xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.h (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /* bnx2x_cmn.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2011 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17 #ifndef BNX2X_CMN_H
18 #define BNX2X_CMN_H
19 
20 #include <linux/types.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 
25 
26 #include "bnx2x.h"
27 
28 /* This is used as a replacement for an MCP if it's not present */
29 extern int load_count[2][3]; /* per-path: 0-common, 1-port0, 2-port1 */
30 
31 extern int num_queues;
32 
33 /************************ Macros ********************************/
34 #define BNX2X_PCI_FREE(x, y, size) \
35 	do { \
36 		if (x) { \
37 			dma_free_coherent(&bp->pdev->dev, size, (void *)x, y); \
38 			x = NULL; \
39 			y = 0; \
40 		} \
41 	} while (0)
42 
43 #define BNX2X_FREE(x) \
44 	do { \
45 		if (x) { \
46 			kfree((void *)x); \
47 			x = NULL; \
48 		} \
49 	} while (0)
50 
51 #define BNX2X_PCI_ALLOC(x, y, size) \
52 	do { \
53 		x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \
54 		if (x == NULL) \
55 			goto alloc_mem_err; \
56 		memset((void *)x, 0, size); \
57 	} while (0)
58 
59 #define BNX2X_ALLOC(x, size) \
60 	do { \
61 		x = kzalloc(size, GFP_KERNEL); \
62 		if (x == NULL) \
63 			goto alloc_mem_err; \
64 	} while (0)
65 
66 /*********************** Interfaces ****************************
67  *  Functions that need to be implemented by each driver version
68  */
69 /* Init */
70 
71 /**
72  * bnx2x_send_unload_req - request unload mode from the MCP.
73  *
74  * @bp:			driver handle
75  * @unload_mode:	requested function's unload mode
76  *
77  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
78  */
79 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode);
80 
81 /**
82  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
83  *
84  * @bp:		driver handle
85  */
86 void bnx2x_send_unload_done(struct bnx2x *bp);
87 
88 /**
89  * bnx2x_config_rss_pf - configure RSS parameters.
90  *
91  * @bp:			driver handle
92  * @ind_table:		indirection table to configure
93  * @config_hash:	re-configure RSS hash keys configuration
94  */
95 int bnx2x_config_rss_pf(struct bnx2x *bp, u8 *ind_table, bool config_hash);
96 
97 /**
98  * bnx2x__init_func_obj - init function object
99  *
100  * @bp:			driver handle
101  *
102  * Initializes the Function Object with the appropriate
103  * parameters which include a function slow path driver
104  * interface.
105  */
106 void bnx2x__init_func_obj(struct bnx2x *bp);
107 
108 /**
109  * bnx2x_setup_queue - setup eth queue.
110  *
111  * @bp:		driver handle
112  * @fp:		pointer to the fastpath structure
113  * @leading:	boolean
114  *
115  */
116 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
117 		       bool leading);
118 
119 /**
120  * bnx2x_setup_leading - bring up a leading eth queue.
121  *
122  * @bp:		driver handle
123  */
124 int bnx2x_setup_leading(struct bnx2x *bp);
125 
126 /**
127  * bnx2x_fw_command - send the MCP a request
128  *
129  * @bp:		driver handle
130  * @command:	request
131  * @param:	request's parameter
132  *
133  * block until there is a reply
134  */
135 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param);
136 
137 /**
138  * bnx2x_initial_phy_init - initialize link parameters structure variables.
139  *
140  * @bp:		driver handle
141  * @load_mode:	current mode
142  */
143 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
144 
145 /**
146  * bnx2x_link_set - configure hw according to link parameters structure.
147  *
148  * @bp:		driver handle
149  */
150 void bnx2x_link_set(struct bnx2x *bp);
151 
152 /**
153  * bnx2x_link_test - query link status.
154  *
155  * @bp:		driver handle
156  * @is_serdes:	bool
157  *
158  * Returns 0 if link is UP.
159  */
160 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
161 
162 /**
163  * bnx2x_drv_pulse - write driver pulse to shmem
164  *
165  * @bp:		driver handle
166  *
167  * writes the value in bp->fw_drv_pulse_wr_seq to drv_pulse mbox
168  * in the shmem.
169  */
170 void bnx2x_drv_pulse(struct bnx2x *bp);
171 
172 /**
173  * bnx2x_igu_ack_sb - update IGU with current SB value
174  *
175  * @bp:		driver handle
176  * @igu_sb_id:	SB id
177  * @segment:	SB segment
178  * @index:	SB index
179  * @op:		SB operation
180  * @update:	is HW update required
181  */
182 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
183 		      u16 index, u8 op, u8 update);
184 
185 /* Disable transactions from chip to host */
186 void bnx2x_pf_disable(struct bnx2x *bp);
187 
188 /**
189  * bnx2x__link_status_update - handles link status change.
190  *
191  * @bp:		driver handle
192  */
193 void bnx2x__link_status_update(struct bnx2x *bp);
194 
195 /**
196  * bnx2x_link_report - report link status to upper layer.
197  *
198  * @bp:		driver handle
199  */
200 void bnx2x_link_report(struct bnx2x *bp);
201 
202 /* None-atomic version of bnx2x_link_report() */
203 void __bnx2x_link_report(struct bnx2x *bp);
204 
205 /**
206  * bnx2x_get_mf_speed - calculate MF speed.
207  *
208  * @bp:		driver handle
209  *
210  * Takes into account current linespeed and MF configuration.
211  */
212 u16 bnx2x_get_mf_speed(struct bnx2x *bp);
213 
214 /**
215  * bnx2x_msix_sp_int - MSI-X slowpath interrupt handler
216  *
217  * @irq:		irq number
218  * @dev_instance:	private instance
219  */
220 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
221 
222 /**
223  * bnx2x_interrupt - non MSI-X interrupt handler
224  *
225  * @irq:		irq number
226  * @dev_instance:	private instance
227  */
228 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
229 #ifdef BCM_CNIC
230 
231 /**
232  * bnx2x_cnic_notify - send command to cnic driver
233  *
234  * @bp:		driver handle
235  * @cmd:	command
236  */
237 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
238 
239 /**
240  * bnx2x_setup_cnic_irq_info - provides cnic with IRQ information
241  *
242  * @bp:		driver handle
243  */
244 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
245 #endif
246 
247 /**
248  * bnx2x_int_enable - enable HW interrupts.
