xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.h (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /* bnx2x_cmn.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2011 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 #ifndef BNX2X_CMN_H
18 #define BNX2X_CMN_H
19 
20 #include <linux/types.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 
24 
25 #include "bnx2x.h"
26 
27 /* This is used as a replacement for an MCP if it's not present */
28 extern int load_count[2][3]; /* per-path: 0-common, 1-port0, 2-port1 */
29 
30 extern int num_queues;
31 
32 /************************ Macros ********************************/
33 #define BNX2X_PCI_FREE(x, y, size) \
34 	do { \
35 		if (x) { \
36 			dma_free_coherent(&bp->pdev->dev, size, (void *)x, y); \
37 			x = NULL; \
38 			y = 0; \
39 		} \
40 	} while (0)
41 
42 #define BNX2X_FREE(x) \
43 	do { \
44 		if (x) { \
45 			kfree((void *)x); \
46 			x = NULL; \
47 		} \
48 	} while (0)
49 
50 #define BNX2X_PCI_ALLOC(x, y, size) \
51 	do { \
52 		x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \
53 		if (x == NULL) \
54 			goto alloc_mem_err; \
55 		memset((void *)x, 0, size); \
56 	} while (0)
57 
58 #define BNX2X_ALLOC(x, size) \
59 	do { \
60 		x = kzalloc(size, GFP_KERNEL); \
61 		if (x == NULL) \
62 			goto alloc_mem_err; \
63 	} while (0)
64 
65 /*********************** Interfaces ****************************
66  *  Functions that need to be implemented by each driver version
67  */
68 /* Init */
69 
70 /**
71  * bnx2x_send_unload_req - request unload mode from the MCP.
72  *
73  * @bp:			driver handle
74  * @unload_mode:	requested function's unload mode
75  *
76  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
77  */
78 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode);
79 
80 /**
81  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
82  *
83  * @bp:		driver handle
84  */
85 void bnx2x_send_unload_done(struct bnx2x *bp);
86 
87 /**
88  * bnx2x_config_rss_pf - configure RSS parameters.
89  *
90  * @bp:			driver handle
91  * @ind_table:		indirection table to configure
92  * @config_hash:	re-configure RSS hash keys configuration
93  */
94 int bnx2x_config_rss_pf(struct bnx2x *bp, u8 *ind_table, bool config_hash);
95 
96 /**
97  * bnx2x__init_func_obj - init function object
98  *
99  * @bp:			driver handle
100  *
101  * Initializes the Function Object with the appropriate
102  * parameters which include a function slow path driver
103  * interface.
104  */
105 void bnx2x__init_func_obj(struct bnx2x *bp);
106 
107 /**
108  * bnx2x_setup_queue - setup eth queue.
109  *
110  * @bp:		driver handle
111  * @fp:		pointer to the fastpath structure
112  * @leading:	boolean
113  *
114  */
115 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
116 		       bool leading);
117 
118 /**
119  * bnx2x_setup_leading - bring up a leading eth queue.
120  *
121  * @bp:		driver handle
122  */
123 int bnx2x_setup_leading(struct bnx2x *bp);
124 
125 /**
126  * bnx2x_fw_command - send the MCP a request
127  *
128  * @bp:		driver handle
129  * @command:	request
130  * @param:	request's parameter
131  *
132  * block until there is a reply
133  */
134 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param);
135 
136 /**
137  * bnx2x_initial_phy_init - initialize link parameters structure variables.
138  *
139  * @bp:		driver handle
140  * @load_mode:	current mode
141  */
142 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
143 
144 /**
145  * bnx2x_link_set - configure hw according to link parameters structure.
146  *
147  * @bp:		driver handle
148  */
149 void bnx2x_link_set(struct bnx2x *bp);
150 
151 /**
152  * bnx2x_link_test - query link status.
153  *
154  * @bp:		driver handle
155  * @is_serdes:	bool
156  *
157  * Returns 0 if link is UP.
158  */
159 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
160 
161 /**
162  * bnx2x_drv_pulse - write driver pulse to shmem
163  *
164  * @bp:		driver handle
165  *
166  * writes the value in bp->fw_drv_pulse_wr_seq to drv_pulse mbox
167  * in the shmem.
168  */
169 void bnx2x_drv_pulse(struct bnx2x *bp);
170 
171 /**
172  * bnx2x_igu_ack_sb - update IGU with current SB value
173  *
174  * @bp:		driver handle
175  * @igu_sb_id:	SB id
176  * @segment:	SB segment
177  * @index:	SB index
178  * @op:		SB operation
179  * @update:	is HW update required
180  */
181 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
182 		      u16 index, u8 op, u8 update);
183 
184 /* Disable transactions from chip to host */
185 void bnx2x_pf_disable(struct bnx2x *bp);
186 
187 /**
188  * bnx2x__link_status_update - handles link status change.
189  *
190  * @bp:		driver handle
191  */
192 void bnx2x__link_status_update(struct bnx2x *bp);
193 
194 /**
195  * bnx2x_link_report - report link status to upper layer.
196  *
197  * @bp:		driver handle
198  */
199 void bnx2x_link_report(struct bnx2x *bp);
200 
201 /* None-atomic version of bnx2x_link_report() */
202 void __bnx2x_link_report(struct bnx2x *bp);
203 
204 /**
205  * bnx2x_get_mf_speed - calculate MF speed.
206  *
207  * @bp:		driver handle
208  *
209  * Takes into account current linespeed and MF configuration.
