n");
13426 		return -EINVAL;
13427 	}
13428 
13429 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13430 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13431 
13432 	/* Make sure none of the offsets and sizes make us read beyond
13433 	 * the end of the firmware data */
13434 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13435 		offset = be32_to_cpu(sections[i].offset);
13436 		len = be32_to_cpu(sections[i].len);
13437 		if (offset + len > firmware->size) {
13438 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13439 			return -EINVAL;
13440 		}
13441 	}
13442 
13443 	/* Likewise for the init_ops offsets */
13444 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13445 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13446 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13447 
13448 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13449 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13450 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13451 			return -EINVAL;
13452 		}
13453 	}
13454 
13455 	/* Check FW version */
13456 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13457 	fw_ver = firmware->data + offset;
13458 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13459 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13460 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13461 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13462 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13463 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13464 		       BCM_5710_FW_MAJOR_VERSION,
13465 		       BCM_5710_FW_MINOR_VERSION,
13466 		       BCM_5710_FW_REVISION_VERSION,
13467 		       BCM_5710_FW_ENGINEERING_VERSION);
13468 		return -EINVAL;
13469 	}
13470 
13471 	return 0;
13472 }
13473 
13474 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13475 {
13476 	const __be32 *source = (const __be32 *)_source;
13477 	u32 *target = (u32 *)_target;
13478 	u32 i;
13479 
13480 	for (i = 0; i < n/4; i++)
13481 		target[i] = be32_to_cpu(source[i]);
13482 }
13483 
13484 /*
13485    Ops array is stored in the following format:
13486    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13487  */
13488 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13489 {
13490 	const __be32 *source = (const __be32 *)_source;
13491 	struct raw_op *target = (struct raw_op *)_target;
13492 	u32 i, j, tmp;
13493 
13494 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13495 		tmp = be32_to_cpu(source[j]);
13496 		target[i].op = (tmp >> 24) & 0xff;
13497 		target[i].offset = tmp & 0xffffff;
13498 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13499 	}
13500 }
13501 
13502 /* IRO array is stored in the following format:
13503  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13504  */
13505 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13506 {
13507 	const __be32 *source = (const __be32 *)_source;
13508 	struct iro *target = (struct iro *)_target;
13509 	u32 i, j, tmp;
13510 
13511 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13512 		target[i].base = be32_to_cpu(source[j]);
13513 		j++;
13514 		tmp = be32_to_cpu(source[j]);
13515 		target[i].m1 = (tmp >> 16) & 0xffff;
13516 		target[i].m2 = tmp & 0xffff;
13517 		j++;
13518 		tmp = be32_to_cpu(source[j]);
13519 		target[i].m3 = (tmp >> 16) & 0xffff;
13520 		target[i].size = tmp & 0xffff;
13521 		j++;
13522 	}
13523 }
13524 
13525 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13526 {
13527 	const __be16 *source = (const __be16 *)_source;
13528 	u16 *target = (u16 *)_target;
13529 	u32 i;
13530 
13531 	for (i = 0; i < n/2; i++)
13532 		target[i] = be16_to_cpu(source[i]);
13533 }
13534 
13535 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13536 do {									\
13537 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13538 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13539 	if (!bp->arr)							\
13540 		goto lbl;						\
13541 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13542 	     (u8 *)bp->arr, len);					\
13543 } while (0)
13544 
13545 static int bnx2x_init_firmware(struct bnx2x *bp)
13546 {
13547 	const char *fw_file_name;
13548 	struct bnx2x_fw_file_hdr *fw_hdr;
13549 	int rc;
13550 
13551 	if (bp->firmware)
13552 		return 0;
13553 
13554 	if (CHIP_IS_E1(bp))
13555 		fw_file_name = FW_FILE_NAME_E1;
13556 	else if (CHIP_IS_E1H(bp))
13557 		fw_file_name = FW_FILE_NAME_E1H;
13558 	else if (!CHIP_IS_E1x(bp))
13559 		fw_file_name = FW_FILE_NAME_E2;
13560 	else {
13561 		BNX2X_ERR("Unsupported chip revision\n");
13562 		return -EINVAL;
13563 	}
13564 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13565 
13566 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13567 	if (rc) {
13568 		BNX2X_ERR("Can't load firmware file %s\n",
13569 			  fw_file_name);
13570 		goto request_firmware_exit;
13571 	}
13572 
13573 	rc = bnx2x_check_firmware(bp);
13574 	if (rc) {
13575 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13576 		goto request_firmware_exit;
13577 	}
13578 
13579 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13580 
13581 	/* Initialize the pointers to the init arrays */
13582 	/* Blob */
13583 	rc = -ENOMEM;
13584 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13585 
13586 	/* Opcodes */
13587 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13588 
13589 	/* Offsets */
13590 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13591 			    be16_to_cpu_n);
13592 
13593 	/* STORMs firmware */
13594 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13595 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13596 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13597 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13598 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13599 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13600 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13601 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13602 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13603 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13604 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13605 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13606 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13607 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13608 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13609 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13610 	/* IRO */
13611 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13612 
13613 	return 0;
13614 
13615 iro_alloc_err:
13616 	kfree(bp->init_ops_offsets);
13617 init_offsets_alloc_err:
13618 	kfree(bp->init_ops);
13619 init_ops_alloc_err:
13620 	kfree(bp->init_data);
13621 request_firmware_exit:
13622 	release_firmware(bp->firmware);
13623 	bp->firmware = NULL;
13624 
13625 	return rc;
13626 }
13627 
13628 static void bnx2x_release_firmware(struct bnx2x *bp)
13629 {
13630 	kfree(bp->init_ops_offsets);
13631 	kfree(bp->init_ops);
13632 	kfree(bp->init_data);
13633 	release_firmware(bp->firmware);
13634 	bp->firmware = NULL;
13635 }
13636 
13637 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13638 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13639 	.init_hw_cmn      = bnx2x_init_hw_common,
13640 	.init_hw_port     = bnx2x_init_hw_port,
13641 	.init_hw_func     = bnx2x_init_hw_func,
13642 
13643 	.reset_hw_cmn     = bnx2x_reset_common,
13644 	.reset_hw_port    = bnx2x_reset_port,
13645 	.reset_hw_func    = bnx2x_reset_func,
13646 
13647 	.gunzip_init      = bnx2x_gunzip_init,
13648 	.gunzip_end       = bnx2x_gunzip_end,
13649 
13650 	.init_fw          = bnx2x_init_firmware,
13651 	.release_fw       = bnx2x_release_firmware,
13652 };
13653 
13654 void bnx2x__init_func_obj(struct bnx2x *bp)
13655 {
13656 	/* Prepare DMAE related driver resources */
13657 	bnx2x_setup_dmae(bp);
13658 
13659 	bnx2x_init_func_obj(bp, &bp->func_obj,
13660 			    bnx2x_sp(bp, func_rdata),
13661 			    bnx2x_sp_mapping(bp, func_rdata),
13662 			    bnx2x_sp(bp, func_afex_rdata),
13663 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13664 			    &bnx2x_func_sp_drv);
13665 }
13666 
13667 /* must be called after sriov-enable */
13668 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13669 {
13670 	int cid_count = BNX2X_L2_MAX_CID(bp);
13671 
13672 	if (IS_SRIOV(bp))
13673 		cid_count += BNX2X_VF_CIDS;
13674 
13675 	if (CNIC_SUPPORT(bp))
13676 		cid_count += CNIC_CID_MAX;
13677 
13678 	return roundup(cid_count, QM_CID_ROUND);
13679 }
13680 
13681 /**
13682  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13683  *
13684  * @dev:	pci device
13685  *
13686  */
13687 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13688 {
13689 	int index;
13690 	u16 control = 0;
13691 
13692 	/*
13693 	 * If MSI-X is not supported - return number of SBs needed to support
13694 	 * one fast path queue: one FP queue + SB for CNIC
13695 	 */
13696 	if (!pdev->msix_cap) {
13697 		dev_info(&pdev->dev, "no msix capability found\n");
13698 		return 1 + cnic_cnt;
13699 	}
13700 	dev_info(&pdev->dev, "msix capability found\n");
13701 
13702 	/*
13703 	 * The value in the PCI configuration space is the index of the last
13704 	 * entry, namely one less than the actual size of the table, which is
13705 	 * exactly what we want to return from this function: number of all SBs
13706 	 * without the default SB.
