xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init_ops.h (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 /* bnx2x_init_ops.h: Qlogic Everest network driver.
2  *               Static functions needed during the initialization.
3  *               This file is "included" in bnx2x_main.c.
4  *
5  * Copyright (c) 2007-2013 Broadcom Corporation
6  * Copyright (c) 2014 QLogic Corporation
7  All rights reserved
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation.
12  *
13  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
14  * Written by: Vladislav Zolotarov
15  */
16 
17 #ifndef BNX2X_INIT_OPS_H
18 #define BNX2X_INIT_OPS_H
19 
20 
21 #ifndef BP_ILT
22 #define BP_ILT(bp)	NULL
23 #endif
24 
25 #ifndef BP_FUNC
26 #define BP_FUNC(bp)	0
27 #endif
28 
29 #ifndef BP_PORT
30 #define BP_PORT(bp)	0
31 #endif
32 
33 #ifndef BNX2X_ILT_FREE
34 #define BNX2X_ILT_FREE(x, y, sz)
35 #endif
36 
37 #ifndef BNX2X_ILT_ZALLOC
38 #define BNX2X_ILT_ZALLOC(x, y, sz)
39 #endif
40 
41 #ifndef ILOG2
42 #define ILOG2(x)	x
43 #endif
44 
45 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
46 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
47 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
48 				      dma_addr_t phys_addr, u32 addr,
49 				      u32 len);
50 
51 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
52 			      const u32 *data, u32 len)
53 {
54 	u32 i;
55 
56 	for (i = 0; i < len; i++)
57 		REG_WR(bp, addr + i*4, data[i]);
58 }
59 
60 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
61 			      const u32 *data, u32 len)
62 {
63 	u32 i;
64 
65 	for (i = 0; i < len; i++)
66 		bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
67 }
68 
69 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
70 				u8 wb)
71 {
72 	if (bp->dmae_ready)
73 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
74 
75 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
76 	else if (wb && CHIP_IS_E1(bp))
77 		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
78 
79 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
80 	else
81 		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
82 }
83 
84 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
85 			    u32 len, u8 wb)
86 {
87 	u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
88 	u32 buf_len32 = buf_len/4;
89 	u32 i;
90 
91 	memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
92 
93 	for (i = 0; i < len; i += buf_len32) {
94 		u32 cur_len = min(buf_len32, len - i);
95 
96 		bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
97 	}
98 }
99 
100 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
101 {
102 	if (bp->dmae_ready)
103 		bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
104 
105 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
106 	else if (CHIP_IS_E1(bp))
107 		bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
108 
109 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
110 	else
111 		bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
112 }
113 
114 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
115 			     const u32 *data, u32 len64)
116 {
117 	u32 buf_len32 = FW_BUF_SIZE/4;
118 	u32 len = len64*2;
119 	u64 data64 = 0;
120 	u32 i;
121 
122 	/* 64 bit value is in a blob: first low DWORD, then high DWORD */
123 	data64 = HILO_U64((*(data + 1)), (*data));
124 
125 	len64 = min((u32)(FW_BUF_SIZE/8), len64);
126 	for (i = 0; i < len64; i++) {
127 		u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
128 
129 		*pdata = data64;
130 	}
131 
132 	for (i = 0; i < len; i += buf_len32) {
133 		u32 cur_len = min(buf_len32, len - i);
134 
135 		bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
136 	}
137 }
138 
139 /*********************************************************
140    There are different blobs for each PRAM section.
141    In addition, each blob write operation is divided into a few operations
142    in order to decrease the amount of phys. contiguous buffer needed.
143    Thus, when we select a blob the address may be with some offset
144    from the beginning of PRAM section.
