xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #if IS_ENABLED(CONFIG_BNX2X_GENEVE)
63 #include <net/geneve.h>
64 #endif
65 #include "bnx2x.h"
66 #include "bnx2x_init.h"
67 #include "bnx2x_init_ops.h"
68 #include "bnx2x_cmn.h"
69 #include "bnx2x_vfpf.h"
70 #include "bnx2x_dcb.h"
71 #include "bnx2x_sp.h"
72 #include <linux/firmware.h>
73 #include "bnx2x_fw_file_hdr.h"
74 /* FW files */
75 #define FW_FILE_VERSION					\
76 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
77 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
78 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
79 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
80 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
81 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
82 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
83 
84 /* Time in jiffies before concluding the transmitter is hung */
85 #define TX_TIMEOUT		(5*HZ)
86 
87 static char version[] =
88 	"QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
89 	DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
90 
91 MODULE_AUTHOR("Eliezer Tamir");
92 MODULE_DESCRIPTION("QLogic "
93 		   "BCM57710/57711/57711E/"
94 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
95 		   "57840/57840_MF Driver");
96 MODULE_LICENSE("GPL");
97 MODULE_VERSION(DRV_MODULE_VERSION);
98 MODULE_FIRMWARE(FW_FILE_NAME_E1);
99 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
100 MODULE_FIRMWARE(FW_FILE_NAME_E2);
101 
102 int bnx2x_num_queues;
103 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
104 MODULE_PARM_DESC(num_queues,
105 		 " Set number of queues (default is as a number of CPUs)");
106 
107 static int disable_tpa;
108 module_param(disable_tpa, int, S_IRUGO);
109 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
110 
111 static int int_mode;
112 module_param(int_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 				"(1 INT#x; 2 MSI)");
115 
116 static int dropless_fc;
117 module_param(dropless_fc, int, S_IRUGO);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119 
120 static int mrrs = -1;
121 module_param(mrrs, int, S_IRUGO);
122 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
123 
124 static int debug;
125 module_param(debug, int, S_IRUGO);
126 MODULE_PARM_DESC(debug, " Default debug msglevel");
127 
128 static struct workqueue_struct *bnx2x_wq;
129 struct workqueue_struct *bnx2x_iov_wq;
130 
131 struct bnx2x_mac_vals {
132 	u32 xmac_addr;
133 	u32 xmac_val;
134 	u32 emac_addr;
135 	u32 emac_val;
136 	u32 umac_addr[2];
137 	u32 umac_val[2];
138 	u32 bmac_addr;
139 	u32 bmac_val[2];
140 };
141 
142 enum bnx2x_board_type {
143 	BCM57710 = 0,
144 	BCM57711,
145 	BCM57711E,
146 	BCM57712,
147 	BCM57712_MF,
148 	BCM57712_VF,
149 	BCM57800,
150 	BCM57800_MF,
151 	BCM57800_VF,
152 	BCM57810,
153 	BCM57810_MF,
154 	BCM57810_VF,
155 	BCM57840_4_10,
156 	BCM57840_2_20,
157 	BCM57840_MF,
158 	BCM57840_VF,
159 	BCM57811,
160 	BCM57811_MF,
161 	BCM57840_O,
162 	BCM57840_MFO,
163 	BCM57811_VF
164 };
165 
166 /* indexed by board_type, above */
167 static struct {
168 	char *name;
169 } board_info[] = {
170 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
171 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
172 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
173 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
174 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
175 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
176 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
177 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
178 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
179 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
180 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
181 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
182 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
183 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
184 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
185 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
186 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
187 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
188 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
189 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
190 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
191 };
192 
193 #ifndef PCI_DEVICE_ID_NX2_57710
194 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711
197 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57711E
200 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712
203 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_MF
206 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57712_VF
209 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800
212 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_MF
215 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57800_VF
218 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810
221 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57810_MF
224 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57840_O
227 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57810_VF
230 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
233 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
236 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
239 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_MF
242 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57840_VF
245 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811
248 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_MF
251 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
252 #endif
253 #ifndef PCI_DEVICE_ID_NX2_57811_VF
254 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
255 #endif
256 
257 static const struct pci_device_id bnx2x_pci_tbl[] = {
258 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
259 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
271 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
273 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
275 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
276 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
278 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
279 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
280 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
281 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
282 	{ 0 }
283 };
284 
285 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
286 
287 /* Global resources for unloading a previously loaded device */
288 #define BNX2X_PREV_WAIT_NEEDED 1
289 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
290 static LIST_HEAD(bnx2x_prev_list);
291 
292 /* Forward declaration */
293 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
294 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
295 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
296 
297 /****************************************************************************
298 * General service functions
299 ****************************************************************************/
300 
301 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
302 
303 static void __storm_memset_dma_mapping(struct bnx2x *bp,
304 				       u32 addr, dma_addr_t mapping)
305 {
306 	REG_WR(bp,  addr, U64_LO(mapping));
307 	REG_WR(bp,  addr + 4, U64_HI(mapping));
308 }
309 
310 static void storm_memset_spq_addr(struct bnx2x *bp,
311 				  dma_addr_t mapping, u16 abs_fid)
312 {
313 	u32 addr = XSEM_REG_FAST_MEMORY +
314 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
315 
316 	__storm_memset_dma_mapping(bp, addr, mapping);
317 }
318 
319 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
320 				  u16 pf_id)
321 {
322 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
323 		pf_id);
324 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
325 		pf_id);
326 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
327 		pf_id);
328 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
329 		pf_id);
330 }
331 
332 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
333 				 u8 enable)
334 {
335 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
336 		enable);
337 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
338 		enable);
339 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
340 		enable);
341 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
342 		enable);
343 }
344 
345 static void storm_memset_eq_data(struct bnx2x *bp,
346 				 struct event_ring_data *eq_data,
347 				u16 pfid)
348 {
349 	size_t size = sizeof(struct event_ring_data);
350 
351 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
352 
353 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
354 }
355 
356 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
357 				 u16 pfid)
358 {
359 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
360 	REG_WR16(bp, addr, eq_prod);
361 }
362 
363 /* used only at init
364  * locking is done by mcp
365  */
366 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
367 {
368 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
369 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
370 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
371 			       PCICFG_VENDOR_ID_OFFSET);
372 }
373 
374 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
375 {
376 	u32 val;
377 
378 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
379 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
380 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
381 			       PCICFG_VENDOR_ID_OFFSET);
382 
383 	return val;
384 }
385 
386 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
387 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
388 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
389 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
390 #define DMAE_DP_DST_NONE	"dst_addr [none]"
391 
392 static void bnx2x_dp_dmae(struct bnx2x *bp,
393 			  struct dmae_command *dmae, int msglvl)
394 {
395 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
396 	int i;
397 
398 	switch (dmae->opcode & DMAE_COMMAND_DST) {
399 	case DMAE_CMD_DST_PCI:
400 		if (src_type == DMAE_CMD_SRC_PCI)
401 			DP(msglvl, "DMAE: opcode 0x%08x\n"
402 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
403 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
404 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
405 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
406 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
407 			   dmae->comp_val);
408 		else
409 			DP(msglvl, "DMAE: opcode 0x%08x\n"
410 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
411 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
412 			   dmae->opcode, dmae->src_addr_lo >> 2,
413 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
414 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
415 			   dmae->comp_val);
416 		break;
417 	case DMAE_CMD_DST_GRC:
418 		if (src_type == DMAE_CMD_SRC_PCI)
419 			DP(msglvl, "DMAE: opcode 0x%08x\n"
420 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
421 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
422 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
423 			   dmae->len, dmae->dst_addr_lo >> 2,
424 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
425 			   dmae->comp_val);
426 		else
427 			DP(msglvl, "DMAE: opcode 0x%08x\n"
428 			   "src [%08x], len [%d*4], dst [%08x]\n"
429 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
430 			   dmae->opcode, dmae->src_addr_lo >> 2,
431 			   dmae->len, dmae->dst_addr_lo >> 2,
432 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
433 			   dmae->comp_val);
434 		break;
435 	default:
436 		if (src_type == DMAE_CMD_SRC_PCI)
437 			DP(msglvl, "DMAE: opcode 0x%08x\n"
438 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
439 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
440 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
441 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
442 			   dmae->comp_val);
443 		else
444 			DP(msglvl, "DMAE: opcode 0x%08x\n"
445 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
446 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
447 			   dmae->opcode, dmae->src_addr_lo >> 2,
448 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
449 			   dmae->comp_val);
450 		break;
451 	}
452 
453 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
454 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
455 		   i, *(((u32 *)dmae) + i));
456 }
457 
458 /* copy command into DMAE command memory and set DMAE command go */
459 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
460 {
461 	u32 cmd_offset;
462 	int i;
463 
464 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
465 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
466 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
467 	}
468 	REG_WR(bp, dmae_reg_go_c[idx], 1);
469 }
470 
471 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
472 {
473 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
474 			   DMAE_CMD_C_ENABLE);
475 }
476 
477 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
478 {
479 	return opcode & ~DMAE_CMD_SRC_RESET;
480 }
481 
482 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
483 			     bool with_comp, u8 comp_type)
484 {
485 	u32 opcode = 0;
486 
487 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
488 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
489 
490 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
491 
492 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
493 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
494 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
495 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
496 
497 #ifdef __BIG_ENDIAN
498 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
499 #else
500 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
501 #endif
502 	if (with_comp)
503 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
504 	return opcode;
505 }
506 
507 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
508 				      struct dmae_command *dmae,
509 				      u8 src_type, u8 dst_type)
510 {
511 	memset(dmae, 0, sizeof(struct dmae_command));
512 
513 	/* set the opcode */
514 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
515 					 true, DMAE_COMP_PCI);
516 
517 	/* fill in the completion parameters */
518 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
519 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
520 	dmae->comp_val = DMAE_COMP_VAL;
521 }
522 
523 /* issue a dmae command over the init-channel and wait for completion */
524 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
525 			       u32 *comp)
526 {
527 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
528 	int rc = 0;
529 
530 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
531 
532 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
533 	 * as long as this code is called both from syscall context and
534 	 * from ndo_set_rx_mode() flow that may be called from BH.
535 	 */
536 
537 	spin_lock_bh(&bp->dmae_lock);
538 
539 	/* reset completion */
540 	*comp = 0;
541 
542 	/* post the command on the channel used for initializations */
543 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
544 
545 	/* wait for completion */
546 	udelay(5);
547 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
548 
549 		if (!cnt ||
550 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
551 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
552 			BNX2X_ERR("DMAE timeout!\n");
553 			rc = DMAE_TIMEOUT;
554 			goto unlock;
555 		}
556 		cnt--;
557 		udelay(50);
558 	}
559 	if (*comp & DMAE_PCI_ERR_FLAG) {
560 		BNX2X_ERR("DMAE PCI error!\n");
561 		rc = DMAE_PCI_ERROR;
562 	}
563 
564 unlock:
565 
566 	spin_unlock_bh(&bp->dmae_lock);
567 
568 	return rc;
569 }
570 
571 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
572 		      u32 len32)
573 {
574 	int rc;
575 	struct dmae_command dmae;
576 
577 	if (!bp->dmae_ready) {
578 		u32 *data = bnx2x_sp(bp, wb_data[0]);
579 
580 		if (CHIP_IS_E1(bp))
581 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
582 		else
583 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
584 		return;
585 	}
586 
587 	/* set opcode and fixed command fields */
588 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
589 
590 	/* fill in addresses and len */
591 	dmae.src_addr_lo = U64_LO(dma_addr);
592 	dmae.src_addr_hi = U64_HI(dma_addr);
593 	dmae.dst_addr_lo = dst_addr >> 2;
594 	dmae.dst_addr_hi = 0;
595 	dmae.len = len32;
596 
597 	/* issue the command and wait for completion */
598 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
599 	if (rc) {
600 		BNX2X_ERR("DMAE returned failure %d\n", rc);
601 #ifdef BNX2X_STOP_ON_ERROR
602 		bnx2x_panic();
603 #endif
604 	}
605 }
606 
607 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
608 {
609 	int rc;
610 	struct dmae_command dmae;
611 
612 	if (!bp->dmae_ready) {
613 		u32 *data = bnx2x_sp(bp, wb_data[0]);
614 		int i;
615 
616 		if (CHIP_IS_E1(bp))
617 			for (i = 0; i < len32; i++)
618 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
619 		else
620 			for (i = 0; i < len32; i++)
621 				data[i] = REG_RD(bp, src_addr + i*4);
622 
623 		return;
624 	}
625 
626 	/* set opcode and fixed command fields */
627 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
628 
629 	/* fill in addresses and len */
630 	dmae.src_addr_lo = src_addr >> 2;
631 	dmae.src_addr_hi = 0;
632 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
633 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
634 	dmae.len = len32;
635 
636 	/* issue the command and wait for completion */
637 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
638 	if (rc) {
639 		BNX2X_ERR("DMAE returned failure %d\n", rc);
640 #ifdef BNX2X_STOP_ON_ERROR
641 		bnx2x_panic();
642 #endif
643 	}
644 }
645 
646 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
647 				      u32 addr, u32 len)
648 {
649 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
650 	int offset = 0;
651 
652 	while (len > dmae_wr_max) {
653 		bnx2x_write_dmae(bp, phys_addr + offset,
654 				 addr + offset, dmae_wr_max);
655 		offset += dmae_wr_max * 4;
656 		len -= dmae_wr_max;
657 	}
658 
659 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
660 }
661 
662 enum storms {
663 	   XSTORM,
664 	   TSTORM,
665 	   CSTORM,
666 	   USTORM,
667 	   MAX_STORMS
668 };
669 
670 #define STORMS_NUM 4
671 #define REGS_IN_ENTRY 4
672 
673 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
674 					      enum storms storm,
675 					      int entry)
676 {
677 	switch (storm) {
678 	case XSTORM:
679 		return XSTORM_ASSERT_LIST_OFFSET(entry);
680 	case TSTORM:
681 		return TSTORM_ASSERT_LIST_OFFSET(entry);
682 	case CSTORM:
683 		return CSTORM_ASSERT_LIST_OFFSET(entry);
684 	case USTORM:
685 		return USTORM_ASSERT_LIST_OFFSET(entry);
686 	case MAX_STORMS:
687 	default:
688 		BNX2X_ERR("unknown storm\n");
689 	}
690 	return -EINVAL;
691 }
692 
693 static int bnx2x_mc_assert(struct bnx2x *bp)
694 {
695 	char last_idx;
696 	int i, j, rc = 0;
697 	enum storms storm;
698 	u32 regs[REGS_IN_ENTRY];
699 	u32 bar_storm_intmem[STORMS_NUM] = {
700 		BAR_XSTRORM_INTMEM,
701 		BAR_TSTRORM_INTMEM,
702 		BAR_CSTRORM_INTMEM,
703 		BAR_USTRORM_INTMEM
704 	};
705 	u32 storm_assert_list_index[STORMS_NUM] = {
706 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
707 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
708 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
709 		USTORM_ASSERT_LIST_INDEX_OFFSET
710 	};
711 	char *storms_string[STORMS_NUM] = {
712 		"XSTORM",
713 		"TSTORM",
714 		"CSTORM",
715 		"USTORM"
716 	};
717 
718 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
719 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
720 				   storm_assert_list_index[storm]);
721 		if (last_idx)
722 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
723 				  storms_string[storm], last_idx);
724 
725 		/* print the asserts */
726 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
727 			/* read a single assert entry */
728 			for (j = 0; j < REGS_IN_ENTRY; j++)
729 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
730 					  bnx2x_get_assert_list_entry(bp,
731 								      storm,
732 								      i) +
733 					  sizeof(u32) * j);
734 
735 			/* log entry if it contains a valid assert */
736 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
737 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
738 					  storms_string[storm], i, regs[3],
739 					  regs[2], regs[1], regs[0]);
740 				rc++;
741 			} else {
742 				break;
743 			}
744 		}
745 	}
746 
747 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
748 		  CHIP_IS_E1(bp) ? "everest1" :
749 		  CHIP_IS_E1H(bp) ? "everest1h" :
750 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
751 		  BCM_5710_FW_MAJOR_VERSION,
752 		  BCM_5710_FW_MINOR_VERSION,
753 		  BCM_5710_FW_REVISION_VERSION);
754 
755 	return rc;
756 }
757 
758 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
759 #define SCRATCH_BUFFER_SIZE(bp)	\
760 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
761 
762 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
763 {
764 	u32 addr, val;
765 	u32 mark, offset;
766 	__be32 data[9];
767 	int word;
768 	u32 trace_shmem_base;
769 	if (BP_NOMCP(bp)) {
770 		BNX2X_ERR("NO MCP - can not dump\n");
771 		return;
772 	}
773 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
774 		(bp->common.bc_ver & 0xff0000) >> 16,
775 		(bp->common.bc_ver & 0xff00) >> 8,
776 		(bp->common.bc_ver & 0xff));
777 
778 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
779 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
780 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
781 
782 	if (BP_PATH(bp) == 0)
783 		trace_shmem_base = bp->common.shmem_base;
784 	else
785 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
786 
787 	/* sanity */
788 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
789 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
790 				SCRATCH_BUFFER_SIZE(bp)) {
791 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
792 			  trace_shmem_base);
793 		return;
794 	}
795 
796 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
797 
798 	/* validate TRCB signature */
799 	mark = REG_RD(bp, addr);
800 	if (mark != MFW_TRACE_SIGNATURE) {
801 		BNX2X_ERR("Trace buffer signature is missing.");
802 		return ;
803 	}
804 
805 	/* read cyclic buffer pointer */
806 	addr += 4;
807 	mark = REG_RD(bp, addr);
808 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
809 	if (mark >= trace_shmem_base || mark < addr + 4) {
810 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
811 		return;
812 	}
813 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
814 
815 	printk("%s", lvl);
816 
817 	/* dump buffer after the mark */
818 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
819 		for (word = 0; word < 8; word++)
820 			data[word] = htonl(REG_RD(bp, offset + 4*word));
821 		data[8] = 0x0;
822 		pr_cont("%s", (char *)data);
823 	}
824 
825 	/* dump buffer before the mark */
826 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
827 		for (word = 0; word < 8; word++)
828 			data[word] = htonl(REG_RD(bp, offset + 4*word));
829 		data[8] = 0x0;
830 		pr_cont("%s", (char *)data);
831 	}
832 	printk("%s" "end of fw dump\n", lvl);
833 }
834 
835 static void bnx2x_fw_dump(struct bnx2x *bp)
836 {
837 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
838 }
839 
840 static void bnx2x_hc_int_disable(struct bnx2x *bp)
841 {
842 	int port = BP_PORT(bp);
843 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
844 	u32 val = REG_RD(bp, addr);
845 
846 	/* in E1 we must use only PCI configuration space to disable
847 	 * MSI/MSIX capability
848 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
849 	 */
850 	if (CHIP_IS_E1(bp)) {
851 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
852 		 * Use mask register to prevent from HC sending interrupts
853 		 * after we exit the function
854 		 */
855 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
856 
857 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
858 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
859 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
860 	} else
861 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
863 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
864 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
865 
866 	DP(NETIF_MSG_IFDOWN,
867 	   "write %x to HC %d (addr 0x%x)\n",
868 	   val, port, addr);
869 
870 	/* flush all outstanding writes */
871 	mmiowb();
872 
873 	REG_WR(bp, addr, val);
874 	if (REG_RD(bp, addr) != val)
875 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
876 }
877 
878 static void bnx2x_igu_int_disable(struct bnx2x *bp)
879 {
880 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
881 
882 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
883 		 IGU_PF_CONF_INT_LINE_EN |
884 		 IGU_PF_CONF_ATTN_BIT_EN);
885 
886 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
887 
888 	/* flush all outstanding writes */
889 	mmiowb();
890 
891 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
892 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
893 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
894 }
895 
896 static void bnx2x_int_disable(struct bnx2x *bp)
897 {
898 	if (bp->common.int_block == INT_BLOCK_HC)
899 		bnx2x_hc_int_disable(bp);
900 	else
901 		bnx2x_igu_int_disable(bp);
902 }
903 
904 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
905 {
906 	int i;
907 	u16 j;
908 	struct hc_sp_status_block_data sp_sb_data;
909 	int func = BP_FUNC(bp);
910 #ifdef BNX2X_STOP_ON_ERROR
911 	u16 start = 0, end = 0;
912 	u8 cos;
913 #endif
914 	if (IS_PF(bp) && disable_int)
915 		bnx2x_int_disable(bp);
916 
917 	bp->stats_state = STATS_STATE_DISABLED;
918 	bp->eth_stats.unrecoverable_error++;
919 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
920 
921 	BNX2X_ERR("begin crash dump -----------------\n");
922 
923 	/* Indices */
924 	/* Common */
925 	if (IS_PF(bp)) {
926 		struct host_sp_status_block *def_sb = bp->def_status_blk;
927 		int data_size, cstorm_offset;
928 
929 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
930 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
931 			  bp->spq_prod_idx, bp->stats_counter);
932 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
933 			  def_sb->atten_status_block.attn_bits,
934 			  def_sb->atten_status_block.attn_bits_ack,
935 			  def_sb->atten_status_block.status_block_id,
936 			  def_sb->atten_status_block.attn_bits_index);
937 		BNX2X_ERR("     def (");
938 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
939 			pr_cont("0x%x%s",
940 				def_sb->sp_sb.index_values[i],
941 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
942 
943 		data_size = sizeof(struct hc_sp_status_block_data) /
944 			    sizeof(u32);
945 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
946 		for (i = 0; i < data_size; i++)
947 			*((u32 *)&sp_sb_data + i) =
948 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
949 					   i * sizeof(u32));
950 
951 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
952 			sp_sb_data.igu_sb_id,
953 			sp_sb_data.igu_seg_id,
954 			sp_sb_data.p_func.pf_id,
955 			sp_sb_data.p_func.vnic_id,
956 			sp_sb_data.p_func.vf_id,
957 			sp_sb_data.p_func.vf_valid,
958 			sp_sb_data.state);
959 	}
960 
961 	for_each_eth_queue(bp, i) {
962 		struct bnx2x_fastpath *fp = &bp->fp[i];
963 		int loop;
964 		struct hc_status_block_data_e2 sb_data_e2;
965 		struct hc_status_block_data_e1x sb_data_e1x;
966 		struct hc_status_block_sm  *hc_sm_p =
967 			CHIP_IS_E1x(bp) ?
968 			sb_data_e1x.common.state_machine :
969 			sb_data_e2.common.state_machine;
970 		struct hc_index_data *hc_index_p =
971 			CHIP_IS_E1x(bp) ?
972 			sb_data_e1x.index_data :
973 			sb_data_e2.index_data;
974 		u8 data_size, cos;
975 		u32 *sb_data_p;
976 		struct bnx2x_fp_txdata txdata;
977 
978 		if (!bp->fp)
979 			break;
980 
981 		if (!fp->rx_cons_sb)
982 			continue;
983 
984 		/* Rx */
985 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
986 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
987 			  fp->rx_comp_prod,
988 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
989 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
990 			  fp->rx_sge_prod, fp->last_max_sge,
991 			  le16_to_cpu(fp->fp_hc_idx));
992 
993 		/* Tx */
994 		for_each_cos_in_tx_queue(fp, cos)
995 		{
996 			if (!fp->txdata_ptr[cos])
997 				break;
998 
999 			txdata = *fp->txdata_ptr[cos];
1000 
1001 			if (!txdata.tx_cons_sb)
1002 				continue;
1003 
1004 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1005 				  i, txdata.tx_pkt_prod,
1006 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1007 				  txdata.tx_bd_cons,
1008 				  le16_to_cpu(*txdata.tx_cons_sb));
1009 		}
1010 
1011 		loop = CHIP_IS_E1x(bp) ?
1012 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1013 
1014 		/* host sb data */
1015 
1016 		if (IS_FCOE_FP(fp))
1017 			continue;
1018 
1019 		BNX2X_ERR("     run indexes (");
1020 		for (j = 0; j < HC_SB_MAX_SM; j++)
1021 			pr_cont("0x%x%s",
1022 			       fp->sb_running_index[j],
1023 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1024 
1025 		BNX2X_ERR("     indexes (");
1026 		for (j = 0; j < loop; j++)
1027 			pr_cont("0x%x%s",
1028 			       fp->sb_index_values[j],
1029 			       (j == loop - 1) ? ")" : " ");
1030 
1031 		/* VF cannot access FW refelection for status block */
1032 		if (IS_VF(bp))
1033 			continue;
1034 
1035 		/* fw sb data */
1036 		data_size = CHIP_IS_E1x(bp) ?
1037 			sizeof(struct hc_status_block_data_e1x) :
1038 			sizeof(struct hc_status_block_data_e2);
1039 		data_size /= sizeof(u32);
1040 		sb_data_p = CHIP_IS_E1x(bp) ?
1041 			(u32 *)&sb_data_e1x :
1042 			(u32 *)&sb_data_e2;
1043 		/* copy sb data in here */
1044 		for (j = 0; j < data_size; j++)
1045 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1046 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1047 				j * sizeof(u32));
1048 
1049 		if (!CHIP_IS_E1x(bp)) {
1050 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1051 				sb_data_e2.common.p_func.pf_id,
1052 				sb_data_e2.common.p_func.vf_id,
1053 				sb_data_e2.common.p_func.vf_valid,
1054 				sb_data_e2.common.p_func.vnic_id,
1055 				sb_data_e2.common.same_igu_sb_1b,
1056 				sb_data_e2.common.state);
1057 		} else {
1058 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1059 				sb_data_e1x.common.p_func.pf_id,
1060 				sb_data_e1x.common.p_func.vf_id,
1061 				sb_data_e1x.common.p_func.vf_valid,
1062 				sb_data_e1x.common.p_func.vnic_id,
1063 				sb_data_e1x.common.same_igu_sb_1b,
1064 				sb_data_e1x.common.state);
1065 		}
1066 
1067 		/* SB_SMs data */
1068 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1069 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1070 				j, hc_sm_p[j].__flags,
1071 				hc_sm_p[j].igu_sb_id,
1072 				hc_sm_p[j].igu_seg_id,
1073 				hc_sm_p[j].time_to_expire,
1074 				hc_sm_p[j].timer_value);
1075 		}
1076 
1077 		/* Indices data */
1078 		for (j = 0; j < loop; j++) {
1079 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1080 			       hc_index_p[j].flags,
1081 			       hc_index_p[j].timeout);
1082 		}
1083 	}
1084 
1085 #ifdef BNX2X_STOP_ON_ERROR
1086 	if (IS_PF(bp)) {
1087 		/* event queue */
1088 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1089 		for (i = 0; i < NUM_EQ_DESC; i++) {
1090 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1091 
1092 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1093 				  i, bp->eq_ring[i].message.opcode,
1094 				  bp->eq_ring[i].message.error);
1095 			BNX2X_ERR("data: %x %x %x\n",
1096 				  data[0], data[1], data[2]);
1097 		}
1098 	}
1099 
1100 	/* Rings */
1101 	/* Rx */
1102 	for_each_valid_rx_queue(bp, i) {
1103 		struct bnx2x_fastpath *fp = &bp->fp[i];
1104 
1105 		if (!bp->fp)
1106 			break;
1107 
1108 		if (!fp->rx_cons_sb)
1109 			continue;
1110 
1111 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1112 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1113 		for (j = start; j != end; j = RX_BD(j + 1)) {
1114 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1115 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1116 
1117 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1118 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1119 		}
1120 
1121 		start = RX_SGE(fp->rx_sge_prod);
1122 		end = RX_SGE(fp->last_max_sge);
1123 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1124 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1125 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1126 
1127 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1128 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1129 		}
1130 
1131 		start = RCQ_BD(fp->rx_comp_cons - 10);
1132 		end = RCQ_BD(fp->rx_comp_cons + 503);
1133 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1134 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1135 
1136 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1137 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1138 		}
1139 	}
1140 
1141 	/* Tx */
1142 	for_each_valid_tx_queue(bp, i) {
1143 		struct bnx2x_fastpath *fp = &bp->fp[i];
1144 
1145 		if (!bp->fp)
1146 			break;
1147 
1148 		for_each_cos_in_tx_queue(fp, cos) {
1149 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1150 
1151 			if (!fp->txdata_ptr[cos])
1152 				break;
1153 
1154 			if (!txdata->tx_cons_sb)
1155 				continue;
1156 
1157 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1158 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1159 			for (j = start; j != end; j = TX_BD(j + 1)) {
1160 				struct sw_tx_bd *sw_bd =
1161 					&txdata->tx_buf_ring[j];
1162 
1163 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1164 					  i, cos, j, sw_bd->skb,
1165 					  sw_bd->first_bd);
1166 			}
1167 
1168 			start = TX_BD(txdata->tx_bd_cons - 10);
1169 			end = TX_BD(txdata->tx_bd_cons + 254);
1170 			for (j = start; j != end; j = TX_BD(j + 1)) {
1171 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1172 
1173 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1174 					  i, cos, j, tx_bd[0], tx_bd[1],
1175 					  tx_bd[2], tx_bd[3]);
1176 			}
1177 		}
1178 	}
1179 #endif
1180 	if (IS_PF(bp)) {
1181 		bnx2x_fw_dump(bp);
1182 		bnx2x_mc_assert(bp);
1183 	}
1184 	BNX2X_ERR("end crash dump -----------------\n");
1185 }
1186 
1187 /*
1188  * FLR Support for E2
1189  *
1190  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1191  * initialization.
1192  */
1193 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1194 #define FLR_WAIT_INTERVAL	50	/* usec */
1195 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1196 
1197 struct pbf_pN_buf_regs {
1198 	int pN;
1199 	u32 init_crd;
1200 	u32 crd;
1201 	u32 crd_freed;
1202 };
1203 
1204 struct pbf_pN_cmd_regs {
1205 	int pN;
1206 	u32 lines_occup;
1207 	u32 lines_freed;
1208 };
1209 
1210 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1211 				     struct pbf_pN_buf_regs *regs,
1212 				     u32 poll_count)
1213 {
1214 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1215 	u32 cur_cnt = poll_count;
1216 
1217 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1218 	crd = crd_start = REG_RD(bp, regs->crd);
1219 	init_crd = REG_RD(bp, regs->init_crd);
1220 
1221 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1222 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1223 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1224 
1225 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1226 	       (init_crd - crd_start))) {
1227 		if (cur_cnt--) {
1228 			udelay(FLR_WAIT_INTERVAL);
1229 			crd = REG_RD(bp, regs->crd);
1230 			crd_freed = REG_RD(bp, regs->crd_freed);
1231 		} else {
1232 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1233 			   regs->pN);
1234 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1235 			   regs->pN, crd);
1236 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1237 			   regs->pN, crd_freed);
1238 			break;
1239 		}
1240 	}
1241 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1242 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1243 }
1244 
1245 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1246 				     struct pbf_pN_cmd_regs *regs,
1247 				     u32 poll_count)
1248 {
1249 	u32 occup, to_free, freed, freed_start;
1250 	u32 cur_cnt = poll_count;
1251 
1252 	occup = to_free = REG_RD(bp, regs->lines_occup);
1253 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1254 
1255 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1256 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1257 
1258 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1259 		if (cur_cnt--) {
1260 			udelay(FLR_WAIT_INTERVAL);
1261 			occup = REG_RD(bp, regs->lines_occup);
1262 			freed = REG_RD(bp, regs->lines_freed);
1263 		} else {
1264 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1265 			   regs->pN);
1266 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1267 			   regs->pN, occup);
1268 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1269 			   regs->pN, freed);
1270 			break;
1271 		}
1272 	}
1273 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1274 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1275 }
1276 
1277 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1278 				    u32 expected, u32 poll_count)
1279 {
1280 	u32 cur_cnt = poll_count;
1281 	u32 val;
1282 
1283 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1284 		udelay(FLR_WAIT_INTERVAL);
1285 
1286 	return val;
1287 }
1288 
1289 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1290 				    char *msg, u32 poll_cnt)
1291 {
1292 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1293 	if (val != 0) {
1294 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1295 		return 1;
1296 	}
1297 	return 0;
1298 }
1299 
1300 /* Common routines with VF FLR cleanup */
1301 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1302 {
1303 	/* adjust polling timeout */
1304 	if (CHIP_REV_IS_EMUL(bp))
1305 		return FLR_POLL_CNT * 2000;
1306 
1307 	if (CHIP_REV_IS_FPGA(bp))
1308 		return FLR_POLL_CNT * 120;
1309 
1310 	return FLR_POLL_CNT;
1311 }
1312 
1313 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1314 {
1315 	struct pbf_pN_cmd_regs cmd_regs[] = {
1316 		{0, (CHIP_IS_E3B0(bp)) ?
1317 			PBF_REG_TQ_OCCUPANCY_Q0 :
1318 			PBF_REG_P0_TQ_OCCUPANCY,
1319 		    (CHIP_IS_E3B0(bp)) ?
1320 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1321 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1322 		{1, (CHIP_IS_E3B0(bp)) ?
1323 			PBF_REG_TQ_OCCUPANCY_Q1 :
1324 			PBF_REG_P1_TQ_OCCUPANCY,
1325 		    (CHIP_IS_E3B0(bp)) ?
1326 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1327 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1328 		{4, (CHIP_IS_E3B0(bp)) ?
1329 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1330 			PBF_REG_P4_TQ_OCCUPANCY,
1331 		    (CHIP_IS_E3B0(bp)) ?
1332 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1333 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1334 	};
1335 
1336 	struct pbf_pN_buf_regs buf_regs[] = {
1337 		{0, (CHIP_IS_E3B0(bp)) ?
1338 			PBF_REG_INIT_CRD_Q0 :
1339 			PBF_REG_P0_INIT_CRD ,
1340 		    (CHIP_IS_E3B0(bp)) ?
1341 			PBF_REG_CREDIT_Q0 :
1342 			PBF_REG_P0_CREDIT,
1343 		    (CHIP_IS_E3B0(bp)) ?
1344 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1345 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1346 		{1, (CHIP_IS_E3B0(bp)) ?
1347 			PBF_REG_INIT_CRD_Q1 :
1348 			PBF_REG_P1_INIT_CRD,
1349 		    (CHIP_IS_E3B0(bp)) ?
1350 			PBF_REG_CREDIT_Q1 :
1351 			PBF_REG_P1_CREDIT,
1352 		    (CHIP_IS_E3B0(bp)) ?
1353 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1354 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1355 		{4, (CHIP_IS_E3B0(bp)) ?
1356 			PBF_REG_INIT_CRD_LB_Q :
1357 			PBF_REG_P4_INIT_CRD,
1358 		    (CHIP_IS_E3B0(bp)) ?
1359 			PBF_REG_CREDIT_LB_Q :
1360 			PBF_REG_P4_CREDIT,
1361 		    (CHIP_IS_E3B0(bp)) ?
1362 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1363 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1364 	};
1365 
1366 	int i;
1367 
1368 	/* Verify the command queues are flushed P0, P1, P4 */
1369 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1370 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1371 
1372 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1373 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1374 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1375 }
1376 
1377 #define OP_GEN_PARAM(param) \
1378 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1379 
1380 #define OP_GEN_TYPE(type) \
1381 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1382 
1383 #define OP_GEN_AGG_VECT(index) \
1384 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1385 
1386 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1387 {
1388 	u32 op_gen_command = 0;
1389 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1390 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1391 	int ret = 0;
1392 
1393 	if (REG_RD(bp, comp_addr)) {
1394 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1395 		return 1;
1396 	}
1397 
1398 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1399 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1400 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1401 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1402 
1403 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1404 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1405 
1406 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1407 		BNX2X_ERR("FW final cleanup did not succeed\n");
1408 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1409 		   (REG_RD(bp, comp_addr)));
1410 		bnx2x_panic();
1411 		return 1;
1412 	}
1413 	/* Zero completion for next FLR */
1414 	REG_WR(bp, comp_addr, 0);
1415 
1416 	return ret;
1417 }
1418 
1419 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1420 {
1421 	u16 status;
1422 
1423 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1424 	return status & PCI_EXP_DEVSTA_TRPND;
1425 }
1426 
1427 /* PF FLR specific routines
1428 */
1429 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1430 {
1431 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1432 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1434 			"CFC PF usage counter timed out",
1435 			poll_cnt))
1436 		return 1;
1437 
1438 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1439 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440 			DORQ_REG_PF_USAGE_CNT,
1441 			"DQ PF usage counter timed out",
1442 			poll_cnt))
1443 		return 1;
1444 
1445 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1446 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1448 			"QM PF usage counter timed out",
1449 			poll_cnt))
1450 		return 1;
1451 
1452 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1453 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1454 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1455 			"Timers VNIC usage counter timed out",
1456 			poll_cnt))
1457 		return 1;
1458 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1459 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1460 			"Timers NUM_SCANS usage counter timed out",
1461 			poll_cnt))
1462 		return 1;
1463 
1464 	/* Wait DMAE PF usage counter to zero */
1465 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1466 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1467 			"DMAE command register timed out",
1468 			poll_cnt))
1469 		return 1;
1470 
1471 	return 0;
1472 }
1473 
1474 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1475 {
1476 	u32 val;
1477 
1478 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1479 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1480 
1481 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1482 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1483 
1484 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1485 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1486 
1487 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1488 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1489 
1490 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1491 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1492 
1493 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1494 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1495 
1496 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1497 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1498 
1499 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1500 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1501 	   val);
1502 }
1503 
1504 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1505 {
1506 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1507 
1508 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1509 
1510 	/* Re-enable PF target read access */
1511 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1512 
1513 	/* Poll HW usage counters */
1514 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1515 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1516 		return -EBUSY;
1517 
1518 	/* Zero the igu 'trailing edge' and 'leading edge' */
1519 
1520 	/* Send the FW cleanup command */
1521 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1522 		return -EBUSY;
1523 
1524 	/* ATC cleanup */
1525 
1526 	/* Verify TX hw is flushed */
1527 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1528 
1529 	/* Wait 100ms (not adjusted according to platform) */
1530 	msleep(100);
1531 
1532 	/* Verify no pending pci transactions */
1533 	if (bnx2x_is_pcie_pending(bp->pdev))
1534 		BNX2X_ERR("PCIE Transactions still pending\n");
1535 
1536 	/* Debug */
1537 	bnx2x_hw_enable_status(bp);
1538 
1539 	/*
1540 	 * Master enable - Due to WB DMAE writes performed before this
1541 	 * register is re-initialized as part of the regular function init
1542 	 */
1543 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1544 
1545 	return 0;
1546 }
1547 
1548 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1549 {
1550 	int port = BP_PORT(bp);
1551 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1552 	u32 val = REG_RD(bp, addr);
1553 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1554 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1555 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1556 
1557 	if (msix) {
1558 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1559 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1560 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1561 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1562 		if (single_msix)
1563 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1564 	} else if (msi) {
1565 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1566 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1567 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1569 	} else {
1570 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1571 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1572 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1573 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1574 
1575 		if (!CHIP_IS_E1(bp)) {
1576 			DP(NETIF_MSG_IFUP,
1577 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1578 
1579 			REG_WR(bp, addr, val);
1580 
1581 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1582 		}
1583 	}
1584 
1585 	if (CHIP_IS_E1(bp))
1586 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1587 
1588 	DP(NETIF_MSG_IFUP,
1589 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1590 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1591 
1592 	REG_WR(bp, addr, val);
1593 	/*
1594 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1595 	 */
1596 	mmiowb();
1597 	barrier();
1598 
1599 	if (!CHIP_IS_E1(bp)) {
1600 		/* init leading/trailing edge */
1601 		if (IS_MF(bp)) {
1602 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1603 			if (bp->port.pmf)
1604 				/* enable nig and gpio3 attention */
1605 				val |= 0x1100;
1606 		} else
1607 			val = 0xffff;
1608 
1609 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1610 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1611 	}
1612 
1613 	/* Make sure that interrupts are indeed enabled from here on */
1614 	mmiowb();
1615 }
1616 
1617 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1618 {
1619 	u32 val;
1620 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1621 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1622 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1623 
1624 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1625 
1626 	if (msix) {
1627 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1628 			 IGU_PF_CONF_SINGLE_ISR_EN);
1629 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1630 			IGU_PF_CONF_ATTN_BIT_EN);
1631 
1632 		if (single_msix)
1633 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1634 	} else if (msi) {
1635 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1636 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1637 			IGU_PF_CONF_ATTN_BIT_EN |
1638 			IGU_PF_CONF_SINGLE_ISR_EN);
1639 	} else {
1640 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1641 		val |= (IGU_PF_CONF_INT_LINE_EN |
1642 			IGU_PF_CONF_ATTN_BIT_EN |
1643 			IGU_PF_CONF_SINGLE_ISR_EN);
1644 	}
1645 
1646 	/* Clean previous status - need to configure igu prior to ack*/
1647 	if ((!msix) || single_msix) {
1648 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1649 		bnx2x_ack_int(bp);
1650 	}
1651 
1652 	val |= IGU_PF_CONF_FUNC_EN;
1653 
1654 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1655 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1656 
1657 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1658 
1659 	if (val & IGU_PF_CONF_INT_LINE_EN)
1660 		pci_intx(bp->pdev, true);
1661 
1662 	barrier();
1663 
1664 	/* init leading/trailing edge */
1665 	if (IS_MF(bp)) {
1666 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1667 		if (bp->port.pmf)
1668 			/* enable nig and gpio3 attention */
1669 			val |= 0x1100;
1670 	} else
1671 		val = 0xffff;
1672 
1673 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1674 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1675 
1676 	/* Make sure that interrupts are indeed enabled from here on */
1677 	mmiowb();
1678 }
1679 
1680 void bnx2x_int_enable(struct bnx2x *bp)
1681 {
1682 	if (bp->common.int_block == INT_BLOCK_HC)
1683 		bnx2x_hc_int_enable(bp);
1684 	else
1685 		bnx2x_igu_int_enable(bp);
1686 }
1687 
1688 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1689 {
1690 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1691 	int i, offset;
1692 
1693 	if (disable_hw)
1694 		/* prevent the HW from sending interrupts */
1695 		bnx2x_int_disable(bp);
1696 
1697 	/* make sure all ISRs are done */
1698 	if (msix) {
1699 		synchronize_irq(bp->msix_table[0].vector);
1700 		offset = 1;
1701 		if (CNIC_SUPPORT(bp))
1702 			offset++;
1703 		for_each_eth_queue(bp, i)
1704 			synchronize_irq(bp->msix_table[offset++].vector);
1705 	} else
1706 		synchronize_irq(bp->pdev->irq);
1707 
1708 	/* make sure sp_task is not running */
1709 	cancel_delayed_work(&bp->sp_task);
1710 	cancel_delayed_work(&bp->period_task);
1711 	flush_workqueue(bnx2x_wq);
1712 }
1713 
1714 /* fast path */
1715 
1716 /*
1717  * General service functions
1718  */
1719 
1720 /* Return true if succeeded to acquire the lock */
1721 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1722 {
1723 	u32 lock_status;
1724 	u32 resource_bit = (1 << resource);
1725 	int func = BP_FUNC(bp);
1726 	u32 hw_lock_control_reg;
1727 
1728 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1729 	   "Trying to take a lock on resource %d\n", resource);
1730 
1731 	/* Validating that the resource is within range */
1732 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1733 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1734 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1735 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1736 		return false;
1737 	}
1738 
1739 	if (func <= 5)
1740 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1741 	else
1742 		hw_lock_control_reg =
1743 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1744 
1745 	/* Try to acquire the lock */
1746 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1747 	lock_status = REG_RD(bp, hw_lock_control_reg);
1748 	if (lock_status & resource_bit)
1749 		return true;
1750 
1751 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1752 	   "Failed to get a lock on resource %d\n", resource);
1753 	return false;
1754 }
1755 
1756 /**
1757  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1758  *
1759  * @bp:	driver handle
1760  *
1761  * Returns the recovery leader resource id according to the engine this function
1762  * belongs to. Currently only only 2 engines is supported.
1763  */
1764 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1765 {
1766 	if (BP_PATH(bp))
1767 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1768 	else
1769 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1770 }
1771 
1772 /**
1773  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1774  *
1775  * @bp: driver handle
1776  *
1777  * Tries to acquire a leader lock for current engine.
1778  */
1779 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1780 {
1781 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1782 }
1783 
1784 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1785 
1786 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1787 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1788 {
1789 	/* Set the interrupt occurred bit for the sp-task to recognize it
1790 	 * must ack the interrupt and transition according to the IGU
1791 	 * state machine.
1792 	 */
1793 	atomic_set(&bp->interrupt_occurred, 1);
1794 
1795 	/* The sp_task must execute only after this bit
1796 	 * is set, otherwise we will get out of sync and miss all
1797 	 * further interrupts. Hence, the barrier.
1798 	 */
1799 	smp_wmb();
1800 
1801 	/* schedule sp_task to workqueue */
1802 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1803 }
1804 
1805 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1806 {
1807 	struct bnx2x *bp = fp->bp;
1808 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1810 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1811 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1812 
1813 	DP(BNX2X_MSG_SP,
1814 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1815 	   fp->index, cid, command, bp->state,
1816 	   rr_cqe->ramrod_cqe.ramrod_type);
1817 
1818 	/* If cid is within VF range, replace the slowpath object with the
1819 	 * one corresponding to this VF
1820 	 */
1821 	if (cid >= BNX2X_FIRST_VF_CID  &&
1822 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1823 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1824 
1825 	switch (command) {
1826 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1827 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1828 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1829 		break;
1830 
1831 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1832 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1833 		drv_cmd = BNX2X_Q_CMD_SETUP;
1834 		break;
1835 
1836 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1837 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1838 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1839 		break;
1840 
1841 	case (RAMROD_CMD_ID_ETH_HALT):
1842 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1843 		drv_cmd = BNX2X_Q_CMD_HALT;
1844 		break;
1845 
1846 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1847 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1848 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1849 		break;
1850 
1851 	case (RAMROD_CMD_ID_ETH_EMPTY):
1852 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1853 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1854 		break;
1855 
1856 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1857 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1858 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1859 		break;
1860 
1861 	default:
1862 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1863 			  command, fp->index);
1864 		return;
1865 	}
1866 
1867 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1868 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1869 		/* q_obj->complete_cmd() failure means that this was
1870 		 * an unexpected completion.
1871 		 *
1872 		 * In this case we don't want to increase the bp->spq_left
1873 		 * because apparently we haven't sent this command the first
1874 		 * place.
1875 		 */
1876 #ifdef BNX2X_STOP_ON_ERROR
1877 		bnx2x_panic();
1878 #else
1879 		return;
1880 #endif
1881 
1882 	smp_mb__before_atomic();
1883 	atomic_inc(&bp->cq_spq_left);
1884 	/* push the change in bp->spq_left and towards the memory */
1885 	smp_mb__after_atomic();
1886 
1887 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1888 
1889 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1890 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1891 		/* if Q update ramrod is completed for last Q in AFEX vif set
1892 		 * flow, then ACK MCP at the end
1893 		 *
1894 		 * mark pending ACK to MCP bit.
1895 		 * prevent case that both bits are cleared.
1896 		 * At the end of load/unload driver checks that
1897 		 * sp_state is cleared, and this order prevents
1898 		 * races
1899 		 */
1900 		smp_mb__before_atomic();
1901 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1902 		wmb();
1903 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1904 		smp_mb__after_atomic();
1905 
1906 		/* schedule the sp task as mcp ack is required */
1907 		bnx2x_schedule_sp_task(bp);
1908 	}
1909 
1910 	return;
1911 }
1912 
1913 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1914 {
1915 	struct bnx2x *bp = netdev_priv(dev_instance);
1916 	u16 status = bnx2x_ack_int(bp);
1917 	u16 mask;
1918 	int i;
1919 	u8 cos;
1920 
1921 	/* Return here if interrupt is shared and it's not for us */
1922 	if (unlikely(status == 0)) {
1923 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1924 		return IRQ_NONE;
1925 	}
1926 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1927 
1928 #ifdef BNX2X_STOP_ON_ERROR
1929 	if (unlikely(bp->panic))
1930 		return IRQ_HANDLED;
1931 #endif
1932 
1933 	for_each_eth_queue(bp, i) {
1934 		struct bnx2x_fastpath *fp = &bp->fp[i];
1935 
1936 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1937 		if (status & mask) {
1938 			/* Handle Rx or Tx according to SB id */
1939 			for_each_cos_in_tx_queue(fp, cos)
1940 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1941 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1942 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1943 			status &= ~mask;
1944 		}
1945 	}
1946 
1947 	if (CNIC_SUPPORT(bp)) {
1948 		mask = 0x2;
1949 		if (status & (mask | 0x1)) {
1950 			struct cnic_ops *c_ops = NULL;
1951 
1952 			rcu_read_lock();
1953 			c_ops = rcu_dereference(bp->cnic_ops);
1954 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1955 				      CNIC_DRV_STATE_HANDLES_IRQ))
1956 				c_ops->cnic_handler(bp->cnic_data, NULL);
1957 			rcu_read_unlock();
1958 
1959 			status &= ~mask;
1960 		}
1961 	}
1962 
1963 	if (unlikely(status & 0x1)) {
1964 
1965 		/* schedule sp task to perform default status block work, ack
1966 		 * attentions and enable interrupts.