13707 	 * For VFs there is no default SB, then we return (index+1).
13708 	 */
13709 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13710 
13711 	index = control & PCI_MSIX_FLAGS_QSIZE;
13712 
13713 	return index;
13714 }
13715 
13716 static int set_max_cos_est(int chip_id)
13717 {
13718 	switch (chip_id) {
13719 	case BCM57710:
13720 	case BCM57711:
13721 	case BCM57711E:
13722 		return BNX2X_MULTI_TX_COS_E1X;
13723 	case BCM57712:
13724 	case BCM57712_MF:
13725 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13726 	case BCM57800:
13727 	case BCM57800_MF:
13728 	case BCM57810:
13729 	case BCM57810_MF:
13730 	case BCM57840_4_10:
13731 	case BCM57840_2_20:
13732 	case BCM57840_O:
13733 	case BCM57840_MFO:
13734 	case BCM57840_MF:
13735 	case BCM57811:
13736 	case BCM57811_MF:
13737 		return BNX2X_MULTI_TX_COS_E3B0;
13738 	case BCM57712_VF:
13739 	case BCM57800_VF:
13740 	case BCM57810_VF:
13741 	case BCM57840_VF:
13742 	case BCM57811_VF:
13743 		return 1;
13744 	default:
13745 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13746 		return -ENODEV;
13747 	}
13748 }
13749 
13750 static int set_is_vf(int chip_id)
13751 {
13752 	switch (chip_id) {
13753 	case BCM57712_VF:
13754 	case BCM57800_VF:
13755 	case BCM57810_VF:
13756 	case BCM57840_VF:
13757 	case BCM57811_VF:
13758 		return true;
13759 	default:
13760 		return false;
13761 	}
13762 }
13763 
13764 /* nig_tsgen registers relative address */
13765 #define tsgen_ctrl 0x0
13766 #define tsgen_freecount 0x10
13767 #define tsgen_synctime_t0 0x20
13768 #define tsgen_offset_t0 0x28
13769 #define tsgen_drift_t0 0x30
13770 #define tsgen_synctime_t1 0x58
13771 #define tsgen_offset_t1 0x60
13772 #define tsgen_drift_t1 0x68
13773 
13774 /* FW workaround for setting drift */
13775 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13776 					  int best_val, int best_period)
13777 {
13778 	struct bnx2x_func_state_params func_params = {NULL};
13779 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13780 		&func_params.params.set_timesync;
13781 
13782 	/* Prepare parameters for function state transitions */
13783 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13784 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13785 
13786 	func_params.f_obj = &bp->func_obj;
13787 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13788 
13789 	/* Function parameters */
13790 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13791 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13792 	set_timesync_params->add_sub_drift_adjust_value =
13793 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13794 	set_timesync_params->drift_adjust_value = best_val;
13795 	set_timesync_params->drift_adjust_period = best_period;
13796 
13797 	return bnx2x_func_state_change(bp, &func_params);
13798 }
13799 
13800 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13801 {
13802 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13803 	int rc;
13804 	int drift_dir = 1;
13805 	int val, period, period1, period2, dif, dif1, dif2;
13806 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13807 
13808 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13809 
13810 	if (!netif_running(bp->dev)) {
13811 		DP(BNX2X_MSG_PTP,
13812 		   "PTP adjfreq called while the interface is down\n");
13813 		return -ENETDOWN;
13814 	}
13815 
13816 	if (ppb < 0) {
13817 		ppb = -ppb;
13818 		drift_dir = 0;
13819 	}
13820 
13821 	if (ppb == 0) {
13822 		best_val = 1;
13823 		best_period = 0x1FFFFFF;
13824 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13825 		best_val = 31;
13826 		best_period = 1;
13827 	} else {
13828 		/* Changed not to allow val = 8, 16, 24 as these values
13829 		 * are not supported in workaround.
13830 		 */
13831 		for (val = 0; val <= 31; val++) {
13832 			if ((val & 0x7) == 0)
13833 				continue;
13834 			period1 = val * 1000000 / ppb;
13835 			period2 = period1 + 1;
13836 			if (period1 != 0)
13837 				dif1 = ppb - (val * 1000000 / period1);
13838 			else
13839 				dif1 = BNX2X_MAX_PHC_DRIFT;
13840 			if (dif1 < 0)
13841 				dif1 = -dif1;
13842 			dif2 = ppb - (val * 1000000 / period2);
13843 			if (dif2 < 0)
13844 				dif2 = -dif2;
13845 			dif = (dif1 < dif2) ? dif1 : dif2;
13846 			period = (dif1 < dif2) ? period1 : period2;
13847 			if (dif < best_dif) {
13848 				best_dif = dif;
13849 				best_val = val;
13850 				best_period = period;
13851 			}
13852 		}
13853 	}
13854 
13855 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13856 					    best_period);
13857 	if (rc) {
13858 		BNX2X_ERR("Failed to set drift\n");
13859 		return -EFAULT;
13860 	}
13861 
13862 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13863 	   best_period);
13864 
13865 	return 0;
13866 }
13867 
13868 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13869 {
13870 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13871 
13872 	if (!netif_running(bp->dev)) {
13873 		DP(BNX2X_MSG_PTP,
13874 		   "PTP adjtime called while the interface is down\n");
13875 		return -ENETDOWN;
13876 	}
13877 
13878 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13879 
13880 	timecounter_adjtime(&bp->timecounter, delta);
13881 
13882 	return 0;
13883 }
13884 
13885 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13886 {
13887 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13888 	u64 ns;
13889 
13890 	if (!netif_running(bp->dev)) {
13891 		DP(BNX2X_MSG_PTP,
13892 		   "PTP gettime called while the interface is down\n");
13893 		return -ENETDOWN;
13894 	}
13895 
13896 	ns = timecounter_read(&bp->timecounter);
13897 
13898 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13899 
13900 	*ts = ns_to_timespec64(ns);
13901 
13902 	return 0;
13903 }
13904 
13905 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13906 			     const struct timespec64 *ts)
13907 {
13908 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13909 	u64 ns;
13910 
13911 	if (!netif_running(bp->dev)) {
13912 		DP(BNX2X_MSG_PTP,
13913 		   "PTP settime called while the interface is down\n");
13914 		return -ENETDOWN;
13915 	}
13916 
13917 	ns = timespec64_to_ns(ts);
13918 
13919 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13920 
13921 	/* Re-init the timecounter */
13922 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13923 
13924 	return 0;
13925 }
13926 
13927 /* Enable (or disable) ancillary features of the phc subsystem */
13928 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13929 			    struct ptp_clock_request *rq, int on)
13930 {
13931 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13932 
13933 	BNX2X_ERR("PHC ancillary features are not supported\n");
13934 	return -ENOTSUPP;
13935 }
13936 
13937 void bnx2x_register_phc(struct bnx2x *bp)
13938 {
13939 	/* Fill the ptp_clock_info struct and register PTP clock*/
13940 	bp->ptp_clock_info.owner = THIS_MODULE;
13941 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13942 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13943 	bp->ptp_clock_info.n_alarm = 0;
13944 	bp->ptp_clock_info.n_ext_ts = 0;
13945 	bp->ptp_clock_info.n_per_out = 0;
13946 	bp->ptp_clock_info.pps = 0;
13947 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13948 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13949 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13950 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13951 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13952 
13953 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13954 	if (IS_ERR(bp->ptp_clock)) {
13955 		bp->ptp_clock = NULL;
13956 		BNX2X_ERR("PTP clock registration failed\n");
13957 	}
13958 }
13959 
13960 static int bnx2x_init_one(struct pci_dev *pdev,
13961 				    const struct pci_device_id *ent)
13962 {
13963 	struct net_device *dev = NULL;
13964 	struct bnx2x *bp;
13965 	int rc, max_non_def_sbs;
13966 	int rx_count, tx_count, rss_count, doorbell_size;
13967 	int max_cos_est;
13968 	bool is_vf;
13969 	int cnic_cnt;
13970 
13971 	/* Management FW 'remembers' living interfaces. Allow it some time
13972 	 * to forget previously living interfaces, allowing a proper re-load.