145    The same holds for the INT_TABLE sections.
146 **********************************************************/
147 #define IF_IS_INT_TABLE_ADDR(base, addr) \
148 			if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
149 
150 #define IF_IS_PRAM_ADDR(base, addr) \
151 			if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
152 
153 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
154 				const u8 *data)
155 {
156 	IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
157 		data = INIT_TSEM_INT_TABLE_DATA(bp);
158 	else
159 		IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
160 			data = INIT_CSEM_INT_TABLE_DATA(bp);
161 	else
162 		IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
163 			data = INIT_USEM_INT_TABLE_DATA(bp);
164 	else
165 		IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
166 			data = INIT_XSEM_INT_TABLE_DATA(bp);
167 	else
168 		IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
169 			data = INIT_TSEM_PRAM_DATA(bp);
170 	else
171 		IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
172 			data = INIT_CSEM_PRAM_DATA(bp);
173 	else
174 		IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
175 			data = INIT_USEM_PRAM_DATA(bp);
176 	else
177 		IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
178 			data = INIT_XSEM_PRAM_DATA(bp);
179 
180 	return data;
181 }
182 
183 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
184 			     const u32 *data, u32 len)
185 {
186 	if (bp->dmae_ready)
187 		VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
188 
189 	/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
190 	else if (CHIP_IS_E1(bp))
191 		bnx2x_init_ind_wr(bp, addr, data, len);
192 
193 	/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
194 	else
195 		bnx2x_init_str_wr(bp, addr, data, len);
196 }
197 
198 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
199 			u32 val_hi)
200 {
201 	u32 wb_write[2];
202 
203 	wb_write[0] = val_lo;
204 	wb_write[1] = val_hi;
205 	REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
206 }
207 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
208 			     u32 blob_off)
209 {
210 	const u8 *data = NULL;
211 	int rc;
212 	u32 i;
213 
214 	data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
215 
216 	rc = bnx2x_gunzip(bp, data, len);
217 	if (rc)
218 		return;
219 
220 	/* gunzip_outlen is in dwords */
221 	len = GUNZIP_OUTLEN(bp);
222 	for (i = 0; i < len; i++)
223 		((u32 *)GUNZIP_BUF(bp))[i] = (__force u32)
224 				cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
225 
226 	bnx2x_write_big_buf_wb(bp, addr, len);
227 }
228 
229 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
230 {
231 	u16 op_start =
232 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
233 						     STAGE_START)];
234 	u16 op_end =
235 		INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
236 						     STAGE_END)];
237 	const union init_op *op;
238 	u32 op_idx, op_type, addr, len;
239 	const u32 *data, *data_base;
240 
241 	/* If empty block */
242 	if (op_start == op_end)
243 		return;
244 
245 	data_base = INIT_DATA(bp);
246 
247 	for (op_idx = op_start; op_idx < op_end; op_idx++) {
248 
249 		op = (const union init_op *)&(INIT_OPS(bp)[op_idx]);
250 		/* Get generic data */
251 		op_type = op->raw.op;
252 		addr = op->raw.offset;
253 		/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
254 		 * OP_WR64 (we assume that op_arr_write and op_write have the
255 		 * same structure).
256 		 */
257 		len = op->arr_wr.data_len;
258 		data = data_base + op->arr_wr.data_off;
259 
260 		switch (op_type) {
261 		case OP_RD:
262 			REG_RD(bp, addr);
263 			break;
264 		case OP_WR:
265 			REG_WR(bp, addr, op->write.val);
266 			break;
267 		case OP_SW:
268 			bnx2x_init_str_wr(bp, addr, data, len);
269 			break;
270 		case OP_WB:
271 			bnx2x_init_wr_wb(bp, addr, data, len);
272 			break;
273 		case OP_ZR:
274 			bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
275 			break;
276 		case OP_WB_ZR:
277 			bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
278 			break;
279 		case OP_ZP:
280 			bnx2x_init_wr_zp(bp, addr, len,
281 					 op->arr_wr.data_off);
282 			break;
283 		case OP_WR_64:
284 			bnx2x_init_wr_64(bp, addr, data, len);
285 			break;
286 		case OP_IF_MODE_AND:
287 			/* if any of the flags doesn't match, skip the
288 			 * conditional block.
289 			 */
290 			if ((INIT_MODE_FLAGS(bp) &
291 				op->if_mode.mode_bit_map) !=
292 				op->if_mode.mode_bit_map)
293 				op_idx += op->if_mode.cmd_offset;
294 			break;
295 		case OP_IF_MODE_OR:
296 			/* if all the flags don't match, skip the conditional
297 			 * block.
298 			 */
299 			if ((INIT_MODE_FLAGS(bp) &
300 				op->if_mode.mode_bit_map) == 0)
301 				op_idx += op->if_mode.cmd_offset;
302 			break;
303 		default:
304 			/* Should never get here! */
305 
306 			break;
307 		}
308 	}
309 }
310 
311 
312 /****************************************************************************
313 * PXP Arbiter
314 ****************************************************************************/
315 /*
316  * This code configures the PCI read/write arbiter
317  * which implements a weighted round robin
318  * between the virtual queues in the chip.
