1 /* bnx2x_cmn.c: QLogic Everest network driver. 2 * 3 * Copyright (c) 2007-2013 Broadcom Corporation 4 * Copyright (c) 2014 QLogic Corporation 5 * All rights reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation. 10 * 11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com> 12 * Written by: Eliezer Tamir 13 * Based on code from Michael Chan's bnx2 driver 14 * UDP CSUM errata workaround by Arik Gendelman 15 * Slowpath and fastpath rework by Vladislav Zolotarov 16 * Statistics and Link management by Yitchak Gertner 17 * 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/etherdevice.h> 23 #include <linux/if_vlan.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/crash_dump.h> 27 #include <net/tcp.h> 28 #include <net/ipv6.h> 29 #include <net/ip6_checksum.h> 30 #include <net/busy_poll.h> 31 #include <linux/prefetch.h> 32 #include "bnx2x_cmn.h" 33 #include "bnx2x_init.h" 34 #include "bnx2x_sp.h" 35 36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); 37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); 38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp); 39 static int bnx2x_poll(struct napi_struct *napi, int budget); 40 41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) 42 { 43 int i; 44 45 /* Add NAPI objects */ 46 for_each_rx_queue_cnic(bp, i) { 47 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 48 bnx2x_poll, NAPI_POLL_WEIGHT); 49 } 50 } 51 52 static void bnx2x_add_all_napi(struct bnx2x *bp) 53 { 54 int i; 55 56 /* Add NAPI objects */ 57 for_each_eth_queue(bp, i) { 58 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), 59 bnx2x_poll, NAPI_POLL_WEIGHT); 60 } 61 } 62 63 static int bnx2x_calc_num_queues(struct bnx2x *bp) 64 { 65 int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues(); 66 67 /* Reduce memory usage in kdump environment by using only one queue */ 68 if (is_kdump_kernel()) 69 nq = 1; 70 71 nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp)); 72 return nq; 73 } 74 75 /** 76 * bnx2x_move_fp - move content of the fastpath structure. 77 * 78 * @bp: driver handle 79 * @from: source FP index 80 * @to: destination FP index 81 * 82 * Makes sure the contents of the bp->fp[to].napi is kept 83 * intact. This is done by first copying the napi struct from 84 * the target to the source, and then mem copying the entire 85 * source onto the target. Update txdata pointers and related 86 * content. 87 */ 88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) 89 { 90 struct bnx2x_fastpath *from_fp = &bp->fp[from]; 91 struct bnx2x_fastpath *to_fp = &bp->fp[to]; 92 struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; 93 struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; 94 struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; 95 struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; 96 int old_max_eth_txqs, new_max_eth_txqs; 97 int old_txdata_index = 0, new_txdata_index = 0; 98 struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; 99 100 /* Copy the NAPI object as it has been already initialized */ 101 from_fp->napi = to_fp->napi; 102 103 /* Move bnx2x_fastpath contents */ 104 memcpy(to_fp, from_fp, sizeof(*to_fp)); 105 to_fp->index = to; 106 107 /* Retain the tpa_info of the original `to' version as we don't want 108 * 2 FPs to contain the same tpa_info pointer. 109 */ 110 to_fp->tpa_info = old_tpa_info; 111 112 /* move sp_objs contents as well, as their indices match fp ones */ 113 memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); 114 115 /* move fp_stats contents as well, as their indices match fp ones */ 116 memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); 117 118 /* Update txdata pointers in fp and move txdata content accordingly: 119 * Each fp consumes 'max_cos' txdata structures, so the index should be 120 * decremented by max_cos x delta. 121 */ 122 123 old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; 124 new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * 125 (bp)->max_cos; 126 if (from == FCOE_IDX(bp)) { 127 old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 128 new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; 129 } 130 131 memcpy(&bp->bnx2x_txq[new_txdata_index], 132 &bp->bnx2x_txq[old_txdata_index], 133 sizeof(struct bnx2x_fp_txdata)); 134 to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; 135 } 136 137 /** 138 * bnx2x_fill_fw_str - Fill buffer with FW version string. 139 * 140 * @bp: driver handle 141 * @buf: character buffer to fill with the fw name 142 * @buf_len: length of the above buffer 143 * 144 */ 145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) 146 { 147 if (IS_PF(bp)) { 148 u8 phy_fw_ver[PHY_FW_VER_LEN]; 149 150 phy_fw_ver[0] = '\0'; 151 bnx2x_get_ext_phy_fw_version(&bp->link_params, 152 phy_fw_ver, PHY_FW_VER_LEN); 153 strlcpy(buf, bp->fw_ver, buf_len); 154 snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), 155 "bc %d.%d.%d%s%s", 156 (bp->common.bc_ver & 0xff0000) >> 16, 157 (bp->common.bc_ver & 0xff00) >> 8, 158 (bp->common.bc_ver & 0xff), 159 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); 160 } else { 161 bnx2x_vf_fill_fw_str(bp, buf, buf_len); 162 } 163 } 164 165 /** 166 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact 167 * 168 * @bp: driver handle 169 * @delta: number of eth queues which were not allocated 170 */ 171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) 172 { 173 int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); 174 175 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer 176 * backward along the array could cause memory to be overridden 177 */ 178 for (cos = 1; cos < bp->max_cos; cos++) { 179 for (i = 0; i < old_eth_num - delta; i++) { 180 struct bnx2x_fastpath *fp = &bp->fp[i]; 181 int new_idx = cos * (old_eth_num - delta) + i; 182 183 memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], 184 sizeof(struct bnx2x_fp_txdata)); 185 fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; 186 } 187 } 188 } 189 190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 191 192 /* free skb in the packet ring at pos idx 193 * return idx of last bd freed 194 */ 195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, 196 u16 idx, unsigned int *pkts_compl, 197 unsigned int *bytes_compl) 198 { 199 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; 200 struct eth_tx_start_bd *tx_start_bd; 201 struct eth_tx_bd *tx_data_bd; 202 struct sk_buff *skb = tx_buf->skb; 203 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; 204 int nbd; 205 u16 split_bd_len = 0; 206 207 /* prefetch skb end pointer to speedup dev_kfree_skb() */ 208 prefetch(&skb->end); 209 210 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n", 211 txdata->txq_index, idx, tx_buf, skb); 212 213 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; 214 215 nbd = le16_to_cpu(tx_start_bd->nbd) - 1; 216 #ifdef BNX2X_STOP_ON_ERROR 217 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { 218 BNX2X_ERR("BAD nbd!\n"); 219 bnx2x_panic(); 220 } 221 #endif 222 new_cons = nbd + tx_buf->first_bd; 223 224 /* Get the next bd */ 225 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 226 227 /* Skip a parse bd... */ 228 --nbd; 229 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 230 231 if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { 232 /* Skip second parse bd... */ 233 --nbd; 234 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 235 } 236 237 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ 238 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { 239 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 240 split_bd_len = BD_UNMAP_LEN(tx_data_bd); 241 --nbd; 242 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 243 } 244 245 /* unmap first bd */ 246 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), 247 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, 248 DMA_TO_DEVICE); 249 250 /* now free frags */ 251 while (nbd > 0) { 252 253 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; 254 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), 255 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); 256 if (--nbd) 257 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); 258 } 259 260 /* release skb */ 261 WARN_ON(!skb); 262 if (likely(skb)) { 263 (*pkts_compl)++; 264 (*bytes_compl) += skb->len; 265 dev_kfree_skb_any(skb); 266 } 267 268 tx_buf->first_bd = 0; 269 tx_buf->skb = NULL; 270 271 return new_cons; 272 } 273 274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) 275 { 276 struct netdev_queue *txq; 277 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; 278 unsigned int pkts_compl = 0, bytes_compl = 0; 279 280 #ifdef BNX2X_STOP_ON_ERROR 281 if (unlikely(bp->panic)) 282 return -1; 283 #endif 284 285 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); 286 hw_cons = le16_to_cpu(*txdata->tx_cons_sb); 287 sw_cons = txdata->tx_pkt_cons; 288 289 while (sw_cons != hw_cons) { 290 u16 pkt_cons; 291 292 pkt_cons = TX_BD(sw_cons); 293 294 DP(NETIF_MSG_TX_DONE, 295 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n", 296 txdata->txq_index, hw_cons, sw_cons, pkt_cons); 297 298 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, 299 &pkts_compl, &bytes_compl); 300 301 sw_cons++; 302 } 303 304 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); 305 306 txdata->tx_pkt_cons = sw_cons; 307 txdata->tx_bd_cons = bd_cons; 308 309 /* Need to make the tx_bd_cons update visible to start_xmit() 310 * before checking for netif_tx_queue_stopped(). Without the 311 * memory barrier, there is a small possibility that 312 * start_xmit() will miss it and cause the queue to be stopped 313 * forever. 314 * On the other hand we need an rmb() here to ensure the proper 315 * ordering of bit testing in the following 316 * netif_tx_queue_stopped(txq) call. 317 */ 318 smp_mb(); 319 320 if (unlikely(netif_tx_queue_stopped(txq))) { 321 /* Taking tx_lock() is needed to prevent re-enabling the queue 322 * while it's empty. This could have happen if rx_action() gets 323 * suspended in bnx2x_tx_int() after the condition before 324 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): 325 * 326 * stops the queue->sees fresh tx_bd_cons->releases the queue-> 327 * sends some packets consuming the whole queue again-> 328 * stops the queue 329 */ 330 331 __netif_tx_lock(txq, smp_processor_id()); 332 333 if ((netif_tx_queue_stopped(txq)) && 334 (bp->state == BNX2X_STATE_OPEN) && 335 (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)) 336 netif_tx_wake_queue(txq); 337 338 __netif_tx_unlock(txq); 339 } 340 return 0; 341 } 342 343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, 344 u16 idx) 345 { 346 u16 last_max = fp->last_max_sge; 347 348 if (SUB_S16(idx, last_max) > 0) 349 fp->last_max_sge = idx; 350 } 351 352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, 353 u16 sge_len, 354 struct eth_end_agg_rx_cqe *cqe) 355 { 356 struct bnx2x *bp = fp->bp; 357 u16 last_max, last_elem, first_elem; 358 u16 delta = 0; 359 u16 i; 360 361 if (!sge_len) 362 return; 363 364 /* First mark all used pages */ 365 for (i = 0; i < sge_len; i++) 366 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 367 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); 368 369 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", 370 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 371 372 /* Here we assume that the last SGE index is the biggest */ 373 prefetch((void *)(fp->sge_mask)); 374 bnx2x_update_last_max_sge(fp, 375 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); 376 377 last_max = RX_SGE(fp->last_max_sge); 378 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 379 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 380 381 /* If ring is not full */ 382 if (last_elem + 1 != first_elem) 383 last_elem++; 384 385 /* Now update the prod */ 386 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { 387 if (likely(fp->sge_mask[i])) 388 break; 389 390 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 391 delta += BIT_VEC64_ELEM_SZ; 392 } 393 394 if (delta > 0) { 395 fp->rx_sge_prod += delta; 396 /* clear page-end entries */ 397 bnx2x_clear_sge_mask_next_elems(fp); 398 } 399 400 DP(NETIF_MSG_RX_STATUS, 401 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", 402 fp->last_max_sge, fp->rx_sge_prod); 403 } 404 405 /* Get Toeplitz hash value in the skb using the value from the 406 * CQE (calculated by HW). 407 */ 408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp, 409 const struct eth_fast_path_rx_cqe *cqe, 410 enum pkt_hash_types *rxhash_type) 411 { 412 /* Get Toeplitz hash from CQE */ 413 if ((bp->dev->features & NETIF_F_RXHASH) && 414 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { 415 enum eth_rss_hash_type htype; 416 417 htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; 418 *rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || 419 (htype == TCP_IPV6_HASH_TYPE)) ? 420 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 421 422 return le32_to_cpu(cqe->rss_hash_result); 423 } 424 *rxhash_type = PKT_HASH_TYPE_NONE; 425 return 0; 426 } 427 428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, 429 u16 cons, u16 prod, 430 struct eth_fast_path_rx_cqe *cqe) 431 { 432 struct bnx2x *bp = fp->bp; 433 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; 434 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; 435 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; 436 dma_addr_t mapping; 437 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; 438 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 439 440 /* print error if current state != stop */ 441 if (tpa_info->tpa_state != BNX2X_TPA_STOP) 442 BNX2X_ERR("start of bin not in stop [%d]\n", queue); 443 444 /* Try to map an empty data buffer from the aggregation info */ 445 mapping = dma_map_single(&bp->pdev->dev, 446 first_buf->data + NET_SKB_PAD, 447 fp->rx_buf_size, DMA_FROM_DEVICE); 448 /* 449 * ...if it fails - move the skb from the consumer to the producer 450 * and set the current aggregation state as ERROR to drop it 451 * when TPA_STOP arrives. 452 */ 453 454 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 455 /* Move the BD from the consumer to the producer */ 456 bnx2x_reuse_rx_data(fp, cons, prod); 457 tpa_info->tpa_state = BNX2X_TPA_ERROR; 458 return; 459 } 460 461 /* move empty data from pool to prod */ 462 prod_rx_buf->data = first_buf->data; 463 dma_unmap_addr_set(prod_rx_buf, mapping, mapping); 464 /* point prod_bd to new data */ 465 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 466 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 467 468 /* move partial skb from cons to pool (don't unmap yet) */ 469 *first_buf = *cons_rx_buf; 470 471 /* mark bin state as START */ 472 tpa_info->parsing_flags = 473 le16_to_cpu(cqe->pars_flags.flags); 474 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); 475 tpa_info->tpa_state = BNX2X_TPA_START; 476 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); 477 tpa_info->placement_offset = cqe->placement_offset; 478 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); 479 if (fp->mode == TPA_MODE_GRO) { 480 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); 481 tpa_info->full_page = SGE_PAGES / gro_size * gro_size; 482 tpa_info->gro_size = gro_size; 483 } 484 485 #ifdef BNX2X_STOP_ON_ERROR 486 fp->tpa_queue_used |= (1 << queue); 487 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", 488 fp->tpa_queue_used); 489 #endif 490 } 491 492 /* Timestamp option length allowed for TPA aggregation: 493 * 494 * nop nop kind length echo val 495 */ 496 #define TPA_TSTAMP_OPT_LEN 12 497 /** 498 * bnx2x_set_gro_params - compute GRO values 499 * 500 * @skb: packet skb 501 * @parsing_flags: parsing flags from the START CQE 502 * @len_on_bd: total length of the first packet for the 503 * aggregation. 504 * @pkt_len: length of all segments 505 * 506 * Approximate value of the MSS for this aggregation calculated using 507 * the first packet of it. 508 * Compute number of aggregated segments, and gso_type. 509 */ 510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags, 511 u16 len_on_bd, unsigned int pkt_len, 512 u16 num_of_coalesced_segs) 513 { 514 /* TPA aggregation won't have either IP options or TCP options 515 * other than timestamp or IPv6 extension headers. 516 */ 517 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr); 518 519 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == 520 PRS_FLAG_OVERETH_IPV6) { 521 hdrs_len += sizeof(struct ipv6hdr); 522 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 523 } else { 524 hdrs_len += sizeof(struct iphdr); 525 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 526 } 527 528 /* Check if there was a TCP timestamp, if there is it's will 529 * always be 12 bytes length: nop nop kind length echo val. 530 * 531 * Otherwise FW would close the aggregation. 