210  */
211 u16 bnx2x_get_mf_speed(struct bnx2x *bp);
212 
213 /**
214  * bnx2x_msix_sp_int - MSI-X slowpath interrupt handler
215  *
216  * @irq:		irq number
217  * @dev_instance:	private instance
218  */
219 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
220 
221 /**
222  * bnx2x_interrupt - non MSI-X interrupt handler
223  *
224  * @irq:		irq number
225  * @dev_instance:	private instance
226  */
227 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
228 #ifdef BCM_CNIC
229 
230 /**
231  * bnx2x_cnic_notify - send command to cnic driver
232  *
233  * @bp:		driver handle
234  * @cmd:	command
235  */
236 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
237 
238 /**
239  * bnx2x_setup_cnic_irq_info - provides cnic with IRQ information
240  *
241  * @bp:		driver handle
242  */
243 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
244 #endif
245 
246 /**
247  * bnx2x_int_enable - enable HW interrupts.
248  *
249  * @bp:		driver handle
250  */
251 void bnx2x_int_enable(struct bnx2x *bp);
252 
253 /**
254  * bnx2x_int_disable_sync - disable interrupts.
255  *
256  * @bp:		driver handle
257  * @disable_hw:	true, disable HW interrupts.
258  *
259  * This function ensures that there are no
260  * ISRs or SP DPCs (sp_task) are running after it returns.
261  */
262 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
263 
264 /**
265  * bnx2x_nic_init - init driver internals.
266  *
267  * @bp:		driver handle
268  * @load_code:	COMMON, PORT or FUNCTION
269  *
270  * Initializes:
271  *  - rings
272  *  - status blocks
273  *  - etc.
274  */
275 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
276 
277 /**
278  * bnx2x_alloc_mem - allocate driver's memory.
279  *
280  * @bp:		driver handle
281  */
282 int bnx2x_alloc_mem(struct bnx2x *bp);
283 
284 /**
285  * bnx2x_free_mem - release driver's memory.
286  *
287  * @bp:		driver handle
288  */
289 void bnx2x_free_mem(struct bnx2x *bp);
290 
291 /**
292  * bnx2x_set_num_queues - set number of queues according to mode.
293  *
294  * @bp:		driver handle
295  */
296 void bnx2x_set_num_queues(struct bnx2x *bp);
297 
298 /**
299  * bnx2x_chip_cleanup - cleanup chip internals.
300  *
301  * @bp:			driver handle
302  * @unload_mode:	COMMON, PORT, FUNCTION
303  *
304  * - Cleanup MAC configuration.
305  * - Closes clients.
306  * - etc.
307  */
308 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
309 
310 /**
311  * bnx2x_acquire_hw_lock - acquire HW lock.
312  *
313  * @bp:		driver handle
314  * @resource:	resource bit which was locked
315  */
316 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
317 
318 /**
319  * bnx2x_release_hw_lock - release HW lock.
320  *
321  * @bp:		driver handle
322  * @resource:	resource bit which was locked
323  */
324 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
325 
326 /**
327  * bnx2x_release_leader_lock - release recovery leader lock
328  *
329  * @bp:		driver handle
330  */
331 int bnx2x_release_leader_lock(struct bnx2x *bp);
332 
333 /**
334  * bnx2x_set_eth_mac - configure eth MAC address in the HW
335  *
336  * @bp:		driver handle
337  * @set:	set or clear
338  *
339  * Configures according to the value in netdev->dev_addr.
340  */
341 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set);
342 
343 /**
344  * bnx2x_set_rx_mode - set MAC filtering configurations.
345  *
346  * @dev:	netdevice
347  *
348  * called with netif_tx_lock from dev_mcast.c
349  * If bp->state is OPEN, should be called with
350  * netif_addr_lock_bh()
351  */
352 void bnx2x_set_rx_mode(struct net_device *dev);
353 
354 /**
355  * bnx2x_set_storm_rx_mode - configure MAC filtering rules in a FW.
356  *
357  * @bp:		driver handle
358  *
359  * If bp->state is OPEN, should be called with
360  * netif_addr_lock_bh().
361  */
362 void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
363 
364 /**
365  * bnx2x_set_q_rx_mode - configures rx_mode for a single queue.
366  *
367  * @bp:			driver handle
368  * @cl_id:		client id
369  * @rx_mode_flags:	rx mode configuration
370  * @rx_accept_flags:	rx accept configuration
371  * @tx_accept_flags:	tx accept configuration (tx switch)
372  * @ramrod_flags:	ramrod configuration
373  */
374 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
375 			 unsigned long rx_mode_flags,
376 			 unsigned long rx_accept_flags,
377 			 unsigned long tx_accept_flags,
378 			 unsigned long ramrod_flags);
379 
380 /* Parity errors related */
381 void bnx2x_inc_load_cnt(struct bnx2x *bp);
382 u32 bnx2x_dec_load_cnt(struct bnx2x *bp);
383 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print);
384 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine);
385 void bnx2x_set_reset_in_progress(struct bnx2x *bp);
386 void bnx2x_set_reset_global(struct bnx2x *bp);
387 void bnx2x_disable_close_the_gate(struct bnx2x *bp);
388 
389 /**
390  * bnx2x_sp_event - handle ramrods completion.
391  *
392  * @fp:		fastpath handle for the event
393  * @rr_cqe:	eth_rx_cqe
394  */
395 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
396 
397 /**
398  * bnx2x_ilt_set_info - prepare ILT configurations.
399  *
400  * @bp:		driver handle
401  */
402 void bnx2x_ilt_set_info(struct bnx2x *bp);
403 
404 /**
405  * bnx2x_dcbx_init - initialize dcbx protocol.
406  *
407  * @bp:		driver handle
408  */
409 void bnx2x_dcbx_init(struct bnx2x *bp);
410 
411 /**
412  * bnx2x_set_power_state - set power state to the requested value.
413  *
414  * @bp:		driver handle
415  * @state:	required state D0 or D3hot
416  *
417  * Currently only D0 and D3hot are supported.