319  *
320  * The values were derived for each PCI max payload and max request size.
321  * since max payload and max request size are only known at run time,
322  * this is done as a separate init stage.
323  */
324 
325 #define NUM_WR_Q			13
326 #define NUM_RD_Q			29
327 #define MAX_RD_ORD			3
328 #define MAX_WR_ORD			2
329 
330 /* configuration for one arbiter queue */
331 struct arb_line {
332 	int l;
333 	int add;
334 	int ubound;
335 };
336 
337 /* derived configuration for each read queue for each max request size */
338 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
339 /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
340 	{ {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
341 	{ {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
342 	{ {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
343 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
344 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
345 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
346 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
347 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
348 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
349 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
350 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
351 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
352 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
353 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
354 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
355 	{ {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
356 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
357 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
358 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
359 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
360 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
361 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
362 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
363 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
364 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
365 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
366 	{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
367 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
368 };
369 
370 /* derived configuration for each write queue for each max request size */
371 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
372 /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
373 	{ {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
374 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
375 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
376 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
377 	{ {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
378 	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
379 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
380 	{ {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
381 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
382 	{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
383 	{ {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
384 	{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
385 };
386 
387 /* register addresses for read queues */
388 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
389 /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
390 		PXP2_REG_RQ_BW_RD_UBOUND0},
391 	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
392 		PXP2_REG_PSWRQ_BW_UB1},
393 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
394 		PXP2_REG_PSWRQ_BW_UB2},
395 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
396 		PXP2_REG_PSWRQ_BW_UB3},
397 	{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
398 		PXP2_REG_RQ_BW_RD_UBOUND4},
399 	{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
400 		PXP2_REG_RQ_BW_RD_UBOUND5},
401 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
402 		PXP2_REG_PSWRQ_BW_UB6},
403 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
404 		PXP2_REG_PSWRQ_BW_UB7},
405 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
406 		PXP2_REG_PSWRQ_BW_UB8},
407 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
408 		PXP2_REG_PSWRQ_BW_UB9},
409 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
410 		PXP2_REG_PSWRQ_BW_UB10},
411 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
412 		PXP2_REG_PSWRQ_BW_UB11},
413 	{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
414 		PXP2_REG_RQ_BW_RD_UBOUND12},
415 	{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
416 		PXP2_REG_RQ_BW_RD_UBOUND13},
417 	{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
418 		PXP2_REG_RQ_BW_RD_UBOUND14},
419 	{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
420 		PXP2_REG_RQ_BW_RD_UBOUND15},
421 	{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
422 		PXP2_REG_RQ_BW_RD_UBOUND16},
423 	{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
424 		PXP2_REG_RQ_BW_RD_UBOUND17},
425 	{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
426 		PXP2_REG_RQ_BW_RD_UBOUND18},
427 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
428 		PXP2_REG_RQ_BW_RD_UBOUND19},
429 	{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
430 		PXP2_REG_RQ_BW_RD_UBOUND20},
431 	{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
432 		PXP2_REG_RQ_BW_RD_UBOUND22},
433 	{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
434 		PXP2_REG_RQ_BW_RD_UBOUND23},
435 	{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
436 		PXP2_REG_RQ_BW_RD_UBOUND24},
437 	{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
438 		PXP2_REG_RQ_BW_RD_UBOUND25},
439 	{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
440 		PXP2_REG_RQ_BW_RD_UBOUND26},
441 	{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
442 		PXP2_REG_RQ_BW_RD_UBOUND27},
443 	{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
444 		PXP2_REG_PSWRQ_BW_UB28}
445 };
446 
447 /* register addresses for write queues */