532 */ 533 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) 534 hdrs_len += TPA_TSTAMP_OPT_LEN; 535 536 skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; 537 538 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count 539 * to skb_shinfo(skb)->gso_segs 540 */ 541 NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; 542 } 543 544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, 545 u16 index, gfp_t gfp_mask) 546 { 547 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; 548 struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; 549 struct bnx2x_alloc_pool *pool = &fp->page_pool; 550 dma_addr_t mapping; 551 552 if (!pool->page) { 553 pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT); 554 if (unlikely(!pool->page)) 555 return -ENOMEM; 556 557 pool->offset = 0; 558 } 559 560 mapping = dma_map_page(&bp->pdev->dev, pool->page, 561 pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE); 562 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 563 BNX2X_ERR("Can't map sge\n"); 564 return -ENOMEM; 565 } 566 567 sw_buf->page = pool->page; 568 sw_buf->offset = pool->offset; 569 570 dma_unmap_addr_set(sw_buf, mapping, mapping); 571 572 sge->addr_hi = cpu_to_le32(U64_HI(mapping)); 573 sge->addr_lo = cpu_to_le32(U64_LO(mapping)); 574 575 pool->offset += SGE_PAGE_SIZE; 576 if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE) 577 get_page(pool->page); 578 else 579 pool->page = NULL; 580 return 0; 581 } 582 583 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, 584 struct bnx2x_agg_info *tpa_info, 585 u16 pages, 586 struct sk_buff *skb, 587 struct eth_end_agg_rx_cqe *cqe, 588 u16 cqe_idx) 589 { 590 struct sw_rx_page *rx_pg, old_rx_pg; 591 u32 i, frag_len, frag_size; 592 int err, j, frag_id = 0; 593 u16 len_on_bd = tpa_info->len_on_bd; 594 u16 full_page = 0, gro_size = 0; 595 596 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; 597 598 if (fp->mode == TPA_MODE_GRO) { 599 gro_size = tpa_info->gro_size; 600 full_page = tpa_info->full_page; 601 } 602 603 /* This is needed in order to enable forwarding support */ 604 if (frag_size) 605 bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, 606 le16_to_cpu(cqe->pkt_len), 607 le16_to_cpu(cqe->num_of_coalesced_segs)); 608 609 #ifdef BNX2X_STOP_ON_ERROR 610 if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) { 611 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", 612 pages, cqe_idx); 613 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); 614 bnx2x_panic(); 615 return -EINVAL; 616 } 617 #endif 618 619 /* Run through the SGL and compose the fragmented skb */ 620 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 621 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); 622 623 /* FW gives the indices of the SGE as if the ring is an array 624 (meaning that "next" element will consume 2 indices) */ 625 if (fp->mode == TPA_MODE_GRO) 626 frag_len = min_t(u32, frag_size, (u32)full_page); 627 else /* LRO */ 628 frag_len = min_t(u32, frag_size, (u32)SGE_PAGES); 629 630 rx_pg = &fp->rx_page_ring[sge_idx]; 631 old_rx_pg = *rx_pg; 632 633 /* If we fail to allocate a substitute page, we simply stop 634 where we are and drop the whole packet */ 635 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC); 636 if (unlikely(err)) { 637 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 638 return err; 639 } 640 641 dma_unmap_page(&bp->pdev->dev, 642 dma_unmap_addr(&old_rx_pg, mapping), 643 SGE_PAGE_SIZE, DMA_FROM_DEVICE); 644 /* Add one frag and update the appropriate fields in the skb */ 645 if (fp->mode == TPA_MODE_LRO) 646 skb_fill_page_desc(skb, j, old_rx_pg.page, 647 old_rx_pg.offset, frag_len); 648 else { /* GRO */ 649 int rem; 650 int offset = 0; 651 for (rem = frag_len; rem > 0; rem -= gro_size) { 652 int len = rem > gro_size ? gro_size : rem; 653 skb_fill_page_desc(skb, frag_id++, 654 old_rx_pg.page, 655 old_rx_pg.offset + offset, 656 len); 657 if (offset) 658 get_page(old_rx_pg.page); 659 offset += len; 660 } 661 } 662 663 skb->data_len += frag_len; 664 skb->truesize += SGE_PAGES; 665 skb->len += frag_len; 666 667 frag_size -= frag_len; 668 } 669 670 return 0; 671 } 672 673 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) 674 { 675 if (fp->rx_frag_size) 676 skb_free_frag(data); 677 else 678 kfree(data); 679 } 680 681 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) 682 { 683 if (fp->rx_frag_size) { 684 /* GFP_KERNEL allocations are used only during initialization */ 685 if (unlikely(gfpflags_allow_blocking(gfp_mask))) 686 return (void *)__get_free_page(gfp_mask); 687 688 return netdev_alloc_frag(fp->rx_frag_size); 689 } 690 691 return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); 692 } 693 694 #ifdef CONFIG_INET 695 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) 696 { 697 const struct iphdr *iph = ip_hdr(skb); 698 struct tcphdr *th; 699 700 skb_set_transport_header(skb, sizeof(struct iphdr)); 701 th = tcp_hdr(skb); 702 703 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), 704 iph->saddr, iph->daddr, 0); 705 } 706 707 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) 708 { 709 struct ipv6hdr *iph = ipv6_hdr(skb); 710 struct tcphdr *th; 711 712 skb_set_transport_header(skb, sizeof(struct ipv6hdr)); 713 th = tcp_hdr(skb); 714 715 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), 716 &iph->saddr, &iph->daddr, 0); 717 } 718 719 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, 720 void (*gro_func)(struct bnx2x*, struct sk_buff*)) 721 { 722 skb_reset_network_header(skb); 723 gro_func(bp, skb); 724 tcp_gro_complete(skb); 725 } 726 #endif 727 728 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, 729 struct sk_buff *skb) 730 { 731 #ifdef CONFIG_INET 732 if (skb_shinfo(skb)->gso_size) { 733 switch (be16_to_cpu(skb->protocol)) { 734 case ETH_P_IP: 735 bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); 736 break; 737 case ETH_P_IPV6: 738 bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); 739 break; 740 default: 741 WARN_ONCE(1, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", 742 be16_to_cpu(skb->protocol)); 743 } 744 } 745 #endif 746 skb_record_rx_queue(skb, fp->rx_queue); 747 napi_gro_receive(&fp->napi, skb); 748 } 749 750 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, 751 struct bnx2x_agg_info *tpa_info, 752 u16 pages, 753 struct eth_end_agg_rx_cqe *cqe, 754 u16 cqe_idx) 755 { 756 struct sw_rx_bd *rx_buf = &tpa_info->first_buf; 757 u8 pad = tpa_info->placement_offset; 758 u16 len = tpa_info->len_on_bd; 759 struct sk_buff *skb = NULL; 760 u8 *new_data, *data = rx_buf->data; 761 u8 old_tpa_state = tpa_info->tpa_state; 762 763 tpa_info->tpa_state = BNX2X_TPA_STOP; 764 765 /* If we there was an error during the handling of the TPA_START - 766 * drop this aggregation. 767 */ 768 if (old_tpa_state == BNX2X_TPA_ERROR) 769 goto drop; 770 771 /* Try to allocate the new data */ 772 new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC); 773 /* Unmap skb in the pool anyway, as we are going to change 774 pool entry status to BNX2X_TPA_STOP even if new skb allocation 775 fails. */ 776 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), 777 fp->rx_buf_size, DMA_FROM_DEVICE); 778 if (likely(new_data)) 779 skb = build_skb(data, fp->rx_frag_size); 780 781 if (likely(skb)) { 782 #ifdef BNX2X_STOP_ON_ERROR 783 if (pad + len > fp->rx_buf_size) { 784 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n", 785 pad, len, fp->rx_buf_size); 786 bnx2x_panic(); 787 return; 788 } 789 #endif 790 791 skb_reserve(skb, pad + NET_SKB_PAD); 792 skb_put(skb, len); 793 skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); 794 795 skb->protocol = eth_type_trans(skb, bp->dev); 796 skb->ip_summed = CHECKSUM_UNNECESSARY; 797 798 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, 799 skb, cqe, cqe_idx)) { 800 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) 801 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag); 802 bnx2x_gro_receive(bp, fp, skb); 803 } else { 804 DP(NETIF_MSG_RX_STATUS, 805 "Failed to allocate new pages - dropping packet!\n"); 806 dev_kfree_skb_any(skb); 807 } 808 809 /* put new data in bin */ 810 rx_buf->data = new_data; 811 812 return; 813 } 814 if (new_data) 815 bnx2x_frag_free(fp, new_data); 816 drop: 817 /* drop the packet and keep the buffer in the bin */ 818 DP(NETIF_MSG_RX_STATUS, 819 "Failed to allocate or map a new skb - dropping packet!\n"); 820 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; 821 } 822 823 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, 824 u16 index, gfp_t gfp_mask) 825 { 826 u8 *data; 827 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; 828 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; 829 dma_addr_t mapping; 830 831 data = bnx2x_frag_alloc(fp, gfp_mask); 832 if (unlikely(data == NULL)) 833 return -ENOMEM; 834 835 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, 836 fp->rx_buf_size, 837 DMA_FROM_DEVICE); 838 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 839 bnx2x_frag_free(fp, data); 840 BNX2X_ERR("Can't map rx data\n"); 841 return -ENOMEM; 842 } 843 844 rx_buf->data = data; 845 dma_unmap_addr_set(rx_buf, mapping, mapping); 846 847 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 848 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 849 850 return 0; 851 } 852 853 static 854 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, 855 struct bnx2x_fastpath *fp, 856 struct bnx2x_eth_q_stats *qstats) 857 { 858 /* Do nothing if no L4 csum validation was done. 859 * We do not check whether IP csum was validated. For IPv4 we assume 860 * that if the card got as far as validating the L4 csum, it also 861 * validated the IP csum. IPv6 has no IP csum. 862 */ 863 if (cqe->fast_path_cqe.status_flags & 864 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) 865 return; 866 867 /* If L4 validation was done, check if an error was found. */ 868 869 if (cqe->fast_path_cqe.type_error_flags & 870 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | 871 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) 872 qstats->hw_csum_err++; 873 else 874 skb->ip_summed = CHECKSUM_UNNECESSARY; 875 } 876 877 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) 878 { 879 struct bnx2x *bp = fp->bp; 880 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 881 u16 sw_comp_cons, sw_comp_prod; 882 int rx_pkt = 0; 883 union eth_rx_cqe *cqe; 884 struct eth_fast_path_rx_cqe *cqe_fp; 885 886 #ifdef BNX2X_STOP_ON_ERROR 887 if (unlikely(bp->panic)) 888 return 0; 889 #endif 890 if (budget <= 0) 891 return rx_pkt; 892 893 bd_cons = fp->rx_bd_cons; 894 bd_prod = fp->rx_bd_prod; 895 bd_prod_fw = bd_prod; 896 sw_comp_cons = fp->rx_comp_cons; 897 sw_comp_prod = fp->rx_comp_prod; 898 899 comp_ring_cons = RCQ_BD(sw_comp_cons); 900 cqe = &fp->rx_comp_ring[comp_ring_cons]; 901 cqe_fp = &cqe->fast_path_cqe; 902 903 DP(NETIF_MSG_RX_STATUS, 904 "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); 905 906 while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { 907 struct sw_rx_bd *rx_buf = NULL; 908 struct sk_buff *skb; 909 u8 cqe_fp_flags; 910 enum eth_rx_cqe_type cqe_fp_type; 911 u16 len, pad, queue; 912 u8 *data; 913 u32 rxhash; 914 enum pkt_hash_types rxhash_type; 915 916 #ifdef BNX2X_STOP_ON_ERROR 917 if (unlikely(bp->panic)) 918 return 0; 919 #endif 920 921 bd_prod = RX_BD(bd_prod); 922 bd_cons = RX_BD(bd_cons); 923 924 /* A rmb() is required to ensure that the CQE is not read 925 * before it is written by the adapter DMA. PCI ordering 926 * rules will make sure the other fields are written before 927 * the marker at the end of struct eth_fast_path_rx_cqe 928 * but without rmb() a weakly ordered processor can process 929 * stale data. Without the barrier TPA state-machine might 930 * enter inconsistent state and kernel stack might be 931 * provided with incorrect packet description - these lead 932 * to various kernel crashed. 933 */ 934 rmb(); 935 936 cqe_fp_flags = cqe_fp->type_error_flags; 937 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 938 939 DP(NETIF_MSG_RX_STATUS, 940 "CQE type %x err %x status %x queue %x vlan %x len %u\n", 941 CQE_TYPE(cqe_fp_flags), 942 cqe_fp_flags, cqe_fp->status_flags, 943 le32_to_cpu(cqe_fp->rss_hash_result), 944 le16_to_cpu(cqe_fp->vlan_tag), 945 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); 946 947 /* is this a slowpath msg? */ 948 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { 949 bnx2x_sp_event(fp, cqe); 950 goto next_cqe; 951 } 952 953 rx_buf = &fp->rx_buf_ring[bd_cons]; 954 data = rx_buf->data; 955 956 if (!CQE_TYPE_FAST(cqe_fp_type)) { 957 struct bnx2x_agg_info *tpa_info; 958 u16 frag_size, pages; 959 #ifdef BNX2X_STOP_ON_ERROR 960 /* sanity check */ 961 if (fp->mode == TPA_MODE_DISABLED && 962 (CQE_TYPE_START(cqe_fp_type) || 963 CQE_TYPE_STOP(cqe_fp_type))) 964 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n", 965 CQE_TYPE(cqe_fp_type)); 966 #endif 967 968 if (CQE_TYPE_START(cqe_fp_type)) { 969 u16 queue = cqe_fp->queue_index; 970 DP(NETIF_MSG_RX_STATUS, 971 "calling tpa_start on queue %d\n", 972 queue); 973 974 bnx2x_tpa_start(fp, queue, 975 bd_cons, bd_prod, 976 cqe_fp); 977 978 goto next_rx; 979 } 980 queue = cqe->end_agg_cqe.queue_index; 981 tpa_info = &fp->tpa_info[queue]; 982 DP(NETIF_MSG_RX_STATUS, 983 "calling tpa_stop on queue %d\n", 984 queue); 985 986 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - 987 tpa_info->len_on_bd; 988 989 if (fp->mode == TPA_MODE_GRO) 990 pages = (frag_size + tpa_info->full_page - 1) / 991 tpa_info->full_page; 992 else 993 pages = SGE_PAGE_ALIGN(frag_size) >> 994 SGE_PAGE_SHIFT; 995 996 bnx2x_tpa_stop(bp, fp, tpa_info, pages, 997 &cqe->end_agg_cqe, comp_ring_cons); 998 #ifdef BNX2X_STOP_ON_ERROR 999 if (bp->panic) 1000 return 0; 1001 #endif 1002 1003 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); 1004 goto next_cqe; 1005 } 1006 /* non TPA */ 1007 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); 1008 pad = cqe_fp->placement_offset; 1009 dma_sync_single_for_cpu(&bp->pdev->dev, 1010 dma_unmap_addr(rx_buf, mapping), 1011 pad + RX_COPY_THRESH, 1012 DMA_FROM_DEVICE); 1013 pad += NET_SKB_PAD; 1014 prefetch(data + pad); /* speedup eth_type_trans() */ 1015 /* is this an error packet? */ 1016 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { 1017 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1018 "ERROR flags %x rx packet %u\n", 1019 cqe_fp_flags, sw_comp_cons); 1020 bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; 1021 goto reuse_rx; 1022 } 1023 1024 /* Since we don't have a jumbo ring 1025 * copy small packets if mtu > 1500 1026 */ 1027 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && 1028 (len <= RX_COPY_THRESH)) { 1029 skb = napi_alloc_skb(&fp->napi, len); 1030 if (skb == NULL) { 1031 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1032 "ERROR packet dropped because of alloc failure\n"); 1033 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1034 goto reuse_rx; 1035 } 1036 memcpy(skb->data, data + pad, len); 1037 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1038 } else { 1039 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, 1040 GFP_ATOMIC) == 0)) { 1041 dma_unmap_single(&bp->pdev->dev, 1042 dma_unmap_addr(rx_buf, mapping), 1043 fp->rx_buf_size, 1044 DMA_FROM_DEVICE); 1045 skb = build_skb(data, fp->rx_frag_size); 1046 if (unlikely(!skb)) { 1047 bnx2x_frag_free(fp, data); 1048 bnx2x_fp_qstats(bp, fp)-> 1049 rx_skb_alloc_failed++; 1050 goto next_rx; 1051 } 1052 skb_reserve(skb, pad); 1053 } else { 1054 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, 1055 "ERROR packet dropped because of alloc failure\n"); 1056 bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; 1057 reuse_rx: 1058 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); 1059 goto next_rx; 1060 } 1061 } 1062 1063 skb_put(skb, len); 1064 skb->protocol = eth_type_trans(skb, bp->dev); 1065 1066 /* Set Toeplitz hash for a none-LRO skb */ 1067 rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); 1068 skb_set_hash(skb, rxhash, rxhash_type); 1069 1070 skb_checksum_none_assert(skb); 1071 1072 if (bp->dev->features & NETIF_F_RXCSUM) 1073 bnx2x_csum_validate(skb, cqe, fp, 1074 bnx2x_fp_qstats(bp, fp)); 1075 1076 skb_record_rx_queue(skb, fp->rx_queue); 1077 1078 /* Check if this packet was timestamped */ 1079 if (unlikely(cqe->fast_path_cqe.type_error_flags & 1080 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT))) 1081 bnx2x_set_rx_ts(bp, skb); 1082 1083 if (le16_to_cpu(cqe_fp->pars_flags.flags) & 1084 PARSING_FLAGS_VLAN) 1085 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 1086 le16_to_cpu(cqe_fp->vlan_tag)); 1087 1088 napi_gro_receive(&fp->napi, skb); 1089 next_rx: 1090 rx_buf->data = NULL; 1091 1092 bd_cons = NEXT_RX_IDX(bd_cons); 1093 bd_prod = NEXT_RX_IDX(bd_prod); 1094 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); 1095 rx_pkt++; 1096 next_cqe: 1097 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); 1098 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); 1099 1100 /* mark CQE as free */ 1101 BNX2X_SEED_CQE(cqe_fp); 1102 1103 if (rx_pkt == budget) 1104 break; 1105 1106 comp_ring_cons = RCQ_BD(sw_comp_cons); 1107 cqe = &fp->rx_comp_ring[comp_ring_cons]; 1108 cqe_fp = &cqe->fast_path_cqe; 1109 } /* while */ 1110 1111 fp->rx_bd_cons = bd_cons; 1112 fp->rx_bd_prod = bd_prod_fw; 1113 fp->rx_comp_cons = sw_comp_cons; 1114 fp->rx_comp_prod = sw_comp_prod; 1115 1116 /* Update producers */ 1117 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, 1118 fp->rx_sge_prod); 1119 1120 return rx_pkt; 1121 } 1122 1123 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) 1124 { 1125 struct bnx2x_fastpath *fp = fp_cookie; 1126 struct bnx2x *bp = fp->bp; 1127 u8 cos; 1128 1129 DP(NETIF_MSG_INTR, 1130 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", 1131 fp->index, fp->fw_sb_id, fp->igu_sb_id); 1132 1133 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 1134 1135 #ifdef BNX2X_STOP_ON_ERROR 1136 if (unlikely(bp->panic)) 1137 return IRQ_HANDLED; 1138 #endif 1139 1140 /* Handle Rx and Tx according to MSI-X vector */ 1141 for_each_cos_in_tx_queue(fp, cos) 1142 prefetch(fp->txdata_ptr[cos]->tx_cons_sb); 1143 1144 prefetch(&fp->sb_running_index[SM_RX_ID]); 1145 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); 1146 1147 return IRQ_HANDLED; 1148 } 1149 1150 /* HW Lock for shared dual port PHYs */ 1151 void bnx2x_acquire_phy_lock(struct bnx2x *bp) 1152 { 1153 mutex_lock(&bp->port.phy_mutex); 1154 1155 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1156 } 1157 1158 void bnx2x_release_phy_lock(struct bnx2x *bp) 1159 { 1160 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); 1161 1162 mutex_unlock(&bp->port.phy_mutex); 1163 } 1164 1165 /* calculates MF speed according to current linespeed and MF configuration */ 1166 u16 bnx2x_get_mf_speed(struct bnx2x *bp) 1167 { 1168 u16 line_speed = bp->link_vars.line_speed; 1169 if (IS_MF(bp)) { 1170 u16 maxCfg = bnx2x_extract_max_cfg(bp, 1171 bp->mf_config[BP_VN(bp)]); 1172 1173 /* Calculate the current MAX line speed limit for the MF 1174 * devices 1175 */ 1176 if (IS_MF_PERCENT_BW(bp)) 1177 line_speed = (line_speed * maxCfg) / 100; 1178 else { /* SD mode */ 1179 u16 vn_max_rate = maxCfg * 100; 1180 1181 if (vn_max_rate < line_speed) 1182 line_speed = vn_max_rate; 1183 } 1184 } 1185 1186 return line_speed; 1187 } 1188 1189 /** 1190 * bnx2x_fill_report_data - fill link report data to report 1191 * 1192 * @bp: driver handle 1193 * @data: link state to update 1194 * 1195 * It uses a none-atomic bit operations because is called under the mutex. 1196 */ 1197 static void bnx2x_fill_report_data(struct bnx2x *bp, 1198 struct bnx2x_link_report_data *data) 1199 { 1200 memset(data, 0, sizeof(*data)); 1201 1202 if (IS_PF(bp)) { 1203 /* Fill the report data: effective line speed */ 1204 data->line_speed = bnx2x_get_mf_speed(bp); 1205 1206 /* Link is down */ 1207 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) 1208 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1209 &data->link_report_flags); 1210 1211 if (!BNX2X_NUM_ETH_QUEUES(bp)) 1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1213 &data->link_report_flags); 1214 1215 /* Full DUPLEX */ 1216 if (bp->link_vars.duplex == DUPLEX_FULL) 1217 __set_bit(BNX2X_LINK_REPORT_FD, 1218 &data->link_report_flags); 1219 1220 /* Rx Flow Control is ON */ 1221 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) 1222 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1223 &data->link_report_flags); 1224 1225 /* Tx Flow Control is ON */ 1226 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) 1227 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1228 &data->link_report_flags); 1229 } else { /* VF */ 1230 *data = bp->vf_link_vars; 1231 } 1232 } 1233 1234 /** 1235 * bnx2x_link_report - report link status to OS. 1236 * 1237 * @bp: driver handle 1238 * 1239 * Calls the __bnx2x_link_report() under the same locking scheme 1240 * as a link/PHY state managing code to ensure a consistent link 1241 * reporting. 1242 */ 1243 1244 void bnx2x_link_report(struct bnx2x *bp) 1245 { 1246 bnx2x_acquire_phy_lock(bp); 1247 __bnx2x_link_report(bp); 1248 bnx2x_release_phy_lock(bp); 1249 } 1250 1251 /** 1252 * __bnx2x_link_report - report link status to OS. 1253 * 1254 * @bp: driver handle 1255 * 1256 * None atomic implementation. 