xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35 
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40 
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 	int i;
44 
45 	/* Add NAPI objects */
46 	for_each_rx_queue_cnic(bp, i) {
47 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 			       bnx2x_poll, NAPI_POLL_WEIGHT);
49 		napi_hash_add(&bnx2x_fp(bp, i, napi));
50 	}
51 }
52 
53 static void bnx2x_add_all_napi(struct bnx2x *bp)
54 {
55 	int i;
56 
57 	/* Add NAPI objects */
58 	for_each_eth_queue(bp, i) {
59 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
60 			       bnx2x_poll, NAPI_POLL_WEIGHT);
61 		napi_hash_add(&bnx2x_fp(bp, i, napi));
62 	}
63 }
64 
65 static int bnx2x_calc_num_queues(struct bnx2x *bp)
66 {
67 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
68 
69 	/* Reduce memory usage in kdump environment by using only one queue */
70 	if (is_kdump_kernel())
71 		nq = 1;
72 
73 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
74 	return nq;
75 }
76 
77 /**
78  * bnx2x_move_fp - move content of the fastpath structure.
79  *
80  * @bp:		driver handle
81  * @from:	source FP index
82  * @to:		destination FP index
83  *
84  * Makes sure the contents of the bp->fp[to].napi is kept
85  * intact. This is done by first copying the napi struct from
86  * the target to the source, and then mem copying the entire
87  * source onto the target. Update txdata pointers and related
88  * content.
89  */
90 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
91 {
92 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
93 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
94 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
95 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
96 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
97 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
98 	int old_max_eth_txqs, new_max_eth_txqs;
99 	int old_txdata_index = 0, new_txdata_index = 0;
100 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
101 
102 	/* Copy the NAPI object as it has been already initialized */
103 	from_fp->napi = to_fp->napi;
104 
105 	/* Move bnx2x_fastpath contents */
106 	memcpy(to_fp, from_fp, sizeof(*to_fp));
107 	to_fp->index = to;
108 
109 	/* Retain the tpa_info of the original `to' version as we don't want
110 	 * 2 FPs to contain the same tpa_info pointer.
111 	 */
112 	to_fp->tpa_info = old_tpa_info;
113 
114 	/* move sp_objs contents as well, as their indices match fp ones */
115 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
116 
117 	/* move fp_stats contents as well, as their indices match fp ones */
118 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
119 
120 	/* Update txdata pointers in fp and move txdata content accordingly:
121 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
122 	 * decremented by max_cos x delta.
123 	 */
124 
125 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
126 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
127 				(bp)->max_cos;
128 	if (from == FCOE_IDX(bp)) {
129 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
130 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
131 	}
132 
133 	memcpy(&bp->bnx2x_txq[new_txdata_index],
134 	       &bp->bnx2x_txq[old_txdata_index],
135 	       sizeof(struct bnx2x_fp_txdata));
136 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
137 }
138 
139 /**
140  * bnx2x_fill_fw_str - Fill buffer with FW version string.
141  *
142  * @bp:        driver handle
143  * @buf:       character buffer to fill with the fw name
144  * @buf_len:   length of the above buffer
145  *
146  */
147 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
148 {
149 	if (IS_PF(bp)) {
150 		u8 phy_fw_ver[PHY_FW_VER_LEN];
151 
152 		phy_fw_ver[0] = '\0';
153 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
154 					     phy_fw_ver, PHY_FW_VER_LEN);
155 		strlcpy(buf, bp->fw_ver, buf_len);
156 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
157 			 "bc %d.%d.%d%s%s",
158 			 (bp->common.bc_ver & 0xff0000) >> 16,
159 			 (bp->common.bc_ver & 0xff00) >> 8,
160 			 (bp->common.bc_ver & 0xff),
161 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
162 	} else {
163 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
164 	}
165 }
166 
167 /**
168  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
169  *
170  * @bp:	driver handle
171  * @delta:	number of eth queues which were not allocated
172  */
173 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
174 {
175 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
176 
177 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
178 	 * backward along the array could cause memory to be overridden
179 	 */
180 	for (cos = 1; cos < bp->max_cos; cos++) {
181 		for (i = 0; i < old_eth_num - delta; i++) {
182 			struct bnx2x_fastpath *fp = &bp->fp[i];
183 			int new_idx = cos * (old_eth_num - delta) + i;
184 
185 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
186 			       sizeof(struct bnx2x_fp_txdata));
187 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
188 		}
189 	}
190 }
191 
192 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
193 
194 /* free skb in the packet ring at pos idx
195  * return idx of last bd freed
196  */
197 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
198 			     u16 idx, unsigned int *pkts_compl,
199 			     unsigned int *bytes_compl)
200 {
201 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
202 	struct eth_tx_start_bd *tx_start_bd;
203 	struct eth_tx_bd *tx_data_bd;
204 	struct sk_buff *skb = tx_buf->skb;
205 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
206 	int nbd;
207 	u16 split_bd_len = 0;
208 
209 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
210 	prefetch(&skb->end);
211 
212 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
213 	   txdata->txq_index, idx, tx_buf, skb);
214 
215 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
216 
217 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
218 #ifdef BNX2X_STOP_ON_ERROR
219 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
220 		BNX2X_ERR("BAD nbd!\n");
221 		bnx2x_panic();
222 	}
223 #endif
224 	new_cons = nbd + tx_buf->first_bd;
225 
226 	/* Get the next bd */
227 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
228 
229 	/* Skip a parse bd... */
230 	--nbd;
231 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
232 
233 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
234 		/* Skip second parse bd... */
235 		--nbd;
236 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
237 	}
238 
239 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
240 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
241 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
242 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
243 		--nbd;
244 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
245 	}
246 
247 	/* unmap first bd */
248 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
249 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
250 			 DMA_TO_DEVICE);
251 
252 	/* now free frags */
253 	while (nbd > 0) {
254 
255 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
256 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
257 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
258 		if (--nbd)
259 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
260 	}
261 
262 	/* release skb */
263 	WARN_ON(!skb);
264 	if (likely(skb)) {
265 		(*pkts_compl)++;
266 		(*bytes_compl) += skb->len;
267 		dev_kfree_skb_any(skb);
268 	}
269 
270 	tx_buf->first_bd = 0;
271 	tx_buf->skb = NULL;
272 
273 	return new_cons;
274 }
275 
276 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
277 {
278 	struct netdev_queue *txq;
279 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
280 	unsigned int pkts_compl = 0, bytes_compl = 0;
281 
282 #ifdef BNX2X_STOP_ON_ERROR
283 	if (unlikely(bp->panic))
284 		return -1;
285 #endif
286 
287 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
288 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
289 	sw_cons = txdata->tx_pkt_cons;
290 
291 	while (sw_cons != hw_cons) {
292 		u16 pkt_cons;
293 
294 		pkt_cons = TX_BD(sw_cons);
295 
296 		DP(NETIF_MSG_TX_DONE,
297 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
298 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299 
300 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 					    &pkts_compl, &bytes_compl);
302 
303 		sw_cons++;
304 	}
305 
306 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307 
308 	txdata->tx_pkt_cons = sw_cons;
309 	txdata->tx_bd_cons = bd_cons;
310 
311 	/* Need to make the tx_bd_cons update visible to start_xmit()
312 	 * before checking for netif_tx_queue_stopped().  Without the
313 	 * memory barrier, there is a small possibility that
314 	 * start_xmit() will miss it and cause the queue to be stopped
315 	 * forever.
316 	 * On the other hand we need an rmb() here to ensure the proper
317 	 * ordering of bit testing in the following
318 	 * netif_tx_queue_stopped(txq) call.
319 	 */
320 	smp_mb();
321 
322 	if (unlikely(netif_tx_queue_stopped(txq))) {
323 		/* Taking tx_lock() is needed to prevent re-enabling the queue
324 		 * while it's empty. This could have happen if rx_action() gets
325 		 * suspended in bnx2x_tx_int() after the condition before
326 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 		 *
328 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 		 * sends some packets consuming the whole queue again->
330 		 * stops the queue
331 		 */
332 
333 		__netif_tx_lock(txq, smp_processor_id());
334 
335 		if ((netif_tx_queue_stopped(txq)) &&
336 		    (bp->state == BNX2X_STATE_OPEN) &&
337 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 			netif_tx_wake_queue(txq);
339 
340 		__netif_tx_unlock(txq);
341 	}
342 	return 0;
343 }
344 
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 					     u16 idx)
347 {
348 	u16 last_max = fp->last_max_sge;
349 
350 	if (SUB_S16(idx, last_max) > 0)
351 		fp->last_max_sge = idx;
352 }
353 
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 					 u16 sge_len,
356 					 struct eth_end_agg_rx_cqe *cqe)
357 {
358 	struct bnx2x *bp = fp->bp;
359 	u16 last_max, last_elem, first_elem;
360 	u16 delta = 0;
361 	u16 i;
362 
363 	if (!sge_len)
364 		return;
365 
366 	/* First mark all used pages */
367 	for (i = 0; i < sge_len; i++)
368 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370 
371 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373 
374 	/* Here we assume that the last SGE index is the biggest */
375 	prefetch((void *)(fp->sge_mask));
376 	bnx2x_update_last_max_sge(fp,
377 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378 
379 	last_max = RX_SGE(fp->last_max_sge);
380 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382 
383 	/* If ring is not full */
384 	if (last_elem + 1 != first_elem)
385 		last_elem++;
386 
387 	/* Now update the prod */
388 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 		if (likely(fp->sge_mask[i]))
390 			break;
391 
392 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 		delta += BIT_VEC64_ELEM_SZ;
394 	}
395 
396 	if (delta > 0) {
397 		fp->rx_sge_prod += delta;
398 		/* clear page-end entries */
399 		bnx2x_clear_sge_mask_next_elems(fp);
400 	}
401 
402 	DP(NETIF_MSG_RX_STATUS,
403 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
404 	   fp->last_max_sge, fp->rx_sge_prod);
405 }
406 
407 /* Get Toeplitz hash value in the skb using the value from the
408  * CQE (calculated by HW).
409  */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 			    const struct eth_fast_path_rx_cqe *cqe,
412 			    enum pkt_hash_types *rxhash_type)
413 {
414 	/* Get Toeplitz hash from CQE */
415 	if ((bp->dev->features & NETIF_F_RXHASH) &&
416 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 		enum eth_rss_hash_type htype;
418 
419 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 				(htype == TCP_IPV6_HASH_TYPE)) ?
422 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423 
424 		return le32_to_cpu(cqe->rss_hash_result);
425 	}
426 	*rxhash_type = PKT_HASH_TYPE_NONE;
427 	return 0;
428 }
429 
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 			    u16 cons, u16 prod,
432 			    struct eth_fast_path_rx_cqe *cqe)
433 {
434 	struct bnx2x *bp = fp->bp;
435 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 	dma_addr_t mapping;
439 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441 
442 	/* print error if current state != stop */
443 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445 
446 	/* Try to map an empty data buffer from the aggregation info  */
447 	mapping = dma_map_single(&bp->pdev->dev,
448 				 first_buf->data + NET_SKB_PAD,
449 				 fp->rx_buf_size, DMA_FROM_DEVICE);
450 	/*
451 	 *  ...if it fails - move the skb from the consumer to the producer
452 	 *  and set the current aggregation state as ERROR to drop it
453 	 *  when TPA_STOP arrives.
454 	 */
455 
456 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 		/* Move the BD from the consumer to the producer */
458 		bnx2x_reuse_rx_data(fp, cons, prod);
459 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 		return;
461 	}
462 
463 	/* move empty data from pool to prod */
464 	prod_rx_buf->data = first_buf->data;
465 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 	/* point prod_bd to new data */
467 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469 
470 	/* move partial skb from cons to pool (don't unmap yet) */
471 	*first_buf = *cons_rx_buf;
472 
473 	/* mark bin state as START */
474 	tpa_info->parsing_flags =
475 		le16_to_cpu(cqe->pars_flags.flags);
476 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 	tpa_info->tpa_state = BNX2X_TPA_START;
478 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 	tpa_info->placement_offset = cqe->placement_offset;
480 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 	if (fp->mode == TPA_MODE_GRO) {
482 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 		tpa_info->gro_size = gro_size;
485 	}
486 
487 #ifdef BNX2X_STOP_ON_ERROR
488 	fp->tpa_queue_used |= (1 << queue);
489 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 	   fp->tpa_queue_used);
491 #endif
492 }
493 
494 /* Timestamp option length allowed for TPA aggregation:
495  *
496  *		nop nop kind length echo val
497  */
498 #define TPA_TSTAMP_OPT_LEN	12
499 /**
500  * bnx2x_set_gro_params - compute GRO values
501  *
502  * @skb:		packet skb
503  * @parsing_flags:	parsing flags from the START CQE
504  * @len_on_bd:		total length of the first packet for the
505  *			aggregation.
506  * @pkt_len:		length of all segments
507  *
508  * Approximate value of the MSS for this aggregation calculated using
509  * the first packet of it.
510  * Compute number of aggregated segments, and gso_type.
511  */
512 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
513 				 u16 len_on_bd, unsigned int pkt_len,
514 				 u16 num_of_coalesced_segs)
515 {
516 	/* TPA aggregation won't have either IP options or TCP options
517 	 * other than timestamp or IPv6 extension headers.
518 	 */
519 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
520 
521 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
522 	    PRS_FLAG_OVERETH_IPV6) {
523 		hdrs_len += sizeof(struct ipv6hdr);
524 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
525 	} else {
526 		hdrs_len += sizeof(struct iphdr);
527 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
528 	}
529 
530 	/* Check if there was a TCP timestamp, if there is it's will
531 	 * always be 12 bytes length: nop nop kind length echo val.
532 	 *
533 	 * Otherwise FW would close the aggregation.
534 	 */
535 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
536 		hdrs_len += TPA_TSTAMP_OPT_LEN;
537 
538 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
539 
540 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
541 	 * to skb_shinfo(skb)->gso_segs
542 	 */
543 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
544 }
545 
546 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
547 			      u16 index, gfp_t gfp_mask)
548 {
549 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
550 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
551 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
552 	dma_addr_t mapping;
553 
554 	if (!pool->page || (PAGE_SIZE - pool->offset) < SGE_PAGE_SIZE) {
555 
556 		/* put page reference used by the memory pool, since we
557 		 * won't be using this page as the mempool anymore.
558 		 */
559 		if (pool->page)
560 			put_page(pool->page);
561 
562 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
563 		if (unlikely(!pool->page)) {
564 			BNX2X_ERR("Can't alloc sge\n");
565 			return -ENOMEM;
566 		}
567 
568 		pool->offset = 0;
569 	}
570 
571 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
572 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
573 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
574 		BNX2X_ERR("Can't map sge\n");
575 		return -ENOMEM;
576 	}
577 
578 	get_page(pool->page);
579 	sw_buf->page = pool->page;
580 	sw_buf->offset = pool->offset;
581 
582 	dma_unmap_addr_set(sw_buf, mapping, mapping);
583 
584 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
585 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
586 
587 	pool->offset += SGE_PAGE_SIZE;
588 
589 	return 0;
590 }
591 
592 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
593 			       struct bnx2x_agg_info *tpa_info,
594 			       u16 pages,
595 			       struct sk_buff *skb,
596 			       struct eth_end_agg_rx_cqe *cqe,
597 			       u16 cqe_idx)
598 {
599 	struct sw_rx_page *rx_pg, old_rx_pg;
600 	u32 i, frag_len, frag_size;
601 	int err, j, frag_id = 0;
602 	u16 len_on_bd = tpa_info->len_on_bd;
603 	u16 full_page = 0, gro_size = 0;
604 
605 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
606 
607 	if (fp->mode == TPA_MODE_GRO) {
608 		gro_size = tpa_info->gro_size;
609 		full_page = tpa_info->full_page;
610 	}
611 
612 	/* This is needed in order to enable forwarding support */
613 	if (frag_size)
614 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
615 				     le16_to_cpu(cqe->pkt_len),
616 				     le16_to_cpu(cqe->num_of_coalesced_segs));
617 
618 #ifdef BNX2X_STOP_ON_ERROR
619 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
620 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
621 			  pages, cqe_idx);
622 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
623 		bnx2x_panic();
624 		return -EINVAL;
625 	}
626 #endif
627 
628 	/* Run through the SGL and compose the fragmented skb */
629 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
630 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
631 
632 		/* FW gives the indices of the SGE as if the ring is an array
633 		   (meaning that "next" element will consume 2 indices) */
634 		if (fp->mode == TPA_MODE_GRO)
635 			frag_len = min_t(u32, frag_size, (u32)full_page);
636 		else /* LRO */
637 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
638 
639 		rx_pg = &fp->rx_page_ring[sge_idx];
640 		old_rx_pg = *rx_pg;
641 
642 		/* If we fail to allocate a substitute page, we simply stop
643 		   where we are and drop the whole packet */
644 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
645 		if (unlikely(err)) {
646 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
647 			return err;
648 		}
649 
650 		dma_unmap_page(&bp->pdev->dev,
651 			       dma_unmap_addr(&old_rx_pg, mapping),
652 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
653 		/* Add one frag and update the appropriate fields in the skb */
654 		if (fp->mode == TPA_MODE_LRO)
655 			skb_fill_page_desc(skb, j, old_rx_pg.page,
656 					   old_rx_pg.offset, frag_len);
657 		else { /* GRO */
658 			int rem;
659 			int offset = 0;
660 			for (rem = frag_len; rem > 0; rem -= gro_size) {
661 				int len = rem > gro_size ? gro_size : rem;
662 				skb_fill_page_desc(skb, frag_id++,
663 						   old_rx_pg.page,
664 						   old_rx_pg.offset + offset,
665 						   len);
666 				if (offset)
667 					get_page(old_rx_pg.page);
668 				offset += len;
669 			}
670 		}
671 
672 		skb->data_len += frag_len;
673 		skb->truesize += SGE_PAGES;
674 		skb->len += frag_len;
675 
676 		frag_size -= frag_len;
677 	}
678 
679 	return 0;
680 }
681 
682 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
683 {
684 	if (fp->rx_frag_size)
685 		skb_free_frag(data);
686 	else
687 		kfree(data);
688 }
689 
690 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
691 {
692 	if (fp->rx_frag_size) {
693 		/* GFP_KERNEL allocations are used only during initialization */
694 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
695 			return (void *)__get_free_page(gfp_mask);
696 
697 		return netdev_alloc_frag(fp->rx_frag_size);
698 	}
699 
700 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
701 }
702 
703 #ifdef CONFIG_INET
704 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
705 {
706 	const struct iphdr *iph = ip_hdr(skb);
707 	struct tcphdr *th;
708 
709 	skb_set_transport_header(skb, sizeof(struct iphdr));
710 	th = tcp_hdr(skb);
711 
712 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
713 				  iph->saddr, iph->daddr, 0);
714 }
715 
716 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
717 {
718 	struct ipv6hdr *iph = ipv6_hdr(skb);
719 	struct tcphdr *th;
720 
721 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
722 	th = tcp_hdr(skb);
723 
724 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
725 				  &iph->saddr, &iph->daddr, 0);
726 }
727 
728 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
729 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
730 {
731 	skb_set_network_header(skb, 0);
732 	gro_func(bp, skb);
733 	tcp_gro_complete(skb);
734 }
735 #endif
736 
737 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
738 			       struct sk_buff *skb)
739 {
740 #ifdef CONFIG_INET
741 	if (skb_shinfo(skb)->gso_size) {
742 		switch (be16_to_cpu(skb->protocol)) {
743 		case ETH_P_IP:
744 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
745 			break;
746 		case ETH_P_IPV6:
747 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
748 			break;
749 		default:
750 			BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
751 				  be16_to_cpu(skb->protocol));
752 		}
753 	}
754 #endif
755 	skb_record_rx_queue(skb, fp->rx_queue);
756 	napi_gro_receive(&fp->napi, skb);
757 }
758 
759 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
760 			   struct bnx2x_agg_info *tpa_info,
761 			   u16 pages,
762 			   struct eth_end_agg_rx_cqe *cqe,
763 			   u16 cqe_idx)
764 {
765 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
766 	u8 pad = tpa_info->placement_offset;
767 	u16 len = tpa_info->len_on_bd;
768 	struct sk_buff *skb = NULL;
769 	u8 *new_data, *data = rx_buf->data;
770 	u8 old_tpa_state = tpa_info->tpa_state;
771 
772 	tpa_info->tpa_state = BNX2X_TPA_STOP;
773 
774 	/* If we there was an error during the handling of the TPA_START -
775 	 * drop this aggregation.