418  */
419 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
420 
421 /**
422  * bnx2x_update_max_mf_config - update MAX part of MF configuration in HW.
423  *
424  * @bp:		driver handle
425  * @value:	new value
426  */
427 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
428 /* Error handling */
429 void bnx2x_panic_dump(struct bnx2x *bp);
430 
431 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl);
432 
433 /* dev_close main block */
434 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
435 
436 /* dev_open main block */
437 int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
438 
439 /* hard_xmit callback */
440 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
441 
442 /* setup_tc callback */
443 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc);
444 
445 /* select_queue callback */
446 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
447 
448 /* reload helper */
449 int bnx2x_reload_if_running(struct net_device *dev);
450 
451 int bnx2x_change_mac_addr(struct net_device *dev, void *p);
452 
453 /* NAPI poll Rx part */
454 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
455 
456 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
457 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod);
458 
459 /* NAPI poll Tx part */
460 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata);
461 
462 /* suspend/resume callbacks */
463 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
464 int bnx2x_resume(struct pci_dev *pdev);
465 
466 /* Release IRQ vectors */
467 void bnx2x_free_irq(struct bnx2x *bp);
468 
469 void bnx2x_free_fp_mem(struct bnx2x *bp);
470 int bnx2x_alloc_fp_mem(struct bnx2x *bp);
471 void bnx2x_init_rx_rings(struct bnx2x *bp);
472 void bnx2x_free_skbs(struct bnx2x *bp);
473 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
474 void bnx2x_netif_start(struct bnx2x *bp);
475 
476 /**
477  * bnx2x_enable_msix - set msix configuration.
478  *
479  * @bp:		driver handle
480  *
481  * fills msix_table, requests vectors, updates num_queues
482  * according to number of available vectors.
483  */
484 int bnx2x_enable_msix(struct bnx2x *bp);
485 
486 /**
487  * bnx2x_enable_msi - request msi mode from OS, updated internals accordingly
488  *
489  * @bp:		driver handle
490  */
491 int bnx2x_enable_msi(struct bnx2x *bp);
492 
493 /**
494  * bnx2x_poll - NAPI callback
495  *
496  * @napi:	napi structure
497  * @budget:
498  *
499  */
500 int bnx2x_poll(struct napi_struct *napi, int budget);
501 
502 /**
503  * bnx2x_alloc_mem_bp - allocate memories outsize main driver structure
504  *
505  * @bp:		driver handle
506  */
507 int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
508 
509 /**
510  * bnx2x_free_mem_bp - release memories outsize main driver structure
511  *
512  * @bp:		driver handle
513  */
514 void bnx2x_free_mem_bp(struct bnx2x *bp);
515 
516 /**
517  * bnx2x_change_mtu - change mtu netdev callback
518  *
519  * @dev:	net device
520  * @new_mtu:	requested mtu
521  *
522  */
523 int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
524 
525 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
526 /**
527  * bnx2x_fcoe_get_wwn - return the requested WWN value for this port
528  *
529  * @dev:	net_device
530  * @wwn:	output buffer
531  * @type:	WWN type: NETDEV_FCOE_WWNN (node) or NETDEV_FCOE_WWPN (port)
532  *
533  */
534 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type);
535 #endif
536 u32 bnx2x_fix_features(struct net_device *dev, u32 features);
537 int bnx2x_set_features(struct net_device *dev, u32 features);
538 
539 /**
540  * bnx2x_tx_timeout - tx timeout netdev callback
541  *
542  * @dev:	net device
543  */
544 void bnx2x_tx_timeout(struct net_device *dev);
545 
546 /*********************** Inlines **********************************/
547 /*********************** Fast path ********************************/
548 static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
549 {
550 	barrier(); /* status block is written to by the chip */
551 	fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
552 }
553 
554 static inline void bnx2x_update_rx_prod_gen(struct bnx2x *bp,
555 			struct bnx2x_fastpath *fp, u16 bd_prod,
556 			u16 rx_comp_prod, u16 rx_sge_prod, u32 start)
557 {
558 	struct ustorm_eth_rx_producers rx_prods = {0};
559 	u32 i;
560 
561 	/* Update producers */
562 	rx_prods.bd_prod = bd_prod;
563 	rx_prods.cqe_prod = rx_comp_prod;
564 	rx_prods.sge_prod = rx_sge_prod;
565 
566 	/*
567 	 * Make sure that the BD and SGE data is updated before updating the
568 	 * producers since FW might read the BD/SGE right after the producer
569 	 * is updated.
570 	 * This is only applicable for weak-ordered memory model archs such
571 	 * as IA-64. The following barrier is also mandatory since FW will
572 	 * assumes BDs must have buffers.