1257 * Should be called under the phy_lock. 1258 */ 1259 void __bnx2x_link_report(struct bnx2x *bp) 1260 { 1261 struct bnx2x_link_report_data cur_data; 1262 1263 /* reread mf_cfg */ 1264 if (IS_PF(bp) && !CHIP_IS_E1(bp)) 1265 bnx2x_read_mf_cfg(bp); 1266 1267 /* Read the current link report info */ 1268 bnx2x_fill_report_data(bp, &cur_data); 1269 1270 /* Don't report link down or exactly the same link status twice */ 1271 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || 1272 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1273 &bp->last_reported_link.link_report_flags) && 1274 test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1275 &cur_data.link_report_flags))) 1276 return; 1277 1278 bp->link_cnt++; 1279 1280 /* We are going to report a new link parameters now - 1281 * remember the current data for the next time. 1282 */ 1283 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); 1284 1285 /* propagate status to VFs */ 1286 if (IS_PF(bp)) 1287 bnx2x_iov_link_update(bp); 1288 1289 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, 1290 &cur_data.link_report_flags)) { 1291 netif_carrier_off(bp->dev); 1292 netdev_err(bp->dev, "NIC Link is Down\n"); 1293 return; 1294 } else { 1295 const char *duplex; 1296 const char *flow; 1297 1298 netif_carrier_on(bp->dev); 1299 1300 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, 1301 &cur_data.link_report_flags)) 1302 duplex = "full"; 1303 else 1304 duplex = "half"; 1305 1306 /* Handle the FC at the end so that only these flags would be 1307 * possibly set. This way we may easily check if there is no FC 1308 * enabled. 1309 */ 1310 if (cur_data.link_report_flags) { 1311 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, 1312 &cur_data.link_report_flags)) { 1313 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, 1314 &cur_data.link_report_flags)) 1315 flow = "ON - receive & transmit"; 1316 else 1317 flow = "ON - receive"; 1318 } else { 1319 flow = "ON - transmit"; 1320 } 1321 } else { 1322 flow = "none"; 1323 } 1324 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 1325 cur_data.line_speed, duplex, flow); 1326 } 1327 } 1328 1329 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) 1330 { 1331 int i; 1332 1333 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { 1334 struct eth_rx_sge *sge; 1335 1336 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; 1337 sge->addr_hi = 1338 cpu_to_le32(U64_HI(fp->rx_sge_mapping + 1339 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1340 1341 sge->addr_lo = 1342 cpu_to_le32(U64_LO(fp->rx_sge_mapping + 1343 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); 1344 } 1345 } 1346 1347 static void bnx2x_free_tpa_pool(struct bnx2x *bp, 1348 struct bnx2x_fastpath *fp, int last) 1349 { 1350 int i; 1351 1352 for (i = 0; i < last; i++) { 1353 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; 1354 struct sw_rx_bd *first_buf = &tpa_info->first_buf; 1355 u8 *data = first_buf->data; 1356 1357 if (data == NULL) { 1358 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); 1359 continue; 1360 } 1361 if (tpa_info->tpa_state == BNX2X_TPA_START) 1362 dma_unmap_single(&bp->pdev->dev, 1363 dma_unmap_addr(first_buf, mapping), 1364 fp->rx_buf_size, DMA_FROM_DEVICE); 1365 bnx2x_frag_free(fp, data); 1366 first_buf->data = NULL; 1367 } 1368 } 1369 1370 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) 1371 { 1372 int j; 1373 1374 for_each_rx_queue_cnic(bp, j) { 1375 struct bnx2x_fastpath *fp = &bp->fp[j]; 1376 1377 fp->rx_bd_cons = 0; 1378 1379 /* Activate BD ring */ 1380 /* Warning! 1381 * this will generate an interrupt (to the TSTORM) 1382 * must only be done after chip is initialized 1383 */ 1384 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1385 fp->rx_sge_prod); 1386 } 1387 } 1388 1389 void bnx2x_init_rx_rings(struct bnx2x *bp) 1390 { 1391 int func = BP_FUNC(bp); 1392 u16 ring_prod; 1393 int i, j; 1394 1395 /* Allocate TPA resources */ 1396 for_each_eth_queue(bp, j) { 1397 struct bnx2x_fastpath *fp = &bp->fp[j]; 1398 1399 DP(NETIF_MSG_IFUP, 1400 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); 1401 1402 if (fp->mode != TPA_MODE_DISABLED) { 1403 /* Fill the per-aggregation pool */ 1404 for (i = 0; i < MAX_AGG_QS(bp); i++) { 1405 struct bnx2x_agg_info *tpa_info = 1406 &fp->tpa_info[i]; 1407 struct sw_rx_bd *first_buf = 1408 &tpa_info->first_buf; 1409 1410 first_buf->data = 1411 bnx2x_frag_alloc(fp, GFP_KERNEL); 1412 if (!first_buf->data) { 1413 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", 1414 j); 1415 bnx2x_free_tpa_pool(bp, fp, i); 1416 fp->mode = TPA_MODE_DISABLED; 1417 break; 1418 } 1419 dma_unmap_addr_set(first_buf, mapping, 0); 1420 tpa_info->tpa_state = BNX2X_TPA_STOP; 1421 } 1422 1423 /* "next page" elements initialization */ 1424 bnx2x_set_next_page_sgl(fp); 1425 1426 /* set SGEs bit mask */ 1427 bnx2x_init_sge_ring_bit_mask(fp); 1428 1429 /* Allocate SGEs and initialize the ring elements */ 1430 for (i = 0, ring_prod = 0; 1431 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { 1432 1433 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, 1434 GFP_KERNEL) < 0) { 1435 BNX2X_ERR("was only able to allocate %d rx sges\n", 1436 i); 1437 BNX2X_ERR("disabling TPA for queue[%d]\n", 1438 j); 1439 /* Cleanup already allocated elements */ 1440 bnx2x_free_rx_sge_range(bp, fp, 1441 ring_prod); 1442 bnx2x_free_tpa_pool(bp, fp, 1443 MAX_AGG_QS(bp)); 1444 fp->mode = TPA_MODE_DISABLED; 1445 ring_prod = 0; 1446 break; 1447 } 1448 ring_prod = NEXT_SGE_IDX(ring_prod); 1449 } 1450 1451 fp->rx_sge_prod = ring_prod; 1452 } 1453 } 1454 1455 for_each_eth_queue(bp, j) { 1456 struct bnx2x_fastpath *fp = &bp->fp[j]; 1457 1458 fp->rx_bd_cons = 0; 1459 1460 /* Activate BD ring */ 1461 /* Warning! 1462 * this will generate an interrupt (to the TSTORM) 1463 * must only be done after chip is initialized 1464 */ 1465 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, 1466 fp->rx_sge_prod); 1467 1468 if (j != 0) 1469 continue; 1470 1471 if (CHIP_IS_E1(bp)) { 1472 REG_WR(bp, BAR_USTRORM_INTMEM + 1473 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), 1474 U64_LO(fp->rx_comp_mapping)); 1475 REG_WR(bp, BAR_USTRORM_INTMEM + 1476 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, 1477 U64_HI(fp->rx_comp_mapping)); 1478 } 1479 } 1480 } 1481 1482 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) 1483 { 1484 u8 cos; 1485 struct bnx2x *bp = fp->bp; 1486 1487 for_each_cos_in_tx_queue(fp, cos) { 1488 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 1489 unsigned pkts_compl = 0, bytes_compl = 0; 1490 1491 u16 sw_prod = txdata->tx_pkt_prod; 1492 u16 sw_cons = txdata->tx_pkt_cons; 1493 1494 while (sw_cons != sw_prod) { 1495 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), 1496 &pkts_compl, &bytes_compl); 1497 sw_cons++; 1498 } 1499 1500 netdev_tx_reset_queue( 1501 netdev_get_tx_queue(bp->dev, 1502 txdata->txq_index)); 1503 } 1504 } 1505 1506 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) 1507 { 1508 int i; 1509 1510 for_each_tx_queue_cnic(bp, i) { 1511 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1512 } 1513 } 1514 1515 static void bnx2x_free_tx_skbs(struct bnx2x *bp) 1516 { 1517 int i; 1518 1519 for_each_eth_queue(bp, i) { 1520 bnx2x_free_tx_skbs_queue(&bp->fp[i]); 1521 } 1522 } 1523 1524 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) 1525 { 1526 struct bnx2x *bp = fp->bp; 1527 int i; 1528 1529 /* ring wasn't allocated */ 1530 if (fp->rx_buf_ring == NULL) 1531 return; 1532 1533 for (i = 0; i < NUM_RX_BD; i++) { 1534 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; 1535 u8 *data = rx_buf->data; 1536 1537 if (data == NULL) 1538 continue; 1539 dma_unmap_single(&bp->pdev->dev, 1540 dma_unmap_addr(rx_buf, mapping), 1541 fp->rx_buf_size, DMA_FROM_DEVICE); 1542 1543 rx_buf->data = NULL; 1544 bnx2x_frag_free(fp, data); 1545 } 1546 } 1547 1548 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) 1549 { 1550 int j; 1551 1552 for_each_rx_queue_cnic(bp, j) { 1553 bnx2x_free_rx_bds(&bp->fp[j]); 1554 } 1555 } 1556 1557 static void bnx2x_free_rx_skbs(struct bnx2x *bp) 1558 { 1559 int j; 1560 1561 for_each_eth_queue(bp, j) { 1562 struct bnx2x_fastpath *fp = &bp->fp[j]; 1563 1564 bnx2x_free_rx_bds(fp); 1565 1566 if (fp->mode != TPA_MODE_DISABLED) 1567 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); 1568 } 1569 } 1570 1571 static void bnx2x_free_skbs_cnic(struct bnx2x *bp) 1572 { 1573 bnx2x_free_tx_skbs_cnic(bp); 1574 bnx2x_free_rx_skbs_cnic(bp); 1575 } 1576 1577 void bnx2x_free_skbs(struct bnx2x *bp) 1578 { 1579 bnx2x_free_tx_skbs(bp); 1580 bnx2x_free_rx_skbs(bp); 1581 } 1582 1583 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) 1584 { 1585 /* load old values */ 1586 u32 mf_cfg = bp->mf_config[BP_VN(bp)]; 1587 1588 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { 1589 /* leave all but MAX value */ 1590 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; 1591 1592 /* set new MAX value */ 1593 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) 1594 & FUNC_MF_CFG_MAX_BW_MASK; 1595 1596 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); 1597 } 1598 } 1599 1600 /** 1601 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors 1602 * 1603 * @bp: driver handle 1604 * @nvecs: number of vectors to be released 1605 */ 1606 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) 1607 { 1608 int i, offset = 0; 1609 1610 if (nvecs == offset) 1611 return; 1612 1613 /* VFs don't have a default SB */ 1614 if (IS_PF(bp)) { 1615 free_irq(bp->msix_table[offset].vector, bp->dev); 1616 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", 1617 bp->msix_table[offset].vector); 1618 offset++; 1619 } 1620 1621 if (CNIC_SUPPORT(bp)) { 1622 if (nvecs == offset) 1623 return; 1624 offset++; 1625 } 1626 1627 for_each_eth_queue(bp, i) { 1628 if (nvecs == offset) 1629 return; 1630 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", 1631 i, bp->msix_table[offset].vector); 1632 1633 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); 1634 } 1635 } 1636 1637 void bnx2x_free_irq(struct bnx2x *bp) 1638 { 1639 if (bp->flags & USING_MSIX_FLAG && 1640 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1641 int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); 1642 1643 /* vfs don't have a default status block */ 1644 if (IS_PF(bp)) 1645 nvecs++; 1646 1647 bnx2x_free_msix_irqs(bp, nvecs); 1648 } else { 1649 free_irq(bp->dev->irq, bp->dev); 1650 } 1651 } 1652 1653 int bnx2x_enable_msix(struct bnx2x *bp) 1654 { 1655 int msix_vec = 0, i, rc; 1656 1657 /* VFs don't have a default status block */ 1658 if (IS_PF(bp)) { 1659 bp->msix_table[msix_vec].entry = msix_vec; 1660 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", 1661 bp->msix_table[0].entry); 1662 msix_vec++; 1663 } 1664 1665 /* Cnic requires an msix vector for itself */ 1666 if (CNIC_SUPPORT(bp)) { 1667 bp->msix_table[msix_vec].entry = msix_vec; 1668 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", 1669 msix_vec, bp->msix_table[msix_vec].entry); 1670 msix_vec++; 1671 } 1672 1673 /* We need separate vectors for ETH queues only (not FCoE) */ 1674 for_each_eth_queue(bp, i) { 1675 bp->msix_table[msix_vec].entry = msix_vec; 1676 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", 1677 msix_vec, msix_vec, i); 1678 msix_vec++; 1679 } 1680 1681 DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", 1682 msix_vec); 1683 1684 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1685 BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); 1686 /* 1687 * reconfigure number of tx/rx queues according to available 1688 * MSI-X vectors 1689 */ 1690 if (rc == -ENOSPC) { 1691 /* Get by with single vector */ 1692 rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); 1693 if (rc < 0) { 1694 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", 1695 rc); 1696 goto no_msix; 1697 } 1698 1699 BNX2X_DEV_INFO("Using single MSI-X vector\n"); 1700 bp->flags |= USING_SINGLE_MSIX_FLAG; 1701 1702 BNX2X_DEV_INFO("set number of queues to 1\n"); 1703 bp->num_ethernet_queues = 1; 1704 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1705 } else if (rc < 0) { 1706 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); 1707 goto no_msix; 1708 } else if (rc < msix_vec) { 1709 /* how less vectors we will have? */ 1710 int diff = msix_vec - rc; 1711 1712 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); 1713 1714 /* 1715 * decrease number of queues by number of unallocated entries 1716 */ 1717 bp->num_ethernet_queues -= diff; 1718 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1719 1720 BNX2X_DEV_INFO("New queue configuration set: %d\n", 1721 bp->num_queues); 1722 } 1723 1724 bp->flags |= USING_MSIX_FLAG; 1725 1726 return 0; 1727 1728 no_msix: 1729 /* fall to INTx if not enough memory */ 1730 if (rc == -ENOMEM) 1731 bp->flags |= DISABLE_MSI_FLAG; 1732 1733 return rc; 1734 } 1735 1736 static int bnx2x_req_msix_irqs(struct bnx2x *bp) 1737 { 1738 int i, rc, offset = 0; 1739 1740 /* no default status block for vf */ 1741 if (IS_PF(bp)) { 1742 rc = request_irq(bp->msix_table[offset++].vector, 1743 bnx2x_msix_sp_int, 0, 1744 bp->dev->name, bp->dev); 1745 if (rc) { 1746 BNX2X_ERR("request sp irq failed\n"); 1747 return -EBUSY; 1748 } 1749 } 1750 1751 if (CNIC_SUPPORT(bp)) 1752 offset++; 1753 1754 for_each_eth_queue(bp, i) { 1755 struct bnx2x_fastpath *fp = &bp->fp[i]; 1756 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", 1757 bp->dev->name, i); 1758 1759 rc = request_irq(bp->msix_table[offset].vector, 1760 bnx2x_msix_fp_int, 0, fp->name, fp); 1761 if (rc) { 1762 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i, 1763 bp->msix_table[offset].vector, rc); 1764 bnx2x_free_msix_irqs(bp, offset); 1765 return -EBUSY; 1766 } 1767 1768 offset++; 1769 } 1770 1771 i = BNX2X_NUM_ETH_QUEUES(bp); 1772 if (IS_PF(bp)) { 1773 offset = 1 + CNIC_SUPPORT(bp); 1774 netdev_info(bp->dev, 1775 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n", 1776 bp->msix_table[0].vector, 1777 0, bp->msix_table[offset].vector, 1778 i - 1, bp->msix_table[offset + i - 1].vector); 1779 } else { 1780 offset = CNIC_SUPPORT(bp); 1781 netdev_info(bp->dev, 1782 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n", 1783 0, bp->msix_table[offset].vector, 1784 i - 1, bp->msix_table[offset + i - 1].vector); 1785 } 1786 return 0; 1787 } 1788 1789 int bnx2x_enable_msi(struct bnx2x *bp) 1790 { 1791 int rc; 1792 1793 rc = pci_enable_msi(bp->pdev); 1794 if (rc) { 1795 BNX2X_DEV_INFO("MSI is not attainable\n"); 1796 return -1; 1797 } 1798 bp->flags |= USING_MSI_FLAG; 1799 1800 return 0; 1801 } 1802 1803 static int bnx2x_req_irq(struct bnx2x *bp) 1804 { 1805 unsigned long flags; 1806 unsigned int irq; 1807 1808 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) 1809 flags = 0; 1810 else 1811 flags = IRQF_SHARED; 1812 1813 if (bp->flags & USING_MSIX_FLAG) 1814 irq = bp->msix_table[0].vector; 1815 else 1816 irq = bp->pdev->irq; 1817 1818 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev); 1819 } 1820 1821 static int bnx2x_setup_irqs(struct bnx2x *bp) 1822 { 1823 int rc = 0; 1824 if (bp->flags & USING_MSIX_FLAG && 1825 !(bp->flags & USING_SINGLE_MSIX_FLAG)) { 1826 rc = bnx2x_req_msix_irqs(bp); 1827 if (rc) 1828 return rc; 1829 } else { 1830 rc = bnx2x_req_irq(bp); 1831 if (rc) { 1832 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); 1833 return rc; 1834 } 1835 if (bp->flags & USING_MSI_FLAG) { 1836 bp->dev->irq = bp->pdev->irq; 1837 netdev_info(bp->dev, "using MSI IRQ %d\n", 1838 bp->dev->irq); 1839 } 1840 if (bp->flags & USING_MSIX_FLAG) { 1841 bp->dev->irq = bp->msix_table[0].vector; 1842 netdev_info(bp->dev, "using MSIX IRQ %d\n", 1843 bp->dev->irq); 1844 } 1845 } 1846 1847 return 0; 1848 } 1849 1850 static void bnx2x_napi_enable_cnic(struct bnx2x *bp) 1851 { 1852 int i; 1853 1854 for_each_rx_queue_cnic(bp, i) { 1855 napi_enable(&bnx2x_fp(bp, i, napi)); 1856 } 1857 } 1858 1859 static void bnx2x_napi_enable(struct bnx2x *bp) 1860 { 1861 int i; 1862 1863 for_each_eth_queue(bp, i) { 1864 napi_enable(&bnx2x_fp(bp, i, napi)); 1865 } 1866 } 1867 1868 static void bnx2x_napi_disable_cnic(struct bnx2x *bp) 1869 { 1870 int i; 1871 1872 for_each_rx_queue_cnic(bp, i) { 1873 napi_disable(&bnx2x_fp(bp, i, napi)); 1874 } 1875 } 1876 1877 static void bnx2x_napi_disable(struct bnx2x *bp) 1878 { 1879 int i; 1880 1881 for_each_eth_queue(bp, i) { 1882 napi_disable(&bnx2x_fp(bp, i, napi)); 1883 } 1884 } 1885 1886 void bnx2x_netif_start(struct bnx2x *bp) 1887 { 1888 if (netif_running(bp->dev)) { 1889 bnx2x_napi_enable(bp); 1890 if (CNIC_LOADED(bp)) 1891 bnx2x_napi_enable_cnic(bp); 1892 bnx2x_int_enable(bp); 1893 if (bp->state == BNX2X_STATE_OPEN) 1894 netif_tx_wake_all_queues(bp->dev); 1895 } 1896 } 1897 1898 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) 1899 { 1900 bnx2x_int_disable_sync(bp, disable_hw); 1901 bnx2x_napi_disable(bp); 1902 if (CNIC_LOADED(bp)) 1903 bnx2x_napi_disable_cnic(bp); 1904 } 1905 1906 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb, 1907 void *accel_priv, select_queue_fallback_t fallback) 1908 { 1909 struct bnx2x *bp = netdev_priv(dev); 1910 1911 if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { 1912 struct ethhdr *hdr = (struct ethhdr *)skb->data; 1913 u16 ether_type = ntohs(hdr->h_proto); 1914 1915 /* Skip VLAN tag if present */ 1916 if (ether_type == ETH_P_8021Q) { 1917 struct vlan_ethhdr *vhdr = 1918 (struct vlan_ethhdr *)skb->data; 1919 1920 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); 1921 } 1922 1923 /* If ethertype is FCoE or FIP - use FCoE ring */ 1924 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) 1925 return bnx2x_fcoe_tx(bp, txq_index); 1926 } 1927 1928 /* select a non-FCoE queue */ 1929 return fallback(dev, skb) % (BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos); 1930 } 1931 1932 void bnx2x_set_num_queues(struct bnx2x *bp) 1933 { 1934 /* RSS queues */ 1935 bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); 1936 1937 /* override in STORAGE SD modes */ 1938 if (IS_MF_STORAGE_ONLY(bp)) 1939 bp->num_ethernet_queues = 1; 1940 1941 /* Add special queues */ 1942 bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ 1943 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; 1944 1945 BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); 1946 } 1947 1948 /** 1949 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues 1950 * 1951 * @bp: Driver handle 1952 * 1953 * We currently support for at most 16 Tx queues for each CoS thus we will 1954 * allocate a multiple of 16 for ETH L2 rings according to the value of the 1955 * bp->max_cos. 1956 * 1957 * If there is an FCoE L2 queue the appropriate Tx queue will have the next 1958 * index after all ETH L2 indices. 1959 * 1960 * If the actual number of Tx queues (for each CoS) is less than 16 then there 1961 * will be the holes at the end of each group of 16 ETh L2 indices (0..15, 1962 * 16..31,...) with indices that are not coupled with any real Tx queue. 1963 * 1964 * The proper configuration of skb->queue_mapping is handled by 1965 * bnx2x_select_queue() and __skb_tx_hash(). 1966 * 1967 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() 1968 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). 