1967 		 */
1968 		bnx2x_schedule_sp_task(bp);
1969 
1970 		status &= ~0x1;
1971 		if (!status)
1972 			return IRQ_HANDLED;
1973 	}
1974 
1975 	if (unlikely(status))
1976 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1977 		   status);
1978 
1979 	return IRQ_HANDLED;
1980 }
1981 
1982 /* Link */
1983 
1984 /*
1985  * General service functions
1986  */
1987 
1988 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1989 {
1990 	u32 lock_status;
1991 	u32 resource_bit = (1 << resource);
1992 	int func = BP_FUNC(bp);
1993 	u32 hw_lock_control_reg;
1994 	int cnt;
1995 
1996 	/* Validating that the resource is within range */
1997 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1998 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1999 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2000 		return -EINVAL;
2001 	}
2002 
2003 	if (func <= 5) {
2004 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2005 	} else {
2006 		hw_lock_control_reg =
2007 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2008 	}
2009 
2010 	/* Validating that the resource is not already taken */
2011 	lock_status = REG_RD(bp, hw_lock_control_reg);
2012 	if (lock_status & resource_bit) {
2013 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2014 		   lock_status, resource_bit);
2015 		return -EEXIST;
2016 	}
2017 
2018 	/* Try for 5 second every 5ms */
2019 	for (cnt = 0; cnt < 1000; cnt++) {
2020 		/* Try to acquire the lock */
2021 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2022 		lock_status = REG_RD(bp, hw_lock_control_reg);
2023 		if (lock_status & resource_bit)
2024 			return 0;
2025 
2026 		usleep_range(5000, 10000);
2027 	}
2028 	BNX2X_ERR("Timeout\n");
2029 	return -EAGAIN;
2030 }
2031 
2032 int bnx2x_release_leader_lock(struct bnx2x *bp)
2033 {
2034 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2035 }
2036 
2037 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2038 {
2039 	u32 lock_status;
2040 	u32 resource_bit = (1 << resource);
2041 	int func = BP_FUNC(bp);
2042 	u32 hw_lock_control_reg;
2043 
2044 	/* Validating that the resource is within range */
2045 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2046 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2047 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2048 		return -EINVAL;
2049 	}
2050 
2051 	if (func <= 5) {
2052 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2053 	} else {
2054 		hw_lock_control_reg =
2055 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2056 	}
2057 
2058 	/* Validating that the resource is currently taken */
2059 	lock_status = REG_RD(bp, hw_lock_control_reg);
2060 	if (!(lock_status & resource_bit)) {
2061 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2062 			  lock_status, resource_bit);
2063 		return -EFAULT;
2064 	}
2065 
2066 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2067 	return 0;
2068 }
2069 
2070 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2071 {
2072 	/* The GPIO should be swapped if swap register is set and active */
2073 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2074 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2075 	int gpio_shift = gpio_num +
2076 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2077 	u32 gpio_mask = (1 << gpio_shift);
2078 	u32 gpio_reg;
2079 	int value;
2080 
2081 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2082 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2083 		return -EINVAL;
2084 	}
2085 
2086 	/* read GPIO value */
2087 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2088 
2089 	/* get the requested pin value */
2090 	if ((gpio_reg & gpio_mask) == gpio_mask)
2091 		value = 1;
2092 	else
2093 		value = 0;
2094 
2095 	return value;
2096 }
2097 
2098 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2099 {
2100 	/* The GPIO should be swapped if swap register is set and active */
2101 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2102 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2103 	int gpio_shift = gpio_num +
2104 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2105 	u32 gpio_mask = (1 << gpio_shift);
2106 	u32 gpio_reg;
2107 
2108 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2109 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2110 		return -EINVAL;
2111 	}
2112 
2113 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2114 	/* read GPIO and mask except the float bits */
2115 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2116 
2117 	switch (mode) {
2118 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2119 		DP(NETIF_MSG_LINK,
2120 		   "Set GPIO %d (shift %d) -> output low\n",
2121 		   gpio_num, gpio_shift);
2122 		/* clear FLOAT and set CLR */
2123 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2124 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2125 		break;
2126 
2127 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2128 		DP(NETIF_MSG_LINK,
2129 		   "Set GPIO %d (shift %d) -> output high\n",
2130 		   gpio_num, gpio_shift);
2131 		/* clear FLOAT and set SET */
2132 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2134 		break;
2135 
2136 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2137 		DP(NETIF_MSG_LINK,
2138 		   "Set GPIO %d (shift %d) -> input\n",
2139 		   gpio_num, gpio_shift);
2140 		/* set FLOAT */
2141 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142 		break;
2143 
2144 	default:
2145 		break;
2146 	}
2147 
2148 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2149 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2150 
2151 	return 0;
2152 }
2153 
2154 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2155 {
2156 	u32 gpio_reg = 0;
2157 	int rc = 0;
2158 
2159 	/* Any port swapping should be handled by caller. */
2160 
2161 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2162 	/* read GPIO and mask except the float bits */
2163 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2164 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2165 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2166 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2167 
2168 	switch (mode) {
2169 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2170 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2171 		/* set CLR */
2172 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2173 		break;
2174 
2175 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2176 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2177 		/* set SET */
2178 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2179 		break;
2180 
2181 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2182 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2183 		/* set FLOAT */
2184 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2185 		break;
2186 
2187 	default:
2188 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2189 		rc = -EINVAL;
2190 		break;
2191 	}
2192 
2193 	if (rc == 0)
2194 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2195 
2196 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2197 
2198 	return rc;
2199 }
2200 
2201 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2202 {
2203 	/* The GPIO should be swapped if swap register is set and active */
2204 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2205 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2206 	int gpio_shift = gpio_num +
2207 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2208 	u32 gpio_mask = (1 << gpio_shift);
2209 	u32 gpio_reg;
2210 
2211 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2212 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2213 		return -EINVAL;
2214 	}
2215 
2216 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2217 	/* read GPIO int */
2218 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2219 
2220 	switch (mode) {
2221 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2222 		DP(NETIF_MSG_LINK,
2223 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2224 		   gpio_num, gpio_shift);
2225 		/* clear SET and set CLR */
2226 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2227 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228 		break;
2229 
2230 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2231 		DP(NETIF_MSG_LINK,
2232 		   "Set GPIO INT %d (shift %d) -> output high\n",
2233 		   gpio_num, gpio_shift);
2234 		/* clear CLR and set SET */
2235 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237 		break;
2238 
2239 	default:
2240 		break;
2241 	}
2242 
2243 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2244 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2245 
2246 	return 0;
2247 }
2248 
2249 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2250 {
2251 	u32 spio_reg;
2252 
2253 	/* Only 2 SPIOs are configurable */
2254 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2255 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2256 		return -EINVAL;
2257 	}
2258 
2259 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2260 	/* read SPIO and mask except the float bits */
2261 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2262 
2263 	switch (mode) {
2264 	case MISC_SPIO_OUTPUT_LOW:
2265 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2266 		/* clear FLOAT and set CLR */
2267 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2269 		break;
2270 
2271 	case MISC_SPIO_OUTPUT_HIGH:
2272 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2273 		/* clear FLOAT and set SET */
2274 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2275 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2276 		break;
2277 
2278 	case MISC_SPIO_INPUT_HI_Z:
2279 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2280 		/* set FLOAT */
2281 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2282 		break;
2283 
2284 	default:
2285 		break;
2286 	}
2287 
2288 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2289 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2290 
2291 	return 0;
2292 }
2293 
2294 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2295 {
2296 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2297 
2298 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2299 					   ADVERTISED_Pause);
2300 	switch (bp->link_vars.ieee_fc &
2301 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2302 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2303 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2304 						  ADVERTISED_Pause);
2305 		break;
2306 
2307 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2308 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2309 		break;
2310 
2311 	default:
2312 		break;
2313 	}
2314 }
2315 
2316 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2317 {
2318 	/* Initialize link parameters structure variables
2319 	 * It is recommended to turn off RX FC for jumbo frames
2320 	 *  for better performance
2321 	 */
2322 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2323 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2324 	else
2325 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2326 }
2327 
2328 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2329 {
2330 	u32 pause_enabled = 0;
2331 
2332 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2333 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2334 			pause_enabled = 1;
2335 
2336 		REG_WR(bp, BAR_USTRORM_INTMEM +
2337 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2338 		       pause_enabled);
2339 	}
2340 
2341 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2342 	   pause_enabled ? "enabled" : "disabled");
2343 }
2344 
2345 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2346 {
2347 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2348 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2349 
2350 	if (!BP_NOMCP(bp)) {
2351 		bnx2x_set_requested_fc(bp);
2352 		bnx2x_acquire_phy_lock(bp);
2353 
2354 		if (load_mode == LOAD_DIAG) {
2355 			struct link_params *lp = &bp->link_params;
2356 			lp->loopback_mode = LOOPBACK_XGXS;
2357 			/* Prefer doing PHY loopback at highest speed */
2358 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2359 				if (lp->speed_cap_mask[cfx_idx] &
2360 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2361 					lp->req_line_speed[cfx_idx] =
2362 					SPEED_20000;
2363 				else if (lp->speed_cap_mask[cfx_idx] &
2364 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2365 						lp->req_line_speed[cfx_idx] =
2366 						SPEED_10000;
2367 				else
2368 					lp->req_line_speed[cfx_idx] =
2369 					SPEED_1000;
2370 			}
2371 		}
2372 
2373 		if (load_mode == LOAD_LOOPBACK_EXT) {
2374 			struct link_params *lp = &bp->link_params;
2375 			lp->loopback_mode = LOOPBACK_EXT;
2376 		}
2377 
2378 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2379 
2380 		bnx2x_release_phy_lock(bp);
2381 
2382 		bnx2x_init_dropless_fc(bp);
2383 
2384 		bnx2x_calc_fc_adv(bp);
2385 
2386 		if (bp->link_vars.link_up) {
2387 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2388 			bnx2x_link_report(bp);
2389 		}
2390 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2391 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2392 		return rc;
2393 	}
2394 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2395 	return -EINVAL;
2396 }
2397 
2398 void bnx2x_link_set(struct bnx2x *bp)
2399 {
2400 	if (!BP_NOMCP(bp)) {
2401 		bnx2x_acquire_phy_lock(bp);
2402 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2403 		bnx2x_release_phy_lock(bp);
2404 
2405 		bnx2x_init_dropless_fc(bp);
2406 
2407 		bnx2x_calc_fc_adv(bp);
2408 	} else
2409 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2410 }
2411 
2412 static void bnx2x__link_reset(struct bnx2x *bp)
2413 {
2414 	if (!BP_NOMCP(bp)) {
2415 		bnx2x_acquire_phy_lock(bp);
2416 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2417 		bnx2x_release_phy_lock(bp);
2418 	} else
2419 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2420 }
2421 
2422 void bnx2x_force_link_reset(struct bnx2x *bp)
2423 {
2424 	bnx2x_acquire_phy_lock(bp);
2425 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2426 	bnx2x_release_phy_lock(bp);
2427 }
2428 
2429 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2430 {
2431 	u8 rc = 0;
2432 
2433 	if (!BP_NOMCP(bp)) {
2434 		bnx2x_acquire_phy_lock(bp);
2435 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2436 				     is_serdes);
2437 		bnx2x_release_phy_lock(bp);
2438 	} else
2439 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2440 
2441 	return rc;
2442 }
2443 
2444 /* Calculates the sum of vn_min_rates.
2445    It's needed for further normalizing of the min_rates.
2446    Returns:
2447      sum of vn_min_rates.
2448        or
2449      0 - if all the min_rates are 0.
2450      In the later case fairness algorithm should be deactivated.
2451      If not all min_rates are zero then those that are zeroes will be set to 1.
2452  */
2453 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2454 				      struct cmng_init_input *input)
2455 {
2456 	int all_zero = 1;
2457 	int vn;
2458 
2459 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2460 		u32 vn_cfg = bp->mf_config[vn];
2461 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2462 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2463 
2464 		/* Skip hidden vns */
2465 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2466 			vn_min_rate = 0;
2467 		/* If min rate is zero - set it to 1 */
2468 		else if (!vn_min_rate)
2469 			vn_min_rate = DEF_MIN_RATE;
2470 		else
2471 			all_zero = 0;
2472 
2473 		input->vnic_min_rate[vn] = vn_min_rate;
2474 	}
2475 
2476 	/* if ETS or all min rates are zeros - disable fairness */
2477 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2478 		input->flags.cmng_enables &=
2479 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2480 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2481 	} else if (all_zero) {
2482 		input->flags.cmng_enables &=
2483 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2484 		DP(NETIF_MSG_IFUP,
2485 		   "All MIN values are zeroes fairness will be disabled\n");
2486 	} else
2487 		input->flags.cmng_enables |=
2488 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2489 }
2490 
2491 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2492 				    struct cmng_init_input *input)
2493 {
2494 	u16 vn_max_rate;
2495 	u32 vn_cfg = bp->mf_config[vn];
2496 
2497 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2498 		vn_max_rate = 0;
2499 	else {
2500 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2501 
2502 		if (IS_MF_PERCENT_BW(bp)) {
2503 			/* maxCfg in percents of linkspeed */
2504 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2505 		} else /* SD modes */
2506 			/* maxCfg is absolute in 100Mb units */
2507 			vn_max_rate = maxCfg * 100;
2508 	}
2509 
2510 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2511 
2512 	input->vnic_max_rate[vn] = vn_max_rate;
2513 }
2514 
2515 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2516 {
2517 	if (CHIP_REV_IS_SLOW(bp))
2518 		return CMNG_FNS_NONE;
2519 	if (IS_MF(bp))
2520 		return CMNG_FNS_MINMAX;
2521 
2522 	return CMNG_FNS_NONE;
2523 }
2524 
2525 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2526 {
2527 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2528 
2529 	if (BP_NOMCP(bp))
2530 		return; /* what should be the default value in this case */
2531 
2532 	/* For 2 port configuration the absolute function number formula
2533 	 * is:
2534 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2535 	 *
2536 	 *      and there are 4 functions per port
2537 	 *
2538 	 * For 4 port configuration it is
2539 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2540 	 *
2541 	 *      and there are 2 functions per port
2542 	 */
2543 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2544 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2545 
2546 		if (func >= E1H_FUNC_MAX)
2547 			break;
2548 
2549 		bp->mf_config[vn] =
2550 			MF_CFG_RD(bp, func_mf_config[func].config);
2551 	}
2552 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2553 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2554 		bp->flags |= MF_FUNC_DIS;
2555 	} else {
2556 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2557 		bp->flags &= ~MF_FUNC_DIS;
2558 	}
2559 }
2560 
2561 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2562 {
2563 	struct cmng_init_input input;
2564 	memset(&input, 0, sizeof(struct cmng_init_input));
2565 
2566 	input.port_rate = bp->link_vars.line_speed;
2567 
2568 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2569 		int vn;
2570 
2571 		/* read mf conf from shmem */
2572 		if (read_cfg)
2573 			bnx2x_read_mf_cfg(bp);
2574 
2575 		/* vn_weight_sum and enable fairness if not 0 */
2576 		bnx2x_calc_vn_min(bp, &input);
2577 
2578 		/* calculate and set min-max rate for each vn */
2579 		if (bp->port.pmf)
2580 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2581 				bnx2x_calc_vn_max(bp, vn, &input);
2582 
2583 		/* always enable rate shaping and fairness */
2584 		input.flags.cmng_enables |=
2585 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2586 
2587 		bnx2x_init_cmng(&input, &bp->cmng);
2588 		return;
2589 	}
2590 
2591 	/* rate shaping and fairness are disabled */
2592 	DP(NETIF_MSG_IFUP,
2593 	   "rate shaping and fairness are disabled\n");
2594 }
2595 
2596 static void storm_memset_cmng(struct bnx2x *bp,
2597 			      struct cmng_init *cmng,
2598 			      u8 port)
2599 {
2600 	int vn;
2601 	size_t size = sizeof(struct cmng_struct_per_port);
2602 
2603 	u32 addr = BAR_XSTRORM_INTMEM +
2604 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2605 
2606 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2607 
2608 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2609 		int func = func_by_vn(bp, vn);
2610 
2611 		addr = BAR_XSTRORM_INTMEM +
2612 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2613 		size = sizeof(struct rate_shaping_vars_per_vn);
2614 		__storm_memset_struct(bp, addr, size,
2615 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2616 
2617 		addr = BAR_XSTRORM_INTMEM +
2618 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2619 		size = sizeof(struct fairness_vars_per_vn);
2620 		__storm_memset_struct(bp, addr, size,
2621 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2622 	}
2623 }
2624 
2625 /* init cmng mode in HW according to local configuration */
2626 void bnx2x_set_local_cmng(struct bnx2x *bp)
2627 {
2628 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2629 
2630 	if (cmng_fns != CMNG_FNS_NONE) {
2631 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2632 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2633 	} else {
2634 		/* rate shaping and fairness are disabled */
2635 		DP(NETIF_MSG_IFUP,
2636 		   "single function mode without fairness\n");
2637 	}
2638 }
2639 
2640 /* This function is called upon link interrupt */
2641 static void bnx2x_link_attn(struct bnx2x *bp)
2642 {
2643 	/* Make sure that we are synced with the current statistics */
2644 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2645 
2646 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2647 
2648 	bnx2x_init_dropless_fc(bp);
2649 
2650 	if (bp->link_vars.link_up) {
2651 
2652 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2653 			struct host_port_stats *pstats;
2654 
2655 			pstats = bnx2x_sp(bp, port_stats);
2656 			/* reset old mac stats */
2657 			memset(&(pstats->mac_stx[0]), 0,
2658 			       sizeof(struct mac_stx));
2659 		}
2660 		if (bp->state == BNX2X_STATE_OPEN)
2661 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2662 	}
2663 
2664 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2665 		bnx2x_set_local_cmng(bp);
2666 
2667 	__bnx2x_link_report(bp);
2668 
2669 	if (IS_MF(bp))
2670 		bnx2x_link_sync_notify(bp);
2671 }
2672 
2673 void bnx2x__link_status_update(struct bnx2x *bp)
2674 {
2675 	if (bp->state != BNX2X_STATE_OPEN)
2676 		return;
2677 
2678 	/* read updated dcb configuration */
2679 	if (IS_PF(bp)) {
2680 		bnx2x_dcbx_pmf_update(bp);
2681 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2682 		if (bp->link_vars.link_up)
2683 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2684 		else
2685 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2686 			/* indicate link status */
2687 		bnx2x_link_report(bp);
2688 
2689 	} else { /* VF */
2690 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2691 					  SUPPORTED_10baseT_Full |
2692 					  SUPPORTED_100baseT_Half |
2693 					  SUPPORTED_100baseT_Full |
2694 					  SUPPORTED_1000baseT_Full |
2695 					  SUPPORTED_2500baseX_Full |
2696 					  SUPPORTED_10000baseT_Full |
2697 					  SUPPORTED_TP |
2698 					  SUPPORTED_FIBRE |
2699 					  SUPPORTED_Autoneg |
2700 					  SUPPORTED_Pause |
2701 					  SUPPORTED_Asym_Pause);
2702 		bp->port.advertising[0] = bp->port.supported[0];
2703 
2704 		bp->link_params.bp = bp;
2705 		bp->link_params.port = BP_PORT(bp);
2706 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2707 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2708 		bp->link_params.req_line_speed[0] = SPEED_10000;
2709 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2710 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2711 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2712 		bp->link_vars.line_speed = SPEED_10000;
2713 		bp->link_vars.link_status =
2714 			(LINK_STATUS_LINK_UP |
2715 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2716 		bp->link_vars.link_up = 1;
2717 		bp->link_vars.duplex = DUPLEX_FULL;
2718 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2719 		__bnx2x_link_report(bp);
2720 
2721 		bnx2x_sample_bulletin(bp);
2722 
2723 		/* if bulletin board did not have an update for link status
2724 		 * __bnx2x_link_report will report current status
2725 		 * but it will NOT duplicate report in case of already reported
2726 		 * during sampling bulletin board.
2727 		 */
2728 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2729 	}
2730 }
2731 
2732 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2733 				  u16 vlan_val, u8 allowed_prio)
2734 {
2735 	struct bnx2x_func_state_params func_params = {NULL};
2736 	struct bnx2x_func_afex_update_params *f_update_params =
2737 		&func_params.params.afex_update;
2738 
2739 	func_params.f_obj = &bp->func_obj;
2740 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2741 
2742 	/* no need to wait for RAMROD completion, so don't
2743 	 * set RAMROD_COMP_WAIT flag
2744 	 */
2745 
2746 	f_update_params->vif_id = vifid;
2747 	f_update_params->afex_default_vlan = vlan_val;
2748 	f_update_params->allowed_priorities = allowed_prio;
2749 
2750 	/* if ramrod can not be sent, response to MCP immediately */
2751 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2752 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2753 
2754 	return 0;
2755 }
2756 
2757 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2758 					  u16 vif_index, u8 func_bit_map)
2759 {
2760 	struct bnx2x_func_state_params func_params = {NULL};
2761 	struct bnx2x_func_afex_viflists_params *update_params =
2762 		&func_params.params.afex_viflists;
2763 	int rc;
2764 	u32 drv_msg_code;
2765 
2766 	/* validate only LIST_SET and LIST_GET are received from switch */
2767 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2768 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2769 			  cmd_type);
2770 
2771 	func_params.f_obj = &bp->func_obj;
2772 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2773 
2774 	/* set parameters according to cmd_type */
2775 	update_params->afex_vif_list_command = cmd_type;
2776 	update_params->vif_list_index = vif_index;
2777 	update_params->func_bit_map =
2778 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2779 	update_params->func_to_clear = 0;
2780 	drv_msg_code =
2781 		(cmd_type == VIF_LIST_RULE_GET) ?
2782 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2783 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2784 
2785 	/* if ramrod can not be sent, respond to MCP immediately for
2786 	 * SET and GET requests (other are not triggered from MCP)
2787 	 */
2788 	rc = bnx2x_func_state_change(bp, &func_params);
2789 	if (rc < 0)
2790 		bnx2x_fw_command(bp, drv_msg_code, 0);
2791 
2792 	return 0;
2793 }
2794 
2795 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2796 {
2797 	struct afex_stats afex_stats;
2798 	u32 func = BP_ABS_FUNC(bp);
2799 	u32 mf_config;
2800 	u16 vlan_val;
2801 	u32 vlan_prio;
2802 	u16 vif_id;
2803 	u8 allowed_prio;
2804 	u8 vlan_mode;
2805 	u32 addr_to_write, vifid, addrs, stats_type, i;
2806 
2807 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2808 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809 		DP(BNX2X_MSG_MCP,
2810 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2811 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2812 	}
2813 
2814 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2815 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2816 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2817 		DP(BNX2X_MSG_MCP,
2818 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2819 		   vifid, addrs);
2820 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2821 					       addrs);
2822 	}
2823 
2824 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2825 		addr_to_write = SHMEM2_RD(bp,
2826 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2827 		stats_type = SHMEM2_RD(bp,
2828 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2829 
2830 		DP(BNX2X_MSG_MCP,
2831 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2832 		   addr_to_write);
2833 
2834 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2835 
2836 		/* write response to scratchpad, for MCP */
2837 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2838 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2839 			       *(((u32 *)(&afex_stats))+i));
2840 
2841 		/* send ack message to MCP */
2842 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2843 	}
2844 
2845 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2846 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2847 		bp->mf_config[BP_VN(bp)] = mf_config;
2848 		DP(BNX2X_MSG_MCP,
2849 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2850 		   mf_config);
2851 
2852 		/* if VIF_SET is "enabled" */
2853 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2854 			/* set rate limit directly to internal RAM */
2855 			struct cmng_init_input cmng_input;
2856 			struct rate_shaping_vars_per_vn m_rs_vn;
2857 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2858 			u32 addr = BAR_XSTRORM_INTMEM +
2859 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2860 
2861 			bp->mf_config[BP_VN(bp)] = mf_config;
2862 
2863 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2864 			m_rs_vn.vn_counter.rate =
2865 				cmng_input.vnic_max_rate[BP_VN(bp)];
2866 			m_rs_vn.vn_counter.quota =
2867 				(m_rs_vn.vn_counter.rate *
2868 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2869 
2870 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2871 
2872 			/* read relevant values from mf_cfg struct in shmem */
2873 			vif_id =
2874 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2875 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2876 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2877 			vlan_val =
2878 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2879 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2880 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2881 			vlan_prio = (mf_config &
2882 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2883 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2884 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2885 			vlan_mode =
2886 				(MF_CFG_RD(bp,
2887 					   func_mf_config[func].afex_config) &
2888 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2889 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2890 			allowed_prio =
2891 				(MF_CFG_RD(bp,
2892 					   func_mf_config[func].afex_config) &
2893 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2894 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2895 
2896 			/* send ramrod to FW, return in case of failure */
2897 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2898 						   allowed_prio))
2899 				return;
2900 
2901 			bp->afex_def_vlan_tag = vlan_val;
2902 			bp->afex_vlan_mode = vlan_mode;
2903 		} else {
2904 			/* notify link down because BP->flags is disabled */
2905 			bnx2x_link_report(bp);
2906 
2907 			/* send INVALID VIF ramrod to FW */
2908 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2909 
2910 			/* Reset the default afex VLAN */
2911 			bp->afex_def_vlan_tag = -1;
2912 		}
2913 	}
2914 }
2915 
2916 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2917 {
2918 	struct bnx2x_func_switch_update_params *switch_update_params;
2919 	struct bnx2x_func_state_params func_params;
2920 
2921 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2922 	switch_update_params = &func_params.params.switch_update;
2923 	func_params.f_obj = &bp->func_obj;
2924 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2925 
2926 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2927 		int func = BP_ABS_FUNC(bp);
2928 		u32 val;
2929 
2930 		/* Re-learn the S-tag from shmem */
2931 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2932 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2933 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2934 			bp->mf_ov = val;
2935 		} else {
2936 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2937 			goto fail;
2938 		}
2939 
2940 		/* Configure new S-tag in LLH */
2941 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2942 		       bp->mf_ov);
2943 
2944 		/* Send Ramrod to update FW of change */
2945 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2946 			  &switch_update_params->changes);
2947 		switch_update_params->vlan = bp->mf_ov;
2948 
2949 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2950 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2951 				  bp->mf_ov);
2952 			goto fail;
2953 		} else {
2954 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2955 			   bp->mf_ov);
2956 		}
2957 	} else {
2958 		goto fail;
2959 	}
2960 
2961 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2962 	return;
2963 fail:
2964 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2965 }
2966 
2967 static void bnx2x_pmf_update(struct bnx2x *bp)
2968 {
2969 	int port = BP_PORT(bp);
2970 	u32 val;
2971 
2972 	bp->port.pmf = 1;
2973 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2974 
2975 	/*
2976 	 * We need the mb() to ensure the ordering between the writing to
2977 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2978 	 */
2979 	smp_mb();
2980 
2981 	/* queue a periodic task */
2982 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2983 
2984 	bnx2x_dcbx_pmf_update(bp);
2985 
2986 	/* enable nig attention */
2987 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2988 	if (bp->common.int_block == INT_BLOCK_HC) {
2989 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2990 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2991 	} else if (!CHIP_IS_E1x(bp)) {
2992 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2993 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2994 	}
2995 
2996 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2997 }
2998 
2999 /* end of Link */
3000 
3001 /* slow path */
3002 
3003 /*
3004  * General service functions
3005  */
3006 
3007 /* send the MCP a request, block until there is a reply */
3008 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3009 {
3010 	int mb_idx = BP_FW_MB_IDX(bp);
3011 	u32 seq;
3012 	u32 rc = 0;
3013 	u32 cnt = 1;
3014 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3015 
3016 	mutex_lock(&bp->fw_mb_mutex);
3017 	seq = ++bp->fw_seq;
3018 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3019 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3020 
3021 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3022 			(command | seq), param);
3023 
3024 	do {
3025 		/* let the FW do it's magic ... */
3026 		msleep(delay);
3027 
3028 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3029 
3030 		/* Give the FW up to 5 second (500*10ms) */
3031 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3032 
3033 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3034 	   cnt*delay, rc, seq);
3035 
3036 	/* is this a reply to our command? */
3037 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3038 		rc &= FW_MSG_CODE_MASK;
3039 	else {
3040 		/* FW BUG! */
3041 		BNX2X_ERR("FW failed to respond!\n");
3042 		bnx2x_fw_dump(bp);
3043 		rc = 0;
3044 	}
3045 	mutex_unlock(&bp->fw_mb_mutex);
3046 
3047 	return rc;
3048 }
3049 
3050 static void storm_memset_func_cfg(struct bnx2x *bp,
3051 				 struct tstorm_eth_function_common_config *tcfg,
3052 				 u16 abs_fid)
3053 {
3054 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3055 
3056 	u32 addr = BAR_TSTRORM_INTMEM +
3057 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3058 
3059 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3060 }
3061 
3062 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3063 {
3064 	if (CHIP_IS_E1x(bp)) {
3065 		struct tstorm_eth_function_common_config tcfg = {0};
3066 
3067 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3068 	}
3069 
3070 	/* Enable the function in the FW */
3071 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3072 	storm_memset_func_en(bp, p->func_id, 1);
3073 
3074 	/* spq */
3075 	if (p->spq_active) {
3076 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3077 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3078 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3079 	}
3080 }
3081 
3082 /**
3083  * bnx2x_get_common_flags - Return common flags
3084  *
3085  * @bp		device handle
3086  * @fp		queue handle
3087  * @zero_stats	TRUE if statistics zeroing is needed
3088  *
3089  * Return the flags that are common for the Tx-only and not normal connections.
3090  */
3091 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3092 					    struct bnx2x_fastpath *fp,
3093 					    bool zero_stats)
3094 {
3095 	unsigned long flags = 0;
3096 
3097 	/* PF driver will always initialize the Queue to an ACTIVE state */
3098 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3099 
3100 	/* tx only connections collect statistics (on the same index as the
3101 	 * parent connection). The statistics are zeroed when the parent
3102 	 * connection is initialized.
3103 	 */
3104 
3105 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3106 	if (zero_stats)
3107 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3108 
3109 	if (bp->flags & TX_SWITCHING)
3110 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3111 
3112 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3113 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3114 
3115 #ifdef BNX2X_STOP_ON_ERROR
3116 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3117 #endif
3118 
3119 	return flags;
3120 }
3121 
3122 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3123 				       struct bnx2x_fastpath *fp,
3124 				       bool leading)
3125 {
3126 	unsigned long flags = 0;
3127 
3128 	/* calculate other queue flags */
3129 	if (IS_MF_SD(bp))
3130 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3131 
3132 	if (IS_FCOE_FP(fp)) {
3133 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3134 		/* For FCoE - force usage of default priority (for afex) */
3135 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3136 	}
3137 
3138 	if (fp->mode != TPA_MODE_DISABLED) {
3139 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3140 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3141 		if (fp->mode == TPA_MODE_GRO)
3142 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3143 	}
3144 
3145 	if (leading) {
3146 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3147 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3148 	}
3149 
3150 	/* Always set HW VLAN stripping */
3151 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3152 
3153 	/* configure silent vlan removal */
3154 	if (IS_MF_AFEX(bp))
3155 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3156 
3157 	return flags | bnx2x_get_common_flags(bp, fp, true);
3158 }
3159 
3160 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3161 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3162 	u8 cos)
3163 {
3164 	gen_init->stat_id = bnx2x_stats_id(fp);
3165 	gen_init->spcl_id = fp->cl_id;
3166 
3167 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3168 	if (IS_FCOE_FP(fp))
3169 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3170 	else
3171 		gen_init->mtu = bp->dev->mtu;
3172 
3173 	gen_init->cos = cos;
3174 
3175 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3176 }
3177 
3178 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3179 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3180 	struct bnx2x_rxq_setup_params *rxq_init)
3181 {
3182 	u8 max_sge = 0;
3183 	u16 sge_sz = 0;
3184 	u16 tpa_agg_size = 0;
3185 
3186 	if (fp->mode != TPA_MODE_DISABLED) {
3187 		pause->sge_th_lo = SGE_TH_LO(bp);
3188 		pause->sge_th_hi = SGE_TH_HI(bp);
3189 
3190 		/* validate SGE ring has enough to cross high threshold */
3191 		WARN_ON(bp->dropless_fc &&
3192 				pause->sge_th_hi + FW_PREFETCH_CNT >
3193 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3194 
3195 		tpa_agg_size = TPA_AGG_SIZE;
3196 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3197 			SGE_PAGE_SHIFT;
3198 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3199 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3200 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3201 	}
3202 
3203 	/* pause - not for e1 */
3204 	if (!CHIP_IS_E1(bp)) {
3205 		pause->bd_th_lo = BD_TH_LO(bp);
3206 		pause->bd_th_hi = BD_TH_HI(bp);
3207 
3208 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3209 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3210 		/*
3211 		 * validate that rings have enough entries to cross
3212 		 * high thresholds
3213 		 */
3214 		WARN_ON(bp->dropless_fc &&
3215 				pause->bd_th_hi + FW_PREFETCH_CNT >
3216 				bp->rx_ring_size);
3217 		WARN_ON(bp->dropless_fc &&
3218 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3219 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3220 
3221 		pause->pri_map = 1;
3222 	}
3223 
3224 	/* rxq setup */
3225 	rxq_init->dscr_map = fp->rx_desc_mapping;
3226 	rxq_init->sge_map = fp->rx_sge_mapping;
3227 	rxq_init->rcq_map = fp->rx_comp_mapping;
3228 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3229 
3230 	/* This should be a maximum number of data bytes that may be
3231 	 * placed on the BD (not including paddings).
3232 	 */
3233 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3234 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3235 
3236 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3237 	rxq_init->tpa_agg_sz = tpa_agg_size;
3238 	rxq_init->sge_buf_sz = sge_sz;
3239 	rxq_init->max_sges_pkt = max_sge;
3240 	rxq_init->rss_engine_id = BP_FUNC(bp);
3241 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3242 
3243 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3244 	 *
3245 	 * For PF Clients it should be the maximum available number.
3246 	 * VF driver(s) may want to define it to a smaller value.
3247 	 */
3248 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3249 
3250 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3251 	rxq_init->fw_sb_id = fp->fw_sb_id;
3252 
3253 	if (IS_FCOE_FP(fp))
3254 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3255 	else
3256 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3257 	/* configure silent vlan removal
3258 	 * if multi function mode is afex, then mask default vlan
3259 	 */
3260 	if (IS_MF_AFEX(bp)) {
3261 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3262 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3263 	}
3264 }
3265 
3266 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3267 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3268 	u8 cos)
3269 {
3270 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3271 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3272 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3273 	txq_init->fw_sb_id = fp->fw_sb_id;
3274 
3275 	/*
3276 	 * set the tss leading client id for TX classification ==
3277 	 * leading RSS client id
3278 	 */
3279 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3280 
3281 	if (IS_FCOE_FP(fp)) {
3282 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3283 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3284 	}
3285 }
3286 
3287 static void bnx2x_pf_init(struct bnx2x *bp)
3288 {
3289 	struct bnx2x_func_init_params func_init = {0};
3290 	struct event_ring_data eq_data = { {0} };
3291 
3292 	if (!CHIP_IS_E1x(bp)) {
3293 		/* reset IGU PF statistics: MSIX + ATTN */
3294 		/* PF */
3295 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3296 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3297 			   (CHIP_MODE_IS_4_PORT(bp) ?
3298 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3299 		/* ATTN */
3300 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3301 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3302 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3303 			   (CHIP_MODE_IS_4_PORT(bp) ?
3304 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3305 	}
3306 
3307 	func_init.spq_active = true;
3308 	func_init.pf_id = BP_FUNC(bp);
3309 	func_init.func_id = BP_FUNC(bp);
3310 	func_init.spq_map = bp->spq_mapping;
3311 	func_init.spq_prod = bp->spq_prod_idx;
3312 
3313 	bnx2x_func_init(bp, &func_init);
3314 
3315 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3316 
3317 	/*
3318 	 * Congestion management values depend on the link rate
3319 	 * There is no active link so initial link rate is set to 10 Gbps.
3320 	 * When the link comes up The congestion management values are
3321 	 * re-calculated according to the actual link rate.
3322 	 */
3323 	bp->link_vars.line_speed = SPEED_10000;
3324 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3325 
3326 	/* Only the PMF sets the HW */
3327 	if (bp->port.pmf)
3328 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3329 
3330 	/* init Event Queue - PCI bus guarantees correct endianity*/
3331 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3332 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3333 	eq_data.producer = bp->eq_prod;
3334 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3335 	eq_data.sb_id = DEF_SB_ID;
3336 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3337 }
3338 
3339 static void bnx2x_e1h_disable(struct bnx2x *bp)
3340 {
3341 	int port = BP_PORT(bp);
3342 
3343 	bnx2x_tx_disable(bp);
3344 
3345 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3346 }
3347 
3348 static void bnx2x_e1h_enable(struct bnx2x *bp)
3349 {
3350 	int port = BP_PORT(bp);
3351 
3352 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3353 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3354 
3355 	/* Tx queue should be only re-enabled */
3356 	netif_tx_wake_all_queues(bp->dev);
3357 
3358 	/*
3359 	 * Should not call netif_carrier_on since it will be called if the link
3360 	 * is up when checking for link state
3361 	 */
3362 }
3363 
3364 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3365 
3366 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3367 {
3368 	struct eth_stats_info *ether_stat =
3369 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3370 	struct bnx2x_vlan_mac_obj *mac_obj =
3371 		&bp->sp_objs->mac_obj;
3372 	int i;
3373 
3374 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3375 		ETH_STAT_INFO_VERSION_LEN);
3376 
3377 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3378 	 * mac_local field in ether_stat struct. The base address is offset by 2
3379 	 * bytes to account for the field being 8 bytes but a mac address is
3380 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3381 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3382 	 * allocated by the ether_stat struct, so the macs will land in their
3383 	 * proper positions.
3384 	 */
3385 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3386 		memset(ether_stat->mac_local + i, 0,
3387 		       sizeof(ether_stat->mac_local[0]));
3388 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3389 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3390 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3391 				ETH_ALEN);
3392 	ether_stat->mtu_size = bp->dev->mtu;
3393 	if (bp->dev->features & NETIF_F_RXCSUM)
3394 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3395 	if (bp->dev->features & NETIF_F_TSO)
3396 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3397 	ether_stat->feature_flags |= bp->common.boot_mode;
3398 
3399 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3400 
3401 	ether_stat->txq_size = bp->tx_ring_size;
3402 	ether_stat->rxq_size = bp->rx_ring_size;
3403 
3404 #ifdef CONFIG_BNX2X_SRIOV
3405 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3406 #endif
3407 }
3408 
3409 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3410 {
3411 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3412 	struct fcoe_stats_info *fcoe_stat =
3413 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3414 
3415 	if (!CNIC_LOADED(bp))
3416 		return;
3417 
3418 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3419 
3420 	fcoe_stat->qos_priority =
3421 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3422 
3423 	/* insert FCoE stats from ramrod response */
3424 	if (!NO_FCOE(bp)) {
3425 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3426 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3427 			tstorm_queue_statistics;
3428 
3429 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3430 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3431 			xstorm_queue_statistics;
3432 
3433 		struct fcoe_statistics_params *fw_fcoe_stat =
3434 			&bp->fw_stats_data->fcoe;
3435 
3436 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3437 			  fcoe_stat->rx_bytes_lo,
3438 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3439 
3440 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3441 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3442 			  fcoe_stat->rx_bytes_lo,
3443 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3444 
3445 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3446 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3447 			  fcoe_stat->rx_bytes_lo,
3448 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3449 
3450 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3451 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3452 			  fcoe_stat->rx_bytes_lo,
3453 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3454 
3455 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3456 			  fcoe_stat->rx_frames_lo,
3457 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3458 
3459 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3460 			  fcoe_stat->rx_frames_lo,
3461 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3462 
3463 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3464 			  fcoe_stat->rx_frames_lo,
3465 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3466 
3467 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468 			  fcoe_stat->rx_frames_lo,
3469 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3470 
3471 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3472 			  fcoe_stat->tx_bytes_lo,
3473 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3474 
3475 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3476 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3477 			  fcoe_stat->tx_bytes_lo,
3478 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3479 
3480 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3481 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3482 			  fcoe_stat->tx_bytes_lo,
3483 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3484 
3485 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3486 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3487 			  fcoe_stat->tx_bytes_lo,
3488 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3489 
3490 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3491 			  fcoe_stat->tx_frames_lo,
3492 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3493 
3494 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3495 			  fcoe_stat->tx_frames_lo,
3496 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3497 
3498 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3499 			  fcoe_stat->tx_frames_lo,
3500 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3501 
3502 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503 			  fcoe_stat->tx_frames_lo,
3504 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3505 	}
3506 
3507 	/* ask L5 driver to add data to the struct */
3508 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3509 }
3510 
3511 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3512 {
3513 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3514 	struct iscsi_stats_info *iscsi_stat =
3515 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3516 
3517 	if (!CNIC_LOADED(bp))
3518 		return;
3519 
3520 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3521 	       ETH_ALEN);
3522 
3523 	iscsi_stat->qos_priority =
3524 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3525 
3526 	/* ask L5 driver to add data to the struct */
3527 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3528 }
3529 
3530 /* called due to MCP event (on pmf):
3531  *	reread new bandwidth configuration
3532  *	configure FW
3533  *	notify others function about the change
3534  */
3535 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3536 {
3537 	if (bp->link_vars.link_up) {
3538 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3539 		bnx2x_link_sync_notify(bp);
3540 	}
3541 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3542 }
3543 
3544 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3545 {
3546 	bnx2x_config_mf_bw(bp);
3547 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3548 }
3549 
3550 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3551 {
3552 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3553 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3554 }
3555 
3556 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3557 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3558 
3559 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3560 {
3561 	enum drv_info_opcode op_code;
3562 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3563 	bool release = false;
3564 	int wait;
3565 
3566 	/* if drv_info version supported by MFW doesn't match - send NACK */
3567 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3568 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3569 		return;
3570 	}
3571 
3572 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3573 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3574 
3575 	/* Must prevent other flows from accessing drv_info_to_mcp */
3576 	mutex_lock(&bp->drv_info_mutex);
3577 
3578 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3579 	       sizeof(union drv_info_to_mcp));
3580 
3581 	switch (op_code) {
3582 	case ETH_STATS_OPCODE:
3583 		bnx2x_drv_info_ether_stat(bp);
3584 		break;
3585 	case FCOE_STATS_OPCODE:
3586 		bnx2x_drv_info_fcoe_stat(bp);
3587 		break;
3588 	case ISCSI_STATS_OPCODE:
3589 		bnx2x_drv_info_iscsi_stat(bp);
3590 		break;
3591 	default:
3592 		/* if op code isn't supported - send NACK */
3593 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3594 		goto out;
3595 	}
3596 
3597 	/* if we got drv_info attn from MFW then these fields are defined in
3598 	 * shmem2 for sure
3599 	 */
3600 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3601 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3602 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3603 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3604 
3605 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3606 
3607 	/* Since possible management wants both this and get_driver_version
3608 	 * need to wait until management notifies us it finished utilizing
3609 	 * the buffer.
3610 	 */
3611 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3612 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3613 	} else if (!bp->drv_info_mng_owner) {
3614 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3615 
3616 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3617 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3618 
3619 			/* Management is done; need to clear indication */
3620 			if (indication & bit) {
3621 				SHMEM2_WR(bp, mfw_drv_indication,
3622 					  indication & ~bit);
3623 				release = true;
3624 				break;
3625 			}
3626 
3627 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3628 		}
3629 	}
3630 	if (!release) {
3631 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3632 		bp->drv_info_mng_owner = true;
3633 	}
3634 
3635 out:
3636 	mutex_unlock(&bp->drv_info_mutex);
3637 }
3638 
3639 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3640 {
3641 	u8 vals[4];
3642 	int i = 0;
3643 
3644 	if (bnx2x_format) {
3645 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3646 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3647 		if (i > 0)
3648 			vals[0] -= '0';
3649 	} else {
3650 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3651 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3652 	}
3653 
3654 	while (i < 4)
3655 		vals[i++] = 0;
3656 
3657 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3658 }
3659 
3660 void bnx2x_update_mng_version(struct bnx2x *bp)
3661 {
3662 	u32 iscsiver = DRV_VER_NOT_LOADED;
3663 	u32 fcoever = DRV_VER_NOT_LOADED;
3664 	u32 ethver = DRV_VER_NOT_LOADED;
3665 	int idx = BP_FW_MB_IDX(bp);
3666 	u8 *version;
3667 
3668 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3669 		return;
3670 
3671 	mutex_lock(&bp->drv_info_mutex);
3672 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3673 	if (bp->drv_info_mng_owner)
3674 		goto out;
3675 
3676 	if (bp->state != BNX2X_STATE_OPEN)
3677 		goto out;
3678 
3679 	/* Parse ethernet driver version */
3680 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3681 	if (!CNIC_LOADED(bp))
3682 		goto out;
3683 
3684 	/* Try getting storage driver version via cnic */
3685 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3686 	       sizeof(union drv_info_to_mcp));
3687 	bnx2x_drv_info_iscsi_stat(bp);
3688 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3689 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3690 
3691 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3692 	       sizeof(union drv_info_to_mcp));
3693 	bnx2x_drv_info_fcoe_stat(bp);
3694 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3695 	fcoever = bnx2x_update_mng_version_utility(version, false);
3696 
3697 out:
3698 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3699 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3700 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3701 
3702 	mutex_unlock(&bp->drv_info_mutex);
3703 
3704 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3705 	   ethver, iscsiver, fcoever);
3706 }
3707 
3708 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3709 {
3710 	u32 drv_ver;
3711 	u32 valid_dump;
3712 
3713 	if (!SHMEM2_HAS(bp, drv_info))
3714 		return;
3715 
3716 	/* Update Driver load time, possibly broken in y2038 */
3717 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3718 
3719 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3720 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3721 
3722 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3723 
3724 	/* Check & notify On-Chip dump. */
3725 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3726 
3727 	if (valid_dump & FIRST_DUMP_VALID)
3728 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3729 
3730 	if (valid_dump & SECOND_DUMP_VALID)
3731 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3732 }
3733 
3734 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3735 {
3736 	u32 cmd_ok, cmd_fail;
3737 
3738 	/* sanity */
3739 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3740 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3741 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3742 		return;
3743 	}
3744 
3745 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3746 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3747 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3748 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3749 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3750 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3751 	}
3752 
3753 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3754 
3755 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3756 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3757 		/* This is the only place besides the function initialization
3758 		 * where the bp->flags can change so it is done without any
3759 		 * locks
3760 		 */
3761 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3762 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3763 			bp->flags |= MF_FUNC_DIS;
3764 
3765 			bnx2x_e1h_disable(bp);
3766 		} else {
3767 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3768 			bp->flags &= ~MF_FUNC_DIS;
3769 
3770 			bnx2x_e1h_enable(bp);
3771 		}
3772 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3773 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3774 	}
3775 
3776 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3777 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3778 		bnx2x_config_mf_bw(bp);
3779 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3780 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3781 	}
3782 
3783 	/* Report results to MCP */
3784 	if (event)
3785 		bnx2x_fw_command(bp, cmd_fail, 0);
3786 	else
3787 		bnx2x_fw_command(bp, cmd_ok, 0);
3788 }
3789 
3790 /* must be called under the spq lock */
3791 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3792 {
3793 	struct eth_spe *next_spe = bp->spq_prod_bd;
3794 
3795 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3796 		bp->spq_prod_bd = bp->spq;
3797 		bp->spq_prod_idx = 0;
3798 		DP(BNX2X_MSG_SP, "end of spq\n");
3799 	} else {
3800 		bp->spq_prod_bd++;
3801 		bp->spq_prod_idx++;
3802 	}
3803 	return next_spe;
3804 }
3805 
3806 /* must be called under the spq lock */
3807 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3808 {
3809 	int func = BP_FUNC(bp);
3810 
3811 	/*
3812 	 * Make sure that BD data is updated before writing the producer:
3813 	 * BD data is written to the memory, the producer is read from the
3814 	 * memory, thus we need a full memory barrier to ensure the ordering.
3815 	 */
3816 	mb();
3817 
3818 	REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3819 		 bp->spq_prod_idx);
3820 	mmiowb();
3821 }
3822 
3823 /**
3824  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3825  *
3826  * @cmd:	command to check
3827  * @cmd_type:	command type
3828  */
3829 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3830 {
3831 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3832 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3833 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3834 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3835 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3836 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3837 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3838 		return true;
3839 	else
3840 		return false;
3841 }
3842 
3843 /**
3844  * bnx2x_sp_post - place a single command on an SP ring
3845  *
3846  * @bp:		driver handle
3847  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3848  * @cid:	SW CID the command is related to
3849  * @data_hi:	command private data address (high 32 bits)
3850  * @data_lo:	command private data address (low 32 bits)
3851  * @cmd_type:	command type (e.g. NONE, ETH)
3852  *
3853  * SP data is handled as if it's always an address pair, thus data fields are
3854  * not swapped to little endian in upper functions. Instead this function swaps
3855  * data as if it's two u32 fields.
3856  */
3857 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3858 		  u32 data_hi, u32 data_lo, int cmd_type)
3859 {
3860 	struct eth_spe *spe;
3861 	u16 type;
3862 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3863 
3864 #ifdef BNX2X_STOP_ON_ERROR
3865 	if (unlikely(bp->panic)) {
3866 		BNX2X_ERR("Can't post SP when there is panic\n");
3867 		return -EIO;
3868 	}
3869 #endif
3870 
3871 	spin_lock_bh(&bp->spq_lock);
3872 
3873 	if (common) {
3874 		if (!atomic_read(&bp->eq_spq_left)) {
3875 			BNX2X_ERR("BUG! EQ ring full!\n");
3876 			spin_unlock_bh(&bp->spq_lock);
3877 			bnx2x_panic();
3878 			return -EBUSY;
3879 		}
3880 	} else if (!atomic_read(&bp->cq_spq_left)) {
3881 			BNX2X_ERR("BUG! SPQ ring full!\n");
3882 			spin_unlock_bh(&bp->spq_lock);
3883 			bnx2x_panic();
3884 			return -EBUSY;
3885 	}
3886 
3887 	spe = bnx2x_sp_get_next(bp);
3888 
3889 	/* CID needs port number to be encoded int it */
3890 	spe->hdr.conn_and_cmd_data =
3891 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3892 				    HW_CID(bp, cid));
3893 
3894 	/* In some cases, type may already contain the func-id
3895 	 * mainly in SRIOV related use cases, so we add it here only
3896 	 * if it's not already set.
3897 	 */
3898 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3899 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3900 			SPE_HDR_CONN_TYPE;
3901 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3902 			 SPE_HDR_FUNCTION_ID);
3903 	} else {
3904 		type = cmd_type;
3905 	}
3906 
3907 	spe->hdr.type = cpu_to_le16(type);
3908 
3909 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3910 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3911 
3912 	/*
3913 	 * It's ok if the actual decrement is issued towards the memory
3914 	 * somewhere between the spin_lock and spin_unlock. Thus no
3915 	 * more explicit memory barrier is needed.
3916 	 */
3917 	if (common)
3918 		atomic_dec(&bp->eq_spq_left);
3919 	else
3920 		atomic_dec(&bp->cq_spq_left);
3921 
3922 	DP(BNX2X_MSG_SP,
3923 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3924 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3925 	   (u32)(U64_LO(bp->spq_mapping) +
3926 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3927 	   HW_CID(bp, cid), data_hi, data_lo, type,
3928 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3929 
3930 	bnx2x_sp_prod_update(bp);
3931 	spin_unlock_bh(&bp->spq_lock);
3932 	return 0;
3933 }
3934 
3935 /* acquire split MCP access lock register */
3936 static int bnx2x_acquire_alr(struct bnx2x *bp)
3937 {
3938 	u32 j, val;
3939 	int rc = 0;
3940 
3941 	might_sleep();
3942 	for (j = 0; j < 1000; j++) {
3943 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3944 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3945 		if (val & MCPR_ACCESS_LOCK_LOCK)
3946 			break;
3947 
3948 		usleep_range(5000, 10000);
3949 	}
3950 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3951 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3952 		rc = -EBUSY;
3953 	}
3954 
3955 	return rc;
3956 }
3957 
3958 /* release split MCP access lock register */
3959 static void bnx2x_release_alr(struct bnx2x *bp)
3960 {
3961 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3962 }
3963 
3964 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3965 #define BNX2X_DEF_SB_IDX	0x0002
3966 
3967 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3968 {
3969 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3970 	u16 rc = 0;
3971 
3972 	barrier(); /* status block is written to by the chip */
3973 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3974 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3975 		rc |= BNX2X_DEF_SB_ATT_IDX;
3976 	}
3977 
3978 	if (bp->def_idx != def_sb->sp_sb.running_index) {
3979 		bp->def_idx = def_sb->sp_sb.running_index;
3980 		rc |= BNX2X_DEF_SB_IDX;
3981 	}
3982 
3983 	/* Do not reorder: indices reading should complete before handling */
3984 	barrier();
3985 	return rc;
3986 }
3987 
3988 /*
3989  * slow path service functions
3990  */
3991 
3992 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3993 {
3994 	int port = BP_PORT(bp);
3995 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3996 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
3997 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3998 				       NIG_REG_MASK_INTERRUPT_PORT0;
3999 	u32 aeu_mask;
4000 	u32 nig_mask = 0;
4001 	u32 reg_addr;
4002 
4003 	if (bp->attn_state & asserted)
4004 		BNX2X_ERR("IGU ERROR\n");
4005 
4006 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4007 	aeu_mask = REG_RD(bp, aeu_addr);
4008 
4009 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4010 	   aeu_mask, asserted);
4011 	aeu_mask &= ~(asserted & 0x3ff);
4012 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4013 
4014 	REG_WR(bp, aeu_addr, aeu_mask);
4015 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4016 
4017 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4018 	bp->attn_state |= asserted;
4019 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4020 
4021 	if (asserted & ATTN_HARD_WIRED_MASK) {
4022 		if (asserted & ATTN_NIG_FOR_FUNC) {
4023 
4024 			bnx2x_acquire_phy_lock(bp);
4025 
4026 			/* save nig interrupt mask */
4027 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4028 
4029 			/* If nig_mask is not set, no need to call the update
4030 			 * function.