573 	 */
574 	wmb();
575 
576 	for (i = 0; i < sizeof(rx_prods)/4; i++)
577 		REG_WR(bp, start + i*4, ((u32 *)&rx_prods)[i]);
578 
579 	mmiowb(); /* keep prod updates ordered */
580 
581 	DP(NETIF_MSG_RX_STATUS,
582 	   "queue[%d]:  wrote  bd_prod %u  cqe_prod %u  sge_prod %u\n",
583 	   fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
584 }
585 
586 static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
587 					u8 segment, u16 index, u8 op,
588 					u8 update, u32 igu_addr)
589 {
590 	struct igu_regular cmd_data = {0};
591 
592 	cmd_data.sb_id_and_flags =
593 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
594 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
595 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
596 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
597 
598 	DP(NETIF_MSG_HW, "write 0x%08x to IGU addr 0x%x\n",
599 	   cmd_data.sb_id_and_flags, igu_addr);
600 	REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
601 
602 	/* Make sure that ACK is written */
603 	mmiowb();
604 	barrier();
605 }
606 
607 static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
608 					  u8 idu_sb_id, bool is_Pf)
609 {
610 	u32 data, ctl, cnt = 100;
611 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
612 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
613 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
614 	u32 sb_bit =  1 << (idu_sb_id%32);
615 	u32 func_encode = func |
616 			((is_Pf == true ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT);
617 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
618 
619 	/* Not supported in BC mode */
620 	if (CHIP_INT_MODE_IS_BC(bp))
621 		return;
622 
623 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
624 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
625 		IGU_REGULAR_CLEANUP_SET				|
626 		IGU_REGULAR_BCLEANUP;
627 
628 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
629 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
630 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
631 
632 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
633 			 data, igu_addr_data);
634 	REG_WR(bp, igu_addr_data, data);
635 	mmiowb();
636 	barrier();
637 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
638 			  ctl, igu_addr_ctl);
639 	REG_WR(bp, igu_addr_ctl, ctl);
640 	mmiowb();
641 	barrier();
642 
643 	/* wait for clean up to finish */
644 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
645 		msleep(20);
646 
647 
648 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
649 		DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: "
650 			  "idu_sb_id %d offset %d bit %d (cnt %d)\n",
651 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
652 	}
653 }
654 
655 static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
656 				   u8 storm, u16 index, u8 op, u8 update)
657 {
658 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
659 		       COMMAND_REG_INT_ACK);
660 	struct igu_ack_register igu_ack;
661 
662 	igu_ack.status_block_index = index;
663 	igu_ack.sb_id_and_flags =
664 			((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
665 			 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
666 			 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
667 			 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
668 
669 	DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n",
670 	   (*(u32 *)&igu_ack), hc_addr);
671 	REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
672 
673 	/* Make sure that ACK is written */
674 	mmiowb();
675 	barrier();
676 }
677 
678 static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
679 				u16 index, u8 op, u8 update)
680 {
681 	if (bp->common.int_block == INT_BLOCK_HC)
682 		bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
683 	else {
684 		u8 segment;
685 
686 		if (CHIP_INT_MODE_IS_BC(bp))
687 			segment = storm;
688 		else if (igu_sb_id != bp->igu_dsb_id)
689 			segment = IGU_SEG_ACCESS_DEF;
690 		else if (storm == ATTENTION_ID)
691 			segment = IGU_SEG_ACCESS_ATTN;
692 		else
693 			segment = IGU_SEG_ACCESS_DEF;
694 		bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
695 	}
696 }
697 
698 static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
699 {
700 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
701 		       COMMAND_REG_SIMD_MASK);
702 	u32 result = REG_RD(bp, hc_addr);
703 
704 	DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n",
705 	   result, hc_addr);
706 
707 	barrier();
708 	return result;
709 }
710 
711 static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
712 {
713 	u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
714 	u32 result = REG_RD(bp, igu_addr);
715 
716 	DP(NETIF_MSG_HW, "read 0x%08x from IGU addr 0x%x\n",
717 	   result, igu_addr);
718 
719 	barrier();
720 	return result;
721 }
722 
723 static inline u16 bnx2x_ack_int(struct bnx2x *bp)
724 {
725 	barrier();
726 	if (bp->common.int_block == INT_BLOCK_HC)
727 		return bnx2x_hc_ack_int(bp);
728 	else
729 		return bnx2x_igu_ack_int(bp);
730 }
731 
732 static inline int bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata *txdata)
733 {
734 	/* Tell compiler that consumer and producer can change */
735 	barrier();
736 	return txdata->tx_pkt_prod != txdata->tx_pkt_cons;
737 }
738 
739 static inline u16 bnx2x_tx_avail(struct bnx2x *bp,
740 				 struct bnx2x_fp_txdata *txdata)
741 {
742 	s16 used;
743 	u16 prod;
744 	u16 cons;
745 
746 	prod = txdata->tx_bd_prod;
747 	cons = txdata->tx_bd_cons;
748 
749 	/* NUM_TX_RINGS = number of "next-page" entries
750 	   It will be used as a threshold */
751 	used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
752 
753 #ifdef BNX2X_STOP_ON_ERROR
754 	WARN_ON(used < 0);
755 	WARN_ON(used > bp->tx_ring_size);
756 	WARN_ON((bp->tx_ring_size - used) > MAX_TX_AVAIL);
757 #endif
758 
759 	return (s16)(bp->tx_ring_size) - used;
760 }
761 
762 static inline int bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata *txdata)
763 {
764 	u16 hw_cons;
765 
766 	/* Tell compiler that status block fields can change */
767 	barrier();
768 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
769 	return hw_cons != txdata->tx_pkt_cons;
770 }
771 
772 static inline bool bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
773 {
774 	u8 cos;
775 	for_each_cos_in_tx_queue(fp, cos)
776 		if (bnx2x_tx_queue_has_work(&fp->txdata[cos]))
777 			return true;
778 	return false;
779 }
780 
781 static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
782 {
783 	u16 rx_cons_sb;
784 
785 	/* Tell compiler that status block fields can change */
786 	barrier();
787 	rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
788 	if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
789 		rx_cons_sb++;
790 	return (fp->rx_comp_cons != rx_cons_sb);
791 }
792 
793 /**
794  * bnx2x_tx_disable - disables tx from stack point of view
795  *
796  * @bp:		driver handle
797  */
798 static inline void bnx2x_tx_disable(struct bnx2x *bp)
799 {
800 	netif_tx_disable(bp->dev);
801 	netif_carrier_off(bp->dev);
802 }
803 
804 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
805 				     struct bnx2x_fastpath *fp, u16 index)
806 {
807 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
808 	struct page *page = sw_buf->page;
809 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
810 
811 	/* Skip "next page" elements */
812 	if (!page)
813 		return;
814 
815 	dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
816 		       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
817 	__free_pages(page, PAGES_PER_SGE_SHIFT);
818 
819 	sw_buf->page = NULL;
820 	sge->addr_hi = 0;
821 	sge->addr_lo = 0;
822 }
823 
824 static inline void bnx2x_add_all_napi(struct bnx2x *bp)
825 {
826 	int i;
827 
828 	/* Add NAPI objects */
829 	for_each_rx_queue(bp, i)
830 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
831 			       bnx2x_poll, BNX2X_NAPI_WEIGHT);
832 }
833 
834 static inline void bnx2x_del_all_napi(struct bnx2x *bp)
835 {
836 	int i;
837 
838 	for_each_rx_queue(bp, i)
839 		netif_napi_del(&bnx2x_fp(bp, i, napi));
840 }
841 
842 static inline void bnx2x_disable_msi(struct bnx2x *bp)
843 {
844 	if (bp->flags & USING_MSIX_FLAG) {
845 		pci_disable_msix(bp->pdev);
846 		bp->flags &= ~USING_MSIX_FLAG;
847 	} else if (bp->flags & USING_MSI_FLAG) {
848 		pci_disable_msi(bp->pdev);
849 		bp->flags &= ~USING_MSI_FLAG;
850 	}
851 }
852 
853 static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
854 {
855 	return  num_queues ?