249  *
250  * @bp:		driver handle
251  */
252 void bnx2x_int_enable(struct bnx2x *bp);
253 
254 /**
255  * bnx2x_int_disable_sync - disable interrupts.
256  *
257  * @bp:		driver handle
258  * @disable_hw:	true, disable HW interrupts.
259  *
260  * This function ensures that there are no
261  * ISRs or SP DPCs (sp_task) are running after it returns.
262  */
263 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
264 
265 /**
266  * bnx2x_nic_init - init driver internals.
267  *
268  * @bp:		driver handle
269  * @load_code:	COMMON, PORT or FUNCTION
270  *
271  * Initializes:
272  *  - rings
273  *  - status blocks
274  *  - etc.
275  */
276 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
277 
278 /**
279  * bnx2x_alloc_mem - allocate driver's memory.
280  *
281  * @bp:		driver handle
282  */
283 int bnx2x_alloc_mem(struct bnx2x *bp);
284 
285 /**
286  * bnx2x_free_mem - release driver's memory.
287  *
288  * @bp:		driver handle
289  */
290 void bnx2x_free_mem(struct bnx2x *bp);
291 
292 /**
293  * bnx2x_set_num_queues - set number of queues according to mode.
294  *
295  * @bp:		driver handle
296  */
297 void bnx2x_set_num_queues(struct bnx2x *bp);
298 
299 /**
300  * bnx2x_chip_cleanup - cleanup chip internals.
301  *
302  * @bp:			driver handle
303  * @unload_mode:	COMMON, PORT, FUNCTION
304  *
305  * - Cleanup MAC configuration.
306  * - Closes clients.
307  * - etc.
308  */
309 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
310 
311 /**
312  * bnx2x_acquire_hw_lock - acquire HW lock.
313  *
314  * @bp:		driver handle
315  * @resource:	resource bit which was locked
316  */
317 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
318 
319 /**
320  * bnx2x_release_hw_lock - release HW lock.
321  *
322  * @bp:		driver handle
323  * @resource:	resource bit which was locked
324  */
325 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
326 
327 /**
328  * bnx2x_release_leader_lock - release recovery leader lock
329  *
330  * @bp:		driver handle
331  */
332 int bnx2x_release_leader_lock(struct bnx2x *bp);
333 
334 /**
335  * bnx2x_set_eth_mac - configure eth MAC address in the HW
336  *
337  * @bp:		driver handle
338  * @set:	set or clear
339  *
340  * Configures according to the value in netdev->dev_addr.
341  */
342 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set);
343 
344 /**
345  * bnx2x_set_rx_mode - set MAC filtering configurations.
346  *
347  * @dev:	netdevice
348  *
349  * called with netif_tx_lock from dev_mcast.c
350  * If bp->state is OPEN, should be called with
351  * netif_addr_lock_bh()
352  */
353 void bnx2x_set_rx_mode(struct net_device *dev);
354 
355 /**
356  * bnx2x_set_storm_rx_mode - configure MAC filtering rules in a FW.
357  *
358  * @bp:		driver handle
359  *
360  * If bp->state is OPEN, should be called with
361  * netif_addr_lock_bh().
362  */
363 void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
364 
365 /**
366  * bnx2x_set_q_rx_mode - configures rx_mode for a single queue.
367  *
368  * @bp:			driver handle
369  * @cl_id:		client id
370  * @rx_mode_flags:	rx mode configuration
371  * @rx_accept_flags:	rx accept configuration
372  * @tx_accept_flags:	tx accept configuration (tx switch)
373  * @ramrod_flags:	ramrod configuration
374  */
375 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
376 			 unsigned long rx_mode_flags,
377 			 unsigned long rx_accept_flags,
378 			 unsigned long tx_accept_flags,
379 			 unsigned long ramrod_flags);
380 
381 /* Parity errors related */
382 void bnx2x_inc_load_cnt(struct bnx2x *bp);
383 u32 bnx2x_dec_load_cnt(struct bnx2x *bp);
384 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print);
385 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine);
386 void bnx2x_set_reset_in_progress(struct bnx2x *bp);
387 void bnx2x_set_reset_global(struct bnx2x *bp);
388 void bnx2x_disable_close_the_gate(struct bnx2x *bp);
389 
390 /**
391  * bnx2x_sp_event - handle ramrods completion.
392  *
393  * @fp:		fastpath handle for the event
394  * @rr_cqe:	eth_rx_cqe
395  */
396 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
397 
398 /**
399  * bnx2x_ilt_set_info - prepare ILT configurations.
400  *
401  * @bp:		driver handle
402  */
403 void bnx2x_ilt_set_info(struct bnx2x *bp);
404 
405 /**
406  * bnx2x_dcbx_init - initialize dcbx protocol.
407  *
408  * @bp:		driver handle
409  */
410 void bnx2x_dcbx_init(struct bnx2x *bp);
411 
412 /**
413  * bnx2x_set_power_state - set power state to the requested value.
414  *
415  * @bp:		driver handle
416  * @state:	required state D0 or D3hot
417  *
418  * Currently only D0 and D3hot are supported.
419  */
420 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
421 
422 /**
423  * bnx2x_update_max_mf_config - update MAX part of MF configuration in HW.
