xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/gro.h>
29 #include <net/ipv6.h>
30 #include <net/ip6_checksum.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35 
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40 
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 	int i;
44 
45 	/* Add NAPI objects */
46 	for_each_rx_queue_cnic(bp, i) {
47 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 			       bnx2x_poll, NAPI_POLL_WEIGHT);
49 	}
50 }
51 
52 static void bnx2x_add_all_napi(struct bnx2x *bp)
53 {
54 	int i;
55 
56 	/* Add NAPI objects */
57 	for_each_eth_queue(bp, i) {
58 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 			       bnx2x_poll, NAPI_POLL_WEIGHT);
60 	}
61 }
62 
63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
64 {
65 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
66 
67 	/* Reduce memory usage in kdump environment by using only one queue */
68 	if (is_kdump_kernel())
69 		nq = 1;
70 
71 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 	return nq;
73 }
74 
75 /**
76  * bnx2x_move_fp - move content of the fastpath structure.
77  *
78  * @bp:		driver handle
79  * @from:	source FP index
80  * @to:		destination FP index
81  *
82  * Makes sure the contents of the bp->fp[to].napi is kept
83  * intact. This is done by first copying the napi struct from
84  * the target to the source, and then mem copying the entire
85  * source onto the target. Update txdata pointers and related
86  * content.
87  */
88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
89 {
90 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 	int old_max_eth_txqs, new_max_eth_txqs;
97 	int old_txdata_index = 0, new_txdata_index = 0;
98 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
99 
100 	/* Copy the NAPI object as it has been already initialized */
101 	from_fp->napi = to_fp->napi;
102 
103 	/* Move bnx2x_fastpath contents */
104 	memcpy(to_fp, from_fp, sizeof(*to_fp));
105 	to_fp->index = to;
106 
107 	/* Retain the tpa_info of the original `to' version as we don't want
108 	 * 2 FPs to contain the same tpa_info pointer.
109 	 */
110 	to_fp->tpa_info = old_tpa_info;
111 
112 	/* move sp_objs contents as well, as their indices match fp ones */
113 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
114 
115 	/* move fp_stats contents as well, as their indices match fp ones */
116 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
117 
118 	/* Update txdata pointers in fp and move txdata content accordingly:
119 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 	 * decremented by max_cos x delta.
121 	 */
122 
123 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 				(bp)->max_cos;
126 	if (from == FCOE_IDX(bp)) {
127 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
129 	}
130 
131 	memcpy(&bp->bnx2x_txq[new_txdata_index],
132 	       &bp->bnx2x_txq[old_txdata_index],
133 	       sizeof(struct bnx2x_fp_txdata));
134 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
135 }
136 
137 /**
138  * bnx2x_fill_fw_str - Fill buffer with FW version string.