4031 			 */
4032 			if (nig_mask) {
4033 				REG_WR(bp, nig_int_mask_addr, 0);
4034 
4035 				bnx2x_link_attn(bp);
4036 			}
4037 
4038 			/* handle unicore attn? */
4039 		}
4040 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4041 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4042 
4043 		if (asserted & GPIO_2_FUNC)
4044 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4045 
4046 		if (asserted & GPIO_3_FUNC)
4047 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4048 
4049 		if (asserted & GPIO_4_FUNC)
4050 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4051 
4052 		if (port == 0) {
4053 			if (asserted & ATTN_GENERAL_ATTN_1) {
4054 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4055 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4056 			}
4057 			if (asserted & ATTN_GENERAL_ATTN_2) {
4058 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4059 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4060 			}
4061 			if (asserted & ATTN_GENERAL_ATTN_3) {
4062 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4063 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4064 			}
4065 		} else {
4066 			if (asserted & ATTN_GENERAL_ATTN_4) {
4067 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4068 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4069 			}
4070 			if (asserted & ATTN_GENERAL_ATTN_5) {
4071 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4072 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4073 			}
4074 			if (asserted & ATTN_GENERAL_ATTN_6) {
4075 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4076 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4077 			}
4078 		}
4079 
4080 	} /* if hardwired */
4081 
4082 	if (bp->common.int_block == INT_BLOCK_HC)
4083 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4084 			    COMMAND_REG_ATTN_BITS_SET);
4085 	else
4086 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4087 
4088 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4089 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4090 	REG_WR(bp, reg_addr, asserted);
4091 
4092 	/* now set back the mask */
4093 	if (asserted & ATTN_NIG_FOR_FUNC) {
4094 		/* Verify that IGU ack through BAR was written before restoring
4095 		 * NIG mask. This loop should exit after 2-3 iterations max.
4096 		 */
4097 		if (bp->common.int_block != INT_BLOCK_HC) {
4098 			u32 cnt = 0, igu_acked;
4099 			do {
4100 				igu_acked = REG_RD(bp,
4101 						   IGU_REG_ATTENTION_ACK_BITS);
4102 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4103 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4104 			if (!igu_acked)
4105 				DP(NETIF_MSG_HW,
4106 				   "Failed to verify IGU ack on time\n");
4107 			barrier();
4108 		}
4109 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4110 		bnx2x_release_phy_lock(bp);
4111 	}
4112 }
4113 
4114 static void bnx2x_fan_failure(struct bnx2x *bp)
4115 {
4116 	int port = BP_PORT(bp);
4117 	u32 ext_phy_config;
4118 	/* mark the failure */
4119 	ext_phy_config =
4120 		SHMEM_RD(bp,
4121 			 dev_info.port_hw_config[port].external_phy_config);
4122 
4123 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4124 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4125 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4126 		 ext_phy_config);
4127 
4128 	/* log the failure */
4129 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4130 			    "Please contact OEM Support for assistance\n");
4131 
4132 	/* Schedule device reset (unload)
4133 	 * This is due to some boards consuming sufficient power when driver is
4134 	 * up to overheat if fan fails.
4135 	 */
4136 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4137 }
4138 
4139 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4140 {
4141 	int port = BP_PORT(bp);
4142 	int reg_offset;
4143 	u32 val;
4144 
4145 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4146 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4147 
4148 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4149 
4150 		val = REG_RD(bp, reg_offset);
4151 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4152 		REG_WR(bp, reg_offset, val);
4153 
4154 		BNX2X_ERR("SPIO5 hw attention\n");
4155 
4156 		/* Fan failure attention */
4157 		bnx2x_hw_reset_phy(&bp->link_params);
4158 		bnx2x_fan_failure(bp);
4159 	}
4160 
4161 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4162 		bnx2x_acquire_phy_lock(bp);
4163 		bnx2x_handle_module_detect_int(&bp->link_params);
4164 		bnx2x_release_phy_lock(bp);
4165 	}
4166 
4167 	if (attn & HW_INTERRUT_ASSERT_SET_0) {
4168 
4169 		val = REG_RD(bp, reg_offset);
4170 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4171 		REG_WR(bp, reg_offset, val);
4172 
4173 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4174 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4175 		bnx2x_panic();
4176 	}
4177 }
4178 
4179 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4180 {
4181 	u32 val;
4182 
4183 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4184 
4185 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4186 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4187 		/* DORQ discard attention */
4188 		if (val & 0x2)
4189 			BNX2X_ERR("FATAL error from DORQ\n");
4190 	}
4191 
4192 	if (attn & HW_INTERRUT_ASSERT_SET_1) {
4193 
4194 		int port = BP_PORT(bp);
4195 		int reg_offset;
4196 
4197 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4198 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4199 
4200 		val = REG_RD(bp, reg_offset);
4201 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4202 		REG_WR(bp, reg_offset, val);
4203 
4204 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4205 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4206 		bnx2x_panic();
4207 	}
4208 }
4209 
4210 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4211 {
4212 	u32 val;
4213 
4214 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4215 
4216 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4217 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4218 		/* CFC error attention */
4219 		if (val & 0x2)
4220 			BNX2X_ERR("FATAL error from CFC\n");
4221 	}
4222 
4223 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4224 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4225 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4226 		/* RQ_USDMDP_FIFO_OVERFLOW */
4227 		if (val & 0x18000)
4228 			BNX2X_ERR("FATAL error from PXP\n");
4229 
4230 		if (!CHIP_IS_E1x(bp)) {
4231 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4232 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4233 		}
4234 	}
4235 
4236 	if (attn & HW_INTERRUT_ASSERT_SET_2) {
4237 
4238 		int port = BP_PORT(bp);
4239 		int reg_offset;
4240 
4241 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4242 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4243 
4244 		val = REG_RD(bp, reg_offset);
4245 		val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4246 		REG_WR(bp, reg_offset, val);
4247 
4248 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4249 			  (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4250 		bnx2x_panic();
4251 	}
4252 }
4253 
4254 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4255 {
4256 	u32 val;
4257 
4258 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4259 
4260 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4261 			int func = BP_FUNC(bp);
4262 
4263 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4264 			bnx2x_read_mf_cfg(bp);
4265 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4266 					func_mf_config[BP_ABS_FUNC(bp)].config);
4267 			val = SHMEM_RD(bp,
4268 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4269 
4270 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4271 				   DRV_STATUS_OEM_EVENT_MASK))
4272 				bnx2x_oem_event(bp,
4273 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4274 						DRV_STATUS_OEM_EVENT_MASK)));
4275 
4276 			if (val & DRV_STATUS_SET_MF_BW)
4277 				bnx2x_set_mf_bw(bp);
4278 
4279 			if (val & DRV_STATUS_DRV_INFO_REQ)
4280 				bnx2x_handle_drv_info_req(bp);
4281 
4282 			if (val & DRV_STATUS_VF_DISABLED)
4283 				bnx2x_schedule_iov_task(bp,
4284 							BNX2X_IOV_HANDLE_FLR);
4285 
4286 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4287 				bnx2x_pmf_update(bp);
4288 
4289 			if (bp->port.pmf &&
4290 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4291 				bp->dcbx_enabled > 0)
4292 				/* start dcbx state machine */
4293 				bnx2x_dcbx_set_params(bp,
4294 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4295 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4296 				bnx2x_handle_afex_cmd(bp,
4297 					val & DRV_STATUS_AFEX_EVENT_MASK);
4298 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4299 				bnx2x_handle_eee_event(bp);
4300 
4301 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4302 				bnx2x_handle_update_svid_cmd(bp);
4303 
4304 			if (bp->link_vars.periodic_flags &
4305 			    PERIODIC_FLAGS_LINK_EVENT) {
4306 				/*  sync with link */
4307 				bnx2x_acquire_phy_lock(bp);
4308 				bp->link_vars.periodic_flags &=
4309 					~PERIODIC_FLAGS_LINK_EVENT;
4310 				bnx2x_release_phy_lock(bp);
4311 				if (IS_MF(bp))
4312 					bnx2x_link_sync_notify(bp);
4313 				bnx2x_link_report(bp);
4314 			}
4315 			/* Always call it here: bnx2x_link_report() will
4316 			 * prevent the link indication duplication.
4317 			 */
4318 			bnx2x__link_status_update(bp);
4319 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4320 
4321 			BNX2X_ERR("MC assert!\n");
4322 			bnx2x_mc_assert(bp);
4323 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4324 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4325 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4326 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4327 			bnx2x_panic();
4328 
4329 		} else if (attn & BNX2X_MCP_ASSERT) {
4330 
4331 			BNX2X_ERR("MCP assert!\n");
4332 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4333 			bnx2x_fw_dump(bp);
4334 
4335 		} else
4336 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4337 	}
4338 
4339 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4340 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4341 		if (attn & BNX2X_GRC_TIMEOUT) {
4342 			val = CHIP_IS_E1(bp) ? 0 :
4343 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4344 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4345 		}
4346 		if (attn & BNX2X_GRC_RSV) {
4347 			val = CHIP_IS_E1(bp) ? 0 :
4348 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4349 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4350 		}
4351 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4352 	}
4353 }
4354 
4355 /*
4356  * Bits map:
4357  * 0-7   - Engine0 load counter.
4358  * 8-15  - Engine1 load counter.
4359  * 16    - Engine0 RESET_IN_PROGRESS bit.
4360  * 17    - Engine1 RESET_IN_PROGRESS bit.
4361  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4362  *         on the engine
4363  * 19    - Engine1 ONE_IS_LOADED.
4364  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4365  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4366  *         just the one belonging to its engine).
4367  *
4368  */
4369 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4370 
4371 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4372 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4373 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4374 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4375 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4376 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4377 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4378 
4379 /*
4380  * Set the GLOBAL_RESET bit.
4381  *
4382  * Should be run under rtnl lock
4383  */
4384 void bnx2x_set_reset_global(struct bnx2x *bp)
4385 {
4386 	u32 val;
4387 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4388 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4389 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4390 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4391 }
4392 
4393 /*
4394  * Clear the GLOBAL_RESET bit.
4395  *
4396  * Should be run under rtnl lock
4397  */
4398 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4399 {
4400 	u32 val;
4401 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4403 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4404 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 }
4406 
4407 /*
4408  * Checks the GLOBAL_RESET bit.
4409  *
4410  * should be run under rtnl lock
4411  */
4412 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4413 {
4414 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4415 
4416 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4417 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4418 }
4419 
4420 /*
4421  * Clear RESET_IN_PROGRESS bit for the current engine.
4422  *
4423  * Should be run under rtnl lock
4424  */
4425 static void bnx2x_set_reset_done(struct bnx2x *bp)
4426 {
4427 	u32 val;
4428 	u32 bit = BP_PATH(bp) ?
4429 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4430 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4431 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432 
4433 	/* Clear the bit */
4434 	val &= ~bit;
4435 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4436 
4437 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4438 }
4439 
4440 /*
4441  * Set RESET_IN_PROGRESS for the current engine.
4442  *
4443  * should be run under rtnl lock
4444  */
4445 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4446 {
4447 	u32 val;
4448 	u32 bit = BP_PATH(bp) ?
4449 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4450 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4451 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4452 
4453 	/* Set the bit */
4454 	val |= bit;
4455 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4456 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4457 }
4458 
4459 /*
4460  * Checks the RESET_IN_PROGRESS bit for the given engine.
4461  * should be run under rtnl lock
4462  */
4463 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4464 {
4465 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4466 	u32 bit = engine ?
4467 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4468 
4469 	/* return false if bit is set */
4470 	return (val & bit) ? false : true;
4471 }
4472 
4473 /*
4474  * set pf load for the current pf.
4475  *
4476  * should be run under rtnl lock
4477  */
4478 void bnx2x_set_pf_load(struct bnx2x *bp)
4479 {
4480 	u32 val1, val;
4481 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4482 			     BNX2X_PATH0_LOAD_CNT_MASK;
4483 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4484 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4485 
4486 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4487 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4488 
4489 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4490 
4491 	/* get the current counter value */
4492 	val1 = (val & mask) >> shift;
4493 
4494 	/* set bit of that PF */
4495 	val1 |= (1 << bp->pf_num);
4496 
4497 	/* clear the old value */
4498 	val &= ~mask;
4499 
4500 	/* set the new one */
4501 	val |= ((val1 << shift) & mask);
4502 
4503 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4504 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4505 }
4506 
4507 /**
4508  * bnx2x_clear_pf_load - clear pf load mark
4509  *
4510  * @bp:		driver handle
4511  *
4512  * Should be run under rtnl lock.
4513  * Decrements the load counter for the current engine. Returns
4514  * whether other functions are still loaded
4515  */
4516 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4517 {
4518 	u32 val1, val;
4519 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4520 			     BNX2X_PATH0_LOAD_CNT_MASK;
4521 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4522 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4523 
4524 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4525 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4526 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4527 
4528 	/* get the current counter value */
4529 	val1 = (val & mask) >> shift;
4530 
4531 	/* clear bit of that PF */
4532 	val1 &= ~(1 << bp->pf_num);
4533 
4534 	/* clear the old value */
4535 	val &= ~mask;
4536 
4537 	/* set the new one */
4538 	val |= ((val1 << shift) & mask);
4539 
4540 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4541 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4542 	return val1 != 0;
4543 }
4544 
4545 /*
4546  * Read the load status for the current engine.
4547  *
4548  * should be run under rtnl lock
4549  */
4550 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4551 {
4552 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4553 			     BNX2X_PATH0_LOAD_CNT_MASK);
4554 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4555 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4556 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4557 
4558 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4559 
4560 	val = (val & mask) >> shift;
4561 
4562 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4563 	   engine, val);
4564 
4565 	return val != 0;
4566 }
4567 
4568 static void _print_parity(struct bnx2x *bp, u32 reg)
4569 {
4570 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4571 }
4572 
4573 static void _print_next_block(int idx, const char *blk)
4574 {
4575 	pr_cont("%s%s", idx ? ", " : "", blk);
4576 }
4577 
4578 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4579 					    int *par_num, bool print)
4580 {
4581 	u32 cur_bit;
4582 	bool res;
4583 	int i;
4584 
4585 	res = false;
4586 
4587 	for (i = 0; sig; i++) {
4588 		cur_bit = (0x1UL << i);
4589 		if (sig & cur_bit) {
4590 			res |= true; /* Each bit is real error! */
4591 
4592 			if (print) {
4593 				switch (cur_bit) {
4594 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4595 					_print_next_block((*par_num)++, "BRB");
4596 					_print_parity(bp,
4597 						      BRB1_REG_BRB1_PRTY_STS);
4598 					break;
4599 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4600 					_print_next_block((*par_num)++,
4601 							  "PARSER");
4602 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4603 					break;
4604 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4605 					_print_next_block((*par_num)++, "TSDM");
4606 					_print_parity(bp,
4607 						      TSDM_REG_TSDM_PRTY_STS);
4608 					break;
4609 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4610 					_print_next_block((*par_num)++,
4611 							  "SEARCHER");
4612 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4613 					break;
4614 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4615 					_print_next_block((*par_num)++, "TCM");
4616 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4617 					break;
4618 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4619 					_print_next_block((*par_num)++,
4620 							  "TSEMI");
4621 					_print_parity(bp,
4622 						      TSEM_REG_TSEM_PRTY_STS_0);
4623 					_print_parity(bp,
4624 						      TSEM_REG_TSEM_PRTY_STS_1);
4625 					break;
4626 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4627 					_print_next_block((*par_num)++, "XPB");
4628 					_print_parity(bp, GRCBASE_XPB +
4629 							  PB_REG_PB_PRTY_STS);
4630 					break;
4631 				}
4632 			}
4633 
4634 			/* Clear the bit */
4635 			sig &= ~cur_bit;
4636 		}
4637 	}
4638 
4639 	return res;
4640 }
4641 
4642 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4643 					    int *par_num, bool *global,
4644 					    bool print)
4645 {
4646 	u32 cur_bit;
4647 	bool res;
4648 	int i;
4649 
4650 	res = false;
4651 
4652 	for (i = 0; sig; i++) {
4653 		cur_bit = (0x1UL << i);
4654 		if (sig & cur_bit) {
4655 			res |= true; /* Each bit is real error! */
4656 			switch (cur_bit) {
4657 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4658 				if (print) {
4659 					_print_next_block((*par_num)++, "PBF");
4660 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4661 				}
4662 				break;
4663 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4664 				if (print) {
4665 					_print_next_block((*par_num)++, "QM");
4666 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4667 				}
4668 				break;
4669 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4670 				if (print) {
4671 					_print_next_block((*par_num)++, "TM");
4672 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4673 				}
4674 				break;
4675 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4676 				if (print) {
4677 					_print_next_block((*par_num)++, "XSDM");
4678 					_print_parity(bp,
4679 						      XSDM_REG_XSDM_PRTY_STS);
4680 				}
4681 				break;
4682 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4683 				if (print) {
4684 					_print_next_block((*par_num)++, "XCM");
4685 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4686 				}
4687 				break;
4688 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4689 				if (print) {
4690 					_print_next_block((*par_num)++,
4691 							  "XSEMI");
4692 					_print_parity(bp,
4693 						      XSEM_REG_XSEM_PRTY_STS_0);
4694 					_print_parity(bp,
4695 						      XSEM_REG_XSEM_PRTY_STS_1);
4696 				}
4697 				break;
4698 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4699 				if (print) {
4700 					_print_next_block((*par_num)++,
4701 							  "DOORBELLQ");
4702 					_print_parity(bp,
4703 						      DORQ_REG_DORQ_PRTY_STS);
4704 				}
4705 				break;
4706 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4707 				if (print) {
4708 					_print_next_block((*par_num)++, "NIG");
4709 					if (CHIP_IS_E1x(bp)) {
4710 						_print_parity(bp,
4711 							NIG_REG_NIG_PRTY_STS);
4712 					} else {
4713 						_print_parity(bp,
4714 							NIG_REG_NIG_PRTY_STS_0);
4715 						_print_parity(bp,
4716 							NIG_REG_NIG_PRTY_STS_1);
4717 					}
4718 				}
4719 				break;
4720 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4721 				if (print)
4722 					_print_next_block((*par_num)++,
4723 							  "VAUX PCI CORE");
4724 				*global = true;
4725 				break;
4726 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4727 				if (print) {
4728 					_print_next_block((*par_num)++,
4729 							  "DEBUG");
4730 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4731 				}
4732 				break;
4733 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4734 				if (print) {
4735 					_print_next_block((*par_num)++, "USDM");
4736 					_print_parity(bp,
4737 						      USDM_REG_USDM_PRTY_STS);
4738 				}
4739 				break;
4740 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4741 				if (print) {
4742 					_print_next_block((*par_num)++, "UCM");
4743 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4744 				}
4745 				break;
4746 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4747 				if (print) {
4748 					_print_next_block((*par_num)++,
4749 							  "USEMI");
4750 					_print_parity(bp,
4751 						      USEM_REG_USEM_PRTY_STS_0);
4752 					_print_parity(bp,
4753 						      USEM_REG_USEM_PRTY_STS_1);
4754 				}
4755 				break;
4756 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4757 				if (print) {
4758 					_print_next_block((*par_num)++, "UPB");
4759 					_print_parity(bp, GRCBASE_UPB +
4760 							  PB_REG_PB_PRTY_STS);
4761 				}
4762 				break;
4763 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4764 				if (print) {
4765 					_print_next_block((*par_num)++, "CSDM");
4766 					_print_parity(bp,
4767 						      CSDM_REG_CSDM_PRTY_STS);
4768 				}
4769 				break;
4770 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4771 				if (print) {
4772 					_print_next_block((*par_num)++, "CCM");
4773 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4774 				}
4775 				break;
4776 			}
4777 
4778 			/* Clear the bit */
4779 			sig &= ~cur_bit;
4780 		}
4781 	}
4782 
4783 	return res;
4784 }
4785 
4786 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4787 					    int *par_num, bool print)
4788 {
4789 	u32 cur_bit;
4790 	bool res;
4791 	int i;
4792 
4793 	res = false;
4794 
4795 	for (i = 0; sig; i++) {
4796 		cur_bit = (0x1UL << i);
4797 		if (sig & cur_bit) {
4798 			res = true; /* Each bit is real error! */
4799 			if (print) {
4800 				switch (cur_bit) {
4801 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4802 					_print_next_block((*par_num)++,
4803 							  "CSEMI");
4804 					_print_parity(bp,
4805 						      CSEM_REG_CSEM_PRTY_STS_0);
4806 					_print_parity(bp,
4807 						      CSEM_REG_CSEM_PRTY_STS_1);
4808 					break;
4809 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4810 					_print_next_block((*par_num)++, "PXP");
4811 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4812 					_print_parity(bp,
4813 						      PXP2_REG_PXP2_PRTY_STS_0);
4814 					_print_parity(bp,
4815 						      PXP2_REG_PXP2_PRTY_STS_1);
4816 					break;
4817 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4818 					_print_next_block((*par_num)++,
4819 							  "PXPPCICLOCKCLIENT");
4820 					break;
4821 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4822 					_print_next_block((*par_num)++, "CFC");
4823 					_print_parity(bp,
4824 						      CFC_REG_CFC_PRTY_STS);
4825 					break;
4826 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4827 					_print_next_block((*par_num)++, "CDU");
4828 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4829 					break;
4830 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4831 					_print_next_block((*par_num)++, "DMAE");
4832 					_print_parity(bp,
4833 						      DMAE_REG_DMAE_PRTY_STS);
4834 					break;
4835 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4836 					_print_next_block((*par_num)++, "IGU");
4837 					if (CHIP_IS_E1x(bp))
4838 						_print_parity(bp,
4839 							HC_REG_HC_PRTY_STS);
4840 					else
4841 						_print_parity(bp,
4842 							IGU_REG_IGU_PRTY_STS);
4843 					break;
4844 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4845 					_print_next_block((*par_num)++, "MISC");
4846 					_print_parity(bp,
4847 						      MISC_REG_MISC_PRTY_STS);
4848 					break;
4849 				}
4850 			}
4851 
4852 			/* Clear the bit */
4853 			sig &= ~cur_bit;
4854 		}
4855 	}
4856 
4857 	return res;
4858 }
4859 
4860 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4861 					    int *par_num, bool *global,
4862 					    bool print)
4863 {
4864 	bool res = false;
4865 	u32 cur_bit;
4866 	int i;
4867 
4868 	for (i = 0; sig; i++) {
4869 		cur_bit = (0x1UL << i);
4870 		if (sig & cur_bit) {
4871 			switch (cur_bit) {
4872 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4873 				if (print)
4874 					_print_next_block((*par_num)++,
4875 							  "MCP ROM");
4876 				*global = true;
4877 				res = true;
4878 				break;
4879 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4880 				if (print)
4881 					_print_next_block((*par_num)++,
4882 							  "MCP UMP RX");
4883 				*global = true;
4884 				res = true;
4885 				break;
4886 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4887 				if (print)
4888 					_print_next_block((*par_num)++,
4889 							  "MCP UMP TX");
4890 				*global = true;
4891 				res = true;
4892 				break;
4893 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4894 				(*par_num)++;
4895 				/* clear latched SCPAD PATIRY from MCP */
4896 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4897 				       1UL << 10);
4898 				break;
4899 			}
4900 
4901 			/* Clear the bit */
4902 			sig &= ~cur_bit;
4903 		}
4904 	}
4905 
4906 	return res;
4907 }
4908 
4909 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4910 					    int *par_num, bool print)
4911 {
4912 	u32 cur_bit;
4913 	bool res;
4914 	int i;
4915 
4916 	res = false;
4917 
4918 	for (i = 0; sig; i++) {
4919 		cur_bit = (0x1UL << i);
4920 		if (sig & cur_bit) {
4921 			res = true; /* Each bit is real error! */
4922 			if (print) {
4923 				switch (cur_bit) {
4924 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4925 					_print_next_block((*par_num)++,
4926 							  "PGLUE_B");
4927 					_print_parity(bp,
4928 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4929 					break;
4930 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4931 					_print_next_block((*par_num)++, "ATC");
4932 					_print_parity(bp,
4933 						      ATC_REG_ATC_PRTY_STS);
4934 					break;
4935 				}
4936 			}
4937 			/* Clear the bit */
4938 			sig &= ~cur_bit;
4939 		}
4940 	}
4941 
4942 	return res;
4943 }
4944 
4945 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4946 			      u32 *sig)
4947 {
4948 	bool res = false;
4949 
4950 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4951 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4952 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4953 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4954 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4955 		int par_num = 0;
4956 
4957 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4958 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4959 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4960 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4961 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4962 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4963 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4964 		if (print) {
4965 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4966 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4967 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4968 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4969 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4970 				netdev_err(bp->dev,
4971 					   "Parity errors detected in blocks: ");
4972 			} else {
4973 				print = false;
4974 			}
4975 		}
4976 		res |= bnx2x_check_blocks_with_parity0(bp,
4977 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4978 		res |= bnx2x_check_blocks_with_parity1(bp,
4979 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4980 		res |= bnx2x_check_blocks_with_parity2(bp,
4981 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4982 		res |= bnx2x_check_blocks_with_parity3(bp,
4983 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4984 		res |= bnx2x_check_blocks_with_parity4(bp,
4985 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4986 
4987 		if (print)
4988 			pr_cont("\n");
4989 	}
4990 
4991 	return res;
4992 }
4993 
4994 /**
4995  * bnx2x_chk_parity_attn - checks for parity attentions.
4996  *
4997  * @bp:		driver handle
4998  * @global:	true if there was a global attention
4999  * @print:	show parity attention in syslog
5000  */
5001 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5002 {
5003 	struct attn_route attn = { {0} };
5004 	int port = BP_PORT(bp);
5005 
5006 	attn.sig[0] = REG_RD(bp,
5007 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5008 			     port*4);
5009 	attn.sig[1] = REG_RD(bp,
5010 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5011 			     port*4);
5012 	attn.sig[2] = REG_RD(bp,
5013 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5014 			     port*4);
5015 	attn.sig[3] = REG_RD(bp,
5016 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5017 			     port*4);
5018 	/* Since MCP attentions can't be disabled inside the block, we need to
5019 	 * read AEU registers to see whether they're currently disabled
5020 	 */
5021 	attn.sig[3] &= ((REG_RD(bp,
5022 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5023 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5024 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5025 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5026 
5027 	if (!CHIP_IS_E1x(bp))
5028 		attn.sig[4] = REG_RD(bp,
5029 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5030 				     port*4);
5031 
5032 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5033 }
5034 
5035 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5036 {
5037 	u32 val;
5038 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5039 
5040 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5041 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5042 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5043 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5044 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5045 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5046 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5047 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5048 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5049 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5050 		if (val &
5051 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5052 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5053 		if (val &
5054 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5055 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5056 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5057 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5058 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5059 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5060 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5061 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5062 	}
5063 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5064 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5065 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5066 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5067 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5068 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5069 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5070 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5071 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5072 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5073 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5074 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5075 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5076 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5077 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5078 	}
5079 
5080 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5081 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5082 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5083 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5084 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5085 	}
5086 }
5087 
5088 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5089 {
5090 	struct attn_route attn, *group_mask;
5091 	int port = BP_PORT(bp);
5092 	int index;
5093 	u32 reg_addr;
5094 	u32 val;
5095 	u32 aeu_mask;
5096 	bool global = false;
5097 
5098 	/* need to take HW lock because MCP or other port might also
5099 	   try to handle this event */
5100 	bnx2x_acquire_alr(bp);
5101 
5102 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5103 #ifndef BNX2X_STOP_ON_ERROR
5104 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5105 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5106 		/* Disable HW interrupts */
5107 		bnx2x_int_disable(bp);
5108 		/* In case of parity errors don't handle attentions so that
5109 		 * other function would "see" parity errors.
5110 		 */
5111 #else
5112 		bnx2x_panic();
5113 #endif
5114 		bnx2x_release_alr(bp);
5115 		return;
5116 	}
5117 
5118 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5119 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5120 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5121 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5122 	if (!CHIP_IS_E1x(bp))
5123 		attn.sig[4] =
5124 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5125 	else
5126 		attn.sig[4] = 0;
5127 
5128 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5129 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5130 
5131 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5132 		if (deasserted & (1 << index)) {
5133 			group_mask = &bp->attn_group[index];
5134 
5135 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5136 			   index,
5137 			   group_mask->sig[0], group_mask->sig[1],
5138 			   group_mask->sig[2], group_mask->sig[3],
5139 			   group_mask->sig[4]);
5140 
5141 			bnx2x_attn_int_deasserted4(bp,
5142 					attn.sig[4] & group_mask->sig[4]);
5143 			bnx2x_attn_int_deasserted3(bp,
5144 					attn.sig[3] & group_mask->sig[3]);
5145 			bnx2x_attn_int_deasserted1(bp,
5146 					attn.sig[1] & group_mask->sig[1]);
5147 			bnx2x_attn_int_deasserted2(bp,
5148 					attn.sig[2] & group_mask->sig[2]);
5149 			bnx2x_attn_int_deasserted0(bp,
5150 					attn.sig[0] & group_mask->sig[0]);
5151 		}
5152 	}
5153 
5154 	bnx2x_release_alr(bp);
5155 
5156 	if (bp->common.int_block == INT_BLOCK_HC)
5157 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5158 			    COMMAND_REG_ATTN_BITS_CLR);
5159 	else
5160 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5161 
5162 	val = ~deasserted;
5163 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5164 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5165 	REG_WR(bp, reg_addr, val);
5166 
5167 	if (~bp->attn_state & deasserted)
5168 		BNX2X_ERR("IGU ERROR\n");
5169 
5170 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5171 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5172 
5173 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5174 	aeu_mask = REG_RD(bp, reg_addr);
5175 
5176 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5177 	   aeu_mask, deasserted);
5178 	aeu_mask |= (deasserted & 0x3ff);
5179 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5180 
5181 	REG_WR(bp, reg_addr, aeu_mask);
5182 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5183 
5184 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5185 	bp->attn_state &= ~deasserted;
5186 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5187 }
5188 
5189 static void bnx2x_attn_int(struct bnx2x *bp)
5190 {
5191 	/* read local copy of bits */
5192 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5193 								attn_bits);
5194 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5195 								attn_bits_ack);
5196 	u32 attn_state = bp->attn_state;
5197 
5198 	/* look for changed bits */
5199 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5200 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5201 
5202 	DP(NETIF_MSG_HW,
5203 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5204 	   attn_bits, attn_ack, asserted, deasserted);
5205 
5206 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5207 		BNX2X_ERR("BAD attention state\n");
5208 
5209 	/* handle bits that were raised */
5210 	if (asserted)
5211 		bnx2x_attn_int_asserted(bp, asserted);
5212 
5213 	if (deasserted)
5214 		bnx2x_attn_int_deasserted(bp, deasserted);
5215 }
5216 
5217 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5218 		      u16 index, u8 op, u8 update)
5219 {
5220 	u32 igu_addr = bp->igu_base_addr;
5221 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5222 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5223 			     igu_addr);
5224 }
5225 
5226 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5227 {
5228 	/* No memory barriers */
5229 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5230 	mmiowb(); /* keep prod updates ordered */
5231 }
5232 
5233 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5234 				      union event_ring_elem *elem)
5235 {
5236 	u8 err = elem->message.error;
5237 
5238 	if (!bp->cnic_eth_dev.starting_cid  ||
5239 	    (cid < bp->cnic_eth_dev.starting_cid &&
5240 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5241 		return 1;
5242 
5243 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5244 
5245 	if (unlikely(err)) {
5246 
5247 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5248 			  cid);
5249 		bnx2x_panic_dump(bp, false);
5250 	}
5251 	bnx2x_cnic_cfc_comp(bp, cid, err);
5252 	return 0;
5253 }
5254 
5255 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5256 {
5257 	struct bnx2x_mcast_ramrod_params rparam;
5258 	int rc;
5259 
5260 	memset(&rparam, 0, sizeof(rparam));
5261 
5262 	rparam.mcast_obj = &bp->mcast_obj;
5263 
5264 	netif_addr_lock_bh(bp->dev);
5265 
5266 	/* Clear pending state for the last command */
5267 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5268 
5269 	/* If there are pending mcast commands - send them */
5270 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5271 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5272 		if (rc < 0)
5273 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5274 				  rc);
5275 	}
5276 
5277 	netif_addr_unlock_bh(bp->dev);
5278 }
5279 
5280 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5281 					    union event_ring_elem *elem)
5282 {
5283 	unsigned long ramrod_flags = 0;
5284 	int rc = 0;
5285 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5286 	u32 cid = echo & BNX2X_SWCID_MASK;
5287 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5288 
5289 	/* Always push next commands out, don't wait here */
5290 	__set_bit(RAMROD_CONT, &ramrod_flags);
5291 
5292 	switch (echo >> BNX2X_SWCID_SHIFT) {
5293 	case BNX2X_FILTER_MAC_PENDING:
5294 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5295 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5296 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5297 		else
5298 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5299 
5300 		break;
5301 	case BNX2X_FILTER_VLAN_PENDING:
5302 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5303 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5304 		break;
5305 	case BNX2X_FILTER_MCAST_PENDING:
5306 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5307 		/* This is only relevant for 57710 where multicast MACs are
5308 		 * configured as unicast MACs using the same ramrod.
5309 		 */
5310 		bnx2x_handle_mcast_eqe(bp);
5311 		return;
5312 	default:
5313 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5314 		return;
5315 	}
5316 
5317 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5318 
5319 	if (rc < 0)
5320 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5321 	else if (rc > 0)
5322 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5323 }
5324 
5325 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5326 
5327 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5328 {
5329 	netif_addr_lock_bh(bp->dev);
5330 
5331 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5332 
5333 	/* Send rx_mode command again if was requested */
5334 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5335 		bnx2x_set_storm_rx_mode(bp);
5336 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5337 				    &bp->sp_state))
5338 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5339 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5340 				    &bp->sp_state))
5341 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5342 
5343 	netif_addr_unlock_bh(bp->dev);
5344 }
5345 
5346 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5347 					      union event_ring_elem *elem)
5348 {
5349 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5350 		DP(BNX2X_MSG_SP,
5351 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5352 		   elem->message.data.vif_list_event.func_bit_map);
5353 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5354 			elem->message.data.vif_list_event.func_bit_map);
5355 	} else if (elem->message.data.vif_list_event.echo ==
5356 		   VIF_LIST_RULE_SET) {
5357 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5358 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5359 	}
5360 }
5361 
5362 /* called with rtnl_lock */
5363 static void bnx2x_after_function_update(struct bnx2x *bp)
5364 {
5365 	int q, rc;
5366 	struct bnx2x_fastpath *fp;
5367 	struct bnx2x_queue_state_params queue_params = {NULL};
5368 	struct bnx2x_queue_update_params *q_update_params =
5369 		&queue_params.params.update;
5370 
5371 	/* Send Q update command with afex vlan removal values for all Qs */
5372 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5373 
5374 	/* set silent vlan removal values according to vlan mode */
5375 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5376 		  &q_update_params->update_flags);
5377 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5378 		  &q_update_params->update_flags);
5379 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5380 
5381 	/* in access mode mark mask and value are 0 to strip all vlans */
5382 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5383 		q_update_params->silent_removal_value = 0;
5384 		q_update_params->silent_removal_mask = 0;
5385 	} else {
5386 		q_update_params->silent_removal_value =
5387 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5388 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5389 	}
5390 
5391 	for_each_eth_queue(bp, q) {
5392 		/* Set the appropriate Queue object */
5393 		fp = &bp->fp[q];
5394 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5395 
5396 		/* send the ramrod */
5397 		rc = bnx2x_queue_state_change(bp, &queue_params);
5398 		if (rc < 0)
5399 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5400 				  q);
5401 	}
5402 
5403 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5404 		fp = &bp->fp[FCOE_IDX(bp)];
5405 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5406 
5407 		/* clear pending completion bit */
5408 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5409 
5410 		/* mark latest Q bit */
5411 		smp_mb__before_atomic();
5412 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5413 		smp_mb__after_atomic();
5414 
5415 		/* send Q update ramrod for FCoE Q */
5416 		rc = bnx2x_queue_state_change(bp, &queue_params);
5417 		if (rc < 0)
5418 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5419 				  q);
5420 	} else {
5421 		/* If no FCoE ring - ACK MCP now */
5422 		bnx2x_link_report(bp);
5423 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5424 	}
5425 }
5426 
5427 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5428 	struct bnx2x *bp, u32 cid)
5429 {
5430 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5431 
5432 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5433 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5434 	else
5435 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5436 }
5437 
5438 static void bnx2x_eq_int(struct bnx2x *bp)
5439 {
5440 	u16 hw_cons, sw_cons, sw_prod;
5441 	union event_ring_elem *elem;
5442 	u8 echo;
5443 	u32 cid;
5444 	u8 opcode;
5445 	int rc, spqe_cnt = 0;
5446 	struct bnx2x_queue_sp_obj *q_obj;
5447 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5448 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5449 
5450 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5451 
5452 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5453 	 * when we get the next-page we need to adjust so the loop
5454 	 * condition below will be met. The next element is the size of a
5455 	 * regular element and hence incrementing by 1
5456 	 */
5457 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5458 		hw_cons++;
5459 
5460 	/* This function may never run in parallel with itself for a
5461 	 * specific bp, thus there is no need in "paired" read memory
5462 	 * barrier here.
5463 	 */
5464 	sw_cons = bp->eq_cons;
5465 	sw_prod = bp->eq_prod;
5466 
5467 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5468 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5469 
5470 	for (; sw_cons != hw_cons;
5471 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5472 
5473 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5474 
5475 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5476 		if (!rc) {
5477 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5478 			   rc);
5479 			goto next_spqe;
5480 		}
5481 
5482 		opcode = elem->message.opcode;
5483 
5484 		/* handle eq element */
5485 		switch (opcode) {
5486 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5487 			bnx2x_vf_mbx_schedule(bp,
5488 					      &elem->message.data.vf_pf_event);
5489 			continue;
5490 
5491 		case EVENT_RING_OPCODE_STAT_QUERY:
5492 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5493 			       "got statistics comp event %d\n",
5494 			       bp->stats_comp++);
5495 			/* nothing to do with stats comp */
5496 			goto next_spqe;
5497 
5498 		case EVENT_RING_OPCODE_CFC_DEL:
5499 			/* handle according to cid range */
5500 			/*
5501 			 * we may want to verify here that the bp state is
5502 			 * HALTING
5503 			 */
5504 
5505 			/* elem CID originates from FW; actually LE */
5506 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5507 
5508 			DP(BNX2X_MSG_SP,
5509 			   "got delete ramrod for MULTI[%d]\n", cid);
5510 
5511 			if (CNIC_LOADED(bp) &&
5512 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5513 				goto next_spqe;
5514 
5515 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5516 
5517 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5518 				break;
5519 
5520 			goto next_spqe;
5521 
5522 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5523 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5524 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5525 			if (f_obj->complete_cmd(bp, f_obj,
5526 						BNX2X_F_CMD_TX_STOP))
5527 				break;
5528 			goto next_spqe;
5529 
5530 		case EVENT_RING_OPCODE_START_TRAFFIC:
5531 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5532 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5533 			if (f_obj->complete_cmd(bp, f_obj,
5534 						BNX2X_F_CMD_TX_START))
5535 				break;
5536 			goto next_spqe;
5537 
5538 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5539 			echo = elem->message.data.function_update_event.echo;
5540 			if (echo == SWITCH_UPDATE) {
5541 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5542 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5543 				if (f_obj->complete_cmd(
5544 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5545 					break;
5546 
5547 			} else {
5548 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5549 
5550 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5551 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5552 				f_obj->complete_cmd(bp, f_obj,
5553 						    BNX2X_F_CMD_AFEX_UPDATE);
5554 
5555 				/* We will perform the Queues update from
5556 				 * sp_rtnl task as all Queue SP operations
5557 				 * should run under rtnl_lock.
5558 				 */
5559 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5560 			}
5561 
5562 			goto next_spqe;
5563 
5564 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5565 			f_obj->complete_cmd(bp, f_obj,
5566 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5567 			bnx2x_after_afex_vif_lists(bp, elem);
5568 			goto next_spqe;
5569 		case EVENT_RING_OPCODE_FUNCTION_START:
5570 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5571 			   "got FUNC_START ramrod\n");
5572 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5573 				break;
5574 
5575 			goto next_spqe;
5576 
5577 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5578 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5579 			   "got FUNC_STOP ramrod\n");
5580 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5581 				break;
5582 
5583 			goto next_spqe;
5584 
5585 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5586 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5587 			   "got set_timesync ramrod completion\n");
5588 			if (f_obj->complete_cmd(bp, f_obj,
5589 						BNX2X_F_CMD_SET_TIMESYNC))
5590 				break;
5591 			goto next_spqe;
5592 		}
5593 
5594 		switch (opcode | bp->state) {
5595 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5596 		      BNX2X_STATE_OPEN):
5597 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5599 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5601 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5602 			   SW_CID(elem->message.data.eth_event.echo));
5603 			rss_raw->clear_pending(rss_raw);
5604 			break;
5605 
5606 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5607 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5608 		case (EVENT_RING_OPCODE_SET_MAC |
5609 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5610 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5611 		      BNX2X_STATE_OPEN):
5612 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613 		      BNX2X_STATE_DIAG):
5614 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5616 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5617 			bnx2x_handle_classification_eqe(bp, elem);
5618 			break;
5619 
5620 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5621 		      BNX2X_STATE_OPEN):
5622 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623 		      BNX2X_STATE_DIAG):
5624 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5626 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5627 			bnx2x_handle_mcast_eqe(bp);
5628 			break;
5629 
5630 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5631 		      BNX2X_STATE_OPEN):
5632 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5633 		      BNX2X_STATE_DIAG):
5634 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5635 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5636 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5637 			bnx2x_handle_rx_mode_eqe(bp);
5638 			break;
5639 		default:
5640 			/* unknown event log error and continue */
5641 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5642 				  elem->message.opcode, bp->state);
5643 		}
5644 next_spqe:
5645 		spqe_cnt++;
5646 	} /* for */
5647 
5648 	smp_mb__before_atomic();
5649 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5650 
5651 	bp->eq_cons = sw_cons;
5652 	bp->eq_prod = sw_prod;
5653 	/* Make sure that above mem writes were issued towards the memory */
5654 	smp_wmb();
5655 
5656 	/* update producer */
5657 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5658 }
5659 
5660 static void bnx2x_sp_task(struct work_struct *work)
5661 {
5662 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5663 
5664 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5665 
5666 	/* make sure the atomic interrupt_occurred has been written */
5667 	smp_rmb();
5668 	if (atomic_read(&bp->interrupt_occurred)) {
5669 
5670 		/* what work needs to be performed? */
5671 		u16 status = bnx2x_update_dsb_idx(bp);
5672 
5673 		DP(BNX2X_MSG_SP, "status %x\n", status);
5674 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5675 		atomic_set(&bp->interrupt_occurred, 0);
5676 
5677 		/* HW attentions */
5678 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5679 			bnx2x_attn_int(bp);
5680 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5681 		}
5682 
5683 		/* SP events: STAT_QUERY and others */
5684 		if (status & BNX2X_DEF_SB_IDX) {
5685 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5686 
5687 			if (FCOE_INIT(bp) &&
5688 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5689 				/* Prevent local bottom-halves from running as
5690 				 * we are going to change the local NAPI list.
5691 				 */
5692 				local_bh_disable();
5693 				napi_schedule(&bnx2x_fcoe(bp, napi));
5694 				local_bh_enable();
5695 			}
5696 
5697 			/* Handle EQ completions */
5698 			bnx2x_eq_int(bp);
5699 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5700 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5701 
5702 			status &= ~BNX2X_DEF_SB_IDX;
5703 		}
5704 
5705 		/* if status is non zero then perhaps something went wrong */
5706 		if (unlikely(status))
5707 			DP(BNX2X_MSG_SP,
5708 			   "got an unknown interrupt! (status 0x%x)\n", status);
5709 
5710 		/* ack status block only if something was actually handled */
5711 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5712 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5713 	}
5714 
5715 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5716 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5717 			       &bp->sp_state)) {
5718 		bnx2x_link_report(bp);
5719 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5720 	}
5721 }
5722 
5723 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5724 {
5725 	struct net_device *dev = dev_instance;
5726 	struct bnx2x *bp = netdev_priv(dev);
5727 
5728 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5729 		     IGU_INT_DISABLE, 0);
5730 
5731 #ifdef BNX2X_STOP_ON_ERROR
5732 	if (unlikely(bp->panic))
5733 		return IRQ_HANDLED;
5734 #endif
5735 
5736 	if (CNIC_LOADED(bp)) {
5737 		struct cnic_ops *c_ops;
5738 
5739 		rcu_read_lock();
5740 		c_ops = rcu_dereference(bp->cnic_ops);
5741 		if (c_ops)
5742 			c_ops->cnic_handler(bp->cnic_data, NULL);
5743 		rcu_read_unlock();
5744 	}
5745 
5746 	/* schedule sp task to perform default status block work, ack
5747 	 * attentions and enable interrupts.
5748 	 */
5749 	bnx2x_schedule_sp_task(bp);
5750 
5751 	return IRQ_HANDLED;
5752 }
5753 
5754 /* end of slow path */
5755 
5756 void bnx2x_drv_pulse(struct bnx2x *bp)
5757 {
5758 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5759 		 bp->fw_drv_pulse_wr_seq);
5760 }
5761 
5762 static void bnx2x_timer(unsigned long data)
5763 {
5764 	struct bnx2x *bp = (struct bnx2x *) data;
5765 
5766 	if (!netif_running(bp->dev))
5767 		return;
5768 
5769 	if (IS_PF(bp) &&
5770 	    !BP_NOMCP(bp)) {
5771 		int mb_idx = BP_FW_MB_IDX(bp);
5772 		u16 drv_pulse;
5773 		u16 mcp_pulse;
5774 
5775 		++bp->fw_drv_pulse_wr_seq;
5776 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5777 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5778 		bnx2x_drv_pulse(bp);
5779 
5780 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5781 			     MCP_PULSE_SEQ_MASK);
5782 		/* The delta between driver pulse and mcp response
5783 		 * should not get too big. If the MFW is more than 5 pulses
5784 		 * behind, we should worry about it enough to generate an error
5785 		 * log.
5786 		 */
5787 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5788 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5789 				  drv_pulse, mcp_pulse);
5790 	}
5791 
5792 	if (bp->state == BNX2X_STATE_OPEN)
5793 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5794 
5795 	/* sample pf vf bulletin board for new posts from pf */
5796 	if (IS_VF(bp))
5797 		bnx2x_timer_sriov(bp);
5798 
5799 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5800 }
5801 
5802 /* end of Statistics */
5803 
5804 /* nic init */
5805 
5806 /*
5807  * nic init service functions
5808  */
5809 
5810 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5811 {
5812 	u32 i;
5813 	if (!(len%4) && !(addr%4))
5814 		for (i = 0; i < len; i += 4)
5815 			REG_WR(bp, addr + i, fill);
5816 	else
5817 		for (i = 0; i < len; i++)
5818 			REG_WR8(bp, addr + i, fill);
5819 }
5820 
5821 /* helper: writes FP SP data to FW - data_size in dwords */
5822 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5823 				int fw_sb_id,
5824 				u32 *sb_data_p,
5825 				u32 data_size)
5826 {
5827 	int index;
5828 	for (index = 0; index < data_size; index++)
5829 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5830 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5831 			sizeof(u32)*index,
5832 			*(sb_data_p + index));
5833 }
5834 
5835 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5836 {
5837 	u32 *sb_data_p;
5838 	u32 data_size = 0;
5839 	struct hc_status_block_data_e2 sb_data_e2;
5840 	struct hc_status_block_data_e1x sb_data_e1x;
5841 
5842 	/* disable the function first */
5843 	if (!CHIP_IS_E1x(bp)) {
5844 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5845 		sb_data_e2.common.state = SB_DISABLED;
5846 		sb_data_e2.common.p_func.vf_valid = false;
5847 		sb_data_p = (u32 *)&sb_data_e2;
5848 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5849 	} else {
5850 		memset(&sb_data_e1x, 0,
5851 		       sizeof(struct hc_status_block_data_e1x));
5852 		sb_data_e1x.common.state = SB_DISABLED;
5853 		sb_data_e1x.common.p_func.vf_valid = false;
5854 		sb_data_p = (u32 *)&sb_data_e1x;
5855 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5856 	}
5857 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858 
5859 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5861 			CSTORM_STATUS_BLOCK_SIZE);
5862 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5863 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5864 			CSTORM_SYNC_BLOCK_SIZE);
5865 }
5866 
5867 /* helper:  writes SP SB data to FW */
5868 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5869 		struct hc_sp_status_block_data *sp_sb_data)
5870 {
5871 	int func = BP_FUNC(bp);
5872 	int i;
5873 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5874 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5875 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5876 			i*sizeof(u32),
5877 			*((u32 *)sp_sb_data + i));
5878 }
5879 
5880 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5881 {
5882 	int func = BP_FUNC(bp);
5883 	struct hc_sp_status_block_data sp_sb_data;
5884 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5885 
5886 	sp_sb_data.state = SB_DISABLED;
5887 	sp_sb_data.p_func.vf_valid = false;
5888 
5889 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5890 
5891 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5893 			CSTORM_SP_STATUS_BLOCK_SIZE);
5894 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5895 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5896 			CSTORM_SP_SYNC_BLOCK_SIZE);
5897 }
5898 
5899 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5900 					   int igu_sb_id, int igu_seg_id)
5901 {
5902 	hc_sm->igu_sb_id = igu_sb_id;
5903 	hc_sm->igu_seg_id = igu_seg_id;
5904 	hc_sm->timer_value = 0xFF;
5905 	hc_sm->time_to_expire = 0xFFFFFFFF;
5906 }
5907 
5908 /* allocates state machine ids. */
5909 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5910 {
5911 	/* zero out state machine indices */
5912 	/* rx indices */
5913 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914 
5915 	/* tx indices */
5916 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5917 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5918 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5919 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5920 
5921 	/* map indices */
5922 	/* rx indices */
5923 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5924 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5925 
5926 	/* tx indices */
5927 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5928 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5929 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5930 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5932 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5934 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935 }
5936 
5937 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5938 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5939 {
5940 	int igu_seg_id;
5941 
5942 	struct hc_status_block_data_e2 sb_data_e2;
5943 	struct hc_status_block_data_e1x sb_data_e1x;
5944 	struct hc_status_block_sm  *hc_sm_p;
5945 	int data_size;
5946 	u32 *sb_data_p;
5947 
5948 	if (CHIP_INT_MODE_IS_BC(bp))
5949 		igu_seg_id = HC_SEG_ACCESS_NORM;
5950 	else
5951 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5952 
5953 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5954 
5955 	if (!CHIP_IS_E1x(bp)) {
5956 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5957 		sb_data_e2.common.state = SB_ENABLED;
5958 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5959 		sb_data_e2.common.p_func.vf_id = vfid;
5960 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5961 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5962 		sb_data_e2.common.same_igu_sb_1b = true;
5963 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5964 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5965 		hc_sm_p = sb_data_e2.common.state_machine;
5966 		sb_data_p = (u32 *)&sb_data_e2;
5967 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5968 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5969 	} else {
5970 		memset(&sb_data_e1x, 0,
5971 		       sizeof(struct hc_status_block_data_e1x));
5972 		sb_data_e1x.common.state = SB_ENABLED;
5973 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5974 		sb_data_e1x.common.p_func.vf_id = 0xff;
5975 		sb_data_e1x.common.p_func.vf_valid = false;
5976 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5977 		sb_data_e1x.common.same_igu_sb_1b = true;
5978 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5979 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5980 		hc_sm_p = sb_data_e1x.common.state_machine;
5981 		sb_data_p = (u32 *)&sb_data_e1x;
5982 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5983 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5984 	}
5985 
5986 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5987 				       igu_sb_id, igu_seg_id);
5988 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5989 				       igu_sb_id, igu_seg_id);
5990 
5991 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5992 
5993 	/* write indices to HW - PCI guarantees endianity of regpairs */
5994 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5995 }
5996 
5997 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5998 				     u16 tx_usec, u16 rx_usec)
5999 {
6000 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6001 				    false, rx_usec);
6002 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6004 				       tx_usec);
6005 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6007 				       tx_usec);
6008 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6009 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6010 				       tx_usec);
6011 }
6012 
6013 static void bnx2x_init_def_sb(struct bnx2x *bp)
6014 {
6015 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6016 	dma_addr_t mapping = bp->def_status_blk_mapping;
6017 	int igu_sp_sb_index;
6018 	int igu_seg_id;
6019 	int port = BP_PORT(bp);
6020 	int func = BP_FUNC(bp);
6021 	int reg_offset, reg_offset_en5;
6022 	u64 section;
6023 	int index;
6024 	struct hc_sp_status_block_data sp_sb_data;
6025 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6026 
6027 	if (CHIP_INT_MODE_IS_BC(bp)) {
6028 		igu_sp_sb_index = DEF_SB_IGU_ID;
6029 		igu_seg_id = HC_SEG_ACCESS_DEF;
6030 	} else {
6031 		igu_sp_sb_index = bp->igu_dsb_id;
6032 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6033 	}
6034 
6035 	/* ATTN */
6036 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6037 					    atten_status_block);
6038 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6039 
6040 	bp->attn_state = 0;
6041 
6042 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6043 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6044 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6045 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6046 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6047 		int sindex;
6048 		/* take care of sig[0]..sig[4] */
6049 		for (sindex = 0; sindex < 4; sindex++)
6050 			bp->attn_group[index].sig[sindex] =
6051 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6052 
6053 		if (!CHIP_IS_E1x(bp))
6054 			/*
6055 			 * enable5 is separate from the rest of the registers,
6056 			 * and therefore the address skip is 4
6057 			 * and not 16 between the different groups
6058 			 */
6059 			bp->attn_group[index].sig[4] = REG_RD(bp,
6060 					reg_offset_en5 + 0x4*index);
6061 		else
6062 			bp->attn_group[index].sig[4] = 0;
6063 	}
6064 
6065 	if (bp->common.int_block == INT_BLOCK_HC) {
6066 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6067 				     HC_REG_ATTN_MSG0_ADDR_L);
6068 
6069 		REG_WR(bp, reg_offset, U64_LO(section));
6070 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6071 	} else if (!CHIP_IS_E1x(bp)) {
6072 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6073 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6074 	}
6075 
6076 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6077 					    sp_sb);
6078 
6079 	bnx2x_zero_sp_sb(bp);
6080 
6081 	/* PCI guarantees endianity of regpairs */
6082 	sp_sb_data.state		= SB_ENABLED;
6083 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6084 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6085 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6086 	sp_sb_data.igu_seg_id		= igu_seg_id;
6087 	sp_sb_data.p_func.pf_id		= func;
6088 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6089 	sp_sb_data.p_func.vf_id		= 0xff;
6090 
6091 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6092 
6093 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6094 }
6095 
6096 void bnx2x_update_coalesce(struct bnx2x *bp)
6097 {
6098 	int i;
6099 
6100 	for_each_eth_queue(bp, i)
6101 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6102 					 bp->tx_ticks, bp->rx_ticks);
6103 }
6104 
6105 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6106 {
6107 	spin_lock_init(&bp->spq_lock);
6108 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6109 
6110 	bp->spq_prod_idx = 0;
6111 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6112 	bp->spq_prod_bd = bp->spq;
6113 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6114 }
6115 
6116 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6117 {
6118 	int i;
6119 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6120 		union event_ring_elem *elem =
6121 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6122 
6123 		elem->next_page.addr.hi =
6124 			cpu_to_le32(U64_HI(bp->eq_mapping +
6125 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6126 		elem->next_page.addr.lo =
6127 			cpu_to_le32(U64_LO(bp->eq_mapping +
6128 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6129 	}
6130 	bp->eq_cons = 0;
6131 	bp->eq_prod = NUM_EQ_DESC;
6132 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6133 	/* we want a warning message before it gets wrought... */
6134 	atomic_set(&bp->eq_spq_left,
6135 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6136 }
6137 
6138 /* called with netif_addr_lock_bh() */
6139 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6140 			       unsigned long rx_mode_flags,
6141 			       unsigned long rx_accept_flags,
6142 			       unsigned long tx_accept_flags,
6143 			       unsigned long ramrod_flags)
6144 {
6145 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6146 	int rc;
6147 
6148 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6149 
6150 	/* Prepare ramrod parameters */
6151 	ramrod_param.cid = 0;
6152 	ramrod_param.cl_id = cl_id;
6153 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6154 	ramrod_param.func_id = BP_FUNC(bp);
6155 
6156 	ramrod_param.pstate = &bp->sp_state;
6157 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6158 
6159 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6160 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6161 
6162 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6163 
6164 	ramrod_param.ramrod_flags = ramrod_flags;
6165 	ramrod_param.rx_mode_flags = rx_mode_flags;
6166 
6167 	ramrod_param.rx_accept_flags = rx_accept_flags;
6168 	ramrod_param.tx_accept_flags = tx_accept_flags;
6169 
6170 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6171 	if (rc < 0) {
6172 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6173 		return rc;
6174 	}
6175 
6176 	return 0;
6177 }
6178 
6179 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6180 				   unsigned long *rx_accept_flags,
6181 				   unsigned long *tx_accept_flags)
6182 {
6183 	/* Clear the flags first */
6184 	*rx_accept_flags = 0;
6185 	*tx_accept_flags = 0;
6186 
6187 	switch (rx_mode) {
6188 	case BNX2X_RX_MODE_NONE:
6189 		/*
6190 		 * 'drop all' supersedes any accept flags that may have been
6191 		 * passed to the function.