424  *
425  * @bp:		driver handle
426  * @value:	new value
427  */
428 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
429 /* Error handling */
430 void bnx2x_panic_dump(struct bnx2x *bp);
431 
432 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl);
433 
434 /* dev_close main block */
435 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
436 
437 /* dev_open main block */
438 int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
439 
440 /* hard_xmit callback */
441 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
442 
443 /* setup_tc callback */
444 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc);
445 
446 /* select_queue callback */
447 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
448 
449 /* reload helper */
450 int bnx2x_reload_if_running(struct net_device *dev);
451 
452 int bnx2x_change_mac_addr(struct net_device *dev, void *p);
453 
454 /* NAPI poll Rx part */
455 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
456 
457 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
458 			u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod);
459 
460 /* NAPI poll Tx part */
461 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata);
462 
463 /* suspend/resume callbacks */
464 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
465 int bnx2x_resume(struct pci_dev *pdev);
466 
467 /* Release IRQ vectors */
468 void bnx2x_free_irq(struct bnx2x *bp);
469 
470 void bnx2x_free_fp_mem(struct bnx2x *bp);
471 int bnx2x_alloc_fp_mem(struct bnx2x *bp);
472 void bnx2x_init_rx_rings(struct bnx2x *bp);
473 void bnx2x_free_skbs(struct bnx2x *bp);
474 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
475 void bnx2x_netif_start(struct bnx2x *bp);
476 
477 /**
478  * bnx2x_enable_msix - set msix configuration.
479  *
480  * @bp:		driver handle
481  *
482  * fills msix_table, requests vectors, updates num_queues
483  * according to number of available vectors.
484  */
485 int bnx2x_enable_msix(struct bnx2x *bp);
486 
487 /**
488  * bnx2x_enable_msi - request msi mode from OS, updated internals accordingly
489  *
490  * @bp:		driver handle
491  */
492 int bnx2x_enable_msi(struct bnx2x *bp);
493 
494 /**
495  * bnx2x_poll - NAPI callback
496  *
497  * @napi:	napi structure
498  * @budget:
499  *
500  */
501 int bnx2x_poll(struct napi_struct *napi, int budget);
502 
503 /**
504  * bnx2x_alloc_mem_bp - allocate memories outsize main driver structure
505  *
506  * @bp:		driver handle
507  */
508 int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
509 
510 /**
511  * bnx2x_free_mem_bp - release memories outsize main driver structure
512  *
513  * @bp:		driver handle
514  */
515 void bnx2x_free_mem_bp(struct bnx2x *bp);
516 
517 /**
518  * bnx2x_change_mtu - change mtu netdev callback
519  *
520  * @dev:	net device
521  * @new_mtu:	requested mtu
522  *
523  */
524 int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
525 
526 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
527 /**
528  * bnx2x_fcoe_get_wwn - return the requested WWN value for this port
529  *
530  * @dev:	net_device
531  * @wwn:	output buffer
532  * @type:	WWN type: NETDEV_FCOE_WWNN (node) or NETDEV_FCOE_WWPN (port)
533  *
534  */
535 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type);
536 #endif
537 netdev_features_t bnx2x_fix_features(struct net_device *dev,
538 	netdev_features_t features);
539 int bnx2x_set_features(struct net_device *dev, netdev_features_t features);
540 
541 /**
542  * bnx2x_tx_timeout - tx timeout netdev callback
543  *
544  * @dev:	net device
545  */
546 void bnx2x_tx_timeout(struct net_device *dev);
547 
548 /*********************** Inlines **********************************/
549 /*********************** Fast path ********************************/
550 static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
551 {
552 	barrier(); /* status block is written to by the chip */
553 	fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
554 }
555 
556 static inline void bnx2x_update_rx_prod_gen(struct bnx2x *bp,
557 			struct bnx2x_fastpath *fp, u16 bd_prod,
558 			u16 rx_comp_prod, u16 rx_sge_prod, u32 start)
559 {
560 	struct ustorm_eth_rx_producers rx_prods = {0};
561 	u32 i;
562 
563 	/* Update producers */
564 	rx_prods.bd_prod = bd_prod;
565 	rx_prods.cqe_prod = rx_comp_prod;
566 	rx_prods.sge_prod = rx_sge_prod;
567 
568 	/*
569 	 * Make sure that the BD and SGE data is updated before updating the
570 	 * producers since FW might read the BD/SGE right after the producer
571 	 * is updated.
572 	 * This is only applicable for weak-ordered memory model archs such
573 	 * as IA-64. The following barrier is also mandatory since FW will
574 	 * assumes BDs must have buffers.
575 	 */
576 	wmb();
577 
578 	for (i = 0; i < sizeof(rx_prods)/4; i++)
579 		REG_WR(bp, start + i*4, ((u32 *)&rx_prods)[i]);
580 
581 	mmiowb(); /* keep prod updates ordered */
582 
583 	DP(NETIF_MSG_RX_STATUS,
584 	   "queue[%d]:  wrote  bd_prod %u  cqe_prod %u  sge_prod %u\n",
585 	   fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
586 }
587 
588 static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
589 					u8 segment, u16 index, u8 op,
590 					u8 update, u32 igu_addr)
591 {
592 	struct igu_regular cmd_data = {0};
593 
594 	cmd_data.sb_id_and_flags =
595 			((index << IGU_REGULAR_SB_INDEX_SHIFT) |
596 			 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
597 			 (update << IGU_REGULAR_BUPDATE_SHIFT) |
598 			 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
599 
600 	DP(NETIF_MSG_HW, "write 0x%08x to IGU addr 0x%x\n",
601 	   cmd_data.sb_id_and_flags, igu_addr);
602 	REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
603 
604 	/* Make sure that ACK is written */
605 	mmiowb();
606 	barrier();
607 }
608 
609 static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
610 					  u8 idu_sb_id, bool is_Pf)
611 {
612 	u32 data, ctl, cnt = 100;
613 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
614 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
615 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
616 	u32 sb_bit =  1 << (idu_sb_id%32);
617 	u32 func_encode = func |
618 			((is_Pf == true ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT);
619 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
620 
621 	/* Not supported in BC mode */
622 	if (CHIP_INT_MODE_IS_BC(bp))
623 		return;
624 
625 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
626 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
627 		IGU_REGULAR_CLEANUP_SET				|
628 		IGU_REGULAR_BCLEANUP;
629 
630 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