856 		 min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
857 		 min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
858 }
859 
860 static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
861 {
862 	int i, j;
863 
864 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
865 		int idx = RX_SGE_CNT * i - 1;
866 
867 		for (j = 0; j < 2; j++) {
868 			BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
869 			idx--;
870 		}
871 	}
872 }
873 
874 static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
875 {
876 	/* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
877 	memset(fp->sge_mask, 0xff,
878 	       (NUM_RX_SGE >> BIT_VEC64_ELEM_SHIFT)*sizeof(u64));
879 
880 	/* Clear the two last indices in the page to 1:
881 	   these are the indices that correspond to the "next" element,
882 	   hence will never be indicated and should be removed from
883 	   the calculations. */
884 	bnx2x_clear_sge_mask_next_elems(fp);
885 }
886 
887 static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
888 				     struct bnx2x_fastpath *fp, u16 index)
889 {
890 	struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
891 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
892 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
893 	dma_addr_t mapping;
894 
895 	if (unlikely(page == NULL))
896 		return -ENOMEM;
897 
898 	mapping = dma_map_page(&bp->pdev->dev, page, 0,
899 			       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
900 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
901 		__free_pages(page, PAGES_PER_SGE_SHIFT);
902 		return -ENOMEM;
903 	}
904 
905 	sw_buf->page = page;
906 	dma_unmap_addr_set(sw_buf, mapping, mapping);
907 
908 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
909 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
910 
911 	return 0;
912 }
913 
914 static inline int bnx2x_alloc_rx_skb(struct bnx2x *bp,
915 				     struct bnx2x_fastpath *fp, u16 index)
916 {
917 	struct sk_buff *skb;
918 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
919 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
920 	dma_addr_t mapping;
921 
922 	skb = netdev_alloc_skb(bp->dev, fp->rx_buf_size);
923 	if (unlikely(skb == NULL))
924 		return -ENOMEM;
925 
926 	mapping = dma_map_single(&bp->pdev->dev, skb->data, fp->rx_buf_size,
927 				 DMA_FROM_DEVICE);
928 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
929 		dev_kfree_skb_any(skb);
930 		return -ENOMEM;
931 	}
932 
933 	rx_buf->skb = skb;
934 	dma_unmap_addr_set(rx_buf, mapping, mapping);
935 
936 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
937 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
938 
939 	return 0;
940 }
941 
942 /* note that we are not allocating a new skb,
943  * we are just moving one from cons to prod
944  * we are not creating a new mapping,
945  * so there is no need to check for dma_mapping_error().
946  */
947 static inline void bnx2x_reuse_rx_skb(struct bnx2x_fastpath *fp,
948 				      u16 cons, u16 prod)
949 {
950 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
951 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
952 	struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
953 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
954 
955 	dma_unmap_addr_set(prod_rx_buf, mapping,
956 			   dma_unmap_addr(cons_rx_buf, mapping));
957 	prod_rx_buf->skb = cons_rx_buf->skb;
958 	*prod_bd = *cons_bd;
959 }
960 
961 /************************* Init ******************************************/
962 
963 /**
964  * bnx2x_func_start - init function
965  *
966  * @bp:		driver handle
967  *
968  * Must be called before sending CLIENT_SETUP for the first client.