13973 	 */
13974 	if (is_kdump_kernel()) {
13975 		ktime_t now = ktime_get_boottime();
13976 		ktime_t fw_ready_time = ktime_set(5, 0);
13977 
13978 		if (ktime_before(now, fw_ready_time))
13979 			msleep(ktime_ms_delta(fw_ready_time, now));
13980 	}
13981 
13982 	/* An estimated maximum supported CoS number according to the chip
13983 	 * version.
13984 	 * We will try to roughly estimate the maximum number of CoSes this chip
13985 	 * may support in order to minimize the memory allocated for Tx
13986 	 * netdev_queue's. This number will be accurately calculated during the
13987 	 * initialization of bp->max_cos based on the chip versions AND chip
13988 	 * revision in the bnx2x_init_bp().
13989 	 */
13990 	max_cos_est = set_max_cos_est(ent->driver_data);
13991 	if (max_cos_est < 0)
13992 		return max_cos_est;
13993 	is_vf = set_is_vf(ent->driver_data);
13994 	cnic_cnt = is_vf ? 0 : 1;
13995 
13996 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13997 
13998 	/* add another SB for VF as it has no default SB */
13999 	max_non_def_sbs += is_vf ? 1 : 0;
14000 
14001 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
14002 	rss_count = max_non_def_sbs - cnic_cnt;
14003 
14004 	if (rss_count < 1)
14005 		return -EINVAL;
14006 
14007 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
14008 	rx_count = rss_count + cnic_cnt;
14009 
14010 	/* Maximum number of netdev Tx queues:
14011 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
14012 	 */
14013 	tx_count = rss_count * max_cos_est + cnic_cnt;
14014 
14015 	/* dev zeroed in init_etherdev */
14016 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
14017 	if (!dev)
14018 		return -ENOMEM;
14019 
14020 	bp = netdev_priv(dev);
14021 
14022 	bp->flags = 0;
14023 	if (is_vf)
14024 		bp->flags |= IS_VF_FLAG;
14025 
14026 	bp->igu_sb_cnt = max_non_def_sbs;
14027 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
14028 	bp->msg_enable = debug;
14029 	bp->cnic_support = cnic_cnt;
14030 	bp->cnic_probe = bnx2x_cnic_probe;
14031 
14032 	pci_set_drvdata(pdev, dev);
14033 
14034 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
14035 	if (rc < 0) {
14036 		free_netdev(dev);
14037 		return rc;
14038 	}
14039 
14040 	BNX2X_DEV_INFO("This is a %s function\n",
14041 		       IS_PF(bp) ? "physical" : "virtual");
14042 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14043 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14044 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14045 		       tx_count, rx_count);
14046 
14047 	rc = bnx2x_init_bp(bp);
14048 	if (rc)
14049 		goto init_one_exit;
14050 
14051 	/* Map doorbells here as we need the real value of bp->max_cos which
14052 	 * is initialized in bnx2x_init_bp() to determine the number of
14053 	 * l2 connections.
14054 	 */
14055 	if (IS_VF(bp)) {
14056 		bp->doorbells = bnx2x_vf_doorbells(bp);
14057 		rc = bnx2x_vf_pci_alloc(bp);
14058 		if (rc)
14059 			goto init_one_freemem;
14060 	} else {
14061 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14062 		if (doorbell_size > pci_resource_len(pdev, 2)) {
14063 			dev_err(&bp->pdev->dev,
14064 				"Cannot map doorbells, bar size too small, aborting\n");
14065 			rc = -ENOMEM;
14066 			goto init_one_freemem;
14067 		}
14068 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14069 						doorbell_size);
14070 	}
14071 	if (!bp->doorbells) {
14072 		dev_err(&bp->pdev->dev,
14073 			"Cannot map doorbell space, aborting\n");
14074 		rc = -ENOMEM;
14075 		goto init_one_freemem;
14076 	}
14077 
14078 	if (IS_VF(bp)) {
14079 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14080 		if (rc)
14081 			goto init_one_freemem;
14082 
14083 #ifdef CONFIG_BNX2X_SRIOV
14084 		/* VF with OLD Hypervisor or old PF do not support filtering */
14085 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14086 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14087 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14088 		}
14089 #endif
14090 	}
14091 
14092 	/* Enable SRIOV if capability found in configuration space */
14093 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14094 	if (rc)
14095 		goto init_one_freemem;
14096 
14097 	/* calc qm_cid_count */
14098 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14099 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14100 
14101 	/* disable FCOE L2 queue for E1x*/
14102 	if (CHIP_IS_E1x(bp))
14103 		bp->flags |= NO_FCOE_FLAG;
14104 
14105 	/* Set bp->num_queues for MSI-X mode*/
14106 	bnx2x_set_num_queues(bp);
14107 
14108 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14109 	 * needed.
14110 	 */
14111 	rc = bnx2x_set_int_mode(bp);
14112 	if (rc) {
14113 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14114 		goto init_one_freemem;
14115 	}
14116 	BNX2X_DEV_INFO("set interrupts successfully\n");
14117 
14118 	/* register the net device */
14119 	rc = register_netdev(dev);
14120 	if (rc) {
14121 		dev_err(&pdev->dev, "Cannot register net device\n");
14122 		goto init_one_freemem;
14123 	}
14124 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14125 
14126 	if (!NO_FCOE(bp)) {
14127 		/* Add storage MAC address */
14128 		rtnl_lock();
14129 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14130 		rtnl_unlock();
14131 	}
14132 	BNX2X_DEV_INFO(
14133 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14134 	       board_info[ent->driver_data].name,
14135 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14136 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14137 	pcie_print_link_status(bp->pdev);
14138 
14139 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14140 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14141 
14142 	return 0;
14143 
14144 init_one_freemem:
14145 	bnx2x_free_mem_bp(bp);
14146 
14147 init_one_exit:
14148 	bnx2x_disable_pcie_error_reporting(bp);
14149 
14150 	if (bp->regview)
14151 		iounmap(bp->regview);
14152 
14153 	if (IS_PF(bp) && bp->doorbells)
14154 		iounmap(bp->doorbells);
14155 
14156 	free_netdev(dev);
14157 
14158 	if (atomic_read(&pdev->enable_cnt) == 1)
14159 		pci_release_regions(pdev);
14160 
14161 	pci_disable_device(pdev);
14162 
14163 	return rc;
14164 }
14165 
14166 static void __bnx2x_remove(struct pci_dev *pdev,
14167 			   struct net_device *dev,
14168 			   struct bnx2x *bp,
14169 			   bool remove_netdev)
14170 {
14171 	/* Delete storage MAC address */
14172 	if (!NO_FCOE(bp)) {
14173 		rtnl_lock();
14174 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14175 		rtnl_unlock();
14176 	}
14177 
14178 #ifdef BCM_DCBNL
14179 	/* Delete app tlvs from dcbnl */
14180 	bnx2x_dcbnl_update_applist(bp, true);
14181 #endif
14182 
14183 	if (IS_PF(bp) &&
14184 	    !BP_NOMCP(bp) &&
14185 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14186 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14187 
14188 	/* Close the interface - either directly or implicitly */
14189 	if (remove_netdev) {
14190 		unregister_netdev(dev);
14191 	} else {
14192 		rtnl_lock();
14193 		dev_close(dev);
14194 		rtnl_unlock();
14195 	}
14196 
14197 	bnx2x_iov_remove_one(bp);
14198 
14199 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14200 	if (IS_PF(bp)) {
14201 		bnx2x_set_power_state(bp, PCI_D0);
14202 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14203 
14204 		/* Set endianity registers to reset values in case next driver
14205 		 * boots in different endianty environment.