631 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
632 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
633 
634 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
635 			 data, igu_addr_data);
636 	REG_WR(bp, igu_addr_data, data);
637 	mmiowb();
638 	barrier();
639 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
640 			  ctl, igu_addr_ctl);
641 	REG_WR(bp, igu_addr_ctl, ctl);
642 	mmiowb();
643 	barrier();
644 
645 	/* wait for clean up to finish */
646 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
647 		msleep(20);
648 
649 
650 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
651 		DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: "
652 			  "idu_sb_id %d offset %d bit %d (cnt %d)\n",
653 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
654 	}
655 }
656 
657 static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
658 				   u8 storm, u16 index, u8 op, u8 update)
659 {
660 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
661 		       COMMAND_REG_INT_ACK);
662 	struct igu_ack_register igu_ack;
663 
664 	igu_ack.status_block_index = index;
665 	igu_ack.sb_id_and_flags =
666 			((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
667 			 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
668 			 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
669 			 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
670 
671 	DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n",
672 	   (*(u32 *)&igu_ack), hc_addr);
673 	REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
674 
675 	/* Make sure that ACK is written */
676 	mmiowb();
677 	barrier();
678 }
679 
680 static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
681 				u16 index, u8 op, u8 update)
682 {
683 	if (bp->common.int_block == INT_BLOCK_HC)
684 		bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
685 	else {
686 		u8 segment;
687 
688 		if (CHIP_INT_MODE_IS_BC(bp))
689 			segment = storm;
690 		else if (igu_sb_id != bp->igu_dsb_id)
691 			segment = IGU_SEG_ACCESS_DEF;
692 		else if (storm == ATTENTION_ID)
693 			segment = IGU_SEG_ACCESS_ATTN;
694 		else
695 			segment = IGU_SEG_ACCESS_DEF;
696 		bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
697 	}
698 }
699 
700 static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
701 {
702 	u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
703 		       COMMAND_REG_SIMD_MASK);
704 	u32 result = REG_RD(bp, hc_addr);
705 
706 	DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n",
707 	   result, hc_addr);
708 
709 	barrier();
710 	return result;
711 }
712 
713 static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
714 {
715 	u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
716 	u32 result = REG_RD(bp, igu_addr);
717 
718 	DP(NETIF_MSG_HW, "read 0x%08x from IGU addr 0x%x\n",
719 	   result, igu_addr);
720 
721 	barrier();
722 	return result;
723 }
724 
725 static inline u16 bnx2x_ack_int(struct bnx2x *bp)
726 {
727 	barrier();
728 	if (bp->common.int_block == INT_BLOCK_HC)
729 		return bnx2x_hc_ack_int(bp);
730 	else
731 		return bnx2x_igu_ack_int(bp);
732 }
733 
734 static inline int bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata *txdata)
735 {
736 	/* Tell compiler that consumer and producer can change */
737 	barrier();
738 	return txdata->tx_pkt_prod != txdata->tx_pkt_cons;
739 }
740 
741 static inline u16 bnx2x_tx_avail(struct bnx2x *bp,
742 				 struct bnx2x_fp_txdata *txdata)
743 {
744 	s16 used;
745 	u16 prod;
746 	u16 cons;
747 
748 	prod = txdata->tx_bd_prod;
749 	cons = txdata->tx_bd_cons;
750 
751 	/* NUM_TX_RINGS = number of "next-page" entries
752 	   It will be used as a threshold */
753 	used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
754 
755 #ifdef BNX2X_STOP_ON_ERROR
756 	WARN_ON(used < 0);
757 	WARN_ON(used > bp->tx_ring_size);
758 	WARN_ON((bp->tx_ring_size - used) > MAX_TX_AVAIL);
759 #endif
760 
761 	return (s16)(bp->tx_ring_size) - used;
762 }
763 
764 static inline int bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata *txdata)
765 {
766 	u16 hw_cons;
767 
768 	/* Tell compiler that status block fields can change */
769 	barrier();
770 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
771 	return hw_cons != txdata->tx_pkt_cons;
772 }
773 
774 static inline bool bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
775 {
776 	u8 cos;
777 	for_each_cos_in_tx_queue(fp, cos)
778 		if (bnx2x_tx_queue_has_work(&fp->txdata[cos]))
779 			return true;
780 	return false;
781 }
782 
783 static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
784 {
785 	u16 rx_cons_sb;
786 
787 	/* Tell compiler that status block fields can change */
788 	barrier();
789 	rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
790 	if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
791 		rx_cons_sb++;
792 	return (fp->rx_comp_cons != rx_cons_sb);
793 }
794 
795 /**
796  * bnx2x_tx_disable - disables tx from stack point of view
797  *
798  * @bp:		driver handle
799  */
800 static inline void bnx2x_tx_disable(struct bnx2x *bp)
801 {
802 	netif_tx_disable(bp->dev);
803 	netif_carrier_off(bp->dev);
804 }
805 
806 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
807 				     struct bnx2x_fastpath *fp, u16 index)
808 {
809 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
810 	struct page *page = sw_buf->page;
811 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
812 
813 	/* Skip "next page" elements */
814 	if (!page)
815 		return;
816 
817 	dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
818 		       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
819 	__free_pages(page, PAGES_PER_SGE_SHIFT);
820 
821 	sw_buf->page = NULL;
822 	sge->addr_hi = 0;
823 	sge->addr_lo = 0;
824 }
825 
826 static inline void bnx2x_add_all_napi(struct bnx2x *bp)
827 {
828 	int i;
829 
830 	/* Add NAPI objects */
831 	for_each_rx_queue(bp, i)
832 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
833 			       bnx2x_poll, BNX2X_NAPI_WEIGHT);
834 }
835 
836 static inline void bnx2x_del_all_napi(struct bnx2x *bp)
837 {
838 	int i;
839 
840 	for_each_rx_queue(bp, i)
841 		netif_napi_del(&bnx2x_fp(bp, i, napi));
842 }
843 
844 static inline void bnx2x_disable_msi(struct bnx2x *bp)
845 {
846 	if (bp->flags & USING_MSIX_FLAG) {
847 		pci_disable_msix(bp->pdev);
848 		bp->flags &= ~USING_MSIX_FLAG;
849 	} else if (bp->flags & USING_MSI_FLAG) {
850 		pci_disable_msi(bp->pdev);
851 		bp->flags &= ~USING_MSI_FLAG;
852 	}
853 }
854 
855 static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
856 {
857 	return  num_queues ?