969  */
970 static inline int bnx2x_func_start(struct bnx2x *bp)
971 {
972 	struct bnx2x_func_state_params func_params = {0};
973 	struct bnx2x_func_start_params *start_params =
974 		&func_params.params.start;
975 
976 	/* Prepare parameters for function state transitions */
977 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
978 
979 	func_params.f_obj = &bp->func_obj;
980 	func_params.cmd = BNX2X_F_CMD_START;
981 
982 	/* Function parameters */
983 	start_params->mf_mode = bp->mf_mode;
984 	start_params->sd_vlan_tag = bp->mf_ov;
985 	if (CHIP_IS_E1x(bp))
986 		start_params->network_cos_mode = OVERRIDE_COS;
987 	else
988 		start_params->network_cos_mode = STATIC_COS;
989 
990 	return bnx2x_func_state_change(bp, &func_params);
991 }
992 
993 
994 /**
995  * bnx2x_set_fw_mac_addr - fill in a MAC address in FW format
996  *
997  * @fw_hi:	pointer to upper part
998  * @fw_mid:	pointer to middle part
999  * @fw_lo:	pointer to lower part
1000  * @mac:	pointer to MAC address
1001  */
1002 static inline void bnx2x_set_fw_mac_addr(u16 *fw_hi, u16 *fw_mid, u16 *fw_lo,
1003 					 u8 *mac)
1004 {
1005 	((u8 *)fw_hi)[0]  = mac[1];
1006 	((u8 *)fw_hi)[1]  = mac[0];
1007 	((u8 *)fw_mid)[0] = mac[3];
1008 	((u8 *)fw_mid)[1] = mac[2];
1009 	((u8 *)fw_lo)[0]  = mac[5];
1010 	((u8 *)fw_lo)[1]  = mac[4];
1011 }
1012 
1013 static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
1014 					   struct bnx2x_fastpath *fp, int last)
1015 {
1016 	int i;
1017 
1018 	if (fp->disable_tpa)
1019 		return;
1020 
1021 	for (i = 0; i < last; i++)
1022 		bnx2x_free_rx_sge(bp, fp, i);
1023 }
1024 
1025 static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
1026 				       struct bnx2x_fastpath *fp, int last)
1027 {
1028 	int i;
1029 
1030 	for (i = 0; i < last; i++) {
1031 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1032 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1033 		struct sk_buff *skb = first_buf->skb;
1034 
1035 		if (skb == NULL) {
1036 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1037 			continue;
1038 		}
1039 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1040 			dma_unmap_single(&bp->pdev->dev,
1041 					 dma_unmap_addr(first_buf, mapping),
1042 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1043 		dev_kfree_skb(skb);
1044 		first_buf->skb = NULL;
1045 	}
1046 }
1047 
1048 static inline void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
1049 {
1050 	int i;
1051 
1052 	for (i = 1; i <= NUM_TX_RINGS; i++) {
1053 		struct eth_tx_next_bd *tx_next_bd =
1054 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
1055 
1056 		tx_next_bd->addr_hi =
1057 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
1058 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1059 		tx_next_bd->addr_lo =
1060 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
1061 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1062 	}
1063 
1064 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
1065 	txdata->tx_db.data.zero_fill1 = 0;
1066 	txdata->tx_db.data.prod = 0;
1067 
1068 	txdata->tx_pkt_prod = 0;
1069 	txdata->tx_pkt_cons = 0;
1070 	txdata->tx_bd_prod = 0;
1071 	txdata->tx_bd_cons = 0;
1072 	txdata->tx_pkt = 0;
1073 }
1074 
1075 static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
1076 {
1077 	int i;
1078 	u8 cos;
1079 
1080 	for_each_tx_queue(bp, i)
1081 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
1082 			bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]);
1083 }
1084 
1085 static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
1086 {
1087 	int i;
1088 
1089 	for (i = 1; i <= NUM_RX_RINGS; i++) {
1090 		struct eth_rx_bd *rx_bd;
1091 
1092 		rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
1093 		rx_bd->addr_hi =
1094 			cpu_to_le32(U64_HI(fp->rx_desc_mapping +
1095 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1096 		rx_bd->addr_lo =
1097 			cpu_to_le32(U64_LO(fp->rx_desc_mapping +
1098 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1099 	}
1100 }
1101 
1102 static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1103 {
1104 	int i;
1105 
1106 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1107 		struct eth_rx_sge *sge;
1108 
1109 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1110 		sge->addr_hi =
1111 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1112 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1113 
1114 		sge->addr_lo =
1115 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1116 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1117 	}
1118 }
1119 
1120 static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
1121 {
1122 	int i;
1123 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
1124 		struct eth_rx_cqe_next_page *nextpg;
1125 
1126 		nextpg = (struct eth_rx_cqe_next_page *)
1127 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
1128 		nextpg->addr_hi =
1129 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
1130 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1131 		nextpg->addr_lo =
1132 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
1133 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1134 	}
1135 }
1136 
1137 /* Returns the number of actually allocated BDs */
1138 static inline int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
1139 				      int rx_ring_size)
1140 {
1141 	struct bnx2x *bp = fp->bp;
1142 	u16 ring_prod, cqe_ring_prod;
1143 	int i;
1144 
1145 	fp->rx_comp_cons = 0;
1146 	cqe_ring_prod = ring_prod = 0;
1147 
1148 	/* This routine is called only during fo init so
1149 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
1150 	 */
1151 	for (i = 0; i < rx_ring_size; i++) {
1152 		if (bnx2x_alloc_rx_skb(bp, fp, ring_prod) < 0) {
1153 			fp->eth_q_stats.rx_skb_alloc_failed++;
1154 			continue;
1155 		}
1156 		ring_prod = NEXT_RX_IDX(ring_prod);
1157 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
1158 		WARN_ON(ring_prod <= (i - fp->eth_q_stats.rx_skb_alloc_failed));
1159 	}
1160 
1161 	if (fp->eth_q_stats.rx_skb_alloc_failed)
1162 		BNX2X_ERR("was only able to allocate "
1163 			  "%d rx skbs on queue[%d]\n",
1164 			  (i - fp->eth_q_stats.rx_skb_alloc_failed), fp->index);
1165 
1166 	fp->rx_bd_prod = ring_prod;
1167 	/* Limit the CQE producer by the CQE ring size */
1168 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
1169 			       cqe_ring_prod);
1170 	fp->rx_pkt = fp->rx_calls = 0;
1171 
1172 	return i - fp->eth_q_stats.rx_skb_alloc_failed;
1173 }
1174 
1175 /* Statistics ID are global per chip/path, while Client IDs for E1x are per
1176  * port.