14206 		 */
14207 		bnx2x_reset_endianity(bp);
14208 	}
14209 
14210 	/* Disable MSI/MSI-X */
14211 	bnx2x_disable_msi(bp);
14212 
14213 	/* Power off */
14214 	if (IS_PF(bp))
14215 		bnx2x_set_power_state(bp, PCI_D3hot);
14216 
14217 	/* Make sure RESET task is not scheduled before continuing */
14218 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14219 
14220 	/* send message via vfpf channel to release the resources of this vf */
14221 	if (IS_VF(bp))
14222 		bnx2x_vfpf_release(bp);
14223 
14224 	/* Assumes no further PCIe PM changes will occur */
14225 	if (system_state == SYSTEM_POWER_OFF) {
14226 		pci_wake_from_d3(pdev, bp->wol);
14227 		pci_set_power_state(pdev, PCI_D3hot);
14228 	}
14229 
14230 	bnx2x_disable_pcie_error_reporting(bp);
14231 	if (remove_netdev) {
14232 		if (bp->regview)
14233 			iounmap(bp->regview);
14234 
14235 		/* For vfs, doorbells are part of the regview and were unmapped
14236 		 * along with it. FW is only loaded by PF.
14237 		 */
14238 		if (IS_PF(bp)) {
14239 			if (bp->doorbells)
14240 				iounmap(bp->doorbells);
14241 
14242 			bnx2x_release_firmware(bp);
14243 		} else {
14244 			bnx2x_vf_pci_dealloc(bp);
14245 		}
14246 		bnx2x_free_mem_bp(bp);
14247 
14248 		free_netdev(dev);
14249 
14250 		if (atomic_read(&pdev->enable_cnt) == 1)
14251 			pci_release_regions(pdev);
14252 
14253 		pci_disable_device(pdev);
14254 	}
14255 }
14256 
14257 static void bnx2x_remove_one(struct pci_dev *pdev)
14258 {
14259 	struct net_device *dev = pci_get_drvdata(pdev);
14260 	struct bnx2x *bp;
14261 
14262 	if (!dev) {
14263 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14264 		return;
14265 	}
14266 	bp = netdev_priv(dev);
14267 
14268 	__bnx2x_remove(pdev, dev, bp, true);
14269 }
14270 
14271 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14272 {
14273 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14274 
14275 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14276 
14277 	if (CNIC_LOADED(bp))
14278 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14279 
14280 	/* Stop Tx */
14281 	bnx2x_tx_disable(bp);
14282 	/* Delete all NAPI objects */
14283 	bnx2x_del_all_napi(bp);
14284 	if (CNIC_LOADED(bp))
14285 		bnx2x_del_all_napi_cnic(bp);
14286 	netdev_reset_tc(bp->dev);
14287 
14288 	del_timer_sync(&bp->timer);
14289 	cancel_delayed_work_sync(&bp->sp_task);
14290 	cancel_delayed_work_sync(&bp->period_task);
14291 
14292 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14293 		bp->stats_state = STATS_STATE_DISABLED;
14294 		up(&bp->stats_lock);
14295 	}
14296 
14297 	bnx2x_save_statistics(bp);
14298 
14299 	netif_carrier_off(bp->dev);
14300 
14301 	return 0;
14302 }
14303 
14304 /**
14305  * bnx2x_io_error_detected - called when PCI error is detected
14306  * @pdev: Pointer to PCI device
14307  * @state: The current pci connection state
14308  *
14309  * This function is called after a PCI bus error affecting
14310  * this device has been detected.
14311  */
14312 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14313 						pci_channel_state_t state)
14314 {
14315 	struct net_device *dev = pci_get_drvdata(pdev);
14316 	struct bnx2x *bp = netdev_priv(dev);
14317 
14318 	rtnl_lock();
14319 
14320 	BNX2X_ERR("IO error detected\n");
14321 
14322 	netif_device_detach(dev);
14323 
14324 	if (state == pci_channel_io_perm_failure) {
14325 		rtnl_unlock();
14326 		return PCI_ERS_RESULT_DISCONNECT;
14327 	}
14328 
14329 	if (netif_running(dev))
14330 		bnx2x_eeh_nic_unload(bp);
14331 
14332 	bnx2x_prev_path_mark_eeh(bp);
14333 
14334 	pci_disable_device(pdev);
14335 
14336 	rtnl_unlock();
14337 
14338 	/* Request a slot reset */
14339 	return PCI_ERS_RESULT_NEED_RESET;
14340 }
14341 
14342 /**
14343  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14344  * @pdev: Pointer to PCI device
14345  *
14346  * Restart the card from scratch, as if from a cold-boot.
14347  */
14348 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14349 {
14350 	struct net_device *dev = pci_get_drvdata(pdev);
14351 	struct bnx2x *bp = netdev_priv(dev);
14352 	int i;
14353 
14354 	rtnl_lock();
14355 	BNX2X_ERR("IO slot reset initializing...\n");
14356 	if (pci_enable_device(pdev)) {
14357 		dev_err(&pdev->dev,
14358 			"Cannot re-enable PCI device after reset\n");
14359 		rtnl_unlock();
14360 		return PCI_ERS_RESULT_DISCONNECT;
14361 	}
14362 
14363 	pci_set_master(pdev);
14364 	pci_restore_state(pdev);
14365 	pci_save_state(pdev);
14366 
14367 	if (netif_running(dev))
14368 		bnx2x_set_power_state(bp, PCI_D0);
14369 
14370 	if (netif_running(dev)) {
14371 		BNX2X_ERR("IO slot reset --> driver unload\n");
14372 
14373 		/* MCP should have been reset; Need to wait for validity */
14374 		if (bnx2x_init_shmem(bp)) {
14375 			rtnl_unlock();
14376 			return PCI_ERS_RESULT_DISCONNECT;
14377 		}
14378 
14379 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14380 			u32 v;
14381 
14382 			v = SHMEM2_RD(bp,
14383 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14384 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14385 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14386 		}
14387 		bnx2x_drain_tx_queues(bp);
14388 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14389 		bnx2x_netif_stop(bp, 1);
14390 		bnx2x_free_irq(bp);
14391 
14392 		/* Report UNLOAD_DONE to MCP */
14393 		bnx2x_send_unload_done(bp, true);
14394 
14395 		bp->sp_state = 0;
14396 		bp->port.pmf = 0;
14397 
14398 		bnx2x_prev_unload(bp);
14399 
14400 		/* We should have reseted the engine, so It's fair to
14401 		 * assume the FW will no longer write to the bnx2x driver.
14402 		 */
14403 		bnx2x_squeeze_objects(bp);
14404 		bnx2x_free_skbs(bp);
14405 		for_each_rx_queue(bp, i)
14406 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14407 		bnx2x_free_fp_mem(bp);
14408 		bnx2x_free_mem(bp);
14409 
14410 		bp->state = BNX2X_STATE_CLOSED;
14411 	}
14412 
14413 	rtnl_unlock();
14414 
14415 	return PCI_ERS_RESULT_RECOVERED;
14416 }
14417 
14418 /**
14419  * bnx2x_io_resume - called when traffic can start flowing again
14420  * @pdev: Pointer to PCI device
14421  *
14422  * This callback is called when the error recovery driver tells us that
14423  * its OK to resume normal operation.