6192 		 */
6193 		break;
6194 	case BNX2X_RX_MODE_NORMAL:
6195 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6196 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6197 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6198 
6199 		/* internal switching mode */
6200 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6201 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6202 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6203 
6204 		if (bp->accept_any_vlan) {
6205 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6206 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6207 		}
6208 
6209 		break;
6210 	case BNX2X_RX_MODE_ALLMULTI:
6211 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6212 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6213 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6214 
6215 		/* internal switching mode */
6216 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6217 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6218 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6219 
6220 		if (bp->accept_any_vlan) {
6221 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6222 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6223 		}
6224 
6225 		break;
6226 	case BNX2X_RX_MODE_PROMISC:
6227 		/* According to definition of SI mode, iface in promisc mode
6228 		 * should receive matched and unmatched (in resolution of port)
6229 		 * unicast packets.
6230 		 */
6231 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6232 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6233 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6234 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6235 
6236 		/* internal switching mode */
6237 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6238 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6239 
6240 		if (IS_MF_SI(bp))
6241 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6242 		else
6243 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6244 
6245 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247 
6248 		break;
6249 	default:
6250 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6251 		return -EINVAL;
6252 	}
6253 
6254 	return 0;
6255 }
6256 
6257 /* called with netif_addr_lock_bh() */
6258 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6259 {
6260 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6261 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6262 	int rc;
6263 
6264 	if (!NO_FCOE(bp))
6265 		/* Configure rx_mode of FCoE Queue */
6266 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6267 
6268 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6269 				     &tx_accept_flags);
6270 	if (rc)
6271 		return rc;
6272 
6273 	__set_bit(RAMROD_RX, &ramrod_flags);
6274 	__set_bit(RAMROD_TX, &ramrod_flags);
6275 
6276 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6277 				   rx_accept_flags, tx_accept_flags,
6278 				   ramrod_flags);
6279 }
6280 
6281 static void bnx2x_init_internal_common(struct bnx2x *bp)
6282 {
6283 	int i;
6284 
6285 	/* Zero this manually as its initialization is
6286 	   currently missing in the initTool */
6287 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6288 		REG_WR(bp, BAR_USTRORM_INTMEM +
6289 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6290 	if (!CHIP_IS_E1x(bp)) {
6291 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6292 			CHIP_INT_MODE_IS_BC(bp) ?
6293 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6294 	}
6295 }
6296 
6297 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6298 {
6299 	switch (load_code) {
6300 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6301 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6302 		bnx2x_init_internal_common(bp);
6303 		/* no break */
6304 
6305 	case FW_MSG_CODE_DRV_LOAD_PORT:
6306 		/* nothing to do */
6307 		/* no break */
6308 
6309 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6310 		/* internal memory per function is
6311 		   initialized inside bnx2x_pf_init */
6312 		break;
6313 
6314 	default:
6315 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6316 		break;
6317 	}
6318 }
6319 
6320 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6321 {
6322 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6323 }
6324 
6325 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6326 {
6327 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6328 }
6329 
6330 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6331 {
6332 	if (CHIP_IS_E1x(fp->bp))
6333 		return BP_L_ID(fp->bp) + fp->index;
6334 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6335 		return bnx2x_fp_igu_sb_id(fp);
6336 }
6337 
6338 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6339 {
6340 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6341 	u8 cos;
6342 	unsigned long q_type = 0;
6343 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6344 	fp->rx_queue = fp_idx;
6345 	fp->cid = fp_idx;
6346 	fp->cl_id = bnx2x_fp_cl_id(fp);
6347 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6348 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6349 	/* qZone id equals to FW (per path) client id */
6350 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6351 
6352 	/* init shortcut */
6353 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6354 
6355 	/* Setup SB indices */
6356 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6357 
6358 	/* Configure Queue State object */
6359 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6360 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6361 
6362 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6363 
6364 	/* init tx data */
6365 	for_each_cos_in_tx_queue(fp, cos) {
6366 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6367 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6368 				  FP_COS_TO_TXQ(fp, cos, bp),
6369 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6370 		cids[cos] = fp->txdata_ptr[cos]->cid;
6371 	}
6372 
6373 	/* nothing more for vf to do here */
6374 	if (IS_VF(bp))
6375 		return;
6376 
6377 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6378 		      fp->fw_sb_id, fp->igu_sb_id);
6379 	bnx2x_update_fpsb_idx(fp);
6380 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6381 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6382 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6383 
6384 	/**
6385 	 * Configure classification DBs: Always enable Tx switching
6386 	 */
6387 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6388 
6389 	DP(NETIF_MSG_IFUP,
6390 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6391 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6392 	   fp->igu_sb_id);
6393 }
6394 
6395 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6396 {
6397 	int i;
6398 
6399 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6400 		struct eth_tx_next_bd *tx_next_bd =
6401 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6402 
6403 		tx_next_bd->addr_hi =
6404 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6405 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406 		tx_next_bd->addr_lo =
6407 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6408 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6409 	}
6410 
6411 	*txdata->tx_cons_sb = cpu_to_le16(0);
6412 
6413 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6414 	txdata->tx_db.data.zero_fill1 = 0;
6415 	txdata->tx_db.data.prod = 0;
6416 
6417 	txdata->tx_pkt_prod = 0;
6418 	txdata->tx_pkt_cons = 0;
6419 	txdata->tx_bd_prod = 0;
6420 	txdata->tx_bd_cons = 0;
6421 	txdata->tx_pkt = 0;
6422 }
6423 
6424 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6425 {
6426 	int i;
6427 
6428 	for_each_tx_queue_cnic(bp, i)
6429 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6430 }
6431 
6432 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6433 {
6434 	int i;
6435 	u8 cos;
6436 
6437 	for_each_eth_queue(bp, i)
6438 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6439 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6440 }
6441 
6442 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6443 {
6444 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6445 	unsigned long q_type = 0;
6446 
6447 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6448 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6449 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6450 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6451 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6452 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6453 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6454 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6455 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6456 			  fp);
6457 
6458 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6459 
6460 	/* qZone id equals to FW (per path) client id */
6461 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6462 	/* init shortcut */
6463 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6464 		bnx2x_rx_ustorm_prods_offset(fp);
6465 
6466 	/* Configure Queue State object */
6467 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6468 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6469 
6470 	/* No multi-CoS for FCoE L2 client */
6471 	BUG_ON(fp->max_cos != 1);
6472 
6473 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6474 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6475 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6476 
6477 	DP(NETIF_MSG_IFUP,
6478 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6479 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6480 	   fp->igu_sb_id);
6481 }
6482 
6483 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6484 {
6485 	if (!NO_FCOE(bp))
6486 		bnx2x_init_fcoe_fp(bp);
6487 
6488 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6489 		      BNX2X_VF_ID_INVALID, false,
6490 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6491 
6492 	/* ensure status block indices were read */
6493 	rmb();
6494 	bnx2x_init_rx_rings_cnic(bp);
6495 	bnx2x_init_tx_rings_cnic(bp);
6496 
6497 	/* flush all */
6498 	mb();
6499 	mmiowb();
6500 }
6501 
6502 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6503 {
6504 	int i;
6505 
6506 	/* Setup NIC internals and enable interrupts */
6507 	for_each_eth_queue(bp, i)
6508 		bnx2x_init_eth_fp(bp, i);
6509 
6510 	/* ensure status block indices were read */
6511 	rmb();
6512 	bnx2x_init_rx_rings(bp);
6513 	bnx2x_init_tx_rings(bp);
6514 
6515 	if (IS_PF(bp)) {
6516 		/* Initialize MOD_ABS interrupts */
6517 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6518 				       bp->common.shmem_base,
6519 				       bp->common.shmem2_base, BP_PORT(bp));
6520 
6521 		/* initialize the default status block and sp ring */
6522 		bnx2x_init_def_sb(bp);
6523 		bnx2x_update_dsb_idx(bp);
6524 		bnx2x_init_sp_ring(bp);
6525 	} else {
6526 		bnx2x_memset_stats(bp);
6527 	}
6528 }
6529 
6530 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6531 {
6532 	bnx2x_init_eq_ring(bp);
6533 	bnx2x_init_internal(bp, load_code);
6534 	bnx2x_pf_init(bp);
6535 	bnx2x_stats_init(bp);
6536 
6537 	/* flush all before enabling interrupts */
6538 	mb();
6539 	mmiowb();
6540 
6541 	bnx2x_int_enable(bp);
6542 
6543 	/* Check for SPIO5 */
6544 	bnx2x_attn_int_deasserted0(bp,
6545 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6547 }
6548 
6549 /* gzip service functions */
6550 static int bnx2x_gunzip_init(struct bnx2x *bp)
6551 {
6552 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553 					    &bp->gunzip_mapping, GFP_KERNEL);
6554 	if (bp->gunzip_buf  == NULL)
6555 		goto gunzip_nomem1;
6556 
6557 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558 	if (bp->strm  == NULL)
6559 		goto gunzip_nomem2;
6560 
6561 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562 	if (bp->strm->workspace == NULL)
6563 		goto gunzip_nomem3;
6564 
6565 	return 0;
6566 
6567 gunzip_nomem3:
6568 	kfree(bp->strm);
6569 	bp->strm = NULL;
6570 
6571 gunzip_nomem2:
6572 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573 			  bp->gunzip_mapping);
6574 	bp->gunzip_buf = NULL;
6575 
6576 gunzip_nomem1:
6577 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578 	return -ENOMEM;
6579 }
6580 
6581 static void bnx2x_gunzip_end(struct bnx2x *bp)
6582 {
6583 	if (bp->strm) {
6584 		vfree(bp->strm->workspace);
6585 		kfree(bp->strm);
6586 		bp->strm = NULL;
6587 	}
6588 
6589 	if (bp->gunzip_buf) {
6590 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591 				  bp->gunzip_mapping);
6592 		bp->gunzip_buf = NULL;
6593 	}
6594 }
6595 
6596 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597 {
6598 	int n, rc;
6599 
6600 	/* check gzip header */
6601 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602 		BNX2X_ERR("Bad gzip header\n");
6603 		return -EINVAL;
6604 	}
6605 
6606 	n = 10;
6607 
6608 #define FNAME				0x8
6609 
6610 	if (zbuf[3] & FNAME)
6611 		while ((zbuf[n++] != 0) && (n < len));
6612 
6613 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614 	bp->strm->avail_in = len - n;
6615 	bp->strm->next_out = bp->gunzip_buf;
6616 	bp->strm->avail_out = FW_BUF_SIZE;
6617 
6618 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619 	if (rc != Z_OK)
6620 		return rc;
6621 
6622 	rc = zlib_inflate(bp->strm, Z_FINISH);
6623 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625 			   bp->strm->msg);
6626 
6627 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628 	if (bp->gunzip_outlen & 0x3)
6629 		netdev_err(bp->dev,
6630 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631 				bp->gunzip_outlen);
6632 	bp->gunzip_outlen >>= 2;
6633 
6634 	zlib_inflateEnd(bp->strm);
6635 
6636 	if (rc == Z_STREAM_END)
6637 		return 0;
6638 
6639 	return rc;
6640 }
6641 
6642 /* nic load/unload */
6643 
6644 /*
6645  * General service functions
6646  */
6647 
6648 /* send a NIG loopback debug packet */
6649 static void bnx2x_lb_pckt(struct bnx2x *bp)
6650 {
6651 	u32 wb_write[3];
6652 
6653 	/* Ethernet source and destination addresses */
6654 	wb_write[0] = 0x55555555;
6655 	wb_write[1] = 0x55555555;
6656 	wb_write[2] = 0x20;		/* SOP */
6657 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658 
6659 	/* NON-IP protocol */
6660 	wb_write[0] = 0x09000000;
6661 	wb_write[1] = 0x55555555;
6662 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6663 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664 }
6665 
6666 /* some of the internal memories
6667  * are not directly readable from the driver
6668  * to test them we send debug packets
6669  */
6670 static int bnx2x_int_mem_test(struct bnx2x *bp)
6671 {
6672 	int factor;
6673 	int count, i;
6674 	u32 val = 0;
6675 
6676 	if (CHIP_REV_IS_FPGA(bp))
6677 		factor = 120;
6678 	else if (CHIP_REV_IS_EMUL(bp))
6679 		factor = 200;
6680 	else
6681 		factor = 1;
6682 
6683 	/* Disable inputs of parser neighbor blocks */
6684 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688 
6689 	/*  Write 0 to parser credits for CFC search request */
6690 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691 
6692 	/* send Ethernet packet */
6693 	bnx2x_lb_pckt(bp);
6694 
6695 	/* TODO do i reset NIG statistic? */
6696 	/* Wait until NIG register shows 1 packet of size 0x10 */
6697 	count = 1000 * factor;
6698 	while (count) {
6699 
6700 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701 		val = *bnx2x_sp(bp, wb_data[0]);
6702 		if (val == 0x10)
6703 			break;
6704 
6705 		usleep_range(10000, 20000);
6706 		count--;
6707 	}
6708 	if (val != 0x10) {
6709 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6710 		return -1;
6711 	}
6712 
6713 	/* Wait until PRS register shows 1 packet */
6714 	count = 1000 * factor;
6715 	while (count) {
6716 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717 		if (val == 1)
6718 			break;
6719 
6720 		usleep_range(10000, 20000);
6721 		count--;
6722 	}
6723 	if (val != 0x1) {
6724 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725 		return -2;
6726 	}
6727 
6728 	/* Reset and init BRB, PRS */
6729 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730 	msleep(50);
6731 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732 	msleep(50);
6733 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735 
6736 	DP(NETIF_MSG_HW, "part2\n");
6737 
6738 	/* Disable inputs of parser neighbor blocks */
6739 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743 
6744 	/* Write 0 to parser credits for CFC search request */
6745 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746 
6747 	/* send 10 Ethernet packets */
6748 	for (i = 0; i < 10; i++)
6749 		bnx2x_lb_pckt(bp);
6750 
6751 	/* Wait until NIG register shows 10 + 1
6752 	   packets of size 11*0x10 = 0xb0 */
6753 	count = 1000 * factor;
6754 	while (count) {
6755 
6756 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757 		val = *bnx2x_sp(bp, wb_data[0]);
6758 		if (val == 0xb0)
6759 			break;
6760 
6761 		usleep_range(10000, 20000);
6762 		count--;
6763 	}
6764 	if (val != 0xb0) {
6765 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6766 		return -3;
6767 	}
6768 
6769 	/* Wait until PRS register shows 2 packets */
6770 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771 	if (val != 2)
6772 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6773 
6774 	/* Write 1 to parser credits for CFC search request */
6775 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776 
6777 	/* Wait until PRS register shows 3 packets */
6778 	msleep(10 * factor);
6779 	/* Wait until NIG register shows 1 packet of size 0x10 */
6780 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781 	if (val != 3)
6782 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783 
6784 	/* clear NIG EOP FIFO */
6785 	for (i = 0; i < 11; i++)
6786 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788 	if (val != 1) {
6789 		BNX2X_ERR("clear of NIG failed\n");
6790 		return -4;
6791 	}
6792 
6793 	/* Reset and init BRB, PRS, NIG */
6794 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795 	msleep(50);
6796 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797 	msleep(50);
6798 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800 	if (!CNIC_SUPPORT(bp))
6801 		/* set NIC mode */
6802 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803 
6804 	/* Enable inputs of parser neighbor blocks */
6805 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809 
6810 	DP(NETIF_MSG_HW, "done\n");
6811 
6812 	return 0; /* OK */
6813 }
6814 
6815 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816 {
6817 	u32 val;
6818 
6819 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820 	if (!CHIP_IS_E1x(bp))
6821 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822 	else
6823 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826 	/*
6827 	 * mask read length error interrupts in brb for parser
6828 	 * (parsing unit and 'checksum and crc' unit)
6829 	 * these errors are legal (PU reads fixed length and CAC can cause
6830 	 * read length error on truncated packets)
6831 	 */
6832 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851 
6852 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6853 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855 	if (!CHIP_IS_E1x(bp))
6856 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859 
6860 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864 
6865 	if (!CHIP_IS_E1x(bp))
6866 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868 
6869 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6873 }
6874 
6875 static void bnx2x_reset_common(struct bnx2x *bp)
6876 {
6877 	u32 val = 0x1400;
6878 
6879 	/* reset_common */
6880 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881 	       0xd3ffff7f);
6882 
6883 	if (CHIP_IS_E3(bp)) {
6884 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886 	}
6887 
6888 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889 }
6890 
6891 static void bnx2x_setup_dmae(struct bnx2x *bp)
6892 {
6893 	bp->dmae_ready = 0;
6894 	spin_lock_init(&bp->dmae_lock);
6895 }
6896 
6897 static void bnx2x_init_pxp(struct bnx2x *bp)
6898 {
6899 	u16 devctl;
6900 	int r_order, w_order;
6901 
6902 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905 	if (bp->mrrs == -1)
6906 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907 	else {
6908 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909 		r_order = bp->mrrs;
6910 	}
6911 
6912 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6913 }
6914 
6915 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916 {
6917 	int is_required;
6918 	u32 val;
6919 	int port;
6920 
6921 	if (BP_NOMCP(bp))
6922 		return;
6923 
6924 	is_required = 0;
6925 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6927 
6928 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929 		is_required = 1;
6930 
6931 	/*
6932 	 * The fan failure mechanism is usually related to the PHY type since
6933 	 * the power consumption of the board is affected by the PHY. Currently,
6934 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935 	 */
6936 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937 		for (port = PORT_0; port < PORT_MAX; port++) {
6938 			is_required |=
6939 				bnx2x_fan_failure_det_req(
6940 					bp,
6941 					bp->common.shmem_base,
6942 					bp->common.shmem2_base,
6943 					port);
6944 		}
6945 
6946 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947 
6948 	if (is_required == 0)
6949 		return;
6950 
6951 	/* Fan failure is indicated by SPIO 5 */
6952 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953 
6954 	/* set to active low mode */
6955 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6956 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6958 
6959 	/* enable interrupt to signal the IGU */
6960 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961 	val |= MISC_SPIO_SPIO5;
6962 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963 }
6964 
6965 void bnx2x_pf_disable(struct bnx2x *bp)
6966 {
6967 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968 	val &= ~IGU_PF_CONF_FUNC_EN;
6969 
6970 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973 }
6974 
6975 static void bnx2x__common_init_phy(struct bnx2x *bp)
6976 {
6977 	u32 shmem_base[2], shmem2_base[2];
6978 	/* Avoid common init in case MFW supports LFA */
6979 	if (SHMEM2_RD(bp, size) >
6980 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981 		return;
6982 	shmem_base[0] =  bp->common.shmem_base;
6983 	shmem2_base[0] = bp->common.shmem2_base;
6984 	if (!CHIP_IS_E1x(bp)) {
6985 		shmem_base[1] =
6986 			SHMEM2_RD(bp, other_shmem_base_addr);
6987 		shmem2_base[1] =
6988 			SHMEM2_RD(bp, other_shmem2_base_addr);
6989 	}
6990 	bnx2x_acquire_phy_lock(bp);
6991 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992 			      bp->common.chip_id);
6993 	bnx2x_release_phy_lock(bp);
6994 }
6995 
6996 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997 {
6998 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003 
7004 	/* make sure this value is 0 */
7005 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006 
7007 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011 }
7012 
7013 static void bnx2x_set_endianity(struct bnx2x *bp)
7014 {
7015 #ifdef __BIG_ENDIAN
7016 	bnx2x_config_endianity(bp, 1);
7017 #else
7018 	bnx2x_config_endianity(bp, 0);
7019 #endif
7020 }
7021 
7022 static void bnx2x_reset_endianity(struct bnx2x *bp)
7023 {
7024 	bnx2x_config_endianity(bp, 0);
7025 }
7026 
7027 /**
7028  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029  *
7030  * @bp:		driver handle
7031  */
7032 static int bnx2x_init_hw_common(struct bnx2x *bp)
7033 {
7034 	u32 val;
7035 
7036 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7037 
7038 	/*
7039 	 * take the RESET lock to protect undi_unload flow from accessing
7040 	 * registers while we're resetting the chip
7041 	 */
7042 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043 
7044 	bnx2x_reset_common(bp);
7045 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046 
7047 	val = 0xfffc;
7048 	if (CHIP_IS_E3(bp)) {
7049 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051 	}
7052 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053 
7054 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055 
7056 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057 
7058 	if (!CHIP_IS_E1x(bp)) {
7059 		u8 abs_func_id;
7060 
7061 		/**
7062 		 * 4-port mode or 2-port mode we need to turn of master-enable
7063 		 * for everyone, after that, turn it back on for self.
7064 		 * so, we disregard multi-function or not, and always disable
7065 		 * for all functions on the given path, this means 0,2,4,6 for
7066 		 * path 0 and 1,3,5,7 for path 1
7067 		 */
7068 		for (abs_func_id = BP_PATH(bp);
7069 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7071 				REG_WR(bp,
7072 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073 				    1);
7074 				continue;
7075 			}
7076 
7077 			bnx2x_pretend_func(bp, abs_func_id);
7078 			/* clear pf enable */
7079 			bnx2x_pf_disable(bp);
7080 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081 		}
7082 	}
7083 
7084 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085 	if (CHIP_IS_E1(bp)) {
7086 		/* enable HW interrupt from PXP on USDM overflow
7087 		   bit 16 on INT_MASK_0 */
7088 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089 	}
7090 
7091 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092 	bnx2x_init_pxp(bp);
7093 	bnx2x_set_endianity(bp);
7094 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095 
7096 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098 
7099 	/* let the HW do it's magic ... */
7100 	msleep(100);
7101 	/* finish PXP init */
7102 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103 	if (val != 1) {
7104 		BNX2X_ERR("PXP2 CFG failed\n");
7105 		return -EBUSY;
7106 	}
7107 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108 	if (val != 1) {
7109 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7110 		return -EBUSY;
7111 	}
7112 
7113 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7114 	 * have entries with value "0" and valid bit on.
7115 	 * This needs to be done by the first PF that is loaded in a path
7116 	 * (i.e. common phase)
7117 	 */
7118 	if (!CHIP_IS_E1x(bp)) {
7119 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7120  * (i.e. vnic3) to start even if it is marked as "scan-off".
7121  * This occurs when a different function (func2,3) is being marked
7122  * as "scan-off". Real-life scenario for example: if a driver is being
7123  * load-unloaded while func6,7 are down. This will cause the timer to access
7124  * the ilt, translate to a logical address and send a request to read/write.
7125  * Since the ilt for the function that is down is not valid, this will cause
7126  * a translation error which is unrecoverable.
7127  * The Workaround is intended to make sure that when this happens nothing fatal
7128  * will occur. The workaround:
7129  *	1.  First PF driver which loads on a path will:
7130  *		a.  After taking the chip out of reset, by using pretend,
7131  *		    it will write "0" to the following registers of
7132  *		    the other vnics.
7133  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136  *		    And for itself it will write '1' to
7137  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138  *		    dmae-operations (writing to pram for example.)
7139  *		    note: can be done for only function 6,7 but cleaner this
7140  *			  way.
7141  *		b.  Write zero+valid to the entire ILT.
7142  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143  *		    VNIC3 (of that port). The range allocated will be the
7144  *		    entire ILT. This is needed to prevent  ILT range error.
7145  *	2.  Any PF driver load flow:
7146  *		a.  ILT update with the physical addresses of the allocated
7147  *		    logical pages.
7148  *		b.  Wait 20msec. - note that this timeout is needed to make
7149  *		    sure there are no requests in one of the PXP internal
7150  *		    queues with "old" ILT addresses.
7151  *		c.  PF enable in the PGLC.
7152  *		d.  Clear the was_error of the PF in the PGLC. (could have
7153  *		    occurred while driver was down)
7154  *		e.  PF enable in the CFC (WEAK + STRONG)
7155  *		f.  Timers scan enable
7156  *	3.  PF driver unload flow:
7157  *		a.  Clear the Timers scan_en.
7158  *		b.  Polling for scan_on=0 for that PF.
7159  *		c.  Clear the PF enable bit in the PXP.
7160  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7161  *		e.  Write zero+valid to all ILT entries (The valid bit must
7162  *		    stay set)
7163  *		f.  If this is VNIC 3 of a port then also init
7164  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7165  *		    to the last entry in the ILT.
7166  *
7167  *	Notes:
7168  *	Currently the PF error in the PGLC is non recoverable.
7169  *	In the future the there will be a recovery routine for this error.
7170  *	Currently attention is masked.
7171  *	Having an MCP lock on the load/unload process does not guarantee that
7172  *	there is no Timer disable during Func6/7 enable. This is because the
7173  *	Timers scan is currently being cleared by the MCP on FLR.
7174  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7175  *	there is error before clearing it. But the flow above is simpler and
7176  *	more general.
7177  *	All ILT entries are written by zero+valid and not just PF6/7
7178  *	ILT entries since in the future the ILT entries allocation for
7179  *	PF-s might be dynamic.
7180  */
7181 		struct ilt_client_info ilt_cli;
7182 		struct bnx2x_ilt ilt;
7183 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185 
7186 		/* initialize dummy TM client */
7187 		ilt_cli.start = 0;
7188 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189 		ilt_cli.client_num = ILT_CLIENT_TM;
7190 
7191 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7192 		 * Step 2: set the timers first/last ilt entry to point
7193 		 * to the entire range to prevent ILT range error for 3rd/4th
7194 		 * vnic	(this code assumes existence of the vnic)
7195 		 *
7196 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7197 		 * with dummy TM client
7198 		 *
7199 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200 		 * and his brother are split registers
7201 		 */
7202 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205 
7206 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209 	}
7210 
7211 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213 
7214 	if (!CHIP_IS_E1x(bp)) {
7215 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218 
7219 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220 
7221 		/* let the HW do it's magic ... */
7222 		do {
7223 			msleep(200);
7224 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225 		} while (factor-- && (val != 1));
7226 
7227 		if (val != 1) {
7228 			BNX2X_ERR("ATC_INIT failed\n");
7229 			return -EBUSY;
7230 		}
7231 	}
7232 
7233 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234 
7235 	bnx2x_iov_init_dmae(bp);
7236 
7237 	/* clean the DMAE memory */
7238 	bp->dmae_ready = 1;
7239 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240 
7241 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242 
7243 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244 
7245 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246 
7247 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248 
7249 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253 
7254 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255 
7256 	/* QM queues pointers table */
7257 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258 
7259 	/* soft reset pulse */
7260 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262 
7263 	if (CNIC_SUPPORT(bp))
7264 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265 
7266 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267 
7268 	if (!CHIP_REV_IS_SLOW(bp))
7269 		/* enable hw interrupt from doorbell Q */
7270 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271 
7272 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273 
7274 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276 
7277 	if (!CHIP_IS_E1(bp))
7278 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279 
7280 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281 		if (IS_MF_AFEX(bp)) {
7282 			/* configure that VNTag and VLAN headers must be
7283 			 * received in afex mode
7284 			 */
7285 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290 		} else {
7291 			/* Bit-map indicating which L2 hdrs may appear
7292 			 * after the basic Ethernet header
7293 			 */
7294 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295 			       bp->path_has_ovlan ? 7 : 6);
7296 		}
7297 	}
7298 
7299 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303 
7304 	if (!CHIP_IS_E1x(bp)) {
7305 		/* reset VFC memories */
7306 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307 			   VFC_MEMORIES_RST_REG_CAM_RST |
7308 			   VFC_MEMORIES_RST_REG_RAM_RST);
7309 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310 			   VFC_MEMORIES_RST_REG_CAM_RST |
7311 			   VFC_MEMORIES_RST_REG_RAM_RST);
7312 
7313 		msleep(20);
7314 	}
7315 
7316 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320 
7321 	/* sync semi rtc */
7322 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323 	       0x80000000);
7324 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325 	       0x80000000);
7326 
7327 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330 
7331 	if (!CHIP_IS_E1x(bp)) {
7332 		if (IS_MF_AFEX(bp)) {
7333 			/* configure that VNTag and VLAN headers must be
7334 			 * sent in afex mode
7335 			 */
7336 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341 		} else {
7342 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343 			       bp->path_has_ovlan ? 7 : 6);
7344 		}
7345 	}
7346 
7347 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348 
7349 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350 
7351 	if (CNIC_SUPPORT(bp)) {
7352 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362 	}
7363 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364 
7365 	if (sizeof(union cdu_context) != 1024)
7366 		/* we currently assume that a context is 1024 bytes */
7367 		dev_alert(&bp->pdev->dev,
7368 			  "please adjust the size of cdu_context(%ld)\n",
7369 			  (long)sizeof(union cdu_context));
7370 
7371 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372 	val = (4 << 24) + (0 << 12) + 1024;
7373 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374 
7375 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377 	/* enable context validation interrupt from CFC */
7378 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379 
7380 	/* set the thresholds to prevent CFC/CDU race */
7381 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382 
7383 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384 
7385 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387 
7388 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390 
7391 	/* Reset PCIE errors for debug */
7392 	REG_WR(bp, 0x2814, 0xffffffff);
7393 	REG_WR(bp, 0x3820, 0xffffffff);
7394 
7395 	if (!CHIP_IS_E1x(bp)) {
7396 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407 	}
7408 
7409 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410 	if (!CHIP_IS_E1(bp)) {
7411 		/* in E3 this done in per-port section */
7412 		if (!CHIP_IS_E3(bp))
7413 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414 	}
7415 	if (CHIP_IS_E1H(bp))
7416 		/* not applicable for E2 (and above ...) */
7417 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418 
7419 	if (CHIP_REV_IS_SLOW(bp))
7420 		msleep(200);
7421 
7422 	/* finish CFC init */
7423 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424 	if (val != 1) {
7425 		BNX2X_ERR("CFC LL_INIT failed\n");
7426 		return -EBUSY;
7427 	}
7428 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429 	if (val != 1) {
7430 		BNX2X_ERR("CFC AC_INIT failed\n");
7431 		return -EBUSY;
7432 	}
7433 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434 	if (val != 1) {
7435 		BNX2X_ERR("CFC CAM_INIT failed\n");
7436 		return -EBUSY;
7437 	}
7438 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7439 
7440 	if (CHIP_IS_E1(bp)) {
7441 		/* read NIG statistic
7442 		   to see if this is our first up since powerup */
7443 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444 		val = *bnx2x_sp(bp, wb_data[0]);
7445 
7446 		/* do internal memory self test */
7447 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448 			BNX2X_ERR("internal mem self test failed\n");
7449 			return -EBUSY;
7450 		}
7451 	}
7452 
7453 	bnx2x_setup_fan_failure_detection(bp);
7454 
7455 	/* clear PXP2 attentions */
7456 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457 
7458 	bnx2x_enable_blocks_attention(bp);
7459 	bnx2x_enable_blocks_parity(bp);
7460 
7461 	if (!BP_NOMCP(bp)) {
7462 		if (CHIP_IS_E1x(bp))
7463 			bnx2x__common_init_phy(bp);
7464 	} else
7465 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466 
7467 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7468 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469 
7470 	return 0;
7471 }
7472 
7473 /**
7474  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475  *
7476  * @bp:		driver handle
7477  */
7478 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479 {
7480 	int rc = bnx2x_init_hw_common(bp);
7481 
7482 	if (rc)
7483 		return rc;
7484 
7485 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7486 	if (!BP_NOMCP(bp))
7487 		bnx2x__common_init_phy(bp);
7488 
7489 	return 0;
7490 }
7491 
7492 static int bnx2x_init_hw_port(struct bnx2x *bp)
7493 {
7494 	int port = BP_PORT(bp);
7495 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496 	u32 low, high;
7497 	u32 val, reg;
7498 
7499 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7500 
7501 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502 
7503 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506 
7507 	/* Timers bug workaround: disables the pf_master bit in pglue at
7508 	 * common phase, we need to enable it here before any dmae access are
7509 	 * attempted. Therefore we manually added the enable-master to the
7510 	 * port phase (it also happens in the function phase)
7511 	 */
7512 	if (!CHIP_IS_E1x(bp))
7513 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514 
7515 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519 
7520 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524 
7525 	/* QM cid (connection) count */
7526 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527 
7528 	if (CNIC_SUPPORT(bp)) {
7529 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532 	}
7533 
7534 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535 
7536 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537 
7538 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539 
7540 		if (IS_MF(bp))
7541 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542 		else if (bp->dev->mtu > 4096) {
7543 			if (bp->flags & ONE_PORT_FLAG)
7544 				low = 160;
7545 			else {
7546 				val = bp->dev->mtu;
7547 				/* (24*1024 + val*4)/256 */
7548 				low = 96 + (val/64) +
7549 						((val % 64) ? 1 : 0);
7550 			}
7551 		} else
7552 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553 		high = low + 56;	/* 14*1024/256 */
7554 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556 	}
7557 
7558 	if (CHIP_MODE_IS_4_PORT(bp))
7559 		REG_WR(bp, (BP_PORT(bp) ?
7560 			    BRB1_REG_MAC_GUARANTIED_1 :
7561 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7562 
7563 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564 	if (CHIP_IS_E3B0(bp)) {
7565 		if (IS_MF_AFEX(bp)) {
7566 			/* configure headers for AFEX mode */
7567 			REG_WR(bp, BP_PORT(bp) ?
7568 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570 			REG_WR(bp, BP_PORT(bp) ?
7571 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573 			REG_WR(bp, BP_PORT(bp) ?
7574 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576 		} else {
7577 			/* Ovlan exists only if we are in multi-function +
7578 			 * switch-dependent mode, in switch-independent there
7579 			 * is no ovlan headers
7580 			 */
7581 			REG_WR(bp, BP_PORT(bp) ?
7582 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584 			       (bp->path_has_ovlan ? 7 : 6));
7585 		}
7586 	}
7587 
7588 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592 
7593 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597 
7598 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600 
7601 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602 
7603 	if (CHIP_IS_E1x(bp)) {
7604 		/* configure PBF to work without PAUSE mtu 9000 */
7605 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606 
7607 		/* update threshold */
7608 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609 		/* update init credit */
7610 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611 
7612 		/* probe changes */
7613 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614 		udelay(50);
7615 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616 	}
7617 
7618 	if (CNIC_SUPPORT(bp))
7619 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620 
7621 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623 
7624 	if (CHIP_IS_E1(bp)) {
7625 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627 	}
7628 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629 
7630 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631 
7632 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633 	/* init aeu_mask_attn_func_0/1:
7634 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636 	 *             bits 4-7 are used for "per vn group attention" */
7637 	val = IS_MF(bp) ? 0xF7 : 0x7;
7638 	/* Enable DCBX attention for all but E1 */
7639 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641 
7642 	/* SCPAD_PARITY should NOT trigger close the gates */
7643 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644 	REG_WR(bp, reg,
7645 	       REG_RD(bp, reg) &
7646 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647 
7648 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649 	REG_WR(bp, reg,
7650 	       REG_RD(bp, reg) &
7651 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652 
7653 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654 
7655 	if (!CHIP_IS_E1x(bp)) {
7656 		/* Bit-map indicating which L2 hdrs may appear after the
7657 		 * basic Ethernet header
7658 		 */
7659 		if (IS_MF_AFEX(bp))
7660 			REG_WR(bp, BP_PORT(bp) ?
7661 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7662 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663 		else
7664 			REG_WR(bp, BP_PORT(bp) ?
7665 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7666 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7667 			       IS_MF_SD(bp) ? 7 : 6);
7668 
7669 		if (CHIP_IS_E3(bp))
7670 			REG_WR(bp, BP_PORT(bp) ?
7671 				   NIG_REG_LLH1_MF_MODE :
7672 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673 	}
7674 	if (!CHIP_IS_E3(bp))
7675 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676 
7677 	if (!CHIP_IS_E1(bp)) {
7678 		/* 0x2 disable mf_ov, 0x1 enable */
7679 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7681 
7682 		if (!CHIP_IS_E1x(bp)) {
7683 			val = 0;
7684 			switch (bp->mf_mode) {
7685 			case MULTI_FUNCTION_SD:
7686 				val = 1;
7687 				break;
7688 			case MULTI_FUNCTION_SI:
7689 			case MULTI_FUNCTION_AFEX:
7690 				val = 2;
7691 				break;
7692 			}
7693 
7694 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695 						  NIG_REG_LLH0_CLS_TYPE), val);
7696 		}
7697 		{
7698 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701 		}
7702 	}
7703 
7704 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7705 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706 	if (val & MISC_SPIO_SPIO5) {
7707 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709 		val = REG_RD(bp, reg_addr);
7710 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711 		REG_WR(bp, reg_addr, val);
7712 	}
7713 
7714 	return 0;
7715 }
7716 
7717 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7718 {
7719 	int reg;
7720 	u32 wb_write[2];
7721 
7722 	if (CHIP_IS_E1(bp))
7723 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7724 	else
7725 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7726 
7727 	wb_write[0] = ONCHIP_ADDR1(addr);
7728 	wb_write[1] = ONCHIP_ADDR2(addr);
7729 	REG_WR_DMAE(bp, reg, wb_write, 2);
7730 }
7731 
7732 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7733 {
7734 	u32 data, ctl, cnt = 100;
7735 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7736 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7737 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7738 	u32 sb_bit =  1 << (idu_sb_id%32);
7739 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7740 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7741 
7742 	/* Not supported in BC mode */
7743 	if (CHIP_INT_MODE_IS_BC(bp))
7744 		return;
7745 
7746 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7747 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7748 		IGU_REGULAR_CLEANUP_SET				|
7749 		IGU_REGULAR_BCLEANUP;
7750 
7751 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7752 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7753 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7754 
7755 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7756 			 data, igu_addr_data);
7757 	REG_WR(bp, igu_addr_data, data);
7758 	mmiowb();
7759 	barrier();
7760 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7761 			  ctl, igu_addr_ctl);
7762 	REG_WR(bp, igu_addr_ctl, ctl);
7763 	mmiowb();
7764 	barrier();
7765 
7766 	/* wait for clean up to finish */
7767 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7768 		msleep(20);
7769 
7770 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7771 		DP(NETIF_MSG_HW,
7772 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7773 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7774 	}
7775 }
7776 
7777 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7778 {
7779 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7780 }
7781 
7782 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7783 {
7784 	u32 i, base = FUNC_ILT_BASE(func);
7785 	for (i = base; i < base + ILT_PER_FUNC; i++)
7786 		bnx2x_ilt_wr(bp, i, 0);
7787 }
7788 
7789 static void bnx2x_init_searcher(struct bnx2x *bp)
7790 {
7791 	int port = BP_PORT(bp);
7792 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7793 	/* T1 hash bits value determines the T1 number of entries */
7794 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7795 }
7796 
7797 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7798 {
7799 	int rc;
7800 	struct bnx2x_func_state_params func_params = {NULL};
7801 	struct bnx2x_func_switch_update_params *switch_update_params =
7802 		&func_params.params.switch_update;
7803 
7804 	/* Prepare parameters for function state transitions */
7805 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7806 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7807 
7808 	func_params.f_obj = &bp->func_obj;
7809 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7810 
7811 	/* Function parameters */
7812 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7813 		  &switch_update_params->changes);
7814 	if (suspend)
7815 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7816 			  &switch_update_params->changes);
7817 
7818 	rc = bnx2x_func_state_change(bp, &func_params);
7819 
7820 	return rc;
7821 }
7822 
7823 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7824 {
7825 	int rc, i, port = BP_PORT(bp);
7826 	int vlan_en = 0, mac_en[NUM_MACS];
7827 
7828 	/* Close input from network */
7829 	if (bp->mf_mode == SINGLE_FUNCTION) {
7830 		bnx2x_set_rx_filter(&bp->link_params, 0);
7831 	} else {
7832 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7833 				   NIG_REG_LLH0_FUNC_EN);
7834 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835 			  NIG_REG_LLH0_FUNC_EN, 0);
7836 		for (i = 0; i < NUM_MACS; i++) {
7837 			mac_en[i] = REG_RD(bp, port ?
7838 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7839 					      4 * i) :
7840 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7841 					      4 * i));
7842 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7843 					      4 * i) :
7844 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7845 		}
7846 	}
7847 
7848 	/* Close BMC to host */
7849 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7850 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7851 
7852 	/* Suspend Tx switching to the PF. Completion of this ramrod
7853 	 * further guarantees that all the packets of that PF / child
7854 	 * VFs in BRB were processed by the Parser, so it is safe to
7855 	 * change the NIC_MODE register.
7856 	 */
7857 	rc = bnx2x_func_switch_update(bp, 1);
7858 	if (rc) {
7859 		BNX2X_ERR("Can't suspend tx-switching!\n");
7860 		return rc;
7861 	}
7862 
7863 	/* Change NIC_MODE register */
7864 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7865 
7866 	/* Open input from network */
7867 	if (bp->mf_mode == SINGLE_FUNCTION) {
7868 		bnx2x_set_rx_filter(&bp->link_params, 1);
7869 	} else {
7870 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7871 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7872 		for (i = 0; i < NUM_MACS; i++) {
7873 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7874 					      4 * i) :
7875 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7876 				  mac_en[i]);
7877 		}
7878 	}
7879 
7880 	/* Enable BMC to host */
7881 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7882 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7883 
7884 	/* Resume Tx switching to the PF */
7885 	rc = bnx2x_func_switch_update(bp, 0);
7886 	if (rc) {
7887 		BNX2X_ERR("Can't resume tx-switching!\n");
7888 		return rc;
7889 	}
7890 
7891 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7892 	return 0;
7893 }
7894 
7895 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7896 {
7897 	int rc;
7898 
7899 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7900 
7901 	if (CONFIGURE_NIC_MODE(bp)) {
7902 		/* Configure searcher as part of function hw init */
7903 		bnx2x_init_searcher(bp);
7904 
7905 		/* Reset NIC mode */
7906 		rc = bnx2x_reset_nic_mode(bp);
7907 		if (rc)
7908 			BNX2X_ERR("Can't change NIC mode!\n");
7909 		return rc;
7910 	}
7911 
7912 	return 0;
7913 }
7914 
7915 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7916  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7917  * the addresses of the transaction, resulting in was-error bit set in the pci
7918  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7919  * to clear the interrupt which detected this from the pglueb and the was done
7920  * bit
7921  */
7922 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7923 {
7924 	if (!CHIP_IS_E1x(bp))
7925 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7926 		       1 << BP_ABS_FUNC(bp));
7927 }
7928 
7929 static int bnx2x_init_hw_func(struct bnx2x *bp)
7930 {
7931 	int port = BP_PORT(bp);
7932 	int func = BP_FUNC(bp);
7933 	int init_phase = PHASE_PF0 + func;
7934 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7935 	u16 cdu_ilt_start;
7936 	u32 addr, val;
7937 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7938 	int i, main_mem_width, rc;
7939 
7940 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7941 
7942 	/* FLR cleanup - hmmm */
7943 	if (!CHIP_IS_E1x(bp)) {
7944 		rc = bnx2x_pf_flr_clnup(bp);
7945 		if (rc) {
7946 			bnx2x_fw_dump(bp);
7947 			return rc;
7948 		}
7949 	}
7950 
7951 	/* set MSI reconfigure capability */
7952 	if (bp->common.int_block == INT_BLOCK_HC) {
7953 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7954 		val = REG_RD(bp, addr);
7955 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7956 		REG_WR(bp, addr, val);
7957 	}
7958 
7959 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7960 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7961 
7962 	ilt = BP_ILT(bp);
7963 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7964 
7965 	if (IS_SRIOV(bp))
7966 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7967 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7968 
7969 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7970 	 * those of the VFs, so start line should be reset
7971 	 */
7972 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7973 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7974 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7975 		ilt->lines[cdu_ilt_start + i].page_mapping =
7976 			bp->context[i].cxt_mapping;
7977 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7978 	}
7979 
7980 	bnx2x_ilt_init_op(bp, INITOP_SET);
7981 
7982 	if (!CONFIGURE_NIC_MODE(bp)) {
7983 		bnx2x_init_searcher(bp);
7984 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
7985 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7986 	} else {
7987 		/* Set NIC mode */
7988 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
7989 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7990 	}
7991 
7992 	if (!CHIP_IS_E1x(bp)) {
7993 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7994 
7995 		/* Turn on a single ISR mode in IGU if driver is going to use
7996 		 * INT#x or MSI
7997 		 */
7998 		if (!(bp->flags & USING_MSIX_FLAG))
7999 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8000 		/*
8001 		 * Timers workaround bug: function init part.
8002 		 * Need to wait 20msec after initializing ILT,
8003 		 * needed to make sure there are no requests in
8004 		 * one of the PXP internal queues with "old" ILT addresses
8005 		 */
8006 		msleep(20);
8007 		/*
8008 		 * Master enable - Due to WB DMAE writes performed before this
8009 		 * register is re-initialized as part of the regular function
8010 		 * init
8011 		 */
8012 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8013 		/* Enable the function in IGU */
8014 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8015 	}
8016 
8017 	bp->dmae_ready = 1;
8018 
8019 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8020 
8021 	bnx2x_clean_pglue_errors(bp);
8022 
8023 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8024 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8025 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8026 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8027 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8028 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8029 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8030 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8031 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8032 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8033 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8034 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8035 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8036 
8037 	if (!CHIP_IS_E1x(bp))
8038 		REG_WR(bp, QM_REG_PF_EN, 1);
8039 
8040 	if (!CHIP_IS_E1x(bp)) {
8041 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045 	}
8046 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8047 
8048 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8050 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8051 
8052 	bnx2x_iov_init_dq(bp);
8053 
8054 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8056 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8057 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8058 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8059 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8060 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8061 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8062 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8063 	if (!CHIP_IS_E1x(bp))
8064 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8065 
8066 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8067 
8068 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8069 
8070 	if (!CHIP_IS_E1x(bp))
8071 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8072 
8073 	if (IS_MF(bp)) {
8074 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8075 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8076 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8077 			       bp->mf_ov);
8078 		}
8079 	}
8080 
8081 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8082 
8083 	/* HC init per function */
8084 	if (bp->common.int_block == INT_BLOCK_HC) {
8085 		if (CHIP_IS_E1H(bp)) {
8086 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8087 
8088 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8089 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8090 		}
8091 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8092 
8093 	} else {
8094 		int num_segs, sb_idx, prod_offset;
8095 
8096 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8097 
8098 		if (!CHIP_IS_E1x(bp)) {
8099 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8100 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8101 		}
8102 
8103 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8104 
8105 		if (!CHIP_IS_E1x(bp)) {
8106 			int dsb_idx = 0;
8107 			/**
8108 			 * Producer memory:
8109 			 * E2 mode: address 0-135 match to the mapping memory;
8110 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8111 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8112 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8113 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8114 			 * 144-147 reserved.
8115 			 *
8116 			 * E1.5 mode - In backward compatible mode;
8117 			 * for non default SB; each even line in the memory
8118 			 * holds the U producer and each odd line hold
8119 			 * the C producer. The first 128 producers are for
8120 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8121 			 * producers are for the DSB for each PF.