448 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
449 /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
450 		PXP2_REG_PSWRQ_BW_UB1},
451 	{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
452 		PXP2_REG_PSWRQ_BW_UB2},
453 	{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
454 		PXP2_REG_PSWRQ_BW_UB3},
455 	{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
456 		PXP2_REG_PSWRQ_BW_UB6},
457 	{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
458 		PXP2_REG_PSWRQ_BW_UB7},
459 	{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
460 		PXP2_REG_PSWRQ_BW_UB8},
461 	{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
462 		PXP2_REG_PSWRQ_BW_UB9},
463 	{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
464 		PXP2_REG_PSWRQ_BW_UB10},
465 	{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
466 		PXP2_REG_PSWRQ_BW_UB11},
467 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
468 		PXP2_REG_PSWRQ_BW_UB28},
469 	{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
470 		PXP2_REG_RQ_BW_WR_UBOUND29},
471 	{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
472 		PXP2_REG_RQ_BW_WR_UBOUND30}
473 };
474 
475 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
476 			       int w_order)
477 {
478 	u32 val, i;
479 
480 	if (r_order > MAX_RD_ORD) {
481 		DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
482 		   r_order, MAX_RD_ORD);
483 		r_order = MAX_RD_ORD;
484 	}
485 	if (w_order > MAX_WR_ORD) {
486 		DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
487 		   w_order, MAX_WR_ORD);
488 		w_order = MAX_WR_ORD;
489 	}
490 	if (CHIP_REV_IS_FPGA(bp)) {
491 		DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
492 		w_order = 0;
493 	}
494 	DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
495 
496 	for (i = 0; i < NUM_RD_Q-1; i++) {
497 		REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
498 		REG_WR(bp, read_arb_addr[i].add,
499 		       read_arb_data[i][r_order].add);
500 		REG_WR(bp, read_arb_addr[i].ubound,
501 		       read_arb_data[i][r_order].ubound);
502 	}
503 
504 	for (i = 0; i < NUM_WR_Q-1; i++) {
505 		if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
506 		    (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
507 
508 			REG_WR(bp, write_arb_addr[i].l,
509 			       write_arb_data[i][w_order].l);
510 
511 			REG_WR(bp, write_arb_addr[i].add,
512 			       write_arb_data[i][w_order].add);
513 
514 			REG_WR(bp, write_arb_addr[i].ubound,
515 			       write_arb_data[i][w_order].ubound);
516 		} else {
517 
518 			val = REG_RD(bp, write_arb_addr[i].l);
519 			REG_WR(bp, write_arb_addr[i].l,
520 			       val | (write_arb_data[i][w_order].l << 10));
521 
522 			val = REG_RD(bp, write_arb_addr[i].add);
523 			REG_WR(bp, write_arb_addr[i].add,
524 			       val | (write_arb_data[i][w_order].add << 10));
525 
526 			val = REG_RD(bp, write_arb_addr[i].ubound);
527 			REG_WR(bp, write_arb_addr[i].ubound,
528 			       val | (write_arb_data[i][w_order].ubound << 7));
529 		}
530 	}
531 
532 	val =  write_arb_data[NUM_WR_Q-1][w_order].add;
533 	val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
534 	val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
535 	REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
536 
537 	val =  read_arb_data[NUM_RD_Q-1][r_order].add;
538 	val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
539 	val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
540 	REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
541 
542 	REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
543 	REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
544 	REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
545 	REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
546 
547 	if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
548 		REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
549 
550 	if (CHIP_IS_E3(bp))
551 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
552 	else if (CHIP_IS_E2(bp))
553 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
554 	else
555 		REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
556 
557 	if (!CHIP_IS_E1(bp)) {
558 		/*    MPS      w_order     optimal TH      presently TH
559 		 *    128         0             0               2
560 		 *    256         1             1               3
561 		 *    >=512       2             2               3
562 		 */
563 		/* DMAE is special */
564 		if (!CHIP_IS_E1H(bp)) {
565 			/* E2 can use optimal TH */
566 			val = w_order;
567 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
568 		} else {
569 			val = ((w_order == 0) ? 2 : 3);
570 			REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
571 		}
572 
573 		REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
574 		REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
575 		REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
576 		REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
577 		REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
578 		REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
579 		REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
580 		REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
581 		REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
582 		REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
583 	}
584 
585 	/* Validate number of tags suppoted by device */
586 #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980
587 	val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
588 	val &= 0xFF;
589 	if (val <= 0x20)
590 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
591 }
592 
593 /****************************************************************************
594 * ILT management
595 ****************************************************************************/
596 /*
597  * This codes hides the low level HW interaction for ILT management and
598  * configuration. The API consists of a shadow ILT table which is set by the
599  * driver and a set of routines to use it to configure the HW.