1969 */ 1970 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) 1971 { 1972 int rc, tx, rx; 1973 1974 tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; 1975 rx = BNX2X_NUM_ETH_QUEUES(bp); 1976 1977 /* account for fcoe queue */ 1978 if (include_cnic && !NO_FCOE(bp)) { 1979 rx++; 1980 tx++; 1981 } 1982 1983 rc = netif_set_real_num_tx_queues(bp->dev, tx); 1984 if (rc) { 1985 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); 1986 return rc; 1987 } 1988 rc = netif_set_real_num_rx_queues(bp->dev, rx); 1989 if (rc) { 1990 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); 1991 return rc; 1992 } 1993 1994 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", 1995 tx, rx); 1996 1997 return rc; 1998 } 1999 2000 static void bnx2x_set_rx_buf_size(struct bnx2x *bp) 2001 { 2002 int i; 2003 2004 for_each_queue(bp, i) { 2005 struct bnx2x_fastpath *fp = &bp->fp[i]; 2006 u32 mtu; 2007 2008 /* Always use a mini-jumbo MTU for the FCoE L2 ring */ 2009 if (IS_FCOE_IDX(i)) 2010 /* 2011 * Although there are no IP frames expected to arrive to 2012 * this ring we still want to add an 2013 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer 2014 * overrun attack. 2015 */ 2016 mtu = BNX2X_FCOE_MINI_JUMBO_MTU; 2017 else 2018 mtu = bp->dev->mtu; 2019 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + 2020 IP_HEADER_ALIGNMENT_PADDING + 2021 ETH_OVERHEAD + 2022 mtu + 2023 BNX2X_FW_RX_ALIGN_END; 2024 fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size); 2025 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ 2026 if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) 2027 fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; 2028 else 2029 fp->rx_frag_size = 0; 2030 } 2031 } 2032 2033 static int bnx2x_init_rss(struct bnx2x *bp) 2034 { 2035 int i; 2036 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); 2037 2038 /* Prepare the initial contents for the indirection table if RSS is 2039 * enabled 2040 */ 2041 for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) 2042 bp->rss_conf_obj.ind_table[i] = 2043 bp->fp->cl_id + 2044 ethtool_rxfh_indir_default(i, num_eth_queues); 2045 2046 /* 2047 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 2048 * per-port, so if explicit configuration is needed , do it only 2049 * for a PMF. 2050 * 2051 * For 57712 and newer on the other hand it's a per-function 2052 * configuration. 2053 */ 2054 return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); 2055 } 2056 2057 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, 2058 bool config_hash, bool enable) 2059 { 2060 struct bnx2x_config_rss_params params = {NULL}; 2061 2062 /* Although RSS is meaningless when there is a single HW queue we 2063 * still need it enabled in order to have HW Rx hash generated. 2064 * 2065 * if (!is_eth_multi(bp)) 2066 * bp->multi_mode = ETH_RSS_MODE_DISABLED; 2067 */ 2068 2069 params.rss_obj = rss_obj; 2070 2071 __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 2072 2073 if (enable) { 2074 __set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); 2075 2076 /* RSS configuration */ 2077 __set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); 2078 __set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); 2079 __set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); 2080 __set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); 2081 if (rss_obj->udp_rss_v4) 2082 __set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); 2083 if (rss_obj->udp_rss_v6) 2084 __set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); 2085 2086 if (!CHIP_IS_E1x(bp)) { 2087 /* valid only for TUNN_MODE_VXLAN tunnel mode */ 2088 __set_bit(BNX2X_RSS_IPV4_VXLAN, ¶ms.rss_flags); 2089 __set_bit(BNX2X_RSS_IPV6_VXLAN, ¶ms.rss_flags); 2090 2091 /* valid only for TUNN_MODE_GRE tunnel mode */ 2092 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS, ¶ms.rss_flags); 2093 } 2094 } else { 2095 __set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); 2096 } 2097 2098 /* Hash bits */ 2099 params.rss_result_mask = MULTI_MASK; 2100 2101 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 2102 2103 if (config_hash) { 2104 /* RSS keys */ 2105 netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); 2106 __set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); 2107 } 2108 2109 if (IS_PF(bp)) 2110 return bnx2x_config_rss(bp, ¶ms); 2111 else 2112 return bnx2x_vfpf_config_rss(bp, ¶ms); 2113 } 2114 2115 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code) 2116 { 2117 struct bnx2x_func_state_params func_params = {NULL}; 2118 2119 /* Prepare parameters for function state transitions */ 2120 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 2121 2122 func_params.f_obj = &bp->func_obj; 2123 func_params.cmd = BNX2X_F_CMD_HW_INIT; 2124 2125 func_params.params.hw_init.load_phase = load_code; 2126 2127 return bnx2x_func_state_change(bp, &func_params); 2128 } 2129 2130 /* 2131 * Cleans the object that have internal lists without sending 2132 * ramrods. Should be run when interrupts are disabled. 2133 */ 2134 void bnx2x_squeeze_objects(struct bnx2x *bp) 2135 { 2136 int rc; 2137 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 2138 struct bnx2x_mcast_ramrod_params rparam = {NULL}; 2139 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; 2140 2141 /***************** Cleanup MACs' object first *************************/ 2142 2143 /* Wait for completion of requested */ 2144 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 2145 /* Perform a dry cleanup */ 2146 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 2147 2148 /* Clean ETH primary MAC */ 2149 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); 2150 rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, 2151 &ramrod_flags); 2152 if (rc != 0) 2153 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); 2154 2155 /* Cleanup UC list */ 2156 vlan_mac_flags = 0; 2157 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); 2158 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, 2159 &ramrod_flags); 2160 if (rc != 0) 2161 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); 2162 2163 /***************** Now clean mcast object *****************************/ 2164 rparam.mcast_obj = &bp->mcast_obj; 2165 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 2166 2167 /* Add a DEL command... - Since we're doing a driver cleanup only, 2168 * we take a lock surrounding both the initial send and the CONTs, 2169 * as we don't want a true completion to disrupt us in the middle. 2170 */ 2171 netif_addr_lock_bh(bp->dev); 2172 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); 2173 if (rc < 0) 2174 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", 2175 rc); 2176 2177 /* ...and wait until all pending commands are cleared */ 2178 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2179 while (rc != 0) { 2180 if (rc < 0) { 2181 BNX2X_ERR("Failed to clean multi-cast object: %d\n", 2182 rc); 2183 netif_addr_unlock_bh(bp->dev); 2184 return; 2185 } 2186 2187 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); 2188 } 2189 netif_addr_unlock_bh(bp->dev); 2190 } 2191 2192 #ifndef BNX2X_STOP_ON_ERROR 2193 #define LOAD_ERROR_EXIT(bp, label) \ 2194 do { \ 2195 (bp)->state = BNX2X_STATE_ERROR; \ 2196 goto label; \ 2197 } while (0) 2198 2199 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2200 do { \ 2201 bp->cnic_loaded = false; \ 2202 goto label; \ 2203 } while (0) 2204 #else /*BNX2X_STOP_ON_ERROR*/ 2205 #define LOAD_ERROR_EXIT(bp, label) \ 2206 do { \ 2207 (bp)->state = BNX2X_STATE_ERROR; \ 2208 (bp)->panic = 1; \ 2209 return -EBUSY; \ 2210 } while (0) 2211 #define LOAD_ERROR_EXIT_CNIC(bp, label) \ 2212 do { \ 2213 bp->cnic_loaded = false; \ 2214 (bp)->panic = 1; \ 2215 return -EBUSY; \ 2216 } while (0) 2217 #endif /*BNX2X_STOP_ON_ERROR*/ 2218 2219 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) 2220 { 2221 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, 2222 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2223 return; 2224 } 2225 2226 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) 2227 { 2228 int num_groups, vf_headroom = 0; 2229 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; 2230 2231 /* number of queues for statistics is number of eth queues + FCoE */ 2232 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; 2233 2234 /* Total number of FW statistics requests = 2235 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper 2236 * and fcoe l2 queue) stats + num of queues (which includes another 1 2237 * for fcoe l2 queue if applicable) 2238 */ 2239 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; 2240 2241 /* vf stats appear in the request list, but their data is allocated by 2242 * the VFs themselves. We don't include them in the bp->fw_stats_num as 2243 * it is used to determine where to place the vf stats queries in the 2244 * request struct 2245 */ 2246 if (IS_SRIOV(bp)) 2247 vf_headroom = bnx2x_vf_headroom(bp); 2248 2249 /* Request is built from stats_query_header and an array of 2250 * stats_query_cmd_group each of which contains 2251 * STATS_QUERY_CMD_COUNT rules. The real number or requests is 2252 * configured in the stats_query_header. 2253 */ 2254 num_groups = 2255 (((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + 2256 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? 2257 1 : 0)); 2258 2259 DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", 2260 bp->fw_stats_num, vf_headroom, num_groups); 2261 bp->fw_stats_req_sz = sizeof(struct stats_query_header) + 2262 num_groups * sizeof(struct stats_query_cmd_group); 2263 2264 /* Data for statistics requests + stats_counter 2265 * stats_counter holds per-STORM counters that are incremented 2266 * when STORM has finished with the current request. 2267 * memory for FCoE offloaded statistics are counted anyway, 2268 * even if they will not be sent. 2269 * VF stats are not accounted for here as the data of VF stats is stored 2270 * in memory allocated by the VF, not here. 2271 */ 2272 bp->fw_stats_data_sz = sizeof(struct per_port_stats) + 2273 sizeof(struct per_pf_stats) + 2274 sizeof(struct fcoe_statistics_params) + 2275 sizeof(struct per_queue_stats) * num_queue_stats + 2276 sizeof(struct stats_counter); 2277 2278 bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, 2279 bp->fw_stats_data_sz + bp->fw_stats_req_sz); 2280 if (!bp->fw_stats) 2281 goto alloc_mem_err; 2282 2283 /* Set shortcuts */ 2284 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; 2285 bp->fw_stats_req_mapping = bp->fw_stats_mapping; 2286 bp->fw_stats_data = (struct bnx2x_fw_stats_data *) 2287 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz); 2288 bp->fw_stats_data_mapping = bp->fw_stats_mapping + 2289 bp->fw_stats_req_sz; 2290 2291 DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", 2292 U64_HI(bp->fw_stats_req_mapping), 2293 U64_LO(bp->fw_stats_req_mapping)); 2294 DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", 2295 U64_HI(bp->fw_stats_data_mapping), 2296 U64_LO(bp->fw_stats_data_mapping)); 2297 return 0; 2298 2299 alloc_mem_err: 2300 bnx2x_free_fw_stats_mem(bp); 2301 BNX2X_ERR("Can't allocate FW stats memory\n"); 2302 return -ENOMEM; 2303 } 2304 2305 /* send load request to mcp and analyze response */ 2306 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code) 2307 { 2308 u32 param; 2309 2310 /* init fw_seq */ 2311 bp->fw_seq = 2312 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & 2313 DRV_MSG_SEQ_NUMBER_MASK); 2314 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); 2315 2316 /* Get current FW pulse sequence */ 2317 bp->fw_drv_pulse_wr_seq = 2318 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & 2319 DRV_PULSE_SEQ_MASK); 2320 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); 2321 2322 param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; 2323 2324 if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) 2325 param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; 2326 2327 /* load request */ 2328 (*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); 2329 2330 /* if mcp fails to respond we must abort */ 2331 if (!(*load_code)) { 2332 BNX2X_ERR("MCP response failure, aborting\n"); 2333 return -EBUSY; 2334 } 2335 2336 /* If mcp refused (e.g. other port is in diagnostic mode) we 2337 * must abort 2338 */ 2339 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 2340 BNX2X_ERR("MCP refused load request, aborting\n"); 2341 return -EBUSY; 2342 } 2343 return 0; 2344 } 2345 2346 /* check whether another PF has already loaded FW to chip. In 2347 * virtualized environments a pf from another VM may have already 2348 * initialized the device including loading FW 2349 */ 2350 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err) 2351 { 2352 /* is another pf loaded on this engine? */ 2353 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && 2354 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { 2355 /* build my FW version dword */ 2356 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) + 2357 (BCM_5710_FW_MINOR_VERSION << 8) + 2358 (BCM_5710_FW_REVISION_VERSION << 16) + 2359 (BCM_5710_FW_ENGINEERING_VERSION << 24); 2360 2361 /* read loaded FW from chip */ 2362 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM); 2363 2364 DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", 2365 loaded_fw, my_fw); 2366 2367 /* abort nic load if version mismatch */ 2368 if (my_fw != loaded_fw) { 2369 if (print_err) 2370 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", 2371 loaded_fw, my_fw); 2372 else 2373 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", 2374 loaded_fw, my_fw); 2375 return -EBUSY; 2376 } 2377 } 2378 return 0; 2379 } 2380 2381 /* returns the "mcp load_code" according to global load_count array */ 2382 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) 2383 { 2384 int path = BP_PATH(bp); 2385 2386 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n", 2387 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2388 bnx2x_load_count[path][2]); 2389 bnx2x_load_count[path][0]++; 2390 bnx2x_load_count[path][1 + port]++; 2391 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n", 2392 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], 2393 bnx2x_load_count[path][2]); 2394 if (bnx2x_load_count[path][0] == 1) 2395 return FW_MSG_CODE_DRV_LOAD_COMMON; 2396 else if (bnx2x_load_count[path][1 + port] == 1) 2397 return FW_MSG_CODE_DRV_LOAD_PORT; 2398 else 2399 return FW_MSG_CODE_DRV_LOAD_FUNCTION; 2400 } 2401 2402 /* mark PMF if applicable */ 2403 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code) 2404 { 2405 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2406 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 2407 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 2408 bp->port.pmf = 1; 2409 /* We need the barrier to ensure the ordering between the 2410 * writing to bp->port.pmf here and reading it from the 2411 * bnx2x_periodic_task(). 2412 */ 2413 smp_mb(); 2414 } else { 2415 bp->port.pmf = 0; 2416 } 2417 2418 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); 2419 } 2420 2421 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) 2422 { 2423 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 2424 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && 2425 (bp->common.shmem2_base)) { 2426 if (SHMEM2_HAS(bp, dcc_support)) 2427 SHMEM2_WR(bp, dcc_support, 2428 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | 2429 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); 2430 if (SHMEM2_HAS(bp, afex_driver_support)) 2431 SHMEM2_WR(bp, afex_driver_support, 2432 SHMEM_AFEX_SUPPORTED_VERSION_ONE); 2433 } 2434 2435 /* Set AFEX default VLAN tag to an invalid value */ 2436 bp->afex_def_vlan_tag = -1; 2437 } 2438 2439 /** 2440 * bnx2x_bz_fp - zero content of the fastpath structure. 2441 * 2442 * @bp: driver handle 2443 * @index: fastpath index to be zeroed 2444 * 2445 * Makes sure the contents of the bp->fp[index].napi is kept 2446 * intact. 2447 */ 2448 static void bnx2x_bz_fp(struct bnx2x *bp, int index) 2449 { 2450 struct bnx2x_fastpath *fp = &bp->fp[index]; 2451 int cos; 2452 struct napi_struct orig_napi = fp->napi; 2453 struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; 2454 2455 /* bzero bnx2x_fastpath contents */ 2456 if (fp->tpa_info) 2457 memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * 2458 sizeof(struct bnx2x_agg_info)); 2459 memset(fp, 0, sizeof(*fp)); 2460 2461 /* Restore the NAPI object as it has been already initialized */ 2462 fp->napi = orig_napi; 2463 fp->tpa_info = orig_tpa_info; 2464 fp->bp = bp; 2465 fp->index = index; 2466 if (IS_ETH_FP(fp)) 2467 fp->max_cos = bp->max_cos; 2468 else 2469 /* Special queues support only one CoS */ 2470 fp->max_cos = 1; 2471 2472 /* Init txdata pointers */ 2473 if (IS_FCOE_FP(fp)) 2474 fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; 2475 if (IS_ETH_FP(fp)) 2476 for_each_cos_in_tx_queue(fp, cos) 2477 fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * 2478 BNX2X_NUM_ETH_QUEUES(bp) + index]; 2479 2480 /* set the tpa flag for each queue. The tpa flag determines the queue 2481 * minimal size so it must be set prior to queue memory allocation 2482 */ 2483 if (bp->dev->features & NETIF_F_LRO) 2484 fp->mode = TPA_MODE_LRO; 2485 else if (bp->dev->features & NETIF_F_GRO_HW) 2486 fp->mode = TPA_MODE_GRO; 2487 else 2488 fp->mode = TPA_MODE_DISABLED; 2489 2490 /* We don't want TPA if it's disabled in bp 2491 * or if this is an FCoE L2 ring. 2492 */ 2493 if (bp->disable_tpa || IS_FCOE_FP(fp)) 2494 fp->mode = TPA_MODE_DISABLED; 2495 } 2496 2497 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state) 2498 { 2499 u32 cur; 2500 2501 if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp)) 2502 return; 2503 2504 cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]); 2505 DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n", 2506 cur, state); 2507 2508 SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state); 2509 } 2510 2511 int bnx2x_load_cnic(struct bnx2x *bp) 2512 { 2513 int i, rc, port = BP_PORT(bp); 2514 2515 DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); 2516 2517 mutex_init(&bp->cnic_mutex); 2518 2519 if (IS_PF(bp)) { 2520 rc = bnx2x_alloc_mem_cnic(bp); 2521 if (rc) { 2522 BNX2X_ERR("Unable to allocate bp memory for cnic\n"); 2523 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2524 } 2525 } 2526 2527 rc = bnx2x_alloc_fp_mem_cnic(bp); 2528 if (rc) { 2529 BNX2X_ERR("Unable to allocate memory for cnic fps\n"); 2530 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2531 } 2532 2533 /* Update the number of queues with the cnic queues */ 2534 rc = bnx2x_set_real_num_queues(bp, 1); 2535 if (rc) { 2536 BNX2X_ERR("Unable to set real_num_queues including cnic\n"); 2537 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); 2538 } 2539 2540 /* Add all CNIC NAPI objects */ 2541 bnx2x_add_all_napi_cnic(bp); 2542 DP(NETIF_MSG_IFUP, "cnic napi added\n"); 2543 bnx2x_napi_enable_cnic(bp); 2544 2545 rc = bnx2x_init_hw_func_cnic(bp); 2546 if (rc) 2547 LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); 2548 2549 bnx2x_nic_init_cnic(bp); 2550 2551 if (IS_PF(bp)) { 2552 /* Enable Timer scan */ 2553 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); 2554 2555 /* setup cnic queues */ 2556 for_each_cnic_queue(bp, i) { 2557 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); 2558 if (rc) { 2559 BNX2X_ERR("Queue setup failed\n"); 2560 LOAD_ERROR_EXIT(bp, load_error_cnic2); 2561 } 2562 } 2563 } 2564 2565 /* Initialize Rx filter. */ 2566 bnx2x_set_rx_mode_inner(bp); 2567 2568 /* re-read iscsi info */ 2569 bnx2x_get_iscsi_info(bp); 2570 bnx2x_setup_cnic_irq_info(bp); 2571 bnx2x_setup_cnic_info(bp); 2572 bp->cnic_loaded = true; 2573 if (bp->state == BNX2X_STATE_OPEN) 2574 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); 2575 2576 DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); 2577 2578 return 0; 2579 2580 #ifndef BNX2X_STOP_ON_ERROR 2581 load_error_cnic2: 2582 /* Disable Timer scan */ 2583 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 2584 2585 load_error_cnic1: 2586 bnx2x_napi_disable_cnic(bp); 2587 /* Update the number of queues without the cnic queues */ 2588 if (bnx2x_set_real_num_queues(bp, 0)) 2589 BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); 2590 load_error_cnic0: 2591 BNX2X_ERR("CNIC-related load failed\n"); 2592 bnx2x_free_fp_mem_cnic(bp); 2593 bnx2x_free_mem_cnic(bp); 2594 return rc; 2595 #endif /* ! BNX2X_STOP_ON_ERROR */ 2596 } 2597 2598 /* must be called with rtnl_lock */ 2599 int bnx2x_nic_load(struct bnx2x *bp, int load_mode) 2600 { 2601 int port = BP_PORT(bp); 2602 int i, rc = 0, load_code = 0; 2603 2604 DP(NETIF_MSG_IFUP, "Starting NIC load\n"); 2605 DP(NETIF_MSG_IFUP, 2606 "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); 2607 2608 #ifdef BNX2X_STOP_ON_ERROR 2609 if (unlikely(bp->panic)) { 2610 BNX2X_ERR("Can't load NIC when there is panic\n"); 2611 return -EPERM; 2612 } 2613 #endif 2614 2615 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; 2616 2617 /* zero the structure w/o any lock, before SP handler is initialized */ 2618 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); 2619 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, 2620 &bp->last_reported_link.link_report_flags); 2621 2622 if (IS_PF(bp)) 2623 /* must be called before memory allocation and HW init */ 2624 bnx2x_ilt_set_info(bp); 2625 2626 /* 2627 * Zero fastpath structures preserving invariants like napi, which are 2628 * allocated only once, fp index, max_cos, bp pointer. 