14424  */
14425 static void bnx2x_io_resume(struct pci_dev *pdev)
14426 {
14427 	struct net_device *dev = pci_get_drvdata(pdev);
14428 	struct bnx2x *bp = netdev_priv(dev);
14429 
14430 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14431 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14432 		return;
14433 	}
14434 
14435 	rtnl_lock();
14436 
14437 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14438 							DRV_MSG_SEQ_NUMBER_MASK;
14439 
14440 	if (netif_running(dev))
14441 		bnx2x_nic_load(bp, LOAD_NORMAL);
14442 
14443 	netif_device_attach(dev);
14444 
14445 	rtnl_unlock();
14446 }
14447 
14448 static const struct pci_error_handlers bnx2x_err_handler = {
14449 	.error_detected = bnx2x_io_error_detected,
14450 	.slot_reset     = bnx2x_io_slot_reset,
14451 	.resume         = bnx2x_io_resume,
14452 };
14453 
14454 static void bnx2x_shutdown(struct pci_dev *pdev)
14455 {
14456 	struct net_device *dev = pci_get_drvdata(pdev);
14457 	struct bnx2x *bp;
14458 
14459 	if (!dev)
14460 		return;
14461 
14462 	bp = netdev_priv(dev);
14463 	if (!bp)
14464 		return;
14465 
14466 	rtnl_lock();
14467 	netif_device_detach(dev);
14468 	rtnl_unlock();
14469 
14470 	/* Don't remove the netdevice, as there are scenarios which will cause
14471 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14472 	 * rootfs is mounted from SAN.
14473 	 */
14474 	__bnx2x_remove(pdev, dev, bp, false);
14475 }
14476 
14477 static struct pci_driver bnx2x_pci_driver = {
14478 	.name        = DRV_MODULE_NAME,
14479 	.id_table    = bnx2x_pci_tbl,
14480 	.probe       = bnx2x_init_one,
14481 	.remove      = bnx2x_remove_one,
14482 	.suspend     = bnx2x_suspend,
14483 	.resume      = bnx2x_resume,
14484 	.err_handler = &bnx2x_err_handler,
14485 #ifdef CONFIG_BNX2X_SRIOV
14486 	.sriov_configure = bnx2x_sriov_configure,
14487 #endif
14488 	.shutdown    = bnx2x_shutdown,
14489 };
14490 
14491 static int __init bnx2x_init(void)
14492 {
14493 	int ret;
14494 
14495 	pr_info("%s", version);
14496 
14497 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14498 	if (bnx2x_wq == NULL) {
14499 		pr_err("Cannot create workqueue\n");
14500 		return -ENOMEM;
14501 	}
14502 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14503 	if (!bnx2x_iov_wq) {
14504 		pr_err("Cannot create iov workqueue\n");
14505 		destroy_workqueue(bnx2x_wq);
14506 		return -ENOMEM;
14507 	}
14508 
14509 	ret = pci_register_driver(&bnx2x_pci_driver);
14510 	if (ret) {
14511 		pr_err("Cannot register driver\n");
14512 		destroy_workqueue(bnx2x_wq);
14513 		destroy_workqueue(bnx2x_iov_wq);
14514 	}
14515 	return ret;
14516 }
14517 
14518 static void __exit bnx2x_cleanup(void)
14519 {
14520 	struct list_head *pos, *q;
14521 
14522 	pci_unregister_driver(&bnx2x_pci_driver);
14523 
14524 	destroy_workqueue(bnx2x_wq);
14525 	destroy_workqueue(bnx2x_iov_wq);
14526 
14527 	/* Free globally allocated resources */
14528 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14529 		struct bnx2x_prev_path_list *tmp =
14530 			list_entry(pos, struct bnx2x_prev_path_list, list);
14531 		list_del(pos);
14532 		kfree(tmp);
14533 	}
14534 }
14535 
14536 void bnx2x_notify_link_changed(struct bnx2x *bp)
14537 {
14538 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14539 }
14540 
14541 module_init(bnx2x_init);
14542 module_exit(bnx2x_cleanup);
14543 
14544 /**
14545  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14546  *
14547  * @bp:		driver handle
14548  * @set:	set or clear the CAM entry
14549  *
14550  * This function will wait until the ramrod completion returns.
14551  * Return 0 if success, -ENODEV if ramrod doesn't return.
14552  */
14553 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14554 {
14555 	unsigned long ramrod_flags = 0;
14556 
14557 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14558 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14559 				 &bp->iscsi_l2_mac_obj, true,
14560 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14561 }
14562 
14563 /* count denotes the number of new completions we have seen */
14564 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14565 {
14566 	struct eth_spe *spe;
14567 	int cxt_index, cxt_offset;
14568 
14569 #ifdef BNX2X_STOP_ON_ERROR
14570 	if (unlikely(bp->panic))
14571 		return;
14572 #endif
14573 
14574 	spin_lock_bh(&bp->spq_lock);
14575 	BUG_ON(bp->cnic_spq_pending < count);
14576 	bp->cnic_spq_pending -= count;
14577 
14578 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14579 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14580 				& SPE_HDR_CONN_TYPE) >>
14581 				SPE_HDR_CONN_TYPE_SHIFT;
14582 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14583 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14584 
14585 		/* Set validation for iSCSI L2 client before sending SETUP
14586 		 *  ramrod
14587 		 */
14588 		if (type == ETH_CONNECTION_TYPE) {
14589 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14590 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14591 					ILT_PAGE_CIDS;
14592 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14593 					(cxt_index * ILT_PAGE_CIDS);
14594 				bnx2x_set_ctx_validation(bp,
14595 					&bp->context[cxt_index].
14596 							 vcxt[cxt_offset].eth,
14597 					BNX2X_ISCSI_ETH_CID(bp));
14598 			}
14599 		}
14600 
14601 		/*
14602 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14603 		 * and in the air. We also check that number of outstanding
14604 		 * COMMON ramrods is not more than the EQ and SPQ can
14605 		 * accommodate.
14606 		 */
14607 		if (type == ETH_CONNECTION_TYPE) {
14608 			if (!atomic_read(&bp->cq_spq_left))
14609 				break;
14610 			else
14611 				atomic_dec(&bp->cq_spq_left);
14612 		} else if (type == NONE_CONNECTION_TYPE) {
14613 			if (!atomic_read(&bp->eq_spq_left))
14614 				break;
14615 			else
14616 				atomic_dec(&bp->eq_spq_left);
14617 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14618 			   (type == FCOE_CONNECTION_TYPE)) {
14619 			if (bp->cnic_spq_pending >=
14620 			    bp->cnic_eth_dev.max_kwqe_pending)
14621 				break;
14622 			else
14623 				bp->cnic_spq_pending++;
14624 		} else {
14625 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14626 			bnx2x_panic();
14627 			break;
14628 		}
14629 
14630 		spe = bnx2x_sp_get_next(bp);
14631 		*spe = *bp->cnic_kwq_cons;
14632 
14633 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14634 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14635 
14636 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14637 			bp->cnic_kwq_cons = bp->cnic_kwq;
14638 		else
14639 			bp->cnic_kwq_cons++;
14640 	}
14641 	bnx2x_sp_prod_update(bp);
14642 	spin_unlock_bh(&bp->spq_lock);
14643 }
14644 
14645 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14646 			       struct kwqe_16 *kwqes[], u32 count)
14647 {
14648 	struct bnx2x *bp = netdev_priv(dev);
14649 	int i;
14650 
14651 #ifdef BNX2X_STOP_ON_ERROR
14652 	if (unlikely(bp->panic)) {
14653 		BNX2X_ERR("Can't post to SP queue while panic\n");
14654 		return -EIO;
14655 	}
14656 #endif
14657 
14658 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14659 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14660 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14661 		return -EAGAIN;
14662 	}
14663 
14664 	spin_lock_bh(&bp->spq_lock);
14665 
14666 	for (i = 0; i < count; i++) {
14667 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14668 
14669 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14670 			break;
14671 
14672 		*bp->cnic_kwq_prod = *spe;
14673 
14674 		bp->cnic_kwq_pending++;
14675 
14676 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14677 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14678 		   spe->data.update_data_addr.hi,
14679 		   spe->data.update_data_addr.lo,
14680 		   bp->cnic_kwq_pending);
14681 
14682 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14683 			bp->cnic_kwq_prod = bp->cnic_kwq;
14684 		else
14685 			bp->cnic_kwq_prod++;
14686 	}
14687 
14688 	spin_unlock_bh(&bp->spq_lock);
14689 
14690 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14691 		bnx2x_cnic_sp_post(bp, 0);
14692 
14693 	return i;
14694 }
14695 
14696 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14697 {
14698 	struct cnic_ops *c_ops;
14699 	int rc = 0;
14700 
14701 	mutex_lock(&bp->cnic_mutex);
14702 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14703 					  lockdep_is_held(&bp->cnic_mutex));
14704 	if (c_ops)
14705 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14706 	mutex_unlock(&bp->cnic_mutex);
14707 
14708 	return rc;
14709 }
14710 
14711 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14712 {
14713 	struct cnic_ops *c_ops;
14714 	int rc = 0;
14715 
14716 	rcu_read_lock();
14717 	c_ops = rcu_dereference(bp->cnic_ops);
14718 	if (c_ops)
14719 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14720 	rcu_read_unlock();
14721 
14722 	return rc;
14723 }
14724 
14725 /*
14726  * for commands that have no data
14727  */
14728 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14729 {
14730 	struct cnic_ctl_info ctl = {0};
14731 
14732 	ctl.cmd = cmd;
14733 
14734 	return bnx2x_cnic_ctl_send(bp, &ctl);
14735 }
14736 
14737 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14738 {
14739 	struct cnic_ctl_info ctl = {0};
14740 
14741 	/* first we tell CNIC and only then we count this as a completion */
14742 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14743 	ctl.data.comp.cid = cid;
14744 	ctl.data.comp.error = err;
14745 
14746 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14747 	bnx2x_cnic_sp_post(bp, 0);
14748 }
14749 
14750 /* Called with netif_addr_lock_bh() taken.