600  *
601  */
602 
603 /* ILT HW init operations */
604 
605 /* ILT memory management operations */
606 #define ILT_MEMOP_ALLOC		0
607 #define ILT_MEMOP_FREE		1
608 
609 /* the phys address is shifted right 12 bits and has an added
610  * 1=valid bit added to the 53rd bit
611  * then since this is a wide register(TM)
612  * we split it into two 32 bit writes
613  */
614 #define ILT_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
615 #define ILT_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
616 #define ILT_RANGE(f, l)		(((l) << 10) | f)
617 
618 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
619 				 struct ilt_line *line, u32 size, u8 memop)
620 {
621 	if (memop == ILT_MEMOP_FREE) {
622 		BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
623 		return 0;
624 	}
625 	BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
626 	if (!line->page)
627 		return -1;
628 	line->size = size;
629 	return 0;
630 }
631 
632 
633 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
634 				   u8 memop)
635 {
636 	int i, rc;
637 	struct bnx2x_ilt *ilt = BP_ILT(bp);
638 	struct ilt_client_info *ilt_cli;
639 
640 	if (!ilt || !ilt->lines)
641 		return -1;
642 
643 	ilt_cli = &ilt->clients[cli_num];
644 
645 	if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
646 		return 0;
647 
648 	for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
649 		rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
650 					   ilt_cli->page_size, memop);
651 	}
652 	return rc;
653 }
654 
655 static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, u8 memop)
656 {
657 	int rc = 0;
658 
659 	if (CONFIGURE_NIC_MODE(bp))
660 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
661 	if (!rc)
662 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
663 
664 	return rc;
665 }
666 
667 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
668 {
669 	int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
670 	if (!rc)
671 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
672 	if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
673 		rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
674 
675 	return rc;
676 }
677 
678 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
679 			      dma_addr_t page_mapping)
680 {
681 	u32 reg;
682 
683 	if (CHIP_IS_E1(bp))
684 		reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
685 	else
686 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
687 
688 	bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
689 }
690 
691 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
692 				   struct bnx2x_ilt *ilt, int idx, u8 initop)
693 {
694 	dma_addr_t	null_mapping;
695 	int abs_idx = ilt->start_line + idx;
696 
697 
698 	switch (initop) {
699 	case INITOP_INIT:
700 		/* set in the init-value array */
701 	case INITOP_SET:
702 		bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
703 		break;
704 	case INITOP_CLEAR:
705 		null_mapping = 0;
706 		bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
707 		break;
708 	}
709 }
710 
711 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
712 				      struct ilt_client_info *ilt_cli,
713 				      u32 ilt_start, u8 initop)
714 {
715 	u32 start_reg = 0;
716 	u32 end_reg = 0;
717 
718 	/* The boundary is either SET or INIT,
719 	   CLEAR => SET and for now SET ~~ INIT */
720 
721 	/* find the appropriate regs */
722 	if (CHIP_IS_E1(bp)) {
723 		switch (ilt_cli->client_num) {
724 		case ILT_CLIENT_CDU:
725 			start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
726 			break;
727 		case ILT_CLIENT_QM:
728 			start_reg = PXP2_REG_PSWRQ_QM0_L2P;
729 			break;
730 		case ILT_CLIENT_SRC:
731 			start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
732 			break;
733 		case ILT_CLIENT_TM:
734 			start_reg = PXP2_REG_PSWRQ_TM0_L2P;
735 			break;
736 		}
737 		REG_WR(bp, start_reg + BP_FUNC(bp)*4,
738 		       ILT_RANGE((ilt_start + ilt_cli->start),
739 				 (ilt_start + ilt_cli->end)));
740 	} else {
741 		switch (ilt_cli->client_num) {
742 		case ILT_CLIENT_CDU:
743 			start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
744 			end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
745 			break;
746 		case ILT_CLIENT_QM:
747 			start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
748 			end_reg = PXP2_REG_RQ_QM_LAST_ILT;
749 			break;
750 		case ILT_CLIENT_SRC:
751 			start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
752 			end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
753 			break;
754 		case ILT_CLIENT_TM:
755 			start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
756 			end_reg = PXP2_REG_RQ_TM_LAST_ILT;
757 			break;
758 		}
759 		REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
760 		REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
761 	}
762 }
763 
764 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
765 					 struct bnx2x_ilt *ilt,
766 					 struct ilt_client_info *ilt_cli,
767 					 u8 initop)
768 {
769 	int i;
770 
771 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
772 		return;
773 
774 	for (i = ilt_cli->start; i <= ilt_cli->end; i++)
775 		bnx2x_ilt_line_init_op(bp, ilt, i, initop);
776 