139  *
140  * @bp:        driver handle
141  * @buf:       character buffer to fill with the fw name
142  * @buf_len:   length of the above buffer
143  *
144  */
145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
146 {
147 	if (IS_PF(bp)) {
148 		u8 phy_fw_ver[PHY_FW_VER_LEN];
149 
150 		phy_fw_ver[0] = '\0';
151 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 					     phy_fw_ver, PHY_FW_VER_LEN);
153 		strlcpy(buf, bp->fw_ver, buf_len);
154 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 			 "bc %d.%d.%d%s%s",
156 			 (bp->common.bc_ver & 0xff0000) >> 16,
157 			 (bp->common.bc_ver & 0xff00) >> 8,
158 			 (bp->common.bc_ver & 0xff),
159 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 	} else {
161 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
162 	}
163 }
164 
165 /**
166  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
167  *
168  * @bp:	driver handle
169  * @delta:	number of eth queues which were not allocated
170  */
171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
172 {
173 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
174 
175 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 	 * backward along the array could cause memory to be overridden
177 	 */
178 	for (cos = 1; cos < bp->max_cos; cos++) {
179 		for (i = 0; i < old_eth_num - delta; i++) {
180 			struct bnx2x_fastpath *fp = &bp->fp[i];
181 			int new_idx = cos * (old_eth_num - delta) + i;
182 
183 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 			       sizeof(struct bnx2x_fp_txdata));
185 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
186 		}
187 	}
188 }
189 
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191 
192 /* free skb in the packet ring at pos idx
193  * return idx of last bd freed
194  */
195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 			     u16 idx, unsigned int *pkts_compl,
197 			     unsigned int *bytes_compl)
198 {
199 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 	struct eth_tx_start_bd *tx_start_bd;
201 	struct eth_tx_bd *tx_data_bd;
202 	struct sk_buff *skb = tx_buf->skb;
203 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 	int nbd;
205 	u16 split_bd_len = 0;
206 
207 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
208 	prefetch(&skb->end);
209 
210 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
211 	   txdata->txq_index, idx, tx_buf, skb);
212 
213 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
214 
215 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 		BNX2X_ERR("BAD nbd!\n");
219 		bnx2x_panic();
220 	}
221 #endif
222 	new_cons = nbd + tx_buf->first_bd;
223 
224 	/* Get the next bd */
225 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
226 
227 	/* Skip a parse bd... */
228 	--nbd;
229 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
230 
231 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 		/* Skip second parse bd... */
233 		--nbd;
234 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
235 	}
236 
237 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 		--nbd;
242 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
243 	}
244 
245 	/* unmap first bd */
246 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 			 DMA_TO_DEVICE);
249 
250 	/* now free frags */
251 	while (nbd > 0) {
252 
253 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 		if (--nbd)
257 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
258 	}
259 
260 	/* release skb */
261 	WARN_ON(!skb);
262 	if (likely(skb)) {
263 		(*pkts_compl)++;
264 		(*bytes_compl) += skb->len;
265 		dev_kfree_skb_any(skb);
266 	}
267 
268 	tx_buf->first_bd = 0;
269 	tx_buf->skb = NULL;
270 
271 	return new_cons;
272 }
273 
274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
275 {
276 	struct netdev_queue *txq;
277 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 	unsigned int pkts_compl = 0, bytes_compl = 0;
279 
280 #ifdef BNX2X_STOP_ON_ERROR
281 	if (unlikely(bp->panic))
282 		return -1;
283 #endif
284 
285 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 	sw_cons = txdata->tx_pkt_cons;
288 
289 	/* Ensure subsequent loads occur after hw_cons */
290 	smp_rmb();
291 
292 	while (sw_cons != hw_cons) {
293 		u16 pkt_cons;
294 
295 		pkt_cons = TX_BD(sw_cons);
296 
297 		DP(NETIF_MSG_TX_DONE,
298 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
299 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
300 
301 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
302 					    &pkts_compl, &bytes_compl);
303 
304 		sw_cons++;
305 	}
306 
307 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
308 
309 	txdata->tx_pkt_cons = sw_cons;
310 	txdata->tx_bd_cons = bd_cons;
311 
312 	/* Need to make the tx_bd_cons update visible to start_xmit()
313 	 * before checking for netif_tx_queue_stopped().  Without the
314 	 * memory barrier, there is a small possibility that
315 	 * start_xmit() will miss it and cause the queue to be stopped
316 	 * forever.
317 	 * On the other hand we need an rmb() here to ensure the proper
318 	 * ordering of bit testing in the following
319 	 * netif_tx_queue_stopped(txq) call.