14751  * Sets an rx_mode config for an iSCSI ETH client.
14752  * Doesn't block.
14753  * Completion should be checked outside.
14754  */
14755 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14756 {
14757 	unsigned long accept_flags = 0, ramrod_flags = 0;
14758 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14759 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14760 
14761 	if (start) {
14762 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14763 		 * because it's the only way for UIO Queue to accept
14764 		 * multicasts (in non-promiscuous mode only one Queue per
14765 		 * function will receive multicast packets (leading in our
14766 		 * case).
14767 		 */
14768 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14769 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14770 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14771 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14772 
14773 		/* Clear STOP_PENDING bit if START is requested */
14774 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14775 
14776 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14777 	} else
14778 		/* Clear START_PENDING bit if STOP is requested */
14779 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14780 
14781 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14782 		set_bit(sched_state, &bp->sp_state);
14783 	else {
14784 		__set_bit(RAMROD_RX, &ramrod_flags);
14785 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14786 				    ramrod_flags);
14787 	}
14788 }
14789 
14790 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14791 {
14792 	struct bnx2x *bp = netdev_priv(dev);
14793 	int rc = 0;
14794 
14795 	switch (ctl->cmd) {
14796 	case DRV_CTL_CTXTBL_WR_CMD: {
14797 		u32 index = ctl->data.io.offset;
14798 		dma_addr_t addr = ctl->data.io.dma_addr;
14799 
14800 		bnx2x_ilt_wr(bp, index, addr);
14801 		break;
14802 	}
14803 
14804 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14805 		int count = ctl->data.credit.credit_count;
14806 
14807 		bnx2x_cnic_sp_post(bp, count);
14808 		break;
14809 	}
14810 
14811 	/* rtnl_lock is held.  */
14812 	case DRV_CTL_START_L2_CMD: {
14813 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14814 		unsigned long sp_bits = 0;
14815 
14816 		/* Configure the iSCSI classification object */
14817 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14818 				   cp->iscsi_l2_client_id,
14819 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14820 				   bnx2x_sp(bp, mac_rdata),
14821 				   bnx2x_sp_mapping(bp, mac_rdata),
14822 				   BNX2X_FILTER_MAC_PENDING,
14823 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14824 				   &bp->macs_pool);
14825 
14826 		/* Set iSCSI MAC address */
14827 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14828 		if (rc)
14829 			break;
14830 
14831 		mmiowb();
14832 		barrier();
14833 
14834 		/* Start accepting on iSCSI L2 ring */
14835 
14836 		netif_addr_lock_bh(dev);
14837 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14838 		netif_addr_unlock_bh(dev);
14839 
14840 		/* bits to wait on */
14841 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14842 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14843 
14844 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14845 			BNX2X_ERR("rx_mode completion timed out!\n");
14846 
14847 		break;
14848 	}
14849 
14850 	/* rtnl_lock is held.  */
14851 	case DRV_CTL_STOP_L2_CMD: {
14852 		unsigned long sp_bits = 0;
14853 
14854 		/* Stop accepting on iSCSI L2 ring */
14855 		netif_addr_lock_bh(dev);
14856 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14857 		netif_addr_unlock_bh(dev);
14858 
14859 		/* bits to wait on */
14860 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14861 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14862 
14863 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14864 			BNX2X_ERR("rx_mode completion timed out!\n");
14865 
14866 		mmiowb();
14867 		barrier();
14868 
14869 		/* Unset iSCSI L2 MAC */
14870 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14871 					BNX2X_ISCSI_ETH_MAC, true);
14872 		break;
14873 	}
14874 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14875 		int count = ctl->data.credit.credit_count;
14876 
14877 		smp_mb__before_atomic();
14878 		atomic_add(count, &bp->cq_spq_left);
14879 		smp_mb__after_atomic();
14880 		break;
14881 	}
14882 	case DRV_CTL_ULP_REGISTER_CMD: {
14883 		int ulp_type = ctl->data.register_data.ulp_type;
14884 
14885 		if (CHIP_IS_E3(bp)) {
14886 			int idx = BP_FW_MB_IDX(bp);
14887 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14888 			int path = BP_PATH(bp);
14889 			int port = BP_PORT(bp);
14890 			int i;
14891 			u32 scratch_offset;
14892 			u32 *host_addr;
14893 
14894 			/* first write capability to shmem2 */
14895 			if (ulp_type == CNIC_ULP_ISCSI)
14896 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14897 			else if (ulp_type == CNIC_ULP_FCOE)
14898 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14899 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14900 
14901 			if ((ulp_type != CNIC_ULP_FCOE) ||
14902 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14903 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14904 				break;
14905 
14906 			/* if reached here - should write fcoe capabilities */
14907 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14908 			if (!scratch_offset)
14909 				break;
14910 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14911 						   fcoe_features[path][port]);
14912 			host_addr = (u32 *) &(ctl->data.register_data.