776 	 */
777 	if (old_tpa_state == BNX2X_TPA_ERROR)
778 		goto drop;
779 
780 	/* Try to allocate the new data */
781 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
782 	/* Unmap skb in the pool anyway, as we are going to change
783 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
784 	   fails. */
785 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
786 			 fp->rx_buf_size, DMA_FROM_DEVICE);
787 	if (likely(new_data))
788 		skb = build_skb(data, fp->rx_frag_size);
789 
790 	if (likely(skb)) {
791 #ifdef BNX2X_STOP_ON_ERROR
792 		if (pad + len > fp->rx_buf_size) {
793 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
794 				  pad, len, fp->rx_buf_size);
795 			bnx2x_panic();
796 			return;
797 		}
798 #endif
799 
800 		skb_reserve(skb, pad + NET_SKB_PAD);
801 		skb_put(skb, len);
802 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
803 
804 		skb->protocol = eth_type_trans(skb, bp->dev);
805 		skb->ip_summed = CHECKSUM_UNNECESSARY;
806 
807 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
808 					 skb, cqe, cqe_idx)) {
809 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
810 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
811 			bnx2x_gro_receive(bp, fp, skb);
812 		} else {
813 			DP(NETIF_MSG_RX_STATUS,
814 			   "Failed to allocate new pages - dropping packet!\n");
815 			dev_kfree_skb_any(skb);
816 		}
817 
818 		/* put new data in bin */
819 		rx_buf->data = new_data;
820 
821 		return;
822 	}
823 	if (new_data)
824 		bnx2x_frag_free(fp, new_data);
825 drop:
826 	/* drop the packet and keep the buffer in the bin */
827 	DP(NETIF_MSG_RX_STATUS,
828 	   "Failed to allocate or map a new skb - dropping packet!\n");
829 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
830 }
831 
832 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
833 			       u16 index, gfp_t gfp_mask)
834 {
835 	u8 *data;
836 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
837 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
838 	dma_addr_t mapping;
839 
840 	data = bnx2x_frag_alloc(fp, gfp_mask);
841 	if (unlikely(data == NULL))
842 		return -ENOMEM;
843 
844 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
845 				 fp->rx_buf_size,
846 				 DMA_FROM_DEVICE);
847 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
848 		bnx2x_frag_free(fp, data);
849 		BNX2X_ERR("Can't map rx data\n");
850 		return -ENOMEM;
851 	}
852 
853 	rx_buf->data = data;
854 	dma_unmap_addr_set(rx_buf, mapping, mapping);
855 
856 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
857 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
858 
859 	return 0;
860 }
861 
862 static
863 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
864 				 struct bnx2x_fastpath *fp,
865 				 struct bnx2x_eth_q_stats *qstats)
866 {
867 	/* Do nothing if no L4 csum validation was done.
868 	 * We do not check whether IP csum was validated. For IPv4 we assume
869 	 * that if the card got as far as validating the L4 csum, it also
870 	 * validated the IP csum. IPv6 has no IP csum.
871 	 */
872 	if (cqe->fast_path_cqe.status_flags &
873 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
874 		return;
875 
876 	/* If L4 validation was done, check if an error was found. */
877 
878 	if (cqe->fast_path_cqe.type_error_flags &
879 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
880 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
881 		qstats->hw_csum_err++;
882 	else
883 		skb->ip_summed = CHECKSUM_UNNECESSARY;
884 }
885 
886 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
887 {
888 	struct bnx2x *bp = fp->bp;
889 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
890 	u16 sw_comp_cons, sw_comp_prod;
891 	int rx_pkt = 0;
892 	union eth_rx_cqe *cqe;
893 	struct eth_fast_path_rx_cqe *cqe_fp;
894 
895 #ifdef BNX2X_STOP_ON_ERROR
896 	if (unlikely(bp->panic))
897 		return 0;
898 #endif
899 	if (budget <= 0)
900 		return rx_pkt;
901 
902 	bd_cons = fp->rx_bd_cons;
903 	bd_prod = fp->rx_bd_prod;
904 	bd_prod_fw = bd_prod;
905 	sw_comp_cons = fp->rx_comp_cons;
906 	sw_comp_prod = fp->rx_comp_prod;
907 
908 	comp_ring_cons = RCQ_BD(sw_comp_cons);
909 	cqe = &fp->rx_comp_ring[comp_ring_cons];
910 	cqe_fp = &cqe->fast_path_cqe;
911 
912 	DP(NETIF_MSG_RX_STATUS,
913 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
914 
915 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
916 		struct sw_rx_bd *rx_buf = NULL;
917 		struct sk_buff *skb;
918 		u8 cqe_fp_flags;
919 		enum eth_rx_cqe_type cqe_fp_type;
920 		u16 len, pad, queue;
921 		u8 *data;
922 		u32 rxhash;
923 		enum pkt_hash_types rxhash_type;
924 
925 #ifdef BNX2X_STOP_ON_ERROR
926 		if (unlikely(bp->panic))
927 			return 0;
928 #endif
929 
930 		bd_prod = RX_BD(bd_prod);
931 		bd_cons = RX_BD(bd_cons);
932 
933 		/* A rmb() is required to ensure that the CQE is not read
934 		 * before it is written by the adapter DMA.  PCI ordering
935 		 * rules will make sure the other fields are written before
936 		 * the marker at the end of struct eth_fast_path_rx_cqe
937 		 * but without rmb() a weakly ordered processor can process
938 		 * stale data.  Without the barrier TPA state-machine might
939 		 * enter inconsistent state and kernel stack might be
940 		 * provided with incorrect packet description - these lead
941 		 * to various kernel crashed.
942 		 */
943 		rmb();
944 
945 		cqe_fp_flags = cqe_fp->type_error_flags;
946 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
947 
948 		DP(NETIF_MSG_RX_STATUS,
949 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
950 		   CQE_TYPE(cqe_fp_flags),
951 		   cqe_fp_flags, cqe_fp->status_flags,
952 		   le32_to_cpu(cqe_fp->rss_hash_result),
953 		   le16_to_cpu(cqe_fp->vlan_tag),
954 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
955 
956 		/* is this a slowpath msg? */
957 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
958 			bnx2x_sp_event(fp, cqe);
959 			goto next_cqe;
960 		}
961 
962 		rx_buf = &fp->rx_buf_ring[bd_cons];
963 		data = rx_buf->data;
964 
965 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
966 			struct bnx2x_agg_info *tpa_info;
967 			u16 frag_size, pages;
968 #ifdef BNX2X_STOP_ON_ERROR
969 			/* sanity check */
970 			if (fp->mode == TPA_MODE_DISABLED &&
971 			    (CQE_TYPE_START(cqe_fp_type) ||
972 			     CQE_TYPE_STOP(cqe_fp_type)))
973 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
974 					  CQE_TYPE(cqe_fp_type));
975 #endif
976 
977 			if (CQE_TYPE_START(cqe_fp_type)) {
978 				u16 queue = cqe_fp->queue_index;
979 				DP(NETIF_MSG_RX_STATUS,
980 				   "calling tpa_start on queue %d\n",
981 				   queue);
982 
983 				bnx2x_tpa_start(fp, queue,
984 						bd_cons, bd_prod,
985 						cqe_fp);
986 
987 				goto next_rx;
988 			}
989 			queue = cqe->end_agg_cqe.queue_index;
990 			tpa_info = &fp->tpa_info[queue];
991 			DP(NETIF_MSG_RX_STATUS,
992 			   "calling tpa_stop on queue %d\n",
993 			   queue);
994 
995 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
996 				    tpa_info->len_on_bd;
997 
998 			if (fp->mode == TPA_MODE_GRO)
999 				pages = (frag_size + tpa_info->full_page - 1) /
1000 					 tpa_info->full_page;
1001 			else
1002 				pages = SGE_PAGE_ALIGN(frag_size) >>
1003 					SGE_PAGE_SHIFT;
1004 
1005 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1006 				       &cqe->end_agg_cqe, comp_ring_cons);
1007 #ifdef BNX2X_STOP_ON_ERROR
1008 			if (bp->panic)
1009 				return 0;
1010 #endif
1011 
1012 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1013 			goto next_cqe;
1014 		}
1015 		/* non TPA */
1016 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1017 		pad = cqe_fp->placement_offset;
1018 		dma_sync_single_for_cpu(&bp->pdev->dev,
1019 					dma_unmap_addr(rx_buf, mapping),
1020 					pad + RX_COPY_THRESH,
1021 					DMA_FROM_DEVICE);
1022 		pad += NET_SKB_PAD;
1023 		prefetch(data + pad); /* speedup eth_type_trans() */
1024 		/* is this an error packet? */
1025 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1026 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1027 			   "ERROR  flags %x  rx packet %u\n",
1028 			   cqe_fp_flags, sw_comp_cons);
1029 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1030 			goto reuse_rx;
1031 		}
1032 
1033 		/* Since we don't have a jumbo ring
1034 		 * copy small packets if mtu > 1500
1035 		 */
1036 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1037 		    (len <= RX_COPY_THRESH)) {
1038 			skb = napi_alloc_skb(&fp->napi, len);
1039 			if (skb == NULL) {
1040 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1041 				   "ERROR  packet dropped because of alloc failure\n");
1042 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1043 				goto reuse_rx;
1044 			}
1045 			memcpy(skb->data, data + pad, len);
1046 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1047 		} else {
1048 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1049 						       GFP_ATOMIC) == 0)) {
1050 				dma_unmap_single(&bp->pdev->dev,
1051 						 dma_unmap_addr(rx_buf, mapping),
1052 						 fp->rx_buf_size,
1053 						 DMA_FROM_DEVICE);
1054 				skb = build_skb(data, fp->rx_frag_size);
1055 				if (unlikely(!skb)) {
1056 					bnx2x_frag_free(fp, data);
1057 					bnx2x_fp_qstats(bp, fp)->
1058 							rx_skb_alloc_failed++;
1059 					goto next_rx;
1060 				}
1061 				skb_reserve(skb, pad);
1062 			} else {
1063 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1064 				   "ERROR  packet dropped because of alloc failure\n");
1065 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1066 reuse_rx:
1067 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1068 				goto next_rx;
1069 			}
1070 		}
1071 
1072 		skb_put(skb, len);
1073 		skb->protocol = eth_type_trans(skb, bp->dev);
1074 
1075 		/* Set Toeplitz hash for a none-LRO skb */
1076 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1077 		skb_set_hash(skb, rxhash, rxhash_type);
1078 
1079 		skb_checksum_none_assert(skb);
1080 
1081 		if (bp->dev->features & NETIF_F_RXCSUM)
1082 			bnx2x_csum_validate(skb, cqe, fp,
1083 					    bnx2x_fp_qstats(bp, fp));
1084 
1085 		skb_record_rx_queue(skb, fp->rx_queue);
1086 
1087 		/* Check if this packet was timestamped */
1088 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1089 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1090 			bnx2x_set_rx_ts(bp, skb);
1091 
1092 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1093 		    PARSING_FLAGS_VLAN)
1094 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1095 					       le16_to_cpu(cqe_fp->vlan_tag));
1096 
1097 		skb_mark_napi_id(skb, &fp->napi);
1098 
1099 		if (bnx2x_fp_ll_polling(fp))
1100 			netif_receive_skb(skb);
1101 		else
1102 			napi_gro_receive(&fp->napi, skb);
1103 next_rx:
1104 		rx_buf->data = NULL;
1105 
1106 		bd_cons = NEXT_RX_IDX(bd_cons);
1107 		bd_prod = NEXT_RX_IDX(bd_prod);
1108 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1109 		rx_pkt++;
1110 next_cqe:
1111 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1112 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1113 
1114 		/* mark CQE as free */
1115 		BNX2X_SEED_CQE(cqe_fp);
1116 
1117 		if (rx_pkt == budget)
1118 			break;
1119 
1120 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1121 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1122 		cqe_fp = &cqe->fast_path_cqe;
1123 	} /* while */
1124 
1125 	fp->rx_bd_cons = bd_cons;
1126 	fp->rx_bd_prod = bd_prod_fw;
1127 	fp->rx_comp_cons = sw_comp_cons;
1128 	fp->rx_comp_prod = sw_comp_prod;
1129 
1130 	/* Update producers */
1131 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1132 			     fp->rx_sge_prod);
1133 
1134 	fp->rx_pkt += rx_pkt;
1135 	fp->rx_calls++;
1136 
1137 	return rx_pkt;
1138 }
1139 
1140 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1141 {
1142 	struct bnx2x_fastpath *fp = fp_cookie;
1143 	struct bnx2x *bp = fp->bp;
1144 	u8 cos;
1145 
1146 	DP(NETIF_MSG_INTR,
1147 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1148 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1149 
1150 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1151 
1152 #ifdef BNX2X_STOP_ON_ERROR
1153 	if (unlikely(bp->panic))
1154 		return IRQ_HANDLED;
1155 #endif
1156 
1157 	/* Handle Rx and Tx according to MSI-X vector */
1158 	for_each_cos_in_tx_queue(fp, cos)
1159 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1160 
1161 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1162 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1163 
1164 	return IRQ_HANDLED;
1165 }
1166 
1167 /* HW Lock for shared dual port PHYs */
1168 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1169 {
1170 	mutex_lock(&bp->port.phy_mutex);
1171 
1172 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1173 }
1174 
1175 void bnx2x_release_phy_lock(struct bnx2x *bp)
1176 {
1177 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1178 
1179 	mutex_unlock(&bp->port.phy_mutex);
1180 }
1181 
1182 /* calculates MF speed according to current linespeed and MF configuration */
1183 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1184 {
1185 	u16 line_speed = bp->link_vars.line_speed;
1186 	if (IS_MF(bp)) {
1187 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1188 						   bp->mf_config[BP_VN(bp)]);
1189 
1190 		/* Calculate the current MAX line speed limit for the MF
1191 		 * devices
1192 		 */
1193 		if (IS_MF_PERCENT_BW(bp))
1194 			line_speed = (line_speed * maxCfg) / 100;
1195 		else { /* SD mode */
1196 			u16 vn_max_rate = maxCfg * 100;
1197 
1198 			if (vn_max_rate < line_speed)
1199 				line_speed = vn_max_rate;
1200 		}
1201 	}
1202 
1203 	return line_speed;
1204 }
1205 
1206 /**
1207  * bnx2x_fill_report_data - fill link report data to report
1208  *
1209  * @bp:		driver handle
1210  * @data:	link state to update
1211  *
1212  * It uses a none-atomic bit operations because is called under the mutex.
1213  */
1214 static void bnx2x_fill_report_data(struct bnx2x *bp,
1215 				   struct bnx2x_link_report_data *data)
1216 {
1217 	memset(data, 0, sizeof(*data));
1218 
1219 	if (IS_PF(bp)) {
1220 		/* Fill the report data: effective line speed */
1221 		data->line_speed = bnx2x_get_mf_speed(bp);
1222 
1223 		/* Link is down */
1224 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1225 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1226 				  &data->link_report_flags);
1227 
1228 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1229 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1230 				  &data->link_report_flags);
1231 
1232 		/* Full DUPLEX */
1233 		if (bp->link_vars.duplex == DUPLEX_FULL)
1234 			__set_bit(BNX2X_LINK_REPORT_FD,
1235 				  &data->link_report_flags);
1236 
1237 		/* Rx Flow Control is ON */
1238 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1239 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1240 				  &data->link_report_flags);
1241 
1242 		/* Tx Flow Control is ON */
1243 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1244 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1245 				  &data->link_report_flags);
1246 	} else { /* VF */
1247 		*data = bp->vf_link_vars;
1248 	}
1249 }
1250 
1251 /**
1252  * bnx2x_link_report - report link status to OS.
1253  *
1254  * @bp:		driver handle
1255  *
1256  * Calls the __bnx2x_link_report() under the same locking scheme
1257  * as a link/PHY state managing code to ensure a consistent link
1258  * reporting.
1259  */
1260 
1261 void bnx2x_link_report(struct bnx2x *bp)
1262 {
1263 	bnx2x_acquire_phy_lock(bp);
1264 	__bnx2x_link_report(bp);
1265 	bnx2x_release_phy_lock(bp);
1266 }
1267 
1268 /**
1269  * __bnx2x_link_report - report link status to OS.
1270  *
1271  * @bp:		driver handle
1272  *
1273  * None atomic implementation.
1274  * Should be called under the phy_lock.
1275  */
1276 void __bnx2x_link_report(struct bnx2x *bp)
1277 {
1278 	struct bnx2x_link_report_data cur_data;
1279 
1280 	/* reread mf_cfg */
1281 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1282 		bnx2x_read_mf_cfg(bp);
1283 
1284 	/* Read the current link report info */
1285 	bnx2x_fill_report_data(bp, &cur_data);
1286 
1287 	/* Don't report link down or exactly the same link status twice */
1288 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1289 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1290 		      &bp->last_reported_link.link_report_flags) &&
1291 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1292 		      &cur_data.link_report_flags)))
1293 		return;
1294 
1295 	bp->link_cnt++;
1296 
1297 	/* We are going to report a new link parameters now -
1298 	 * remember the current data for the next time.
1299 	 */
1300 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1301 
1302 	/* propagate status to VFs */
1303 	if (IS_PF(bp))
1304 		bnx2x_iov_link_update(bp);
1305 
1306 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1307 		     &cur_data.link_report_flags)) {
1308 		netif_carrier_off(bp->dev);
1309 		netdev_err(bp->dev, "NIC Link is Down\n");
1310 		return;
1311 	} else {
1312 		const char *duplex;
1313 		const char *flow;
1314 
1315 		netif_carrier_on(bp->dev);
1316 
1317 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1318 				       &cur_data.link_report_flags))
1319 			duplex = "full";
1320 		else
1321 			duplex = "half";
1322 
1323 		/* Handle the FC at the end so that only these flags would be
1324 		 * possibly set. This way we may easily check if there is no FC
1325 		 * enabled.