320 	 */
321 	smp_mb();
322 
323 	if (unlikely(netif_tx_queue_stopped(txq))) {
324 		/* Taking tx_lock() is needed to prevent re-enabling the queue
325 		 * while it's empty. This could have happen if rx_action() gets
326 		 * suspended in bnx2x_tx_int() after the condition before
327 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
328 		 *
329 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
330 		 * sends some packets consuming the whole queue again->
331 		 * stops the queue
332 		 */
333 
334 		__netif_tx_lock(txq, smp_processor_id());
335 
336 		if ((netif_tx_queue_stopped(txq)) &&
337 		    (bp->state == BNX2X_STATE_OPEN) &&
338 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
339 			netif_tx_wake_queue(txq);
340 
341 		__netif_tx_unlock(txq);
342 	}
343 	return 0;
344 }
345 
346 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
347 					     u16 idx)
348 {
349 	u16 last_max = fp->last_max_sge;
350 
351 	if (SUB_S16(idx, last_max) > 0)
352 		fp->last_max_sge = idx;
353 }
354 
355 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
356 					 u16 sge_len,
357 					 struct eth_end_agg_rx_cqe *cqe)
358 {
359 	struct bnx2x *bp = fp->bp;
360 	u16 last_max, last_elem, first_elem;
361 	u16 delta = 0;
362 	u16 i;
363 
364 	if (!sge_len)
365 		return;
366 
367 	/* First mark all used pages */
368 	for (i = 0; i < sge_len; i++)
369 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
370 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
371 
372 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
373 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
374 
375 	/* Here we assume that the last SGE index is the biggest */
376 	prefetch((void *)(fp->sge_mask));
377 	bnx2x_update_last_max_sge(fp,
378 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
379 
380 	last_max = RX_SGE(fp->last_max_sge);
381 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
382 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
383 
384 	/* If ring is not full */
385 	if (last_elem + 1 != first_elem)
386 		last_elem++;
387 
388 	/* Now update the prod */
389 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
390 		if (likely(fp->sge_mask[i]))
391 			break;
392 
393 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
394 		delta += BIT_VEC64_ELEM_SZ;
395 	}
396 
397 	if (delta > 0) {
398 		fp->rx_sge_prod += delta;
399 		/* clear page-end entries */
400 		bnx2x_clear_sge_mask_next_elems(fp);
401 	}
402 
403 	DP(NETIF_MSG_RX_STATUS,
404 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
405 	   fp->last_max_sge, fp->rx_sge_prod);
406 }
407 
408 /* Get Toeplitz hash value in the skb using the value from the
409  * CQE (calculated by HW).
410  */
411 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
412 			    const struct eth_fast_path_rx_cqe *cqe,
413 			    enum pkt_hash_types *rxhash_type)
414 {
415 	/* Get Toeplitz hash from CQE */
416 	if ((bp->dev->features & NETIF_F_RXHASH) &&
417 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
418 		enum eth_rss_hash_type htype;
419 
420 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
421 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
422 				(htype == TCP_IPV6_HASH_TYPE)) ?
423 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
424 
425 		return le32_to_cpu(cqe->rss_hash_result);
426 	}
427 	*rxhash_type = PKT_HASH_TYPE_NONE;
428 	return 0;
429 }
430 
431 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
432 			    u16 cons, u16 prod,
433 			    struct eth_fast_path_rx_cqe *cqe)
434 {
435 	struct bnx2x *bp = fp->bp;
436 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
437 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
438 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
439 	dma_addr_t mapping;
440 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
441 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
442 
443 	/* print error if current state != stop */
444 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
445 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
446 
447 	/* Try to map an empty data buffer from the aggregation info  */
448 	mapping = dma_map_single(&bp->pdev->dev,
449 				 first_buf->data + NET_SKB_PAD,
450 				 fp->rx_buf_size, DMA_FROM_DEVICE);
451 	/*
452 	 *  ...if it fails - move the skb from the consumer to the producer
453 	 *  and set the current aggregation state as ERROR to drop it
454 	 *  when TPA_STOP arrives.