858 		 min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
859 		 min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
860 }
861 
862 static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
863 {
864 	int i, j;
865 
866 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
867 		int idx = RX_SGE_CNT * i - 1;
868 
869 		for (j = 0; j < 2; j++) {
870 			BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
871 			idx--;
872 		}
873 	}
874 }
875 
876 static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
877 {
878 	/* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
879 	memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
880 
881 	/* Clear the two last indices in the page to 1:
882 	   these are the indices that correspond to the "next" element,
883 	   hence will never be indicated and should be removed from
884 	   the calculations. */
885 	bnx2x_clear_sge_mask_next_elems(fp);
886 }
887 
888 static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
889 				     struct bnx2x_fastpath *fp, u16 index)
890 {
891 	struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
892 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
893 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
894 	dma_addr_t mapping;
895 
896 	if (unlikely(page == NULL))
897 		return -ENOMEM;
898 
899 	mapping = dma_map_page(&bp->pdev->dev, page, 0,
900 			       SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
901 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
902 		__free_pages(page, PAGES_PER_SGE_SHIFT);
903 		return -ENOMEM;
904 	}
905 
906 	sw_buf->page = page;
907 	dma_unmap_addr_set(sw_buf, mapping, mapping);
908 
909 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
910 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
911 
912 	return 0;
913 }
914 
915 static inline int bnx2x_alloc_rx_data(struct bnx2x *bp,
916 				      struct bnx2x_fastpath *fp, u16 index)
917 {
918 	u8 *data;
919 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
920 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
921 	dma_addr_t mapping;
922 
923 	data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
924 	if (unlikely(data == NULL))
925 		return -ENOMEM;
926 
927 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
928 				 fp->rx_buf_size,
929 				 DMA_FROM_DEVICE);
930 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
931 		kfree(data);
932 		return -ENOMEM;
933 	}
934 
935 	rx_buf->data = data;
936 	dma_unmap_addr_set(rx_buf, mapping, mapping);
937 
938 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
939 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
940 
941 	return 0;
942 }
943 
944 /* note that we are not allocating a new buffer,
945  * we are just moving one from cons to prod
946  * we are not creating a new mapping,
947  * so there is no need to check for dma_mapping_error().
948  */
949 static inline void bnx2x_reuse_rx_data(struct bnx2x_fastpath *fp,
950 				      u16 cons, u16 prod)
951 {
952 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
953 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
954 	struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
955 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
956 
957 	dma_unmap_addr_set(prod_rx_buf, mapping,
958 			   dma_unmap_addr(cons_rx_buf, mapping));
959 	prod_rx_buf->data = cons_rx_buf->data;
960 	*prod_bd = *cons_bd;
961 }
962 
963 /************************* Init ******************************************/
964 
965 /**
966  * bnx2x_func_start - init function
967  *
968  * @bp:		driver handle
969  *
970  * Must be called before sending CLIENT_SETUP for the first client.
971  */
972 static inline int bnx2x_func_start(struct bnx2x *bp)
973 {
974 	struct bnx2x_func_state_params func_params = {0};
975 	struct bnx2x_func_start_params *start_params =
976 		&func_params.params.start;
977 
978 	/* Prepare parameters for function state transitions */
979 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
980 
981 	func_params.f_obj = &bp->func_obj;
982 	func_params.cmd = BNX2X_F_CMD_START;
983 
984 	/* Function parameters */
985 	start_params->mf_mode = bp->mf_mode;
986 	start_params->sd_vlan_tag = bp->mf_ov;
987 	if (CHIP_IS_E1x(bp))
988 		start_params->network_cos_mode = OVERRIDE_COS;
989 	else
990 		start_params->network_cos_mode = STATIC_COS;
991 
992 	return bnx2x_func_state_change(bp, &func_params);
993 }
994 
995 
996 /**
997  * bnx2x_set_fw_mac_addr - fill in a MAC address in FW format
998  *
999  * @fw_hi:	pointer to upper part
1000  * @fw_mid:	pointer to middle part
1001  * @fw_lo:	pointer to lower part
1002  * @mac:	pointer to MAC address
1003  */
1004 static inline void bnx2x_set_fw_mac_addr(u16 *fw_hi, u16 *fw_mid, u16 *fw_lo,
1005 					 u8 *mac)
1006 {
1007 	((u8 *)fw_hi)[0]  = mac[1];
1008 	((u8 *)fw_hi)[1]  = mac[0];
1009 	((u8 *)fw_mid)[0] = mac[3];
1010 	((u8 *)fw_mid)[1] = mac[2];
1011 	((u8 *)fw_lo)[0]  = mac[5];
1012 	((u8 *)fw_lo)[1]  = mac[4];
1013 }
1014 
1015 static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
1016 					   struct bnx2x_fastpath *fp, int last)
1017 {
1018 	int i;
1019 
1020 	if (fp->disable_tpa)
1021 		return;
1022 
1023 	for (i = 0; i < last; i++)
1024 		bnx2x_free_rx_sge(bp, fp, i);
1025 }
1026 
1027 static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
1028 				       struct bnx2x_fastpath *fp, int last)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < last; i++) {
1033 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1034 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1035 		u8 *data = first_buf->data;
1036 
1037 		if (data == NULL) {
1038 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1039 			continue;
1040 		}
1041 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1042 			dma_unmap_single(&bp->pdev->dev,
1043 					 dma_unmap_addr(first_buf, mapping),