1326 		 */
1327 		if (cur_data.link_report_flags) {
1328 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1329 				     &cur_data.link_report_flags)) {
1330 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1331 				     &cur_data.link_report_flags))
1332 					flow = "ON - receive & transmit";
1333 				else
1334 					flow = "ON - receive";
1335 			} else {
1336 				flow = "ON - transmit";
1337 			}
1338 		} else {
1339 			flow = "none";
1340 		}
1341 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1342 			    cur_data.line_speed, duplex, flow);
1343 	}
1344 }
1345 
1346 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1347 {
1348 	int i;
1349 
1350 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1351 		struct eth_rx_sge *sge;
1352 
1353 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1354 		sge->addr_hi =
1355 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1356 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1357 
1358 		sge->addr_lo =
1359 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1360 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1361 	}
1362 }
1363 
1364 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1365 				struct bnx2x_fastpath *fp, int last)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < last; i++) {
1370 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1371 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1372 		u8 *data = first_buf->data;
1373 
1374 		if (data == NULL) {
1375 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1376 			continue;
1377 		}
1378 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1379 			dma_unmap_single(&bp->pdev->dev,
1380 					 dma_unmap_addr(first_buf, mapping),
1381 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1382 		bnx2x_frag_free(fp, data);
1383 		first_buf->data = NULL;
1384 	}
1385 }
1386 
1387 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1388 {
1389 	int j;
1390 
1391 	for_each_rx_queue_cnic(bp, j) {
1392 		struct bnx2x_fastpath *fp = &bp->fp[j];
1393 
1394 		fp->rx_bd_cons = 0;
1395 
1396 		/* Activate BD ring */
1397 		/* Warning!
1398 		 * this will generate an interrupt (to the TSTORM)
1399 		 * must only be done after chip is initialized
1400 		 */
1401 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1402 				     fp->rx_sge_prod);
1403 	}
1404 }
1405 
1406 void bnx2x_init_rx_rings(struct bnx2x *bp)
1407 {
1408 	int func = BP_FUNC(bp);
1409 	u16 ring_prod;
1410 	int i, j;
1411 
1412 	/* Allocate TPA resources */
1413 	for_each_eth_queue(bp, j) {
1414 		struct bnx2x_fastpath *fp = &bp->fp[j];
1415 
1416 		DP(NETIF_MSG_IFUP,
1417 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1418 
1419 		if (fp->mode != TPA_MODE_DISABLED) {
1420 			/* Fill the per-aggregation pool */
1421 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1422 				struct bnx2x_agg_info *tpa_info =
1423 					&fp->tpa_info[i];
1424 				struct sw_rx_bd *first_buf =
1425 					&tpa_info->first_buf;
1426 
1427 				first_buf->data =
1428 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1429 				if (!first_buf->data) {
1430 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1431 						  j);
1432 					bnx2x_free_tpa_pool(bp, fp, i);
1433 					fp->mode = TPA_MODE_DISABLED;
1434 					break;
1435 				}
1436 				dma_unmap_addr_set(first_buf, mapping, 0);
1437 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1438 			}
1439 
1440 			/* "next page" elements initialization */
1441 			bnx2x_set_next_page_sgl(fp);
1442 
1443 			/* set SGEs bit mask */
1444 			bnx2x_init_sge_ring_bit_mask(fp);
1445 
1446 			/* Allocate SGEs and initialize the ring elements */
1447 			for (i = 0, ring_prod = 0;
1448 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1449 
1450 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1451 						       GFP_KERNEL) < 0) {
1452 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1453 						  i);
1454 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1455 						  j);
1456 					/* Cleanup already allocated elements */
1457 					bnx2x_free_rx_sge_range(bp, fp,
1458 								ring_prod);
1459 					bnx2x_free_tpa_pool(bp, fp,
1460 							    MAX_AGG_QS(bp));
1461 					fp->mode = TPA_MODE_DISABLED;
1462 					ring_prod = 0;
1463 					break;
1464 				}
1465 				ring_prod = NEXT_SGE_IDX(ring_prod);
1466 			}
1467 
1468 			fp->rx_sge_prod = ring_prod;
1469 		}
1470 	}
1471 
1472 	for_each_eth_queue(bp, j) {
1473 		struct bnx2x_fastpath *fp = &bp->fp[j];
1474 
1475 		fp->rx_bd_cons = 0;
1476 
1477 		/* Activate BD ring */
1478 		/* Warning!
1479 		 * this will generate an interrupt (to the TSTORM)
1480 		 * must only be done after chip is initialized
1481 		 */
1482 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1483 				     fp->rx_sge_prod);
1484 
1485 		if (j != 0)
1486 			continue;
1487 
1488 		if (CHIP_IS_E1(bp)) {
1489 			REG_WR(bp, BAR_USTRORM_INTMEM +
1490 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1491 			       U64_LO(fp->rx_comp_mapping));
1492 			REG_WR(bp, BAR_USTRORM_INTMEM +
1493 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1494 			       U64_HI(fp->rx_comp_mapping));
1495 		}
1496 	}
1497 }
1498 
1499 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1500 {
1501 	u8 cos;
1502 	struct bnx2x *bp = fp->bp;
1503 
1504 	for_each_cos_in_tx_queue(fp, cos) {
1505 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1506 		unsigned pkts_compl = 0, bytes_compl = 0;
1507 
1508 		u16 sw_prod = txdata->tx_pkt_prod;
1509 		u16 sw_cons = txdata->tx_pkt_cons;
1510 
1511 		while (sw_cons != sw_prod) {
1512 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1513 					  &pkts_compl, &bytes_compl);
1514 			sw_cons++;
1515 		}
1516 
1517 		netdev_tx_reset_queue(
1518 			netdev_get_tx_queue(bp->dev,
1519 					    txdata->txq_index));
1520 	}
1521 }
1522 
1523 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1524 {
1525 	int i;
1526 
1527 	for_each_tx_queue_cnic(bp, i) {
1528 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1529 	}
1530 }
1531 
1532 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1533 {
1534 	int i;
1535 
1536 	for_each_eth_queue(bp, i) {
1537 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1538 	}
1539 }
1540 
1541 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1542 {
1543 	struct bnx2x *bp = fp->bp;
1544 	int i;
1545 
1546 	/* ring wasn't allocated */
1547 	if (fp->rx_buf_ring == NULL)
1548 		return;
1549 
1550 	for (i = 0; i < NUM_RX_BD; i++) {
1551 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1552 		u8 *data = rx_buf->data;
1553 
1554 		if (data == NULL)
1555 			continue;
1556 		dma_unmap_single(&bp->pdev->dev,
1557 				 dma_unmap_addr(rx_buf, mapping),
1558 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1559 
1560 		rx_buf->data = NULL;
1561 		bnx2x_frag_free(fp, data);
1562 	}
1563 }
1564 
1565 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1566 {
1567 	int j;
1568 
1569 	for_each_rx_queue_cnic(bp, j) {
1570 		bnx2x_free_rx_bds(&bp->fp[j]);
1571 	}
1572 }
1573 
1574 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1575 {
1576 	int j;
1577 
1578 	for_each_eth_queue(bp, j) {
1579 		struct bnx2x_fastpath *fp = &bp->fp[j];
1580 
1581 		bnx2x_free_rx_bds(fp);
1582 
1583 		if (fp->mode != TPA_MODE_DISABLED)
1584 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1585 	}
1586 }
1587 
1588 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1589 {
1590 	bnx2x_free_tx_skbs_cnic(bp);
1591 	bnx2x_free_rx_skbs_cnic(bp);
1592 }
1593 
1594 void bnx2x_free_skbs(struct bnx2x *bp)
1595 {
1596 	bnx2x_free_tx_skbs(bp);
1597 	bnx2x_free_rx_skbs(bp);
1598 }
1599 
1600 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1601 {
1602 	/* load old values */
1603 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1604 
1605 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1606 		/* leave all but MAX value */
1607 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1608 
1609 		/* set new MAX value */
1610 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1611 				& FUNC_MF_CFG_MAX_BW_MASK;
1612 
1613 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1614 	}
1615 }
1616 
1617 /**
1618  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1619  *
1620  * @bp:		driver handle
1621  * @nvecs:	number of vectors to be released
1622  */
1623 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1624 {
1625 	int i, offset = 0;
1626 
1627 	if (nvecs == offset)
1628 		return;
1629 
1630 	/* VFs don't have a default SB */
1631 	if (IS_PF(bp)) {
1632 		free_irq(bp->msix_table[offset].vector, bp->dev);
1633 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1634 		   bp->msix_table[offset].vector);
1635 		offset++;
1636 	}
1637 
1638 	if (CNIC_SUPPORT(bp)) {
1639 		if (nvecs == offset)
1640 			return;
1641 		offset++;
1642 	}
1643 
1644 	for_each_eth_queue(bp, i) {
1645 		if (nvecs == offset)
1646 			return;
1647 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1648 		   i, bp->msix_table[offset].vector);
1649 
1650 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1651 	}
1652 }
1653 
1654 void bnx2x_free_irq(struct bnx2x *bp)
1655 {
1656 	if (bp->flags & USING_MSIX_FLAG &&
1657 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1658 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1659 
1660 		/* vfs don't have a default status block */
1661 		if (IS_PF(bp))
1662 			nvecs++;
1663 
1664 		bnx2x_free_msix_irqs(bp, nvecs);
1665 	} else {
1666 		free_irq(bp->dev->irq, bp->dev);
1667 	}
1668 }
1669 
1670 int bnx2x_enable_msix(struct bnx2x *bp)
1671 {
1672 	int msix_vec = 0, i, rc;
1673 
1674 	/* VFs don't have a default status block */
1675 	if (IS_PF(bp)) {
1676 		bp->msix_table[msix_vec].entry = msix_vec;
1677 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1678 			       bp->msix_table[0].entry);
1679 		msix_vec++;
1680 	}
1681 
1682 	/* Cnic requires an msix vector for itself */
1683 	if (CNIC_SUPPORT(bp)) {
1684 		bp->msix_table[msix_vec].entry = msix_vec;
1685 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1686 			       msix_vec, bp->msix_table[msix_vec].entry);
1687 		msix_vec++;
1688 	}
1689 
1690 	/* We need separate vectors for ETH queues only (not FCoE) */
1691 	for_each_eth_queue(bp, i) {
1692 		bp->msix_table[msix_vec].entry = msix_vec;
1693 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1694 			       msix_vec, msix_vec, i);
1695 		msix_vec++;
1696 	}
1697 
1698 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1699 	   msix_vec);
1700 
1701 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1702 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1703 	/*
1704 	 * reconfigure number of tx/rx queues according to available
1705 	 * MSI-X vectors
1706 	 */
1707 	if (rc == -ENOSPC) {
1708 		/* Get by with single vector */
1709 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1710 		if (rc < 0) {
1711 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1712 				       rc);
1713 			goto no_msix;
1714 		}
1715 
1716 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1717 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1718 
1719 		BNX2X_DEV_INFO("set number of queues to 1\n");
1720 		bp->num_ethernet_queues = 1;
1721 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1722 	} else if (rc < 0) {
1723 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1724 		goto no_msix;
1725 	} else if (rc < msix_vec) {
1726 		/* how less vectors we will have? */
1727 		int diff = msix_vec - rc;
1728 
1729 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1730 
1731 		/*
1732 		 * decrease number of queues by number of unallocated entries
1733 		 */
1734 		bp->num_ethernet_queues -= diff;
1735 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1736 
1737 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1738 			       bp->num_queues);
1739 	}
1740 
1741 	bp->flags |= USING_MSIX_FLAG;
1742 
1743 	return 0;
1744 
1745 no_msix:
1746 	/* fall to INTx if not enough memory */
1747 	if (rc == -ENOMEM)
1748 		bp->flags |= DISABLE_MSI_FLAG;
1749 
1750 	return rc;
1751 }
1752 
1753 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1754 {
1755 	int i, rc, offset = 0;
1756 
1757 	/* no default status block for vf */
1758 	if (IS_PF(bp)) {
1759 		rc = request_irq(bp->msix_table[offset++].vector,
1760 				 bnx2x_msix_sp_int, 0,
1761 				 bp->dev->name, bp->dev);
1762 		if (rc) {
1763 			BNX2X_ERR("request sp irq failed\n");
1764 			return -EBUSY;
1765 		}
1766 	}
1767 
1768 	if (CNIC_SUPPORT(bp))
1769 		offset++;
1770 
1771 	for_each_eth_queue(bp, i) {
1772 		struct bnx2x_fastpath *fp = &bp->fp[i];
1773 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1774 			 bp->dev->name, i);
1775 
1776 		rc = request_irq(bp->msix_table[offset].vector,
1777 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1778 		if (rc) {
1779 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1780 			      bp->msix_table[offset].vector, rc);
1781 			bnx2x_free_msix_irqs(bp, offset);
1782 			return -EBUSY;
1783 		}
1784 
1785 		offset++;
1786 	}
1787 
1788 	i = BNX2X_NUM_ETH_QUEUES(bp);
1789 	if (IS_PF(bp)) {
1790 		offset = 1 + CNIC_SUPPORT(bp);
1791 		netdev_info(bp->dev,
1792 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1793 			    bp->msix_table[0].vector,
1794 			    0, bp->msix_table[offset].vector,
1795 			    i - 1, bp->msix_table[offset + i - 1].vector);
1796 	} else {
1797 		offset = CNIC_SUPPORT(bp);
1798 		netdev_info(bp->dev,
1799 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1800 			    0, bp->msix_table[offset].vector,
1801 			    i - 1, bp->msix_table[offset + i - 1].vector);
1802 	}
1803 	return 0;
1804 }
1805 
1806 int bnx2x_enable_msi(struct bnx2x *bp)
1807 {
1808 	int rc;
1809 
1810 	rc = pci_enable_msi(bp->pdev);
1811 	if (rc) {
1812 		BNX2X_DEV_INFO("MSI is not attainable\n");
1813 		return -1;
1814 	}
1815 	bp->flags |= USING_MSI_FLAG;
1816 
1817 	return 0;
1818 }
1819 
1820 static int bnx2x_req_irq(struct bnx2x *bp)
1821 {
1822 	unsigned long flags;
1823 	unsigned int irq;
1824 
1825 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1826 		flags = 0;
1827 	else
1828 		flags = IRQF_SHARED;
1829 
1830 	if (bp->flags & USING_MSIX_FLAG)
1831 		irq = bp->msix_table[0].vector;
1832 	else
1833 		irq = bp->pdev->irq;
1834 
1835 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1836 }
1837 
1838 static int bnx2x_setup_irqs(struct bnx2x *bp)
1839 {
1840 	int rc = 0;
1841 	if (bp->flags & USING_MSIX_FLAG &&
1842 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1843 		rc = bnx2x_req_msix_irqs(bp);
1844 		if (rc)
1845 			return rc;
1846 	} else {
1847 		rc = bnx2x_req_irq(bp);
1848 		if (rc) {
1849 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1850 			return rc;
1851 		}
1852 		if (bp->flags & USING_MSI_FLAG) {
1853 			bp->dev->irq = bp->pdev->irq;
1854 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1855 				    bp->dev->irq);
1856 		}
1857 		if (bp->flags & USING_MSIX_FLAG) {
1858 			bp->dev->irq = bp->msix_table[0].vector;
1859 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1860 				    bp->dev->irq);
1861 		}
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1868 {
1869 	int i;
1870 
1871 	for_each_rx_queue_cnic(bp, i) {
1872 		bnx2x_fp_busy_poll_init(&bp->fp[i]);
1873 		napi_enable(&bnx2x_fp(bp, i, napi));
1874 	}
1875 }
1876 
1877 static void bnx2x_napi_enable(struct bnx2x *bp)
1878 {
1879 	int i;
1880 
1881 	for_each_eth_queue(bp, i) {
1882 		bnx2x_fp_busy_poll_init(&bp->fp[i]);
1883 		napi_enable(&bnx2x_fp(bp, i, napi));
1884 	}
1885 }
1886 
1887 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1888 {
1889 	int i;
1890 
1891 	for_each_rx_queue_cnic(bp, i) {
1892 		napi_disable(&bnx2x_fp(bp, i, napi));
1893 		while (!bnx2x_fp_ll_disable(&bp->fp[i]))
1894 			usleep_range(1000, 2000);
1895 	}
1896 }
1897 
1898 static void bnx2x_napi_disable(struct bnx2x *bp)
1899 {
1900 	int i;
1901 
1902 	for_each_eth_queue(bp, i) {
1903 		napi_disable(&bnx2x_fp(bp, i, napi));
1904 		while (!bnx2x_fp_ll_disable(&bp->fp[i]))
1905 			usleep_range(1000, 2000);
1906 	}
1907 }
1908 
1909 void bnx2x_netif_start(struct bnx2x *bp)
1910 {
1911 	if (netif_running(bp->dev)) {
1912 		bnx2x_napi_enable(bp);
1913 		if (CNIC_LOADED(bp))
1914 			bnx2x_napi_enable_cnic(bp);
1915 		bnx2x_int_enable(bp);
1916 		if (bp->state == BNX2X_STATE_OPEN)
1917 			netif_tx_wake_all_queues(bp->dev);
1918 	}
1919 }
1920 
1921 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1922 {
1923 	bnx2x_int_disable_sync(bp, disable_hw);
1924 	bnx2x_napi_disable(bp);
1925 	if (CNIC_LOADED(bp))
1926 		bnx2x_napi_disable_cnic(bp);
1927 }
1928 
1929 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1930 		       void *accel_priv, select_queue_fallback_t fallback)
1931 {
1932 	struct bnx2x *bp = netdev_priv(dev);
1933 
1934 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1935 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1936 		u16 ether_type = ntohs(hdr->h_proto);
1937 
1938 		/* Skip VLAN tag if present */
1939 		if (ether_type == ETH_P_8021Q) {
1940 			struct vlan_ethhdr *vhdr =
1941 				(struct vlan_ethhdr *)skb->data;
1942 
1943 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1944 		}
1945 
1946 		/* If ethertype is FCoE or FIP - use FCoE ring */
1947 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1948 			return bnx2x_fcoe_tx(bp, txq_index);
1949 	}
1950 
1951 	/* select a non-FCoE queue */
1952 	return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp);
1953 }
1954 
1955 void bnx2x_set_num_queues(struct bnx2x *bp)
1956 {
1957 	/* RSS queues */
1958 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1959 
1960 	/* override in STORAGE SD modes */
1961 	if (IS_MF_STORAGE_ONLY(bp))
1962 		bp->num_ethernet_queues = 1;
1963 
1964 	/* Add special queues */
1965 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1966 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1967 
1968 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1969 }
1970 
1971 /**
1972  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1973  *
1974  * @bp:		Driver handle
1975  *
1976  * We currently support for at most 16 Tx queues for each CoS thus we will
1977  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1978  * bp->max_cos.
1979  *
1980  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1981  * index after all ETH L2 indices.