2629 * Also set fp->mode and txdata_ptr. 2630 */ 2631 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); 2632 for_each_queue(bp, i) 2633 bnx2x_bz_fp(bp, i); 2634 memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + 2635 bp->num_cnic_queues) * 2636 sizeof(struct bnx2x_fp_txdata)); 2637 2638 bp->fcoe_init = false; 2639 2640 /* Set the receive queues buffer size */ 2641 bnx2x_set_rx_buf_size(bp); 2642 2643 if (IS_PF(bp)) { 2644 rc = bnx2x_alloc_mem(bp); 2645 if (rc) { 2646 BNX2X_ERR("Unable to allocate bp memory\n"); 2647 return rc; 2648 } 2649 } 2650 2651 /* need to be done after alloc mem, since it's self adjusting to amount 2652 * of memory available for RSS queues 2653 */ 2654 rc = bnx2x_alloc_fp_mem(bp); 2655 if (rc) { 2656 BNX2X_ERR("Unable to allocate memory for fps\n"); 2657 LOAD_ERROR_EXIT(bp, load_error0); 2658 } 2659 2660 /* Allocated memory for FW statistics */ 2661 if (bnx2x_alloc_fw_stats_mem(bp)) 2662 LOAD_ERROR_EXIT(bp, load_error0); 2663 2664 /* request pf to initialize status blocks */ 2665 if (IS_VF(bp)) { 2666 rc = bnx2x_vfpf_init(bp); 2667 if (rc) 2668 LOAD_ERROR_EXIT(bp, load_error0); 2669 } 2670 2671 /* As long as bnx2x_alloc_mem() may possibly update 2672 * bp->num_queues, bnx2x_set_real_num_queues() should always 2673 * come after it. At this stage cnic queues are not counted. 2674 */ 2675 rc = bnx2x_set_real_num_queues(bp, 0); 2676 if (rc) { 2677 BNX2X_ERR("Unable to set real_num_queues\n"); 2678 LOAD_ERROR_EXIT(bp, load_error0); 2679 } 2680 2681 /* configure multi cos mappings in kernel. 2682 * this configuration may be overridden by a multi class queue 2683 * discipline or by a dcbx negotiation result. 2684 */ 2685 bnx2x_setup_tc(bp->dev, bp->max_cos); 2686 2687 /* Add all NAPI objects */ 2688 bnx2x_add_all_napi(bp); 2689 DP(NETIF_MSG_IFUP, "napi added\n"); 2690 bnx2x_napi_enable(bp); 2691 2692 if (IS_PF(bp)) { 2693 /* set pf load just before approaching the MCP */ 2694 bnx2x_set_pf_load(bp); 2695 2696 /* if mcp exists send load request and analyze response */ 2697 if (!BP_NOMCP(bp)) { 2698 /* attempt to load pf */ 2699 rc = bnx2x_nic_load_request(bp, &load_code); 2700 if (rc) 2701 LOAD_ERROR_EXIT(bp, load_error1); 2702 2703 /* what did mcp say? */ 2704 rc = bnx2x_compare_fw_ver(bp, load_code, true); 2705 if (rc) { 2706 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2707 LOAD_ERROR_EXIT(bp, load_error2); 2708 } 2709 } else { 2710 load_code = bnx2x_nic_load_no_mcp(bp, port); 2711 } 2712 2713 /* mark pmf if applicable */ 2714 bnx2x_nic_load_pmf(bp, load_code); 2715 2716 /* Init Function state controlling object */ 2717 bnx2x__init_func_obj(bp); 2718 2719 /* Initialize HW */ 2720 rc = bnx2x_init_hw(bp, load_code); 2721 if (rc) { 2722 BNX2X_ERR("HW init failed, aborting\n"); 2723 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2724 LOAD_ERROR_EXIT(bp, load_error2); 2725 } 2726 } 2727 2728 bnx2x_pre_irq_nic_init(bp); 2729 2730 /* Connect to IRQs */ 2731 rc = bnx2x_setup_irqs(bp); 2732 if (rc) { 2733 BNX2X_ERR("setup irqs failed\n"); 2734 if (IS_PF(bp)) 2735 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2736 LOAD_ERROR_EXIT(bp, load_error2); 2737 } 2738 2739 /* Init per-function objects */ 2740 if (IS_PF(bp)) { 2741 /* Setup NIC internals and enable interrupts */ 2742 bnx2x_post_irq_nic_init(bp, load_code); 2743 2744 bnx2x_init_bp_objs(bp); 2745 bnx2x_iov_nic_init(bp); 2746 2747 /* Set AFEX default VLAN tag to an invalid value */ 2748 bp->afex_def_vlan_tag = -1; 2749 bnx2x_nic_load_afex_dcc(bp, load_code); 2750 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; 2751 rc = bnx2x_func_start(bp); 2752 if (rc) { 2753 BNX2X_ERR("Function start failed!\n"); 2754 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); 2755 2756 LOAD_ERROR_EXIT(bp, load_error3); 2757 } 2758 2759 /* Send LOAD_DONE command to MCP */ 2760 if (!BP_NOMCP(bp)) { 2761 load_code = bnx2x_fw_command(bp, 2762 DRV_MSG_CODE_LOAD_DONE, 0); 2763 if (!load_code) { 2764 BNX2X_ERR("MCP response failure, aborting\n"); 2765 rc = -EBUSY; 2766 LOAD_ERROR_EXIT(bp, load_error3); 2767 } 2768 } 2769 2770 /* initialize FW coalescing state machines in RAM */ 2771 bnx2x_update_coalesce(bp); 2772 } 2773 2774 /* setup the leading queue */ 2775 rc = bnx2x_setup_leading(bp); 2776 if (rc) { 2777 BNX2X_ERR("Setup leading failed!\n"); 2778 LOAD_ERROR_EXIT(bp, load_error3); 2779 } 2780 2781 /* set up the rest of the queues */ 2782 for_each_nondefault_eth_queue(bp, i) { 2783 if (IS_PF(bp)) 2784 rc = bnx2x_setup_queue(bp, &bp->fp[i], false); 2785 else /* VF */ 2786 rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); 2787 if (rc) { 2788 BNX2X_ERR("Queue %d setup failed\n", i); 2789 LOAD_ERROR_EXIT(bp, load_error3); 2790 } 2791 } 2792 2793 /* setup rss */ 2794 rc = bnx2x_init_rss(bp); 2795 if (rc) { 2796 BNX2X_ERR("PF RSS init failed\n"); 2797 LOAD_ERROR_EXIT(bp, load_error3); 2798 } 2799 2800 /* Now when Clients are configured we are ready to work */ 2801 bp->state = BNX2X_STATE_OPEN; 2802 2803 /* Configure a ucast MAC */ 2804 if (IS_PF(bp)) 2805 rc = bnx2x_set_eth_mac(bp, true); 2806 else /* vf */ 2807 rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index, 2808 true); 2809 if (rc) { 2810 BNX2X_ERR("Setting Ethernet MAC failed\n"); 2811 LOAD_ERROR_EXIT(bp, load_error3); 2812 } 2813 2814 if (IS_PF(bp) && bp->pending_max) { 2815 bnx2x_update_max_mf_config(bp, bp->pending_max); 2816 bp->pending_max = 0; 2817 } 2818 2819 if (bp->port.pmf) { 2820 rc = bnx2x_initial_phy_init(bp, load_mode); 2821 if (rc) 2822 LOAD_ERROR_EXIT(bp, load_error3); 2823 } 2824 bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; 2825 2826 /* Start fast path */ 2827 2828 /* Re-configure vlan filters */ 2829 rc = bnx2x_vlan_reconfigure_vid(bp); 2830 if (rc) 2831 LOAD_ERROR_EXIT(bp, load_error3); 2832 2833 /* Initialize Rx filter. */ 2834 bnx2x_set_rx_mode_inner(bp); 2835 2836 if (bp->flags & PTP_SUPPORTED) { 2837 bnx2x_init_ptp(bp); 2838 bnx2x_configure_ptp_filters(bp); 2839 } 2840 /* Start Tx */ 2841 switch (load_mode) { 2842 case LOAD_NORMAL: 2843 /* Tx queue should be only re-enabled */ 2844 netif_tx_wake_all_queues(bp->dev); 2845 break; 2846 2847 case LOAD_OPEN: 2848 netif_tx_start_all_queues(bp->dev); 2849 smp_mb__after_atomic(); 2850 break; 2851 2852 case LOAD_DIAG: 2853 case LOAD_LOOPBACK_EXT: 2854 bp->state = BNX2X_STATE_DIAG; 2855 break; 2856 2857 default: 2858 break; 2859 } 2860 2861 if (bp->port.pmf) 2862 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); 2863 else 2864 bnx2x__link_status_update(bp); 2865 2866 /* start the timer */ 2867 mod_timer(&bp->timer, jiffies + bp->current_interval); 2868 2869 if (CNIC_ENABLED(bp)) 2870 bnx2x_load_cnic(bp); 2871 2872 if (IS_PF(bp)) 2873 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); 2874 2875 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2876 /* mark driver is loaded in shmem2 */ 2877 u32 val; 2878 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2879 val &= ~DRV_FLAGS_MTU_MASK; 2880 val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT); 2881 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2882 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 2883 DRV_FLAGS_CAPABILITIES_LOADED_L2); 2884 } 2885 2886 /* Wait for all pending SP commands to complete */ 2887 if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { 2888 BNX2X_ERR("Timeout waiting for SP elements to complete\n"); 2889 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 2890 return -EBUSY; 2891 } 2892 2893 /* Update driver data for On-Chip MFW dump. */ 2894 if (IS_PF(bp)) 2895 bnx2x_update_mfw_dump(bp); 2896 2897 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ 2898 if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) 2899 bnx2x_dcbx_init(bp, false); 2900 2901 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2902 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE); 2903 2904 DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); 2905 2906 return 0; 2907 2908 #ifndef BNX2X_STOP_ON_ERROR 2909 load_error3: 2910 if (IS_PF(bp)) { 2911 bnx2x_int_disable_sync(bp, 1); 2912 2913 /* Clean queueable objects */ 2914 bnx2x_squeeze_objects(bp); 2915 } 2916 2917 /* Free SKBs, SGEs, TPA pool and driver internals */ 2918 bnx2x_free_skbs(bp); 2919 for_each_rx_queue(bp, i) 2920 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 2921 2922 /* Release IRQs */ 2923 bnx2x_free_irq(bp); 2924 load_error2: 2925 if (IS_PF(bp) && !BP_NOMCP(bp)) { 2926 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 2927 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); 2928 } 2929 2930 bp->port.pmf = 0; 2931 load_error1: 2932 bnx2x_napi_disable(bp); 2933 bnx2x_del_all_napi(bp); 2934 2935 /* clear pf_load status, as it was already set */ 2936 if (IS_PF(bp)) 2937 bnx2x_clear_pf_load(bp); 2938 load_error0: 2939 bnx2x_free_fw_stats_mem(bp); 2940 bnx2x_free_fp_mem(bp); 2941 bnx2x_free_mem(bp); 2942 2943 return rc; 2944 #endif /* ! BNX2X_STOP_ON_ERROR */ 2945 } 2946 2947 int bnx2x_drain_tx_queues(struct bnx2x *bp) 2948 { 2949 u8 rc = 0, cos, i; 2950 2951 /* Wait until tx fastpath tasks complete */ 2952 for_each_tx_queue(bp, i) { 2953 struct bnx2x_fastpath *fp = &bp->fp[i]; 2954 2955 for_each_cos_in_tx_queue(fp, cos) 2956 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); 2957 if (rc) 2958 return rc; 2959 } 2960 return 0; 2961 } 2962 2963 /* must be called with rtnl_lock */ 2964 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) 2965 { 2966 int i; 2967 bool global = false; 2968 2969 DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); 2970 2971 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) 2972 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED); 2973 2974 /* mark driver is unloaded in shmem2 */ 2975 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { 2976 u32 val; 2977 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); 2978 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], 2979 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 2980 } 2981 2982 if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && 2983 (bp->state == BNX2X_STATE_CLOSED || 2984 bp->state == BNX2X_STATE_ERROR)) { 2985 /* We can get here if the driver has been unloaded 2986 * during parity error recovery and is either waiting for a 2987 * leader to complete or for other functions to unload and 2988 * then ifdown has been issued. In this case we want to 2989 * unload and let other functions to complete a recovery 2990 * process. 2991 */ 2992 bp->recovery_state = BNX2X_RECOVERY_DONE; 2993 bp->is_leader = 0; 2994 bnx2x_release_leader_lock(bp); 2995 smp_mb(); 2996 2997 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); 2998 BNX2X_ERR("Can't unload in closed or error state\n"); 2999 return -EINVAL; 3000 } 3001 3002 /* Nothing to do during unload if previous bnx2x_nic_load() 3003 * have not completed successfully - all resources are released. 3004 * 3005 * we can get here only after unsuccessful ndo_* callback, during which 3006 * dev->IFF_UP flag is still on. 3007 */ 3008 if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) 3009 return 0; 3010 3011 /* It's important to set the bp->state to the value different from 3012 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() 3013 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). 3014 */ 3015 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; 3016 smp_mb(); 3017 3018 /* indicate to VFs that the PF is going down */ 3019 bnx2x_iov_channel_down(bp); 3020 3021 if (CNIC_LOADED(bp)) 3022 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); 3023 3024 /* Stop Tx */ 3025 bnx2x_tx_disable(bp); 3026 netdev_reset_tc(bp->dev); 3027 3028 bp->rx_mode = BNX2X_RX_MODE_NONE; 3029 3030 del_timer_sync(&bp->timer); 3031 3032 if (IS_PF(bp) && !BP_NOMCP(bp)) { 3033 /* Set ALWAYS_ALIVE bit in shmem */ 3034 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 3035 bnx2x_drv_pulse(bp); 3036 bnx2x_stats_handle(bp, STATS_EVENT_STOP); 3037 bnx2x_save_statistics(bp); 3038 } 3039 3040 /* wait till consumers catch up with producers in all queues. 3041 * If we're recovering, FW can't write to host so no reason 3042 * to wait for the queues to complete all Tx. 3043 */ 3044 if (unload_mode != UNLOAD_RECOVERY) 3045 bnx2x_drain_tx_queues(bp); 3046 3047 /* if VF indicate to PF this function is going down (PF will delete sp 3048 * elements and clear initializations 3049 */ 3050 if (IS_VF(bp)) 3051 bnx2x_vfpf_close_vf(bp); 3052 else if (unload_mode != UNLOAD_RECOVERY) 3053 /* if this is a normal/close unload need to clean up chip*/ 3054 bnx2x_chip_cleanup(bp, unload_mode, keep_link); 3055 else { 3056 /* Send the UNLOAD_REQUEST to the MCP */ 3057 bnx2x_send_unload_req(bp, unload_mode); 3058 3059 /* Prevent transactions to host from the functions on the 3060 * engine that doesn't reset global blocks in case of global 3061 * attention once global blocks are reset and gates are opened 3062 * (the engine which leader will perform the recovery 3063 * last). 3064 */ 3065 if (!CHIP_IS_E1x(bp)) 3066 bnx2x_pf_disable(bp); 3067 3068 /* Disable HW interrupts, NAPI */ 3069 bnx2x_netif_stop(bp, 1); 3070 /* Delete all NAPI objects */ 3071 bnx2x_del_all_napi(bp); 3072 if (CNIC_LOADED(bp)) 3073 bnx2x_del_all_napi_cnic(bp); 3074 /* Release IRQs */ 3075 bnx2x_free_irq(bp); 3076 3077 /* Report UNLOAD_DONE to MCP */ 3078 bnx2x_send_unload_done(bp, false); 3079 } 3080 3081 /* 3082 * At this stage no more interrupts will arrive so we may safely clean 3083 * the queueable objects here in case they failed to get cleaned so far. 3084 */ 3085 if (IS_PF(bp)) 3086 bnx2x_squeeze_objects(bp); 3087 3088 /* There should be no more pending SP commands at this stage */ 3089 bp->sp_state = 0; 3090 3091 bp->port.pmf = 0; 3092 3093 /* clear pending work in rtnl task */ 3094 bp->sp_rtnl_state = 0; 3095 smp_mb(); 3096 3097 /* Free SKBs, SGEs, TPA pool and driver internals */ 3098 bnx2x_free_skbs(bp); 3099 if (CNIC_LOADED(bp)) 3100 bnx2x_free_skbs_cnic(bp); 3101 for_each_rx_queue(bp, i) 3102 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); 3103 3104 bnx2x_free_fp_mem(bp); 3105 if (CNIC_LOADED(bp)) 3106 bnx2x_free_fp_mem_cnic(bp); 3107 3108 if (IS_PF(bp)) { 3109 if (CNIC_LOADED(bp)) 3110 bnx2x_free_mem_cnic(bp); 3111 } 3112 bnx2x_free_mem(bp); 3113 3114 bp->state = BNX2X_STATE_CLOSED; 3115 bp->cnic_loaded = false; 3116 3117 /* Clear driver version indication in shmem */ 3118 if (IS_PF(bp) && !BP_NOMCP(bp)) 3119 bnx2x_update_mng_version(bp); 3120 3121 /* Check if there are pending parity attentions. If there are - set 3122 * RECOVERY_IN_PROGRESS. 3123 */ 3124 if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { 3125 bnx2x_set_reset_in_progress(bp); 3126 3127 /* Set RESET_IS_GLOBAL if needed */ 3128 if (global) 3129 bnx2x_set_reset_global(bp); 3130 } 3131 3132 /* The last driver must disable a "close the gate" if there is no 3133 * parity attention or "process kill" pending. 3134 */ 3135 if (IS_PF(bp) && 3136 !bnx2x_clear_pf_load(bp) && 3137 bnx2x_reset_is_done(bp, BP_PATH(bp))) 3138 bnx2x_disable_close_the_gate(bp); 3139 3140 DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); 3141 3142 return 0; 3143 } 3144 3145 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) 3146 { 3147 u16 pmcsr; 3148 3149 /* If there is no power capability, silently succeed */ 3150 if (!bp->pdev->pm_cap) { 3151 BNX2X_DEV_INFO("No power capability. Breaking.\n"); 3152 return 0; 3153 } 3154 3155 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); 3156 3157 switch (state) { 3158 case PCI_D0: 3159 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3160 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | 3161 PCI_PM_CTRL_PME_STATUS)); 3162 3163 if (pmcsr & PCI_PM_CTRL_STATE_MASK) 3164 /* delay required during transition out of D3hot */ 3165 msleep(20); 3166 break; 3167 3168 case PCI_D3hot: 3169 /* If there are other clients above don't 3170 shut down the power */ 3171 if (atomic_read(&bp->pdev->enable_cnt) != 1) 3172 return 0; 3173 /* Don't shut down the power for emulation and FPGA */ 3174 if (CHIP_REV_IS_SLOW(bp)) 3175 return 0; 3176 3177 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3178 pmcsr |= 3; 3179 3180 if (bp->wol) 3181 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 3182 3183 pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, 3184 pmcsr); 3185 3186 /* No more memory access after this point until 3187 * device is brought back to D0. 3188 */ 3189 break; 3190 3191 default: 3192 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); 3193 return -EINVAL; 3194 } 3195 return 0; 3196 } 3197 3198 /* 3199 * net_device service functions 3200 */ 3201 static int bnx2x_poll(struct napi_struct *napi, int budget) 3202 { 3203 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, 3204 napi); 3205 struct bnx2x *bp = fp->bp; 3206 int rx_work_done; 3207 u8 cos; 3208 3209 #ifdef BNX2X_STOP_ON_ERROR 3210 if (unlikely(bp->panic)) { 3211 napi_complete(napi); 3212 return 0; 3213 } 3214 #endif 3215 for_each_cos_in_tx_queue(fp, cos) 3216 if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) 3217 bnx2x_tx_int(bp, fp->txdata_ptr[cos]); 3218 3219 rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0; 3220 3221 if (rx_work_done < budget) { 3222 /* No need to update SB for FCoE L2 ring as long as 3223 * it's connected to the default SB and the SB 3224 * has been updated when NAPI was scheduled. 