1044 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1045 		kfree(data);
1046 		first_buf->data = NULL;
1047 	}
1048 }
1049 
1050 static inline void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
1051 {
1052 	int i;
1053 
1054 	for (i = 1; i <= NUM_TX_RINGS; i++) {
1055 		struct eth_tx_next_bd *tx_next_bd =
1056 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
1057 
1058 		tx_next_bd->addr_hi =
1059 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
1060 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1061 		tx_next_bd->addr_lo =
1062 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
1063 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1064 	}
1065 
1066 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
1067 	txdata->tx_db.data.zero_fill1 = 0;
1068 	txdata->tx_db.data.prod = 0;
1069 
1070 	txdata->tx_pkt_prod = 0;
1071 	txdata->tx_pkt_cons = 0;
1072 	txdata->tx_bd_prod = 0;
1073 	txdata->tx_bd_cons = 0;
1074 	txdata->tx_pkt = 0;
1075 }
1076 
1077 static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
1078 {
1079 	int i;
1080 	u8 cos;
1081 
1082 	for_each_tx_queue(bp, i)
1083 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
1084 			bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]);
1085 }
1086 
1087 static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
1088 {
1089 	int i;
1090 
1091 	for (i = 1; i <= NUM_RX_RINGS; i++) {
1092 		struct eth_rx_bd *rx_bd;
1093 
1094 		rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
1095 		rx_bd->addr_hi =
1096 			cpu_to_le32(U64_HI(fp->rx_desc_mapping +
1097 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1098 		rx_bd->addr_lo =
1099 			cpu_to_le32(U64_LO(fp->rx_desc_mapping +
1100 				    BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1101 	}
1102 }
1103 
1104 static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1105 {
1106 	int i;
1107 
1108 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1109 		struct eth_rx_sge *sge;
1110 
1111 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1112 		sge->addr_hi =
1113 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1114 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1115 
1116 		sge->addr_lo =
1117 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1118 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1119 	}
1120 }
1121 
1122 static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
1123 {
1124 	int i;
1125 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
1126 		struct eth_rx_cqe_next_page *nextpg;
1127 
1128 		nextpg = (struct eth_rx_cqe_next_page *)
1129 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
1130 		nextpg->addr_hi =
1131 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
1132 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1133 		nextpg->addr_lo =
1134 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
1135 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1136 	}
1137 }
1138 
1139 /* Returns the number of actually allocated BDs */
1140 static inline int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
1141 				      int rx_ring_size)
1142 {
1143 	struct bnx2x *bp = fp->bp;
1144 	u16 ring_prod, cqe_ring_prod;
1145 	int i;
1146 
1147 	fp->rx_comp_cons = 0;
1148 	cqe_ring_prod = ring_prod = 0;
1149 
1150 	/* This routine is called only during fo init so
1151 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
1152 	 */
1153 	for (i = 0; i < rx_ring_size; i++) {
1154 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
1155 			fp->eth_q_stats.rx_skb_alloc_failed++;
1156 			continue;
1157 		}
1158 		ring_prod = NEXT_RX_IDX(ring_prod);
1159 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
1160 		WARN_ON(ring_prod <= (i - fp->eth_q_stats.rx_skb_alloc_failed));
1161 	}
1162 
1163 	if (fp->eth_q_stats.rx_skb_alloc_failed)
1164 		BNX2X_ERR("was only able to allocate "
1165 			  "%d rx skbs on queue[%d]\n",
1166 			  (i - fp->eth_q_stats.rx_skb_alloc_failed), fp->index);
1167 
1168 	fp->rx_bd_prod = ring_prod;
1169 	/* Limit the CQE producer by the CQE ring size */
1170 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
1171 			       cqe_ring_prod);
1172 	fp->rx_pkt = fp->rx_calls = 0;
1173 
1174 	return i - fp->eth_q_stats.rx_skb_alloc_failed;
1175 }
1176 
1177 /* Statistics ID are global per chip/path, while Client IDs for E1x are per
1178  * port.
1179  */
1180 static inline u8 bnx2x_stats_id(struct bnx2x_fastpath *fp)
1181 {
1182 	if (!CHIP_IS_E1x(fp->bp))
1183 		return fp->cl_id;
1184 	else
1185 		return fp->cl_id + BP_PORT(fp->bp) * FP_SB_MAX_E1x;
1186 }
1187 
1188 static inline void bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath *fp,
1189 					       bnx2x_obj_type obj_type)
1190 {
1191 	struct bnx2x *bp = fp->bp;
1192 
1193 	/* Configure classification DBs */
1194 	bnx2x_init_mac_obj(bp, &fp->mac_obj, fp->cl_id, fp->cid,
1195 			   BP_FUNC(bp), bnx2x_sp(bp, mac_rdata),
1196 			   bnx2x_sp_mapping(bp, mac_rdata),
1197 			   BNX2X_FILTER_MAC_PENDING,
1198 			   &bp->sp_state, obj_type,
1199 			   &bp->macs_pool);
1200 }
1201 
1202 /**
1203  * bnx2x_get_path_func_num - get number of active functions
1204  *
1205  * @bp:		driver handle
1206  *
1207  * Calculates the number of active (not hidden) functions on the
1208  * current path.
1209  */
1210 static inline u8 bnx2x_get_path_func_num(struct bnx2x *bp)
1211 {
1212 	u8 func_num = 0, i;
1213 
1214 	/* 57710 has only one function per-port */
1215 	if (CHIP_IS_E1(bp))
1216 		return 1;
1217 
1218 	/* Calculate a number of functions enabled on the current
1219 	 * PATH/PORT.
1220 	 */
1221 	if (CHIP_REV_IS_SLOW(bp)) {
1222 		if (IS_MF(bp))
1223 			func_num = 4;
1224 		else
1225 			func_num = 2;
1226 	} else {
1227 		for (i = 0; i < E1H_FUNC_MAX / 2; i++) {
1228 			u32 func_config =
1229 				MF_CFG_RD(bp,
1230 					  func_mf_config[BP_PORT(bp) + 2 * i].