777 	/* init/clear the ILT boundries */
778 	bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
779 }
780 
781 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
782 				     struct ilt_client_info *ilt_cli, u8 initop)
783 {
784 	struct bnx2x_ilt *ilt = BP_ILT(bp);
785 
786 	bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
787 }
788 
789 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
790 					int cli_num, u8 initop)
791 {
792 	struct bnx2x_ilt *ilt = BP_ILT(bp);
793 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
794 
795 	bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
796 }
797 
798 static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, u8 initop)
799 {
800 	if (CONFIGURE_NIC_MODE(bp))
801 		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
802 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
803 }
804 
805 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
806 {
807 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
808 	bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
809 	if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp))
810 		bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
811 }
812 
813 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
814 				      u32 psz_reg, u8 initop)
815 {
816 	struct bnx2x_ilt *ilt = BP_ILT(bp);
817 	struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
818 
819 	if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
820 		return;
821 
822 	switch (initop) {
823 	case INITOP_INIT:
824 		/* set in the init-value array */
825 	case INITOP_SET:
826 		REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
827 		break;
828 	case INITOP_CLEAR:
829 		break;
830 	}
831 }
832 
833 /*
834  * called during init common stage, ilt clients should be initialized
835  * prioir to calling this function
836  */
837 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
838 {
839 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
840 				  PXP2_REG_RQ_CDU_P_SIZE, initop);
841 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
842 				  PXP2_REG_RQ_QM_P_SIZE, initop);
843 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
844 				  PXP2_REG_RQ_SRC_P_SIZE, initop);
845 	bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
846 				  PXP2_REG_RQ_TM_P_SIZE, initop);
847 }
848 
849 /****************************************************************************
850 * QM initializations
851 ****************************************************************************/
852 #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */
853 #define QM_INIT_MIN_CID_COUNT	31
854 #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT)
855 
856 /* called during init port stage */
857 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
858 				    u8 initop)
859 {
860 	int port = BP_PORT(bp);
861 
862 	if (QM_INIT(qm_cid_count)) {
863 		switch (initop) {
864 		case INITOP_INIT:
865 			/* set in the init-value array */
866 		case INITOP_SET:
867 			REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
868 			       qm_cid_count/16 - 1);
869 			break;
870 		case INITOP_CLEAR:
871 			break;
872 		}
873 	}
874 }
875 
876 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
877 				   u32 base_reg, u32 reg)
878 {
879 	int i;
880 	u32 wb_data[2] = {0, 0};
881 	for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
882 		REG_WR(bp, base_reg + i*4,
883 		       qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
884 		bnx2x_init_wr_wb(bp, reg + i*8,	 wb_data, 2);
885 	}
886 }
887 
888 /* called during init common stage */
889 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
890 				    u8 initop)
891 {
892 	if (!QM_INIT(qm_cid_count))
893 		return;
894 
895 	switch (initop) {
896 	case INITOP_INIT:
897 		/* set in the init-value array */
898 	case INITOP_SET:
899 		bnx2x_qm_set_ptr_table(bp, qm_cid_count,
900 				       QM_REG_BASEADDR, QM_REG_PTRTBL);
901 		if (CHIP_IS_E1H(bp))
902 			bnx2x_qm_set_ptr_table(bp, qm_cid_count,
903 					       QM_REG_BASEADDR_EXT_A,
904 					       QM_REG_PTRTBL_EXT_A);
905 		break;
906 	case INITOP_CLEAR:
907 		break;
908 	}
909 }
910 
911 /****************************************************************************
912 * SRC initializations
913 ****************************************************************************/
914 /* called during init func stage */
915 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
916 			      dma_addr_t t2_mapping, int src_cid_count)
917 {
918 	int i;
919 	int port = BP_PORT(bp);
920 
921 	/* Initialize T2 */
922 	for (i = 0; i < src_cid_count-1; i++)
923 		t2[i].next = (u64)(t2_mapping +
924 			     (i+1)*sizeof(struct src_ent));
925 
926 	/* tell the searcher where the T2 table is */
927 	REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
928 
929 	bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
930 		    U64_LO(t2_mapping), U64_HI(t2_mapping));
931 
932 	bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
933 		    U64_LO((u64)t2_mapping +
934 			   (src_cid_count-1) * sizeof(struct src_ent)),
935 		    U64_HI((u64)t2_mapping +
936 			   (src_cid_count-1) * sizeof(struct src_ent)));
937 }
938 #endif /* BNX2X_INIT_OPS_H */
939