1982  *
1983  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1984  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1985  * 16..31,...) with indices that are not coupled with any real Tx queue.
1986  *
1987  * The proper configuration of skb->queue_mapping is handled by
1988  * bnx2x_select_queue() and __skb_tx_hash().
1989  *
1990  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1991  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1992  */
1993 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1994 {
1995 	int rc, tx, rx;
1996 
1997 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1998 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1999 
2000 /* account for fcoe queue */
2001 	if (include_cnic && !NO_FCOE(bp)) {
2002 		rx++;
2003 		tx++;
2004 	}
2005 
2006 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
2007 	if (rc) {
2008 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
2009 		return rc;
2010 	}
2011 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
2012 	if (rc) {
2013 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2014 		return rc;
2015 	}
2016 
2017 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2018 			  tx, rx);
2019 
2020 	return rc;
2021 }
2022 
2023 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2024 {
2025 	int i;
2026 
2027 	for_each_queue(bp, i) {
2028 		struct bnx2x_fastpath *fp = &bp->fp[i];
2029 		u32 mtu;
2030 
2031 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2032 		if (IS_FCOE_IDX(i))
2033 			/*
2034 			 * Although there are no IP frames expected to arrive to
2035 			 * this ring we still want to add an
2036 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2037 			 * overrun attack.
2038 			 */
2039 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2040 		else
2041 			mtu = bp->dev->mtu;
2042 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2043 				  IP_HEADER_ALIGNMENT_PADDING +
2044 				  ETH_OVREHEAD +
2045 				  mtu +
2046 				  BNX2X_FW_RX_ALIGN_END;
2047 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2048 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2049 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2050 		else
2051 			fp->rx_frag_size = 0;
2052 	}
2053 }
2054 
2055 static int bnx2x_init_rss(struct bnx2x *bp)
2056 {
2057 	int i;
2058 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2059 
2060 	/* Prepare the initial contents for the indirection table if RSS is
2061 	 * enabled
2062 	 */
2063 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2064 		bp->rss_conf_obj.ind_table[i] =
2065 			bp->fp->cl_id +
2066 			ethtool_rxfh_indir_default(i, num_eth_queues);
2067 
2068 	/*
2069 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2070 	 * per-port, so if explicit configuration is needed , do it only
2071 	 * for a PMF.
2072 	 *
2073 	 * For 57712 and newer on the other hand it's a per-function
2074 	 * configuration.
2075 	 */
2076 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2077 }
2078 
2079 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2080 	      bool config_hash, bool enable)
2081 {
2082 	struct bnx2x_config_rss_params params = {NULL};
2083 
2084 	/* Although RSS is meaningless when there is a single HW queue we
2085 	 * still need it enabled in order to have HW Rx hash generated.
2086 	 *
2087 	 * if (!is_eth_multi(bp))
2088 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2089 	 */
2090 
2091 	params.rss_obj = rss_obj;
2092 
2093 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2094 
2095 	if (enable) {
2096 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2097 
2098 		/* RSS configuration */
2099 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2100 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2101 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2102 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2103 		if (rss_obj->udp_rss_v4)
2104 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2105 		if (rss_obj->udp_rss_v6)
2106 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2107 
2108 		if (!CHIP_IS_E1x(bp)) {
2109 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2110 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2111 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2112 
2113 			/* valid only for TUNN_MODE_GRE tunnel mode */
2114 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2115 		}
2116 	} else {
2117 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2118 	}
2119 
2120 	/* Hash bits */
2121 	params.rss_result_mask = MULTI_MASK;
2122 
2123 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2124 
2125 	if (config_hash) {
2126 		/* RSS keys */
2127 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2128 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2129 	}
2130 
2131 	if (IS_PF(bp))
2132 		return bnx2x_config_rss(bp, &params);
2133 	else
2134 		return bnx2x_vfpf_config_rss(bp, &params);
2135 }
2136 
2137 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2138 {
2139 	struct bnx2x_func_state_params func_params = {NULL};
2140 
2141 	/* Prepare parameters for function state transitions */
2142 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2143 
2144 	func_params.f_obj = &bp->func_obj;
2145 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2146 
2147 	func_params.params.hw_init.load_phase = load_code;
2148 
2149 	return bnx2x_func_state_change(bp, &func_params);
2150 }
2151 
2152 /*
2153  * Cleans the object that have internal lists without sending
2154  * ramrods. Should be run when interrupts are disabled.
2155  */
2156 void bnx2x_squeeze_objects(struct bnx2x *bp)
2157 {
2158 	int rc;
2159 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2160 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2161 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2162 
2163 	/***************** Cleanup MACs' object first *************************/
2164 
2165 	/* Wait for completion of requested */
2166 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2167 	/* Perform a dry cleanup */
2168 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2169 
2170 	/* Clean ETH primary MAC */
2171 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2172 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2173 				 &ramrod_flags);
2174 	if (rc != 0)
2175 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2176 
2177 	/* Cleanup UC list */
2178 	vlan_mac_flags = 0;
2179 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2180 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2181 				 &ramrod_flags);
2182 	if (rc != 0)
2183 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2184 
2185 	/***************** Now clean mcast object *****************************/
2186 	rparam.mcast_obj = &bp->mcast_obj;
2187 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2188 
2189 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2190 	 * we take a lock surrounding both the initial send and the CONTs,
2191 	 * as we don't want a true completion to disrupt us in the middle.
2192 	 */
2193 	netif_addr_lock_bh(bp->dev);
2194 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2195 	if (rc < 0)
2196 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2197 			  rc);
2198 
2199 	/* ...and wait until all pending commands are cleared */
2200 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2201 	while (rc != 0) {
2202 		if (rc < 0) {
2203 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2204 				  rc);
2205 			netif_addr_unlock_bh(bp->dev);
2206 			return;
2207 		}
2208 
2209 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2210 	}
2211 	netif_addr_unlock_bh(bp->dev);
2212 }
2213 
2214 #ifndef BNX2X_STOP_ON_ERROR
2215 #define LOAD_ERROR_EXIT(bp, label) \
2216 	do { \
2217 		(bp)->state = BNX2X_STATE_ERROR; \
2218 		goto label; \
2219 	} while (0)
2220 
2221 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2222 	do { \
2223 		bp->cnic_loaded = false; \
2224 		goto label; \
2225 	} while (0)
2226 #else /*BNX2X_STOP_ON_ERROR*/
2227 #define LOAD_ERROR_EXIT(bp, label) \
2228 	do { \
2229 		(bp)->state = BNX2X_STATE_ERROR; \
2230 		(bp)->panic = 1; \
2231 		return -EBUSY; \
2232 	} while (0)
2233 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2234 	do { \
2235 		bp->cnic_loaded = false; \
2236 		(bp)->panic = 1; \
2237 		return -EBUSY; \
2238 	} while (0)
2239 #endif /*BNX2X_STOP_ON_ERROR*/
2240 
2241 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2242 {
2243 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2244 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2245 	return;
2246 }
2247 
2248 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2249 {
2250 	int num_groups, vf_headroom = 0;
2251 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2252 
2253 	/* number of queues for statistics is number of eth queues + FCoE */
2254 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2255 
2256 	/* Total number of FW statistics requests =
2257 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2258 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2259 	 * for fcoe l2 queue if applicable)
2260 	 */
2261 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2262 
2263 	/* vf stats appear in the request list, but their data is allocated by
2264 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2265 	 * it is used to determine where to place the vf stats queries in the
2266 	 * request struct
2267 	 */
2268 	if (IS_SRIOV(bp))
2269 		vf_headroom = bnx2x_vf_headroom(bp);
2270 
2271 	/* Request is built from stats_query_header and an array of
2272 	 * stats_query_cmd_group each of which contains
2273 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2274 	 * configured in the stats_query_header.
2275 	 */
2276 	num_groups =
2277 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2278 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2279 		 1 : 0));
2280 
2281 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2282 	   bp->fw_stats_num, vf_headroom, num_groups);
2283 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2284 		num_groups * sizeof(struct stats_query_cmd_group);
2285 
2286 	/* Data for statistics requests + stats_counter
2287 	 * stats_counter holds per-STORM counters that are incremented
2288 	 * when STORM has finished with the current request.
2289 	 * memory for FCoE offloaded statistics are counted anyway,
2290 	 * even if they will not be sent.
2291 	 * VF stats are not accounted for here as the data of VF stats is stored
2292 	 * in memory allocated by the VF, not here.
2293 	 */
2294 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2295 		sizeof(struct per_pf_stats) +
2296 		sizeof(struct fcoe_statistics_params) +
2297 		sizeof(struct per_queue_stats) * num_queue_stats +
2298 		sizeof(struct stats_counter);
2299 
2300 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2301 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2302 	if (!bp->fw_stats)
2303 		goto alloc_mem_err;
2304 
2305 	/* Set shortcuts */
2306 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2307 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2308 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2309 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2310 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2311 		bp->fw_stats_req_sz;
2312 
2313 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2314 	   U64_HI(bp->fw_stats_req_mapping),
2315 	   U64_LO(bp->fw_stats_req_mapping));
2316 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2317 	   U64_HI(bp->fw_stats_data_mapping),
2318 	   U64_LO(bp->fw_stats_data_mapping));
2319 	return 0;
2320 
2321 alloc_mem_err:
2322 	bnx2x_free_fw_stats_mem(bp);
2323 	BNX2X_ERR("Can't allocate FW stats memory\n");
2324 	return -ENOMEM;
2325 }
2326 
2327 /* send load request to mcp and analyze response */
2328 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2329 {
2330 	u32 param;
2331 
2332 	/* init fw_seq */
2333 	bp->fw_seq =
2334 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2335 		 DRV_MSG_SEQ_NUMBER_MASK);
2336 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2337 
2338 	/* Get current FW pulse sequence */
2339 	bp->fw_drv_pulse_wr_seq =
2340 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2341 		 DRV_PULSE_SEQ_MASK);
2342 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2343 
2344 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2345 
2346 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2347 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2348 
2349 	/* load request */
2350 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2351 
2352 	/* if mcp fails to respond we must abort */
2353 	if (!(*load_code)) {
2354 		BNX2X_ERR("MCP response failure, aborting\n");
2355 		return -EBUSY;
2356 	}
2357 
2358 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2359 	 * must abort
2360 	 */
2361 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2362 		BNX2X_ERR("MCP refused load request, aborting\n");
2363 		return -EBUSY;
2364 	}
2365 	return 0;
2366 }
2367 
2368 /* check whether another PF has already loaded FW to chip. In
2369  * virtualized environments a pf from another VM may have already
2370  * initialized the device including loading FW
2371  */
2372 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2373 {
2374 	/* is another pf loaded on this engine? */
2375 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2376 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2377 		/* build my FW version dword */
2378 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2379 			(BCM_5710_FW_MINOR_VERSION << 8) +
2380 			(BCM_5710_FW_REVISION_VERSION << 16) +
2381 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2382 
2383 		/* read loaded FW from chip */
2384 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2385 
2386 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2387 		   loaded_fw, my_fw);
2388 
2389 		/* abort nic load if version mismatch */
2390 		if (my_fw != loaded_fw) {
2391 			if (print_err)
2392 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2393 					  loaded_fw, my_fw);
2394 			else
2395 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2396 					       loaded_fw, my_fw);
2397 			return -EBUSY;
2398 		}
2399 	}
2400 	return 0;
2401 }
2402 
2403 /* returns the "mcp load_code" according to global load_count array */
2404 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2405 {
2406 	int path = BP_PATH(bp);
2407 
2408 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2409 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2410 	   bnx2x_load_count[path][2]);
2411 	bnx2x_load_count[path][0]++;
2412 	bnx2x_load_count[path][1 + port]++;
2413 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2414 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2415 	   bnx2x_load_count[path][2]);
2416 	if (bnx2x_load_count[path][0] == 1)
2417 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2418 	else if (bnx2x_load_count[path][1 + port] == 1)
2419 		return FW_MSG_CODE_DRV_LOAD_PORT;
2420 	else
2421 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2422 }
2423 
2424 /* mark PMF if applicable */
2425 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2426 {
2427 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2428 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2429 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2430 		bp->port.pmf = 1;
2431 		/* We need the barrier to ensure the ordering between the
2432 		 * writing to bp->port.pmf here and reading it from the
2433 		 * bnx2x_periodic_task().
2434 		 */
2435 		smp_mb();
2436 	} else {
2437 		bp->port.pmf = 0;
2438 	}
2439 
2440 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2441 }
2442 
2443 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2444 {
2445 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2446 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2447 	    (bp->common.shmem2_base)) {
2448 		if (SHMEM2_HAS(bp, dcc_support))
2449 			SHMEM2_WR(bp, dcc_support,
2450 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2451 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2452 		if (SHMEM2_HAS(bp, afex_driver_support))
2453 			SHMEM2_WR(bp, afex_driver_support,
2454 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2455 	}
2456 
2457 	/* Set AFEX default VLAN tag to an invalid value */
2458 	bp->afex_def_vlan_tag = -1;
2459 }
2460 
2461 /**
2462  * bnx2x_bz_fp - zero content of the fastpath structure.
2463  *
2464  * @bp:		driver handle
2465  * @index:	fastpath index to be zeroed
2466  *
2467  * Makes sure the contents of the bp->fp[index].napi is kept
2468  * intact.
2469  */
2470 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2471 {
2472 	struct bnx2x_fastpath *fp = &bp->fp[index];
2473 	int cos;
2474 	struct napi_struct orig_napi = fp->napi;
2475 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2476 
2477 	/* bzero bnx2x_fastpath contents */
2478 	if (fp->tpa_info)
2479 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2480 		       sizeof(struct bnx2x_agg_info));
2481 	memset(fp, 0, sizeof(*fp));
2482 
2483 	/* Restore the NAPI object as it has been already initialized */
2484 	fp->napi = orig_napi;
2485 	fp->tpa_info = orig_tpa_info;
2486 	fp->bp = bp;
2487 	fp->index = index;
2488 	if (IS_ETH_FP(fp))
2489 		fp->max_cos = bp->max_cos;
2490 	else
2491 		/* Special queues support only one CoS */
2492 		fp->max_cos = 1;
2493 
2494 	/* Init txdata pointers */
2495 	if (IS_FCOE_FP(fp))
2496 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2497 	if (IS_ETH_FP(fp))
2498 		for_each_cos_in_tx_queue(fp, cos)
2499 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2500 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2501 
2502 	/* set the tpa flag for each queue. The tpa flag determines the queue
2503 	 * minimal size so it must be set prior to queue memory allocation
2504 	 */
2505 	if (bp->dev->features & NETIF_F_LRO)
2506 		fp->mode = TPA_MODE_LRO;
2507 	else if (bp->dev->features & NETIF_F_GRO &&
2508 		 bnx2x_mtu_allows_gro(bp->dev->mtu))
2509 		fp->mode = TPA_MODE_GRO;
2510 	else
2511 		fp->mode = TPA_MODE_DISABLED;
2512 
2513 	/* We don't want TPA if it's disabled in bp
2514 	 * or if this is an FCoE L2 ring.
2515 	 */
2516 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2517 		fp->mode = TPA_MODE_DISABLED;
2518 }
2519 
2520 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2521 {
2522 	u32 cur;
2523 
2524 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2525 		return;
2526 
2527 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2528 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2529 	   cur, state);
2530 
2531 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2532 }
2533 
2534 int bnx2x_load_cnic(struct bnx2x *bp)
2535 {
2536 	int i, rc, port = BP_PORT(bp);
2537 
2538 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2539 
2540 	mutex_init(&bp->cnic_mutex);
2541 
2542 	if (IS_PF(bp)) {
2543 		rc = bnx2x_alloc_mem_cnic(bp);
2544 		if (rc) {
2545 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2546 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2547 		}
2548 	}
2549 
2550 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2551 	if (rc) {
2552 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2553 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2554 	}
2555 
2556 	/* Update the number of queues with the cnic queues */
2557 	rc = bnx2x_set_real_num_queues(bp, 1);
2558 	if (rc) {
2559 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2560 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2561 	}
2562 
2563 	/* Add all CNIC NAPI objects */
2564 	bnx2x_add_all_napi_cnic(bp);
2565 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2566 	bnx2x_napi_enable_cnic(bp);
2567 
2568 	rc = bnx2x_init_hw_func_cnic(bp);
2569 	if (rc)
2570 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2571 
2572 	bnx2x_nic_init_cnic(bp);
2573 
2574 	if (IS_PF(bp)) {
2575 		/* Enable Timer scan */
2576 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2577 
2578 		/* setup cnic queues */
2579 		for_each_cnic_queue(bp, i) {
2580 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2581 			if (rc) {
2582 				BNX2X_ERR("Queue setup failed\n");
2583 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2584 			}
2585 		}
2586 	}
2587 
2588 	/* Initialize Rx filter. */
2589 	bnx2x_set_rx_mode_inner(bp);
2590 
2591 	/* re-read iscsi info */
2592 	bnx2x_get_iscsi_info(bp);
2593 	bnx2x_setup_cnic_irq_info(bp);
2594 	bnx2x_setup_cnic_info(bp);
2595 	bp->cnic_loaded = true;
2596 	if (bp->state == BNX2X_STATE_OPEN)
2597 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2598 
2599 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2600 
2601 	return 0;
2602 
2603 #ifndef BNX2X_STOP_ON_ERROR
2604 load_error_cnic2:
2605 	/* Disable Timer scan */
2606 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2607 
2608 load_error_cnic1:
2609 	bnx2x_napi_disable_cnic(bp);
2610 	/* Update the number of queues without the cnic queues */
2611 	if (bnx2x_set_real_num_queues(bp, 0))
2612 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2613 load_error_cnic0:
2614 	BNX2X_ERR("CNIC-related load failed\n");
2615 	bnx2x_free_fp_mem_cnic(bp);
2616 	bnx2x_free_mem_cnic(bp);
2617 	return rc;
2618 #endif /* ! BNX2X_STOP_ON_ERROR */
2619 }
2620 
2621 /* must be called with rtnl_lock */
2622 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2623 {
2624 	int port = BP_PORT(bp);
2625 	int i, rc = 0, load_code = 0;
2626 
2627 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2628 	DP(NETIF_MSG_IFUP,
2629 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2630 
2631 #ifdef BNX2X_STOP_ON_ERROR
2632 	if (unlikely(bp->panic)) {
2633 		BNX2X_ERR("Can't load NIC when there is panic\n");
2634 		return -EPERM;
2635 	}
2636 #endif
2637 
2638 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2639 
2640 	/* zero the structure w/o any lock, before SP handler is initialized */
2641 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2642 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2643 		&bp->last_reported_link.link_report_flags);
2644 
2645 	if (IS_PF(bp))
2646 		/* must be called before memory allocation and HW init */
2647 		bnx2x_ilt_set_info(bp);
2648 
2649 	/*
2650 	 * Zero fastpath structures preserving invariants like napi, which are
2651 	 * allocated only once, fp index, max_cos, bp pointer.
2652 	 * Also set fp->mode and txdata_ptr.