1231 					  config);
1232 			func_num +=
1233 				((func_config & FUNC_MF_CFG_FUNC_HIDE) ? 0 : 1);
1234 		}
1235 	}
1236 
1237 	WARN_ON(!func_num);
1238 
1239 	return func_num;
1240 }
1241 
1242 static inline void bnx2x_init_bp_objs(struct bnx2x *bp)
1243 {
1244 	/* RX_MODE controlling object */
1245 	bnx2x_init_rx_mode_obj(bp, &bp->rx_mode_obj);
1246 
1247 	/* multicast configuration controlling object */
1248 	bnx2x_init_mcast_obj(bp, &bp->mcast_obj, bp->fp->cl_id, bp->fp->cid,
1249 			     BP_FUNC(bp), BP_FUNC(bp),
1250 			     bnx2x_sp(bp, mcast_rdata),
1251 			     bnx2x_sp_mapping(bp, mcast_rdata),
1252 			     BNX2X_FILTER_MCAST_PENDING, &bp->sp_state,
1253 			     BNX2X_OBJ_TYPE_RX);
1254 
1255 	/* Setup CAM credit pools */
1256 	bnx2x_init_mac_credit_pool(bp, &bp->macs_pool, BP_FUNC(bp),
1257 				   bnx2x_get_path_func_num(bp));
1258 
1259 	/* RSS configuration object */
1260 	bnx2x_init_rss_config_obj(bp, &bp->rss_conf_obj, bp->fp->cl_id,
1261 				  bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp),
1262 				  bnx2x_sp(bp, rss_rdata),
1263 				  bnx2x_sp_mapping(bp, rss_rdata),
1264 				  BNX2X_FILTER_RSS_CONF_PENDING, &bp->sp_state,
1265 				  BNX2X_OBJ_TYPE_RX);
1266 }
1267 
1268 static inline u8 bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
1269 {
1270 	if (CHIP_IS_E1x(fp->bp))
1271 		return fp->cl_id + BP_PORT(fp->bp) * ETH_MAX_RX_CLIENTS_E1H;
1272 	else
1273 		return fp->cl_id;
1274 }
1275 
1276 static inline u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
1277 {
1278 	struct bnx2x *bp = fp->bp;
1279 
1280 	if (!CHIP_IS_E1x(bp))
1281 		return USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
1282 	else
1283 		return USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
1284 }
1285 
1286 static inline void bnx2x_init_txdata(struct bnx2x *bp,
1287 	struct bnx2x_fp_txdata *txdata, u32 cid, int txq_index,
1288 	__le16 *tx_cons_sb)
1289 {
1290 	txdata->cid = cid;
1291 	txdata->txq_index = txq_index;
1292 	txdata->tx_cons_sb = tx_cons_sb;
1293 
1294 	DP(BNX2X_MSG_SP, "created tx data cid %d, txq %d\n",
1295 	   txdata->cid, txdata->txq_index);
1296 }
1297 
1298 #ifdef BCM_CNIC
1299 static inline u8 bnx2x_cnic_eth_cl_id(struct bnx2x *bp, u8 cl_idx)
1300 {
1301 	return bp->cnic_base_cl_id + cl_idx +
1302 		(bp->pf_num >> 1) * BNX2X_MAX_CNIC_ETH_CL_ID_IDX;
1303 }
1304 
1305 static inline u8 bnx2x_cnic_fw_sb_id(struct bnx2x *bp)
1306 {
1307 
1308 	/* the 'first' id is allocated for the cnic */
1309 	return bp->base_fw_ndsb;
1310 }
1311 
1312 static inline u8 bnx2x_cnic_igu_sb_id(struct bnx2x *bp)
1313 {
1314 	return bp->igu_base_sb;
1315 }
1316 
1317 
1318 static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
1319 {
1320 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
1321 	unsigned long q_type = 0;
1322 
1323 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
1324 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
1325 						     BNX2X_FCOE_ETH_CL_ID_IDX);
1326 	/** Current BNX2X_FCOE_ETH_CID deffinition implies not more than
1327 	 *  16 ETH clients per function when CNIC is enabled!
1328 	 *
1329 	 *  Fix it ASAP!!!
1330 	 */
1331 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
1332 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
1333 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
1334 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
1335 
1336 	bnx2x_init_txdata(bp, &bnx2x_fcoe(bp, txdata[0]),
1337 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX);
1338 
1339 	DP(BNX2X_MSG_SP, "created fcoe tx data (fp index %d)\n", fp->index);
1340 
1341 	/* qZone id equals to FW (per path) client id */
1342 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
1343 	/* init shortcut */
1344 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
1345 		bnx2x_rx_ustorm_prods_offset(fp);
1346 
1347 	/* Configure Queue State object */
1348 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1349 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1350 
1351 	/* No multi-CoS for FCoE L2 client */
1352 	BUG_ON(fp->max_cos != 1);
1353 
1354 	bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, &fp->cid, 1,
1355 			     BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
1356 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
1357 
1358 	DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d "
1359 			   "igu_sb %d\n",
1360 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
1361 	   fp->igu_sb_id);
1362 }
1363 #endif
1364 
1365 static inline int bnx2x_clean_tx_queue(struct bnx2x *bp,
1366 				       struct bnx2x_fp_txdata *txdata)
1367 {
1368 	int cnt = 1000;
1369 
1370 	while (bnx2x_has_tx_work_unload(txdata)) {
1371 		if (!cnt) {
1372 			BNX2X_ERR("timeout waiting for queue[%d]: "
1373 				 "txdata->tx_pkt_prod(%d) != txdata->tx_pkt_cons(%d)\n",
1374 				  txdata->txq_index, txdata->tx_pkt_prod,
1375 				  txdata->tx_pkt_cons);
1376 #ifdef BNX2X_STOP_ON_ERROR
1377 			bnx2x_panic();
1378 			return -EBUSY;
1379 #else
1380 			break;
1381 #endif
1382 		}
1383 		cnt--;
1384 		usleep_range(1000, 1000);
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 int bnx2x_get_link_cfg_idx(struct bnx2x *bp);
1391 
1392 static inline void __storm_memset_struct(struct bnx2x *bp,
1393 					 u32 addr, size_t size, u32 *data)
1394 {
1395 	int i;
1396 	for (i = 0; i < size/4; i++)
1397 		REG_WR(bp, addr + (i * 4), data[i]);
1398 }
1399 
1400 static inline void storm_memset_func_cfg(struct bnx2x *bp,
1401 				struct tstorm_eth_function_common_config *tcfg,
1402 				u16 abs_fid)
1403 {
1404 	size_t size = sizeof(struct tstorm_eth_function_common_config);
1405 
1406 	u32 addr = BAR_TSTRORM_INTMEM +
1407 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
1408 
1409 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
1410 }
1411 
1412 static inline void storm_memset_cmng(struct bnx2x *bp,
1413 				struct cmng_struct_per_port *cmng,
1414 				u8 port)
1415 {
1416 	size_t size = sizeof(struct cmng_struct_per_port);
1417 
1418 	u32 addr = BAR_XSTRORM_INTMEM +
1419 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
1420 
1421 	__storm_memset_struct(bp, addr, size, (u32 *)cmng);
1422 }
1423 
1424 /**
1425  * bnx2x_wait_sp_comp - wait for the outstanding SP commands.