455 	 */
456 
457 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
458 		/* Move the BD from the consumer to the producer */
459 		bnx2x_reuse_rx_data(fp, cons, prod);
460 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
461 		return;
462 	}
463 
464 	/* move empty data from pool to prod */
465 	prod_rx_buf->data = first_buf->data;
466 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
467 	/* point prod_bd to new data */
468 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
469 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
470 
471 	/* move partial skb from cons to pool (don't unmap yet) */
472 	*first_buf = *cons_rx_buf;
473 
474 	/* mark bin state as START */
475 	tpa_info->parsing_flags =
476 		le16_to_cpu(cqe->pars_flags.flags);
477 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
478 	tpa_info->tpa_state = BNX2X_TPA_START;
479 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
480 	tpa_info->placement_offset = cqe->placement_offset;
481 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
482 	if (fp->mode == TPA_MODE_GRO) {
483 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
484 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
485 		tpa_info->gro_size = gro_size;
486 	}
487 
488 #ifdef BNX2X_STOP_ON_ERROR
489 	fp->tpa_queue_used |= (1 << queue);
490 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
491 	   fp->tpa_queue_used);
492 #endif
493 }
494 
495 /* Timestamp option length allowed for TPA aggregation:
496  *
497  *		nop nop kind length echo val
498  */
499 #define TPA_TSTAMP_OPT_LEN	12
500 /**
501  * bnx2x_set_gro_params - compute GRO values
502  *
503  * @skb:		packet skb
504  * @parsing_flags:	parsing flags from the START CQE
505  * @len_on_bd:		total length of the first packet for the
506  *			aggregation.
507  * @pkt_len:		length of all segments
508  * @num_of_coalesced_segs: count of segments
509  *
510  * Approximate value of the MSS for this aggregation calculated using
511  * the first packet of it.
512  * Compute number of aggregated segments, and gso_type.
513  */
514 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
515 				 u16 len_on_bd, unsigned int pkt_len,
516 				 u16 num_of_coalesced_segs)
517 {
518 	/* TPA aggregation won't have either IP options or TCP options
519 	 * other than timestamp or IPv6 extension headers.
520 	 */
521 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
522 
523 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
524 	    PRS_FLAG_OVERETH_IPV6) {
525 		hdrs_len += sizeof(struct ipv6hdr);
526 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
527 	} else {
528 		hdrs_len += sizeof(struct iphdr);
529 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
530 	}
531 
532 	/* Check if there was a TCP timestamp, if there is it's will
533 	 * always be 12 bytes length: nop nop kind length echo val.
534 	 *
535 	 * Otherwise FW would close the aggregation.
536 	 */
537 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
538 		hdrs_len += TPA_TSTAMP_OPT_LEN;
539 
540 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
541 
542 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
543 	 * to skb_shinfo(skb)->gso_segs
544 	 */
545 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
546 }
547 
548 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
549 			      u16 index, gfp_t gfp_mask)
550 {
551 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
552 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
553 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
554 	dma_addr_t mapping;
555 
556 	if (!pool->page) {
557 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
558 		if (unlikely(!pool->page))
559 			return -ENOMEM;
560 
561 		pool->offset = 0;
562 	}
563 
564 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
565 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
566 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
567 		BNX2X_ERR("Can't map sge\n");
568 		return -ENOMEM;
569 	}
570 
571 	sw_buf->page = pool->page;
572 	sw_buf->offset = pool->offset;
573 
574 	dma_unmap_addr_set(sw_buf, mapping, mapping);
575 
576 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
577 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
578 
579 	pool->offset += SGE_PAGE_SIZE;
580 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