2653 	 */
2654 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2655 	for_each_queue(bp, i)
2656 		bnx2x_bz_fp(bp, i);
2657 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2658 				  bp->num_cnic_queues) *
2659 				  sizeof(struct bnx2x_fp_txdata));
2660 
2661 	bp->fcoe_init = false;
2662 
2663 	/* Set the receive queues buffer size */
2664 	bnx2x_set_rx_buf_size(bp);
2665 
2666 	if (IS_PF(bp)) {
2667 		rc = bnx2x_alloc_mem(bp);
2668 		if (rc) {
2669 			BNX2X_ERR("Unable to allocate bp memory\n");
2670 			return rc;
2671 		}
2672 	}
2673 
2674 	/* need to be done after alloc mem, since it's self adjusting to amount
2675 	 * of memory available for RSS queues
2676 	 */
2677 	rc = bnx2x_alloc_fp_mem(bp);
2678 	if (rc) {
2679 		BNX2X_ERR("Unable to allocate memory for fps\n");
2680 		LOAD_ERROR_EXIT(bp, load_error0);
2681 	}
2682 
2683 	/* Allocated memory for FW statistics  */
2684 	if (bnx2x_alloc_fw_stats_mem(bp))
2685 		LOAD_ERROR_EXIT(bp, load_error0);
2686 
2687 	/* request pf to initialize status blocks */
2688 	if (IS_VF(bp)) {
2689 		rc = bnx2x_vfpf_init(bp);
2690 		if (rc)
2691 			LOAD_ERROR_EXIT(bp, load_error0);
2692 	}
2693 
2694 	/* As long as bnx2x_alloc_mem() may possibly update
2695 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2696 	 * come after it. At this stage cnic queues are not counted.
2697 	 */
2698 	rc = bnx2x_set_real_num_queues(bp, 0);
2699 	if (rc) {
2700 		BNX2X_ERR("Unable to set real_num_queues\n");
2701 		LOAD_ERROR_EXIT(bp, load_error0);
2702 	}
2703 
2704 	/* configure multi cos mappings in kernel.
2705 	 * this configuration may be overridden by a multi class queue
2706 	 * discipline or by a dcbx negotiation result.
2707 	 */
2708 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2709 
2710 	/* Add all NAPI objects */
2711 	bnx2x_add_all_napi(bp);
2712 	DP(NETIF_MSG_IFUP, "napi added\n");
2713 	bnx2x_napi_enable(bp);
2714 
2715 	if (IS_PF(bp)) {
2716 		/* set pf load just before approaching the MCP */
2717 		bnx2x_set_pf_load(bp);
2718 
2719 		/* if mcp exists send load request and analyze response */
2720 		if (!BP_NOMCP(bp)) {
2721 			/* attempt to load pf */
2722 			rc = bnx2x_nic_load_request(bp, &load_code);
2723 			if (rc)
2724 				LOAD_ERROR_EXIT(bp, load_error1);
2725 
2726 			/* what did mcp say? */
2727 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2728 			if (rc) {
2729 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2730 				LOAD_ERROR_EXIT(bp, load_error2);
2731 			}
2732 		} else {
2733 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2734 		}
2735 
2736 		/* mark pmf if applicable */
2737 		bnx2x_nic_load_pmf(bp, load_code);
2738 
2739 		/* Init Function state controlling object */
2740 		bnx2x__init_func_obj(bp);
2741 
2742 		/* Initialize HW */
2743 		rc = bnx2x_init_hw(bp, load_code);
2744 		if (rc) {
2745 			BNX2X_ERR("HW init failed, aborting\n");
2746 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2747 			LOAD_ERROR_EXIT(bp, load_error2);
2748 		}
2749 	}
2750 
2751 	bnx2x_pre_irq_nic_init(bp);
2752 
2753 	/* Connect to IRQs */
2754 	rc = bnx2x_setup_irqs(bp);
2755 	if (rc) {
2756 		BNX2X_ERR("setup irqs failed\n");
2757 		if (IS_PF(bp))
2758 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2759 		LOAD_ERROR_EXIT(bp, load_error2);
2760 	}
2761 
2762 	/* Init per-function objects */
2763 	if (IS_PF(bp)) {
2764 		/* Setup NIC internals and enable interrupts */
2765 		bnx2x_post_irq_nic_init(bp, load_code);
2766 
2767 		bnx2x_init_bp_objs(bp);
2768 		bnx2x_iov_nic_init(bp);
2769 
2770 		/* Set AFEX default VLAN tag to an invalid value */
2771 		bp->afex_def_vlan_tag = -1;
2772 		bnx2x_nic_load_afex_dcc(bp, load_code);
2773 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2774 		rc = bnx2x_func_start(bp);
2775 		if (rc) {
2776 			BNX2X_ERR("Function start failed!\n");
2777 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2778 
2779 			LOAD_ERROR_EXIT(bp, load_error3);
2780 		}
2781 
2782 		/* Send LOAD_DONE command to MCP */
2783 		if (!BP_NOMCP(bp)) {
2784 			load_code = bnx2x_fw_command(bp,
2785 						     DRV_MSG_CODE_LOAD_DONE, 0);
2786 			if (!load_code) {
2787 				BNX2X_ERR("MCP response failure, aborting\n");
2788 				rc = -EBUSY;
2789 				LOAD_ERROR_EXIT(bp, load_error3);
2790 			}
2791 		}
2792 
2793 		/* initialize FW coalescing state machines in RAM */
2794 		bnx2x_update_coalesce(bp);
2795 	}
2796 
2797 	/* setup the leading queue */
2798 	rc = bnx2x_setup_leading(bp);
2799 	if (rc) {
2800 		BNX2X_ERR("Setup leading failed!\n");
2801 		LOAD_ERROR_EXIT(bp, load_error3);
2802 	}
2803 
2804 	/* set up the rest of the queues */
2805 	for_each_nondefault_eth_queue(bp, i) {
2806 		if (IS_PF(bp))
2807 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2808 		else /* VF */
2809 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2810 		if (rc) {
2811 			BNX2X_ERR("Queue %d setup failed\n", i);
2812 			LOAD_ERROR_EXIT(bp, load_error3);
2813 		}
2814 	}
2815 
2816 	/* setup rss */
2817 	rc = bnx2x_init_rss(bp);
2818 	if (rc) {
2819 		BNX2X_ERR("PF RSS init failed\n");
2820 		LOAD_ERROR_EXIT(bp, load_error3);
2821 	}
2822 
2823 	/* Now when Clients are configured we are ready to work */
2824 	bp->state = BNX2X_STATE_OPEN;
2825 
2826 	/* Configure a ucast MAC */
2827 	if (IS_PF(bp))
2828 		rc = bnx2x_set_eth_mac(bp, true);
2829 	else /* vf */
2830 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2831 					   true);
2832 	if (rc) {
2833 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2834 		LOAD_ERROR_EXIT(bp, load_error3);
2835 	}
2836 
2837 	if (IS_PF(bp) && bp->pending_max) {
2838 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2839 		bp->pending_max = 0;
2840 	}
2841 
2842 	if (bp->port.pmf) {
2843 		rc = bnx2x_initial_phy_init(bp, load_mode);
2844 		if (rc)
2845 			LOAD_ERROR_EXIT(bp, load_error3);
2846 	}
2847 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2848 
2849 	/* Start fast path */
2850 
2851 	/* Re-configure vlan filters */
2852 	rc = bnx2x_vlan_reconfigure_vid(bp);
2853 	if (rc)
2854 		LOAD_ERROR_EXIT(bp, load_error3);
2855 
2856 	/* Initialize Rx filter. */
2857 	bnx2x_set_rx_mode_inner(bp);
2858 
2859 	if (bp->flags & PTP_SUPPORTED) {
2860 		bnx2x_init_ptp(bp);
2861 		bnx2x_configure_ptp_filters(bp);
2862 	}
2863 	/* Start Tx */
2864 	switch (load_mode) {
2865 	case LOAD_NORMAL:
2866 		/* Tx queue should be only re-enabled */
2867 		netif_tx_wake_all_queues(bp->dev);
2868 		break;
2869 
2870 	case LOAD_OPEN:
2871 		netif_tx_start_all_queues(bp->dev);
2872 		smp_mb__after_atomic();
2873 		break;
2874 
2875 	case LOAD_DIAG:
2876 	case LOAD_LOOPBACK_EXT:
2877 		bp->state = BNX2X_STATE_DIAG;
2878 		break;
2879 
2880 	default:
2881 		break;
2882 	}
2883 
2884 	if (bp->port.pmf)
2885 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2886 	else
2887 		bnx2x__link_status_update(bp);
2888 
2889 	/* start the timer */
2890 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2891 
2892 	if (CNIC_ENABLED(bp))
2893 		bnx2x_load_cnic(bp);
2894 
2895 	if (IS_PF(bp))
2896 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2897 
2898 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2899 		/* mark driver is loaded in shmem2 */
2900 		u32 val;
2901 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2902 		val &= ~DRV_FLAGS_MTU_MASK;
2903 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2904 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2905 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2906 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2907 	}
2908 
2909 	/* Wait for all pending SP commands to complete */
2910 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2911 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2912 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2913 		return -EBUSY;
2914 	}
2915 
2916 	/* Update driver data for On-Chip MFW dump. */
2917 	if (IS_PF(bp))
2918 		bnx2x_update_mfw_dump(bp);
2919 
2920 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2921 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2922 		bnx2x_dcbx_init(bp, false);
2923 
2924 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2925 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2926 
2927 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2928 
2929 	return 0;
2930 
2931 #ifndef BNX2X_STOP_ON_ERROR
2932 load_error3:
2933 	if (IS_PF(bp)) {
2934 		bnx2x_int_disable_sync(bp, 1);
2935 
2936 		/* Clean queueable objects */
2937 		bnx2x_squeeze_objects(bp);
2938 	}
2939 
2940 	/* Free SKBs, SGEs, TPA pool and driver internals */
2941 	bnx2x_free_skbs(bp);
2942 	for_each_rx_queue(bp, i)
2943 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2944 
2945 	/* Release IRQs */
2946 	bnx2x_free_irq(bp);
2947 load_error2:
2948 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2949 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2950 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2951 	}
2952 
2953 	bp->port.pmf = 0;
2954 load_error1:
2955 	bnx2x_napi_disable(bp);
2956 	bnx2x_del_all_napi(bp);
2957 
2958 	/* clear pf_load status, as it was already set */
2959 	if (IS_PF(bp))
2960 		bnx2x_clear_pf_load(bp);
2961 load_error0:
2962 	bnx2x_free_fw_stats_mem(bp);
2963 	bnx2x_free_fp_mem(bp);
2964 	bnx2x_free_mem(bp);
2965 
2966 	return rc;
2967 #endif /* ! BNX2X_STOP_ON_ERROR */
2968 }
2969 
2970 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2971 {
2972 	u8 rc = 0, cos, i;
2973 
2974 	/* Wait until tx fastpath tasks complete */
2975 	for_each_tx_queue(bp, i) {
2976 		struct bnx2x_fastpath *fp = &bp->fp[i];
2977 
2978 		for_each_cos_in_tx_queue(fp, cos)
2979 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2980 		if (rc)
2981 			return rc;
2982 	}
2983 	return 0;
2984 }
2985 
2986 /* must be called with rtnl_lock */
2987 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2988 {
2989 	int i;
2990 	bool global = false;
2991 
2992 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2993 
2994 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2995 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2996 
2997 	/* mark driver is unloaded in shmem2 */
2998 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2999 		u32 val;
3000 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
3001 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
3002 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
3003 	}
3004 
3005 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3006 	    (bp->state == BNX2X_STATE_CLOSED ||
3007 	     bp->state == BNX2X_STATE_ERROR)) {
3008 		/* We can get here if the driver has been unloaded
3009 		 * during parity error recovery and is either waiting for a
3010 		 * leader to complete or for other functions to unload and
3011 		 * then ifdown has been issued. In this case we want to
3012 		 * unload and let other functions to complete a recovery
3013 		 * process.
3014 		 */
3015 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3016 		bp->is_leader = 0;
3017 		bnx2x_release_leader_lock(bp);
3018 		smp_mb();
3019 
3020 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3021 		BNX2X_ERR("Can't unload in closed or error state\n");
3022 		return -EINVAL;
3023 	}
3024 
3025 	/* Nothing to do during unload if previous bnx2x_nic_load()
3026 	 * have not completed successfully - all resources are released.
3027 	 *
3028 	 * we can get here only after unsuccessful ndo_* callback, during which
3029 	 * dev->IFF_UP flag is still on.
3030 	 */
3031 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3032 		return 0;
3033 
3034 	/* It's important to set the bp->state to the value different from
3035 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3036 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3037 	 */
3038 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3039 	smp_mb();
3040 
3041 	/* indicate to VFs that the PF is going down */
3042 	bnx2x_iov_channel_down(bp);
3043 
3044 	if (CNIC_LOADED(bp))
3045 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3046 
3047 	/* Stop Tx */
3048 	bnx2x_tx_disable(bp);
3049 	netdev_reset_tc(bp->dev);
3050 
3051 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3052 
3053 	del_timer_sync(&bp->timer);
3054 
3055 	if (IS_PF(bp)) {
3056 		/* Set ALWAYS_ALIVE bit in shmem */
3057 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3058 		bnx2x_drv_pulse(bp);
3059 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3060 		bnx2x_save_statistics(bp);
3061 	}
3062 
3063 	/* wait till consumers catch up with producers in all queues */
3064 	bnx2x_drain_tx_queues(bp);
3065 
3066 	/* if VF indicate to PF this function is going down (PF will delete sp
3067 	 * elements and clear initializations
3068 	 */
3069 	if (IS_VF(bp))
3070 		bnx2x_vfpf_close_vf(bp);
3071 	else if (unload_mode != UNLOAD_RECOVERY)
3072 		/* if this is a normal/close unload need to clean up chip*/
3073 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3074 	else {
3075 		/* Send the UNLOAD_REQUEST to the MCP */
3076 		bnx2x_send_unload_req(bp, unload_mode);
3077 
3078 		/* Prevent transactions to host from the functions on the
3079 		 * engine that doesn't reset global blocks in case of global
3080 		 * attention once global blocks are reset and gates are opened
3081 		 * (the engine which leader will perform the recovery
3082 		 * last).
3083 		 */
3084 		if (!CHIP_IS_E1x(bp))
3085 			bnx2x_pf_disable(bp);
3086 
3087 		/* Disable HW interrupts, NAPI */
3088 		bnx2x_netif_stop(bp, 1);
3089 		/* Delete all NAPI objects */
3090 		bnx2x_del_all_napi(bp);
3091 		if (CNIC_LOADED(bp))
3092 			bnx2x_del_all_napi_cnic(bp);
3093 		/* Release IRQs */
3094 		bnx2x_free_irq(bp);
3095 
3096 		/* Report UNLOAD_DONE to MCP */
3097 		bnx2x_send_unload_done(bp, false);
3098 	}
3099 
3100 	/*
3101 	 * At this stage no more interrupts will arrive so we may safely clean
3102 	 * the queueable objects here in case they failed to get cleaned so far.
3103 	 */
3104 	if (IS_PF(bp))
3105 		bnx2x_squeeze_objects(bp);
3106 
3107 	/* There should be no more pending SP commands at this stage */
3108 	bp->sp_state = 0;
3109 
3110 	bp->port.pmf = 0;
3111 
3112 	/* clear pending work in rtnl task */
3113 	bp->sp_rtnl_state = 0;
3114 	smp_mb();
3115 
3116 	/* Free SKBs, SGEs, TPA pool and driver internals */
3117 	bnx2x_free_skbs(bp);
3118 	if (CNIC_LOADED(bp))
3119 		bnx2x_free_skbs_cnic(bp);
3120 	for_each_rx_queue(bp, i)
3121 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3122 
3123 	bnx2x_free_fp_mem(bp);
3124 	if (CNIC_LOADED(bp))
3125 		bnx2x_free_fp_mem_cnic(bp);
3126 
3127 	if (IS_PF(bp)) {
3128 		if (CNIC_LOADED(bp))
3129 			bnx2x_free_mem_cnic(bp);
3130 	}
3131 	bnx2x_free_mem(bp);
3132 
3133 	bp->state = BNX2X_STATE_CLOSED;
3134 	bp->cnic_loaded = false;
3135 
3136 	/* Clear driver version indication in shmem */
3137 	if (IS_PF(bp))
3138 		bnx2x_update_mng_version(bp);
3139 
3140 	/* Check if there are pending parity attentions. If there are - set
3141 	 * RECOVERY_IN_PROGRESS.
3142 	 */
3143 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3144 		bnx2x_set_reset_in_progress(bp);
3145 
3146 		/* Set RESET_IS_GLOBAL if needed */
3147 		if (global)
3148 			bnx2x_set_reset_global(bp);
3149 	}
3150 
3151 	/* The last driver must disable a "close the gate" if there is no
3152 	 * parity attention or "process kill" pending.
3153 	 */
3154 	if (IS_PF(bp) &&
3155 	    !bnx2x_clear_pf_load(bp) &&
3156 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3157 		bnx2x_disable_close_the_gate(bp);
3158 
3159 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3160 
3161 	return 0;
3162 }
3163 
3164 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3165 {
3166 	u16 pmcsr;
3167 
3168 	/* If there is no power capability, silently succeed */
3169 	if (!bp->pdev->pm_cap) {
3170 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3171 		return 0;
3172 	}
3173 
3174 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3175 
3176 	switch (state) {
3177 	case PCI_D0:
3178 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3179 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3180 				       PCI_PM_CTRL_PME_STATUS));
3181 
3182 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3183 			/* delay required during transition out of D3hot */
3184 			msleep(20);
3185 		break;
3186 
3187 	case PCI_D3hot:
3188 		/* If there are other clients above don't
3189 		   shut down the power */
3190 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3191 			return 0;
3192 		/* Don't shut down the power for emulation and FPGA */
3193 		if (CHIP_REV_IS_SLOW(bp))
3194 			return 0;
3195 
3196 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3197 		pmcsr |= 3;
3198 
3199 		if (bp->wol)
3200 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3201 
3202 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3203 				      pmcsr);
3204 
3205 		/* No more memory access after this point until
3206 		* device is brought back to D0.
3207 		*/
3208 		break;
3209 
3210 	default:
3211 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3212 		return -EINVAL;
3213 	}
3214 	return 0;
3215 }
3216 
3217 /*
3218  * net_device service functions
3219  */
3220 static int bnx2x_poll(struct napi_struct *napi, int budget)
3221 {
3222 	int work_done = 0;
3223 	u8 cos;
3224 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3225 						 napi);
3226 	struct bnx2x *bp = fp->bp;
3227 
3228 	while (1) {
3229 #ifdef BNX2X_STOP_ON_ERROR
3230 		if (unlikely(bp->panic)) {
3231 			napi_complete(napi);
3232 			return 0;
3233 		}
3234 #endif
3235 		if (!bnx2x_fp_lock_napi(fp))
3236 			return budget;
3237 
3238 		for_each_cos_in_tx_queue(fp, cos)
3239 			if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3240 				bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3241 
3242 		if (bnx2x_has_rx_work(fp)) {
3243 			work_done += bnx2x_rx_int(fp, budget - work_done);
3244 
3245 			/* must not complete if we consumed full budget */
3246 			if (work_done >= budget) {
3247 				bnx2x_fp_unlock_napi(fp);
3248 				break;
3249 			}
3250 		}
3251 
3252 		bnx2x_fp_unlock_napi(fp);
3253 
3254 		/* Fall out from the NAPI loop if needed */
3255 		if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3256 
3257 			/* No need to update SB for FCoE L2 ring as long as
3258 			 * it's connected to the default SB and the SB
3259 			 * has been updated when NAPI was scheduled.