8122 			 * Each PF has five segments: (the order inside each
8123 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8124 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8125 			 * 144-147 attn prods;
8126 			 */
8127 			/* non-default-status-blocks */
8128 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8129 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8130 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8131 				prod_offset = (bp->igu_base_sb + sb_idx) *
8132 					num_segs;
8133 
8134 				for (i = 0; i < num_segs; i++) {
8135 					addr = IGU_REG_PROD_CONS_MEMORY +
8136 							(prod_offset + i) * 4;
8137 					REG_WR(bp, addr, 0);
8138 				}
8139 				/* send consumer update with value 0 */
8140 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8141 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8142 				bnx2x_igu_clear_sb(bp,
8143 						   bp->igu_base_sb + sb_idx);
8144 			}
8145 
8146 			/* default-status-blocks */
8147 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8148 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8149 
8150 			if (CHIP_MODE_IS_4_PORT(bp))
8151 				dsb_idx = BP_FUNC(bp);
8152 			else
8153 				dsb_idx = BP_VN(bp);
8154 
8155 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8156 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8157 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8158 
8159 			/*
8160 			 * igu prods come in chunks of E1HVN_MAX (4) -
8161 			 * does not matters what is the current chip mode
8162 			 */
8163 			for (i = 0; i < (num_segs * E1HVN_MAX);
8164 			     i += E1HVN_MAX) {
8165 				addr = IGU_REG_PROD_CONS_MEMORY +
8166 							(prod_offset + i)*4;
8167 				REG_WR(bp, addr, 0);
8168 			}
8169 			/* send consumer update with 0 */
8170 			if (CHIP_INT_MODE_IS_BC(bp)) {
8171 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8172 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8173 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8175 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8177 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8179 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8181 			} else {
8182 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8184 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8186 			}
8187 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8188 
8189 			/* !!! These should become driver const once
8190 			   rf-tool supports split-68 const */
8191 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8192 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8193 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8194 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8195 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8196 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8197 		}
8198 	}
8199 
8200 	/* Reset PCIE errors for debug */
8201 	REG_WR(bp, 0x2114, 0xffffffff);
8202 	REG_WR(bp, 0x2120, 0xffffffff);
8203 
8204 	if (CHIP_IS_E1x(bp)) {
8205 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8206 		main_mem_base = HC_REG_MAIN_MEMORY +
8207 				BP_PORT(bp) * (main_mem_size * 4);
8208 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8209 		main_mem_width = 8;
8210 
8211 		val = REG_RD(bp, main_mem_prty_clr);
8212 		if (val)
8213 			DP(NETIF_MSG_HW,
8214 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8215 			   val);
8216 
8217 		/* Clear "false" parity errors in MSI-X table */
8218 		for (i = main_mem_base;
8219 		     i < main_mem_base + main_mem_size * 4;
8220 		     i += main_mem_width) {
8221 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8222 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8223 					 i, main_mem_width / 4);
8224 		}
8225 		/* Clear HC parity attention */
8226 		REG_RD(bp, main_mem_prty_clr);
8227 	}
8228 
8229 #ifdef BNX2X_STOP_ON_ERROR
8230 	/* Enable STORMs SP logging */
8231 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8232 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8233 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8234 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8236 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8238 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239 #endif
8240 
8241 	bnx2x_phy_probe(&bp->link_params);
8242 
8243 	return 0;
8244 }
8245 
8246 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8247 {
8248 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8249 
8250 	if (!CHIP_IS_E1x(bp))
8251 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8252 			       sizeof(struct host_hc_status_block_e2));
8253 	else
8254 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8255 			       sizeof(struct host_hc_status_block_e1x));
8256 
8257 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8258 }
8259 
8260 void bnx2x_free_mem(struct bnx2x *bp)
8261 {
8262 	int i;
8263 
8264 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8265 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8266 
8267 	if (IS_VF(bp))
8268 		return;
8269 
8270 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8271 		       sizeof(struct host_sp_status_block));
8272 
8273 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8274 		       sizeof(struct bnx2x_slowpath));
8275 
8276 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8277 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8278 			       bp->context[i].size);
8279 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8280 
8281 	BNX2X_FREE(bp->ilt->lines);
8282 
8283 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8284 
8285 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8286 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8287 
8288 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8289 
8290 	bnx2x_iov_free_mem(bp);
8291 }
8292 
8293 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8294 {
8295 	if (!CHIP_IS_E1x(bp)) {
8296 		/* size = the status block + ramrod buffers */
8297 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8298 						    sizeof(struct host_hc_status_block_e2));
8299 		if (!bp->cnic_sb.e2_sb)
8300 			goto alloc_mem_err;
8301 	} else {
8302 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8303 						     sizeof(struct host_hc_status_block_e1x));
8304 		if (!bp->cnic_sb.e1x_sb)
8305 			goto alloc_mem_err;
8306 	}
8307 
8308 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8309 		/* allocate searcher T2 table, as it wasn't allocated before */
8310 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8311 		if (!bp->t2)
8312 			goto alloc_mem_err;
8313 	}
8314 
8315 	/* write address to which L5 should insert its values */
8316 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8317 		&bp->slowpath->drv_info_to_mcp;
8318 
8319 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8320 		goto alloc_mem_err;
8321 
8322 	return 0;
8323 
8324 alloc_mem_err:
8325 	bnx2x_free_mem_cnic(bp);
8326 	BNX2X_ERR("Can't allocate memory\n");
8327 	return -ENOMEM;
8328 }
8329 
8330 int bnx2x_alloc_mem(struct bnx2x *bp)
8331 {
8332 	int i, allocated, context_size;
8333 
8334 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8335 		/* allocate searcher T2 table */
8336 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8337 		if (!bp->t2)
8338 			goto alloc_mem_err;
8339 	}
8340 
8341 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8342 					     sizeof(struct host_sp_status_block));
8343 	if (!bp->def_status_blk)
8344 		goto alloc_mem_err;
8345 
8346 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8347 				       sizeof(struct bnx2x_slowpath));
8348 	if (!bp->slowpath)
8349 		goto alloc_mem_err;
8350 
8351 	/* Allocate memory for CDU context:
8352 	 * This memory is allocated separately and not in the generic ILT
8353 	 * functions because CDU differs in few aspects:
8354 	 * 1. There are multiple entities allocating memory for context -
8355 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8356 	 * its own ILT lines.
8357 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8358 	 * for the other ILT clients), to be efficient we want to support
8359 	 * allocation of sub-page-size in the last entry.
8360 	 * 3. Context pointers are used by the driver to pass to FW / update
8361 	 * the context (for the other ILT clients the pointers are used just to
8362 	 * free the memory during unload).
8363 	 */
8364 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8365 
8366 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8367 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8368 					  (context_size - allocated));
8369 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8370 						      bp->context[i].size);
8371 		if (!bp->context[i].vcxt)
8372 			goto alloc_mem_err;
8373 		allocated += bp->context[i].size;
8374 	}
8375 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8376 				 GFP_KERNEL);
8377 	if (!bp->ilt->lines)
8378 		goto alloc_mem_err;
8379 
8380 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8381 		goto alloc_mem_err;
8382 
8383 	if (bnx2x_iov_alloc_mem(bp))
8384 		goto alloc_mem_err;
8385 
8386 	/* Slow path ring */
8387 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8388 	if (!bp->spq)
8389 		goto alloc_mem_err;
8390 
8391 	/* EQ */
8392 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8393 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8394 	if (!bp->eq_ring)
8395 		goto alloc_mem_err;
8396 
8397 	return 0;
8398 
8399 alloc_mem_err:
8400 	bnx2x_free_mem(bp);
8401 	BNX2X_ERR("Can't allocate memory\n");
8402 	return -ENOMEM;
8403 }
8404 
8405 /*
8406  * Init service functions
8407  */
8408 
8409 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8410 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8411 		      int mac_type, unsigned long *ramrod_flags)
8412 {
8413 	int rc;
8414 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8415 
8416 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8417 
8418 	/* Fill general parameters */
8419 	ramrod_param.vlan_mac_obj = obj;
8420 	ramrod_param.ramrod_flags = *ramrod_flags;
8421 
8422 	/* Fill a user request section if needed */
8423 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8424 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8425 
8426 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8427 
8428 		/* Set the command: ADD or DEL */
8429 		if (set)
8430 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8431 		else
8432 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8433 	}
8434 
8435 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8436 
8437 	if (rc == -EEXIST) {
8438 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8439 		/* do not treat adding same MAC as error */
8440 		rc = 0;
8441 	} else if (rc < 0)
8442 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8443 
8444 	return rc;
8445 }
8446 
8447 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8448 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8449 		       unsigned long *ramrod_flags)
8450 {
8451 	int rc;
8452 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8453 
8454 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8455 
8456 	/* Fill general parameters */
8457 	ramrod_param.vlan_mac_obj = obj;
8458 	ramrod_param.ramrod_flags = *ramrod_flags;
8459 
8460 	/* Fill a user request section if needed */
8461 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8462 		ramrod_param.user_req.u.vlan.vlan = vlan;
8463 		/* Set the command: ADD or DEL */
8464 		if (set)
8465 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8466 		else
8467 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8468 	}
8469 
8470 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8471 
8472 	if (rc == -EEXIST) {
8473 		/* Do not treat adding same vlan as error. */
8474 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8475 		rc = 0;
8476 	} else if (rc < 0) {
8477 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8478 	}
8479 
8480 	return rc;
8481 }
8482 
8483 int bnx2x_del_all_macs(struct bnx2x *bp,
8484 		       struct bnx2x_vlan_mac_obj *mac_obj,
8485 		       int mac_type, bool wait_for_comp)
8486 {
8487 	int rc;
8488 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8489 
8490 	/* Wait for completion of requested */
8491 	if (wait_for_comp)
8492 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8493 
8494 	/* Set the mac type of addresses we want to clear */
8495 	__set_bit(mac_type, &vlan_mac_flags);
8496 
8497 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8498 	if (rc < 0)
8499 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8500 
8501 	return rc;
8502 }
8503 
8504 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8505 {
8506 	if (IS_PF(bp)) {
8507 		unsigned long ramrod_flags = 0;
8508 
8509 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8510 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8511 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8512 					 &bp->sp_objs->mac_obj, set,
8513 					 BNX2X_ETH_MAC, &ramrod_flags);
8514 	} else { /* vf */
8515 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8516 					     bp->fp->index, set);
8517 	}
8518 }
8519 
8520 int bnx2x_setup_leading(struct bnx2x *bp)
8521 {
8522 	if (IS_PF(bp))
8523 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8524 	else /* VF */
8525 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8526 }
8527 
8528 /**
8529  * bnx2x_set_int_mode - configure interrupt mode
8530  *
8531  * @bp:		driver handle
8532  *
8533  * In case of MSI-X it will also try to enable MSI-X.
8534  */
8535 int bnx2x_set_int_mode(struct bnx2x *bp)
8536 {
8537 	int rc = 0;
8538 
8539 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8540 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8541 		return -EINVAL;
8542 	}
8543 
8544 	switch (int_mode) {
8545 	case BNX2X_INT_MODE_MSIX:
8546 		/* attempt to enable msix */
8547 		rc = bnx2x_enable_msix(bp);
8548 
8549 		/* msix attained */
8550 		if (!rc)
8551 			return 0;
8552 
8553 		/* vfs use only msix */
8554 		if (rc && IS_VF(bp))
8555 			return rc;
8556 
8557 		/* failed to enable multiple MSI-X */
8558 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8559 			       bp->num_queues,
8560 			       1 + bp->num_cnic_queues);
8561 
8562 		/* falling through... */
8563 	case BNX2X_INT_MODE_MSI:
8564 		bnx2x_enable_msi(bp);
8565 
8566 		/* falling through... */
8567 	case BNX2X_INT_MODE_INTX:
8568 		bp->num_ethernet_queues = 1;
8569 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8570 		BNX2X_DEV_INFO("set number of queues to 1\n");
8571 		break;
8572 	default:
8573 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8574 		return -EINVAL;
8575 	}
8576 	return 0;
8577 }
8578 
8579 /* must be called prior to any HW initializations */
8580 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8581 {
8582 	if (IS_SRIOV(bp))
8583 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8584 	return L2_ILT_LINES(bp);
8585 }
8586 
8587 void bnx2x_ilt_set_info(struct bnx2x *bp)
8588 {
8589 	struct ilt_client_info *ilt_client;
8590 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8591 	u16 line = 0;
8592 
8593 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8594 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8595 
8596 	/* CDU */
8597 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8598 	ilt_client->client_num = ILT_CLIENT_CDU;
8599 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8600 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8601 	ilt_client->start = line;
8602 	line += bnx2x_cid_ilt_lines(bp);
8603 
8604 	if (CNIC_SUPPORT(bp))
8605 		line += CNIC_ILT_LINES;
8606 	ilt_client->end = line - 1;
8607 
8608 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8609 	   ilt_client->start,
8610 	   ilt_client->end,
8611 	   ilt_client->page_size,
8612 	   ilt_client->flags,
8613 	   ilog2(ilt_client->page_size >> 12));
8614 
8615 	/* QM */
8616 	if (QM_INIT(bp->qm_cid_count)) {
8617 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8618 		ilt_client->client_num = ILT_CLIENT_QM;
8619 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8620 		ilt_client->flags = 0;
8621 		ilt_client->start = line;
8622 
8623 		/* 4 bytes for each cid */
8624 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8625 							 QM_ILT_PAGE_SZ);
8626 
8627 		ilt_client->end = line - 1;
8628 
8629 		DP(NETIF_MSG_IFUP,
8630 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8631 		   ilt_client->start,
8632 		   ilt_client->end,
8633 		   ilt_client->page_size,
8634 		   ilt_client->flags,
8635 		   ilog2(ilt_client->page_size >> 12));
8636 	}
8637 
8638 	if (CNIC_SUPPORT(bp)) {
8639 		/* SRC */
8640 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8641 		ilt_client->client_num = ILT_CLIENT_SRC;
8642 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8643 		ilt_client->flags = 0;
8644 		ilt_client->start = line;
8645 		line += SRC_ILT_LINES;
8646 		ilt_client->end = line - 1;
8647 
8648 		DP(NETIF_MSG_IFUP,
8649 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650 		   ilt_client->start,
8651 		   ilt_client->end,
8652 		   ilt_client->page_size,
8653 		   ilt_client->flags,
8654 		   ilog2(ilt_client->page_size >> 12));
8655 
8656 		/* TM */
8657 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8658 		ilt_client->client_num = ILT_CLIENT_TM;
8659 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8660 		ilt_client->flags = 0;
8661 		ilt_client->start = line;
8662 		line += TM_ILT_LINES;
8663 		ilt_client->end = line - 1;
8664 
8665 		DP(NETIF_MSG_IFUP,
8666 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8667 		   ilt_client->start,
8668 		   ilt_client->end,
8669 		   ilt_client->page_size,
8670 		   ilt_client->flags,
8671 		   ilog2(ilt_client->page_size >> 12));
8672 	}
8673 
8674 	BUG_ON(line > ILT_MAX_LINES);
8675 }
8676 
8677 /**
8678  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8679  *
8680  * @bp:			driver handle
8681  * @fp:			pointer to fastpath
8682  * @init_params:	pointer to parameters structure
8683  *
8684  * parameters configured:
8685  *      - HC configuration
8686  *      - Queue's CDU context
8687  */
8688 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8689 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8690 {
8691 	u8 cos;
8692 	int cxt_index, cxt_offset;
8693 
8694 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8695 	if (!IS_FCOE_FP(fp)) {
8696 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8697 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8698 
8699 		/* If HC is supported, enable host coalescing in the transition
8700 		 * to INIT state.
8701 		 */
8702 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8703 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8704 
8705 		/* HC rate */
8706 		init_params->rx.hc_rate = bp->rx_ticks ?
8707 			(1000000 / bp->rx_ticks) : 0;
8708 		init_params->tx.hc_rate = bp->tx_ticks ?
8709 			(1000000 / bp->tx_ticks) : 0;
8710 
8711 		/* FW SB ID */
8712 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8713 			fp->fw_sb_id;
8714 
8715 		/*
8716 		 * CQ index among the SB indices: FCoE clients uses the default
8717 		 * SB, therefore it's different.
8718 		 */
8719 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8720 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8721 	}
8722 
8723 	/* set maximum number of COSs supported by this queue */
8724 	init_params->max_cos = fp->max_cos;
8725 
8726 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8727 	    fp->index, init_params->max_cos);
8728 
8729 	/* set the context pointers queue object */
8730 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8731 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8732 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8733 				ILT_PAGE_CIDS);
8734 		init_params->cxts[cos] =
8735 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8736 	}
8737 }
8738 
8739 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8740 			struct bnx2x_queue_state_params *q_params,
8741 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8742 			int tx_index, bool leading)
8743 {
8744 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8745 
8746 	/* Set the command */
8747 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8748 
8749 	/* Set tx-only QUEUE flags: don't zero statistics */
8750 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8751 
8752 	/* choose the index of the cid to send the slow path on */
8753 	tx_only_params->cid_index = tx_index;
8754 
8755 	/* Set general TX_ONLY_SETUP parameters */
8756 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8757 
8758 	/* Set Tx TX_ONLY_SETUP parameters */
8759 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8760 
8761 	DP(NETIF_MSG_IFUP,
8762 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8763 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8764 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8765 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8766 
8767 	/* send the ramrod */
8768 	return bnx2x_queue_state_change(bp, q_params);
8769 }
8770 
8771 /**
8772  * bnx2x_setup_queue - setup queue
8773  *
8774  * @bp:		driver handle
8775  * @fp:		pointer to fastpath
8776  * @leading:	is leading
8777  *
8778  * This function performs 2 steps in a Queue state machine
8779  *      actually: 1) RESET->INIT 2) INIT->SETUP
8780  */
8781 
8782 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8783 		       bool leading)
8784 {
8785 	struct bnx2x_queue_state_params q_params = {NULL};
8786 	struct bnx2x_queue_setup_params *setup_params =
8787 						&q_params.params.setup;
8788 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8789 						&q_params.params.tx_only;
8790 	int rc;
8791 	u8 tx_index;
8792 
8793 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8794 
8795 	/* reset IGU state skip FCoE L2 queue */
8796 	if (!IS_FCOE_FP(fp))
8797 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8798 			     IGU_INT_ENABLE, 0);
8799 
8800 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8801 	/* We want to wait for completion in this context */
8802 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8803 
8804 	/* Prepare the INIT parameters */
8805 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8806 
8807 	/* Set the command */
8808 	q_params.cmd = BNX2X_Q_CMD_INIT;
8809 
8810 	/* Change the state to INIT */
8811 	rc = bnx2x_queue_state_change(bp, &q_params);
8812 	if (rc) {
8813 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8814 		return rc;
8815 	}
8816 
8817 	DP(NETIF_MSG_IFUP, "init complete\n");
8818 
8819 	/* Now move the Queue to the SETUP state... */
8820 	memset(setup_params, 0, sizeof(*setup_params));
8821 
8822 	/* Set QUEUE flags */
8823 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8824 
8825 	/* Set general SETUP parameters */
8826 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8827 				FIRST_TX_COS_INDEX);
8828 
8829 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8830 			    &setup_params->rxq_params);
8831 
8832 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8833 			   FIRST_TX_COS_INDEX);
8834 
8835 	/* Set the command */
8836 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8837 
8838 	if (IS_FCOE_FP(fp))
8839 		bp->fcoe_init = true;
8840 
8841 	/* Change the state to SETUP */
8842 	rc = bnx2x_queue_state_change(bp, &q_params);
8843 	if (rc) {
8844 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8845 		return rc;
8846 	}
8847 
8848 	/* loop through the relevant tx-only indices */
8849 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8850 	      tx_index < fp->max_cos;
8851 	      tx_index++) {
8852 
8853 		/* prepare and send tx-only ramrod*/
8854 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8855 					  tx_only_params, tx_index, leading);
8856 		if (rc) {
8857 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8858 				  fp->index, tx_index);
8859 			return rc;
8860 		}
8861 	}
8862 
8863 	return rc;
8864 }
8865 
8866 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8867 {
8868 	struct bnx2x_fastpath *fp = &bp->fp[index];
8869 	struct bnx2x_fp_txdata *txdata;
8870 	struct bnx2x_queue_state_params q_params = {NULL};
8871 	int rc, tx_index;
8872 
8873 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8874 
8875 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8876 	/* We want to wait for completion in this context */
8877 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8878 
8879 	/* close tx-only connections */
8880 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8881 	     tx_index < fp->max_cos;
8882 	     tx_index++){
8883 
8884 		/* ascertain this is a normal queue*/
8885 		txdata = fp->txdata_ptr[tx_index];
8886 
8887 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8888 							txdata->txq_index);
8889 
8890 		/* send halt terminate on tx-only connection */
8891 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8892 		memset(&q_params.params.terminate, 0,
8893 		       sizeof(q_params.params.terminate));
8894 		q_params.params.terminate.cid_index = tx_index;
8895 
8896 		rc = bnx2x_queue_state_change(bp, &q_params);
8897 		if (rc)
8898 			return rc;
8899 
8900 		/* send halt terminate on tx-only connection */
8901 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8902 		memset(&q_params.params.cfc_del, 0,
8903 		       sizeof(q_params.params.cfc_del));
8904 		q_params.params.cfc_del.cid_index = tx_index;
8905 		rc = bnx2x_queue_state_change(bp, &q_params);
8906 		if (rc)
8907 			return rc;
8908 	}
8909 	/* Stop the primary connection: */
8910 	/* ...halt the connection */
8911 	q_params.cmd = BNX2X_Q_CMD_HALT;
8912 	rc = bnx2x_queue_state_change(bp, &q_params);
8913 	if (rc)
8914 		return rc;
8915 
8916 	/* ...terminate the connection */
8917 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8918 	memset(&q_params.params.terminate, 0,
8919 	       sizeof(q_params.params.terminate));
8920 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8921 	rc = bnx2x_queue_state_change(bp, &q_params);
8922 	if (rc)
8923 		return rc;
8924 	/* ...delete cfc entry */
8925 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8926 	memset(&q_params.params.cfc_del, 0,
8927 	       sizeof(q_params.params.cfc_del));
8928 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8929 	return bnx2x_queue_state_change(bp, &q_params);
8930 }
8931 
8932 static void bnx2x_reset_func(struct bnx2x *bp)
8933 {
8934 	int port = BP_PORT(bp);
8935 	int func = BP_FUNC(bp);
8936 	int i;
8937 
8938 	/* Disable the function in the FW */
8939 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8940 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8941 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8942 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8943 
8944 	/* FP SBs */
8945 	for_each_eth_queue(bp, i) {
8946 		struct bnx2x_fastpath *fp = &bp->fp[i];
8947 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8948 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8949 			   SB_DISABLED);
8950 	}
8951 
8952 	if (CNIC_LOADED(bp))
8953 		/* CNIC SB */
8954 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8955 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8956 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8957 
8958 	/* SP SB */
8959 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8960 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8961 		SB_DISABLED);
8962 
8963 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8964 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8965 		       0);
8966 
8967 	/* Configure IGU */
8968 	if (bp->common.int_block == INT_BLOCK_HC) {
8969 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8970 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8971 	} else {
8972 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8973 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8974 	}
8975 
8976 	if (CNIC_LOADED(bp)) {
8977 		/* Disable Timer scan */
8978 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8979 		/*
8980 		 * Wait for at least 10ms and up to 2 second for the timers
8981 		 * scan to complete
8982 		 */
8983 		for (i = 0; i < 200; i++) {
8984 			usleep_range(10000, 20000);
8985 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8986 				break;
8987 		}
8988 	}
8989 	/* Clear ILT */
8990 	bnx2x_clear_func_ilt(bp, func);
8991 
8992 	/* Timers workaround bug for E2: if this is vnic-3,
8993 	 * we need to set the entire ilt range for this timers.
8994 	 */
8995 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8996 		struct ilt_client_info ilt_cli;
8997 		/* use dummy TM client */
8998 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8999 		ilt_cli.start = 0;
9000 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9001 		ilt_cli.client_num = ILT_CLIENT_TM;
9002 
9003 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9004 	}
9005 
9006 	/* this assumes that reset_port() called before reset_func()*/
9007 	if (!CHIP_IS_E1x(bp))
9008 		bnx2x_pf_disable(bp);
9009 
9010 	bp->dmae_ready = 0;
9011 }
9012 
9013 static void bnx2x_reset_port(struct bnx2x *bp)
9014 {
9015 	int port = BP_PORT(bp);
9016 	u32 val;
9017 
9018 	/* Reset physical Link */
9019 	bnx2x__link_reset(bp);
9020 
9021 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9022 
9023 	/* Do not rcv packets to BRB */
9024 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9025 	/* Do not direct rcv packets that are not for MCP to the BRB */
9026 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9027 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9028 
9029 	/* Configure AEU */
9030 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9031 
9032 	msleep(100);
9033 	/* Check for BRB port occupancy */
9034 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9035 	if (val)
9036 		DP(NETIF_MSG_IFDOWN,
9037 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9038 
9039 	/* TODO: Close Doorbell port? */
9040 }
9041 
9042 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9043 {
9044 	struct bnx2x_func_state_params func_params = {NULL};
9045 
9046 	/* Prepare parameters for function state transitions */
9047 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9048 
9049 	func_params.f_obj = &bp->func_obj;
9050 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9051 
9052 	func_params.params.hw_init.load_phase = load_code;
9053 
9054 	return bnx2x_func_state_change(bp, &func_params);
9055 }
9056 
9057 static int bnx2x_func_stop(struct bnx2x *bp)
9058 {
9059 	struct bnx2x_func_state_params func_params = {NULL};
9060 	int rc;
9061 
9062 	/* Prepare parameters for function state transitions */
9063 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9064 	func_params.f_obj = &bp->func_obj;
9065 	func_params.cmd = BNX2X_F_CMD_STOP;
9066 
9067 	/*
9068 	 * Try to stop the function the 'good way'. If fails (in case
9069 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9070 	 * not in a debug mode, perform a state transaction in order to
9071 	 * enable further HW_RESET transaction.
9072 	 */
9073 	rc = bnx2x_func_state_change(bp, &func_params);
9074 	if (rc) {
9075 #ifdef BNX2X_STOP_ON_ERROR
9076 		return rc;
9077 #else
9078 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9079 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9080 		return bnx2x_func_state_change(bp, &func_params);
9081 #endif
9082 	}
9083 
9084 	return 0;
9085 }
9086 
9087 /**
9088  * bnx2x_send_unload_req - request unload mode from the MCP.
9089  *
9090  * @bp:			driver handle
9091  * @unload_mode:	requested function's unload mode
9092  *
9093  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9094  */
9095 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9096 {
9097 	u32 reset_code = 0;
9098 	int port = BP_PORT(bp);
9099 
9100 	/* Select the UNLOAD request mode */
9101 	if (unload_mode == UNLOAD_NORMAL)
9102 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9103 
9104 	else if (bp->flags & NO_WOL_FLAG)
9105 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9106 
9107 	else if (bp->wol) {
9108 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9109 		u8 *mac_addr = bp->dev->dev_addr;
9110 		struct pci_dev *pdev = bp->pdev;
9111 		u32 val;
9112 		u16 pmc;
9113 
9114 		/* The mac address is written to entries 1-4 to
9115 		 * preserve entry 0 which is used by the PMF
9116 		 */
9117 		u8 entry = (BP_VN(bp) + 1)*8;
9118 
9119 		val = (mac_addr[0] << 8) | mac_addr[1];
9120 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9121 
9122 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9123 		      (mac_addr[4] << 8) | mac_addr[5];
9124 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9125 
9126 		/* Enable the PME and clear the status */
9127 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9128 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9129 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9130 
9131 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9132 
9133 	} else
9134 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9135 
9136 	/* Send the request to the MCP */
9137 	if (!BP_NOMCP(bp))
9138 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9139 	else {
9140 		int path = BP_PATH(bp);
9141 
9142 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9143 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9144 		   bnx2x_load_count[path][2]);
9145 		bnx2x_load_count[path][0]--;
9146 		bnx2x_load_count[path][1 + port]--;
9147 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9148 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9149 		   bnx2x_load_count[path][2]);
9150 		if (bnx2x_load_count[path][0] == 0)
9151 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9152 		else if (bnx2x_load_count[path][1 + port] == 0)
9153 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9154 		else
9155 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9156 	}
9157 
9158 	return reset_code;
9159 }
9160 
9161 /**
9162  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9163  *
9164  * @bp:		driver handle
9165  * @keep_link:		true iff link should be kept up
9166  */
9167 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9168 {
9169 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9170 
9171 	/* Report UNLOAD_DONE to MCP */
9172 	if (!BP_NOMCP(bp))
9173 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9174 }
9175 
9176 static int bnx2x_func_wait_started(struct bnx2x *bp)
9177 {
9178 	int tout = 50;
9179 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9180 
9181 	if (!bp->port.pmf)
9182 		return 0;
9183 
9184 	/*
9185 	 * (assumption: No Attention from MCP at this stage)
9186 	 * PMF probably in the middle of TX disable/enable transaction
9187 	 * 1. Sync IRS for default SB
9188 	 * 2. Sync SP queue - this guarantees us that attention handling started
9189 	 * 3. Wait, that TX disable/enable transaction completes
9190 	 *
9191 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9192 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9193 	 * received completion for the transaction the state is TX_STOPPED.
9194 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9195 	 * transaction.
9196 	 */
9197 
9198 	/* make sure default SB ISR is done */
9199 	if (msix)
9200 		synchronize_irq(bp->msix_table[0].vector);
9201 	else
9202 		synchronize_irq(bp->pdev->irq);
9203 
9204 	flush_workqueue(bnx2x_wq);
9205 	flush_workqueue(bnx2x_iov_wq);
9206 
9207 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9208 				BNX2X_F_STATE_STARTED && tout--)
9209 		msleep(20);
9210 
9211 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9212 						BNX2X_F_STATE_STARTED) {
9213 #ifdef BNX2X_STOP_ON_ERROR
9214 		BNX2X_ERR("Wrong function state\n");
9215 		return -EBUSY;
9216 #else
9217 		/*
9218 		 * Failed to complete the transaction in a "good way"
9219 		 * Force both transactions with CLR bit
9220 		 */
9221 		struct bnx2x_func_state_params func_params = {NULL};
9222 
9223 		DP(NETIF_MSG_IFDOWN,
9224 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9225 
9226 		func_params.f_obj = &bp->func_obj;
9227 		__set_bit(RAMROD_DRV_CLR_ONLY,
9228 					&func_params.ramrod_flags);
9229 
9230 		/* STARTED-->TX_ST0PPED */
9231 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9232 		bnx2x_func_state_change(bp, &func_params);
9233 
9234 		/* TX_ST0PPED-->STARTED */
9235 		func_params.cmd = BNX2X_F_CMD_TX_START;
9236 		return bnx2x_func_state_change(bp, &func_params);
9237 #endif
9238 	}
9239 
9240 	return 0;
9241 }
9242 
9243 static void bnx2x_disable_ptp(struct bnx2x *bp)
9244 {
9245 	int port = BP_PORT(bp);
9246 
9247 	/* Disable sending PTP packets to host */
9248 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9249 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9250 
9251 	/* Reset PTP event detection rules */
9252 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9253 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9254 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9255 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9256 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9257 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9258 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9259 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9260 
9261 	/* Disable the PTP feature */
9262 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9263 	       NIG_REG_P0_PTP_EN, 0x0);
9264 }
9265 
9266 /* Called during unload, to stop PTP-related stuff */
9267 static void bnx2x_stop_ptp(struct bnx2x *bp)
9268 {
9269 	/* Cancel PTP work queue. Should be done after the Tx queues are
9270 	 * drained to prevent additional scheduling.
9271 	 */
9272 	cancel_work_sync(&bp->ptp_task);
9273 
9274 	if (bp->ptp_tx_skb) {
9275 		dev_kfree_skb_any(bp->ptp_tx_skb);
9276 		bp->ptp_tx_skb = NULL;
9277 	}
9278 
9279 	/* Disable PTP in HW */
9280 	bnx2x_disable_ptp(bp);
9281 
9282 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9283 }
9284 
9285 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9286 {
9287 	int port = BP_PORT(bp);
9288 	int i, rc = 0;
9289 	u8 cos;
9290 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9291 	u32 reset_code;
9292 
9293 	/* Wait until tx fastpath tasks complete */
9294 	for_each_tx_queue(bp, i) {
9295 		struct bnx2x_fastpath *fp = &bp->fp[i];
9296 
9297 		for_each_cos_in_tx_queue(fp, cos)
9298 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9299 #ifdef BNX2X_STOP_ON_ERROR
9300 		if (rc)
9301 			return;
9302 #endif
9303 	}
9304 
9305 	/* Give HW time to discard old tx messages */
9306 	usleep_range(1000, 2000);
9307 
9308 	/* Clean all ETH MACs */
9309 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9310 				false);
9311 	if (rc < 0)
9312 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9313 
9314 	/* Clean up UC list  */
9315 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9316 				true);
9317 	if (rc < 0)
9318 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9319 			  rc);
9320 
9321 	/* Disable LLH */
9322 	if (!CHIP_IS_E1(bp))
9323 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9324 
9325 	/* Set "drop all" (stop Rx).
9326 	 * We need to take a netif_addr_lock() here in order to prevent
9327 	 * a race between the completion code and this code.
9328 	 */
9329 	netif_addr_lock_bh(bp->dev);
9330 	/* Schedule the rx_mode command */
9331 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9332 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9333 	else
9334 		bnx2x_set_storm_rx_mode(bp);
9335 
9336 	/* Cleanup multicast configuration */
9337 	rparam.mcast_obj = &bp->mcast_obj;
9338 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9339 	if (rc < 0)
9340 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9341 
9342 	netif_addr_unlock_bh(bp->dev);
9343 
9344 	bnx2x_iov_chip_cleanup(bp);
9345 
9346 	/*
9347 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9348 	 * this function should perform FUNC, PORT or COMMON HW
9349 	 * reset.
9350 	 */
9351 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9352 
9353 	/*
9354 	 * (assumption: No Attention from MCP at this stage)
9355 	 * PMF probably in the middle of TX disable/enable transaction
9356 	 */
9357 	rc = bnx2x_func_wait_started(bp);
9358 	if (rc) {
9359 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9360 #ifdef BNX2X_STOP_ON_ERROR
9361 		return;
9362 #endif
9363 	}
9364 
9365 	/* Close multi and leading connections
9366 	 * Completions for ramrods are collected in a synchronous way
9367 	 */
9368 	for_each_eth_queue(bp, i)
9369 		if (bnx2x_stop_queue(bp, i))
9370 #ifdef BNX2X_STOP_ON_ERROR
9371 			return;
9372 #else
9373 			goto unload_error;
9374 #endif
9375 
9376 	if (CNIC_LOADED(bp)) {
9377 		for_each_cnic_queue(bp, i)
9378 			if (bnx2x_stop_queue(bp, i))
9379 #ifdef BNX2X_STOP_ON_ERROR
9380 				return;
9381 #else
9382 				goto unload_error;
9383 #endif
9384 	}
9385 
9386 	/* If SP settings didn't get completed so far - something
9387 	 * very wrong has happen.
9388 	 */
9389 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9390 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9391 
9392 #ifndef BNX2X_STOP_ON_ERROR
9393 unload_error:
9394 #endif
9395 	rc = bnx2x_func_stop(bp);
9396 	if (rc) {
9397 		BNX2X_ERR("Function stop failed!\n");
9398 #ifdef BNX2X_STOP_ON_ERROR
9399 		return;
9400 #endif
9401 	}
9402 
9403 	/* stop_ptp should be after the Tx queues are drained to prevent
9404 	 * scheduling to the cancelled PTP work queue. It should also be after
9405 	 * function stop ramrod is sent, since as part of this ramrod FW access
9406 	 * PTP registers.
9407 	 */
9408 	if (bp->flags & PTP_SUPPORTED)
9409 		bnx2x_stop_ptp(bp);
9410 
9411 	/* Disable HW interrupts, NAPI */
9412 	bnx2x_netif_stop(bp, 1);
9413 	/* Delete all NAPI objects */
9414 	bnx2x_del_all_napi(bp);
9415 	if (CNIC_LOADED(bp))
9416 		bnx2x_del_all_napi_cnic(bp);
9417 
9418 	/* Release IRQs */
9419 	bnx2x_free_irq(bp);
9420 
9421 	/* Reset the chip */
9422 	rc = bnx2x_reset_hw(bp, reset_code);
9423 	if (rc)
9424 		BNX2X_ERR("HW_RESET failed\n");
9425 
9426 	/* Report UNLOAD_DONE to MCP */
9427 	bnx2x_send_unload_done(bp, keep_link);
9428 }
9429 
9430 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9431 {
9432 	u32 val;
9433 
9434 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9435 
9436 	if (CHIP_IS_E1(bp)) {
9437 		int port = BP_PORT(bp);
9438 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9439 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9440 
9441 		val = REG_RD(bp, addr);
9442 		val &= ~(0x300);
9443 		REG_WR(bp, addr, val);
9444 	} else {
9445 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9446 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9447 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9448 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9449 	}
9450 }
9451 
9452 /* Close gates #2, #3 and #4: */
9453 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9454 {
9455 	u32 val;
9456 
9457 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9458 	if (!CHIP_IS_E1(bp)) {
9459 		/* #4 */
9460 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9461 		/* #2 */
9462 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9463 	}
9464 
9465 	/* #3 */
9466 	if (CHIP_IS_E1x(bp)) {
9467 		/* Prevent interrupts from HC on both ports */
9468 		val = REG_RD(bp, HC_REG_CONFIG_1);
9469 		REG_WR(bp, HC_REG_CONFIG_1,
9470 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9471 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9472 
9473 		val = REG_RD(bp, HC_REG_CONFIG_0);
9474 		REG_WR(bp, HC_REG_CONFIG_0,
9475 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9476 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9477 	} else {
9478 		/* Prevent incoming interrupts in IGU */
9479 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9480 
9481 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9482 		       (!close) ?
9483 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9484 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9485 	}
9486 
9487 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9488 		close ? "closing" : "opening");
9489 	mmiowb();
9490 }
9491 
9492 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9493 
9494 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9495 {
9496 	/* Do some magic... */
9497 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9498 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9499 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9500 }
9501 
9502 /**
9503  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9504  *
9505  * @bp:		driver handle
9506  * @magic_val:	old value of the `magic' bit.
9507  */
9508 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9509 {
9510 	/* Restore the `magic' bit value... */
9511 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9512 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9513 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9514 }
9515 
9516 /**
9517  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9518  *
9519  * @bp:		driver handle
9520  * @magic_val:	old value of 'magic' bit.
9521  *
9522  * Takes care of CLP configurations.
9523  */
9524 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9525 {
9526 	u32 shmem;
9527 	u32 validity_offset;
9528 
9529 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9530 
9531 	/* Set `magic' bit in order to save MF config */
9532 	if (!CHIP_IS_E1(bp))
9533 		bnx2x_clp_reset_prep(bp, magic_val);
9534 
9535 	/* Get shmem offset */
9536 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9537 	validity_offset =
9538 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9539 
9540 	/* Clear validity map flags */
9541 	if (shmem > 0)
9542 		REG_WR(bp, shmem + validity_offset, 0);
9543 }
9544 
9545 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9546 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9547 
9548 /**
9549  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9550  *
9551  * @bp:	driver handle
9552  */
9553 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9554 {
9555 	/* special handling for emulation and FPGA,
9556 	   wait 10 times longer */
9557 	if (CHIP_REV_IS_SLOW(bp))
9558 		msleep(MCP_ONE_TIMEOUT*10);
9559 	else
9560 		msleep(MCP_ONE_TIMEOUT);
9561 }
9562 
9563 /*
9564  * initializes bp->common.shmem_base and waits for validity signature to appear
9565  */
9566 static int bnx2x_init_shmem(struct bnx2x *bp)
9567 {
9568 	int cnt = 0;
9569 	u32 val = 0;
9570 
9571 	do {
9572 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9573 		if (bp->common.shmem_base) {
9574 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9575 			if (val & SHR_MEM_VALIDITY_MB)
9576 				return 0;
9577 		}
9578 
9579 		bnx2x_mcp_wait_one(bp);
9580 
9581 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9582 
9583 	BNX2X_ERR("BAD MCP validity signature\n");
9584 
9585 	return -ENODEV;
9586 }
9587 
9588 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9589 {
9590 	int rc = bnx2x_init_shmem(bp);
9591 
9592 	/* Restore the `magic' bit value */
9593 	if (!CHIP_IS_E1(bp))
9594 		bnx2x_clp_reset_done(bp, magic_val);
9595 
9596 	return rc;
9597 }
9598 
9599 static void bnx2x_pxp_prep(struct bnx2x *bp)
9600 {
9601 	if (!CHIP_IS_E1(bp)) {
9602 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9603 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9604 		mmiowb();
9605 	}
9606 }
9607 
9608 /*
9609  * Reset the whole chip except for:
9610  *      - PCIE core
9611  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9612  *              one reset bit)
9613  *      - IGU
9614  *      - MISC (including AEU)
9615  *      - GRC
9616  *      - RBCN, RBCP
9617  */
9618 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9619 {
9620 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9621 	u32 global_bits2, stay_reset2;
9622 
9623 	/*
9624 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9625 	 * (per chip) blocks.
9626 	 */
9627 	global_bits2 =
9628 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9629 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9630 
9631 	/* Don't reset the following blocks.
9632 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9633 	 *            reset, as in 4 port device they might still be owned
9634 	 *            by the MCP (there is only one leader per path).
9635 	 */
9636 	not_reset_mask1 =
9637 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9638 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9639 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9640 
9641 	not_reset_mask2 =
9642 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9643 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9644 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9645 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9646 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9647 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9648 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9649 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9650 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9651 		MISC_REGISTERS_RESET_REG_2_PGLC |
9652 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9653 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9654 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9655 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9656 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9657 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9658 
9659 	/*
9660 	 * Keep the following blocks in reset:
9661 	 *  - all xxMACs are handled by the bnx2x_link code.
9662 	 */
9663 	stay_reset2 =
9664 		MISC_REGISTERS_RESET_REG_2_XMAC |
9665 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9666 
9667 	/* Full reset masks according to the chip */
9668 	reset_mask1 = 0xffffffff;
9669 
9670 	if (CHIP_IS_E1(bp))
9671 		reset_mask2 = 0xffff;
9672 	else if (CHIP_IS_E1H(bp))
9673 		reset_mask2 = 0x1ffff;
9674 	else if (CHIP_IS_E2(bp))
9675 		reset_mask2 = 0xfffff;
9676 	else /* CHIP_IS_E3 */
9677 		reset_mask2 = 0x3ffffff;
9678 
9679 	/* Don't reset global blocks unless we need to */
9680 	if (!global)
9681 		reset_mask2 &= ~global_bits2;
9682 
9683 	/*
9684 	 * In case of attention in the QM, we need to reset PXP
9685 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9686 	 * because otherwise QM reset would release 'close the gates' shortly
9687 	 * before resetting the PXP, then the PSWRQ would send a write
9688 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9689 	 * read the payload data from PSWWR, but PSWWR would not
9690 	 * respond. The write queue in PGLUE would stuck, dmae commands
9691 	 * would not return. Therefore it's important to reset the second
9692 	 * reset register (containing the
9693 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9694 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9695 	 * bit).
9696 	 */
9697 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9698 	       reset_mask2 & (~not_reset_mask2));
9699 
9700 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9701 	       reset_mask1 & (~not_reset_mask1));
9702 
9703 	barrier();
9704 	mmiowb();
9705 
9706 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9707 	       reset_mask2 & (~stay_reset2));
9708 
9709 	barrier();
9710 	mmiowb();
9711 
9712 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9713 	mmiowb();
9714 }
9715 
9716 /**
9717  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9718  * It should get cleared in no more than 1s.
9719  *
9720  * @bp:	driver handle
9721  *
9722  * It should get cleared in no more than 1s. Returns 0 if
9723  * pending writes bit gets cleared.
9724  */
9725 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9726 {
9727 	u32 cnt = 1000;
9728 	u32 pend_bits = 0;
9729 
9730 	do {
9731 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9732 
9733 		if (pend_bits == 0)
9734 			break;
9735 
9736 		usleep_range(1000, 2000);
9737 	} while (cnt-- > 0);
9738 
9739 	if (cnt <= 0) {
9740 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9741 			  pend_bits);
9742 		return -EBUSY;
9743 	}
9744 
9745 	return 0;
9746 }
9747 
9748 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9749 {
9750 	int cnt = 1000;
9751 	u32 val = 0;
9752 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9753 	u32 tags_63_32 = 0;
9754 
9755 	/* Empty the Tetris buffer, wait for 1s */
9756 	do {
9757 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9758 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9759 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9760 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9761 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9762 		if (CHIP_IS_E3(bp))
9763 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9764 
9765 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9766 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9767 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9768 		    (pgl_exp_rom2 == 0xffffffff) &&
9769 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9770 			break;
9771 		usleep_range(1000, 2000);
9772 	} while (cnt-- > 0);
9773 
9774 	if (cnt <= 0) {
9775 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9776 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9777 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9778 			  pgl_exp_rom2);
9779 		return -EAGAIN;
9780 	}
9781 
9782 	barrier();
9783 
9784 	/* Close gates #2, #3 and #4 */
9785 	bnx2x_set_234_gates(bp, true);
9786 
9787 	/* Poll for IGU VQs for 57712 and newer chips */
9788 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9789 		return -EAGAIN;
9790 
9791 	/* TBD: Indicate that "process kill" is in progress to MCP */
9792 
9793 	/* Clear "unprepared" bit */
9794 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9795 	barrier();
9796 
9797 	/* Make sure all is written to the chip before the reset */
9798 	mmiowb();
9799 
9800 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9801 	 * PSWHST, GRC and PSWRD Tetris buffer.
9802 	 */
9803 	usleep_range(1000, 2000);
9804 
9805 	/* Prepare to chip reset: */
9806 	/* MCP */
9807 	if (global)
9808 		bnx2x_reset_mcp_prep(bp, &val);
9809 
9810 	/* PXP */
9811 	bnx2x_pxp_prep(bp);
9812 	barrier();
9813 
9814 	/* reset the chip */
9815 	bnx2x_process_kill_chip_reset(bp, global);
9816 	barrier();
9817 
9818 	/* clear errors in PGB */
9819 	if (!CHIP_IS_E1x(bp))
9820 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9821 
9822 	/* Recover after reset: */
9823 	/* MCP */
9824 	if (global && bnx2x_reset_mcp_comp(bp, val))
9825 		return -EAGAIN;
9826 
9827 	/* TBD: Add resetting the NO_MCP mode DB here */
9828 
9829 	/* Open the gates #2, #3 and #4 */
9830 	bnx2x_set_234_gates(bp, false);
9831 
9832 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9833 	 * reset state, re-enable attentions. */
9834 
9835 	return 0;
9836 }
9837 
9838 static int bnx2x_leader_reset(struct bnx2x *bp)
9839 {
9840 	int rc = 0;
9841 	bool global = bnx2x_reset_is_global(bp);
9842 	u32 load_code;
9843 
9844 	/* if not going to reset MCP - load "fake" driver to reset HW while
9845 	 * driver is owner of the HW
9846 	 */
9847 	if (!global && !BP_NOMCP(bp)) {
9848 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9849 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9850 		if (!load_code) {
9851 			BNX2X_ERR("MCP response failure, aborting\n");
9852 			rc = -EAGAIN;
9853 			goto exit_leader_reset;
9854 		}
9855 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9856 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9857 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9858 			rc = -EAGAIN;
9859 			goto exit_leader_reset2;
9860 		}
9861 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9862 		if (!load_code) {
9863 			BNX2X_ERR("MCP response failure, aborting\n");
9864 			rc = -EAGAIN;
9865 			goto exit_leader_reset2;
9866 		}
9867 	}
9868 
9869 	/* Try to recover after the failure */
9870 	if (bnx2x_process_kill(bp, global)) {
9871 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9872 			  BP_PATH(bp));
9873 		rc = -EAGAIN;
9874 		goto exit_leader_reset2;
9875 	}
9876 
9877 	/*
9878 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9879 	 * state.
9880 	 */
9881 	bnx2x_set_reset_done(bp);
9882 	if (global)
9883 		bnx2x_clear_reset_global(bp);
9884 
9885 exit_leader_reset2:
9886 	/* unload "fake driver" if it was loaded */
9887 	if (!global && !BP_NOMCP(bp)) {
9888 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9889 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9890 	}
9891 exit_leader_reset:
9892 	bp->is_leader = 0;
9893 	bnx2x_release_leader_lock(bp);
9894 	smp_mb();
9895 	return rc;
9896 }
9897 
9898 static void bnx2x_recovery_failed(struct bnx2x *bp)
9899 {
9900 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9901 
9902 	/* Disconnect this device */
9903 	netif_device_detach(bp->dev);
9904 
9905 	/*
9906 	 * Block ifup for all function on this engine until "process kill"
9907 	 * or power cycle.
9908 	 */
9909 	bnx2x_set_reset_in_progress(bp);
9910 
9911 	/* Shut down the power */
9912 	bnx2x_set_power_state(bp, PCI_D3hot);
9913 
9914 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9915 
9916 	smp_mb();
9917 }
9918 
9919 /*
9920  * Assumption: runs under rtnl lock. This together with the fact
9921  * that it's called only from bnx2x_sp_rtnl() ensure that it
9922  * will never be called when netif_running(bp->dev) is false.
9923  */
9924 static void bnx2x_parity_recover(struct bnx2x *bp)
9925 {
9926 	bool global = false;
9927 	u32 error_recovered, error_unrecovered;
9928 	bool is_parity;
9929 
9930 	DP(NETIF_MSG_HW, "Handling parity\n");
9931 	while (1) {
9932 		switch (bp->recovery_state) {
9933 		case BNX2X_RECOVERY_INIT:
9934 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9935 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9936 			WARN_ON(!is_parity);
9937 
9938 			/* Try to get a LEADER_LOCK HW lock */
9939 			if (bnx2x_trylock_leader_lock(bp)) {
9940 				bnx2x_set_reset_in_progress(bp);
9941 				/*
9942 				 * Check if there is a global attention and if
9943 				 * there was a global attention, set the global
9944 				 * reset bit.
9945 				 */
9946 
9947 				if (global)
9948 					bnx2x_set_reset_global(bp);
9949 
9950 				bp->is_leader = 1;
9951 			}
9952 
9953 			/* Stop the driver */
9954 			/* If interface has been removed - break */
9955 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9956 				return;
9957 
9958 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
9959 
9960 			/* Ensure "is_leader", MCP command sequence and
9961 			 * "recovery_state" update values are seen on other
9962 			 * CPUs.
9963 			 */
9964 			smp_mb();
9965 			break;
9966 
9967 		case BNX2X_RECOVERY_WAIT:
9968 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9969 			if (bp->is_leader) {
9970 				int other_engine = BP_PATH(bp) ? 0 : 1;
9971 				bool other_load_status =
9972 					bnx2x_get_load_status(bp, other_engine);
9973 				bool load_status =
9974 					bnx2x_get_load_status(bp, BP_PATH(bp));
9975 				global = bnx2x_reset_is_global(bp);
9976 
9977 				/*
9978 				 * In case of a parity in a global block, let
9979 				 * the first leader that performs a
9980 				 * leader_reset() reset the global blocks in
9981 				 * order to clear global attentions. Otherwise
9982 				 * the gates will remain closed for that
9983 				 * engine.
9984 				 */
9985 				if (load_status ||
9986 				    (global && other_load_status)) {
9987 					/* Wait until all other functions get
9988 					 * down.
9989 					 */
9990 					schedule_delayed_work(&bp->sp_rtnl_task,
9991 								HZ/10);
9992 					return;
9993 				} else {
9994 					/* If all other functions got down -
9995 					 * try to bring the chip back to
9996 					 * normal. In any case it's an exit
9997 					 * point for a leader.
9998 					 */
9999 					if (bnx2x_leader_reset(bp)) {
10000 						bnx2x_recovery_failed(bp);
10001 						return;
10002 					}
10003 
10004 					/* If we are here, means that the
10005 					 * leader has succeeded and doesn't
10006 					 * want to be a leader any more. Try
10007 					 * to continue as a none-leader.
10008 					 */
10009 					break;
10010 				}
10011 			} else { /* non-leader */
10012 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10013 					/* Try to get a LEADER_LOCK HW lock as
10014 					 * long as a former leader may have
10015 					 * been unloaded by the user or
10016 					 * released a leadership by another
10017 					 * reason.
10018 					 */
10019 					if (bnx2x_trylock_leader_lock(bp)) {
10020 						/* I'm a leader now! Restart a
10021 						 * switch case.