1426  *
1427  * @bp:		driver handle
1428  * @mask:	bits that need to be cleared
1429  */
1430 static inline bool bnx2x_wait_sp_comp(struct bnx2x *bp, unsigned long mask)
1431 {
1432 	int tout = 5000; /* Wait for 5 secs tops */
1433 
1434 	while (tout--) {
1435 		smp_mb();
1436 		netif_addr_lock_bh(bp->dev);
1437 		if (!(bp->sp_state & mask)) {
1438 			netif_addr_unlock_bh(bp->dev);
1439 			return true;
1440 		}
1441 		netif_addr_unlock_bh(bp->dev);
1442 
1443 		usleep_range(1000, 1000);
1444 	}
1445 
1446 	smp_mb();
1447 
1448 	netif_addr_lock_bh(bp->dev);
1449 	if (bp->sp_state & mask) {
1450 		BNX2X_ERR("Filtering completion timed out. sp_state 0x%lx, "
1451 			  "mask 0x%lx\n", bp->sp_state, mask);
1452 		netif_addr_unlock_bh(bp->dev);
1453 		return false;
1454 	}
1455 	netif_addr_unlock_bh(bp->dev);
1456 
1457 	return true;
1458 }
1459 
1460 /**
1461  * bnx2x_set_ctx_validation - set CDU context validation values
1462  *
1463  * @bp:		driver handle
1464  * @cxt:	context of the connection on the host memory
1465  * @cid:	SW CID of the connection to be configured
1466  */
1467 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
1468 			      u32 cid);
1469 
1470 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
1471 				    u8 sb_index, u8 disable, u16 usec);
1472 void bnx2x_acquire_phy_lock(struct bnx2x *bp);
1473 void bnx2x_release_phy_lock(struct bnx2x *bp);
1474 
1475 /**
1476  * bnx2x_extract_max_cfg - extract MAX BW part from MF configuration.
1477  *
1478  * @bp:		driver handle
1479  * @mf_cfg:	MF configuration
1480  *
1481  */
1482 static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
1483 {
1484 	u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
1485 			      FUNC_MF_CFG_MAX_BW_SHIFT;
1486 	if (!max_cfg) {
1487 		DP(NETIF_MSG_LINK,
1488 		   "Max BW configured to 0 - using 100 instead\n");
1489 		max_cfg = 100;
1490 	}
1491 	return max_cfg;
1492 }
1493 
1494 /**
1495  * bnx2x_get_iscsi_info - update iSCSI params according to licensing info.
1496  *
1497  * @bp:		driver handle
1498  *
1499  */
1500 void bnx2x_get_iscsi_info(struct bnx2x *bp);
1501 
1502 /* returns func by VN for current port */
1503 static inline int func_by_vn(struct bnx2x *bp, int vn)
1504 {
1505 	return 2 * vn + BP_PORT(bp);
1506 }
1507 
1508 /**
1509  * bnx2x_link_sync_notify - send notification to other functions.
1510  *
1511  * @bp:		driver handle
1512  *
1513  */
1514 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
1515 {
1516 	int func;
1517 	int vn;
1518 
1519 	/* Set the attention towards other drivers on the same port */
1520 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
1521 		if (vn == BP_VN(bp))
1522 			continue;
1523 
1524 		func = func_by_vn(bp, vn);
1525 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
1526 		       (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
1527 	}
1528 }
1529 
1530 /**
1531  * bnx2x_update_drv_flags - update flags in shmem
1532  *
1533  * @bp:		driver handle
1534  * @flags:	flags to update
1535  * @set:	set or clear
1536  *
1537  */
1538 static inline void bnx2x_update_drv_flags(struct bnx2x *bp, u32 flags, u32 set)
1539 {
1540 	if (SHMEM2_HAS(bp, drv_flags)) {
1541 		u32 drv_flags;
1542 		bnx2x_acquire_hw_lock(bp, HW_LOCK_DRV_FLAGS);
1543 		drv_flags = SHMEM2_RD(bp, drv_flags);
1544 
1545 		if (set)
1546 			SET_FLAGS(drv_flags, flags);
1547 		else
1548 			RESET_FLAGS(drv_flags, flags);
1549 
1550 		SHMEM2_WR(bp, drv_flags, drv_flags);
1551 		DP(NETIF_MSG_HW, "drv_flags 0x%08x\n", drv_flags);
1552 		bnx2x_release_hw_lock(bp, HW_LOCK_DRV_FLAGS);
1553 	}
1554 }
1555 
1556 static inline bool bnx2x_is_valid_ether_addr(struct bnx2x *bp, u8 *addr)
1557 {
1558 	if (is_valid_ether_addr(addr))
1559 		return true;
1560 #ifdef BCM_CNIC
1561 	if (is_zero_ether_addr(addr) && IS_MF_ISCSI_SD(bp))
1562 		return true;
1563 #endif
1564 	return false;
1565 }
1566 
1567 #endif /* BNX2X_CMN_H */
1568