581 		get_page(pool->page);
582 	else
583 		pool->page = NULL;
584 	return 0;
585 }
586 
587 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
588 			       struct bnx2x_agg_info *tpa_info,
589 			       u16 pages,
590 			       struct sk_buff *skb,
591 			       struct eth_end_agg_rx_cqe *cqe,
592 			       u16 cqe_idx)
593 {
594 	struct sw_rx_page *rx_pg, old_rx_pg;
595 	u32 i, frag_len, frag_size;
596 	int err, j, frag_id = 0;
597 	u16 len_on_bd = tpa_info->len_on_bd;
598 	u16 full_page = 0, gro_size = 0;
599 
600 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
601 
602 	if (fp->mode == TPA_MODE_GRO) {
603 		gro_size = tpa_info->gro_size;
604 		full_page = tpa_info->full_page;
605 	}
606 
607 	/* This is needed in order to enable forwarding support */
608 	if (frag_size)
609 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
610 				     le16_to_cpu(cqe->pkt_len),
611 				     le16_to_cpu(cqe->num_of_coalesced_segs));
612 
613 #ifdef BNX2X_STOP_ON_ERROR
614 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
615 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
616 			  pages, cqe_idx);
617 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
618 		bnx2x_panic();
619 		return -EINVAL;
620 	}
621 #endif
622 
623 	/* Run through the SGL and compose the fragmented skb */
624 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
625 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
626 
627 		/* FW gives the indices of the SGE as if the ring is an array
628 		   (meaning that "next" element will consume 2 indices) */
629 		if (fp->mode == TPA_MODE_GRO)
630 			frag_len = min_t(u32, frag_size, (u32)full_page);
631 		else /* LRO */
632 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
633 
634 		rx_pg = &fp->rx_page_ring[sge_idx];
635 		old_rx_pg = *rx_pg;
636 
637 		/* If we fail to allocate a substitute page, we simply stop
638 		   where we are and drop the whole packet */
639 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
640 		if (unlikely(err)) {
641 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
642 			return err;
643 		}
644 
645 		dma_unmap_page(&bp->pdev->dev,
646 			       dma_unmap_addr(&old_rx_pg, mapping),
647 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
648 		/* Add one frag and update the appropriate fields in the skb */
649 		if (fp->mode == TPA_MODE_LRO)
650 			skb_fill_page_desc(skb, j, old_rx_pg.page,
651 					   old_rx_pg.offset, frag_len);
652 		else { /* GRO */
653 			int rem;
654 			int offset = 0;
655 			for (rem = frag_len; rem > 0; rem -= gro_size) {
656 				int len = rem > gro_size ? gro_size : rem;
657 				skb_fill_page_desc(skb, frag_id++,
658 						   old_rx_pg.page,
659 						   old_rx_pg.offset + offset,
660 						   len);
661 				if (offset)
662 					get_page(old_rx_pg.page);
663 				offset += len;
664 			}
665 		}
666 
667 		skb->data_len += frag_len;
668 		skb->truesize += SGE_PAGES;
669 		skb->len += frag_len;
670 
671 		frag_size -= frag_len;
672 	}
673 
674 	return 0;
675 }
676 
677 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
678 {
679 	if (fp->rx_frag_size)
680 		skb_free_frag(data);
681 	else
682 		kfree(data);
683 }
684 
685 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
686 {
687 	if (fp->rx_frag_size) {
688 		/* GFP_KERNEL allocations are used only during initialization */
689 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
690 			return (void *)__get_free_page(gfp_mask);
691 
692 		return napi_alloc_frag(fp->rx_frag_size);
693 	}
694 
695 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
696 }
697 
698 #ifdef CONFIG_INET
699 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
700 {
701 	const struct iphdr *iph = ip_hdr(skb);
702 	struct tcphdr *th;
703 
704 	skb_set_transport_header(skb, sizeof(struct iphdr));
705 	th = tcp_hdr(skb);
706 
707 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
708 				  iph->saddr, iph->daddr, 0);
709 }
710 
711 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
712 {
713 	struct ipv6hdr *iph = ipv6_hdr(skb);
714 	struct tcphdr *th;
715 
716 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
717 	th = tcp_hdr(skb);
718 
719 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
720 				  &iph->saddr, &iph->daddr, 0);
721 }
722 