14913 					      fcoe_features);
14914 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14915 			     i += 4)
14916 				REG_WR(bp, scratch_offset + i,
14917 				       *(host_addr + i/4));
14918 		}
14919 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14920 		break;
14921 	}
14922 
14923 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14924 		int ulp_type = ctl->data.ulp_type;
14925 
14926 		if (CHIP_IS_E3(bp)) {
14927 			int idx = BP_FW_MB_IDX(bp);
14928 			u32 cap;
14929 
14930 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14931 			if (ulp_type == CNIC_ULP_ISCSI)
14932 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14933 			else if (ulp_type == CNIC_ULP_FCOE)
14934 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14935 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14936 		}
14937 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14938 		break;
14939 	}
14940 
14941 	default:
14942 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14943 		rc = -EINVAL;
14944 	}
14945 
14946 	/* For storage-only interfaces, change driver state */
14947 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14948 		switch (ctl->drv_state) {
14949 		case DRV_NOP:
14950 			break;
14951 		case DRV_ACTIVE:
14952 			bnx2x_set_os_driver_state(bp,
14953 						  OS_DRIVER_STATE_ACTIVE);
14954 			break;
14955 		case DRV_INACTIVE:
14956 			bnx2x_set_os_driver_state(bp,
14957 						  OS_DRIVER_STATE_DISABLED);
14958 			break;
14959 		case DRV_UNLOADED:
14960 			bnx2x_set_os_driver_state(bp,
14961 						  OS_DRIVER_STATE_NOT_LOADED);
14962 			break;
14963 		default:
14964 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14965 		}
14966 	}
14967 
14968 	return rc;
14969 }
14970 
14971 static int bnx2x_get_fc_npiv(struct net_device *dev,
14972 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14973 {
14974 	struct bnx2x *bp = netdev_priv(dev);
14975 	struct bdn_fc_npiv_tbl *tbl = NULL;
14976 	u32 offset, entries;
14977 	int rc = -EINVAL;
14978 	int i;
14979 
14980 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14981 		goto out;
14982 
14983 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14984 
14985 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14986 	if (!tbl) {
14987 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14988 		goto out;
14989 	}
14990 
14991 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14992 	if (!offset) {
14993 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14994 		goto out;
14995 	}
14996 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14997 
14998 	/* Read the table contents from nvram */
14999 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
15000 		BNX2X_ERR("Failed to read FC-NPIV table\n");
15001 		goto out;
15002 	}
15003 
15004 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
15005 	 * the number of entries back to cpu endianness.
15006 	 */
15007 	entries = tbl->fc_npiv_cfg.num_of_npiv;
15008 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
15009 	tbl->fc_npiv_cfg.num_of_npiv = entries;
15010 
15011 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
15012 		DP(BNX2X_MSG_MCP,
15013 		   "No FC-NPIV table [valid, simply not present]\n");
15014 		goto out;
15015 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
15016 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
15017 			  tbl->fc_npiv_cfg.num_of_npiv);
15018 		goto out;
15019 	} else {
15020 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
15021 		   tbl->fc_npiv_cfg.num_of_npiv);
15022 	}
15023 
15024 	/* Copy the data into cnic-provided struct */
15025 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
15026 	for (i = 0; i < cnic_tbl->count; i++) {
15027 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
15028 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
15029 	}
15030 
15031 	rc = 0;
15032 out:
15033 	kfree(tbl);
15034 	return rc;
15035 }
15036 
15037 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15038 {
15039 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15040 
15041 	if (bp->flags & USING_MSIX_FLAG) {
15042 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15043 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15044 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
15045 	} else {
15046 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15047 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15048 	}
15049 	if (!CHIP_IS_E1x(bp))
15050 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15051 	else
15052 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15053 
15054 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
15055 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15056 	cp->irq_arr[1].status_blk = bp->def_status_blk;
15057 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15058 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15059 
15060 	cp->num_irq = 2;
15061 }
15062 
15063 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15064 {
15065 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15066 
15067 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15068 			     bnx2x_cid_ilt_lines(bp);
15069 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15070 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15071 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15072 
15073 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15074 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15075 	   cp->iscsi_l2_cid);
15076 
15077 	if (NO_ISCSI_OOO(bp))
15078 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15079 }
15080 
15081 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15082 			       void *data)
15083 {
15084 	struct bnx2x *bp = netdev_priv(dev);
15085 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15086 	int rc;
15087 
15088 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15089 
15090 	if (ops == NULL) {
15091 		BNX2X_ERR("NULL ops received\n");
15092 		return -EINVAL;
15093 	}
15094 
15095 	if (!CNIC_SUPPORT(bp)) {
15096 		BNX2X_ERR("Can't register CNIC when not supported\n");
15097 		return -EOPNOTSUPP;
15098 	}
15099 
15100 	if (!CNIC_LOADED(bp)) {
15101 		rc = bnx2x_load_cnic(bp);
15102 		if (rc) {
15103 			BNX2X_ERR("CNIC-related load failed\n");
15104 			return rc;
15105 		}
15106 	}
15107 
15108 	bp->cnic_enabled = true;
15109 
15110 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15111 	if (!bp->cnic_kwq)
15112 		return -ENOMEM;
15113 
15114 	bp->cnic_kwq_cons = bp->cnic_kwq;
15115 	bp->cnic_kwq_prod = bp->cnic_kwq;
15116 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15117 
15118 	bp->cnic_spq_pending = 0;
15119 	bp->cnic_kwq_pending = 0;
15120 
15121 	bp->cnic_data = data;
15122 
15123 	cp->num_irq = 0;
15124 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15125 	cp->iro_arr = bp->iro_arr;
15126 
15127 	bnx2x_setup_cnic_irq_info(bp);
15128 
15129 	rcu_assign_pointer(bp->cnic_ops, ops);
15130 
15131 	/* Schedule driver to read CNIC driver versions */
15132 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15133 
15134 	return 0;
15135 }
15136 
15137 static int bnx2x_unregister_cnic(struct net_device *dev)
15138 {
15139 	struct bnx2x *bp = netdev_priv(dev);
15140 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15141 
15142 	mutex_lock(&bp->cnic_mutex);
15143 	cp->drv_state = 0;
15144 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15145 	mutex_unlock(&bp->cnic_mutex);
15146 	synchronize_rcu();
15147 	bp->cnic_enabled = false;
15148 	kfree(bp->cnic_kwq);
15149 	bp->cnic_kwq = NULL;
15150 
15151 	return 0;
15152 }
15153 
15154 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15155 {
15156 	struct bnx2x *bp = netdev_priv(dev);
15157 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15158 
15159 	/* If both iSCSI and FCoE are disabled - return NULL in
15160 	 * order to indicate CNIC that it should not try to work
15161 	 * with this device.
15162 	 */
15163 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15164 		return NULL;
15165 
15166 	cp->drv_owner = THIS_MODULE;
15167 	cp->chip_id = CHIP_ID(bp);
15168 	cp->pdev = bp->pdev;
15169 	cp->io_base = bp->regview;
15170 	cp->io_base2 = bp->doorbells;
15171 	cp->max_kwqe_pending = 8;
15172 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15173 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15174 			     bnx2x_cid_ilt_lines(bp);
15175 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15176 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15177 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15178 	cp->drv_ctl = bnx2x_drv_ctl;
15179 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15180 	cp->drv_register_cnic = bnx2x_register_cnic;
15181 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15182 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15183 	cp->iscsi_l2_client_id =
15184 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15185 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15186 
15187 	if (NO_ISCSI_OOO(bp))
15188 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15189 
15190 	if (NO_ISCSI(bp))
15191 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15192 
15193 	if (NO_FCOE(bp))
15194 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15195 
15196 	BNX2X_DEV_INFO(
15197 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15198 	   cp->ctx_blk_size,
15199 	   cp->ctx_tbl_offset,
15200 	   cp->ctx_tbl_len,
15201 	   cp->starting_cid);
15202 	return cp;
15203 }
15204 
15205 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15206 {
15207 	struct bnx2x *bp = fp->bp;
15208 	u32 offset = BAR_USTRORM_INTMEM;
15209 
15210 	if (IS_VF(bp))
15211 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15212 	else if (!CHIP_IS_E1x(bp))
15213 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15214 	else
15215 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15216 
15217 	return offset;
15218 }
15219 
15220 /* called only on E1H or E2.