10022 						 */
10023 						bp->is_leader = 1;
10024 						break;
10025 					}
10026 
10027 					schedule_delayed_work(&bp->sp_rtnl_task,
10028 								HZ/10);
10029 					return;
10030 
10031 				} else {
10032 					/*
10033 					 * If there was a global attention, wait
10034 					 * for it to be cleared.
10035 					 */
10036 					if (bnx2x_reset_is_global(bp)) {
10037 						schedule_delayed_work(
10038 							&bp->sp_rtnl_task,
10039 							HZ/10);
10040 						return;
10041 					}
10042 
10043 					error_recovered =
10044 					  bp->eth_stats.recoverable_error;
10045 					error_unrecovered =
10046 					  bp->eth_stats.unrecoverable_error;
10047 					bp->recovery_state =
10048 						BNX2X_RECOVERY_NIC_LOADING;
10049 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10050 						error_unrecovered++;
10051 						netdev_err(bp->dev,
10052 							   "Recovery failed. Power cycle needed\n");
10053 						/* Disconnect this device */
10054 						netif_device_detach(bp->dev);
10055 						/* Shut down the power */
10056 						bnx2x_set_power_state(
10057 							bp, PCI_D3hot);
10058 						smp_mb();
10059 					} else {
10060 						bp->recovery_state =
10061 							BNX2X_RECOVERY_DONE;
10062 						error_recovered++;
10063 						smp_mb();
10064 					}
10065 					bp->eth_stats.recoverable_error =
10066 						error_recovered;
10067 					bp->eth_stats.unrecoverable_error =
10068 						error_unrecovered;
10069 
10070 					return;
10071 				}
10072 			}
10073 		default:
10074 			return;
10075 		}
10076 	}
10077 }
10078 
10079 #if defined(CONFIG_BNX2X_VXLAN) || IS_ENABLED(CONFIG_BNX2X_GENEVE)
10080 static int bnx2x_udp_port_update(struct bnx2x *bp)
10081 {
10082 	struct bnx2x_func_switch_update_params *switch_update_params;
10083 	struct bnx2x_func_state_params func_params = {NULL};
10084 	struct bnx2x_udp_tunnel *udp_tunnel;
10085 	u16 vxlan_port = 0, geneve_port = 0;
10086 	int rc;
10087 
10088 	switch_update_params = &func_params.params.switch_update;
10089 
10090 	/* Prepare parameters for function state transitions */
10091 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10092 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10093 
10094 	func_params.f_obj = &bp->func_obj;
10095 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10096 
10097 	/* Function parameters */
10098 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10099 		  &switch_update_params->changes);
10100 
10101 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10102 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10103 		geneve_port = udp_tunnel->dst_port;
10104 		switch_update_params->geneve_dst_port = geneve_port;
10105 	}
10106 
10107 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10108 		udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10109 		vxlan_port = udp_tunnel->dst_port;
10110 		switch_update_params->vxlan_dst_port = vxlan_port;
10111 	}
10112 
10113 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10114 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10115 		  &switch_update_params->changes);
10116 
10117 	rc = bnx2x_func_state_change(bp, &func_params);
10118 	if (rc)
10119 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10120 			  vxlan_port, geneve_port, rc);
10121 	else
10122 		DP(BNX2X_MSG_SP,
10123 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10124 		   vxlan_port, geneve_port);
10125 
10126 	return rc;
10127 }
10128 
10129 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10130 				 enum bnx2x_udp_port_type type)
10131 {
10132 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10133 
10134 	if (!netif_running(bp->dev) || !IS_PF(bp))
10135 		return;
10136 
10137 	if (udp_port->count && udp_port->dst_port == port) {
10138 		udp_port->count++;
10139 		return;
10140 	}
10141 
10142 	if (udp_port->count) {
10143 		DP(BNX2X_MSG_SP,
10144 		   "UDP tunnel [%d] -  destination port limit reached\n",
10145 		   type);
10146 		return;
10147 	}
10148 
10149 	udp_port->dst_port = port;
10150 	udp_port->count = 1;
10151 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10152 }
10153 
10154 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10155 				 enum bnx2x_udp_port_type type)
10156 {
10157 	struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10158 
10159 	if (!IS_PF(bp))
10160 		return;
10161 
10162 	if (!udp_port->count || udp_port->dst_port != port) {
10163 		DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10164 		   type);
10165 		return;
10166 	}
10167 
10168 	/* Remove reference, and make certain it's no longer in use */
10169 	udp_port->count--;
10170 	if (udp_port->count)
10171 		return;
10172 	udp_port->dst_port = 0;
10173 
10174 	if (netif_running(bp->dev))
10175 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10176 	else
10177 		DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10178 		   type, port);
10179 }
10180 #endif
10181 
10182 #ifdef CONFIG_BNX2X_VXLAN
10183 static void bnx2x_add_vxlan_port(struct net_device *netdev,
10184 				 sa_family_t sa_family, __be16 port)
10185 {
10186 	struct bnx2x *bp = netdev_priv(netdev);
10187 	u16 t_port = ntohs(port);
10188 
10189 	__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10190 }
10191 
10192 static void bnx2x_del_vxlan_port(struct net_device *netdev,
10193 				 sa_family_t sa_family, __be16 port)
10194 {
10195 	struct bnx2x *bp = netdev_priv(netdev);
10196 	u16 t_port = ntohs(port);
10197 
10198 	__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10199 }
10200 #endif
10201 
10202 #if IS_ENABLED(CONFIG_BNX2X_GENEVE)
10203 static void bnx2x_add_geneve_port(struct net_device *netdev,
10204 				  sa_family_t sa_family, __be16 port)
10205 {
10206 	struct bnx2x *bp = netdev_priv(netdev);
10207 	u16 t_port = ntohs(port);
10208 
10209 	__bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10210 }
10211 
10212 static void bnx2x_del_geneve_port(struct net_device *netdev,
10213 				  sa_family_t sa_family, __be16 port)
10214 {
10215 	struct bnx2x *bp = netdev_priv(netdev);
10216 	u16 t_port = ntohs(port);
10217 
10218 	__bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10219 }
10220 #endif
10221 
10222 static int bnx2x_close(struct net_device *dev);
10223 
10224 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10225  * scheduled on a general queue in order to prevent a dead lock.
10226  */
10227 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10228 {
10229 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10230 
10231 	rtnl_lock();
10232 
10233 	if (!netif_running(bp->dev)) {
10234 		rtnl_unlock();
10235 		return;
10236 	}
10237 
10238 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10239 #ifdef BNX2X_STOP_ON_ERROR
10240 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10241 			  "you will need to reboot when done\n");
10242 		goto sp_rtnl_not_reset;
10243 #endif
10244 		/*
10245 		 * Clear all pending SP commands as we are going to reset the
10246 		 * function anyway.
10247 		 */
10248 		bp->sp_rtnl_state = 0;
10249 		smp_mb();
10250 
10251 		bnx2x_parity_recover(bp);
10252 
10253 		rtnl_unlock();
10254 		return;
10255 	}
10256 
10257 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10258 #ifdef BNX2X_STOP_ON_ERROR
10259 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10260 			  "you will need to reboot when done\n");
10261 		goto sp_rtnl_not_reset;
10262 #endif
10263 
10264 		/*
10265 		 * Clear all pending SP commands as we are going to reset the
10266 		 * function anyway.
10267 		 */
10268 		bp->sp_rtnl_state = 0;
10269 		smp_mb();
10270 
10271 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10272 		bnx2x_nic_load(bp, LOAD_NORMAL);
10273 
10274 		rtnl_unlock();
10275 		return;
10276 	}
10277 #ifdef BNX2X_STOP_ON_ERROR
10278 sp_rtnl_not_reset:
10279 #endif
10280 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10281 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10282 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10283 		bnx2x_after_function_update(bp);
10284 	/*
10285 	 * in case of fan failure we need to reset id if the "stop on error"
10286 	 * debug flag is set, since we trying to prevent permanent overheating
10287 	 * damage
10288 	 */
10289 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10290 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10291 		netif_device_detach(bp->dev);
10292 		bnx2x_close(bp->dev);
10293 		rtnl_unlock();
10294 		return;
10295 	}
10296 
10297 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10298 		DP(BNX2X_MSG_SP,
10299 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10300 		bnx2x_vfpf_set_mcast(bp->dev);
10301 	}
10302 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10303 			       &bp->sp_rtnl_state)){
10304 		if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10305 			bnx2x_tx_disable(bp);
10306 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10307 		}
10308 	}
10309 
10310 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10311 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10312 		bnx2x_set_rx_mode_inner(bp);
10313 	}
10314 
10315 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10316 			       &bp->sp_rtnl_state))
10317 		bnx2x_pf_set_vfs_vlan(bp);
10318 
10319 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10320 		bnx2x_dcbx_stop_hw_tx(bp);
10321 		bnx2x_dcbx_resume_hw_tx(bp);
10322 	}
10323 
10324 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10325 			       &bp->sp_rtnl_state))
10326 		bnx2x_update_mng_version(bp);
10327 
10328 #if defined(CONFIG_BNX2X_VXLAN) || IS_ENABLED(CONFIG_BNX2X_GENEVE)
10329 	if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10330 			       &bp->sp_rtnl_state)) {
10331 		if (bnx2x_udp_port_update(bp)) {
10332 			/* On error, forget configuration */
10333 			memset(bp->udp_tunnel_ports, 0,
10334 			       sizeof(struct bnx2x_udp_tunnel) *
10335 			       BNX2X_UDP_PORT_MAX);
10336 		} else {
10337 			/* Since we don't store additional port information,
10338 			 * if no port is configured for any feature ask for
10339 			 * information about currently configured ports.
10340 			 */
10341 #ifdef CONFIG_BNX2X_VXLAN
10342 			if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count)
10343 				vxlan_get_rx_port(bp->dev);
10344 #endif
10345 #if IS_ENABLED(CONFIG_BNX2X_GENEVE)
10346 			if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10347 				geneve_get_rx_port(bp->dev);
10348 #endif
10349 		}
10350 	}
10351 #endif
10352 
10353 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10354 	 * can be called from other contexts as well)
10355 	 */
10356 	rtnl_unlock();
10357 
10358 	/* enable SR-IOV if applicable */
10359 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10360 					       &bp->sp_rtnl_state)) {
10361 		bnx2x_disable_sriov(bp);
10362 		bnx2x_enable_sriov(bp);
10363 	}
10364 }
10365 
10366 static void bnx2x_period_task(struct work_struct *work)
10367 {
10368 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10369 
10370 	if (!netif_running(bp->dev))
10371 		goto period_task_exit;
10372 
10373 	if (CHIP_REV_IS_SLOW(bp)) {
10374 		BNX2X_ERR("period task called on emulation, ignoring\n");
10375 		goto period_task_exit;
10376 	}
10377 
10378 	bnx2x_acquire_phy_lock(bp);
10379 	/*
10380 	 * The barrier is needed to ensure the ordering between the writing to
10381 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10382 	 * the reading here.
10383 	 */
10384 	smp_mb();
10385 	if (bp->port.pmf) {
10386 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10387 
10388 		/* Re-queue task in 1 sec */
10389 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10390 	}
10391 
10392 	bnx2x_release_phy_lock(bp);
10393 period_task_exit:
10394 	return;
10395 }
10396 
10397 /*
10398  * Init service functions
10399  */
10400 
10401 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10402 {
10403 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10404 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10405 	return base + (BP_ABS_FUNC(bp)) * stride;
10406 }
10407 
10408 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10409 					 u8 port, u32 reset_reg,
10410 					 struct bnx2x_mac_vals *vals)
10411 {
10412 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10413 	u32 base_addr;
10414 
10415 	if (!(mask & reset_reg))
10416 		return false;
10417 
10418 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10419 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10420 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10421 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10422 	REG_WR(bp, vals->umac_addr[port], 0);
10423 
10424 	return true;
10425 }
10426 
10427 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10428 					struct bnx2x_mac_vals *vals)
10429 {
10430 	u32 val, base_addr, offset, mask, reset_reg;
10431 	bool mac_stopped = false;
10432 	u8 port = BP_PORT(bp);
10433 
10434 	/* reset addresses as they also mark which values were changed */
10435 	memset(vals, 0, sizeof(*vals));
10436 
10437 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10438 
10439 	if (!CHIP_IS_E3(bp)) {
10440 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10441 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10442 		if ((mask & reset_reg) && val) {
10443 			u32 wb_data[2];
10444 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10445 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10446 						: NIG_REG_INGRESS_BMAC0_MEM;
10447 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10448 						: BIGMAC_REGISTER_BMAC_CONTROL;
10449 
10450 			/*
10451 			 * use rd/wr since we cannot use dmae. This is safe
10452 			 * since MCP won't access the bus due to the request
10453 			 * to unload, and no function on the path can be
10454 			 * loaded at this time.
10455 			 */
10456 			wb_data[0] = REG_RD(bp, base_addr + offset);
10457 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10458 			vals->bmac_addr = base_addr + offset;
10459 			vals->bmac_val[0] = wb_data[0];
10460 			vals->bmac_val[1] = wb_data[1];
10461 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10462 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10463 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10464 		}
10465 		BNX2X_DEV_INFO("Disable emac Rx\n");
10466 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10467 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10468 		REG_WR(bp, vals->emac_addr, 0);
10469 		mac_stopped = true;
10470 	} else {
10471 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10472 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10473 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10474 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10475 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10476 			       val & ~(1 << 1));
10477 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10478 			       val | (1 << 1));
10479 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10480 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10481 			REG_WR(bp, vals->xmac_addr, 0);
10482 			mac_stopped = true;
10483 		}
10484 
10485 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10486 							    reset_reg, vals);
10487 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10488 							    reset_reg, vals);
10489 	}
10490 
10491 	if (mac_stopped)
10492 		msleep(20);
10493 }
10494 
10495 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10496 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10497 					0x1848 + ((f) << 4))
10498 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10499 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10500 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10501 
10502 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10503 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10504 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10505 
10506 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10507 {
10508 	/* UNDI marks its presence in DORQ -
10509 	 * it initializes CID offset for normal bell to 0x7
10510 	 */
10511 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10512 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10513 		return false;
10514 
10515 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10516 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10517 		return true;
10518 	}
10519 
10520 	return false;
10521 }
10522 
10523 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10524 {
10525 	u16 rcq, bd;
10526 	u32 addr, tmp_reg;
10527 
10528 	if (BP_FUNC(bp) < 2)
10529 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10530 	else
10531 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10532 
10533 	tmp_reg = REG_RD(bp, addr);
10534 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10535 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10536 
10537 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10538 	REG_WR(bp, addr, tmp_reg);
10539 
10540 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10541 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10542 }
10543 
10544 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10545 {
10546 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10547 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10548 	if (!rc) {
10549 		BNX2X_ERR("MCP response failure, aborting\n");
10550 		return -EBUSY;
10551 	}
10552 
10553 	return 0;
10554 }
10555 
10556 static struct bnx2x_prev_path_list *
10557 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10558 {
10559 	struct bnx2x_prev_path_list *tmp_list;
10560 
10561 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10562 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10563 		    bp->pdev->bus->number == tmp_list->bus &&
10564 		    BP_PATH(bp) == tmp_list->path)
10565 			return tmp_list;
10566 
10567 	return NULL;
10568 }
10569 
10570 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10571 {
10572 	struct bnx2x_prev_path_list *tmp_list;
10573 	int rc;
10574 
10575 	rc = down_interruptible(&bnx2x_prev_sem);
10576 	if (rc) {
10577 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10578 		return rc;
10579 	}
10580 
10581 	tmp_list = bnx2x_prev_path_get_entry(bp);
10582 	if (tmp_list) {
10583 		tmp_list->aer = 1;
10584 		rc = 0;
10585 	} else {
10586 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10587 			  BP_PATH(bp));
10588 	}
10589 
10590 	up(&bnx2x_prev_sem);
10591 
10592 	return rc;
10593 }
10594 
10595 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10596 {
10597 	struct bnx2x_prev_path_list *tmp_list;
10598 	bool rc = false;
10599 
10600 	if (down_trylock(&bnx2x_prev_sem))
10601 		return false;
10602 
10603 	tmp_list = bnx2x_prev_path_get_entry(bp);
10604 	if (tmp_list) {
10605 		if (tmp_list->aer) {
10606 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10607 			   BP_PATH(bp));
10608 		} else {
10609 			rc = true;
10610 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10611 				       BP_PATH(bp));
10612 		}
10613 	}
10614 
10615 	up(&bnx2x_prev_sem);
10616 
10617 	return rc;
10618 }
10619 
10620 bool bnx2x_port_after_undi(struct bnx2x *bp)
10621 {
10622 	struct bnx2x_prev_path_list *entry;
10623 	bool val;
10624 
10625 	down(&bnx2x_prev_sem);
10626 
10627 	entry = bnx2x_prev_path_get_entry(bp);
10628 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10629 
10630 	up(&bnx2x_prev_sem);
10631 
10632 	return val;
10633 }
10634 
10635 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10636 {
10637 	struct bnx2x_prev_path_list *tmp_list;
10638 	int rc;
10639 
10640 	rc = down_interruptible(&bnx2x_prev_sem);
10641 	if (rc) {
10642 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10643 		return rc;
10644 	}
10645 
10646 	/* Check whether the entry for this path already exists */
10647 	tmp_list = bnx2x_prev_path_get_entry(bp);
10648 	if (tmp_list) {
10649 		if (!tmp_list->aer) {
10650 			BNX2X_ERR("Re-Marking the path.\n");
10651 		} else {
10652 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10653 			   BP_PATH(bp));
10654 			tmp_list->aer = 0;
10655 		}
10656 		up(&bnx2x_prev_sem);
10657 		return 0;
10658 	}
10659 	up(&bnx2x_prev_sem);
10660 
10661 	/* Create an entry for this path and add it */
10662 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10663 	if (!tmp_list) {
10664 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10665 		return -ENOMEM;
10666 	}
10667 
10668 	tmp_list->bus = bp->pdev->bus->number;
10669 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10670 	tmp_list->path = BP_PATH(bp);
10671 	tmp_list->aer = 0;
10672 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10673 
10674 	rc = down_interruptible(&bnx2x_prev_sem);
10675 	if (rc) {
10676 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10677 		kfree(tmp_list);
10678 	} else {
10679 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10680 		   BP_PATH(bp));
10681 		list_add(&tmp_list->list, &bnx2x_prev_list);
10682 		up(&bnx2x_prev_sem);
10683 	}
10684 
10685 	return rc;
10686 }
10687 
10688 static int bnx2x_do_flr(struct bnx2x *bp)
10689 {
10690 	struct pci_dev *dev = bp->pdev;
10691 
10692 	if (CHIP_IS_E1x(bp)) {
10693 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10694 		return -EINVAL;
10695 	}
10696 
10697 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10698 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10699 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10700 			  bp->common.bc_ver);
10701 		return -EINVAL;
10702 	}
10703 
10704 	if (!pci_wait_for_pending_transaction(dev))
10705 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10706 
10707 	BNX2X_DEV_INFO("Initiating FLR\n");
10708 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10709 
10710 	return 0;
10711 }
10712 
10713 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10714 {
10715 	int rc;
10716 
10717 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10718 
10719 	/* Test if previous unload process was already finished for this path */
10720 	if (bnx2x_prev_is_path_marked(bp))
10721 		return bnx2x_prev_mcp_done(bp);
10722 
10723 	BNX2X_DEV_INFO("Path is unmarked\n");
10724 
10725 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10726 	if (bnx2x_prev_is_after_undi(bp))
10727 		goto out;
10728 
10729 	/* If function has FLR capabilities, and existing FW version matches
10730 	 * the one required, then FLR will be sufficient to clean any residue
10731 	 * left by previous driver
10732 	 */
10733 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10734 
10735 	if (!rc) {
10736 		/* fw version is good */
10737 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10738 		rc = bnx2x_do_flr(bp);
10739 	}
10740 
10741 	if (!rc) {
10742 		/* FLR was performed */
10743 		BNX2X_DEV_INFO("FLR successful\n");
10744 		return 0;
10745 	}
10746 
10747 	BNX2X_DEV_INFO("Could not FLR\n");
10748 
10749 out:
10750 	/* Close the MCP request, return failure*/
10751 	rc = bnx2x_prev_mcp_done(bp);
10752 	if (!rc)
10753 		rc = BNX2X_PREV_WAIT_NEEDED;
10754 
10755 	return rc;
10756 }
10757 
10758 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10759 {
10760 	u32 reset_reg, tmp_reg = 0, rc;
10761 	bool prev_undi = false;
10762 	struct bnx2x_mac_vals mac_vals;
10763 
10764 	/* It is possible a previous function received 'common' answer,
10765 	 * but hasn't loaded yet, therefore creating a scenario of
10766 	 * multiple functions receiving 'common' on the same path.
10767 	 */
10768 	BNX2X_DEV_INFO("Common unload Flow\n");
10769 
10770 	memset(&mac_vals, 0, sizeof(mac_vals));
10771 
10772 	if (bnx2x_prev_is_path_marked(bp))
10773 		return bnx2x_prev_mcp_done(bp);
10774 
10775 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10776 
10777 	/* Reset should be performed after BRB is emptied */
10778 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10779 		u32 timer_count = 1000;
10780 
10781 		/* Close the MAC Rx to prevent BRB from filling up */
10782 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10783 
10784 		/* close LLH filters for both ports towards the BRB */
10785 		bnx2x_set_rx_filter(&bp->link_params, 0);
10786 		bp->link_params.port ^= 1;
10787 		bnx2x_set_rx_filter(&bp->link_params, 0);
10788 		bp->link_params.port ^= 1;
10789 
10790 		/* Check if the UNDI driver was previously loaded */
10791 		if (bnx2x_prev_is_after_undi(bp)) {
10792 			prev_undi = true;
10793 			/* clear the UNDI indication */
10794 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10795 			/* clear possible idle check errors */
10796 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10797 		}
10798 		if (!CHIP_IS_E1x(bp))
10799 			/* block FW from writing to host */
10800 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10801 
10802 		/* wait until BRB is empty */
10803 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10804 		while (timer_count) {
10805 			u32 prev_brb = tmp_reg;
10806 
10807 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10808 			if (!tmp_reg)
10809 				break;
10810 
10811 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10812 
10813 			/* reset timer as long as BRB actually gets emptied */
10814 			if (prev_brb > tmp_reg)
10815 				timer_count = 1000;
10816 			else
10817 				timer_count--;
10818 
10819 			/* If UNDI resides in memory, manually increment it */
10820 			if (prev_undi)
10821 				bnx2x_prev_unload_undi_inc(bp, 1);
10822 
10823 			udelay(10);
10824 		}
10825 
10826 		if (!timer_count)
10827 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10828 	}
10829 
10830 	/* No packets are in the pipeline, path is ready for reset */
10831 	bnx2x_reset_common(bp);
10832 
10833 	if (mac_vals.xmac_addr)
10834 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10835 	if (mac_vals.umac_addr[0])
10836 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10837 	if (mac_vals.umac_addr[1])
10838 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10839 	if (mac_vals.emac_addr)
10840 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10841 	if (mac_vals.bmac_addr) {
10842 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10843 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10844 	}
10845 
10846 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10847 	if (rc) {
10848 		bnx2x_prev_mcp_done(bp);
10849 		return rc;
10850 	}
10851 
10852 	return bnx2x_prev_mcp_done(bp);
10853 }
10854 
10855 static int bnx2x_prev_unload(struct bnx2x *bp)
10856 {
10857 	int time_counter = 10;
10858 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10859 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10860 
10861 	/* clear hw from errors which may have resulted from an interrupted
10862 	 * dmae transaction.
10863 	 */
10864 	bnx2x_clean_pglue_errors(bp);
10865 
10866 	/* Release previously held locks */
10867 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10868 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10869 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10870 
10871 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10872 	if (hw_lock_val) {
10873 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10874 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10875 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10876 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10877 		}
10878 
10879 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10880 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10881 	} else
10882 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10883 
10884 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10885 		BNX2X_DEV_INFO("Release previously held alr\n");
10886 		bnx2x_release_alr(bp);
10887 	}
10888 
10889 	do {
10890 		int aer = 0;
10891 		/* Lock MCP using an unload request */
10892 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10893 		if (!fw) {
10894 			BNX2X_ERR("MCP response failure, aborting\n");
10895 			rc = -EBUSY;
10896 			break;
10897 		}
10898 
10899 		rc = down_interruptible(&bnx2x_prev_sem);
10900 		if (rc) {
10901 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10902 				  rc);
10903 		} else {
10904 			/* If Path is marked by EEH, ignore unload status */
10905 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10906 				 bnx2x_prev_path_get_entry(bp)->aer);
10907 			up(&bnx2x_prev_sem);
10908 		}
10909 
10910 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10911 			rc = bnx2x_prev_unload_common(bp);
10912 			break;
10913 		}
10914 
10915 		/* non-common reply from MCP might require looping */
10916 		rc = bnx2x_prev_unload_uncommon(bp);
10917 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10918 			break;
10919 
10920 		msleep(20);
10921 	} while (--time_counter);
10922 
10923 	if (!time_counter || rc) {
10924 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10925 		rc = -EPROBE_DEFER;
10926 	}
10927 
10928 	/* Mark function if its port was used to boot from SAN */
10929 	if (bnx2x_port_after_undi(bp))
10930 		bp->link_params.feature_config_flags |=
10931 			FEATURE_CONFIG_BOOT_FROM_SAN;
10932 
10933 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10934 
10935 	return rc;
10936 }
10937 
10938 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10939 {
10940 	u32 val, val2, val3, val4, id, boot_mode;
10941 	u16 pmc;
10942 
10943 	/* Get the chip revision id and number. */
10944 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10945 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10946 	id = ((val & 0xffff) << 16);
10947 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10948 	id |= ((val & 0xf) << 12);
10949 
10950 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10951 	 * the configuration space (so we need to reg_rd)
10952 	 */
10953 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10954 	id |= (((val >> 24) & 0xf) << 4);
10955 	val = REG_RD(bp, MISC_REG_BOND_ID);
10956 	id |= (val & 0xf);
10957 	bp->common.chip_id = id;
10958 
10959 	/* force 57811 according to MISC register */
10960 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10961 		if (CHIP_IS_57810(bp))
10962 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10963 				(bp->common.chip_id & 0x0000FFFF);
10964 		else if (CHIP_IS_57810_MF(bp))
10965 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10966 				(bp->common.chip_id & 0x0000FFFF);
10967 		bp->common.chip_id |= 0x1;
10968 	}
10969 
10970 	/* Set doorbell size */
10971 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10972 
10973 	if (!CHIP_IS_E1x(bp)) {
10974 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10975 		if ((val & 1) == 0)
10976 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10977 		else
10978 			val = (val >> 1) & 1;
10979 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10980 						       "2_PORT_MODE");
10981 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10982 						 CHIP_2_PORT_MODE;
10983 
10984 		if (CHIP_MODE_IS_4_PORT(bp))
10985 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10986 		else
10987 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10988 	} else {
10989 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10990 		bp->pfid = bp->pf_num;			/* 0..7 */
10991 	}
10992 
10993 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10994 
10995 	bp->link_params.chip_id = bp->common.chip_id;
10996 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10997 
10998 	val = (REG_RD(bp, 0x2874) & 0x55);
10999 	if ((bp->common.chip_id & 0x1) ||
11000 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11001 		bp->flags |= ONE_PORT_FLAG;
11002 		BNX2X_DEV_INFO("single port device\n");
11003 	}
11004 
11005 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11006 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11007 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11008 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11009 		       bp->common.flash_size, bp->common.flash_size);
11010 
11011 	bnx2x_init_shmem(bp);
11012 
11013 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11014 					MISC_REG_GENERIC_CR_1 :
11015 					MISC_REG_GENERIC_CR_0));
11016 
11017 	bp->link_params.shmem_base = bp->common.shmem_base;
11018 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11019 	if (SHMEM2_RD(bp, size) >
11020 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11021 		bp->link_params.lfa_base =
11022 		REG_RD(bp, bp->common.shmem2_base +
11023 		       (u32)offsetof(struct shmem2_region,
11024 				     lfa_host_addr[BP_PORT(bp)]));
11025 	else
11026 		bp->link_params.lfa_base = 0;
11027 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11028 		       bp->common.shmem_base, bp->common.shmem2_base);
11029 
11030 	if (!bp->common.shmem_base) {
11031 		BNX2X_DEV_INFO("MCP not active\n");
11032 		bp->flags |= NO_MCP_FLAG;
11033 		return;
11034 	}
11035 
11036 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11037 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11038 
11039 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11040 					SHARED_HW_CFG_LED_MODE_MASK) >>
11041 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11042 
11043 	bp->link_params.feature_config_flags = 0;
11044 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11045 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11046 		bp->link_params.feature_config_flags |=
11047 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11048 	else
11049 		bp->link_params.feature_config_flags &=
11050 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11051 
11052 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11053 	bp->common.bc_ver = val;
11054 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11055 	if (val < BNX2X_BC_VER) {
11056 		/* for now only warn
11057 		 * later we might need to enforce this */
11058 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11059 			  BNX2X_BC_VER, val);
11060 	}
11061 	bp->link_params.feature_config_flags |=
11062 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11063 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11064 
11065 	bp->link_params.feature_config_flags |=
11066 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11067 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11068 	bp->link_params.feature_config_flags |=
11069 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11070 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11071 	bp->link_params.feature_config_flags |=
11072 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11073 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11074 
11075 	bp->link_params.feature_config_flags |=
11076 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11077 		FEATURE_CONFIG_MT_SUPPORT : 0;
11078 
11079 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11080 			BC_SUPPORTS_PFC_STATS : 0;
11081 
11082 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11083 			BC_SUPPORTS_FCOE_FEATURES : 0;
11084 
11085 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11086 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11087 
11088 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11089 			BC_SUPPORTS_RMMOD_CMD : 0;
11090 
11091 	boot_mode = SHMEM_RD(bp,
11092 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11093 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11094 	switch (boot_mode) {
11095 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11096 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11097 		break;
11098 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11099 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11100 		break;
11101 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11102 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11103 		break;
11104 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11105 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11106 		break;
11107 	}
11108 
11109 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11110 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11111 
11112 	BNX2X_DEV_INFO("%sWoL capable\n",
11113 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11114 
11115 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11116 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11117 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11118 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11119 
11120 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11121 		 val, val2, val3, val4);
11122 }
11123 
11124 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11125 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11126 
11127 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11128 {
11129 	int pfid = BP_FUNC(bp);
11130 	int igu_sb_id;
11131 	u32 val;
11132 	u8 fid, igu_sb_cnt = 0;
11133 
11134 	bp->igu_base_sb = 0xff;
11135 	if (CHIP_INT_MODE_IS_BC(bp)) {
11136 		int vn = BP_VN(bp);
11137 		igu_sb_cnt = bp->igu_sb_cnt;
11138 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11139 			FP_SB_MAX_E1x;
11140 
11141 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11142 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11143 
11144 		return 0;
11145 	}
11146 
11147 	/* IGU in normal mode - read CAM */
11148 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11149 	     igu_sb_id++) {
11150 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11151 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11152 			continue;
11153 		fid = IGU_FID(val);
11154 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11155 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11156 				continue;
11157 			if (IGU_VEC(val) == 0)
11158 				/* default status block */
11159 				bp->igu_dsb_id = igu_sb_id;
11160 			else {
11161 				if (bp->igu_base_sb == 0xff)
11162 					bp->igu_base_sb = igu_sb_id;
11163 				igu_sb_cnt++;
11164 			}
11165 		}
11166 	}
11167 
11168 #ifdef CONFIG_PCI_MSI
11169 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11170 	 * optional that number of CAM entries will not be equal to the value
11171 	 * advertised in PCI.
11172 	 * Driver should use the minimal value of both as the actual status
11173 	 * block count
11174 	 */
11175 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11176 #endif
11177 
11178 	if (igu_sb_cnt == 0) {
11179 		BNX2X_ERR("CAM configuration error\n");
11180 		return -EINVAL;
11181 	}
11182 
11183 	return 0;
11184 }
11185 
11186 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11187 {
11188 	int cfg_size = 0, idx, port = BP_PORT(bp);
11189 
11190 	/* Aggregation of supported attributes of all external phys */
11191 	bp->port.supported[0] = 0;
11192 	bp->port.supported[1] = 0;
11193 	switch (bp->link_params.num_phys) {
11194 	case 1:
11195 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11196 		cfg_size = 1;
11197 		break;
11198 	case 2:
11199 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11200 		cfg_size = 1;
11201 		break;
11202 	case 3:
11203 		if (bp->link_params.multi_phy_config &
11204 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11205 			bp->port.supported[1] =
11206 				bp->link_params.phy[EXT_PHY1].supported;
11207 			bp->port.supported[0] =
11208 				bp->link_params.phy[EXT_PHY2].supported;
11209 		} else {
11210 			bp->port.supported[0] =
11211 				bp->link_params.phy[EXT_PHY1].supported;
11212 			bp->port.supported[1] =
11213 				bp->link_params.phy[EXT_PHY2].supported;
11214 		}
11215 		cfg_size = 2;
11216 		break;
11217 	}
11218 
11219 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11220 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11221 			   SHMEM_RD(bp,
11222 			   dev_info.port_hw_config[port].external_phy_config),
11223 			   SHMEM_RD(bp,
11224 			   dev_info.port_hw_config[port].external_phy_config2));
11225 			return;
11226 	}
11227 
11228 	if (CHIP_IS_E3(bp))
11229 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11230 	else {
11231 		switch (switch_cfg) {
11232 		case SWITCH_CFG_1G:
11233 			bp->port.phy_addr = REG_RD(
11234 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11235 			break;
11236 		case SWITCH_CFG_10G:
11237 			bp->port.phy_addr = REG_RD(
11238 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11239 			break;
11240 		default:
11241 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11242 				  bp->port.link_config[0]);
11243 			return;
11244 		}
11245 	}
11246 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11247 	/* mask what we support according to speed_cap_mask per configuration */
11248 	for (idx = 0; idx < cfg_size; idx++) {
11249 		if (!(bp->link_params.speed_cap_mask[idx] &
11250 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11251 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11252 
11253 		if (!(bp->link_params.speed_cap_mask[idx] &
11254 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11255 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11256 
11257 		if (!(bp->link_params.speed_cap_mask[idx] &
11258 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11259 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11260 
11261 		if (!(bp->link_params.speed_cap_mask[idx] &
11262 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11263 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11264 
11265 		if (!(bp->link_params.speed_cap_mask[idx] &
11266 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11267 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11268 						     SUPPORTED_1000baseT_Full);
11269 
11270 		if (!(bp->link_params.speed_cap_mask[idx] &
11271 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11272 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11273 
11274 		if (!(bp->link_params.speed_cap_mask[idx] &
11275 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11276 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11277 
11278 		if (!(bp->link_params.speed_cap_mask[idx] &
11279 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11280 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11281 	}
11282 
11283 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11284 		       bp->port.supported[1]);
11285 }
11286 
11287 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11288 {
11289 	u32 link_config, idx, cfg_size = 0;
11290 	bp->port.advertising[0] = 0;
11291 	bp->port.advertising[1] = 0;
11292 	switch (bp->link_params.num_phys) {
11293 	case 1:
11294 	case 2:
11295 		cfg_size = 1;
11296 		break;
11297 	case 3:
11298 		cfg_size = 2;
11299 		break;
11300 	}
11301 	for (idx = 0; idx < cfg_size; idx++) {
11302 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11303 		link_config = bp->port.link_config[idx];
11304 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11305 		case PORT_FEATURE_LINK_SPEED_AUTO:
11306 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11307 				bp->link_params.req_line_speed[idx] =
11308 					SPEED_AUTO_NEG;
11309 				bp->port.advertising[idx] |=
11310 					bp->port.supported[idx];
11311 				if (bp->link_params.phy[EXT_PHY1].type ==
11312 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11313 					bp->port.advertising[idx] |=
11314 					(SUPPORTED_100baseT_Half |
11315 					 SUPPORTED_100baseT_Full);
11316 			} else {
11317 				/* force 10G, no AN */
11318 				bp->link_params.req_line_speed[idx] =
11319 					SPEED_10000;
11320 				bp->port.advertising[idx] |=
11321 					(ADVERTISED_10000baseT_Full |
11322 					 ADVERTISED_FIBRE);
11323 				continue;
11324 			}
11325 			break;
11326 
11327 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11328 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11329 				bp->link_params.req_line_speed[idx] =
11330 					SPEED_10;
11331 				bp->port.advertising[idx] |=
11332 					(ADVERTISED_10baseT_Full |
11333 					 ADVERTISED_TP);
11334 			} else {
11335 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11336 					    link_config,
11337 				    bp->link_params.speed_cap_mask[idx]);
11338 				return;
11339 			}
11340 			break;
11341 
11342 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11343 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11344 				bp->link_params.req_line_speed[idx] =
11345 					SPEED_10;
11346 				bp->link_params.req_duplex[idx] =
11347 					DUPLEX_HALF;
11348 				bp->port.advertising[idx] |=
11349 					(ADVERTISED_10baseT_Half |
11350 					 ADVERTISED_TP);
11351 			} else {
11352 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11353 					    link_config,
11354 					  bp->link_params.speed_cap_mask[idx]);
11355 				return;
11356 			}
11357 			break;
11358 
11359 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11360 			if (bp->port.supported[idx] &
11361 			    SUPPORTED_100baseT_Full) {
11362 				bp->link_params.req_line_speed[idx] =
11363 					SPEED_100;
11364 				bp->port.advertising[idx] |=
11365 					(ADVERTISED_100baseT_Full |
11366 					 ADVERTISED_TP);
11367 			} else {
11368 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11369 					    link_config,
11370 					  bp->link_params.speed_cap_mask[idx]);
11371 				return;
11372 			}
11373 			break;
11374 
11375 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11376 			if (bp->port.supported[idx] &
11377 			    SUPPORTED_100baseT_Half) {
11378 				bp->link_params.req_line_speed[idx] =
11379 								SPEED_100;
11380 				bp->link_params.req_duplex[idx] =
11381 								DUPLEX_HALF;
11382 				bp->port.advertising[idx] |=
11383 					(ADVERTISED_100baseT_Half |
11384 					 ADVERTISED_TP);
11385 			} else {
11386 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11387 				    link_config,
11388 				    bp->link_params.speed_cap_mask[idx]);
11389 				return;
11390 			}
11391 			break;
11392 
11393 		case PORT_FEATURE_LINK_SPEED_1G:
11394 			if (bp->port.supported[idx] &
11395 			    SUPPORTED_1000baseT_Full) {
11396 				bp->link_params.req_line_speed[idx] =
11397 					SPEED_1000;
11398 				bp->port.advertising[idx] |=
11399 					(ADVERTISED_1000baseT_Full |
11400 					 ADVERTISED_TP);
11401 			} else if (bp->port.supported[idx] &
11402 				   SUPPORTED_1000baseKX_Full) {
11403 				bp->link_params.req_line_speed[idx] =
11404 					SPEED_1000;
11405 				bp->port.advertising[idx] |=
11406 					ADVERTISED_1000baseKX_Full;
11407 			} else {
11408 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11409 				    link_config,
11410 				    bp->link_params.speed_cap_mask[idx]);
11411 				return;
11412 			}
11413 			break;
11414 
11415 		case PORT_FEATURE_LINK_SPEED_2_5G:
11416 			if (bp->port.supported[idx] &
11417 			    SUPPORTED_2500baseX_Full) {
11418 				bp->link_params.req_line_speed[idx] =
11419 					SPEED_2500;
11420 				bp->port.advertising[idx] |=
11421 					(ADVERTISED_2500baseX_Full |
11422 						ADVERTISED_TP);
11423 			} else {
11424 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11425 				    link_config,
11426 				    bp->link_params.speed_cap_mask[idx]);
11427 				return;
11428 			}
11429 			break;
11430 
11431 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11432 			if (bp->port.supported[idx] &
11433 			    SUPPORTED_10000baseT_Full) {
11434 				bp->link_params.req_line_speed[idx] =
11435 					SPEED_10000;
11436 				bp->port.advertising[idx] |=
11437 					(ADVERTISED_10000baseT_Full |
11438 						ADVERTISED_FIBRE);
11439 			} else if (bp->port.supported[idx] &
11440 				   SUPPORTED_10000baseKR_Full) {
11441 				bp->link_params.req_line_speed[idx] =
11442 					SPEED_10000;
11443 				bp->port.advertising[idx] |=
11444 					(ADVERTISED_10000baseKR_Full |
11445 						ADVERTISED_FIBRE);
11446 			} else {
11447 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11448 				    link_config,
11449 				    bp->link_params.speed_cap_mask[idx]);
11450 				return;
11451 			}
11452 			break;
11453 		case PORT_FEATURE_LINK_SPEED_20G:
11454 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11455 
11456 			break;
11457 		default:
11458 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11459 				  link_config);
11460 				bp->link_params.req_line_speed[idx] =
11461 							SPEED_AUTO_NEG;
11462 				bp->port.advertising[idx] =
11463 						bp->port.supported[idx];
11464 			break;
11465 		}
11466 
11467 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11468 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11469 		if (bp->link_params.req_flow_ctrl[idx] ==
11470 		    BNX2X_FLOW_CTRL_AUTO) {
11471 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11472 				bp->link_params.req_flow_ctrl[idx] =
11473 							BNX2X_FLOW_CTRL_NONE;
11474 			else
11475 				bnx2x_set_requested_fc(bp);
11476 		}
11477 
11478 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11479 			       bp->link_params.req_line_speed[idx],
11480 			       bp->link_params.req_duplex[idx],
11481 			       bp->link_params.req_flow_ctrl[idx],
11482 			       bp->port.advertising[idx]);
11483 	}
11484 }
11485 
11486 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11487 {
11488 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11489 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11490 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11491 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11492 }
11493 
11494 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11495 {
11496 	int port = BP_PORT(bp);
11497 	u32 config;
11498 	u32 ext_phy_type, ext_phy_config, eee_mode;
11499 
11500 	bp->link_params.bp = bp;
11501 	bp->link_params.port = port;
11502 
11503 	bp->link_params.lane_config =
11504 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11505 
11506 	bp->link_params.speed_cap_mask[0] =
11507 		SHMEM_RD(bp,
11508 			 dev_info.port_hw_config[port].speed_capability_mask) &
11509 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11510 	bp->link_params.speed_cap_mask[1] =
11511 		SHMEM_RD(bp,
11512 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11513 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11514 	bp->port.link_config[0] =
11515 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11516 
11517 	bp->port.link_config[1] =
11518 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11519 
11520 	bp->link_params.multi_phy_config =
11521 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11522 	/* If the device is capable of WoL, set the default state according
11523 	 * to the HW
11524 	 */
11525 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11526 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11527 		   (config & PORT_FEATURE_WOL_ENABLED));
11528 
11529 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11530 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11531 		bp->flags |= NO_ISCSI_FLAG;
11532 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11533 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11534 		bp->flags |= NO_FCOE_FLAG;
11535 
11536 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11537 		       bp->link_params.lane_config,
11538 		       bp->link_params.speed_cap_mask[0],
11539 		       bp->port.link_config[0]);
11540 
11541 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11542 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11543 	bnx2x_phy_probe(&bp->link_params);
11544 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11545 
11546 	bnx2x_link_settings_requested(bp);
11547 
11548 	/*
11549 	 * If connected directly, work with the internal PHY, otherwise, work
11550 	 * with the external PHY
11551 	 */
11552 	ext_phy_config =
11553 		SHMEM_RD(bp,
11554 			 dev_info.port_hw_config[port].external_phy_config);
11555 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11556 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11557 		bp->mdio.prtad = bp->port.phy_addr;
11558 
11559 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11560 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11561 		bp->mdio.prtad =
11562 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11563 
11564 	/* Configure link feature according to nvram value */
11565 	eee_mode = (((SHMEM_RD(bp, dev_info.
11566 		      port_feature_config[port].eee_power_mode)) &
11567 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11568 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11569 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11570 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11571 					   EEE_MODE_ENABLE_LPI |
11572 					   EEE_MODE_OUTPUT_TIME;
11573 	} else {
11574 		bp->link_params.eee_mode = 0;
11575 	}
11576 }
11577 
11578 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11579 {
11580 	u32 no_flags = NO_ISCSI_FLAG;
11581 	int port = BP_PORT(bp);
11582 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11583 				drv_lic_key[port].max_iscsi_conn);
11584 
11585 	if (!CNIC_SUPPORT(bp)) {
11586 		bp->flags |= no_flags;
11587 		return;
11588 	}
11589 
11590 	/* Get the number of maximum allowed iSCSI connections */
11591 	bp->cnic_eth_dev.max_iscsi_conn =
11592 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11593 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11594 
11595 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11596 		       bp->cnic_eth_dev.max_iscsi_conn);
11597 
11598 	/*
11599 	 * If maximum allowed number of connections is zero -
11600 	 * disable the feature.
11601 	 */
11602 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11603 		bp->flags |= no_flags;
11604 }
11605 
11606 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11607 {
11608 	/* Port info */
11609 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11610 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11611 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11612 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11613 
11614 	/* Node info */
11615 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11616 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11617 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11618 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11619 }
11620 
11621 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11622 {
11623 	u8 count = 0;
11624 
11625 	if (IS_MF(bp)) {
11626 		u8 fid;
11627 
11628 		/* iterate over absolute function ids for this path: */
11629 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11630 			if (IS_MF_SD(bp)) {
11631 				u32 cfg = MF_CFG_RD(bp,
11632 						    func_mf_config[fid].config);
11633 
11634 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11635 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11636 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11637 					count++;
11638 			} else {
11639 				u32 cfg = MF_CFG_RD(bp,
11640 						    func_ext_config[fid].
11641 								      func_cfg);
11642 
11643 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11644 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11645 					count++;
11646 			}
11647 		}
11648 	} else { /* SF */
11649 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11650 
11651 		for (port = 0; port < port_cnt; port++) {
11652 			u32 lic = SHMEM_RD(bp,
11653 					   drv_lic_key[port].max_fcoe_conn) ^
11654 				  FW_ENCODE_32BIT_PATTERN;
11655 			if (lic)
11656 				count++;
11657 		}
11658 	}
11659 
11660 	return count;
11661 }
11662 
11663 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11664 {
11665 	int port = BP_PORT(bp);
11666 	int func = BP_ABS_FUNC(bp);
11667 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11668 				drv_lic_key[port].max_fcoe_conn);
11669 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11670 
11671 	if (!CNIC_SUPPORT(bp)) {
11672 		bp->flags |= NO_FCOE_FLAG;
11673 		return;
11674 	}
11675 
11676 	/* Get the number of maximum allowed FCoE connections */
11677 	bp->cnic_eth_dev.max_fcoe_conn =
11678 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11679 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11680 
11681 	/* Calculate the number of maximum allowed FCoE tasks */
11682 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11683 
11684 	/* check if FCoE resources must be shared between different functions */
11685 	if (num_fcoe_func)
11686 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11687 
11688 	/* Read the WWN: */
11689 	if (!IS_MF(bp)) {
11690 		/* Port info */
11691 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11692 			SHMEM_RD(bp,
11693 				 dev_info.port_hw_config[port].
11694 				 fcoe_wwn_port_name_upper);
11695 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11696 			SHMEM_RD(bp,
11697 				 dev_info.port_hw_config[port].
11698 				 fcoe_wwn_port_name_lower);
11699 
11700 		/* Node info */
11701 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11702 			SHMEM_RD(bp,
11703 				 dev_info.port_hw_config[port].
11704 				 fcoe_wwn_node_name_upper);
11705 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11706 			SHMEM_RD(bp,
11707 				 dev_info.port_hw_config[port].
11708 				 fcoe_wwn_node_name_lower);
11709 	} else if (!IS_MF_SD(bp)) {
11710 		/* Read the WWN info only if the FCoE feature is enabled for
11711 		 * this function.
11712 		 */
11713 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11714 			bnx2x_get_ext_wwn_info(bp, func);
11715 	} else {
11716 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11717 			bnx2x_get_ext_wwn_info(bp, func);
11718 	}
11719 
11720 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11721 
11722 	/*
11723 	 * If maximum allowed number of connections is zero -
11724 	 * disable the feature.
11725 	 */
11726 	if (!bp->cnic_eth_dev.max_fcoe_conn)
11727 		bp->flags |= NO_FCOE_FLAG;
11728 }
11729 
11730 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11731 {
11732 	/*
11733 	 * iSCSI may be dynamically disabled but reading
11734 	 * info here we will decrease memory usage by driver
11735 	 * if the feature is disabled for good
11736 	 */
11737 	bnx2x_get_iscsi_info(bp);
11738 	bnx2x_get_fcoe_info(bp);
11739 }
11740 
11741 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11742 {
11743 	u32 val, val2;
11744 	int func = BP_ABS_FUNC(bp);
11745 	int port = BP_PORT(bp);
11746 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11747 	u8 *fip_mac = bp->fip_mac;
11748 
11749 	if (IS_MF(bp)) {
11750 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11751 		 * FCoE MAC then the appropriate feature should be disabled.
11752 		 * In non SD mode features configuration comes from struct
11753 		 * func_ext_config.
11754 		 */
11755 		if (!IS_MF_SD(bp)) {
11756 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11757 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11758 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11759 						 iscsi_mac_addr_upper);
11760 				val = MF_CFG_RD(bp, func_ext_config[func].
11761 						iscsi_mac_addr_lower);
11762 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11763 				BNX2X_DEV_INFO
11764 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11765 			} else {
11766 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11767 			}
11768 
11769 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11770 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11771 						 fcoe_mac_addr_upper);
11772 				val = MF_CFG_RD(bp, func_ext_config[func].
11773 						fcoe_mac_addr_lower);
11774 				bnx2x_set_mac_buf(fip_mac, val, val2);
11775 				BNX2X_DEV_INFO
11776 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11777 			} else {
11778 				bp->flags |= NO_FCOE_FLAG;
11779 			}
11780 
11781 			bp->mf_ext_config = cfg;
11782 
11783 		} else { /* SD MODE */
11784 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11785 				/* use primary mac as iscsi mac */
11786 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11787 
11788 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11789 				BNX2X_DEV_INFO
11790 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11791 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11792 				/* use primary mac as fip mac */
11793 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11794 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11795 				BNX2X_DEV_INFO
11796 					("Read FIP MAC: %pM\n", fip_mac);
11797 			}
11798 		}
11799 
11800 		/* If this is a storage-only interface, use SAN mac as
11801 		 * primary MAC. Notice that for SD this is already the case,
11802 		 * as the SAN mac was copied from the primary MAC.