723 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
724 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
725 {
726 	skb_reset_network_header(skb);
727 	gro_func(bp, skb);
728 	tcp_gro_complete(skb);
729 }
730 #endif
731 
732 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
733 			       struct sk_buff *skb)
734 {
735 #ifdef CONFIG_INET
736 	if (skb_shinfo(skb)->gso_size) {
737 		switch (be16_to_cpu(skb->protocol)) {
738 		case ETH_P_IP:
739 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
740 			break;
741 		case ETH_P_IPV6:
742 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
743 			break;
744 		default:
745 			netdev_WARN_ONCE(bp->dev,
746 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
747 					 be16_to_cpu(skb->protocol));
748 		}
749 	}
750 #endif
751 	skb_record_rx_queue(skb, fp->rx_queue);
752 	napi_gro_receive(&fp->napi, skb);
753 }
754 
755 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
756 			   struct bnx2x_agg_info *tpa_info,
757 			   u16 pages,
758 			   struct eth_end_agg_rx_cqe *cqe,
759 			   u16 cqe_idx)
760 {
761 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
762 	u8 pad = tpa_info->placement_offset;
763 	u16 len = tpa_info->len_on_bd;
764 	struct sk_buff *skb = NULL;
765 	u8 *new_data, *data = rx_buf->data;
766 	u8 old_tpa_state = tpa_info->tpa_state;
767 
768 	tpa_info->tpa_state = BNX2X_TPA_STOP;
769 
770 	/* If we there was an error during the handling of the TPA_START -
771 	 * drop this aggregation.
772 	 */
773 	if (old_tpa_state == BNX2X_TPA_ERROR)
774 		goto drop;
775 
776 	/* Try to allocate the new data */
777 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
778 	/* Unmap skb in the pool anyway, as we are going to change
779 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
780 	   fails. */
781 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
782 			 fp->rx_buf_size, DMA_FROM_DEVICE);
783 	if (likely(new_data))
784 		skb = build_skb(data, fp->rx_frag_size);
785 
786 	if (likely(skb)) {
787 #ifdef BNX2X_STOP_ON_ERROR
788 		if (pad + len > fp->rx_buf_size) {
789 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
790 				  pad, len, fp->rx_buf_size);
791 			bnx2x_panic();
792 			return;
793 		}
794 #endif
795 
796 		skb_reserve(skb, pad + NET_SKB_PAD);
797 		skb_put(skb, len);
798 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
799 
800 		skb->protocol = eth_type_trans(skb, bp->dev);
801 		skb->ip_summed = CHECKSUM_UNNECESSARY;
802 
803 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
804 					 skb, cqe, cqe_idx)) {
805 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
806 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
807 			bnx2x_gro_receive(bp, fp, skb);
808 		} else {
809 			DP(NETIF_MSG_RX_STATUS,
810 			   "Failed to allocate new pages - dropping packet!\n");
811 			dev_kfree_skb_any(skb);
812 		}
813 
814 		/* put new data in bin */
815 		rx_buf->data = new_data;
816 
817 		return;
818 	}
819 	if (new_data)
820 		bnx2x_frag_free(fp, new_data);
821 drop:
822 	/* drop the packet and keep the buffer in the bin */
823 	DP(NETIF_MSG_RX_STATUS,
824 	   "Failed to allocate or map a new skb - dropping packet!\n");
825 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
826 }
827 
828 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
829 			       u16 index, gfp_t gfp_mask)
830 {
831 	u8 *data;
832 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
833 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
834 	dma_addr_t mapping;
835 
836 	data = bnx2x_frag_alloc(fp, gfp_mask);
837 	if (unlikely(data == NULL))
838 		return -ENOMEM;
839 
840 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
841 				 fp->rx_buf_size,
842 				 DMA_FROM_DEVICE);
843 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
844 		bnx2x_frag_free(fp, data);
845 		BNX2X_ERR("Can't map rx data\n");
846 		return -ENOMEM;
847 	}
848 
849 	rx_buf->data = data;
850 	dma_unmap_addr_set(rx_buf, mapping, mapping);
851 
852 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
853 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
854 
855 	return 0;
856 }
857 
858 static
859 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
860 				 struct bnx2x_fastpath *fp,
861 				 struct bnx2x_eth_q_stats *qstats)
862 {
863 	/* Do nothing if no L4 csum validation was done.