3260 			 */
3261 			if (IS_FCOE_FP(fp)) {
3262 				napi_complete(napi);
3263 				break;
3264 			}
3265 			bnx2x_update_fpsb_idx(fp);
3266 			/* bnx2x_has_rx_work() reads the status block,
3267 			 * thus we need to ensure that status block indices
3268 			 * have been actually read (bnx2x_update_fpsb_idx)
3269 			 * prior to this check (bnx2x_has_rx_work) so that
3270 			 * we won't write the "newer" value of the status block
3271 			 * to IGU (if there was a DMA right after
3272 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3273 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3274 			 * to right before bnx2x_ack_sb). In this case there
3275 			 * will never be another interrupt until there is
3276 			 * another update of the status block, while there
3277 			 * is still unhandled work.
3278 			 */
3279 			rmb();
3280 
3281 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3282 				napi_complete(napi);
3283 				/* Re-enable interrupts */
3284 				DP(NETIF_MSG_RX_STATUS,
3285 				   "Update index to %d\n", fp->fp_hc_idx);
3286 				bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3287 					     le16_to_cpu(fp->fp_hc_idx),
3288 					     IGU_INT_ENABLE, 1);
3289 				break;
3290 			}
3291 		}
3292 	}
3293 
3294 	return work_done;
3295 }
3296 
3297 #ifdef CONFIG_NET_RX_BUSY_POLL
3298 /* must be called with local_bh_disable()d */
3299 int bnx2x_low_latency_recv(struct napi_struct *napi)
3300 {
3301 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3302 						 napi);
3303 	struct bnx2x *bp = fp->bp;
3304 	int found = 0;
3305 
3306 	if ((bp->state == BNX2X_STATE_CLOSED) ||
3307 	    (bp->state == BNX2X_STATE_ERROR) ||
3308 	    (bp->dev->features & (NETIF_F_LRO | NETIF_F_GRO)))
3309 		return LL_FLUSH_FAILED;
3310 
3311 	if (!bnx2x_fp_lock_poll(fp))
3312 		return LL_FLUSH_BUSY;
3313 
3314 	if (bnx2x_has_rx_work(fp))
3315 		found = bnx2x_rx_int(fp, 4);
3316 
3317 	bnx2x_fp_unlock_poll(fp);
3318 
3319 	return found;
3320 }
3321 #endif
3322 
3323 /* we split the first BD into headers and data BDs
3324  * to ease the pain of our fellow microcode engineers
3325  * we use one mapping for both BDs
3326  */
3327 static u16 bnx2x_tx_split(struct bnx2x *bp,
3328 			  struct bnx2x_fp_txdata *txdata,
3329 			  struct sw_tx_bd *tx_buf,
3330 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3331 			  u16 bd_prod)
3332 {
3333 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3334 	struct eth_tx_bd *d_tx_bd;
3335 	dma_addr_t mapping;
3336 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3337 
3338 	/* first fix first BD */
3339 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3340 
3341 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3342 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3343 
3344 	/* now get a new data BD
3345 	 * (after the pbd) and fill it */
3346 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3347 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3348 
3349 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3350 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3351 
3352 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3353 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3354 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3355 
3356 	/* this marks the BD as one that has no individual mapping */
3357 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3358 
3359 	DP(NETIF_MSG_TX_QUEUED,
3360 	   "TSO split data size is %d (%x:%x)\n",
3361 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3362 
3363 	/* update tx_bd */
3364 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3365 
3366 	return bd_prod;
3367 }
3368 
3369 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3370 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3371 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3372 {
3373 	__sum16 tsum = (__force __sum16) csum;
3374 
3375 	if (fix > 0)
3376 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3377 				  csum_partial(t_header - fix, fix, 0)));
3378 
3379 	else if (fix < 0)
3380 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3381 				  csum_partial(t_header, -fix, 0)));
3382 
3383 	return bswab16(tsum);
3384 }
3385 
3386 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3387 {
3388 	u32 rc;
3389 	__u8 prot = 0;
3390 	__be16 protocol;
3391 
3392 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3393 		return XMIT_PLAIN;
3394 
3395 	protocol = vlan_get_protocol(skb);
3396 	if (protocol == htons(ETH_P_IPV6)) {
3397 		rc = XMIT_CSUM_V6;
3398 		prot = ipv6_hdr(skb)->nexthdr;
3399 	} else {
3400 		rc = XMIT_CSUM_V4;
3401 		prot = ip_hdr(skb)->protocol;
3402 	}
3403 
3404 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3405 		if (inner_ip_hdr(skb)->version == 6) {
3406 			rc |= XMIT_CSUM_ENC_V6;
3407 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3408 				rc |= XMIT_CSUM_TCP;
3409 		} else {
3410 			rc |= XMIT_CSUM_ENC_V4;
3411 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3412 				rc |= XMIT_CSUM_TCP;
3413 		}
3414 	}
3415 	if (prot == IPPROTO_TCP)
3416 		rc |= XMIT_CSUM_TCP;
3417 
3418 	if (skb_is_gso(skb)) {
3419 		if (skb_is_gso_v6(skb)) {
3420 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3421 			if (rc & XMIT_CSUM_ENC)
3422 				rc |= XMIT_GSO_ENC_V6;
3423 		} else {
3424 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3425 			if (rc & XMIT_CSUM_ENC)
3426 				rc |= XMIT_GSO_ENC_V4;
3427 		}
3428 	}
3429 
3430 	return rc;
3431 }
3432 
3433 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
3434 /* check if packet requires linearization (packet is too fragmented)
3435    no need to check fragmentation if page size > 8K (there will be no
3436    violation to FW restrictions) */
3437 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3438 			     u32 xmit_type)
3439 {
3440 	int to_copy = 0;
3441 	int hlen = 0;
3442 	int first_bd_sz = 0;
3443 
3444 	/* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3445 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
3446 
3447 		if (xmit_type & XMIT_GSO) {
3448 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3449 			/* Check if LSO packet needs to be copied:
3450 			   3 = 1 (for headers BD) + 2 (for PBD and last BD) */
3451 			int wnd_size = MAX_FETCH_BD - 3;
3452 			/* Number of windows to check */
3453 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3454 			int wnd_idx = 0;
3455 			int frag_idx = 0;
3456 			u32 wnd_sum = 0;
3457 
3458 			/* Headers length */
3459 			if (xmit_type & XMIT_GSO_ENC)
3460 				hlen = (int)(skb_inner_transport_header(skb) -
3461 					     skb->data) +
3462 					     inner_tcp_hdrlen(skb);
3463 			else
3464 				hlen = (int)(skb_transport_header(skb) -
3465 					     skb->data) + tcp_hdrlen(skb);
3466 
3467 			/* Amount of data (w/o headers) on linear part of SKB*/
3468 			first_bd_sz = skb_headlen(skb) - hlen;
3469 
3470 			wnd_sum  = first_bd_sz;
3471 
3472 			/* Calculate the first sum - it's special */
3473 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3474 				wnd_sum +=
3475 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3476 
3477 			/* If there was data on linear skb data - check it */
3478 			if (first_bd_sz > 0) {
3479 				if (unlikely(wnd_sum < lso_mss)) {
3480 					to_copy = 1;
3481 					goto exit_lbl;
3482 				}
3483 
3484 				wnd_sum -= first_bd_sz;
3485 			}
3486 
3487 			/* Others are easier: run through the frag list and
3488 			   check all windows */
3489 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3490 				wnd_sum +=
3491 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3492 
3493 				if (unlikely(wnd_sum < lso_mss)) {
3494 					to_copy = 1;
3495 					break;
3496 				}
3497 				wnd_sum -=
3498 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3499 			}
3500 		} else {
3501 			/* in non-LSO too fragmented packet should always
3502 			   be linearized */
3503 			to_copy = 1;
3504 		}
3505 	}
3506 
3507 exit_lbl:
3508 	if (unlikely(to_copy))
3509 		DP(NETIF_MSG_TX_QUEUED,
3510 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3511 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3512 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3513 
3514 	return to_copy;
3515 }
3516 #endif
3517 
3518 /**
3519  * bnx2x_set_pbd_gso - update PBD in GSO case.
3520  *
3521  * @skb:	packet skb
3522  * @pbd:	parse BD
3523  * @xmit_type:	xmit flags
3524  */
3525 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3526 			      struct eth_tx_parse_bd_e1x *pbd,
3527 			      u32 xmit_type)
3528 {
3529 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3530 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3531 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3532 
3533 	if (xmit_type & XMIT_GSO_V4) {
3534 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3535 		pbd->tcp_pseudo_csum =
3536 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3537 						   ip_hdr(skb)->daddr,
3538 						   0, IPPROTO_TCP, 0));
3539 	} else {
3540 		pbd->tcp_pseudo_csum =
3541 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3542 						 &ipv6_hdr(skb)->daddr,
3543 						 0, IPPROTO_TCP, 0));
3544 	}
3545 
3546 	pbd->global_data |=
3547 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3548 }
3549 
3550 /**
3551  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3552  *
3553  * @bp:			driver handle
3554  * @skb:		packet skb
3555  * @parsing_data:	data to be updated
3556  * @xmit_type:		xmit flags
3557  *
3558  * 57712/578xx related, when skb has encapsulation
3559  */
3560 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3561 				 u32 *parsing_data, u32 xmit_type)
3562 {
3563 	*parsing_data |=
3564 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3565 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3566 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3567 
3568 	if (xmit_type & XMIT_CSUM_TCP) {
3569 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3570 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3571 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3572 
3573 		return skb_inner_transport_header(skb) +
3574 			inner_tcp_hdrlen(skb) - skb->data;
3575 	}
3576 
3577 	/* We support checksum offload for TCP and UDP only.
3578 	 * No need to pass the UDP header length - it's a constant.
3579 	 */
3580 	return skb_inner_transport_header(skb) +
3581 		sizeof(struct udphdr) - skb->data;
3582 }
3583 
3584 /**
3585  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3586  *
3587  * @bp:			driver handle
3588  * @skb:		packet skb
3589  * @parsing_data:	data to be updated
3590  * @xmit_type:		xmit flags
3591  *
3592  * 57712/578xx related
3593  */
3594 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3595 				u32 *parsing_data, u32 xmit_type)
3596 {
3597 	*parsing_data |=
3598 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3599 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3600 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3601 
3602 	if (xmit_type & XMIT_CSUM_TCP) {
3603 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3604 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3605 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3606 
3607 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3608 	}
3609 	/* We support checksum offload for TCP and UDP only.
3610 	 * No need to pass the UDP header length - it's a constant.
3611 	 */
3612 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3613 }
3614 
3615 /* set FW indication according to inner or outer protocols if tunneled */
3616 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3617 			       struct eth_tx_start_bd *tx_start_bd,
3618 			       u32 xmit_type)
3619 {
3620 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3621 
3622 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3623 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3624 
3625 	if (!(xmit_type & XMIT_CSUM_TCP))
3626 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3627 }
3628 
3629 /**
3630  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3631  *
3632  * @bp:		driver handle
3633  * @skb:	packet skb
3634  * @pbd:	parse BD to be updated
3635  * @xmit_type:	xmit flags
3636  */
3637 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3638 			     struct eth_tx_parse_bd_e1x *pbd,
3639 			     u32 xmit_type)
3640 {
3641 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3642 
3643 	/* for now NS flag is not used in Linux */
3644 	pbd->global_data =
3645 		cpu_to_le16(hlen |
3646 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3647 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3648 
3649 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3650 			skb_network_header(skb)) >> 1;
3651 
3652 	hlen += pbd->ip_hlen_w;
3653 
3654 	/* We support checksum offload for TCP and UDP only */
3655 	if (xmit_type & XMIT_CSUM_TCP)
3656 		hlen += tcp_hdrlen(skb) / 2;
3657 	else
3658 		hlen += sizeof(struct udphdr) / 2;
3659 
3660 	pbd->total_hlen_w = cpu_to_le16(hlen);
3661 	hlen = hlen*2;
3662 
3663 	if (xmit_type & XMIT_CSUM_TCP) {
3664 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3665 
3666 	} else {
3667 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3668 
3669 		DP(NETIF_MSG_TX_QUEUED,
3670 		   "hlen %d  fix %d  csum before fix %x\n",
3671 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3672 
3673 		/* HW bug: fixup the CSUM */
3674 		pbd->tcp_pseudo_csum =
3675 			bnx2x_csum_fix(skb_transport_header(skb),
3676 				       SKB_CS(skb), fix);
3677 
3678 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3679 		   pbd->tcp_pseudo_csum);
3680 	}
3681 
3682 	return hlen;
3683 }
3684 
3685 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3686 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3687 				      struct eth_tx_parse_2nd_bd *pbd2,
3688 				      u16 *global_data,
3689 				      u32 xmit_type)
3690 {
3691 	u16 hlen_w = 0;
3692 	u8 outerip_off, outerip_len = 0;
3693 
3694 	/* from outer IP to transport */
3695 	hlen_w = (skb_inner_transport_header(skb) -
3696 		  skb_network_header(skb)) >> 1;
3697 
3698 	/* transport len */
3699 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3700 
3701 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3702 
3703 	/* outer IP header info */
3704 	if (xmit_type & XMIT_CSUM_V4) {
3705 		struct iphdr *iph = ip_hdr(skb);
3706 		u32 csum = (__force u32)(~iph->check) -
3707 			   (__force u32)iph->tot_len -
3708 			   (__force u32)iph->frag_off;
3709 
3710 		outerip_len = iph->ihl << 1;
3711 
3712 		pbd2->fw_ip_csum_wo_len_flags_frag =
3713 			bswab16(csum_fold((__force __wsum)csum));
3714 	} else {
3715 		pbd2->fw_ip_hdr_to_payload_w =
3716 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3717 		pbd_e2->data.tunnel_data.flags |=
3718 			ETH_TUNNEL_DATA_IPV6_OUTER;
3719 	}
3720 
3721 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3722 
3723 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3724 
3725 	/* inner IP header info */
3726 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3727 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3728 
3729 		pbd_e2->data.tunnel_data.pseudo_csum =
3730 			bswab16(~csum_tcpudp_magic(
3731 					inner_ip_hdr(skb)->saddr,
3732 					inner_ip_hdr(skb)->daddr,
3733 					0, IPPROTO_TCP, 0));
3734 	} else {
3735 		pbd_e2->data.tunnel_data.pseudo_csum =
3736 			bswab16(~csum_ipv6_magic(
3737 					&inner_ipv6_hdr(skb)->saddr,
3738 					&inner_ipv6_hdr(skb)->daddr,
3739 					0, IPPROTO_TCP, 0));
3740 	}
3741 
3742 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3743 
3744 	*global_data |=
3745 		outerip_off |
3746 		(outerip_len <<
3747 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3748 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3749 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3750 
3751 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3752 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3753 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3754 	}
3755 }
3756 
3757 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3758 					 u32 xmit_type)
3759 {
3760 	struct ipv6hdr *ipv6;
3761 
3762 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3763 		return;
3764 
3765 	if (xmit_type & XMIT_GSO_ENC_V6)
3766 		ipv6 = inner_ipv6_hdr(skb);
3767 	else /* XMIT_GSO_V6 */
3768 		ipv6 = ipv6_hdr(skb);
3769 
3770 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3771 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3772 }
3773 
3774 /* called with netif_tx_lock
3775  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3776  * netif_wake_queue()
3777  */
3778 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3779 {
3780 	struct bnx2x *bp = netdev_priv(dev);
3781 
3782 	struct netdev_queue *txq;
3783 	struct bnx2x_fp_txdata *txdata;
3784 	struct sw_tx_bd *tx_buf;
3785 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3786 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3787 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3788 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3789 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3790 	u32 pbd_e2_parsing_data = 0;
3791 	u16 pkt_prod, bd_prod;
3792 	int nbd, txq_index;
3793 	dma_addr_t mapping;
3794 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3795 	int i;
3796 	u8 hlen = 0;
3797 	__le16 pkt_size = 0;
3798 	struct ethhdr *eth;
3799 	u8 mac_type = UNICAST_ADDRESS;
3800 
3801 #ifdef BNX2X_STOP_ON_ERROR
3802 	if (unlikely(bp->panic))
3803 		return NETDEV_TX_BUSY;
3804 #endif
3805 
3806 	txq_index = skb_get_queue_mapping(skb);
3807 	txq = netdev_get_tx_queue(dev, txq_index);
3808 
3809 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3810 
3811 	txdata = &bp->bnx2x_txq[txq_index];
3812 
3813 	/* enable this debug print to view the transmission queue being used
3814 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3815 	   txq_index, fp_index, txdata_index); */
3816 
3817 	/* enable this debug print to view the transmission details
3818 	DP(NETIF_MSG_TX_QUEUED,
3819 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3820 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3821 
3822 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3823 			skb_shinfo(skb)->nr_frags +
3824 			BDS_PER_TX_PKT +
3825 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3826 		/* Handle special storage cases separately */
3827 		if (txdata->tx_ring_size == 0) {
3828 			struct bnx2x_eth_q_stats *q_stats =
3829 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3830 			q_stats->driver_filtered_tx_pkt++;
3831 			dev_kfree_skb(skb);
3832 			return NETDEV_TX_OK;
3833 		}
3834 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3835 		netif_tx_stop_queue(txq);
3836 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3837 
3838 		return NETDEV_TX_BUSY;
3839 	}
3840 
3841 	DP(NETIF_MSG_TX_QUEUED,
3842 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3843 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3844 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3845 	   skb->len);
3846 
3847 	eth = (struct ethhdr *)skb->data;
3848 
3849 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3850 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3851 		if (is_broadcast_ether_addr(eth->h_dest))
3852 			mac_type = BROADCAST_ADDRESS;
3853 		else
3854 			mac_type = MULTICAST_ADDRESS;
3855 	}
3856 
3857 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3858 	/* First, check if we need to linearize the skb (due to FW
3859 	   restrictions). No need to check fragmentation if page size > 8K
3860 	   (there will be no violation to FW restrictions) */
3861 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3862 		/* Statistics of linearization */
3863 		bp->lin_cnt++;
3864 		if (skb_linearize(skb) != 0) {
3865 			DP(NETIF_MSG_TX_QUEUED,
3866 			   "SKB linearization failed - silently dropping this SKB\n");
3867 			dev_kfree_skb_any(skb);
3868 			return NETDEV_TX_OK;
3869 		}
3870 	}
3871 #endif
3872 	/* Map skb linear data for DMA */
3873 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3874 				 skb_headlen(skb), DMA_TO_DEVICE);
3875 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3876 		DP(NETIF_MSG_TX_QUEUED,
3877 		   "SKB mapping failed - silently dropping this SKB\n");
3878 		dev_kfree_skb_any(skb);
3879 		return NETDEV_TX_OK;
3880 	}
3881 	/*
3882 	Please read carefully. First we use one BD which we mark as start,
3883 	then we have a parsing info BD (used for TSO or xsum),
3884 	and only then we have the rest of the TSO BDs.