11803 		 */
11804 		if (IS_MF_FCOE_AFEX(bp))
11805 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11806 	} else {
11807 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11808 				iscsi_mac_upper);
11809 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11810 			       iscsi_mac_lower);
11811 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11812 
11813 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11814 				fcoe_fip_mac_upper);
11815 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11816 			       fcoe_fip_mac_lower);
11817 		bnx2x_set_mac_buf(fip_mac, val, val2);
11818 	}
11819 
11820 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11821 	if (!is_valid_ether_addr(iscsi_mac)) {
11822 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11823 		eth_zero_addr(iscsi_mac);
11824 	}
11825 
11826 	/* Disable FCoE if MAC configuration is invalid. */
11827 	if (!is_valid_ether_addr(fip_mac)) {
11828 		bp->flags |= NO_FCOE_FLAG;
11829 		eth_zero_addr(bp->fip_mac);
11830 	}
11831 }
11832 
11833 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11834 {
11835 	u32 val, val2;
11836 	int func = BP_ABS_FUNC(bp);
11837 	int port = BP_PORT(bp);
11838 
11839 	/* Zero primary MAC configuration */
11840 	eth_zero_addr(bp->dev->dev_addr);
11841 
11842 	if (BP_NOMCP(bp)) {
11843 		BNX2X_ERROR("warning: random MAC workaround active\n");
11844 		eth_hw_addr_random(bp->dev);
11845 	} else if (IS_MF(bp)) {
11846 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11847 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11848 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11849 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11850 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11851 
11852 		if (CNIC_SUPPORT(bp))
11853 			bnx2x_get_cnic_mac_hwinfo(bp);
11854 	} else {
11855 		/* in SF read MACs from port configuration */
11856 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11857 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11858 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11859 
11860 		if (CNIC_SUPPORT(bp))
11861 			bnx2x_get_cnic_mac_hwinfo(bp);
11862 	}
11863 
11864 	if (!BP_NOMCP(bp)) {
11865 		/* Read physical port identifier from shmem */
11866 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11867 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11868 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11869 		bp->flags |= HAS_PHYS_PORT_ID;
11870 	}
11871 
11872 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11873 
11874 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11875 		dev_err(&bp->pdev->dev,
11876 			"bad Ethernet MAC address configuration: %pM\n"
11877 			"change it manually before bringing up the appropriate network interface\n",
11878 			bp->dev->dev_addr);
11879 }
11880 
11881 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11882 {
11883 	int tmp;
11884 	u32 cfg;
11885 
11886 	if (IS_VF(bp))
11887 		return false;
11888 
11889 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11890 		/* Take function: tmp = func */
11891 		tmp = BP_ABS_FUNC(bp);
11892 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11893 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11894 	} else {
11895 		/* Take port: tmp = port */
11896 		tmp = BP_PORT(bp);
11897 		cfg = SHMEM_RD(bp,
11898 			       dev_info.port_hw_config[tmp].generic_features);
11899 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11900 	}
11901 	return cfg;
11902 }
11903 
11904 static void validate_set_si_mode(struct bnx2x *bp)
11905 {
11906 	u8 func = BP_ABS_FUNC(bp);
11907 	u32 val;
11908 
11909 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11910 
11911 	/* check for legal mac (upper bytes) */
11912 	if (val != 0xffff) {
11913 		bp->mf_mode = MULTI_FUNCTION_SI;
11914 		bp->mf_config[BP_VN(bp)] =
11915 			MF_CFG_RD(bp, func_mf_config[func].config);
11916 	} else
11917 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11918 }
11919 
11920 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11921 {
11922 	int /*abs*/func = BP_ABS_FUNC(bp);
11923 	int vn, mfw_vn;
11924 	u32 val = 0, val2 = 0;
11925 	int rc = 0;
11926 
11927 	/* Validate that chip access is feasible */
11928 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11929 		dev_err(&bp->pdev->dev,
11930 			"Chip read returns all Fs. Preventing probe from continuing\n");
11931 		return -EINVAL;
11932 	}
11933 
11934 	bnx2x_get_common_hwinfo(bp);
11935 
11936 	/*
11937 	 * initialize IGU parameters
11938 	 */
11939 	if (CHIP_IS_E1x(bp)) {
11940 		bp->common.int_block = INT_BLOCK_HC;
11941 
11942 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11943 		bp->igu_base_sb = 0;
11944 	} else {
11945 		bp->common.int_block = INT_BLOCK_IGU;
11946 
11947 		/* do not allow device reset during IGU info processing */
11948 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11949 
11950 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11951 
11952 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11953 			int tout = 5000;
11954 
11955 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11956 
11957 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11958 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11959 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11960 
11961 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11962 				tout--;
11963 				usleep_range(1000, 2000);
11964 			}
11965 
11966 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11967 				dev_err(&bp->pdev->dev,
11968 					"FORCING Normal Mode failed!!!\n");
11969 				bnx2x_release_hw_lock(bp,
11970 						      HW_LOCK_RESOURCE_RESET);
11971 				return -EPERM;
11972 			}
11973 		}
11974 
11975 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11976 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11977 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11978 		} else
11979 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11980 
11981 		rc = bnx2x_get_igu_cam_info(bp);
11982 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11983 		if (rc)
11984 			return rc;
11985 	}
11986 
11987 	/*
11988 	 * set base FW non-default (fast path) status block id, this value is
11989 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11990 	 * determine the id used by the FW.
11991 	 */
11992 	if (CHIP_IS_E1x(bp))
11993 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11994 	else /*
11995 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11996 	      * the same queue are indicated on the same IGU SB). So we prefer
11997 	      * FW and IGU SBs to be the same value.
11998 	      */
11999 		bp->base_fw_ndsb = bp->igu_base_sb;
12000 
12001 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
12002 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12003 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12004 
12005 	/*
12006 	 * Initialize MF configuration
12007 	 */
12008 
12009 	bp->mf_ov = 0;
12010 	bp->mf_mode = 0;
12011 	bp->mf_sub_mode = 0;
12012 	vn = BP_VN(bp);
12013 	mfw_vn = BP_FW_MB_IDX(bp);
12014 
12015 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12016 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12017 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12018 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12019 
12020 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12021 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12022 		else
12023 			bp->common.mf_cfg_base = bp->common.shmem_base +
12024 				offsetof(struct shmem_region, func_mb) +
12025 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12026 		/*
12027 		 * get mf configuration:
12028 		 * 1. Existence of MF configuration
12029 		 * 2. MAC address must be legal (check only upper bytes)
12030 		 *    for  Switch-Independent mode;
12031 		 *    OVLAN must be legal for Switch-Dependent mode
12032 		 * 3. SF_MODE configures specific MF mode
12033 		 */
12034 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12035 			/* get mf configuration */
12036 			val = SHMEM_RD(bp,
12037 				       dev_info.shared_feature_config.config);
12038 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12039 
12040 			switch (val) {
12041 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12042 				validate_set_si_mode(bp);
12043 				break;
12044 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12045 				if ((!CHIP_IS_E1x(bp)) &&
12046 				    (MF_CFG_RD(bp, func_mf_config[func].
12047 					       mac_upper) != 0xffff) &&
12048 				    (SHMEM2_HAS(bp,
12049 						afex_driver_support))) {
12050 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12051 					bp->mf_config[vn] = MF_CFG_RD(bp,
12052 						func_mf_config[func].config);
12053 				} else {
12054 					BNX2X_DEV_INFO("can not configure afex mode\n");
12055 				}
12056 				break;
12057 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12058 				/* get OV configuration */
12059 				val = MF_CFG_RD(bp,
12060 					func_mf_config[FUNC_0].e1hov_tag);
12061 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12062 
12063 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12064 					bp->mf_mode = MULTI_FUNCTION_SD;
12065 					bp->mf_config[vn] = MF_CFG_RD(bp,
12066 						func_mf_config[func].config);
12067 				} else
12068 					BNX2X_DEV_INFO("illegal OV for SD\n");
12069 				break;
12070 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12071 				bp->mf_mode = MULTI_FUNCTION_SD;
12072 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12073 				bp->mf_config[vn] =
12074 					MF_CFG_RD(bp,
12075 						  func_mf_config[func].config);
12076 
12077 				if (SHMEM2_HAS(bp, mtu_size)) {
12078 					int mtu_idx = BP_FW_MB_IDX(bp);
12079 					u16 mtu_size;
12080 					u32 mtu;
12081 
12082 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12083 					mtu_size = (u16)mtu;
12084 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12085 					   mtu_size, mtu);
12086 
12087 					/* if valid: update device mtu */
12088 					if (((mtu_size + ETH_HLEN) >=
12089 					     ETH_MIN_PACKET_SIZE) &&
12090 					    (mtu_size <=
12091 					     ETH_MAX_JUMBO_PACKET_SIZE))
12092 						bp->dev->mtu = mtu_size;
12093 				}
12094 				break;
12095 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12096 				bp->mf_mode = MULTI_FUNCTION_SD;
12097 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12098 				bp->mf_config[vn] =
12099 					MF_CFG_RD(bp,
12100 						  func_mf_config[func].config);
12101 				break;
12102 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12103 				bp->mf_config[vn] = 0;
12104 				break;
12105 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12106 				val2 = SHMEM_RD(bp,
12107 					dev_info.shared_hw_config.config_3);
12108 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12109 				switch (val2) {
12110 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12111 					validate_set_si_mode(bp);
12112 					bp->mf_sub_mode =
12113 							SUB_MF_MODE_NPAR1_DOT_5;
12114 					break;
12115 				default:
12116 					/* Unknown configuration */
12117 					bp->mf_config[vn] = 0;
12118 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12119 						       val);
12120 				}
12121 				break;
12122 			default:
12123 				/* Unknown configuration: reset mf_config */
12124 				bp->mf_config[vn] = 0;
12125 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12126 			}
12127 		}
12128 
12129 		BNX2X_DEV_INFO("%s function mode\n",
12130 			       IS_MF(bp) ? "multi" : "single");
12131 
12132 		switch (bp->mf_mode) {
12133 		case MULTI_FUNCTION_SD:
12134 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12135 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12136 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12137 				bp->mf_ov = val;
12138 				bp->path_has_ovlan = true;
12139 
12140 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12141 					       func, bp->mf_ov, bp->mf_ov);
12142 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12143 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12144 				dev_err(&bp->pdev->dev,
12145 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12146 					func);
12147 				bp->path_has_ovlan = true;
12148 			} else {
12149 				dev_err(&bp->pdev->dev,
12150 					"No valid MF OV for func %d, aborting\n",
12151 					func);
12152 				return -EPERM;
12153 			}
12154 			break;
12155 		case MULTI_FUNCTION_AFEX:
12156 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12157 			break;
12158 		case MULTI_FUNCTION_SI:
12159 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12160 				       func);
12161 			break;
12162 		default:
12163 			if (vn) {
12164 				dev_err(&bp->pdev->dev,
12165 					"VN %d is in a single function mode, aborting\n",
12166 					vn);
12167 				return -EPERM;
12168 			}
12169 			break;
12170 		}
12171 
12172 		/* check if other port on the path needs ovlan:
12173 		 * Since MF configuration is shared between ports
12174 		 * Possible mixed modes are only
12175 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12176 		 */
12177 		if (CHIP_MODE_IS_4_PORT(bp) &&
12178 		    !bp->path_has_ovlan &&
12179 		    !IS_MF(bp) &&
12180 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12181 			u8 other_port = !BP_PORT(bp);
12182 			u8 other_func = BP_PATH(bp) + 2*other_port;
12183 			val = MF_CFG_RD(bp,
12184 					func_mf_config[other_func].e1hov_tag);
12185 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12186 				bp->path_has_ovlan = true;
12187 		}
12188 	}
12189 
12190 	/* adjust igu_sb_cnt to MF for E1H */
12191 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12192 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12193 
12194 	/* port info */
12195 	bnx2x_get_port_hwinfo(bp);
12196 
12197 	/* Get MAC addresses */
12198 	bnx2x_get_mac_hwinfo(bp);
12199 
12200 	bnx2x_get_cnic_info(bp);
12201 
12202 	return rc;
12203 }
12204 
12205 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12206 {
12207 	int cnt, i, block_end, rodi;
12208 	char vpd_start[BNX2X_VPD_LEN+1];
12209 	char str_id_reg[VENDOR_ID_LEN+1];
12210 	char str_id_cap[VENDOR_ID_LEN+1];
12211 	char *vpd_data;
12212 	char *vpd_extended_data = NULL;
12213 	u8 len;
12214 
12215 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12216 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12217 
12218 	if (cnt < BNX2X_VPD_LEN)
12219 		goto out_not_found;
12220 
12221 	/* VPD RO tag should be first tag after identifier string, hence
12222 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12223 	 */
12224 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12225 			     PCI_VPD_LRDT_RO_DATA);
12226 	if (i < 0)
12227 		goto out_not_found;
12228 
12229 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12230 		    pci_vpd_lrdt_size(&vpd_start[i]);
12231 
12232 	i += PCI_VPD_LRDT_TAG_SIZE;
12233 
12234 	if (block_end > BNX2X_VPD_LEN) {
12235 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12236 		if (vpd_extended_data  == NULL)
12237 			goto out_not_found;
12238 
12239 		/* read rest of vpd image into vpd_extended_data */
12240 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12241 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12242 				   block_end - BNX2X_VPD_LEN,
12243 				   vpd_extended_data + BNX2X_VPD_LEN);
12244 		if (cnt < (block_end - BNX2X_VPD_LEN))
12245 			goto out_not_found;
12246 		vpd_data = vpd_extended_data;
12247 	} else
12248 		vpd_data = vpd_start;
12249 
12250 	/* now vpd_data holds full vpd content in both cases */
12251 
12252 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12253 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12254 	if (rodi < 0)
12255 		goto out_not_found;
12256 
12257 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12258 
12259 	if (len != VENDOR_ID_LEN)
12260 		goto out_not_found;
12261 
12262 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12263 
12264 	/* vendor specific info */
12265 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12266 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12267 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12268 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12269 
12270 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12271 						PCI_VPD_RO_KEYWORD_VENDOR0);
12272 		if (rodi >= 0) {
12273 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12274 
12275 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12276 
12277 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12278 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12279 				bp->fw_ver[len] = ' ';
12280 			}
12281 		}
12282 		kfree(vpd_extended_data);
12283 		return;
12284 	}
12285 out_not_found:
12286 	kfree(vpd_extended_data);
12287 	return;
12288 }
12289 
12290 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12291 {
12292 	u32 flags = 0;
12293 
12294 	if (CHIP_REV_IS_FPGA(bp))
12295 		SET_FLAGS(flags, MODE_FPGA);
12296 	else if (CHIP_REV_IS_EMUL(bp))
12297 		SET_FLAGS(flags, MODE_EMUL);
12298 	else
12299 		SET_FLAGS(flags, MODE_ASIC);
12300 
12301 	if (CHIP_MODE_IS_4_PORT(bp))
12302 		SET_FLAGS(flags, MODE_PORT4);
12303 	else
12304 		SET_FLAGS(flags, MODE_PORT2);
12305 
12306 	if (CHIP_IS_E2(bp))
12307 		SET_FLAGS(flags, MODE_E2);
12308 	else if (CHIP_IS_E3(bp)) {
12309 		SET_FLAGS(flags, MODE_E3);
12310 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12311 			SET_FLAGS(flags, MODE_E3_A0);
12312 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12313 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12314 	}
12315 
12316 	if (IS_MF(bp)) {
12317 		SET_FLAGS(flags, MODE_MF);
12318 		switch (bp->mf_mode) {
12319 		case MULTI_FUNCTION_SD:
12320 			SET_FLAGS(flags, MODE_MF_SD);
12321 			break;
12322 		case MULTI_FUNCTION_SI:
12323 			SET_FLAGS(flags, MODE_MF_SI);
12324 			break;
12325 		case MULTI_FUNCTION_AFEX:
12326 			SET_FLAGS(flags, MODE_MF_AFEX);
12327 			break;
12328 		}
12329 	} else
12330 		SET_FLAGS(flags, MODE_SF);
12331 
12332 #if defined(__LITTLE_ENDIAN)
12333 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12334 #else /*(__BIG_ENDIAN)*/
12335 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12336 #endif
12337 	INIT_MODE_FLAGS(bp) = flags;
12338 }
12339 
12340 static int bnx2x_init_bp(struct bnx2x *bp)
12341 {
12342 	int func;
12343 	int rc;
12344 
12345 	mutex_init(&bp->port.phy_mutex);
12346 	mutex_init(&bp->fw_mb_mutex);
12347 	mutex_init(&bp->drv_info_mutex);
12348 	sema_init(&bp->stats_lock, 1);
12349 	bp->drv_info_mng_owner = false;
12350 	INIT_LIST_HEAD(&bp->vlan_reg);
12351 
12352 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12353 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12354 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12355 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12356 	if (IS_PF(bp)) {
12357 		rc = bnx2x_get_hwinfo(bp);
12358 		if (rc)
12359 			return rc;
12360 	} else {
12361 		eth_zero_addr(bp->dev->dev_addr);
12362 	}
12363 
12364 	bnx2x_set_modes_bitmap(bp);
12365 
12366 	rc = bnx2x_alloc_mem_bp(bp);
12367 	if (rc)
12368 		return rc;
12369 
12370 	bnx2x_read_fwinfo(bp);
12371 
12372 	func = BP_FUNC(bp);
12373 
12374 	/* need to reset chip if undi was active */
12375 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12376 		/* init fw_seq */
12377 		bp->fw_seq =
12378 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12379 							DRV_MSG_SEQ_NUMBER_MASK;
12380 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12381 
12382 		rc = bnx2x_prev_unload(bp);
12383 		if (rc) {
12384 			bnx2x_free_mem_bp(bp);
12385 			return rc;
12386 		}
12387 	}
12388 
12389 	if (CHIP_REV_IS_FPGA(bp))
12390 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12391 
12392 	if (BP_NOMCP(bp) && (func == 0))
12393 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12394 
12395 	bp->disable_tpa = disable_tpa;
12396 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12397 	/* Reduce memory usage in kdump environment by disabling TPA */
12398 	bp->disable_tpa |= is_kdump_kernel();
12399 
12400 	/* Set TPA flags */
12401 	if (bp->disable_tpa) {
12402 		bp->dev->hw_features &= ~NETIF_F_LRO;
12403 		bp->dev->features &= ~NETIF_F_LRO;
12404 	}
12405 
12406 	if (CHIP_IS_E1(bp))
12407 		bp->dropless_fc = 0;
12408 	else
12409 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12410 
12411 	bp->mrrs = mrrs;
12412 
12413 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12414 	if (IS_VF(bp))
12415 		bp->rx_ring_size = MAX_RX_AVAIL;
12416 
12417 	/* make sure that the numbers are in the right granularity */
12418 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12419 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12420 
12421 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12422 
12423 	init_timer(&bp->timer);
12424 	bp->timer.expires = jiffies + bp->current_interval;
12425 	bp->timer.data = (unsigned long) bp;
12426 	bp->timer.function = bnx2x_timer;
12427 
12428 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12429 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12430 	    SHMEM2_HAS(bp, dcbx_en) &&
12431 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12432 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12433 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12434 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12435 		bnx2x_dcbx_init_params(bp);
12436 	} else {
12437 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12438 	}
12439 
12440 	if (CHIP_IS_E1x(bp))
12441 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12442 	else
12443 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12444 
12445 	/* multiple tx priority */
12446 	if (IS_VF(bp))
12447 		bp->max_cos = 1;
12448 	else if (CHIP_IS_E1x(bp))
12449 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12450 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12451 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12452 	else if (CHIP_IS_E3B0(bp))
12453 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12454 	else
12455 		BNX2X_ERR("unknown chip %x revision %x\n",
12456 			  CHIP_NUM(bp), CHIP_REV(bp));
12457 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12458 
12459 	/* We need at least one default status block for slow-path events,
12460 	 * second status block for the L2 queue, and a third status block for
12461 	 * CNIC if supported.
12462 	 */
12463 	if (IS_VF(bp))
12464 		bp->min_msix_vec_cnt = 1;
12465 	else if (CNIC_SUPPORT(bp))
12466 		bp->min_msix_vec_cnt = 3;
12467 	else /* PF w/o cnic */
12468 		bp->min_msix_vec_cnt = 2;
12469 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12470 
12471 	bp->dump_preset_idx = 1;
12472 
12473 	if (CHIP_IS_E3B0(bp))
12474 		bp->flags |= PTP_SUPPORTED;
12475 
12476 	return rc;
12477 }
12478 
12479 /****************************************************************************
12480 * General service functions
12481 ****************************************************************************/
12482 
12483 /*
12484  * net_device service functions
12485  */
12486 
12487 /* called with rtnl_lock */
12488 static int bnx2x_open(struct net_device *dev)
12489 {
12490 	struct bnx2x *bp = netdev_priv(dev);
12491 	int rc;
12492 
12493 	bp->stats_init = true;
12494 
12495 	netif_carrier_off(dev);
12496 
12497 	bnx2x_set_power_state(bp, PCI_D0);
12498 
12499 	/* If parity had happen during the unload, then attentions
12500 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12501 	 * want the first function loaded on the current engine to
12502 	 * complete the recovery.
12503 	 * Parity recovery is only relevant for PF driver.
12504 	 */
12505 	if (IS_PF(bp)) {
12506 		int other_engine = BP_PATH(bp) ? 0 : 1;
12507 		bool other_load_status, load_status;
12508 		bool global = false;
12509 
12510 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12511 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12512 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12513 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12514 			do {
12515 				/* If there are attentions and they are in a
12516 				 * global blocks, set the GLOBAL_RESET bit
12517 				 * regardless whether it will be this function
12518 				 * that will complete the recovery or not.
12519 				 */
12520 				if (global)
12521 					bnx2x_set_reset_global(bp);
12522 
12523 				/* Only the first function on the current
12524 				 * engine should try to recover in open. In case
12525 				 * of attentions in global blocks only the first
12526 				 * in the chip should try to recover.
12527 				 */
12528 				if ((!load_status &&
12529 				     (!global || !other_load_status)) &&
12530 				      bnx2x_trylock_leader_lock(bp) &&
12531 				      !bnx2x_leader_reset(bp)) {
12532 					netdev_info(bp->dev,
12533 						    "Recovered in open\n");
12534 					break;
12535 				}
12536 
12537 				/* recovery has failed... */
12538 				bnx2x_set_power_state(bp, PCI_D3hot);
12539 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12540 
12541 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12542 					  "If you still see this message after a few retries then power cycle is required.\n");
12543 
12544 				return -EAGAIN;
12545 			} while (0);
12546 		}
12547 	}
12548 
12549 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12550 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12551 	if (rc)
12552 		return rc;
12553 
12554 #ifdef CONFIG_BNX2X_VXLAN
12555 	if (IS_PF(bp))
12556 		vxlan_get_rx_port(dev);
12557 #endif
12558 #if IS_ENABLED(CONFIG_BNX2X_GENEVE)
12559 	if (IS_PF(bp))
12560 		geneve_get_rx_port(dev);
12561 #endif
12562 
12563 	return 0;
12564 }
12565 
12566 /* called with rtnl_lock */
12567 static int bnx2x_close(struct net_device *dev)
12568 {
12569 	struct bnx2x *bp = netdev_priv(dev);
12570 
12571 	/* Unload the driver, release IRQs */
12572 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12573 
12574 	return 0;
12575 }
12576 
12577 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12578 				      struct bnx2x_mcast_ramrod_params *p)
12579 {
12580 	int mc_count = netdev_mc_count(bp->dev);
12581 	struct bnx2x_mcast_list_elem *mc_mac =
12582 		kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12583 	struct netdev_hw_addr *ha;
12584 
12585 	if (!mc_mac)
12586 		return -ENOMEM;
12587 
12588 	INIT_LIST_HEAD(&p->mcast_list);
12589 
12590 	netdev_for_each_mc_addr(ha, bp->dev) {
12591 		mc_mac->mac = bnx2x_mc_addr(ha);
12592 		list_add_tail(&mc_mac->link, &p->mcast_list);
12593 		mc_mac++;
12594 	}
12595 
12596 	p->mcast_list_len = mc_count;
12597 
12598 	return 0;
12599 }
12600 
12601 static void bnx2x_free_mcast_macs_list(
12602 	struct bnx2x_mcast_ramrod_params *p)
12603 {
12604 	struct bnx2x_mcast_list_elem *mc_mac =
12605 		list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12606 				 link);
12607 
12608 	WARN_ON(!mc_mac);
12609 	kfree(mc_mac);
12610 }
12611 
12612 /**
12613  * bnx2x_set_uc_list - configure a new unicast MACs list.
12614  *
12615  * @bp: driver handle
12616  *
12617  * We will use zero (0) as a MAC type for these MACs.
12618  */
12619 static int bnx2x_set_uc_list(struct bnx2x *bp)
12620 {
12621 	int rc;
12622 	struct net_device *dev = bp->dev;
12623 	struct netdev_hw_addr *ha;
12624 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12625 	unsigned long ramrod_flags = 0;
12626 
12627 	/* First schedule a cleanup up of old configuration */
12628 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12629 	if (rc < 0) {
12630 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12631 		return rc;
12632 	}
12633 
12634 	netdev_for_each_uc_addr(ha, dev) {
12635 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12636 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12637 		if (rc == -EEXIST) {
12638 			DP(BNX2X_MSG_SP,
12639 			   "Failed to schedule ADD operations: %d\n", rc);
12640 			/* do not treat adding same MAC as error */
12641 			rc = 0;
12642 
12643 		} else if (rc < 0) {
12644 
12645 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12646 				  rc);
12647 			return rc;
12648 		}
12649 	}
12650 
12651 	/* Execute the pending commands */
12652 	__set_bit(RAMROD_CONT, &ramrod_flags);
12653 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12654 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12655 }
12656 
12657 static int bnx2x_set_mc_list(struct bnx2x *bp)
12658 {
12659 	struct net_device *dev = bp->dev;
12660 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12661 	int rc = 0;
12662 
12663 	rparam.mcast_obj = &bp->mcast_obj;
12664 
12665 	/* first, clear all configured multicast MACs */
12666 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12667 	if (rc < 0) {
12668 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12669 		return rc;
12670 	}
12671 
12672 	/* then, configure a new MACs list */
12673 	if (netdev_mc_count(dev)) {
12674 		rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12675 		if (rc) {
12676 			BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12677 				  rc);
12678 			return rc;
12679 		}
12680 
12681 		/* Now add the new MACs */
12682 		rc = bnx2x_config_mcast(bp, &rparam,
12683 					BNX2X_MCAST_CMD_ADD);
12684 		if (rc < 0)
12685 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12686 				  rc);
12687 
12688 		bnx2x_free_mcast_macs_list(&rparam);
12689 	}
12690 
12691 	return rc;
12692 }
12693 
12694 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12695 static void bnx2x_set_rx_mode(struct net_device *dev)
12696 {
12697 	struct bnx2x *bp = netdev_priv(dev);
12698 
12699 	if (bp->state != BNX2X_STATE_OPEN) {
12700 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12701 		return;
12702 	} else {
12703 		/* Schedule an SP task to handle rest of change */
12704 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12705 				       NETIF_MSG_IFUP);
12706 	}
12707 }
12708 
12709 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12710 {
12711 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12712 
12713 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12714 
12715 	netif_addr_lock_bh(bp->dev);
12716 
12717 	if (bp->dev->flags & IFF_PROMISC) {
12718 		rx_mode = BNX2X_RX_MODE_PROMISC;
12719 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12720 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12721 		    CHIP_IS_E1(bp))) {
12722 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12723 	} else {
12724 		if (IS_PF(bp)) {
12725 			/* some multicasts */
12726 			if (bnx2x_set_mc_list(bp) < 0)
12727 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12728 
12729 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12730 			netif_addr_unlock_bh(bp->dev);
12731 			if (bnx2x_set_uc_list(bp) < 0)
12732 				rx_mode = BNX2X_RX_MODE_PROMISC;
12733 			netif_addr_lock_bh(bp->dev);
12734 		} else {
12735 			/* configuring mcast to a vf involves sleeping (when we
12736 			 * wait for the pf's response).
12737 			 */
12738 			bnx2x_schedule_sp_rtnl(bp,
12739 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12740 		}
12741 	}
12742 
12743 	bp->rx_mode = rx_mode;
12744 	/* handle ISCSI SD mode */
12745 	if (IS_MF_ISCSI_ONLY(bp))
12746 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12747 
12748 	/* Schedule the rx_mode command */
12749 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12750 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12751 		netif_addr_unlock_bh(bp->dev);
12752 		return;
12753 	}
12754 
12755 	if (IS_PF(bp)) {
12756 		bnx2x_set_storm_rx_mode(bp);
12757 		netif_addr_unlock_bh(bp->dev);
12758 	} else {
12759 		/* VF will need to request the PF to make this change, and so
12760 		 * the VF needs to release the bottom-half lock prior to the
12761 		 * request (as it will likely require sleep on the VF side)
12762 		 */
12763 		netif_addr_unlock_bh(bp->dev);
12764 		bnx2x_vfpf_storm_rx_mode(bp);
12765 	}
12766 }
12767 
12768 /* called with rtnl_lock */
12769 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12770 			   int devad, u16 addr)
12771 {
12772 	struct bnx2x *bp = netdev_priv(netdev);
12773 	u16 value;
12774 	int rc;
12775 
12776 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12777 	   prtad, devad, addr);
12778 
12779 	/* The HW expects different devad if CL22 is used */
12780 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12781 
12782 	bnx2x_acquire_phy_lock(bp);
12783 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12784 	bnx2x_release_phy_lock(bp);
12785 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12786 
12787 	if (!rc)
12788 		rc = value;
12789 	return rc;
12790 }
12791 
12792 /* called with rtnl_lock */
12793 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12794 			    u16 addr, u16 value)
12795 {
12796 	struct bnx2x *bp = netdev_priv(netdev);
12797 	int rc;
12798 
12799 	DP(NETIF_MSG_LINK,
12800 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12801 	   prtad, devad, addr, value);
12802 
12803 	/* The HW expects different devad if CL22 is used */
12804 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12805 
12806 	bnx2x_acquire_phy_lock(bp);
12807 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12808 	bnx2x_release_phy_lock(bp);
12809 	return rc;
12810 }
12811 
12812 /* called with rtnl_lock */
12813 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12814 {
12815 	struct bnx2x *bp = netdev_priv(dev);
12816 	struct mii_ioctl_data *mdio = if_mii(ifr);
12817 
12818 	if (!netif_running(dev))
12819 		return -EAGAIN;
12820 
12821 	switch (cmd) {
12822 	case SIOCSHWTSTAMP:
12823 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12824 	default:
12825 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12826 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12827 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12828 	}
12829 }
12830 
12831 #ifdef CONFIG_NET_POLL_CONTROLLER
12832 static void poll_bnx2x(struct net_device *dev)
12833 {
12834 	struct bnx2x *bp = netdev_priv(dev);
12835 	int i;
12836 
12837 	for_each_eth_queue(bp, i) {
12838 		struct bnx2x_fastpath *fp = &bp->fp[i];
12839 		napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12840 	}
12841 }
12842 #endif
12843 
12844 static int bnx2x_validate_addr(struct net_device *dev)
12845 {
12846 	struct bnx2x *bp = netdev_priv(dev);
12847 
12848 	/* query the bulletin board for mac address configured by the PF */
12849 	if (IS_VF(bp))
12850 		bnx2x_sample_bulletin(bp);
12851 
12852 	if (!is_valid_ether_addr(dev->dev_addr)) {
12853 		BNX2X_ERR("Non-valid Ethernet address\n");
12854 		return -EADDRNOTAVAIL;
12855 	}
12856 	return 0;
12857 }
12858 
12859 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12860 				  struct netdev_phys_item_id *ppid)
12861 {
12862 	struct bnx2x *bp = netdev_priv(netdev);
12863 
12864 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12865 		return -EOPNOTSUPP;
12866 
12867 	ppid->id_len = sizeof(bp->phys_port_id);
12868 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12869 
12870 	return 0;
12871 }
12872 
12873 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12874 					      struct net_device *dev,
12875 					      netdev_features_t features)
12876 {
12877 	features = vlan_features_check(skb, features);
12878 	return vxlan_features_check(skb, features);
12879 }
12880 
12881 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12882 {
12883 	int rc;
12884 
12885 	if (IS_PF(bp)) {
12886 		unsigned long ramrod_flags = 0;
12887 
12888 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12889 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12890 					add, &ramrod_flags);
12891 	} else {
12892 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12893 	}
12894 
12895 	return rc;
12896 }
12897 
12898 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12899 {
12900 	struct bnx2x_vlan_entry *vlan;
12901 	int rc = 0;
12902 
12903 	/* Configure all non-configured entries */
12904 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12905 		if (vlan->hw)
12906 			continue;
12907 
12908 		if (bp->vlan_cnt >= bp->vlan_credit)
12909 			return -ENOBUFS;
12910 
12911 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12912 		if (rc) {
12913 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12914 			return rc;
12915 		}
12916 
12917 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12918 		vlan->hw = true;
12919 		bp->vlan_cnt++;
12920 	}
12921 
12922 	return 0;
12923 }
12924 
12925 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12926 {
12927 	bool need_accept_any_vlan;
12928 
12929 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12930 
12931 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12932 		bp->accept_any_vlan = need_accept_any_vlan;
12933 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12934 		   bp->accept_any_vlan ? "raised" : "cleared");
12935 		if (set_rx_mode) {
12936 			if (IS_PF(bp))
12937 				bnx2x_set_rx_mode_inner(bp);
12938 			else
12939 				bnx2x_vfpf_storm_rx_mode(bp);
12940 		}
12941 	}
12942 }
12943 
12944 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12945 {
12946 	struct bnx2x_vlan_entry *vlan;
12947 
12948 	/* The hw forgot all entries after reload */
12949 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12950 		vlan->hw = false;
12951 	bp->vlan_cnt = 0;
12952 
12953 	/* Don't set rx mode here. Our caller will do it. */
12954 	bnx2x_vlan_configure(bp, false);
12955 
12956 	return 0;
12957 }
12958 
12959 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12960 {
12961 	struct bnx2x *bp = netdev_priv(dev);
12962 	struct bnx2x_vlan_entry *vlan;
12963 
12964 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12965 
12966 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12967 	if (!vlan)
12968 		return -ENOMEM;
12969 
12970 	vlan->vid = vid;
12971 	vlan->hw = false;
12972 	list_add_tail(&vlan->link, &bp->vlan_reg);
12973 
12974 	if (netif_running(dev))
12975 		bnx2x_vlan_configure(bp, true);
12976 
12977 	return 0;
12978 }
12979 
12980 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12981 {
12982 	struct bnx2x *bp = netdev_priv(dev);
12983 	struct bnx2x_vlan_entry *vlan;
12984 	bool found = false;
12985 	int rc = 0;
12986 
12987 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12988 
12989 	list_for_each_entry(vlan, &bp->vlan_reg, link)
12990 		if (vlan->vid == vid) {
12991 			found = true;
12992 			break;
12993 		}
12994 
12995 	if (!found) {
12996 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12997 		return -EINVAL;
12998 	}
12999 
13000 	if (netif_running(dev) && vlan->hw) {
13001 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13002 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13003 		bp->vlan_cnt--;
13004 	}
13005 
13006 	list_del(&vlan->link);
13007 	kfree(vlan);
13008 
13009 	if (netif_running(dev))
13010 		bnx2x_vlan_configure(bp, true);
13011 
13012 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13013 
13014 	return rc;
13015 }
13016 
13017 static const struct net_device_ops bnx2x_netdev_ops = {
13018 	.ndo_open		= bnx2x_open,
13019 	.ndo_stop		= bnx2x_close,
13020 	.ndo_start_xmit		= bnx2x_start_xmit,
13021 	.ndo_select_queue	= bnx2x_select_queue,
13022 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13023 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13024 	.ndo_validate_addr	= bnx2x_validate_addr,
13025 	.ndo_do_ioctl		= bnx2x_ioctl,
13026 	.ndo_change_mtu		= bnx2x_change_mtu,
13027 	.ndo_fix_features	= bnx2x_fix_features,
13028 	.ndo_set_features	= bnx2x_set_features,
13029 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13030 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13031 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13032 #ifdef CONFIG_NET_POLL_CONTROLLER
13033 	.ndo_poll_controller	= poll_bnx2x,
13034 #endif
13035 	.ndo_setup_tc		= __bnx2x_setup_tc,
13036 #ifdef CONFIG_BNX2X_SRIOV
13037 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13038 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13039 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13040 #endif
13041 #ifdef NETDEV_FCOE_WWNN
13042 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13043 #endif
13044 
13045 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13046 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13047 	.ndo_features_check	= bnx2x_features_check,
13048 #ifdef CONFIG_BNX2X_VXLAN
13049 	.ndo_add_vxlan_port	= bnx2x_add_vxlan_port,
13050 	.ndo_del_vxlan_port	= bnx2x_del_vxlan_port,
13051 #endif
13052 #if IS_ENABLED(CONFIG_BNX2X_GENEVE)
13053 	.ndo_add_geneve_port	= bnx2x_add_geneve_port,
13054 	.ndo_del_geneve_port	= bnx2x_del_geneve_port,
13055 #endif
13056 };
13057 
13058 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13059 {
13060 	struct device *dev = &bp->pdev->dev;
13061 
13062 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13063 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13064 		dev_err(dev, "System does not support DMA, aborting\n");
13065 		return -EIO;
13066 	}
13067 
13068 	return 0;
13069 }
13070 
13071 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13072 {
13073 	if (bp->flags & AER_ENABLED) {
13074 		pci_disable_pcie_error_reporting(bp->pdev);
13075 		bp->flags &= ~AER_ENABLED;
13076 	}
13077 }
13078 
13079 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13080 			  struct net_device *dev, unsigned long board_type)
13081 {
13082 	int rc;
13083 	u32 pci_cfg_dword;
13084 	bool chip_is_e1x = (board_type == BCM57710 ||
13085 			    board_type == BCM57711 ||
13086 			    board_type == BCM57711E);
13087 
13088 	SET_NETDEV_DEV(dev, &pdev->dev);
13089 
13090 	bp->dev = dev;
13091 	bp->pdev = pdev;
13092 
13093 	rc = pci_enable_device(pdev);
13094 	if (rc) {
13095 		dev_err(&bp->pdev->dev,
13096 			"Cannot enable PCI device, aborting\n");
13097 		goto err_out;
13098 	}
13099 
13100 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13101 		dev_err(&bp->pdev->dev,
13102 			"Cannot find PCI device base address, aborting\n");
13103 		rc = -ENODEV;
13104 		goto err_out_disable;
13105 	}
13106 
13107 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13108 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13109 		rc = -ENODEV;
13110 		goto err_out_disable;
13111 	}
13112 
13113 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13114 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13115 	    PCICFG_REVESION_ID_ERROR_VAL) {
13116 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13117 		rc = -ENODEV;
13118 		goto err_out_disable;
13119 	}
13120 
13121 	if (atomic_read(&pdev->enable_cnt) == 1) {
13122 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13123 		if (rc) {
13124 			dev_err(&bp->pdev->dev,
13125 				"Cannot obtain PCI resources, aborting\n");
13126 			goto err_out_disable;
13127 		}
13128 
13129 		pci_set_master(pdev);
13130 		pci_save_state(pdev);
13131 	}
13132 
13133 	if (IS_PF(bp)) {
13134 		if (!pdev->pm_cap) {
13135 			dev_err(&bp->pdev->dev,
13136 				"Cannot find power management capability, aborting\n");
13137 			rc = -EIO;
13138 			goto err_out_release;
13139 		}
13140 	}
13141 
13142 	if (!pci_is_pcie(pdev)) {
13143 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13144 		rc = -EIO;
13145 		goto err_out_release;
13146 	}
13147 
13148 	rc = bnx2x_set_coherency_mask(bp);
13149 	if (rc)
13150 		goto err_out_release;
13151 
13152 	dev->mem_start = pci_resource_start(pdev, 0);
13153 	dev->base_addr = dev->mem_start;
13154 	dev->mem_end = pci_resource_end(pdev, 0);
13155 
13156 	dev->irq = pdev->irq;
13157 
13158 	bp->regview = pci_ioremap_bar(pdev, 0);
13159 	if (!bp->regview) {
13160 		dev_err(&bp->pdev->dev,
13161 			"Cannot map register space, aborting\n");
13162 		rc = -ENOMEM;
13163 		goto err_out_release;
13164 	}
13165 
13166 	/* In E1/E1H use pci device function given by kernel.
13167 	 * In E2/E3 read physical function from ME register since these chips
13168 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13169 	 * (depending on hypervisor).
13170 	 */
13171 	if (chip_is_e1x) {
13172 		bp->pf_num = PCI_FUNC(pdev->devfn);
13173 	} else {
13174 		/* chip is E2/3*/
13175 		pci_read_config_dword(bp->pdev,
13176 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13177 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13178 				  ME_REG_ABS_PF_NUM_SHIFT);
13179 	}
13180 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13181 
13182 	/* clean indirect addresses */
13183 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13184 			       PCICFG_VENDOR_ID_OFFSET);
13185 
13186 	/* Set PCIe reset type to fundamental for EEH recovery */
13187 	pdev->needs_freset = 1;
13188 
13189 	/* AER (Advanced Error reporting) configuration */
13190 	rc = pci_enable_pcie_error_reporting(pdev);
13191 	if (!rc)
13192 		bp->flags |= AER_ENABLED;
13193 	else
13194 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13195 
13196 	/*
13197 	 * Clean the following indirect addresses for all functions since it
13198 	 * is not used by the driver.
13199 	 */
13200 	if (IS_PF(bp)) {
13201 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13202 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13203 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13204 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13205 
13206 		if (chip_is_e1x) {
13207 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13208 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13209 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13210 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13211 		}
13212 
13213 		/* Enable internal target-read (in case we are probed after PF
13214 		 * FLR). Must be done prior to any BAR read access. Only for
13215 		 * 57712 and up
13216 		 */
13217 		if (!chip_is_e1x)
13218 			REG_WR(bp,
13219 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13220 	}
13221 
13222 	dev->watchdog_timeo = TX_TIMEOUT;
13223 
13224 	dev->netdev_ops = &bnx2x_netdev_ops;
13225 	bnx2x_set_ethtool_ops(bp, dev);
13226 
13227 	dev->priv_flags |= IFF_UNICAST_FLT;
13228 
13229 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13230 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13231 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13232 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13233 	if (!chip_is_e1x) {
13234 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13235 				    NETIF_F_GSO_IPXIP4;
13236 		dev->hw_enc_features =
13237 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13238 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13239 			NETIF_F_GSO_IPXIP4 |
13240 			NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13241 	}
13242 
13243 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13244 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13245 
13246 	/* VF with OLD Hypervisor or old PF do not support filtering */
13247 	if (IS_PF(bp)) {
13248 		if (chip_is_e1x)
13249 			bp->accept_any_vlan = true;
13250 		else
13251 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13252 #ifdef CONFIG_BNX2X_SRIOV
13253 	} else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13254 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13255 #endif
13256 	}
13257 
13258 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13259 	dev->features |= NETIF_F_HIGHDMA;
13260 
13261 	/* Add Loopback capability to the device */
13262 	dev->hw_features |= NETIF_F_LOOPBACK;
13263 
13264 #ifdef BCM_DCBNL
13265 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13266 #endif
13267 
13268 	/* get_port_hwinfo() will set prtad and mmds properly */
13269 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13270 	bp->mdio.mmds = 0;
13271 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13272 	bp->mdio.dev = dev;
13273 	bp->mdio.mdio_read = bnx2x_mdio_read;
13274 	bp->mdio.mdio_write = bnx2x_mdio_write;
13275 
13276 	return 0;
13277 
13278 err_out_release:
13279 	if (atomic_read(&pdev->enable_cnt) == 1)
13280 		pci_release_regions(pdev);
13281 
13282 err_out_disable:
13283 	pci_disable_device(pdev);
13284 
13285 err_out:
13286 	return rc;
13287 }
13288 
13289 static int bnx2x_check_firmware(struct bnx2x *bp)
13290 {
13291 	const struct firmware *firmware = bp->firmware;
13292 	struct bnx2x_fw_file_hdr *fw_hdr;
13293 	struct bnx2x_fw_file_section *sections;
13294 	u32 offset, len, num_ops;
13295 	__be16 *ops_offsets;
13296 	int i;
13297 	const u8 *fw_ver;
13298 
13299 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13300 		BNX2X_ERR("Wrong FW size\n");
13301 		return -EINVAL;
13302 	}
13303 
13304 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13305 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13306 
13307 	/* Make sure none of the offsets and sizes make us read beyond
13308 	 * the end of the firmware data */
13309 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13310 		offset = be32_to_cpu(sections[i].offset);
13311 		len = be32_to_cpu(sections[i].len);
13312 		if (offset + len > firmware->size) {
13313 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13314 			return -EINVAL;
13315 		}
13316 	}
13317 
13318 	/* Likewise for the init_ops offsets */
13319 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13320 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13321 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13322 
13323 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13324 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13325 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13326 			return -EINVAL;
13327 		}
13328 	}
13329 
13330 	/* Check FW version */
13331 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13332 	fw_ver = firmware->data + offset;
13333 	if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13334 	    (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13335 	    (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13336 	    (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13337 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13338 		       fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13339 		       BCM_5710_FW_MAJOR_VERSION,
13340 		       BCM_5710_FW_MINOR_VERSION,
13341 		       BCM_5710_FW_REVISION_VERSION,
13342 		       BCM_5710_FW_ENGINEERING_VERSION);
13343 		return -EINVAL;
13344 	}
13345 
13346 	return 0;
13347 }
13348 
13349 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13350 {
13351 	const __be32 *source = (const __be32 *)_source;
13352 	u32 *target = (u32 *)_target;
13353 	u32 i;
13354 
13355 	for (i = 0; i < n/4; i++)
13356 		target[i] = be32_to_cpu(source[i]);
13357 }
13358 
13359 /*
13360    Ops array is stored in the following format:
13361    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13362  */
13363 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13364 {
13365 	const __be32 *source = (const __be32 *)_source;
13366 	struct raw_op *target = (struct raw_op *)_target;
13367 	u32 i, j, tmp;
13368 
13369 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13370 		tmp = be32_to_cpu(source[j]);
13371 		target[i].op = (tmp >> 24) & 0xff;
13372 		target[i].offset = tmp & 0xffffff;
13373 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13374 	}
13375 }
13376 
13377 /* IRO array is stored in the following format:
13378  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13379  */
13380 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13381 {
13382 	const __be32 *source = (const __be32 *)_source;
13383 	struct iro *target = (struct iro *)_target;
13384 	u32 i, j, tmp;
13385 
13386 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13387 		target[i].base = be32_to_cpu(source[j]);
13388 		j++;
13389 		tmp = be32_to_cpu(source[j]);
13390 		target[i].m1 = (tmp >> 16) & 0xffff;
13391 		target[i].m2 = tmp & 0xffff;
13392 		j++;
13393 		tmp = be32_to_cpu(source[j]);
13394 		target[i].m3 = (tmp >> 16) & 0xffff;
13395 		target[i].size = tmp & 0xffff;
13396 		j++;
13397 	}
13398 }
13399 
13400 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13401 {
13402 	const __be16 *source = (const __be16 *)_source;
13403 	u16 *target = (u16 *)_target;
13404 	u32 i;
13405 
13406 	for (i = 0; i < n/2; i++)
13407 		target[i] = be16_to_cpu(source[i]);
13408 }
13409 
13410 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13411 do {									\
13412 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13413 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13414 	if (!bp->arr)							\
13415 		goto lbl;						\
13416 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13417 	     (u8 *)bp->arr, len);					\
13418 } while (0)
13419 
13420 static int bnx2x_init_firmware(struct bnx2x *bp)
13421 {
13422 	const char *fw_file_name;
13423 	struct bnx2x_fw_file_hdr *fw_hdr;
13424 	int rc;
13425 
13426 	if (bp->firmware)
13427 		return 0;
13428 
13429 	if (CHIP_IS_E1(bp))
13430 		fw_file_name = FW_FILE_NAME_E1;
13431 	else if (CHIP_IS_E1H(bp))
13432 		fw_file_name = FW_FILE_NAME_E1H;
13433 	else if (!CHIP_IS_E1x(bp))
13434 		fw_file_name = FW_FILE_NAME_E2;
13435 	else {
13436 		BNX2X_ERR("Unsupported chip revision\n");
13437 		return -EINVAL;
13438 	}
13439 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13440 
13441 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13442 	if (rc) {
13443 		BNX2X_ERR("Can't load firmware file %s\n",
13444 			  fw_file_name);
13445 		goto request_firmware_exit;
13446 	}
13447 
13448 	rc = bnx2x_check_firmware(bp);
13449 	if (rc) {
13450 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13451 		goto request_firmware_exit;
13452 	}
13453 
13454 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13455 
13456 	/* Initialize the pointers to the init arrays */
13457 	/* Blob */
13458 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13459 
13460 	/* Opcodes */
13461 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13462 
13463 	/* Offsets */
13464 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13465 			    be16_to_cpu_n);
13466 
13467 	/* STORMs firmware */
13468 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13469 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13470 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13471 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13472 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13473 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13474 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13475 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13476 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13477 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13478 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13479 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13480 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13481 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13482 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13483 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13484 	/* IRO */
13485 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13486 
13487 	return 0;
13488 
13489 iro_alloc_err:
13490 	kfree(bp->init_ops_offsets);
13491 init_offsets_alloc_err:
13492 	kfree(bp->init_ops);
13493 init_ops_alloc_err:
13494 	kfree(bp->init_data);
13495 request_firmware_exit:
13496 	release_firmware(bp->firmware);
13497 	bp->firmware = NULL;
13498 
13499 	return rc;
13500 }
13501 
13502 static void bnx2x_release_firmware(struct bnx2x *bp)
13503 {
13504 	kfree(bp->init_ops_offsets);
13505 	kfree(bp->init_ops);
13506 	kfree(bp->init_data);
13507 	release_firmware(bp->firmware);
13508 	bp->firmware = NULL;
13509 }
13510 
13511 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13512 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13513 	.init_hw_cmn      = bnx2x_init_hw_common,
13514 	.init_hw_port     = bnx2x_init_hw_port,
13515 	.init_hw_func     = bnx2x_init_hw_func,
13516 
13517 	.reset_hw_cmn     = bnx2x_reset_common,
13518 	.reset_hw_port    = bnx2x_reset_port,
13519 	.reset_hw_func    = bnx2x_reset_func,
13520 
13521 	.gunzip_init      = bnx2x_gunzip_init,
13522 	.gunzip_end       = bnx2x_gunzip_end,
13523 
13524 	.init_fw          = bnx2x_init_firmware,
13525 	.release_fw       = bnx2x_release_firmware,
13526 };
13527 
13528 void bnx2x__init_func_obj(struct bnx2x *bp)
13529 {
13530 	/* Prepare DMAE related driver resources */
13531 	bnx2x_setup_dmae(bp);
13532 
13533 	bnx2x_init_func_obj(bp, &bp->func_obj,
13534 			    bnx2x_sp(bp, func_rdata),
13535 			    bnx2x_sp_mapping(bp, func_rdata),
13536 			    bnx2x_sp(bp, func_afex_rdata),
13537 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13538 			    &bnx2x_func_sp_drv);
13539 }
13540 
13541 /* must be called after sriov-enable */
13542 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13543 {
13544 	int cid_count = BNX2X_L2_MAX_CID(bp);
13545 
13546 	if (IS_SRIOV(bp))
13547 		cid_count += BNX2X_VF_CIDS;
13548 
13549 	if (CNIC_SUPPORT(bp))
13550 		cid_count += CNIC_CID_MAX;
13551 
13552 	return roundup(cid_count, QM_CID_ROUND);
13553 }
13554 
13555 /**
13556  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13557  *
13558  * @dev:	pci device
13559  *
13560  */
13561 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13562 {
13563 	int index;
13564 	u16 control = 0;
13565 
13566 	/*
13567 	 * If MSI-X is not supported - return number of SBs needed to support
13568 	 * one fast path queue: one FP queue + SB for CNIC
13569 	 */
13570 	if (!pdev->msix_cap) {
13571 		dev_info(&pdev->dev, "no msix capability found\n");
13572 		return 1 + cnic_cnt;
13573 	}
13574 	dev_info(&pdev->dev, "msix capability found\n");
13575 
13576 	/*
13577 	 * The value in the PCI configuration space is the index of the last
13578 	 * entry, namely one less than the actual size of the table, which is
13579 	 * exactly what we want to return from this function: number of all SBs
13580 	 * without the default SB.
13581 	 * For VFs there is no default SB, then we return (index+1).