15221  * When pretending to be PF, the pretend value is the function number 0...7
15222  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15223  * combination
15224  */
15225 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15226 {
15227 	u32 pretend_reg;
15228 
15229 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15230 		return -1;
15231 
15232 	/* get my own pretend register */
15233 	pretend_reg = bnx2x_get_pretend_reg(bp);
15234 	REG_WR(bp, pretend_reg, pretend_func_val);
15235 	REG_RD(bp, pretend_reg);
15236 	return 0;
15237 }
15238 
15239 static void bnx2x_ptp_task(struct work_struct *work)
15240 {
15241 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15242 	int port = BP_PORT(bp);
15243 	u32 val_seq;
15244 	u64 timestamp, ns;
15245 	struct skb_shared_hwtstamps shhwtstamps;
15246 
15247 	/* Read Tx timestamp registers */
15248 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15249 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15250 	if (val_seq & 0x10000) {
15251 		/* There is a valid timestamp value */
15252 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15253 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15254 		timestamp <<= 32;
15255 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15256 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15257 		/* Reset timestamp register to allow new timestamp */
15258 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15259 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15260 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15261 
15262 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15263 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15264 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15265 		dev_kfree_skb_any(bp->ptp_tx_skb);
15266 		bp->ptp_tx_skb = NULL;
15267 
15268 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15269 		   timestamp, ns);
15270 	} else {
15271 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15272 		/* Reschedule to keep checking for a valid timestamp value */
15273 		schedule_work(&bp->ptp_task);
15274 	}
15275 }
15276 
15277 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15278 {
15279 	int port = BP_PORT(bp);
15280 	u64 timestamp, ns;
15281 
15282 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15283 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15284 	timestamp <<= 32;
15285 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15286 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15287 
15288 	/* Reset timestamp register to allow new timestamp */
15289 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15290 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15291 
15292 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15293 
15294 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15295 
15296 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15297 	   timestamp, ns);
15298 }
15299 
15300 /* Read the PHC */
15301 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15302 {
15303 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15304 	int port = BP_PORT(bp);
15305 	u32 wb_data[2];
15306 	u64 phc_cycles;
15307 
15308 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15309 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15310 	phc_cycles = wb_data[1];
15311 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15312 
15313 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15314 
15315 	return phc_cycles;
15316 }
15317 
15318 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15319 {
15320 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15321 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15322 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15323 	bp->cyclecounter.shift = 0;
15324 	bp->cyclecounter.mult = 1;
15325 }
15326 
15327 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15328 {
15329 	struct bnx2x_func_state_params func_params = {NULL};
15330 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15331 		&func_params.params.set_timesync;
15332 
15333 	/* Prepare parameters for function state transitions */
15334 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15335 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15336 
15337 	func_params.f_obj = &bp->func_obj;
15338 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15339 
15340 	/* Function parameters */
15341 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15342 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15343 
15344 	return bnx2x_func_state_change(bp, &func_params);
15345 }
15346 
15347 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15348 {
15349 	struct bnx2x_queue_state_params q_params;
15350 	int rc, i;
15351 
15352 	/* send queue update ramrod to enable PTP packets */
15353 	memset(&q_params, 0, sizeof(q_params));
15354 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15355 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15356 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15357 		  &q_params.params.update.update_flags);
15358 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15359 		  &q_params.params.update.update_flags);
15360 
15361 	/* send the ramrod on all the queues of the PF */
15362 	for_each_eth_queue(bp, i) {
15363 		struct bnx2x_fastpath *fp = &bp->fp[i];
15364 
15365 		/* Set the appropriate Queue object */
15366 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15367 
15368 		/* Update the Queue state */
15369 		rc = bnx2x_queue_state_change(bp, &q_params);
15370 		if (rc) {
15371 			BNX2X_ERR("Failed to enable PTP packets\n");
15372 			return rc;
15373 		}
15374 	}
15375 
15376 	return 0;
15377 }
15378 
15379 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15380 {
15381 	int port = BP_PORT(bp);
15382 	int rc;
15383 
15384 	if (!bp->hwtstamp_ioctl_called)
15385 		return 0;
15386 
15387 	switch (bp->tx_type) {
15388 	case HWTSTAMP_TX_ON:
15389 		bp->flags |= TX_TIMESTAMPING_EN;
15390 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15391 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15392 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15393 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15394 		break;
15395 	case HWTSTAMP_TX_ONESTEP_SYNC:
15396 		BNX2X_ERR("One-step timestamping is not supported\n");
15397 		return -ERANGE;
15398 	}
15399 
15400 	switch (bp->rx_filter) {
15401 	case HWTSTAMP_FILTER_NONE:
15402 		break;
15403 	case HWTSTAMP_FILTER_ALL:
15404 	case HWTSTAMP_FILTER_SOME:
15405 	case HWTSTAMP_FILTER_NTP_ALL:
15406 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15407 		break;
15408 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15409 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15410 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15411 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15412 		/* Initialize PTP detection for UDP/IPv4 events */
15413 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15414 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15415 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15416 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15417 		break;
15418 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15419 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15420 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15421 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15422 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15423 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15424 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15425 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15426 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15427 		break;
15428 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15429 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15430 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15431 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15432 		/* Initialize PTP detection L2 events */
15433 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15434 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15435 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15436 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15437 
15438 		break;
15439 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15440 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15441 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15442 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15443 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15444 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15445 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15446 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15447 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15448 		break;
15449 	}
15450 
15451 	/* Indicate to FW that this PF expects recorded PTP packets */
15452 	rc = bnx2x_enable_ptp_packets(bp);
15453 	if (rc)
15454 		return rc;
15455 
15456 	/* Enable sending PTP packets to host */
15457 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15458 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15459 
15460 	return 0;
15461 }
15462 
15463 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15464 {
15465 	struct hwtstamp_config config;
15466 	int rc;
15467 
15468 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15469 
15470 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15471 		return -EFAULT;
15472 
15473 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15474 	   config.tx_type, config.rx_filter);
15475 
15476 	if (config.flags) {
15477 		BNX2X_ERR("config.flags is reserved for future use\n");
15478 		return -EINVAL;
15479 	}
15480 
15481 	bp->hwtstamp_ioctl_called = 1;
15482 	bp->tx_type = config.tx_type;
15483 	bp->rx_filter = config.rx_filter;
15484 
15485 	rc = bnx2x_configure_ptp_filters(bp);
15486 	if (rc)
15487 		return rc;
15488 
15489 	config.rx_filter = bp->rx_filter;
15490 
15491 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15492 		-EFAULT : 0;
15493 }
15494 
15495 /* Configures HW for PTP */
15496 static int bnx2x_configure_ptp(struct bnx2x *bp)
15497 {
15498 	int rc, port = BP_PORT(bp);
15499 	u32 wb_data[2];
15500 
15501 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15502 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15503 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15504 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15505 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15506 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15507 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15508 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15509 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15510 
15511 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15512 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15513 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15514 
15515 	/* Enable the PTP feature */
15516 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15517 	       NIG_REG_P0_PTP_EN, 0x3F);
15518 
15519 	/* Enable the free-running counter */
15520 	wb_data[0] = 0;
15521 	wb_data[1] = 0;
15522 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15523 
15524 	/* Reset drift register (offset register is not reset) */
15525 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15526 	if (rc) {
15527 		BNX2X_ERR("Failed to reset PHC drift register\n");
15528 		return -EFAULT;
15529 	}
15530 
15531 	/* Reset possibly old timestamps */
15532 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15533 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15534 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15535 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15536 
15537 	return 0;
15538 }
15539 
15540 /* Called during load, to initialize PTP-related stuff */
15541 void bnx2x_init_ptp(struct bnx2x *bp)
15542 {
15543 	int rc;
15544 
15545 	/* Configure PTP in HW */
15546 	rc = bnx2x_configure_ptp(bp);
15547 	if (rc) {
15548 		BNX2X_ERR("Stopping PTP initialization\n");
15549 		return;
15550 	}
15551 
15552 	/* Init work queue for Tx timestamping */
15553 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15554 
15555 	/* Init cyclecounter and timecounter. This is done only in the first
15556 	 * load. If done in every load, PTP application will fail when doing
15557 	 * unload / load (e.g. MTU change) while it is running.
15558 	 */
15559 	if (!bp->timecounter_init_done) {
15560 		bnx2x_init_cyclecounter(bp);
15561 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15562 				 ktime_to_ns(ktime_get_real()));
15563 		bp->timecounter_init_done = 1;
15564 	}
15565 
15566 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15567 }
15568