3225 */ 3226 if (IS_FCOE_FP(fp)) { 3227 napi_complete_done(napi, rx_work_done); 3228 } else { 3229 bnx2x_update_fpsb_idx(fp); 3230 /* bnx2x_has_rx_work() reads the status block, 3231 * thus we need to ensure that status block indices 3232 * have been actually read (bnx2x_update_fpsb_idx) 3233 * prior to this check (bnx2x_has_rx_work) so that 3234 * we won't write the "newer" value of the status block 3235 * to IGU (if there was a DMA right after 3236 * bnx2x_has_rx_work and if there is no rmb, the memory 3237 * reading (bnx2x_update_fpsb_idx) may be postponed 3238 * to right before bnx2x_ack_sb). In this case there 3239 * will never be another interrupt until there is 3240 * another update of the status block, while there 3241 * is still unhandled work. 3242 */ 3243 rmb(); 3244 3245 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { 3246 if (napi_complete_done(napi, rx_work_done)) { 3247 /* Re-enable interrupts */ 3248 DP(NETIF_MSG_RX_STATUS, 3249 "Update index to %d\n", fp->fp_hc_idx); 3250 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 3251 le16_to_cpu(fp->fp_hc_idx), 3252 IGU_INT_ENABLE, 1); 3253 } 3254 } else { 3255 rx_work_done = budget; 3256 } 3257 } 3258 } 3259 3260 return rx_work_done; 3261 } 3262 3263 /* we split the first BD into headers and data BDs 3264 * to ease the pain of our fellow microcode engineers 3265 * we use one mapping for both BDs 3266 */ 3267 static u16 bnx2x_tx_split(struct bnx2x *bp, 3268 struct bnx2x_fp_txdata *txdata, 3269 struct sw_tx_bd *tx_buf, 3270 struct eth_tx_start_bd **tx_bd, u16 hlen, 3271 u16 bd_prod) 3272 { 3273 struct eth_tx_start_bd *h_tx_bd = *tx_bd; 3274 struct eth_tx_bd *d_tx_bd; 3275 dma_addr_t mapping; 3276 int old_len = le16_to_cpu(h_tx_bd->nbytes); 3277 3278 /* first fix first BD */ 3279 h_tx_bd->nbytes = cpu_to_le16(hlen); 3280 3281 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x)\n", 3282 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); 3283 3284 /* now get a new data BD 3285 * (after the pbd) and fill it */ 3286 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3287 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 3288 3289 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), 3290 le32_to_cpu(h_tx_bd->addr_lo)) + hlen; 3291 3292 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 3293 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 3294 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); 3295 3296 /* this marks the BD as one that has no individual mapping */ 3297 tx_buf->flags |= BNX2X_TSO_SPLIT_BD; 3298 3299 DP(NETIF_MSG_TX_QUEUED, 3300 "TSO split data size is %d (%x:%x)\n", 3301 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); 3302 3303 /* update tx_bd */ 3304 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; 3305 3306 return bd_prod; 3307 } 3308 3309 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) 3310 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) 3311 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) 3312 { 3313 __sum16 tsum = (__force __sum16) csum; 3314 3315 if (fix > 0) 3316 tsum = ~csum_fold(csum_sub((__force __wsum) csum, 3317 csum_partial(t_header - fix, fix, 0))); 3318 3319 else if (fix < 0) 3320 tsum = ~csum_fold(csum_add((__force __wsum) csum, 3321 csum_partial(t_header, -fix, 0))); 3322 3323 return bswab16(tsum); 3324 } 3325 3326 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) 3327 { 3328 u32 rc; 3329 __u8 prot = 0; 3330 __be16 protocol; 3331 3332 if (skb->ip_summed != CHECKSUM_PARTIAL) 3333 return XMIT_PLAIN; 3334 3335 protocol = vlan_get_protocol(skb); 3336 if (protocol == htons(ETH_P_IPV6)) { 3337 rc = XMIT_CSUM_V6; 3338 prot = ipv6_hdr(skb)->nexthdr; 3339 } else { 3340 rc = XMIT_CSUM_V4; 3341 prot = ip_hdr(skb)->protocol; 3342 } 3343 3344 if (!CHIP_IS_E1x(bp) && skb->encapsulation) { 3345 if (inner_ip_hdr(skb)->version == 6) { 3346 rc |= XMIT_CSUM_ENC_V6; 3347 if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 3348 rc |= XMIT_CSUM_TCP; 3349 } else { 3350 rc |= XMIT_CSUM_ENC_V4; 3351 if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) 3352 rc |= XMIT_CSUM_TCP; 3353 } 3354 } 3355 if (prot == IPPROTO_TCP) 3356 rc |= XMIT_CSUM_TCP; 3357 3358 if (skb_is_gso(skb)) { 3359 if (skb_is_gso_v6(skb)) { 3360 rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); 3361 if (rc & XMIT_CSUM_ENC) 3362 rc |= XMIT_GSO_ENC_V6; 3363 } else { 3364 rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); 3365 if (rc & XMIT_CSUM_ENC) 3366 rc |= XMIT_GSO_ENC_V4; 3367 } 3368 } 3369 3370 return rc; 3371 } 3372 3373 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */ 3374 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4 3375 3376 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ 3377 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3 3378 3379 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3380 /* check if packet requires linearization (packet is too fragmented) 3381 no need to check fragmentation if page size > 8K (there will be no 3382 violation to FW restrictions) */ 3383 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, 3384 u32 xmit_type) 3385 { 3386 int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS; 3387 int to_copy = 0, hlen = 0; 3388 3389 if (xmit_type & XMIT_GSO_ENC) 3390 num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS; 3391 3392 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) { 3393 if (xmit_type & XMIT_GSO) { 3394 unsigned short lso_mss = skb_shinfo(skb)->gso_size; 3395 int wnd_size = MAX_FETCH_BD - num_tso_win_sub; 3396 /* Number of windows to check */ 3397 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; 3398 int wnd_idx = 0; 3399 int frag_idx = 0; 3400 u32 wnd_sum = 0; 3401 3402 /* Headers length */ 3403 if (xmit_type & XMIT_GSO_ENC) 3404 hlen = (int)(skb_inner_transport_header(skb) - 3405 skb->data) + 3406 inner_tcp_hdrlen(skb); 3407 else 3408 hlen = (int)(skb_transport_header(skb) - 3409 skb->data) + tcp_hdrlen(skb); 3410 3411 /* Amount of data (w/o headers) on linear part of SKB*/ 3412 first_bd_sz = skb_headlen(skb) - hlen; 3413 3414 wnd_sum = first_bd_sz; 3415 3416 /* Calculate the first sum - it's special */ 3417 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) 3418 wnd_sum += 3419 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); 3420 3421 /* If there was data on linear skb data - check it */ 3422 if (first_bd_sz > 0) { 3423 if (unlikely(wnd_sum < lso_mss)) { 3424 to_copy = 1; 3425 goto exit_lbl; 3426 } 3427 3428 wnd_sum -= first_bd_sz; 3429 } 3430 3431 /* Others are easier: run through the frag list and 3432 check all windows */ 3433 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { 3434 wnd_sum += 3435 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); 3436 3437 if (unlikely(wnd_sum < lso_mss)) { 3438 to_copy = 1; 3439 break; 3440 } 3441 wnd_sum -= 3442 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); 3443 } 3444 } else { 3445 /* in non-LSO too fragmented packet should always 3446 be linearized */ 3447 to_copy = 1; 3448 } 3449 } 3450 3451 exit_lbl: 3452 if (unlikely(to_copy)) 3453 DP(NETIF_MSG_TX_QUEUED, 3454 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n", 3455 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", 3456 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); 3457 3458 return to_copy; 3459 } 3460 #endif 3461 3462 /** 3463 * bnx2x_set_pbd_gso - update PBD in GSO case. 3464 * 3465 * @skb: packet skb 3466 * @pbd: parse BD 3467 * @xmit_type: xmit flags 3468 */ 3469 static void bnx2x_set_pbd_gso(struct sk_buff *skb, 3470 struct eth_tx_parse_bd_e1x *pbd, 3471 u32 xmit_type) 3472 { 3473 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); 3474 pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); 3475 pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); 3476 3477 if (xmit_type & XMIT_GSO_V4) { 3478 pbd->ip_id = bswab16(ip_hdr(skb)->id); 3479 pbd->tcp_pseudo_csum = 3480 bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, 3481 ip_hdr(skb)->daddr, 3482 0, IPPROTO_TCP, 0)); 3483 } else { 3484 pbd->tcp_pseudo_csum = 3485 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3486 &ipv6_hdr(skb)->daddr, 3487 0, IPPROTO_TCP, 0)); 3488 } 3489 3490 pbd->global_data |= 3491 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 3492 } 3493 3494 /** 3495 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length 3496 * 3497 * @bp: driver handle 3498 * @skb: packet skb 3499 * @parsing_data: data to be updated 3500 * @xmit_type: xmit flags 3501 * 3502 * 57712/578xx related, when skb has encapsulation 3503 */ 3504 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, 3505 u32 *parsing_data, u32 xmit_type) 3506 { 3507 *parsing_data |= 3508 ((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) << 3509 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3510 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3511 3512 if (xmit_type & XMIT_CSUM_TCP) { 3513 *parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << 3514 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3515 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3516 3517 return skb_inner_transport_header(skb) + 3518 inner_tcp_hdrlen(skb) - skb->data; 3519 } 3520 3521 /* We support checksum offload for TCP and UDP only. 3522 * No need to pass the UDP header length - it's a constant. 3523 */ 3524 return skb_inner_transport_header(skb) + 3525 sizeof(struct udphdr) - skb->data; 3526 } 3527 3528 /** 3529 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length 3530 * 3531 * @bp: driver handle 3532 * @skb: packet skb 3533 * @parsing_data: data to be updated 3534 * @xmit_type: xmit flags 3535 * 3536 * 57712/578xx related 3537 */ 3538 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, 3539 u32 *parsing_data, u32 xmit_type) 3540 { 3541 *parsing_data |= 3542 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << 3543 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 3544 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; 3545 3546 if (xmit_type & XMIT_CSUM_TCP) { 3547 *parsing_data |= ((tcp_hdrlen(skb) / 4) << 3548 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 3549 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; 3550 3551 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; 3552 } 3553 /* We support checksum offload for TCP and UDP only. 3554 * No need to pass the UDP header length - it's a constant. 3555 */ 3556 return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; 3557 } 3558 3559 /* set FW indication according to inner or outer protocols if tunneled */ 3560 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3561 struct eth_tx_start_bd *tx_start_bd, 3562 u32 xmit_type) 3563 { 3564 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 3565 3566 if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) 3567 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; 3568 3569 if (!(xmit_type & XMIT_CSUM_TCP)) 3570 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; 3571 } 3572 3573 /** 3574 * bnx2x_set_pbd_csum - update PBD with checksum and return header length 3575 * 3576 * @bp: driver handle 3577 * @skb: packet skb 3578 * @pbd: parse BD to be updated 3579 * @xmit_type: xmit flags 3580 */ 3581 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, 3582 struct eth_tx_parse_bd_e1x *pbd, 3583 u32 xmit_type) 3584 { 3585 u8 hlen = (skb_network_header(skb) - skb->data) >> 1; 3586 3587 /* for now NS flag is not used in Linux */ 3588 pbd->global_data = 3589 cpu_to_le16(hlen | 3590 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3591 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 3592 3593 pbd->ip_hlen_w = (skb_transport_header(skb) - 3594 skb_network_header(skb)) >> 1; 3595 3596 hlen += pbd->ip_hlen_w; 3597 3598 /* We support checksum offload for TCP and UDP only */ 3599 if (xmit_type & XMIT_CSUM_TCP) 3600 hlen += tcp_hdrlen(skb) / 2; 3601 else 3602 hlen += sizeof(struct udphdr) / 2; 3603 3604 pbd->total_hlen_w = cpu_to_le16(hlen); 3605 hlen = hlen*2; 3606 3607 if (xmit_type & XMIT_CSUM_TCP) { 3608 pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); 3609 3610 } else { 3611 s8 fix = SKB_CS_OFF(skb); /* signed! */ 3612 3613 DP(NETIF_MSG_TX_QUEUED, 3614 "hlen %d fix %d csum before fix %x\n", 3615 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); 3616 3617 /* HW bug: fixup the CSUM */ 3618 pbd->tcp_pseudo_csum = 3619 bnx2x_csum_fix(skb_transport_header(skb), 3620 SKB_CS(skb), fix); 3621 3622 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", 3623 pbd->tcp_pseudo_csum); 3624 } 3625 3626 return hlen; 3627 } 3628 3629 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, 3630 struct eth_tx_parse_bd_e2 *pbd_e2, 3631 struct eth_tx_parse_2nd_bd *pbd2, 3632 u16 *global_data, 3633 u32 xmit_type) 3634 { 3635 u16 hlen_w = 0; 3636 u8 outerip_off, outerip_len = 0; 3637 3638 /* from outer IP to transport */ 3639 hlen_w = (skb_inner_transport_header(skb) - 3640 skb_network_header(skb)) >> 1; 3641 3642 /* transport len */ 3643 hlen_w += inner_tcp_hdrlen(skb) >> 1; 3644 3645 pbd2->fw_ip_hdr_to_payload_w = hlen_w; 3646 3647 /* outer IP header info */ 3648 if (xmit_type & XMIT_CSUM_V4) { 3649 struct iphdr *iph = ip_hdr(skb); 3650 u32 csum = (__force u32)(~iph->check) - 3651 (__force u32)iph->tot_len - 3652 (__force u32)iph->frag_off; 3653 3654 outerip_len = iph->ihl << 1; 3655 3656 pbd2->fw_ip_csum_wo_len_flags_frag = 3657 bswab16(csum_fold((__force __wsum)csum)); 3658 } else { 3659 pbd2->fw_ip_hdr_to_payload_w = 3660 hlen_w - ((sizeof(struct ipv6hdr)) >> 1); 3661 pbd_e2->data.tunnel_data.flags |= 3662 ETH_TUNNEL_DATA_IPV6_OUTER; 3663 } 3664 3665 pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); 3666 3667 pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); 3668 3669 /* inner IP header info */ 3670 if (xmit_type & XMIT_CSUM_ENC_V4) { 3671 pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); 3672 3673 pbd_e2->data.tunnel_data.pseudo_csum = 3674 bswab16(~csum_tcpudp_magic( 3675 inner_ip_hdr(skb)->saddr, 3676 inner_ip_hdr(skb)->daddr, 3677 0, IPPROTO_TCP, 0)); 3678 } else { 3679 pbd_e2->data.tunnel_data.pseudo_csum = 3680 bswab16(~csum_ipv6_magic( 3681 &inner_ipv6_hdr(skb)->saddr, 3682 &inner_ipv6_hdr(skb)->daddr, 3683 0, IPPROTO_TCP, 0)); 3684 } 3685 3686 outerip_off = (skb_network_header(skb) - skb->data) >> 1; 3687 3688 *global_data |= 3689 outerip_off | 3690 (outerip_len << 3691 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | 3692 ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << 3693 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); 3694 3695 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 3696 SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); 3697 pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; 3698 } 3699 } 3700 3701 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data, 3702 u32 xmit_type) 3703 { 3704 struct ipv6hdr *ipv6; 3705 3706 if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) 3707 return; 3708 3709 if (xmit_type & XMIT_GSO_ENC_V6) 3710 ipv6 = inner_ipv6_hdr(skb); 3711 else /* XMIT_GSO_V6 */ 3712 ipv6 = ipv6_hdr(skb); 3713 3714 if (ipv6->nexthdr == NEXTHDR_IPV6) 3715 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; 3716 } 3717 3718 /* called with netif_tx_lock 3719 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call 3720 * netif_wake_queue() 3721 */ 3722 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) 3723 { 3724 struct bnx2x *bp = netdev_priv(dev); 3725 3726 struct netdev_queue *txq; 3727 struct bnx2x_fp_txdata *txdata; 3728 struct sw_tx_bd *tx_buf; 3729 struct eth_tx_start_bd *tx_start_bd, *first_bd; 3730 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; 3731 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 3732 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 3733 struct eth_tx_parse_2nd_bd *pbd2 = NULL; 3734 u32 pbd_e2_parsing_data = 0; 3735 u16 pkt_prod, bd_prod; 3736 int nbd, txq_index; 3737 dma_addr_t mapping; 3738 u32 xmit_type = bnx2x_xmit_type(bp, skb); 3739 int i; 3740 u8 hlen = 0; 3741 __le16 pkt_size = 0; 3742 struct ethhdr *eth; 3743 u8 mac_type = UNICAST_ADDRESS; 3744 3745 #ifdef BNX2X_STOP_ON_ERROR 3746 if (unlikely(bp->panic)) 3747 return NETDEV_TX_BUSY; 3748 #endif 3749 3750 txq_index = skb_get_queue_mapping(skb); 3751 txq = netdev_get_tx_queue(dev, txq_index); 3752 3753 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0)); 3754 3755 txdata = &bp->bnx2x_txq[txq_index]; 3756 3757 /* enable this debug print to view the transmission queue being used 3758 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", 3759 txq_index, fp_index, txdata_index); */ 3760 3761 /* enable this debug print to view the transmission details 3762 DP(NETIF_MSG_TX_QUEUED, 3763 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", 3764 txdata->cid, fp_index, txdata_index, txdata, fp); */ 3765 3766 if (unlikely(bnx2x_tx_avail(bp, txdata) < 3767 skb_shinfo(skb)->nr_frags + 3768 BDS_PER_TX_PKT + 3769 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { 3770 /* Handle special storage cases separately */ 3771 if (txdata->tx_ring_size == 0) { 3772 struct bnx2x_eth_q_stats *q_stats = 3773 bnx2x_fp_qstats(bp, txdata->parent_fp); 3774 q_stats->driver_filtered_tx_pkt++; 3775 dev_kfree_skb(skb); 3776 return NETDEV_TX_OK; 3777 } 3778 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 3779 netif_tx_stop_queue(txq); 3780 BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); 3781 3782 return NETDEV_TX_BUSY; 3783 } 3784 3785 DP(NETIF_MSG_TX_QUEUED, 3786 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n", 3787 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, 3788 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, 3789 skb->len); 3790 3791 eth = (struct ethhdr *)skb->data; 3792 3793 /* set flag according to packet type (UNICAST_ADDRESS is default)*/ 3794 if (unlikely(is_multicast_ether_addr(eth->h_dest))) { 3795 if (is_broadcast_ether_addr(eth->h_dest)) 3796 mac_type = BROADCAST_ADDRESS; 3797 else 3798 mac_type = MULTICAST_ADDRESS; 3799 } 3800 3801 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) 3802 /* First, check if we need to linearize the skb (due to FW 3803 restrictions). No need to check fragmentation if page size > 8K 3804 (there will be no violation to FW restrictions) */ 3805 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { 3806 /* Statistics of linearization */ 3807 bp->lin_cnt++; 3808 if (skb_linearize(skb) != 0) { 3809 DP(NETIF_MSG_TX_QUEUED, 3810 "SKB linearization failed - silently dropping this SKB\n"); 3811 dev_kfree_skb_any(skb); 3812 return NETDEV_TX_OK; 3813 } 3814 } 3815 #endif 3816 /* Map skb linear data for DMA */ 3817 mapping = dma_map_single(&bp->pdev->dev, skb->data, 3818 skb_headlen(skb), DMA_TO_DEVICE); 3819 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 3820 DP(NETIF_MSG_TX_QUEUED, 3821 "SKB mapping failed - silently dropping this SKB\n"); 3822 dev_kfree_skb_any(skb); 3823 return NETDEV_TX_OK; 3824 } 3825 /* 3826 Please read carefully. First we use one BD which we mark as start, 3827 then we have a parsing info BD (used for TSO or xsum), 3828 and only then we have the rest of the TSO BDs. 3829 (don't forget to mark the last one as last, 3830 and to unmap only AFTER you write to the BD ...) 3831 And above all, all pdb sizes are in words - NOT DWORDS! 