1177  */
1178 static inline u8 bnx2x_stats_id(struct bnx2x_fastpath *fp)
1179 {
1180 	if (!CHIP_IS_E1x(fp->bp))
1181 		return fp->cl_id;
1182 	else
1183 		return fp->cl_id + BP_PORT(fp->bp) * FP_SB_MAX_E1x;
1184 }
1185 
1186 static inline void bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath *fp,
1187 					       bnx2x_obj_type obj_type)
1188 {
1189 	struct bnx2x *bp = fp->bp;
1190 
1191 	/* Configure classification DBs */
1192 	bnx2x_init_mac_obj(bp, &fp->mac_obj, fp->cl_id, fp->cid,
1193 			   BP_FUNC(bp), bnx2x_sp(bp, mac_rdata),
1194 			   bnx2x_sp_mapping(bp, mac_rdata),
1195 			   BNX2X_FILTER_MAC_PENDING,
1196 			   &bp->sp_state, obj_type,
1197 			   &bp->macs_pool);
1198 }
1199 
1200 /**
1201  * bnx2x_get_path_func_num - get number of active functions
1202  *
1203  * @bp:		driver handle
1204  *
1205  * Calculates the number of active (not hidden) functions on the
1206  * current path.
1207  */
1208 static inline u8 bnx2x_get_path_func_num(struct bnx2x *bp)
1209 {
1210 	u8 func_num = 0, i;
1211 
1212 	/* 57710 has only one function per-port */
1213 	if (CHIP_IS_E1(bp))
1214 		return 1;
1215 
1216 	/* Calculate a number of functions enabled on the current
1217 	 * PATH/PORT.
1218 	 */
1219 	if (CHIP_REV_IS_SLOW(bp)) {
1220 		if (IS_MF(bp))
1221 			func_num = 4;
1222 		else
1223 			func_num = 2;
1224 	} else {
1225 		for (i = 0; i < E1H_FUNC_MAX / 2; i++) {
1226 			u32 func_config =
1227 				MF_CFG_RD(bp,
1228 					  func_mf_config[BP_PORT(bp) + 2 * i].
1229 					  config);
1230 			func_num +=
1231 				((func_config & FUNC_MF_CFG_FUNC_HIDE) ? 0 : 1);
1232 		}
1233 	}
1234 
1235 	WARN_ON(!func_num);
1236 
1237 	return func_num;
1238 }
1239 
1240 static inline void bnx2x_init_bp_objs(struct bnx2x *bp)
1241 {
1242 	/* RX_MODE controlling object */
1243 	bnx2x_init_rx_mode_obj(bp, &bp->rx_mode_obj);
1244 
1245 	/* multicast configuration controlling object */
1246 	bnx2x_init_mcast_obj(bp, &bp->mcast_obj, bp->fp->cl_id, bp->fp->cid,
1247 			     BP_FUNC(bp), BP_FUNC(bp),
1248 			     bnx2x_sp(bp, mcast_rdata),
1249 			     bnx2x_sp_mapping(bp, mcast_rdata),
1250 			     BNX2X_FILTER_MCAST_PENDING, &bp->sp_state,
1251 			     BNX2X_OBJ_TYPE_RX);
1252 
1253 	/* Setup CAM credit pools */
1254 	bnx2x_init_mac_credit_pool(bp, &bp->macs_pool, BP_FUNC(bp),
1255 				   bnx2x_get_path_func_num(bp));
1256 
1257 	/* RSS configuration object */
1258 	bnx2x_init_rss_config_obj(bp, &bp->rss_conf_obj, bp->fp->cl_id,
1259 				  bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp),
1260 				  bnx2x_sp(bp, rss_rdata),
1261 				  bnx2x_sp_mapping(bp, rss_rdata),
1262 				  BNX2X_FILTER_RSS_CONF_PENDING, &bp->sp_state,
1263 				  BNX2X_OBJ_TYPE_RX);
1264 }
1265 
1266 static inline u8 bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
1267 {
1268 	if (CHIP_IS_E1x(fp->bp))
1269 		return fp->cl_id + BP_PORT(fp->bp) * ETH_MAX_RX_CLIENTS_E1H;
1270 	else
1271 		return fp->cl_id;
1272 }
1273 
1274 static inline u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
1275 {
1276 	struct bnx2x *bp = fp->bp;
1277 
1278 	if (!CHIP_IS_E1x(bp))
1279 		return USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
1280 	else
1281 		return USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
1282 }
1283 
1284 static inline void bnx2x_init_txdata(struct bnx2x *bp,
1285 	struct bnx2x_fp_txdata *txdata, u32 cid, int txq_index,
1286 	__le16 *tx_cons_sb)
1287 {
1288 	txdata->cid = cid;
1289 	txdata->txq_index = txq_index;
1290 	txdata->tx_cons_sb = tx_cons_sb;
1291 
1292 	DP(BNX2X_MSG_SP, "created tx data cid %d, txq %d\n",
1293 	   txdata->cid, txdata->txq_index);
1294 }
1295 
1296 #ifdef BCM_CNIC
1297 static inline u8 bnx2x_cnic_eth_cl_id(struct bnx2x *bp, u8 cl_idx)
1298 {
1299 	return bp->cnic_base_cl_id + cl_idx +
1300 		(bp->pf_num >> 1) * BNX2X_MAX_CNIC_ETH_CL_ID_IDX;
1301 }
1302 
1303 static inline u8 bnx2x_cnic_fw_sb_id(struct bnx2x *bp)
1304 {
1305 
1306 	/* the 'first' id is allocated for the cnic */
1307 	return bp->base_fw_ndsb;
1308 }
1309 
1310 static inline u8 bnx2x_cnic_igu_sb_id(struct bnx2x *bp)
1311 {
1312 	return bp->igu_base_sb;
1313 }
1314 
1315 
1316 static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
1317 {
1318 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
1319 	unsigned long q_type = 0;
1320 
1321 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
1322 						     BNX2X_FCOE_ETH_CL_ID_IDX);
1323 	/** Current BNX2X_FCOE_ETH_CID deffinition implies not more than
1324 	 *  16 ETH clients per function when CNIC is enabled!