864 	 * We do not check whether IP csum was validated. For IPv4 we assume
865 	 * that if the card got as far as validating the L4 csum, it also
866 	 * validated the IP csum. IPv6 has no IP csum.
867 	 */
868 	if (cqe->fast_path_cqe.status_flags &
869 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
870 		return;
871 
872 	/* If L4 validation was done, check if an error was found. */
873 
874 	if (cqe->fast_path_cqe.type_error_flags &
875 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
876 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
877 		qstats->hw_csum_err++;
878 	else
879 		skb->ip_summed = CHECKSUM_UNNECESSARY;
880 }
881 
882 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
883 {
884 	struct bnx2x *bp = fp->bp;
885 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
886 	u16 sw_comp_cons, sw_comp_prod;
887 	int rx_pkt = 0;
888 	union eth_rx_cqe *cqe;
889 	struct eth_fast_path_rx_cqe *cqe_fp;
890 
891 #ifdef BNX2X_STOP_ON_ERROR
892 	if (unlikely(bp->panic))
893 		return 0;
894 #endif
895 	if (budget <= 0)
896 		return rx_pkt;
897 
898 	bd_cons = fp->rx_bd_cons;
899 	bd_prod = fp->rx_bd_prod;
900 	bd_prod_fw = bd_prod;
901 	sw_comp_cons = fp->rx_comp_cons;
902 	sw_comp_prod = fp->rx_comp_prod;
903 
904 	comp_ring_cons = RCQ_BD(sw_comp_cons);
905 	cqe = &fp->rx_comp_ring[comp_ring_cons];
906 	cqe_fp = &cqe->fast_path_cqe;
907 
908 	DP(NETIF_MSG_RX_STATUS,
909 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
910 
911 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
912 		struct sw_rx_bd *rx_buf = NULL;
913 		struct sk_buff *skb;
914 		u8 cqe_fp_flags;
915 		enum eth_rx_cqe_type cqe_fp_type;
916 		u16 len, pad, queue;
917 		u8 *data;
918 		u32 rxhash;
919 		enum pkt_hash_types rxhash_type;
920 
921 #ifdef BNX2X_STOP_ON_ERROR
922 		if (unlikely(bp->panic))
923 			return 0;
924 #endif
925 
926 		bd_prod = RX_BD(bd_prod);
927 		bd_cons = RX_BD(bd_cons);
928 
929 		/* A rmb() is required to ensure that the CQE is not read
930 		 * before it is written by the adapter DMA.  PCI ordering
931 		 * rules will make sure the other fields are written before
932 		 * the marker at the end of struct eth_fast_path_rx_cqe
933 		 * but without rmb() a weakly ordered processor can process
934 		 * stale data.  Without the barrier TPA state-machine might
935 		 * enter inconsistent state and kernel stack might be
936 		 * provided with incorrect packet description - these lead
937 		 * to various kernel crashed.