3885 	(don't forget to mark the last one as last,
3886 	and to unmap only AFTER you write to the BD ...)
3887 	And above all, all pdb sizes are in words - NOT DWORDS!
3888 	*/
3889 
3890 	/* get current pkt produced now - advance it just before sending packet
3891 	 * since mapping of pages may fail and cause packet to be dropped
3892 	 */
3893 	pkt_prod = txdata->tx_pkt_prod;
3894 	bd_prod = TX_BD(txdata->tx_bd_prod);
3895 
3896 	/* get a tx_buf and first BD
3897 	 * tx_start_bd may be changed during SPLIT,
3898 	 * but first_bd will always stay first
3899 	 */
3900 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3901 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3902 	first_bd = tx_start_bd;
3903 
3904 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3905 
3906 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3907 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3908 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3909 		} else if (bp->ptp_tx_skb) {
3910 			BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3911 		} else {
3912 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3913 			/* schedule check for Tx timestamp */
3914 			bp->ptp_tx_skb = skb_get(skb);
3915 			bp->ptp_tx_start = jiffies;
3916 			schedule_work(&bp->ptp_task);
3917 		}
3918 	}
3919 
3920 	/* header nbd: indirectly zero other flags! */
3921 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3922 
3923 	/* remember the first BD of the packet */
3924 	tx_buf->first_bd = txdata->tx_bd_prod;
3925 	tx_buf->skb = skb;
3926 	tx_buf->flags = 0;
3927 
3928 	DP(NETIF_MSG_TX_QUEUED,
3929 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3930 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3931 
3932 	if (skb_vlan_tag_present(skb)) {
3933 		tx_start_bd->vlan_or_ethertype =
3934 		    cpu_to_le16(skb_vlan_tag_get(skb));
3935 		tx_start_bd->bd_flags.as_bitfield |=
3936 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3937 	} else {
3938 		/* when transmitting in a vf, start bd must hold the ethertype
3939 		 * for fw to enforce it
3940 		 */
3941 #ifndef BNX2X_STOP_ON_ERROR
3942 		if (IS_VF(bp))
3943 #endif
3944 			tx_start_bd->vlan_or_ethertype =
3945 				cpu_to_le16(ntohs(eth->h_proto));
3946 #ifndef BNX2X_STOP_ON_ERROR
3947 		else
3948 			/* used by FW for packet accounting */
3949 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3950 #endif
3951 	}
3952 
3953 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3954 
3955 	/* turn on parsing and get a BD */
3956 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3957 
3958 	if (xmit_type & XMIT_CSUM)
3959 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3960 
3961 	if (!CHIP_IS_E1x(bp)) {
3962 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3963 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3964 
3965 		if (xmit_type & XMIT_CSUM_ENC) {
3966 			u16 global_data = 0;
3967 
3968 			/* Set PBD in enc checksum offload case */
3969 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3970 						      &pbd_e2_parsing_data,
3971 						      xmit_type);
3972 
3973 			/* turn on 2nd parsing and get a BD */
3974 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3975 
3976 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3977 
3978 			memset(pbd2, 0, sizeof(*pbd2));
3979 
3980 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3981 				(skb_inner_network_header(skb) -
3982 				 skb->data) >> 1;
3983 
3984 			if (xmit_type & XMIT_GSO_ENC)
3985 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3986 							  &global_data,
3987 							  xmit_type);
3988 
3989 			pbd2->global_data = cpu_to_le16(global_data);
3990 
3991 			/* add addition parse BD indication to start BD */
3992 			SET_FLAG(tx_start_bd->general_data,
3993 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3994 			/* set encapsulation flag in start BD */
3995 			SET_FLAG(tx_start_bd->general_data,
3996 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3997 
3998 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3999 
4000 			nbd++;
4001 		} else if (xmit_type & XMIT_CSUM) {
4002 			/* Set PBD in checksum offload case w/o encapsulation */
4003 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
4004 						     &pbd_e2_parsing_data,
4005 						     xmit_type);
4006 		}
4007 
4008 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
4009 		/* Add the macs to the parsing BD if this is a vf or if
4010 		 * Tx Switching is enabled.
4011 		 */
4012 		if (IS_VF(bp)) {
4013 			/* override GRE parameters in BD */
4014 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4015 					      &pbd_e2->data.mac_addr.src_mid,
4016 					      &pbd_e2->data.mac_addr.src_lo,
4017 					      eth->h_source);
4018 
4019 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
4020 					      &pbd_e2->data.mac_addr.dst_mid,
4021 					      &pbd_e2->data.mac_addr.dst_lo,
4022 					      eth->h_dest);
4023 		} else {
4024 			if (bp->flags & TX_SWITCHING)
4025 				bnx2x_set_fw_mac_addr(
4026 						&pbd_e2->data.mac_addr.dst_hi,
4027 						&pbd_e2->data.mac_addr.dst_mid,
4028 						&pbd_e2->data.mac_addr.dst_lo,
4029 						eth->h_dest);
4030 #ifdef BNX2X_STOP_ON_ERROR
4031 			/* Enforce security is always set in Stop on Error -
4032 			 * source mac should be present in the parsing BD
4033 			 */
4034 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4035 					      &pbd_e2->data.mac_addr.src_mid,
4036 					      &pbd_e2->data.mac_addr.src_lo,
4037 					      eth->h_source);
4038 #endif
4039 		}
4040 
4041 		SET_FLAG(pbd_e2_parsing_data,
4042 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4043 	} else {
4044 		u16 global_data = 0;
4045 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4046 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4047 		/* Set PBD in checksum offload case */
4048 		if (xmit_type & XMIT_CSUM)
4049 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4050 
4051 		SET_FLAG(global_data,
4052 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4053 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4054 	}
4055 
4056 	/* Setup the data pointer of the first BD of the packet */
4057 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4058 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4059 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4060 	pkt_size = tx_start_bd->nbytes;
4061 
4062 	DP(NETIF_MSG_TX_QUEUED,
4063 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4064 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4065 	   le16_to_cpu(tx_start_bd->nbytes),
4066 	   tx_start_bd->bd_flags.as_bitfield,
4067 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4068 
4069 	if (xmit_type & XMIT_GSO) {
4070 
4071 		DP(NETIF_MSG_TX_QUEUED,
4072 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4073 		   skb->len, hlen, skb_headlen(skb),
4074 		   skb_shinfo(skb)->gso_size);
4075 
4076 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4077 
4078 		if (unlikely(skb_headlen(skb) > hlen)) {
4079 			nbd++;
4080 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4081 						 &tx_start_bd, hlen,
4082 						 bd_prod);
4083 		}
4084 		if (!CHIP_IS_E1x(bp))
4085 			pbd_e2_parsing_data |=
4086 				(skb_shinfo(skb)->gso_size <<
4087 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4088 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4089 		else
4090 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4091 	}
4092 
4093 	/* Set the PBD's parsing_data field if not zero
4094 	 * (for the chips newer than 57711).
4095 	 */
4096 	if (pbd_e2_parsing_data)
4097 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4098 
4099 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4100 
4101 	/* Handle fragmented skb */
4102 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4103 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4104 
4105 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4106 					   skb_frag_size(frag), DMA_TO_DEVICE);
4107 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4108 			unsigned int pkts_compl = 0, bytes_compl = 0;
4109 
4110 			DP(NETIF_MSG_TX_QUEUED,
4111 			   "Unable to map page - dropping packet...\n");
4112 
4113 			/* we need unmap all buffers already mapped
4114 			 * for this SKB;
4115 			 * first_bd->nbd need to be properly updated
4116 			 * before call to bnx2x_free_tx_pkt
4117 			 */
4118 			first_bd->nbd = cpu_to_le16(nbd);
4119 			bnx2x_free_tx_pkt(bp, txdata,
4120 					  TX_BD(txdata->tx_pkt_prod),
4121 					  &pkts_compl, &bytes_compl);
4122 			return NETDEV_TX_OK;
4123 		}
4124 
4125 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4126 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4127 		if (total_pkt_bd == NULL)
4128 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4129 
4130 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4131 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4132 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4133 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4134 		nbd++;
4135 
4136 		DP(NETIF_MSG_TX_QUEUED,
4137 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4138 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4139 		   le16_to_cpu(tx_data_bd->nbytes));
4140 	}
4141 
4142 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4143 
4144 	/* update with actual num BDs */
4145 	first_bd->nbd = cpu_to_le16(nbd);
4146 
4147 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4148 
4149 	/* now send a tx doorbell, counting the next BD
4150 	 * if the packet contains or ends with it
4151 	 */
4152 	if (TX_BD_POFF(bd_prod) < nbd)
4153 		nbd++;
4154 
4155 	/* total_pkt_bytes should be set on the first data BD if
4156 	 * it's not an LSO packet and there is more than one
4157 	 * data BD. In this case pkt_size is limited by an MTU value.
4158 	 * However we prefer to set it for an LSO packet (while we don't
4159 	 * have to) in order to save some CPU cycles in a none-LSO
4160 	 * case, when we much more care about them.
4161 	 */
4162 	if (total_pkt_bd != NULL)
4163 		total_pkt_bd->total_pkt_bytes = pkt_size;
4164 
4165 	if (pbd_e1x)
4166 		DP(NETIF_MSG_TX_QUEUED,
4167 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4168 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4169 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4170 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4171 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4172 	if (pbd_e2)
4173 		DP(NETIF_MSG_TX_QUEUED,
4174 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4175 		   pbd_e2,
4176 		   pbd_e2->data.mac_addr.dst_hi,
4177 		   pbd_e2->data.mac_addr.dst_mid,
4178 		   pbd_e2->data.mac_addr.dst_lo,
4179 		   pbd_e2->data.mac_addr.src_hi,
4180 		   pbd_e2->data.mac_addr.src_mid,
4181 		   pbd_e2->data.mac_addr.src_lo,
4182 		   pbd_e2->parsing_data);
4183 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4184 
4185 	netdev_tx_sent_queue(txq, skb->len);
4186 
4187 	skb_tx_timestamp(skb);
4188 
4189 	txdata->tx_pkt_prod++;
4190 	/*
4191 	 * Make sure that the BD data is updated before updating the producer
4192 	 * since FW might read the BD right after the producer is updated.
4193 	 * This is only applicable for weak-ordered memory model archs such
4194 	 * as IA-64. The following barrier is also mandatory since FW will
4195 	 * assumes packets must have BDs.
4196 	 */
4197 	wmb();
4198 
4199 	txdata->tx_db.data.prod += nbd;
4200 	barrier();
4201 
4202 	DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4203 
4204 	mmiowb();
4205 
4206 	txdata->tx_bd_prod += nbd;
4207 
4208 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4209 		netif_tx_stop_queue(txq);
4210 
4211 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4212 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4213 		 * fp->bd_tx_cons */
4214 		smp_mb();
4215 
4216 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4217 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4218 			netif_tx_wake_queue(txq);
4219 	}
4220 	txdata->tx_pkt++;
4221 
4222 	return NETDEV_TX_OK;
4223 }
4224 
4225 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4226 {
4227 	int mfw_vn = BP_FW_MB_IDX(bp);
4228 	u32 tmp;
4229 
4230 	/* If the shmem shouldn't affect configuration, reflect */
4231 	if (!IS_MF_BD(bp)) {
4232 		int i;
4233 
4234 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4235 			c2s_map[i] = i;
4236 		*c2s_default = 0;
4237 
4238 		return;
4239 	}
4240 
4241 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4242 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4243 	c2s_map[0] = tmp & 0xff;
4244 	c2s_map[1] = (tmp >> 8) & 0xff;
4245 	c2s_map[2] = (tmp >> 16) & 0xff;
4246 	c2s_map[3] = (tmp >> 24) & 0xff;
4247 
4248 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4249 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4250 	c2s_map[4] = tmp & 0xff;
4251 	c2s_map[5] = (tmp >> 8) & 0xff;
4252 	c2s_map[6] = (tmp >> 16) & 0xff;
4253 	c2s_map[7] = (tmp >> 24) & 0xff;
4254 
4255 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4256 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4257 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4258 }
4259 
4260 /**
4261  * bnx2x_setup_tc - routine to configure net_device for multi tc
4262  *
4263  * @netdev: net device to configure
4264  * @tc: number of traffic classes to enable
4265  *
4266  * callback connected to the ndo_setup_tc function pointer
4267  */
4268 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4269 {
4270 	struct bnx2x *bp = netdev_priv(dev);
4271 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4272 	int cos, prio, count, offset;
4273 
4274 	/* setup tc must be called under rtnl lock */
4275 	ASSERT_RTNL();
4276 
4277 	/* no traffic classes requested. Aborting */
4278 	if (!num_tc) {
4279 		netdev_reset_tc(dev);
4280 		return 0;
4281 	}
4282 
4283 	/* requested to support too many traffic classes */
4284 	if (num_tc > bp->max_cos) {
4285 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4286 			  num_tc, bp->max_cos);
4287 		return -EINVAL;
4288 	}
4289 
4290 	/* declare amount of supported traffic classes */
4291 	if (netdev_set_num_tc(dev, num_tc)) {
4292 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4293 		return -EINVAL;
4294 	}
4295 
4296 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4297 
4298 	/* configure priority to traffic class mapping */
4299 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4300 		int outer_prio = c2s_map[prio];
4301 
4302 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4303 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4304 		   "mapping priority %d to tc %d\n",
4305 		   outer_prio, bp->prio_to_cos[outer_prio]);
4306 	}
4307 
4308 	/* Use this configuration to differentiate tc0 from other COSes
4309 	   This can be used for ets or pfc, and save the effort of setting
4310 	   up a multio class queue disc or negotiating DCBX with a switch
4311 	netdev_set_prio_tc_map(dev, 0, 0);
4312 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4313 	for (prio = 1; prio < 16; prio++) {
4314 		netdev_set_prio_tc_map(dev, prio, 1);
4315 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4316 	} */
4317 
4318 	/* configure traffic class to transmission queue mapping */
4319 	for (cos = 0; cos < bp->max_cos; cos++) {
4320 		count = BNX2X_NUM_ETH_QUEUES(bp);
4321 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4322 		netdev_set_tc_queue(dev, cos, count, offset);
4323 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4324 		   "mapping tc %d to offset %d count %d\n",
4325 		   cos, offset, count);
4326 	}
4327 
4328 	return 0;
4329 }
4330 
4331 /* called with rtnl_lock */
4332 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4333 {
4334 	struct sockaddr *addr = p;
4335 	struct bnx2x *bp = netdev_priv(dev);
4336 	int rc = 0;
4337 
4338 	if (!is_valid_ether_addr(addr->sa_data)) {
4339 		BNX2X_ERR("Requested MAC address is not valid\n");
4340 		return -EINVAL;
4341 	}
4342 
4343 	if (IS_MF_STORAGE_ONLY(bp)) {
4344 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4345 		return -EINVAL;
4346 	}
4347 
4348 	if (netif_running(dev))  {
4349 		rc = bnx2x_set_eth_mac(bp, false);
4350 		if (rc)
4351 			return rc;
4352 	}
4353 
4354 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4355 
4356 	if (netif_running(dev))
4357 		rc = bnx2x_set_eth_mac(bp, true);
4358 
4359 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4360 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4361 
4362 	return rc;
4363 }
4364 
4365 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4366 {
4367 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4368 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4369 	u8 cos;
4370 
4371 	/* Common */
4372 
4373 	if (IS_FCOE_IDX(fp_index)) {
4374 		memset(sb, 0, sizeof(union host_hc_status_block));
4375 		fp->status_blk_mapping = 0;
4376 	} else {
4377 		/* status blocks */
4378 		if (!CHIP_IS_E1x(bp))
4379 			BNX2X_PCI_FREE(sb->e2_sb,
4380 				       bnx2x_fp(bp, fp_index,
4381 						status_blk_mapping),
4382 				       sizeof(struct host_hc_status_block_e2));
4383 		else
4384 			BNX2X_PCI_FREE(sb->e1x_sb,
4385 				       bnx2x_fp(bp, fp_index,
4386 						status_blk_mapping),
4387 				       sizeof(struct host_hc_status_block_e1x));
4388 	}
4389 
4390 	/* Rx */
4391 	if (!skip_rx_queue(bp, fp_index)) {
4392 		bnx2x_free_rx_bds(fp);
4393 
4394 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4395 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4396 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4397 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4398 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4399 
4400 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4401 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4402 			       sizeof(struct eth_fast_path_rx_cqe) *
4403 			       NUM_RCQ_BD);
4404 
4405 		/* SGE ring */
4406 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4407 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4408 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4409 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4410 	}
4411 
4412 	/* Tx */
4413 	if (!skip_tx_queue(bp, fp_index)) {
4414 		/* fastpath tx rings: tx_buf tx_desc */
4415 		for_each_cos_in_tx_queue(fp, cos) {
4416 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4417 
4418 			DP(NETIF_MSG_IFDOWN,
4419 			   "freeing tx memory of fp %d cos %d cid %d\n",
4420 			   fp_index, cos, txdata->cid);
4421 
4422 			BNX2X_FREE(txdata->tx_buf_ring);
4423 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4424 				txdata->tx_desc_mapping,
4425 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4426 		}
4427 	}
4428 	/* end of fastpath */
4429 }
4430 
4431 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4432 {
4433 	int i;
4434 	for_each_cnic_queue(bp, i)
4435 		bnx2x_free_fp_mem_at(bp, i);
4436 }
4437 
4438 void bnx2x_free_fp_mem(struct bnx2x *bp)
4439 {
4440 	int i;
4441 	for_each_eth_queue(bp, i)
4442 		bnx2x_free_fp_mem_at(bp, i);
4443 }
4444 
4445 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4446 {
4447 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4448 	if (!CHIP_IS_E1x(bp)) {
4449 		bnx2x_fp(bp, index, sb_index_values) =
4450 			(__le16 *)status_blk.e2_sb->sb.index_values;
4451 		bnx2x_fp(bp, index, sb_running_index) =
4452 			(__le16 *)status_blk.e2_sb->sb.running_index;
4453 	} else {
4454 		bnx2x_fp(bp, index, sb_index_values) =
4455 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4456 		bnx2x_fp(bp, index, sb_running_index) =
4457 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4458 	}
4459 }
4460 
4461 /* Returns the number of actually allocated BDs */
4462 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4463 			      int rx_ring_size)
4464 {
4465 	struct bnx2x *bp = fp->bp;
4466 	u16 ring_prod, cqe_ring_prod;
4467 	int i, failure_cnt = 0;
4468 
4469 	fp->rx_comp_cons = 0;
4470 	cqe_ring_prod = ring_prod = 0;
4471 
4472 	/* This routine is called only during fo init so
4473 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4474 	 */
4475 	for (i = 0; i < rx_ring_size; i++) {
4476 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4477 			failure_cnt++;
4478 			continue;
4479 		}
4480 		ring_prod = NEXT_RX_IDX(ring_prod);
4481 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4482 		WARN_ON(ring_prod <= (i - failure_cnt));
4483 	}
4484 
4485 	if (failure_cnt)
4486 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4487 			  i - failure_cnt, fp->index);
4488 
4489 	fp->rx_bd_prod = ring_prod;
4490 	/* Limit the CQE producer by the CQE ring size */
4491 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4492 			       cqe_ring_prod);
4493 	fp->rx_pkt = fp->rx_calls = 0;
4494 
4495 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4496 
4497 	return i - failure_cnt;
4498 }
4499 
4500 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4501 {
4502 	int i;
4503 
4504 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4505 		struct eth_rx_cqe_next_page *nextpg;
4506 
4507 		nextpg = (struct eth_rx_cqe_next_page *)
4508 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4509 		nextpg->addr_hi =
4510 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4511 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4512 		nextpg->addr_lo =
4513 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4514 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4515 	}
4516 }
4517 
4518 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4519 {
4520 	union host_hc_status_block *sb;
4521 	struct bnx2x_fastpath *fp = &bp->fp[index];
4522 	int ring_size = 0;
4523 	u8 cos;
4524 	int rx_ring_size = 0;
4525 
4526 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4527 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4528 		bp->rx_ring_size = rx_ring_size;
4529 	} else if (!bp->rx_ring_size) {
4530 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4531 
4532 		if (CHIP_IS_E3(bp)) {
4533 			u32 cfg = SHMEM_RD(bp,
4534 					   dev_info.port_hw_config[BP_PORT(bp)].