3832 */ 3833 3834 /* get current pkt produced now - advance it just before sending packet 3835 * since mapping of pages may fail and cause packet to be dropped 3836 */ 3837 pkt_prod = txdata->tx_pkt_prod; 3838 bd_prod = TX_BD(txdata->tx_bd_prod); 3839 3840 /* get a tx_buf and first BD 3841 * tx_start_bd may be changed during SPLIT, 3842 * but first_bd will always stay first 3843 */ 3844 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; 3845 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; 3846 first_bd = tx_start_bd; 3847 3848 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 3849 3850 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3851 if (!(bp->flags & TX_TIMESTAMPING_EN)) { 3852 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n"); 3853 } else if (bp->ptp_tx_skb) { 3854 BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n"); 3855 } else { 3856 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3857 /* schedule check for Tx timestamp */ 3858 bp->ptp_tx_skb = skb_get(skb); 3859 bp->ptp_tx_start = jiffies; 3860 schedule_work(&bp->ptp_task); 3861 } 3862 } 3863 3864 /* header nbd: indirectly zero other flags! */ 3865 tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; 3866 3867 /* remember the first BD of the packet */ 3868 tx_buf->first_bd = txdata->tx_bd_prod; 3869 tx_buf->skb = skb; 3870 tx_buf->flags = 0; 3871 3872 DP(NETIF_MSG_TX_QUEUED, 3873 "sending pkt %u @%p next_idx %u bd %u @%p\n", 3874 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); 3875 3876 if (skb_vlan_tag_present(skb)) { 3877 tx_start_bd->vlan_or_ethertype = 3878 cpu_to_le16(skb_vlan_tag_get(skb)); 3879 tx_start_bd->bd_flags.as_bitfield |= 3880 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3881 } else { 3882 /* when transmitting in a vf, start bd must hold the ethertype 3883 * for fw to enforce it 3884 */ 3885 u16 vlan_tci = 0; 3886 #ifndef BNX2X_STOP_ON_ERROR 3887 if (IS_VF(bp)) { 3888 #endif 3889 /* Still need to consider inband vlan for enforced */ 3890 if (__vlan_get_tag(skb, &vlan_tci)) { 3891 tx_start_bd->vlan_or_ethertype = 3892 cpu_to_le16(ntohs(eth->h_proto)); 3893 } else { 3894 tx_start_bd->bd_flags.as_bitfield |= 3895 (X_ETH_INBAND_VLAN << 3896 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 3897 tx_start_bd->vlan_or_ethertype = 3898 cpu_to_le16(vlan_tci); 3899 } 3900 #ifndef BNX2X_STOP_ON_ERROR 3901 } else { 3902 /* used by FW for packet accounting */ 3903 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); 3904 } 3905 #endif 3906 } 3907 3908 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ 3909 3910 /* turn on parsing and get a BD */ 3911 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3912 3913 if (xmit_type & XMIT_CSUM) 3914 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type); 3915 3916 if (!CHIP_IS_E1x(bp)) { 3917 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; 3918 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 3919 3920 if (xmit_type & XMIT_CSUM_ENC) { 3921 u16 global_data = 0; 3922 3923 /* Set PBD in enc checksum offload case */ 3924 hlen = bnx2x_set_pbd_csum_enc(bp, skb, 3925 &pbd_e2_parsing_data, 3926 xmit_type); 3927 3928 /* turn on 2nd parsing and get a BD */ 3929 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 3930 3931 pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; 3932 3933 memset(pbd2, 0, sizeof(*pbd2)); 3934 3935 pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = 3936 (skb_inner_network_header(skb) - 3937 skb->data) >> 1; 3938 3939 if (xmit_type & XMIT_GSO_ENC) 3940 bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, 3941 &global_data, 3942 xmit_type); 3943 3944 pbd2->global_data = cpu_to_le16(global_data); 3945 3946 /* add addition parse BD indication to start BD */ 3947 SET_FLAG(tx_start_bd->general_data, 3948 ETH_TX_START_BD_PARSE_NBDS, 1); 3949 /* set encapsulation flag in start BD */ 3950 SET_FLAG(tx_start_bd->general_data, 3951 ETH_TX_START_BD_TUNNEL_EXIST, 1); 3952 3953 tx_buf->flags |= BNX2X_HAS_SECOND_PBD; 3954 3955 nbd++; 3956 } else if (xmit_type & XMIT_CSUM) { 3957 /* Set PBD in checksum offload case w/o encapsulation */ 3958 hlen = bnx2x_set_pbd_csum_e2(bp, skb, 3959 &pbd_e2_parsing_data, 3960 xmit_type); 3961 } 3962 3963 bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); 3964 /* Add the macs to the parsing BD if this is a vf or if 3965 * Tx Switching is enabled. 3966 */ 3967 if (IS_VF(bp)) { 3968 /* override GRE parameters in BD */ 3969 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3970 &pbd_e2->data.mac_addr.src_mid, 3971 &pbd_e2->data.mac_addr.src_lo, 3972 eth->h_source); 3973 3974 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, 3975 &pbd_e2->data.mac_addr.dst_mid, 3976 &pbd_e2->data.mac_addr.dst_lo, 3977 eth->h_dest); 3978 } else { 3979 if (bp->flags & TX_SWITCHING) 3980 bnx2x_set_fw_mac_addr( 3981 &pbd_e2->data.mac_addr.dst_hi, 3982 &pbd_e2->data.mac_addr.dst_mid, 3983 &pbd_e2->data.mac_addr.dst_lo, 3984 eth->h_dest); 3985 #ifdef BNX2X_STOP_ON_ERROR 3986 /* Enforce security is always set in Stop on Error - 3987 * source mac should be present in the parsing BD 3988 */ 3989 bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, 3990 &pbd_e2->data.mac_addr.src_mid, 3991 &pbd_e2->data.mac_addr.src_lo, 3992 eth->h_source); 3993 #endif 3994 } 3995 3996 SET_FLAG(pbd_e2_parsing_data, 3997 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); 3998 } else { 3999 u16 global_data = 0; 4000 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; 4001 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 4002 /* Set PBD in checksum offload case */ 4003 if (xmit_type & XMIT_CSUM) 4004 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); 4005 4006 SET_FLAG(global_data, 4007 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 4008 pbd_e1x->global_data |= cpu_to_le16(global_data); 4009 } 4010 4011 /* Setup the data pointer of the first BD of the packet */ 4012 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4013 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4014 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); 4015 pkt_size = tx_start_bd->nbytes; 4016 4017 DP(NETIF_MSG_TX_QUEUED, 4018 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n", 4019 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, 4020 le16_to_cpu(tx_start_bd->nbytes), 4021 tx_start_bd->bd_flags.as_bitfield, 4022 le16_to_cpu(tx_start_bd->vlan_or_ethertype)); 4023 4024 if (xmit_type & XMIT_GSO) { 4025 4026 DP(NETIF_MSG_TX_QUEUED, 4027 "TSO packet len %d hlen %d total len %d tso size %d\n", 4028 skb->len, hlen, skb_headlen(skb), 4029 skb_shinfo(skb)->gso_size); 4030 4031 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 4032 4033 if (unlikely(skb_headlen(skb) > hlen)) { 4034 nbd++; 4035 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, 4036 &tx_start_bd, hlen, 4037 bd_prod); 4038 } 4039 if (!CHIP_IS_E1x(bp)) 4040 pbd_e2_parsing_data |= 4041 (skb_shinfo(skb)->gso_size << 4042 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 4043 ETH_TX_PARSE_BD_E2_LSO_MSS; 4044 else 4045 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); 4046 } 4047 4048 /* Set the PBD's parsing_data field if not zero 4049 * (for the chips newer than 57711). 4050 */ 4051 if (pbd_e2_parsing_data) 4052 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); 4053 4054 tx_data_bd = (struct eth_tx_bd *)tx_start_bd; 4055 4056 /* Handle fragmented skb */ 4057 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4058 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4059 4060 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, 4061 skb_frag_size(frag), DMA_TO_DEVICE); 4062 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { 4063 unsigned int pkts_compl = 0, bytes_compl = 0; 4064 4065 DP(NETIF_MSG_TX_QUEUED, 4066 "Unable to map page - dropping packet...\n"); 4067 4068 /* we need unmap all buffers already mapped 4069 * for this SKB; 4070 * first_bd->nbd need to be properly updated 4071 * before call to bnx2x_free_tx_pkt 4072 */ 4073 first_bd->nbd = cpu_to_le16(nbd); 4074 bnx2x_free_tx_pkt(bp, txdata, 4075 TX_BD(txdata->tx_pkt_prod), 4076 &pkts_compl, &bytes_compl); 4077 return NETDEV_TX_OK; 4078 } 4079 4080 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4081 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4082 if (total_pkt_bd == NULL) 4083 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; 4084 4085 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); 4086 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); 4087 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); 4088 le16_add_cpu(&pkt_size, skb_frag_size(frag)); 4089 nbd++; 4090 4091 DP(NETIF_MSG_TX_QUEUED, 4092 "frag %d bd @%p addr (%x:%x) nbytes %d\n", 4093 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, 4094 le16_to_cpu(tx_data_bd->nbytes)); 4095 } 4096 4097 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); 4098 4099 /* update with actual num BDs */ 4100 first_bd->nbd = cpu_to_le16(nbd); 4101 4102 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); 4103 4104 /* now send a tx doorbell, counting the next BD 4105 * if the packet contains or ends with it 4106 */ 4107 if (TX_BD_POFF(bd_prod) < nbd) 4108 nbd++; 4109 4110 /* total_pkt_bytes should be set on the first data BD if 4111 * it's not an LSO packet and there is more than one 4112 * data BD. In this case pkt_size is limited by an MTU value. 4113 * However we prefer to set it for an LSO packet (while we don't 4114 * have to) in order to save some CPU cycles in a none-LSO 4115 * case, when we much more care about them. 4116 */ 4117 if (total_pkt_bd != NULL) 4118 total_pkt_bd->total_pkt_bytes = pkt_size; 4119 4120 if (pbd_e1x) 4121 DP(NETIF_MSG_TX_QUEUED, 4122 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n", 4123 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, 4124 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, 4125 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, 4126 le16_to_cpu(pbd_e1x->total_hlen_w)); 4127 if (pbd_e2) 4128 DP(NETIF_MSG_TX_QUEUED, 4129 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n", 4130 pbd_e2, 4131 pbd_e2->data.mac_addr.dst_hi, 4132 pbd_e2->data.mac_addr.dst_mid, 4133 pbd_e2->data.mac_addr.dst_lo, 4134 pbd_e2->data.mac_addr.src_hi, 4135 pbd_e2->data.mac_addr.src_mid, 4136 pbd_e2->data.mac_addr.src_lo, 4137 pbd_e2->parsing_data); 4138 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); 4139 4140 netdev_tx_sent_queue(txq, skb->len); 4141 4142 skb_tx_timestamp(skb); 4143 4144 txdata->tx_pkt_prod++; 4145 /* 4146 * Make sure that the BD data is updated before updating the producer 4147 * since FW might read the BD right after the producer is updated. 4148 * This is only applicable for weak-ordered memory model archs such 4149 * as IA-64. The following barrier is also mandatory since FW will 4150 * assumes packets must have BDs. 4151 */ 4152 wmb(); 4153 4154 txdata->tx_db.data.prod += nbd; 4155 barrier(); 4156 4157 DOORBELL(bp, txdata->cid, txdata->tx_db.raw); 4158 4159 mmiowb(); 4160 4161 txdata->tx_bd_prod += nbd; 4162 4163 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) { 4164 netif_tx_stop_queue(txq); 4165 4166 /* paired memory barrier is in bnx2x_tx_int(), we have to keep 4167 * ordering of set_bit() in netif_tx_stop_queue() and read of 4168 * fp->bd_tx_cons */ 4169 smp_mb(); 4170 4171 bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; 4172 if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT) 4173 netif_tx_wake_queue(txq); 4174 } 4175 txdata->tx_pkt++; 4176 4177 return NETDEV_TX_OK; 4178 } 4179 4180 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default) 4181 { 4182 int mfw_vn = BP_FW_MB_IDX(bp); 4183 u32 tmp; 4184 4185 /* If the shmem shouldn't affect configuration, reflect */ 4186 if (!IS_MF_BD(bp)) { 4187 int i; 4188 4189 for (i = 0; i < BNX2X_MAX_PRIORITY; i++) 4190 c2s_map[i] = i; 4191 *c2s_default = 0; 4192 4193 return; 4194 } 4195 4196 tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]); 4197 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4198 c2s_map[0] = tmp & 0xff; 4199 c2s_map[1] = (tmp >> 8) & 0xff; 4200 c2s_map[2] = (tmp >> 16) & 0xff; 4201 c2s_map[3] = (tmp >> 24) & 0xff; 4202 4203 tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]); 4204 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4205 c2s_map[4] = tmp & 0xff; 4206 c2s_map[5] = (tmp >> 8) & 0xff; 4207 c2s_map[6] = (tmp >> 16) & 0xff; 4208 c2s_map[7] = (tmp >> 24) & 0xff; 4209 4210 tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]); 4211 tmp = (__force u32)be32_to_cpu((__force __be32)tmp); 4212 *c2s_default = (tmp >> (8 * mfw_vn)) & 0xff; 4213 } 4214 4215 /** 4216 * bnx2x_setup_tc - routine to configure net_device for multi tc 4217 * 4218 * @netdev: net device to configure 4219 * @tc: number of traffic classes to enable 4220 * 4221 * callback connected to the ndo_setup_tc function pointer 4222 */ 4223 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc) 4224 { 4225 struct bnx2x *bp = netdev_priv(dev); 4226 u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def; 4227 int cos, prio, count, offset; 4228 4229 /* setup tc must be called under rtnl lock */ 4230 ASSERT_RTNL(); 4231 4232 /* no traffic classes requested. Aborting */ 4233 if (!num_tc) { 4234 netdev_reset_tc(dev); 4235 return 0; 4236 } 4237 4238 /* requested to support too many traffic classes */ 4239 if (num_tc > bp->max_cos) { 4240 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", 4241 num_tc, bp->max_cos); 4242 return -EINVAL; 4243 } 4244 4245 /* declare amount of supported traffic classes */ 4246 if (netdev_set_num_tc(dev, num_tc)) { 4247 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); 4248 return -EINVAL; 4249 } 4250 4251 bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def); 4252 4253 /* configure priority to traffic class mapping */ 4254 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { 4255 int outer_prio = c2s_map[prio]; 4256 4257 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]); 4258 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4259 "mapping priority %d to tc %d\n", 4260 outer_prio, bp->prio_to_cos[outer_prio]); 4261 } 4262 4263 /* Use this configuration to differentiate tc0 from other COSes 4264 This can be used for ets or pfc, and save the effort of setting 4265 up a multio class queue disc or negotiating DCBX with a switch 4266 netdev_set_prio_tc_map(dev, 0, 0); 4267 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); 4268 for (prio = 1; prio < 16; prio++) { 4269 netdev_set_prio_tc_map(dev, prio, 1); 4270 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); 4271 } */ 4272 4273 /* configure traffic class to transmission queue mapping */ 4274 for (cos = 0; cos < bp->max_cos; cos++) { 4275 count = BNX2X_NUM_ETH_QUEUES(bp); 4276 offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); 4277 netdev_set_tc_queue(dev, cos, count, offset); 4278 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, 4279 "mapping tc %d to offset %d count %d\n", 4280 cos, offset, count); 4281 } 4282 4283 return 0; 4284 } 4285 4286 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type, 4287 void *type_data) 4288 { 4289 struct tc_mqprio_qopt *mqprio = type_data; 4290 4291 if (type != TC_SETUP_QDISC_MQPRIO) 4292 return -EOPNOTSUPP; 4293 4294 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4295 4296 return bnx2x_setup_tc(dev, mqprio->num_tc); 4297 } 4298 4299 /* called with rtnl_lock */ 4300 int bnx2x_change_mac_addr(struct net_device *dev, void *p) 4301 { 4302 struct sockaddr *addr = p; 4303 struct bnx2x *bp = netdev_priv(dev); 4304 int rc = 0; 4305 4306 if (!is_valid_ether_addr(addr->sa_data)) { 4307 BNX2X_ERR("Requested MAC address is not valid\n"); 4308 return -EINVAL; 4309 } 4310 4311 if (IS_MF_STORAGE_ONLY(bp)) { 4312 BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); 4313 return -EINVAL; 4314 } 4315 4316 if (netif_running(dev)) { 4317 rc = bnx2x_set_eth_mac(bp, false); 4318 if (rc) 4319 return rc; 4320 } 4321 4322 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 4323 4324 if (netif_running(dev)) 4325 rc = bnx2x_set_eth_mac(bp, true); 4326 4327 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4328 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4329 4330 return rc; 4331 } 4332 4333 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) 4334 { 4335 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); 4336 struct bnx2x_fastpath *fp = &bp->fp[fp_index]; 4337 u8 cos; 4338 4339 /* Common */ 4340 4341 if (IS_FCOE_IDX(fp_index)) { 4342 memset(sb, 0, sizeof(union host_hc_status_block)); 4343 fp->status_blk_mapping = 0; 4344 } else { 4345 /* status blocks */ 4346 if (!CHIP_IS_E1x(bp)) 4347 BNX2X_PCI_FREE(sb->e2_sb, 4348 bnx2x_fp(bp, fp_index, 4349 status_blk_mapping), 4350 sizeof(struct host_hc_status_block_e2)); 4351 else 4352 BNX2X_PCI_FREE(sb->e1x_sb, 4353 bnx2x_fp(bp, fp_index, 4354 status_blk_mapping), 4355 sizeof(struct host_hc_status_block_e1x)); 4356 } 4357 4358 /* Rx */ 4359 if (!skip_rx_queue(bp, fp_index)) { 4360 bnx2x_free_rx_bds(fp); 4361 4362 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4363 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); 4364 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), 4365 bnx2x_fp(bp, fp_index, rx_desc_mapping), 4366 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4367 4368 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), 4369 bnx2x_fp(bp, fp_index, rx_comp_mapping), 4370 sizeof(struct eth_fast_path_rx_cqe) * 4371 NUM_RCQ_BD); 4372 4373 /* SGE ring */ 4374 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); 4375 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), 4376 bnx2x_fp(bp, fp_index, rx_sge_mapping), 4377 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4378 } 4379 4380 /* Tx */ 4381 if (!skip_tx_queue(bp, fp_index)) { 4382 /* fastpath tx rings: tx_buf tx_desc */ 4383 for_each_cos_in_tx_queue(fp, cos) { 4384 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4385 4386 DP(NETIF_MSG_IFDOWN, 4387 "freeing tx memory of fp %d cos %d cid %d\n", 4388 fp_index, cos, txdata->cid); 4389 4390 BNX2X_FREE(txdata->tx_buf_ring); 4391 BNX2X_PCI_FREE(txdata->tx_desc_ring, 4392 txdata->tx_desc_mapping, 4393 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4394 } 4395 } 4396 /* end of fastpath */ 4397 } 4398 4399 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) 4400 { 4401 int i; 4402 for_each_cnic_queue(bp, i) 4403 bnx2x_free_fp_mem_at(bp, i); 4404 } 4405 4406 void bnx2x_free_fp_mem(struct bnx2x *bp) 4407 { 4408 int i; 4409 for_each_eth_queue(bp, i) 4410 bnx2x_free_fp_mem_at(bp, i); 4411 } 4412 4413 static void set_sb_shortcuts(struct bnx2x *bp, int index) 4414 { 4415 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); 4416 if (!CHIP_IS_E1x(bp)) { 4417 bnx2x_fp(bp, index, sb_index_values) = 4418 (__le16 *)status_blk.e2_sb->sb.index_values; 4419 bnx2x_fp(bp, index, sb_running_index) = 4420 (__le16 *)status_blk.e2_sb->sb.running_index; 4421 } else { 4422 bnx2x_fp(bp, index, sb_index_values) = 4423 (__le16 *)status_blk.e1x_sb->sb.index_values; 4424 bnx2x_fp(bp, index, sb_running_index) = 4425 (__le16 *)status_blk.e1x_sb->sb.running_index; 4426 } 4427 } 4428 4429 /* Returns the number of actually allocated BDs */ 4430 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, 4431 int rx_ring_size) 4432 { 4433 struct bnx2x *bp = fp->bp; 4434 u16 ring_prod, cqe_ring_prod; 4435 int i, failure_cnt = 0; 4436 4437 fp->rx_comp_cons = 0; 4438 cqe_ring_prod = ring_prod = 0; 4439 4440 /* This routine is called only during fo init so 4441 * fp->eth_q_stats.rx_skb_alloc_failed = 0 4442 */ 4443 for (i = 0; i < rx_ring_size; i++) { 4444 if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) { 4445 failure_cnt++; 4446 continue; 4447 } 4448 ring_prod = NEXT_RX_IDX(ring_prod); 4449 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); 4450 WARN_ON(ring_prod <= (i - failure_cnt)); 4451 } 4452 4453 if (failure_cnt) 4454 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", 4455 i - failure_cnt, fp->index); 4456 4457 fp->rx_bd_prod = ring_prod; 4458 /* Limit the CQE producer by the CQE ring size */ 4459 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, 4460 cqe_ring_prod); 4461 4462 bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; 4463 4464 return i - failure_cnt; 4465 } 4466 4467 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) 4468 { 4469 int i; 4470 4471 for (i = 1; i <= NUM_RCQ_RINGS; i++) { 4472 struct eth_rx_cqe_next_page *nextpg; 4473 4474 nextpg = (struct eth_rx_cqe_next_page *) 4475 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; 4476 nextpg->addr_hi = 4477 cpu_to_le32(U64_HI(fp->rx_comp_mapping + 4478 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4479 nextpg->addr_lo = 4480 cpu_to_le32(U64_LO(fp->rx_comp_mapping + 4481 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); 4482 } 4483 } 4484 4485 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) 4486 { 4487 union host_hc_status_block *sb; 4488 struct bnx2x_fastpath *fp = &bp->fp[index]; 4489 int ring_size = 0; 4490 u8 cos; 4491 int rx_ring_size = 0; 4492 4493 if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { 4494 rx_ring_size = MIN_RX_SIZE_NONTPA; 4495 bp->rx_ring_size = rx_ring_size; 4496 } else if (!bp->rx_ring_size) { 4497 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); 4498 4499 if (CHIP_IS_E3(bp)) { 4500 u32 cfg = SHMEM_RD(bp, 4501 dev_info.port_hw_config[BP_PORT(bp)]. 