1325 	 *
1326 	 *  Fix it ASAP!!!
1327 	 */
1328 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
1329 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
1330 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
1331 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
1332 
1333 	bnx2x_init_txdata(bp, &bnx2x_fcoe(bp, txdata[0]),
1334 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX);
1335 
1336 	DP(BNX2X_MSG_SP, "created fcoe tx data (fp index %d)\n", fp->index);
1337 
1338 	/* qZone id equals to FW (per path) client id */
1339 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
1340 	/* init shortcut */
1341 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
1342 		bnx2x_rx_ustorm_prods_offset(fp);
1343 
1344 	/* Configure Queue State object */
1345 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1346 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1347 
1348 	/* No multi-CoS for FCoE L2 client */
1349 	BUG_ON(fp->max_cos != 1);
1350 
1351 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, &fp->cid, 1,
1352 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
1353 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
1354 
1355 	DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d "
1356 			   "igu_sb %d\n",
1357 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
1358 	   fp->igu_sb_id);
1359 }
1360 #endif
1361 
1362 static inline int bnx2x_clean_tx_queue(struct bnx2x *bp,
1363 				       struct bnx2x_fp_txdata *txdata)
1364 {
1365 	int cnt = 1000;
1366 
1367 	while (bnx2x_has_tx_work_unload(txdata)) {
1368 		if (!cnt) {
1369 			BNX2X_ERR("timeout waiting for queue[%d]: "
1370 				 "txdata->tx_pkt_prod(%d) != txdata->tx_pkt_cons(%d)\n",
1371 				  txdata->txq_index, txdata->tx_pkt_prod,
1372 				  txdata->tx_pkt_cons);
1373 #ifdef BNX2X_STOP_ON_ERROR
1374 			bnx2x_panic();
1375 			return -EBUSY;
1376 #else
1377 			break;
1378 #endif
1379 		}
1380 		cnt--;
1381 		usleep_range(1000, 1000);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 int bnx2x_get_link_cfg_idx(struct bnx2x *bp);
1388 
1389 static inline void __storm_memset_struct(struct bnx2x *bp,
1390 					 u32 addr, size_t size, u32 *data)
1391 {
1392 	int i;
1393 	for (i = 0; i < size/4; i++)
1394 		REG_WR(bp, addr + (i * 4), data[i]);
1395 }
1396 
1397 static inline void storm_memset_func_cfg(struct bnx2x *bp,
1398 				struct tstorm_eth_function_common_config *tcfg,
1399 				u16 abs_fid)
1400 {
1401 	size_t size = sizeof(struct tstorm_eth_function_common_config);
1402 
1403 	u32 addr = BAR_TSTRORM_INTMEM +
1404 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
1405 
1406 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
1407 }
1408 
1409 static inline void storm_memset_cmng(struct bnx2x *bp,
1410 				struct cmng_struct_per_port *cmng,
1411 				u8 port)
1412 {
1413 	size_t size = sizeof(struct cmng_struct_per_port);
1414 
1415 	u32 addr = BAR_XSTRORM_INTMEM +
1416 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
1417 
1418 	__storm_memset_struct(bp, addr, size, (u32 *)cmng);
1419 }
1420 
1421 /**
1422  * bnx2x_wait_sp_comp - wait for the outstanding SP commands.
1423  *
1424  * @bp:		driver handle
1425  * @mask:	bits that need to be cleared
1426  */
1427 static inline bool bnx2x_wait_sp_comp(struct bnx2x *bp, unsigned long mask)
1428 {
1429 	int tout = 5000; /* Wait for 5 secs tops */
1430 
1431 	while (tout--) {
1432 		smp_mb();
1433 		netif_addr_lock_bh(bp->dev);
1434 		if (!(bp->sp_state & mask)) {
1435 			netif_addr_unlock_bh(bp->dev);
1436 			return true;
1437 		}
1438 		netif_addr_unlock_bh(bp->dev);
1439 
1440 		usleep_range(1000, 1000);
1441 	}
1442 
1443 	smp_mb();
1444 
1445 	netif_addr_lock_bh(bp->dev);
1446 	if (bp->sp_state & mask) {
1447 		BNX2X_ERR("Filtering completion timed out. sp_state 0x%lx, "
1448 			  "mask 0x%lx\n", bp->sp_state, mask);
1449 		netif_addr_unlock_bh(bp->dev);
1450 		return false;
1451 	}
1452 	netif_addr_unlock_bh(bp->dev);
1453 
1454 	return true;
1455 }
1456 
1457 /**
1458  * bnx2x_set_ctx_validation - set CDU context validation values
1459  *
1460  * @bp:		driver handle
1461  * @cxt:	context of the connection on the host memory
1462  * @cid:	SW CID of the connection to be configured
1463  */
1464 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
1465 			      u32 cid);
1466 
1467 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
1468 				    u8 sb_index, u8 disable, u16 usec);
1469 void bnx2x_acquire_phy_lock(struct bnx2x *bp);
1470 void bnx2x_release_phy_lock(struct bnx2x *bp);
1471 
1472 /**
1473  * bnx2x_extract_max_cfg - extract MAX BW part from MF configuration.
1474  *
1475  * @bp:		driver handle
1476  * @mf_cfg:	MF configuration
1477  *
1478  */
1479 static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
1480 {
1481 	u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
1482 			      FUNC_MF_CFG_MAX_BW_SHIFT;
1483 	if (!max_cfg) {
1484 		DP(NETIF_MSG_LINK,
1485 		   "Max BW configured to 0 - using 100 instead\n");
1486 		max_cfg = 100;
1487 	}
1488 	return max_cfg;
1489 }
1490 
1491 #endif /* BNX2X_CMN_H */
1492