13582 	 */
13583 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13584 
13585 	index = control & PCI_MSIX_FLAGS_QSIZE;
13586 
13587 	return index;
13588 }
13589 
13590 static int set_max_cos_est(int chip_id)
13591 {
13592 	switch (chip_id) {
13593 	case BCM57710:
13594 	case BCM57711:
13595 	case BCM57711E:
13596 		return BNX2X_MULTI_TX_COS_E1X;
13597 	case BCM57712:
13598 	case BCM57712_MF:
13599 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13600 	case BCM57800:
13601 	case BCM57800_MF:
13602 	case BCM57810:
13603 	case BCM57810_MF:
13604 	case BCM57840_4_10:
13605 	case BCM57840_2_20:
13606 	case BCM57840_O:
13607 	case BCM57840_MFO:
13608 	case BCM57840_MF:
13609 	case BCM57811:
13610 	case BCM57811_MF:
13611 		return BNX2X_MULTI_TX_COS_E3B0;
13612 	case BCM57712_VF:
13613 	case BCM57800_VF:
13614 	case BCM57810_VF:
13615 	case BCM57840_VF:
13616 	case BCM57811_VF:
13617 		return 1;
13618 	default:
13619 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13620 		return -ENODEV;
13621 	}
13622 }
13623 
13624 static int set_is_vf(int chip_id)
13625 {
13626 	switch (chip_id) {
13627 	case BCM57712_VF:
13628 	case BCM57800_VF:
13629 	case BCM57810_VF:
13630 	case BCM57840_VF:
13631 	case BCM57811_VF:
13632 		return true;
13633 	default:
13634 		return false;
13635 	}
13636 }
13637 
13638 /* nig_tsgen registers relative address */
13639 #define tsgen_ctrl 0x0
13640 #define tsgen_freecount 0x10
13641 #define tsgen_synctime_t0 0x20
13642 #define tsgen_offset_t0 0x28
13643 #define tsgen_drift_t0 0x30
13644 #define tsgen_synctime_t1 0x58
13645 #define tsgen_offset_t1 0x60
13646 #define tsgen_drift_t1 0x68
13647 
13648 /* FW workaround for setting drift */
13649 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13650 					  int best_val, int best_period)
13651 {
13652 	struct bnx2x_func_state_params func_params = {NULL};
13653 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13654 		&func_params.params.set_timesync;
13655 
13656 	/* Prepare parameters for function state transitions */
13657 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13658 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13659 
13660 	func_params.f_obj = &bp->func_obj;
13661 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13662 
13663 	/* Function parameters */
13664 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13665 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13666 	set_timesync_params->add_sub_drift_adjust_value =
13667 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13668 	set_timesync_params->drift_adjust_value = best_val;
13669 	set_timesync_params->drift_adjust_period = best_period;
13670 
13671 	return bnx2x_func_state_change(bp, &func_params);
13672 }
13673 
13674 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13675 {
13676 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13677 	int rc;
13678 	int drift_dir = 1;
13679 	int val, period, period1, period2, dif, dif1, dif2;
13680 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13681 
13682 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13683 
13684 	if (!netif_running(bp->dev)) {
13685 		DP(BNX2X_MSG_PTP,
13686 		   "PTP adjfreq called while the interface is down\n");
13687 		return -EFAULT;
13688 	}
13689 
13690 	if (ppb < 0) {
13691 		ppb = -ppb;
13692 		drift_dir = 0;
13693 	}
13694 
13695 	if (ppb == 0) {
13696 		best_val = 1;
13697 		best_period = 0x1FFFFFF;
13698 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13699 		best_val = 31;
13700 		best_period = 1;
13701 	} else {
13702 		/* Changed not to allow val = 8, 16, 24 as these values
13703 		 * are not supported in workaround.
13704 		 */
13705 		for (val = 0; val <= 31; val++) {
13706 			if ((val & 0x7) == 0)
13707 				continue;
13708 			period1 = val * 1000000 / ppb;
13709 			period2 = period1 + 1;
13710 			if (period1 != 0)
13711 				dif1 = ppb - (val * 1000000 / period1);
13712 			else
13713 				dif1 = BNX2X_MAX_PHC_DRIFT;
13714 			if (dif1 < 0)
13715 				dif1 = -dif1;
13716 			dif2 = ppb - (val * 1000000 / period2);
13717 			if (dif2 < 0)
13718 				dif2 = -dif2;
13719 			dif = (dif1 < dif2) ? dif1 : dif2;
13720 			period = (dif1 < dif2) ? period1 : period2;
13721 			if (dif < best_dif) {
13722 				best_dif = dif;
13723 				best_val = val;
13724 				best_period = period;
13725 			}
13726 		}
13727 	}
13728 
13729 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13730 					    best_period);
13731 	if (rc) {
13732 		BNX2X_ERR("Failed to set drift\n");
13733 		return -EFAULT;
13734 	}
13735 
13736 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13737 	   best_period);
13738 
13739 	return 0;
13740 }
13741 
13742 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13743 {
13744 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13745 
13746 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13747 
13748 	timecounter_adjtime(&bp->timecounter, delta);
13749 
13750 	return 0;
13751 }
13752 
13753 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13754 {
13755 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13756 	u64 ns;
13757 
13758 	ns = timecounter_read(&bp->timecounter);
13759 
13760 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13761 
13762 	*ts = ns_to_timespec64(ns);
13763 
13764 	return 0;
13765 }
13766 
13767 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13768 			     const struct timespec64 *ts)
13769 {
13770 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13771 	u64 ns;
13772 
13773 	ns = timespec64_to_ns(ts);
13774 
13775 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13776 
13777 	/* Re-init the timecounter */
13778 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13779 
13780 	return 0;
13781 }
13782 
13783 /* Enable (or disable) ancillary features of the phc subsystem */
13784 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13785 			    struct ptp_clock_request *rq, int on)
13786 {
13787 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13788 
13789 	BNX2X_ERR("PHC ancillary features are not supported\n");
13790 	return -ENOTSUPP;
13791 }
13792 
13793 static void bnx2x_register_phc(struct bnx2x *bp)
13794 {
13795 	/* Fill the ptp_clock_info struct and register PTP clock*/
13796 	bp->ptp_clock_info.owner = THIS_MODULE;
13797 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13798 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13799 	bp->ptp_clock_info.n_alarm = 0;
13800 	bp->ptp_clock_info.n_ext_ts = 0;
13801 	bp->ptp_clock_info.n_per_out = 0;
13802 	bp->ptp_clock_info.pps = 0;
13803 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13804 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13805 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13806 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13807 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13808 
13809 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13810 	if (IS_ERR(bp->ptp_clock)) {
13811 		bp->ptp_clock = NULL;
13812 		BNX2X_ERR("PTP clock registeration failed\n");
13813 	}
13814 }
13815 
13816 static int bnx2x_init_one(struct pci_dev *pdev,
13817 				    const struct pci_device_id *ent)
13818 {
13819 	struct net_device *dev = NULL;
13820 	struct bnx2x *bp;
13821 	enum pcie_link_width pcie_width;
13822 	enum pci_bus_speed pcie_speed;
13823 	int rc, max_non_def_sbs;
13824 	int rx_count, tx_count, rss_count, doorbell_size;
13825 	int max_cos_est;
13826 	bool is_vf;
13827 	int cnic_cnt;
13828 
13829 	/* Management FW 'remembers' living interfaces. Allow it some time
13830 	 * to forget previously living interfaces, allowing a proper re-load.
13831 	 */
13832 	if (is_kdump_kernel()) {
13833 		ktime_t now = ktime_get_boottime();
13834 		ktime_t fw_ready_time = ktime_set(5, 0);
13835 
13836 		if (ktime_before(now, fw_ready_time))
13837 			msleep(ktime_ms_delta(fw_ready_time, now));
13838 	}
13839 
13840 	/* An estimated maximum supported CoS number according to the chip
13841 	 * version.
13842 	 * We will try to roughly estimate the maximum number of CoSes this chip
13843 	 * may support in order to minimize the memory allocated for Tx
13844 	 * netdev_queue's. This number will be accurately calculated during the
13845 	 * initialization of bp->max_cos based on the chip versions AND chip
13846 	 * revision in the bnx2x_init_bp().
13847 	 */
13848 	max_cos_est = set_max_cos_est(ent->driver_data);
13849 	if (max_cos_est < 0)
13850 		return max_cos_est;
13851 	is_vf = set_is_vf(ent->driver_data);
13852 	cnic_cnt = is_vf ? 0 : 1;
13853 
13854 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13855 
13856 	/* add another SB for VF as it has no default SB */
13857 	max_non_def_sbs += is_vf ? 1 : 0;
13858 
13859 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13860 	rss_count = max_non_def_sbs - cnic_cnt;
13861 
13862 	if (rss_count < 1)
13863 		return -EINVAL;
13864 
13865 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13866 	rx_count = rss_count + cnic_cnt;
13867 
13868 	/* Maximum number of netdev Tx queues:
13869 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13870 	 */
13871 	tx_count = rss_count * max_cos_est + cnic_cnt;
13872 
13873 	/* dev zeroed in init_etherdev */
13874 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13875 	if (!dev)
13876 		return -ENOMEM;
13877 
13878 	bp = netdev_priv(dev);
13879 
13880 	bp->flags = 0;
13881 	if (is_vf)
13882 		bp->flags |= IS_VF_FLAG;
13883 
13884 	bp->igu_sb_cnt = max_non_def_sbs;
13885 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13886 	bp->msg_enable = debug;
13887 	bp->cnic_support = cnic_cnt;
13888 	bp->cnic_probe = bnx2x_cnic_probe;
13889 
13890 	pci_set_drvdata(pdev, dev);
13891 
13892 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13893 	if (rc < 0) {
13894 		free_netdev(dev);
13895 		return rc;
13896 	}
13897 
13898 	BNX2X_DEV_INFO("This is a %s function\n",
13899 		       IS_PF(bp) ? "physical" : "virtual");
13900 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13901 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13902 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13903 		       tx_count, rx_count);
13904 
13905 	rc = bnx2x_init_bp(bp);
13906 	if (rc)
13907 		goto init_one_exit;
13908 
13909 	/* Map doorbells here as we need the real value of bp->max_cos which
13910 	 * is initialized in bnx2x_init_bp() to determine the number of
13911 	 * l2 connections.
13912 	 */
13913 	if (IS_VF(bp)) {
13914 		bp->doorbells = bnx2x_vf_doorbells(bp);
13915 		rc = bnx2x_vf_pci_alloc(bp);
13916 		if (rc)
13917 			goto init_one_freemem;
13918 	} else {
13919 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13920 		if (doorbell_size > pci_resource_len(pdev, 2)) {
13921 			dev_err(&bp->pdev->dev,
13922 				"Cannot map doorbells, bar size too small, aborting\n");
13923 			rc = -ENOMEM;
13924 			goto init_one_freemem;
13925 		}
13926 		bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13927 						doorbell_size);
13928 	}
13929 	if (!bp->doorbells) {
13930 		dev_err(&bp->pdev->dev,
13931 			"Cannot map doorbell space, aborting\n");
13932 		rc = -ENOMEM;
13933 		goto init_one_freemem;
13934 	}
13935 
13936 	if (IS_VF(bp)) {
13937 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13938 		if (rc)
13939 			goto init_one_freemem;
13940 	}
13941 
13942 	/* Enable SRIOV if capability found in configuration space */
13943 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13944 	if (rc)
13945 		goto init_one_freemem;
13946 
13947 	/* calc qm_cid_count */
13948 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13949 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13950 
13951 	/* disable FCOE L2 queue for E1x*/
13952 	if (CHIP_IS_E1x(bp))
13953 		bp->flags |= NO_FCOE_FLAG;
13954 
13955 	/* Set bp->num_queues for MSI-X mode*/
13956 	bnx2x_set_num_queues(bp);
13957 
13958 	/* Configure interrupt mode: try to enable MSI-X/MSI if
13959 	 * needed.
13960 	 */
13961 	rc = bnx2x_set_int_mode(bp);
13962 	if (rc) {
13963 		dev_err(&pdev->dev, "Cannot set interrupts\n");
13964 		goto init_one_freemem;
13965 	}
13966 	BNX2X_DEV_INFO("set interrupts successfully\n");
13967 
13968 	/* register the net device */
13969 	rc = register_netdev(dev);
13970 	if (rc) {
13971 		dev_err(&pdev->dev, "Cannot register net device\n");
13972 		goto init_one_freemem;
13973 	}
13974 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13975 
13976 	if (!NO_FCOE(bp)) {
13977 		/* Add storage MAC address */
13978 		rtnl_lock();
13979 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13980 		rtnl_unlock();
13981 	}
13982 	if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13983 	    pcie_speed == PCI_SPEED_UNKNOWN ||
13984 	    pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13985 		BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13986 	else
13987 		BNX2X_DEV_INFO(
13988 		       "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13989 		       board_info[ent->driver_data].name,
13990 		       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13991 		       pcie_width,
13992 		       pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13993 		       pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13994 		       pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13995 		       "Unknown",
13996 		       dev->base_addr, bp->pdev->irq, dev->dev_addr);
13997 
13998 	bnx2x_register_phc(bp);
13999 
14000 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14001 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14002 
14003 	return 0;
14004 
14005 init_one_freemem:
14006 	bnx2x_free_mem_bp(bp);
14007 
14008 init_one_exit:
14009 	bnx2x_disable_pcie_error_reporting(bp);
14010 
14011 	if (bp->regview)
14012 		iounmap(bp->regview);
14013 
14014 	if (IS_PF(bp) && bp->doorbells)
14015 		iounmap(bp->doorbells);
14016 
14017 	free_netdev(dev);
14018 
14019 	if (atomic_read(&pdev->enable_cnt) == 1)
14020 		pci_release_regions(pdev);
14021 
14022 	pci_disable_device(pdev);
14023 
14024 	return rc;
14025 }
14026 
14027 static void __bnx2x_remove(struct pci_dev *pdev,
14028 			   struct net_device *dev,
14029 			   struct bnx2x *bp,
14030 			   bool remove_netdev)
14031 {
14032 	if (bp->ptp_clock) {
14033 		ptp_clock_unregister(bp->ptp_clock);
14034 		bp->ptp_clock = NULL;
14035 	}
14036 
14037 	/* Delete storage MAC address */
14038 	if (!NO_FCOE(bp)) {
14039 		rtnl_lock();
14040 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14041 		rtnl_unlock();
14042 	}
14043 
14044 #ifdef BCM_DCBNL
14045 	/* Delete app tlvs from dcbnl */
14046 	bnx2x_dcbnl_update_applist(bp, true);
14047 #endif
14048 
14049 	if (IS_PF(bp) &&
14050 	    !BP_NOMCP(bp) &&
14051 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14052 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14053 
14054 	/* Close the interface - either directly or implicitly */
14055 	if (remove_netdev) {
14056 		unregister_netdev(dev);
14057 	} else {
14058 		rtnl_lock();
14059 		dev_close(dev);
14060 		rtnl_unlock();
14061 	}
14062 
14063 	bnx2x_iov_remove_one(bp);
14064 
14065 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14066 	if (IS_PF(bp)) {
14067 		bnx2x_set_power_state(bp, PCI_D0);
14068 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14069 
14070 		/* Set endianity registers to reset values in case next driver
14071 		 * boots in different endianty environment.
14072 		 */
14073 		bnx2x_reset_endianity(bp);
14074 	}
14075 
14076 	/* Disable MSI/MSI-X */
14077 	bnx2x_disable_msi(bp);
14078 
14079 	/* Power off */
14080 	if (IS_PF(bp))
14081 		bnx2x_set_power_state(bp, PCI_D3hot);
14082 
14083 	/* Make sure RESET task is not scheduled before continuing */
14084 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14085 
14086 	/* send message via vfpf channel to release the resources of this vf */
14087 	if (IS_VF(bp))
14088 		bnx2x_vfpf_release(bp);
14089 
14090 	/* Assumes no further PCIe PM changes will occur */
14091 	if (system_state == SYSTEM_POWER_OFF) {
14092 		pci_wake_from_d3(pdev, bp->wol);
14093 		pci_set_power_state(pdev, PCI_D3hot);
14094 	}
14095 
14096 	bnx2x_disable_pcie_error_reporting(bp);
14097 	if (remove_netdev) {
14098 		if (bp->regview)
14099 			iounmap(bp->regview);
14100 
14101 		/* For vfs, doorbells are part of the regview and were unmapped
14102 		 * along with it. FW is only loaded by PF.
14103 		 */
14104 		if (IS_PF(bp)) {
14105 			if (bp->doorbells)
14106 				iounmap(bp->doorbells);
14107 
14108 			bnx2x_release_firmware(bp);
14109 		} else {
14110 			bnx2x_vf_pci_dealloc(bp);
14111 		}
14112 		bnx2x_free_mem_bp(bp);
14113 
14114 		free_netdev(dev);
14115 
14116 		if (atomic_read(&pdev->enable_cnt) == 1)
14117 			pci_release_regions(pdev);
14118 
14119 		pci_disable_device(pdev);
14120 	}
14121 }
14122 
14123 static void bnx2x_remove_one(struct pci_dev *pdev)
14124 {
14125 	struct net_device *dev = pci_get_drvdata(pdev);
14126 	struct bnx2x *bp;
14127 
14128 	if (!dev) {
14129 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14130 		return;
14131 	}
14132 	bp = netdev_priv(dev);
14133 
14134 	__bnx2x_remove(pdev, dev, bp, true);
14135 }
14136 
14137 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14138 {
14139 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14140 
14141 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14142 
14143 	if (CNIC_LOADED(bp))
14144 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14145 
14146 	/* Stop Tx */
14147 	bnx2x_tx_disable(bp);
14148 	/* Delete all NAPI objects */
14149 	bnx2x_del_all_napi(bp);
14150 	if (CNIC_LOADED(bp))
14151 		bnx2x_del_all_napi_cnic(bp);
14152 	netdev_reset_tc(bp->dev);
14153 
14154 	del_timer_sync(&bp->timer);
14155 	cancel_delayed_work_sync(&bp->sp_task);
14156 	cancel_delayed_work_sync(&bp->period_task);
14157 
14158 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14159 		bp->stats_state = STATS_STATE_DISABLED;
14160 		up(&bp->stats_lock);
14161 	}
14162 
14163 	bnx2x_save_statistics(bp);
14164 
14165 	netif_carrier_off(bp->dev);
14166 
14167 	return 0;
14168 }
14169 
14170 /**
14171  * bnx2x_io_error_detected - called when PCI error is detected
14172  * @pdev: Pointer to PCI device
14173  * @state: The current pci connection state
14174  *
14175  * This function is called after a PCI bus error affecting
14176  * this device has been detected.
14177  */
14178 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14179 						pci_channel_state_t state)
14180 {
14181 	struct net_device *dev = pci_get_drvdata(pdev);
14182 	struct bnx2x *bp = netdev_priv(dev);
14183 
14184 	rtnl_lock();
14185 
14186 	BNX2X_ERR("IO error detected\n");
14187 
14188 	netif_device_detach(dev);
14189 
14190 	if (state == pci_channel_io_perm_failure) {
14191 		rtnl_unlock();
14192 		return PCI_ERS_RESULT_DISCONNECT;
14193 	}
14194 
14195 	if (netif_running(dev))
14196 		bnx2x_eeh_nic_unload(bp);
14197 
14198 	bnx2x_prev_path_mark_eeh(bp);
14199 
14200 	pci_disable_device(pdev);
14201 
14202 	rtnl_unlock();
14203 
14204 	/* Request a slot reset */
14205 	return PCI_ERS_RESULT_NEED_RESET;
14206 }
14207 
14208 /**
14209  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14210  * @pdev: Pointer to PCI device
14211  *
14212  * Restart the card from scratch, as if from a cold-boot.
14213  */
14214 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14215 {
14216 	struct net_device *dev = pci_get_drvdata(pdev);
14217 	struct bnx2x *bp = netdev_priv(dev);
14218 	int i;
14219 
14220 	rtnl_lock();
14221 	BNX2X_ERR("IO slot reset initializing...\n");
14222 	if (pci_enable_device(pdev)) {
14223 		dev_err(&pdev->dev,
14224 			"Cannot re-enable PCI device after reset\n");
14225 		rtnl_unlock();
14226 		return PCI_ERS_RESULT_DISCONNECT;
14227 	}
14228 
14229 	pci_set_master(pdev);
14230 	pci_restore_state(pdev);
14231 	pci_save_state(pdev);
14232 
14233 	if (netif_running(dev))
14234 		bnx2x_set_power_state(bp, PCI_D0);
14235 
14236 	if (netif_running(dev)) {
14237 		BNX2X_ERR("IO slot reset --> driver unload\n");
14238 
14239 		/* MCP should have been reset; Need to wait for validity */
14240 		bnx2x_init_shmem(bp);
14241 
14242 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14243 			u32 v;
14244 
14245 			v = SHMEM2_RD(bp,
14246 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14247 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14248 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14249 		}
14250 		bnx2x_drain_tx_queues(bp);
14251 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14252 		bnx2x_netif_stop(bp, 1);
14253 		bnx2x_free_irq(bp);
14254 
14255 		/* Report UNLOAD_DONE to MCP */
14256 		bnx2x_send_unload_done(bp, true);
14257 
14258 		bp->sp_state = 0;
14259 		bp->port.pmf = 0;
14260 
14261 		bnx2x_prev_unload(bp);
14262 
14263 		/* We should have reseted the engine, so It's fair to
14264 		 * assume the FW will no longer write to the bnx2x driver.
14265 		 */
14266 		bnx2x_squeeze_objects(bp);
14267 		bnx2x_free_skbs(bp);
14268 		for_each_rx_queue(bp, i)
14269 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14270 		bnx2x_free_fp_mem(bp);
14271 		bnx2x_free_mem(bp);
14272 
14273 		bp->state = BNX2X_STATE_CLOSED;
14274 	}
14275 
14276 	rtnl_unlock();
14277 
14278 	/* If AER, perform cleanup of the PCIe registers */
14279 	if (bp->flags & AER_ENABLED) {
14280 		if (pci_cleanup_aer_uncorrect_error_status(pdev))
14281 			BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14282 		else
14283 			DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14284 	}
14285 
14286 	return PCI_ERS_RESULT_RECOVERED;
14287 }
14288 
14289 /**
14290  * bnx2x_io_resume - called when traffic can start flowing again
14291  * @pdev: Pointer to PCI device
14292  *
14293  * This callback is called when the error recovery driver tells us that
14294  * its OK to resume normal operation.
14295  */
14296 static void bnx2x_io_resume(struct pci_dev *pdev)
14297 {
14298 	struct net_device *dev = pci_get_drvdata(pdev);
14299 	struct bnx2x *bp = netdev_priv(dev);
14300 
14301 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14302 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14303 		return;
14304 	}
14305 
14306 	rtnl_lock();
14307 
14308 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14309 							DRV_MSG_SEQ_NUMBER_MASK;
14310 
14311 	if (netif_running(dev))
14312 		bnx2x_nic_load(bp, LOAD_NORMAL);
14313 
14314 	netif_device_attach(dev);
14315 
14316 	rtnl_unlock();
14317 }
14318 
14319 static const struct pci_error_handlers bnx2x_err_handler = {
14320 	.error_detected = bnx2x_io_error_detected,
14321 	.slot_reset     = bnx2x_io_slot_reset,
14322 	.resume         = bnx2x_io_resume,
14323 };
14324 
14325 static void bnx2x_shutdown(struct pci_dev *pdev)
14326 {
14327 	struct net_device *dev = pci_get_drvdata(pdev);
14328 	struct bnx2x *bp;
14329 
14330 	if (!dev)
14331 		return;
14332 
14333 	bp = netdev_priv(dev);
14334 	if (!bp)
14335 		return;
14336 
14337 	rtnl_lock();
14338 	netif_device_detach(dev);
14339 	rtnl_unlock();
14340 
14341 	/* Don't remove the netdevice, as there are scenarios which will cause
14342 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14343 	 * rootfs is mounted from SAN.
14344 	 */
14345 	__bnx2x_remove(pdev, dev, bp, false);
14346 }
14347 
14348 static struct pci_driver bnx2x_pci_driver = {
14349 	.name        = DRV_MODULE_NAME,
14350 	.id_table    = bnx2x_pci_tbl,
14351 	.probe       = bnx2x_init_one,
14352 	.remove      = bnx2x_remove_one,
14353 	.suspend     = bnx2x_suspend,
14354 	.resume      = bnx2x_resume,
14355 	.err_handler = &bnx2x_err_handler,
14356 #ifdef CONFIG_BNX2X_SRIOV
14357 	.sriov_configure = bnx2x_sriov_configure,
14358 #endif
14359 	.shutdown    = bnx2x_shutdown,
14360 };
14361 
14362 static int __init bnx2x_init(void)
14363 {
14364 	int ret;
14365 
14366 	pr_info("%s", version);
14367 
14368 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14369 	if (bnx2x_wq == NULL) {
14370 		pr_err("Cannot create workqueue\n");
14371 		return -ENOMEM;
14372 	}
14373 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14374 	if (!bnx2x_iov_wq) {
14375 		pr_err("Cannot create iov workqueue\n");
14376 		destroy_workqueue(bnx2x_wq);
14377 		return -ENOMEM;
14378 	}
14379 
14380 	ret = pci_register_driver(&bnx2x_pci_driver);
14381 	if (ret) {
14382 		pr_err("Cannot register driver\n");
14383 		destroy_workqueue(bnx2x_wq);
14384 		destroy_workqueue(bnx2x_iov_wq);
14385 	}
14386 	return ret;
14387 }
14388 
14389 static void __exit bnx2x_cleanup(void)
14390 {
14391 	struct list_head *pos, *q;
14392 
14393 	pci_unregister_driver(&bnx2x_pci_driver);
14394 
14395 	destroy_workqueue(bnx2x_wq);
14396 	destroy_workqueue(bnx2x_iov_wq);
14397 
14398 	/* Free globally allocated resources */
14399 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14400 		struct bnx2x_prev_path_list *tmp =
14401 			list_entry(pos, struct bnx2x_prev_path_list, list);
14402 		list_del(pos);
14403 		kfree(tmp);
14404 	}
14405 }
14406 
14407 void bnx2x_notify_link_changed(struct bnx2x *bp)
14408 {
14409 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14410 }
14411 
14412 module_init(bnx2x_init);
14413 module_exit(bnx2x_cleanup);
14414 
14415 /**
14416  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14417  *
14418  * @bp:		driver handle
14419  * @set:	set or clear the CAM entry
14420  *
14421  * This function will wait until the ramrod completion returns.
14422  * Return 0 if success, -ENODEV if ramrod doesn't return.
14423  */
14424 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14425 {
14426 	unsigned long ramrod_flags = 0;
14427 
14428 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14429 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14430 				 &bp->iscsi_l2_mac_obj, true,
14431 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14432 }
14433 
14434 /* count denotes the number of new completions we have seen */
14435 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14436 {
14437 	struct eth_spe *spe;
14438 	int cxt_index, cxt_offset;
14439 
14440 #ifdef BNX2X_STOP_ON_ERROR
14441 	if (unlikely(bp->panic))
14442 		return;
14443 #endif
14444 
14445 	spin_lock_bh(&bp->spq_lock);
14446 	BUG_ON(bp->cnic_spq_pending < count);
14447 	bp->cnic_spq_pending -= count;
14448 
14449 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14450 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14451 				& SPE_HDR_CONN_TYPE) >>
14452 				SPE_HDR_CONN_TYPE_SHIFT;
14453 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14454 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14455 
14456 		/* Set validation for iSCSI L2 client before sending SETUP
14457 		 *  ramrod
14458 		 */
14459 		if (type == ETH_CONNECTION_TYPE) {
14460 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14461 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14462 					ILT_PAGE_CIDS;
14463 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14464 					(cxt_index * ILT_PAGE_CIDS);
14465 				bnx2x_set_ctx_validation(bp,
14466 					&bp->context[cxt_index].
14467 							 vcxt[cxt_offset].eth,
14468 					BNX2X_ISCSI_ETH_CID(bp));
14469 			}
14470 		}
14471 
14472 		/*
14473 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14474 		 * and in the air. We also check that number of outstanding
14475 		 * COMMON ramrods is not more than the EQ and SPQ can
14476 		 * accommodate.
14477 		 */
14478 		if (type == ETH_CONNECTION_TYPE) {
14479 			if (!atomic_read(&bp->cq_spq_left))
14480 				break;
14481 			else
14482 				atomic_dec(&bp->cq_spq_left);
14483 		} else if (type == NONE_CONNECTION_TYPE) {
14484 			if (!atomic_read(&bp->eq_spq_left))
14485 				break;
14486 			else
14487 				atomic_dec(&bp->eq_spq_left);
14488 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14489 			   (type == FCOE_CONNECTION_TYPE)) {
14490 			if (bp->cnic_spq_pending >=
14491 			    bp->cnic_eth_dev.max_kwqe_pending)
14492 				break;
14493 			else
14494 				bp->cnic_spq_pending++;
14495 		} else {
14496 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14497 			bnx2x_panic();
14498 			break;
14499 		}
14500 
14501 		spe = bnx2x_sp_get_next(bp);
14502 		*spe = *bp->cnic_kwq_cons;
14503 
14504 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14505 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14506 
14507 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14508 			bp->cnic_kwq_cons = bp->cnic_kwq;
14509 		else
14510 			bp->cnic_kwq_cons++;
14511 	}
14512 	bnx2x_sp_prod_update(bp);
14513 	spin_unlock_bh(&bp->spq_lock);
14514 }
14515 
14516 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14517 			       struct kwqe_16 *kwqes[], u32 count)
14518 {
14519 	struct bnx2x *bp = netdev_priv(dev);
14520 	int i;
14521 
14522 #ifdef BNX2X_STOP_ON_ERROR
14523 	if (unlikely(bp->panic)) {
14524 		BNX2X_ERR("Can't post to SP queue while panic\n");
14525 		return -EIO;
14526 	}
14527 #endif
14528 
14529 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14530 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14531 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14532 		return -EAGAIN;
14533 	}
14534 
14535 	spin_lock_bh(&bp->spq_lock);
14536 
14537 	for (i = 0; i < count; i++) {
14538 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14539 
14540 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14541 			break;
14542 
14543 		*bp->cnic_kwq_prod = *spe;
14544 
14545 		bp->cnic_kwq_pending++;
14546 
14547 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14548 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14549 		   spe->data.update_data_addr.hi,
14550 		   spe->data.update_data_addr.lo,
14551 		   bp->cnic_kwq_pending);
14552 
14553 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14554 			bp->cnic_kwq_prod = bp->cnic_kwq;
14555 		else
14556 			bp->cnic_kwq_prod++;
14557 	}
14558 
14559 	spin_unlock_bh(&bp->spq_lock);
14560 
14561 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14562 		bnx2x_cnic_sp_post(bp, 0);
14563 
14564 	return i;
14565 }
14566 
14567 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14568 {
14569 	struct cnic_ops *c_ops;
14570 	int rc = 0;
14571 
14572 	mutex_lock(&bp->cnic_mutex);
14573 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14574 					  lockdep_is_held(&bp->cnic_mutex));
14575 	if (c_ops)
14576 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14577 	mutex_unlock(&bp->cnic_mutex);
14578 
14579 	return rc;
14580 }
14581 
14582 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14583 {
14584 	struct cnic_ops *c_ops;
14585 	int rc = 0;
14586 
14587 	rcu_read_lock();
14588 	c_ops = rcu_dereference(bp->cnic_ops);
14589 	if (c_ops)
14590 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14591 	rcu_read_unlock();
14592 
14593 	return rc;
14594 }
14595 
14596 /*
14597  * for commands that have no data
14598  */
14599 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14600 {
14601 	struct cnic_ctl_info ctl = {0};
14602 
14603 	ctl.cmd = cmd;
14604 
14605 	return bnx2x_cnic_ctl_send(bp, &ctl);
14606 }
14607 
14608 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14609 {
14610 	struct cnic_ctl_info ctl = {0};
14611 
14612 	/* first we tell CNIC and only then we count this as a completion */
14613 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14614 	ctl.data.comp.cid = cid;
14615 	ctl.data.comp.error = err;
14616 
14617 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14618 	bnx2x_cnic_sp_post(bp, 0);
14619 }
14620 
14621 /* Called with netif_addr_lock_bh() taken.
14622  * Sets an rx_mode config for an iSCSI ETH client.
14623  * Doesn't block.
14624  * Completion should be checked outside.
14625  */
14626 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14627 {
14628 	unsigned long accept_flags = 0, ramrod_flags = 0;
14629 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14630 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14631 
14632 	if (start) {
14633 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14634 		 * because it's the only way for UIO Queue to accept
14635 		 * multicasts (in non-promiscuous mode only one Queue per
14636 		 * function will receive multicast packets (leading in our
14637 		 * case).
14638 		 */
14639 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14640 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14641 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14642 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14643 
14644 		/* Clear STOP_PENDING bit if START is requested */
14645 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14646 
14647 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14648 	} else
14649 		/* Clear START_PENDING bit if STOP is requested */
14650 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14651 
14652 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14653 		set_bit(sched_state, &bp->sp_state);
14654 	else {
14655 		__set_bit(RAMROD_RX, &ramrod_flags);
14656 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14657 				    ramrod_flags);
14658 	}
14659 }
14660 
14661 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14662 {
14663 	struct bnx2x *bp = netdev_priv(dev);
14664 	int rc = 0;
14665 
14666 	switch (ctl->cmd) {
14667 	case DRV_CTL_CTXTBL_WR_CMD: {
14668 		u32 index = ctl->data.io.offset;
14669 		dma_addr_t addr = ctl->data.io.dma_addr;
14670 
14671 		bnx2x_ilt_wr(bp, index, addr);
14672 		break;
14673 	}
14674 
14675 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14676 		int count = ctl->data.credit.credit_count;
14677 
14678 		bnx2x_cnic_sp_post(bp, count);
14679 		break;
14680 	}
14681 
14682 	/* rtnl_lock is held.  */
14683 	case DRV_CTL_START_L2_CMD: {
14684 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14685 		unsigned long sp_bits = 0;
14686 
14687 		/* Configure the iSCSI classification object */
14688 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14689 				   cp->iscsi_l2_client_id,
14690 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14691 				   bnx2x_sp(bp, mac_rdata),
14692 				   bnx2x_sp_mapping(bp, mac_rdata),
14693 				   BNX2X_FILTER_MAC_PENDING,
14694 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14695 				   &bp->macs_pool);
14696 
14697 		/* Set iSCSI MAC address */
14698 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14699 		if (rc)
14700 			break;
14701 
14702 		mmiowb();
14703 		barrier();
14704 
14705 		/* Start accepting on iSCSI L2 ring */
14706 
14707 		netif_addr_lock_bh(dev);
14708 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14709 		netif_addr_unlock_bh(dev);
14710 
14711 		/* bits to wait on */
14712 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14713 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14714 
14715 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14716 			BNX2X_ERR("rx_mode completion timed out!\n");
14717 
14718 		break;
14719 	}
14720 
14721 	/* rtnl_lock is held.  */
14722 	case DRV_CTL_STOP_L2_CMD: {
14723 		unsigned long sp_bits = 0;
14724 
14725 		/* Stop accepting on iSCSI L2 ring */
14726 		netif_addr_lock_bh(dev);
14727 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14728 		netif_addr_unlock_bh(dev);
14729 
14730 		/* bits to wait on */
14731 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14732 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14733 
14734 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14735 			BNX2X_ERR("rx_mode completion timed out!\n");
14736 
14737 		mmiowb();
14738 		barrier();
14739 
14740 		/* Unset iSCSI L2 MAC */
14741 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14742 					BNX2X_ISCSI_ETH_MAC, true);
14743 		break;
14744 	}
14745 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14746 		int count = ctl->data.credit.credit_count;
14747 
14748 		smp_mb__before_atomic();
14749 		atomic_add(count, &bp->cq_spq_left);
14750 		smp_mb__after_atomic();
14751 		break;
14752 	}
14753 	case DRV_CTL_ULP_REGISTER_CMD: {
14754 		int ulp_type = ctl->data.register_data.ulp_type;
14755 
14756 		if (CHIP_IS_E3(bp)) {
14757 			int idx = BP_FW_MB_IDX(bp);
14758 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14759 			int path = BP_PATH(bp);
14760 			int port = BP_PORT(bp);
14761 			int i;
14762 			u32 scratch_offset;
14763 			u32 *host_addr;
14764 
14765 			/* first write capability to shmem2 */
14766 			if (ulp_type == CNIC_ULP_ISCSI)
14767 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14768 			else if (ulp_type == CNIC_ULP_FCOE)
14769 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14770 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14771 
14772 			if ((ulp_type != CNIC_ULP_FCOE) ||
14773 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14774 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14775 				break;
14776 
14777 			/* if reached here - should write fcoe capabilities */
14778 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14779 			if (!scratch_offset)
14780 				break;
14781 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14782 						   fcoe_features[path][port]);
14783 			host_addr = (u32 *) &(ctl->data.register_data.
14784 					      fcoe_features);
14785 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14786 			     i += 4)
14787 				REG_WR(bp, scratch_offset + i,
14788 				       *(host_addr + i/4));
14789 		}
14790 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14791 		break;
14792 	}
14793 
14794 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14795 		int ulp_type = ctl->data.ulp_type;
14796 
14797 		if (CHIP_IS_E3(bp)) {
14798 			int idx = BP_FW_MB_IDX(bp);
14799 			u32 cap;
14800 
14801 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14802 			if (ulp_type == CNIC_ULP_ISCSI)
14803 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14804 			else if (ulp_type == CNIC_ULP_FCOE)
14805 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14806 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14807 		}
14808 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14809 		break;
14810 	}
14811 
14812 	default:
14813 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14814 		rc = -EINVAL;
14815 	}
14816 
14817 	/* For storage-only interfaces, change driver state */
14818 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14819 		switch (ctl->drv_state) {
14820 		case DRV_NOP:
14821 			break;
14822 		case DRV_ACTIVE:
14823 			bnx2x_set_os_driver_state(bp,
14824 						  OS_DRIVER_STATE_ACTIVE);
14825 			break;
14826 		case DRV_INACTIVE:
14827 			bnx2x_set_os_driver_state(bp,
14828 						  OS_DRIVER_STATE_DISABLED);
14829 			break;
14830 		case DRV_UNLOADED:
14831 			bnx2x_set_os_driver_state(bp,
14832 						  OS_DRIVER_STATE_NOT_LOADED);
14833 			break;
14834 		default:
14835 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14836 		}
14837 	}
14838 
14839 	return rc;
14840 }
14841 
14842 static int bnx2x_get_fc_npiv(struct net_device *dev,
14843 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14844 {
14845 	struct bnx2x *bp = netdev_priv(dev);
14846 	struct bdn_fc_npiv_tbl *tbl = NULL;
14847 	u32 offset, entries;
14848 	int rc = -EINVAL;
14849 	int i;
14850 
14851 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14852 		goto out;
14853 
14854 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14855 
14856 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14857 	if (!tbl) {
14858 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14859 		goto out;
14860 	}
14861 
14862 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14863 	if (!offset) {
14864 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14865 		goto out;
14866 	}
14867 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14868 
14869 	/* Read the table contents from nvram */
14870 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14871 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14872 		goto out;
14873 	}
14874 
14875 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14876 	 * the number of entries back to cpu endianness.
14877 	 */
14878 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14879 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14880 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14881 
14882 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14883 		DP(BNX2X_MSG_MCP,
14884 		   "No FC-NPIV table [valid, simply not present]\n");
14885 		goto out;
14886 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14887 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14888 			  tbl->fc_npiv_cfg.num_of_npiv);
14889 		goto out;
14890 	} else {
14891 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14892 		   tbl->fc_npiv_cfg.num_of_npiv);
14893 	}
14894 
14895 	/* Copy the data into cnic-provided struct */
14896 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14897 	for (i = 0; i < cnic_tbl->count; i++) {
14898 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14899 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14900 	}
14901 
14902 	rc = 0;
14903 out:
14904 	kfree(tbl);
14905 	return rc;
14906 }
14907 
14908 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14909 {
14910 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14911 
14912 	if (bp->flags & USING_MSIX_FLAG) {
14913 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14914 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14915 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14916 	} else {
14917 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14918 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14919 	}
14920 	if (!CHIP_IS_E1x(bp))
14921 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14922 	else
14923 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14924 
14925 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14926 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14927 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14928 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14929 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14930 
14931 	cp->num_irq = 2;
14932 }
14933 
14934 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14935 {
14936 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14937 
14938 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14939 			     bnx2x_cid_ilt_lines(bp);
14940 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14941 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14942 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14943 
14944 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14945 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14946 	   cp->iscsi_l2_cid);
14947 
14948 	if (NO_ISCSI_OOO(bp))
14949 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14950 }
14951 
14952 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14953 			       void *data)
14954 {
14955 	struct bnx2x *bp = netdev_priv(dev);
14956 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14957 	int rc;
14958 
14959 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14960 
14961 	if (ops == NULL) {
14962 		BNX2X_ERR("NULL ops received\n");
14963 		return -EINVAL;
14964 	}
14965 
14966 	if (!CNIC_SUPPORT(bp)) {
14967 		BNX2X_ERR("Can't register CNIC when not supported\n");
14968 		return -EOPNOTSUPP;
14969 	}
14970 
14971 	if (!CNIC_LOADED(bp)) {
14972 		rc = bnx2x_load_cnic(bp);
14973 		if (rc) {
14974 			BNX2X_ERR("CNIC-related load failed\n");
14975 			return rc;
14976 		}
14977 	}
14978 
14979 	bp->cnic_enabled = true;
14980 
14981 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14982 	if (!bp->cnic_kwq)
14983 		return -ENOMEM;
14984 
14985 	bp->cnic_kwq_cons = bp->cnic_kwq;
14986 	bp->cnic_kwq_prod = bp->cnic_kwq;
14987 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14988 
14989 	bp->cnic_spq_pending = 0;
14990 	bp->cnic_kwq_pending = 0;
14991 
14992 	bp->cnic_data = data;
14993 
14994 	cp->num_irq = 0;
14995 	cp->drv_state |= CNIC_DRV_STATE_REGD;
14996 	cp->iro_arr = bp->iro_arr;
14997 
14998 	bnx2x_setup_cnic_irq_info(bp);
14999 
15000 	rcu_assign_pointer(bp->cnic_ops, ops);
15001 
15002 	/* Schedule driver to read CNIC driver versions */
15003 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15004 
15005 	return 0;
15006 }
15007 
15008 static int bnx2x_unregister_cnic(struct net_device *dev)
15009 {
15010 	struct bnx2x *bp = netdev_priv(dev);
15011 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15012 
15013 	mutex_lock(&bp->cnic_mutex);
15014 	cp->drv_state = 0;
15015 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15016 	mutex_unlock(&bp->cnic_mutex);
15017 	synchronize_rcu();
15018 	bp->cnic_enabled = false;
15019 	kfree(bp->cnic_kwq);
15020 	bp->cnic_kwq = NULL;
15021 
15022 	return 0;
15023 }
15024 
15025 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15026 {
15027 	struct bnx2x *bp = netdev_priv(dev);
15028 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15029 
15030 	/* If both iSCSI and FCoE are disabled - return NULL in
15031 	 * order to indicate CNIC that it should not try to work
15032 	 * with this device.
15033 	 */
15034 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15035 		return NULL;
15036 
15037 	cp->drv_owner = THIS_MODULE;
15038 	cp->chip_id = CHIP_ID(bp);
15039 	cp->pdev = bp->pdev;
15040 	cp->io_base = bp->regview;
15041 	cp->io_base2 = bp->doorbells;
15042 	cp->max_kwqe_pending = 8;
15043 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15044 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15045 			     bnx2x_cid_ilt_lines(bp);
15046 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15047 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15048 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15049 	cp->drv_ctl = bnx2x_drv_ctl;
15050 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15051 	cp->drv_register_cnic = bnx2x_register_cnic;
15052 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15053 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15054 	cp->iscsi_l2_client_id =
15055 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15056 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15057 
15058 	if (NO_ISCSI_OOO(bp))
15059 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15060 
15061 	if (NO_ISCSI(bp))
15062 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15063 
15064 	if (NO_FCOE(bp))
15065 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15066 
15067 	BNX2X_DEV_INFO(
15068 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15069 	   cp->ctx_blk_size,
15070 	   cp->ctx_tbl_offset,
15071 	   cp->ctx_tbl_len,
15072 	   cp->starting_cid);
15073 	return cp;
15074 }
15075 
15076 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15077 {
15078 	struct bnx2x *bp = fp->bp;
15079 	u32 offset = BAR_USTRORM_INTMEM;
15080 
15081 	if (IS_VF(bp))
15082 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15083 	else if (!CHIP_IS_E1x(bp))
15084 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15085 	else
15086 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15087 
15088 	return offset;
15089 }
15090 
15091 /* called only on E1H or E2.
15092  * When pretending to be PF, the pretend value is the function number 0...7
15093  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15094  * combination
15095  */
15096 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15097 {
15098 	u32 pretend_reg;
15099 
15100 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15101 		return -1;
15102 
15103 	/* get my own pretend register */
15104 	pretend_reg = bnx2x_get_pretend_reg(bp);
15105 	REG_WR(bp, pretend_reg, pretend_func_val);
15106 	REG_RD(bp, pretend_reg);
15107 	return 0;
15108 }
15109 
15110 static void bnx2x_ptp_task(struct work_struct *work)
15111 {
15112 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15113 	int port = BP_PORT(bp);
15114 	u32 val_seq;
15115 	u64 timestamp, ns;
15116 	struct skb_shared_hwtstamps shhwtstamps;
15117 
15118 	/* Read Tx timestamp registers */
15119 	val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15120 			 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15121 	if (val_seq & 0x10000) {
15122 		/* There is a valid timestamp value */
15123 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15124 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15125 		timestamp <<= 32;
15126 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15127 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15128 		/* Reset timestamp register to allow new timestamp */
15129 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15130 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15131 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15132 
15133 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15134 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15135 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15136 		dev_kfree_skb_any(bp->ptp_tx_skb);
15137 		bp->ptp_tx_skb = NULL;
15138 
15139 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15140 		   timestamp, ns);
15141 	} else {
15142 		DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15143 		/* Reschedule to keep checking for a valid timestamp value */
15144 		schedule_work(&bp->ptp_task);
15145 	}
15146 }
15147 
15148 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15149 {
15150 	int port = BP_PORT(bp);
15151 	u64 timestamp, ns;
15152 
15153 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15154 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15155 	timestamp <<= 32;
15156 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15157 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15158 
15159 	/* Reset timestamp register to allow new timestamp */
15160 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15161 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15162 
15163 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15164 
15165 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15166 
15167 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15168 	   timestamp, ns);
15169 }
15170 
15171 /* Read the PHC */
15172 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15173 {
15174 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15175 	int port = BP_PORT(bp);
15176 	u32 wb_data[2];
15177 	u64 phc_cycles;
15178 
15179 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15180 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15181 	phc_cycles = wb_data[1];
15182 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15183 
15184 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15185 
15186 	return phc_cycles;
15187 }
15188 
15189 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15190 {
15191 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15192 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15193 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15194 	bp->cyclecounter.shift = 1;
15195 	bp->cyclecounter.mult = 1;
15196 }
15197 
15198 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15199 {
15200 	struct bnx2x_func_state_params func_params = {NULL};
15201 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15202 		&func_params.params.set_timesync;
15203 
15204 	/* Prepare parameters for function state transitions */
15205 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15206 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15207 
15208 	func_params.f_obj = &bp->func_obj;
15209 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15210 
15211 	/* Function parameters */
15212 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15213 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15214 
15215 	return bnx2x_func_state_change(bp, &func_params);
15216 }
15217 
15218 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15219 {
15220 	struct bnx2x_queue_state_params q_params;
15221 	int rc, i;
15222 
15223 	/* send queue update ramrod to enable PTP packets */
15224 	memset(&q_params, 0, sizeof(q_params));
15225 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15226 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15227 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15228 		  &q_params.params.update.update_flags);
15229 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15230 		  &q_params.params.update.update_flags);
15231 
15232 	/* send the ramrod on all the queues of the PF */
15233 	for_each_eth_queue(bp, i) {
15234 		struct bnx2x_fastpath *fp = &bp->fp[i];
15235 
15236 		/* Set the appropriate Queue object */
15237 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15238 
15239 		/* Update the Queue state */
15240 		rc = bnx2x_queue_state_change(bp, &q_params);
15241 		if (rc) {
15242 			BNX2X_ERR("Failed to enable PTP packets\n");
15243 			return rc;
15244 		}
15245 	}
15246 
15247 	return 0;
15248 }
15249 
15250 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15251 {
15252 	int port = BP_PORT(bp);
15253 	int rc;
15254 
15255 	if (!bp->hwtstamp_ioctl_called)
15256 		return 0;
15257 
15258 	switch (bp->tx_type) {
15259 	case HWTSTAMP_TX_ON:
15260 		bp->flags |= TX_TIMESTAMPING_EN;
15261 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15262 		       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15263 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15264 		       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15265 		break;
15266 	case HWTSTAMP_TX_ONESTEP_SYNC:
15267 		BNX2X_ERR("One-step timestamping is not supported\n");
15268 		return -ERANGE;
15269 	}
15270 
15271 	switch (bp->rx_filter) {
15272 	case HWTSTAMP_FILTER_NONE:
15273 		break;
15274 	case HWTSTAMP_FILTER_ALL:
15275 	case HWTSTAMP_FILTER_SOME:
15276 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15277 		break;
15278 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15279 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15280 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15281 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15282 		/* Initialize PTP detection for UDP/IPv4 events */
15283 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15284 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15285 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15286 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15287 		break;
15288 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15289 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15290 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15291 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15292 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15293 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15294 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15295 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15296 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15297 		break;
15298 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15299 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15300 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15301 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15302 		/* Initialize PTP detection L2 events */
15303 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15304 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15305 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15306 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15307 
15308 		break;
15309 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15310 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15311 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15312 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15313 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15314 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15315 		       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15316 		REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15317 		       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15318 		break;
15319 	}
15320 
15321 	/* Indicate to FW that this PF expects recorded PTP packets */
15322 	rc = bnx2x_enable_ptp_packets(bp);
15323 	if (rc)
15324 		return rc;
15325 
15326 	/* Enable sending PTP packets to host */
15327 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15328 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15329 
15330 	return 0;
15331 }
15332 
15333 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15334 {
15335 	struct hwtstamp_config config;
15336 	int rc;
15337 
15338 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15339 
15340 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15341 		return -EFAULT;
15342 
15343 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15344 	   config.tx_type, config.rx_filter);
15345 
15346 	if (config.flags) {
15347 		BNX2X_ERR("config.flags is reserved for future use\n");
15348 		return -EINVAL;
15349 	}
15350 
15351 	bp->hwtstamp_ioctl_called = 1;
15352 	bp->tx_type = config.tx_type;
15353 	bp->rx_filter = config.rx_filter;
15354 
15355 	rc = bnx2x_configure_ptp_filters(bp);
15356 	if (rc)
15357 		return rc;
15358 
15359 	config.rx_filter = bp->rx_filter;
15360 
15361 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15362 		-EFAULT : 0;
15363 }
15364 
15365 /* Configures HW for PTP */
15366 static int bnx2x_configure_ptp(struct bnx2x *bp)
15367 {
15368 	int rc, port = BP_PORT(bp);
15369 	u32 wb_data[2];
15370 
15371 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15372 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15373 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15374 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15375 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15376 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15377 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15378 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15379 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15380 
15381 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15382 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15383 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15384 
15385 	/* Enable the PTP feature */
15386 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15387 	       NIG_REG_P0_PTP_EN, 0x3F);
15388 
15389 	/* Enable the free-running counter */
15390 	wb_data[0] = 0;
15391 	wb_data[1] = 0;
15392 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15393 
15394 	/* Reset drift register (offset register is not reset) */
15395 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15396 	if (rc) {
15397 		BNX2X_ERR("Failed to reset PHC drift register\n");
15398 		return -EFAULT;
15399 	}
15400 
15401 	/* Reset possibly old timestamps */
15402 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15403 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15404 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15405 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15406 
15407 	return 0;
15408 }
15409 
15410 /* Called during load, to initialize PTP-related stuff */
15411 void bnx2x_init_ptp(struct bnx2x *bp)
15412 {
15413 	int rc;
15414 
15415 	/* Configure PTP in HW */
15416 	rc = bnx2x_configure_ptp(bp);
15417 	if (rc) {
15418 		BNX2X_ERR("Stopping PTP initialization\n");
15419 		return;
15420 	}
15421 
15422 	/* Init work queue for Tx timestamping */
15423 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15424 
15425 	/* Init cyclecounter and timecounter. This is done only in the first
15426 	 * load. If done in every load, PTP application will fail when doing
15427 	 * unload / load (e.g. MTU change) while it is running.
15428 	 */
15429 	if (!bp->timecounter_init_done) {
15430 		bnx2x_init_cyclecounter(bp);
15431 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15432 				 ktime_to_ns(ktime_get_real()));
15433 		bp->timecounter_init_done = 1;
15434 	}
15435 
15436 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15437 }
15438