4535 					   default_cfg);
4536 
4537 			/* Decrease ring size for 1G functions */
4538 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4539 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4540 				rx_ring_size /= 10;
4541 		}
4542 
4543 		/* allocate at least number of buffers required by FW */
4544 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4545 				     MIN_RX_SIZE_TPA, rx_ring_size);
4546 
4547 		bp->rx_ring_size = rx_ring_size;
4548 	} else /* if rx_ring_size specified - use it */
4549 		rx_ring_size = bp->rx_ring_size;
4550 
4551 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4552 
4553 	/* Common */
4554 	sb = &bnx2x_fp(bp, index, status_blk);
4555 
4556 	if (!IS_FCOE_IDX(index)) {
4557 		/* status blocks */
4558 		if (!CHIP_IS_E1x(bp)) {
4559 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4560 						    sizeof(struct host_hc_status_block_e2));
4561 			if (!sb->e2_sb)
4562 				goto alloc_mem_err;
4563 		} else {
4564 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4565 						     sizeof(struct host_hc_status_block_e1x));
4566 			if (!sb->e1x_sb)
4567 				goto alloc_mem_err;
4568 		}
4569 	}
4570 
4571 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4572 	 * set shortcuts for it.
4573 	 */
4574 	if (!IS_FCOE_IDX(index))
4575 		set_sb_shortcuts(bp, index);
4576 
4577 	/* Tx */
4578 	if (!skip_tx_queue(bp, index)) {
4579 		/* fastpath tx rings: tx_buf tx_desc */
4580 		for_each_cos_in_tx_queue(fp, cos) {
4581 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4582 
4583 			DP(NETIF_MSG_IFUP,
4584 			   "allocating tx memory of fp %d cos %d\n",
4585 			   index, cos);
4586 
4587 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4588 						      sizeof(struct sw_tx_bd),
4589 						      GFP_KERNEL);
4590 			if (!txdata->tx_buf_ring)
4591 				goto alloc_mem_err;
4592 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4593 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4594 			if (!txdata->tx_desc_ring)
4595 				goto alloc_mem_err;
4596 		}
4597 	}
4598 
4599 	/* Rx */
4600 	if (!skip_rx_queue(bp, index)) {
4601 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4602 		bnx2x_fp(bp, index, rx_buf_ring) =
4603 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4604 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4605 			goto alloc_mem_err;
4606 		bnx2x_fp(bp, index, rx_desc_ring) =
4607 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4608 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4609 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4610 			goto alloc_mem_err;
4611 
4612 		/* Seed all CQEs by 1s */
4613 		bnx2x_fp(bp, index, rx_comp_ring) =
4614 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4615 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4616 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4617 			goto alloc_mem_err;
4618 
4619 		/* SGE ring */
4620 		bnx2x_fp(bp, index, rx_page_ring) =
4621 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4622 				GFP_KERNEL);
4623 		if (!bnx2x_fp(bp, index, rx_page_ring))
4624 			goto alloc_mem_err;
4625 		bnx2x_fp(bp, index, rx_sge_ring) =
4626 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4627 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4628 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4629 			goto alloc_mem_err;
4630 		/* RX BD ring */
4631 		bnx2x_set_next_page_rx_bd(fp);
4632 
4633 		/* CQ ring */
4634 		bnx2x_set_next_page_rx_cq(fp);
4635 
4636 		/* BDs */
4637 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4638 		if (ring_size < rx_ring_size)
4639 			goto alloc_mem_err;
4640 	}
4641 
4642 	return 0;
4643 
4644 /* handles low memory cases */
4645 alloc_mem_err:
4646 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4647 						index, ring_size);
4648 	/* FW will drop all packets if queue is not big enough,
4649 	 * In these cases we disable the queue
4650 	 * Min size is different for OOO, TPA and non-TPA queues
4651 	 */
4652 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4653 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4654 			/* release memory allocated for this queue */
4655 			bnx2x_free_fp_mem_at(bp, index);
4656 			return -ENOMEM;
4657 	}
4658 	return 0;
4659 }
4660 
4661 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4662 {
4663 	if (!NO_FCOE(bp))
4664 		/* FCoE */
4665 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4666 			/* we will fail load process instead of mark
4667 			 * NO_FCOE_FLAG
4668 			 */
4669 			return -ENOMEM;
4670 
4671 	return 0;
4672 }
4673 
4674 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4675 {
4676 	int i;
4677 
4678 	/* 1. Allocate FP for leading - fatal if error
4679 	 * 2. Allocate RSS - fix number of queues if error
4680 	 */
4681 
4682 	/* leading */
4683 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4684 		return -ENOMEM;
4685 
4686 	/* RSS */
4687 	for_each_nondefault_eth_queue(bp, i)
4688 		if (bnx2x_alloc_fp_mem_at(bp, i))
4689 			break;
4690 
4691 	/* handle memory failures */
4692 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4693 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4694 
4695 		WARN_ON(delta < 0);
4696 		bnx2x_shrink_eth_fp(bp, delta);
4697 		if (CNIC_SUPPORT(bp))
4698 			/* move non eth FPs next to last eth FP
4699 			 * must be done in that order
4700 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4701 			 */
4702 
4703 			/* move FCoE fp even NO_FCOE_FLAG is on */
4704 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4705 		bp->num_ethernet_queues -= delta;
4706 		bp->num_queues = bp->num_ethernet_queues +
4707 				 bp->num_cnic_queues;
4708 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4709 			  bp->num_queues + delta, bp->num_queues);
4710 	}
4711 
4712 	return 0;
4713 }
4714 
4715 void bnx2x_free_mem_bp(struct bnx2x *bp)
4716 {
4717 	int i;
4718 
4719 	for (i = 0; i < bp->fp_array_size; i++)
4720 		kfree(bp->fp[i].tpa_info);
4721 	kfree(bp->fp);
4722 	kfree(bp->sp_objs);
4723 	kfree(bp->fp_stats);
4724 	kfree(bp->bnx2x_txq);
4725 	kfree(bp->msix_table);
4726 	kfree(bp->ilt);
4727 }
4728 
4729 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4730 {
4731 	struct bnx2x_fastpath *fp;
4732 	struct msix_entry *tbl;
4733 	struct bnx2x_ilt *ilt;
4734 	int msix_table_size = 0;
4735 	int fp_array_size, txq_array_size;
4736 	int i;
4737 
4738 	/*
4739 	 * The biggest MSI-X table we might need is as a maximum number of fast
4740 	 * path IGU SBs plus default SB (for PF only).
4741 	 */
4742 	msix_table_size = bp->igu_sb_cnt;
4743 	if (IS_PF(bp))
4744 		msix_table_size++;
4745 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4746 
4747 	/* fp array: RSS plus CNIC related L2 queues */
4748 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4749 	bp->fp_array_size = fp_array_size;
4750 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4751 
4752 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4753 	if (!fp)
4754 		goto alloc_err;
4755 	for (i = 0; i < bp->fp_array_size; i++) {
4756 		fp[i].tpa_info =
4757 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4758 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4759 		if (!(fp[i].tpa_info))
4760 			goto alloc_err;
4761 	}
4762 
4763 	bp->fp = fp;
4764 
4765 	/* allocate sp objs */
4766 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4767 			      GFP_KERNEL);
4768 	if (!bp->sp_objs)
4769 		goto alloc_err;
4770 
4771 	/* allocate fp_stats */
4772 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4773 			       GFP_KERNEL);
4774 	if (!bp->fp_stats)
4775 		goto alloc_err;
4776 
4777 	/* Allocate memory for the transmission queues array */
4778 	txq_array_size =
4779 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4780 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4781 
4782 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4783 				GFP_KERNEL);
4784 	if (!bp->bnx2x_txq)
4785 		goto alloc_err;
4786 
4787 	/* msix table */
4788 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4789 	if (!tbl)
4790 		goto alloc_err;
4791 	bp->msix_table = tbl;
4792 
4793 	/* ilt */
4794 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4795 	if (!ilt)
4796 		goto alloc_err;
4797 	bp->ilt = ilt;
4798 
4799 	return 0;
4800 alloc_err:
4801 	bnx2x_free_mem_bp(bp);
4802 	return -ENOMEM;
4803 }
4804 
4805 int bnx2x_reload_if_running(struct net_device *dev)
4806 {
4807 	struct bnx2x *bp = netdev_priv(dev);
4808 
4809 	if (unlikely(!netif_running(dev)))
4810 		return 0;
4811 
4812 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4813 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4814 }
4815 
4816 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4817 {
4818 	u32 sel_phy_idx = 0;
4819 	if (bp->link_params.num_phys <= 1)
4820 		return INT_PHY;
4821 
4822 	if (bp->link_vars.link_up) {
4823 		sel_phy_idx = EXT_PHY1;
4824 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4825 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4826 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4827 			sel_phy_idx = EXT_PHY2;
4828 	} else {
4829 
4830 		switch (bnx2x_phy_selection(&bp->link_params)) {
4831 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4832 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4833 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4834 		       sel_phy_idx = EXT_PHY1;
4835 		       break;
4836 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4837 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4838 		       sel_phy_idx = EXT_PHY2;
4839 		       break;
4840 		}
4841 	}
4842 
4843 	return sel_phy_idx;
4844 }
4845 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4846 {
4847 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4848 	/*
4849 	 * The selected activated PHY is always after swapping (in case PHY
4850 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4851 	 * the configuration
4852 	 */
4853 
4854 	if (bp->link_params.multi_phy_config &
4855 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4856 		if (sel_phy_idx == EXT_PHY1)
4857 			sel_phy_idx = EXT_PHY2;
4858 		else if (sel_phy_idx == EXT_PHY2)
4859 			sel_phy_idx = EXT_PHY1;
4860 	}
4861 	return LINK_CONFIG_IDX(sel_phy_idx);
4862 }
4863 
4864 #ifdef NETDEV_FCOE_WWNN
4865 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4866 {
4867 	struct bnx2x *bp = netdev_priv(dev);
4868 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4869 
4870 	switch (type) {
4871 	case NETDEV_FCOE_WWNN:
4872 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4873 				cp->fcoe_wwn_node_name_lo);
4874 		break;
4875 	case NETDEV_FCOE_WWPN:
4876 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4877 				cp->fcoe_wwn_port_name_lo);
4878 		break;
4879 	default:
4880 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4881 		return -EINVAL;
4882 	}
4883 
4884 	return 0;
4885 }
4886 #endif
4887 
4888 /* called with rtnl_lock */
4889 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4890 {
4891 	struct bnx2x *bp = netdev_priv(dev);
4892 
4893 	if (pci_num_vf(bp->pdev)) {
4894 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4895 		return -EPERM;
4896 	}
4897 
4898 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4899 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4900 		return -EAGAIN;
4901 	}
4902 
4903 	if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
4904 	    ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
4905 		BNX2X_ERR("Can't support requested MTU size\n");
4906 		return -EINVAL;
4907 	}
4908 
4909 	/* This does not race with packet allocation
4910 	 * because the actual alloc size is
4911 	 * only updated as part of load
4912 	 */
4913 	dev->mtu = new_mtu;
4914 
4915 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4916 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4917 
4918 	return bnx2x_reload_if_running(dev);
4919 }
4920 
4921 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4922 				     netdev_features_t features)
4923 {
4924 	struct bnx2x *bp = netdev_priv(dev);
4925 
4926 	if (pci_num_vf(bp->pdev)) {
4927 		netdev_features_t changed = dev->features ^ features;
4928 
4929 		/* Revert the requested changes in features if they
4930 		 * would require internal reload of PF in bnx2x_set_features().
4931 		 */
4932 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4933 			features &= ~NETIF_F_RXCSUM;
4934 			features |= dev->features & NETIF_F_RXCSUM;
4935 		}
4936 
4937 		if (changed & NETIF_F_LOOPBACK) {
4938 			features &= ~NETIF_F_LOOPBACK;
4939 			features |= dev->features & NETIF_F_LOOPBACK;
4940 		}
4941 	}
4942 
4943 	/* TPA requires Rx CSUM offloading */
4944 	if (!(features & NETIF_F_RXCSUM)) {
4945 		features &= ~NETIF_F_LRO;
4946 		features &= ~NETIF_F_GRO;
4947 	}
4948 
4949 	return features;
4950 }
4951 
4952 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4953 {
4954 	struct bnx2x *bp = netdev_priv(dev);
4955 	netdev_features_t changes = features ^ dev->features;
4956 	bool bnx2x_reload = false;
4957 	int rc;
4958 
4959 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4960 	if (!pci_num_vf(bp->pdev)) {
4961 		if (features & NETIF_F_LOOPBACK) {
4962 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4963 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4964 				bnx2x_reload = true;
4965 			}
4966 		} else {
4967 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4968 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4969 				bnx2x_reload = true;
4970 			}
4971 		}
4972 	}
4973 
4974 	/* if GRO is changed while LRO is enabled, don't force a reload */
4975 	if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO))
4976 		changes &= ~NETIF_F_GRO;
4977 
4978 	/* if GRO is changed while HW TPA is off, don't force a reload */
4979 	if ((changes & NETIF_F_GRO) && bp->disable_tpa)
4980 		changes &= ~NETIF_F_GRO;
4981 
4982 	if (changes)
4983 		bnx2x_reload = true;
4984 
4985 	if (bnx2x_reload) {
4986 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4987 			dev->features = features;
4988 			rc = bnx2x_reload_if_running(dev);
4989 			return rc ? rc : 1;
4990 		}
4991 		/* else: bnx2x_nic_load() will be called at end of recovery */
4992 	}
4993 
4994 	return 0;
4995 }
4996 
4997 void bnx2x_tx_timeout(struct net_device *dev)
4998 {
4999 	struct bnx2x *bp = netdev_priv(dev);
5000 
5001 #ifdef BNX2X_STOP_ON_ERROR
5002 	if (!bp->panic)
5003 		bnx2x_panic();
5004 #endif
5005 
5006 	/* This allows the netif to be shutdown gracefully before resetting */
5007 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
5008 }
5009 
5010 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
5011 {
5012 	struct net_device *dev = pci_get_drvdata(pdev);
5013 	struct bnx2x *bp;
5014 
5015 	if (!dev) {
5016 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5017 		return -ENODEV;
5018 	}
5019 	bp = netdev_priv(dev);
5020 
5021 	rtnl_lock();
5022 
5023 	pci_save_state(pdev);
5024 
5025 	if (!netif_running(dev)) {
5026 		rtnl_unlock();
5027 		return 0;
5028 	}
5029 
5030 	netif_device_detach(dev);
5031 
5032 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5033 
5034 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
5035 
5036 	rtnl_unlock();
5037 
5038 	return 0;
5039 }
5040 
5041 int bnx2x_resume(struct pci_dev *pdev)
5042 {
5043 	struct net_device *dev = pci_get_drvdata(pdev);
5044 	struct bnx2x *bp;
5045 	int rc;
5046 
5047 	if (!dev) {
5048 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5049 		return -ENODEV;
5050 	}
5051 	bp = netdev_priv(dev);
5052 
5053 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5054 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5055 		return -EAGAIN;
5056 	}
5057 
5058 	rtnl_lock();
5059 
5060 	pci_restore_state(pdev);
5061 
5062 	if (!netif_running(dev)) {
5063 		rtnl_unlock();
5064 		return 0;
5065 	}
5066 
5067 	bnx2x_set_power_state(bp, PCI_D0);
5068 	netif_device_attach(dev);
5069 
5070 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5071 
5072 	rtnl_unlock();
5073 
5074 	return rc;
5075 }
5076 
5077 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5078 			      u32 cid)
5079 {
5080 	if (!cxt) {
5081 		BNX2X_ERR("bad context pointer %p\n", cxt);
5082 		return;
5083 	}
5084 
5085 	/* ustorm cxt validation */
5086 	cxt->ustorm_ag_context.cdu_usage =
5087 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5088 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5089 	/* xcontext validation */
5090 	cxt->xstorm_ag_context.cdu_reserved =
5091 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5092 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5093 }
5094 
5095 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5096 				    u8 fw_sb_id, u8 sb_index,
5097 				    u8 ticks)
5098 {
5099 	u32 addr = BAR_CSTRORM_INTMEM +
5100 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5101 	REG_WR8(bp, addr, ticks);
5102 	DP(NETIF_MSG_IFUP,
5103 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5104 	   port, fw_sb_id, sb_index, ticks);
5105 }
5106 
5107 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5108 				    u16 fw_sb_id, u8 sb_index,
5109 				    u8 disable)
5110 {
5111 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5112 	u32 addr = BAR_CSTRORM_INTMEM +
5113 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5114 	u8 flags = REG_RD8(bp, addr);
5115 	/* clear and set */
5116 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5117 	flags |= enable_flag;
5118 	REG_WR8(bp, addr, flags);
5119 	DP(NETIF_MSG_IFUP,
5120 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5121 	   port, fw_sb_id, sb_index, disable);
5122 }
5123 
5124 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5125 				    u8 sb_index, u8 disable, u16 usec)
5126 {
5127 	int port = BP_PORT(bp);
5128 	u8 ticks = usec / BNX2X_BTR;
5129 
5130 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5131 
5132 	disable = disable ? 1 : (usec ? 0 : 1);
5133 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5134 }
5135 
5136 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5137 			    u32 verbose)
5138 {
5139 	smp_mb__before_atomic();
5140 	set_bit(flag, &bp->sp_rtnl_state);
5141 	smp_mb__after_atomic();
5142 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5143 	   flag);
5144 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5145 }
5146 EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl);
5147