4502 default_cfg); 4503 4504 /* Decrease ring size for 1G functions */ 4505 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == 4506 PORT_HW_CFG_NET_SERDES_IF_SGMII) 4507 rx_ring_size /= 10; 4508 } 4509 4510 /* allocate at least number of buffers required by FW */ 4511 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA : 4512 MIN_RX_SIZE_TPA, rx_ring_size); 4513 4514 bp->rx_ring_size = rx_ring_size; 4515 } else /* if rx_ring_size specified - use it */ 4516 rx_ring_size = bp->rx_ring_size; 4517 4518 DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); 4519 4520 /* Common */ 4521 sb = &bnx2x_fp(bp, index, status_blk); 4522 4523 if (!IS_FCOE_IDX(index)) { 4524 /* status blocks */ 4525 if (!CHIP_IS_E1x(bp)) { 4526 sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4527 sizeof(struct host_hc_status_block_e2)); 4528 if (!sb->e2_sb) 4529 goto alloc_mem_err; 4530 } else { 4531 sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), 4532 sizeof(struct host_hc_status_block_e1x)); 4533 if (!sb->e1x_sb) 4534 goto alloc_mem_err; 4535 } 4536 } 4537 4538 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to 4539 * set shortcuts for it. 4540 */ 4541 if (!IS_FCOE_IDX(index)) 4542 set_sb_shortcuts(bp, index); 4543 4544 /* Tx */ 4545 if (!skip_tx_queue(bp, index)) { 4546 /* fastpath tx rings: tx_buf tx_desc */ 4547 for_each_cos_in_tx_queue(fp, cos) { 4548 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; 4549 4550 DP(NETIF_MSG_IFUP, 4551 "allocating tx memory of fp %d cos %d\n", 4552 index, cos); 4553 4554 txdata->tx_buf_ring = kcalloc(NUM_TX_BD, 4555 sizeof(struct sw_tx_bd), 4556 GFP_KERNEL); 4557 if (!txdata->tx_buf_ring) 4558 goto alloc_mem_err; 4559 txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, 4560 sizeof(union eth_tx_bd_types) * NUM_TX_BD); 4561 if (!txdata->tx_desc_ring) 4562 goto alloc_mem_err; 4563 } 4564 } 4565 4566 /* Rx */ 4567 if (!skip_rx_queue(bp, index)) { 4568 /* fastpath rx rings: rx_buf rx_desc rx_comp */ 4569 bnx2x_fp(bp, index, rx_buf_ring) = 4570 kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL); 4571 if (!bnx2x_fp(bp, index, rx_buf_ring)) 4572 goto alloc_mem_err; 4573 bnx2x_fp(bp, index, rx_desc_ring) = 4574 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), 4575 sizeof(struct eth_rx_bd) * NUM_RX_BD); 4576 if (!bnx2x_fp(bp, index, rx_desc_ring)) 4577 goto alloc_mem_err; 4578 4579 /* Seed all CQEs by 1s */ 4580 bnx2x_fp(bp, index, rx_comp_ring) = 4581 BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), 4582 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); 4583 if (!bnx2x_fp(bp, index, rx_comp_ring)) 4584 goto alloc_mem_err; 4585 4586 /* SGE ring */ 4587 bnx2x_fp(bp, index, rx_page_ring) = 4588 kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page), 4589 GFP_KERNEL); 4590 if (!bnx2x_fp(bp, index, rx_page_ring)) 4591 goto alloc_mem_err; 4592 bnx2x_fp(bp, index, rx_sge_ring) = 4593 BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), 4594 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); 4595 if (!bnx2x_fp(bp, index, rx_sge_ring)) 4596 goto alloc_mem_err; 4597 /* RX BD ring */ 4598 bnx2x_set_next_page_rx_bd(fp); 4599 4600 /* CQ ring */ 4601 bnx2x_set_next_page_rx_cq(fp); 4602 4603 /* BDs */ 4604 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); 4605 if (ring_size < rx_ring_size) 4606 goto alloc_mem_err; 4607 } 4608 4609 return 0; 4610 4611 /* handles low memory cases */ 4612 alloc_mem_err: 4613 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", 4614 index, ring_size); 4615 /* FW will drop all packets if queue is not big enough, 4616 * In these cases we disable the queue 4617 * Min size is different for OOO, TPA and non-TPA queues 4618 */ 4619 if (ring_size < (fp->mode == TPA_MODE_DISABLED ? 4620 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { 4621 /* release memory allocated for this queue */ 4622 bnx2x_free_fp_mem_at(bp, index); 4623 return -ENOMEM; 4624 } 4625 return 0; 4626 } 4627 4628 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) 4629 { 4630 if (!NO_FCOE(bp)) 4631 /* FCoE */ 4632 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) 4633 /* we will fail load process instead of mark 4634 * NO_FCOE_FLAG 4635 */ 4636 return -ENOMEM; 4637 4638 return 0; 4639 } 4640 4641 static int bnx2x_alloc_fp_mem(struct bnx2x *bp) 4642 { 4643 int i; 4644 4645 /* 1. Allocate FP for leading - fatal if error 4646 * 2. Allocate RSS - fix number of queues if error 4647 */ 4648 4649 /* leading */ 4650 if (bnx2x_alloc_fp_mem_at(bp, 0)) 4651 return -ENOMEM; 4652 4653 /* RSS */ 4654 for_each_nondefault_eth_queue(bp, i) 4655 if (bnx2x_alloc_fp_mem_at(bp, i)) 4656 break; 4657 4658 /* handle memory failures */ 4659 if (i != BNX2X_NUM_ETH_QUEUES(bp)) { 4660 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; 4661 4662 WARN_ON(delta < 0); 4663 bnx2x_shrink_eth_fp(bp, delta); 4664 if (CNIC_SUPPORT(bp)) 4665 /* move non eth FPs next to last eth FP 4666 * must be done in that order 4667 * FCOE_IDX < FWD_IDX < OOO_IDX 4668 */ 4669 4670 /* move FCoE fp even NO_FCOE_FLAG is on */ 4671 bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); 4672 bp->num_ethernet_queues -= delta; 4673 bp->num_queues = bp->num_ethernet_queues + 4674 bp->num_cnic_queues; 4675 BNX2X_ERR("Adjusted num of queues from %d to %d\n", 4676 bp->num_queues + delta, bp->num_queues); 4677 } 4678 4679 return 0; 4680 } 4681 4682 void bnx2x_free_mem_bp(struct bnx2x *bp) 4683 { 4684 int i; 4685 4686 for (i = 0; i < bp->fp_array_size; i++) 4687 kfree(bp->fp[i].tpa_info); 4688 kfree(bp->fp); 4689 kfree(bp->sp_objs); 4690 kfree(bp->fp_stats); 4691 kfree(bp->bnx2x_txq); 4692 kfree(bp->msix_table); 4693 kfree(bp->ilt); 4694 } 4695 4696 int bnx2x_alloc_mem_bp(struct bnx2x *bp) 4697 { 4698 struct bnx2x_fastpath *fp; 4699 struct msix_entry *tbl; 4700 struct bnx2x_ilt *ilt; 4701 int msix_table_size = 0; 4702 int fp_array_size, txq_array_size; 4703 int i; 4704 4705 /* 4706 * The biggest MSI-X table we might need is as a maximum number of fast 4707 * path IGU SBs plus default SB (for PF only). 4708 */ 4709 msix_table_size = bp->igu_sb_cnt; 4710 if (IS_PF(bp)) 4711 msix_table_size++; 4712 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); 4713 4714 /* fp array: RSS plus CNIC related L2 queues */ 4715 fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); 4716 bp->fp_array_size = fp_array_size; 4717 BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); 4718 4719 fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL); 4720 if (!fp) 4721 goto alloc_err; 4722 for (i = 0; i < bp->fp_array_size; i++) { 4723 fp[i].tpa_info = 4724 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2, 4725 sizeof(struct bnx2x_agg_info), GFP_KERNEL); 4726 if (!(fp[i].tpa_info)) 4727 goto alloc_err; 4728 } 4729 4730 bp->fp = fp; 4731 4732 /* allocate sp objs */ 4733 bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs), 4734 GFP_KERNEL); 4735 if (!bp->sp_objs) 4736 goto alloc_err; 4737 4738 /* allocate fp_stats */ 4739 bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats), 4740 GFP_KERNEL); 4741 if (!bp->fp_stats) 4742 goto alloc_err; 4743 4744 /* Allocate memory for the transmission queues array */ 4745 txq_array_size = 4746 BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); 4747 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); 4748 4749 bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata), 4750 GFP_KERNEL); 4751 if (!bp->bnx2x_txq) 4752 goto alloc_err; 4753 4754 /* msix table */ 4755 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL); 4756 if (!tbl) 4757 goto alloc_err; 4758 bp->msix_table = tbl; 4759 4760 /* ilt */ 4761 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); 4762 if (!ilt) 4763 goto alloc_err; 4764 bp->ilt = ilt; 4765 4766 return 0; 4767 alloc_err: 4768 bnx2x_free_mem_bp(bp); 4769 return -ENOMEM; 4770 } 4771 4772 int bnx2x_reload_if_running(struct net_device *dev) 4773 { 4774 struct bnx2x *bp = netdev_priv(dev); 4775 4776 if (unlikely(!netif_running(dev))) 4777 return 0; 4778 4779 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); 4780 return bnx2x_nic_load(bp, LOAD_NORMAL); 4781 } 4782 4783 int bnx2x_get_cur_phy_idx(struct bnx2x *bp) 4784 { 4785 u32 sel_phy_idx = 0; 4786 if (bp->link_params.num_phys <= 1) 4787 return INT_PHY; 4788 4789 if (bp->link_vars.link_up) { 4790 sel_phy_idx = EXT_PHY1; 4791 /* In case link is SERDES, check if the EXT_PHY2 is the one */ 4792 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 4793 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) 4794 sel_phy_idx = EXT_PHY2; 4795 } else { 4796 4797 switch (bnx2x_phy_selection(&bp->link_params)) { 4798 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 4799 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 4800 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 4801 sel_phy_idx = EXT_PHY1; 4802 break; 4803 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 4804 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 4805 sel_phy_idx = EXT_PHY2; 4806 break; 4807 } 4808 } 4809 4810 return sel_phy_idx; 4811 } 4812 int bnx2x_get_link_cfg_idx(struct bnx2x *bp) 4813 { 4814 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp); 4815 /* 4816 * The selected activated PHY is always after swapping (in case PHY 4817 * swapping is enabled). So when swapping is enabled, we need to reverse 4818 * the configuration 4819 */ 4820 4821 if (bp->link_params.multi_phy_config & 4822 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 4823 if (sel_phy_idx == EXT_PHY1) 4824 sel_phy_idx = EXT_PHY2; 4825 else if (sel_phy_idx == EXT_PHY2) 4826 sel_phy_idx = EXT_PHY1; 4827 } 4828 return LINK_CONFIG_IDX(sel_phy_idx); 4829 } 4830 4831 #ifdef NETDEV_FCOE_WWNN 4832 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type) 4833 { 4834 struct bnx2x *bp = netdev_priv(dev); 4835 struct cnic_eth_dev *cp = &bp->cnic_eth_dev; 4836 4837 switch (type) { 4838 case NETDEV_FCOE_WWNN: 4839 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, 4840 cp->fcoe_wwn_node_name_lo); 4841 break; 4842 case NETDEV_FCOE_WWPN: 4843 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, 4844 cp->fcoe_wwn_port_name_lo); 4845 break; 4846 default: 4847 BNX2X_ERR("Wrong WWN type requested - %d\n", type); 4848 return -EINVAL; 4849 } 4850 4851 return 0; 4852 } 4853 #endif 4854 4855 /* called with rtnl_lock */ 4856 int bnx2x_change_mtu(struct net_device *dev, int new_mtu) 4857 { 4858 struct bnx2x *bp = netdev_priv(dev); 4859 4860 if (pci_num_vf(bp->pdev)) { 4861 DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n"); 4862 return -EPERM; 4863 } 4864 4865 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 4866 BNX2X_ERR("Can't perform change MTU during parity recovery\n"); 4867 return -EAGAIN; 4868 } 4869 4870 /* This does not race with packet allocation 4871 * because the actual alloc size is 4872 * only updated as part of load 4873 */ 4874 dev->mtu = new_mtu; 4875 4876 if (!bnx2x_mtu_allows_gro(new_mtu)) 4877 dev->features &= ~NETIF_F_GRO_HW; 4878 4879 if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg)) 4880 SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS); 4881 4882 return bnx2x_reload_if_running(dev); 4883 } 4884 4885 netdev_features_t bnx2x_fix_features(struct net_device *dev, 4886 netdev_features_t features) 4887 { 4888 struct bnx2x *bp = netdev_priv(dev); 4889 4890 if (pci_num_vf(bp->pdev)) { 4891 netdev_features_t changed = dev->features ^ features; 4892 4893 /* Revert the requested changes in features if they 4894 * would require internal reload of PF in bnx2x_set_features(). 4895 */ 4896 if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) { 4897 features &= ~NETIF_F_RXCSUM; 4898 features |= dev->features & NETIF_F_RXCSUM; 4899 } 4900 4901 if (changed & NETIF_F_LOOPBACK) { 4902 features &= ~NETIF_F_LOOPBACK; 4903 features |= dev->features & NETIF_F_LOOPBACK; 4904 } 4905 } 4906 4907 /* TPA requires Rx CSUM offloading */ 4908 if (!(features & NETIF_F_RXCSUM)) 4909 features &= ~NETIF_F_LRO; 4910 4911 if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu)) 4912 features &= ~NETIF_F_GRO_HW; 4913 if (features & NETIF_F_GRO_HW) 4914 features &= ~NETIF_F_LRO; 4915 4916 return features; 4917 } 4918 4919 int bnx2x_set_features(struct net_device *dev, netdev_features_t features) 4920 { 4921 struct bnx2x *bp = netdev_priv(dev); 4922 netdev_features_t changes = features ^ dev->features; 4923 bool bnx2x_reload = false; 4924 int rc; 4925 4926 /* VFs or non SRIOV PFs should be able to change loopback feature */ 4927 if (!pci_num_vf(bp->pdev)) { 4928 if (features & NETIF_F_LOOPBACK) { 4929 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { 4930 bp->link_params.loopback_mode = LOOPBACK_BMAC; 4931 bnx2x_reload = true; 4932 } 4933 } else { 4934 if (bp->link_params.loopback_mode != LOOPBACK_NONE) { 4935 bp->link_params.loopback_mode = LOOPBACK_NONE; 4936 bnx2x_reload = true; 4937 } 4938 } 4939 } 4940 4941 /* Don't care about GRO changes */ 4942 changes &= ~NETIF_F_GRO; 4943 4944 if (changes) 4945 bnx2x_reload = true; 4946 4947 if (bnx2x_reload) { 4948 if (bp->recovery_state == BNX2X_RECOVERY_DONE) { 4949 dev->features = features; 4950 rc = bnx2x_reload_if_running(dev); 4951 return rc ? rc : 1; 4952 } 4953 /* else: bnx2x_nic_load() will be called at end of recovery */ 4954 } 4955 4956 return 0; 4957 } 4958 4959 void bnx2x_tx_timeout(struct net_device *dev) 4960 { 4961 struct bnx2x *bp = netdev_priv(dev); 4962 4963 #ifdef BNX2X_STOP_ON_ERROR 4964 if (!bp->panic) 4965 bnx2x_panic(); 4966 #endif 4967 4968 /* This allows the netif to be shutdown gracefully before resetting */ 4969 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); 4970 } 4971 4972 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) 4973 { 4974 struct net_device *dev = pci_get_drvdata(pdev); 4975 struct bnx2x *bp; 4976 4977 if (!dev) { 4978 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 4979 return -ENODEV; 4980 } 4981 bp = netdev_priv(dev); 4982 4983 rtnl_lock(); 4984 4985 pci_save_state(pdev); 4986 4987 if (!netif_running(dev)) { 4988 rtnl_unlock(); 4989 return 0; 4990 } 4991 4992 netif_device_detach(dev); 4993 4994 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); 4995 4996 bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); 4997 4998 rtnl_unlock(); 4999 5000 return 0; 5001 } 5002 5003 int bnx2x_resume(struct pci_dev *pdev) 5004 { 5005 struct net_device *dev = pci_get_drvdata(pdev); 5006 struct bnx2x *bp; 5007 int rc; 5008 5009 if (!dev) { 5010 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); 5011 return -ENODEV; 5012 } 5013 bp = netdev_priv(dev); 5014 5015 if (bp->recovery_state != BNX2X_RECOVERY_DONE) { 5016 BNX2X_ERR("Handling parity error recovery. Try again later\n"); 5017 return -EAGAIN; 5018 } 5019 5020 rtnl_lock(); 5021 5022 pci_restore_state(pdev); 5023 5024 if (!netif_running(dev)) { 5025 rtnl_unlock(); 5026 return 0; 5027 } 5028 5029 bnx2x_set_power_state(bp, PCI_D0); 5030 netif_device_attach(dev); 5031 5032 rc = bnx2x_nic_load(bp, LOAD_OPEN); 5033 5034 rtnl_unlock(); 5035 5036 return rc; 5037 } 5038 5039 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, 5040 u32 cid) 5041 { 5042 if (!cxt) { 5043 BNX2X_ERR("bad context pointer %p\n", cxt); 5044 return; 5045 } 5046 5047 /* ustorm cxt validation */ 5048 cxt->ustorm_ag_context.cdu_usage = 5049 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5050 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 5051 /* xcontext validation */ 5052 cxt->xstorm_ag_context.cdu_reserved = 5053 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), 5054 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 5055 } 5056 5057 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port, 5058 u8 fw_sb_id, u8 sb_index, 5059 u8 ticks) 5060 { 5061 u32 addr = BAR_CSTRORM_INTMEM + 5062 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); 5063 REG_WR8(bp, addr, ticks); 5064 DP(NETIF_MSG_IFUP, 5065 "port %x fw_sb_id %d sb_index %d ticks %d\n", 5066 port, fw_sb_id, sb_index, ticks); 5067 } 5068 5069 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port, 5070 u16 fw_sb_id, u8 sb_index, 5071 u8 disable) 5072 { 5073 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 5074 u32 addr = BAR_CSTRORM_INTMEM + 5075 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); 5076 u8 flags = REG_RD8(bp, addr); 5077 /* clear and set */ 5078 flags &= ~HC_INDEX_DATA_HC_ENABLED; 5079 flags |= enable_flag; 5080 REG_WR8(bp, addr, flags); 5081 DP(NETIF_MSG_IFUP, 5082 "port %x fw_sb_id %d sb_index %d disable %d\n", 5083 port, fw_sb_id, sb_index, disable); 5084 } 5085 5086 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, 5087 u8 sb_index, u8 disable, u16 usec) 5088 { 5089 int port = BP_PORT(bp); 5090 u8 ticks = usec / BNX2X_BTR; 5091 5092 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); 5093 5094 disable = disable ? 1 : (usec ? 0 : 1); 5095 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); 5096 } 5097 5098 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, 5099 u32 verbose) 5100 { 5101 smp_mb__before_atomic(); 5102 set_bit(flag, &bp->sp_rtnl_state); 5103 smp_mb__after_atomic(); 5104 DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", 5105 flag); 5106 schedule_delayed_work(&bp->sp_rtnl_task, 0); 5107 } 5108