938 		 */
939 		rmb();
940 
941 		cqe_fp_flags = cqe_fp->type_error_flags;
942 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
943 
944 		DP(NETIF_MSG_RX_STATUS,
945 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
946 		   CQE_TYPE(cqe_fp_flags),
947 		   cqe_fp_flags, cqe_fp->status_flags,
948 		   le32_to_cpu(cqe_fp->rss_hash_result),
949 		   le16_to_cpu(cqe_fp->vlan_tag),
950 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
951 
952 		/* is this a slowpath msg? */
953 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
954 			bnx2x_sp_event(fp, cqe);
955 			goto next_cqe;
956 		}
957 
958 		rx_buf = &fp->rx_buf_ring[bd_cons];
959 		data = rx_buf->data;
960 
961 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
962 			struct bnx2x_agg_info *tpa_info;
963 			u16 frag_size, pages;
964 #ifdef BNX2X_STOP_ON_ERROR
965 			/* sanity check */
966 			if (fp->mode == TPA_MODE_DISABLED &&
967 			    (CQE_TYPE_START(cqe_fp_type) ||
968 			     CQE_TYPE_STOP(cqe_fp_type)))
969 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
970 					  CQE_TYPE(cqe_fp_type));
971 #endif
972 
973 			if (CQE_TYPE_START(cqe_fp_type)) {
974 				u16 queue = cqe_fp->queue_index;
975 				DP(NETIF_MSG_RX_STATUS,
976 				   "calling tpa_start on queue %d\n",
977 				   queue);
978 
979 				bnx2x_tpa_start(fp, queue,
980 						bd_cons, bd_prod,
981 						cqe_fp);
982 
983 				goto next_rx;
984 			}
985 			queue = cqe->end_agg_cqe.queue_index;
986 			tpa_info = &fp->tpa_info[queue];
987 			DP(NETIF_MSG_RX_STATUS,
988 			   "calling tpa_stop on queue %d\n",
989 			   queue);
990 
991 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
992 				    tpa_info->len_on_bd;
993 
994 			if (fp->mode == TPA_MODE_GRO)
995 				pages = (frag_size + tpa_info->full_page - 1) /
996 					 tpa_info->full_page;
997 			else
998 				pages = SGE_PAGE_ALIGN(frag_size) >>
999 					SGE_PAGE_SHIFT;
1000 
1001 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1002 				       &cqe->end_agg_cqe, comp_ring_cons);
1003 #ifdef BNX2X_STOP_ON_ERROR
1004 			if (bp->panic)
1005 				return 0;
1006 #endif
1007 
1008 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1009 			goto next_cqe;
1010 		}
1011 		/* non TPA */
1012 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1013 		pad = cqe_fp->placement_offset;
1014 		dma_sync_single_for_cpu(&bp->pdev->dev,
1015 					dma_unmap_addr(rx_buf, mapping),
1016 					pad + RX_COPY_THRESH,
1017 					DMA_FROM_DEVICE);
1018 		pad += NET_SKB_PAD;
1019 		prefetch(data + pad); /* speedup eth_type_trans() */
1020 		/* is this an error packet? */
1021 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1022 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1023 			   "ERROR  flags %x  rx packet %u\n",
1024 			   cqe_fp_flags, sw_comp_cons);
1025 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1026 			goto reuse_rx;
1027 		}
1028 
1029 		/* Since we don't have a jumbo ring
1030 		 * copy small packets if mtu > 1500
1031 		 */
1032 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1033 		    (len <= RX_COPY_THRESH)) {
1034 			skb = napi_alloc_skb(&fp->napi, len);
1035 			if (skb == NULL) {
1036 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1037 				   "ERROR  packet dropped because of alloc failure\n");
1038 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1039 				goto reuse_rx;
1040 			}
1041 			memcpy(skb->data, data + pad, len);
1042 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1043 		} else {
1044 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1045 						       GFP_ATOMIC) == 0)) {
1046 				dma_unmap_single(&bp->pdev->dev,
1047 						 dma_unmap_addr(rx_buf, mapping),
1048 						 fp->rx_buf_size,
1049 						 DMA_FROM_DEVICE);
1050 				skb = build_skb(data, fp->rx_frag_size);
1051 				if (unlikely(!skb)) {
1052 					bnx2x_frag_free(fp, data);
1053 					bnx2x_fp_qstats(bp, fp)->
1054 							rx_skb_alloc_failed++;
1055 					goto next_rx;
1056 				}
1057 				skb_reserve(skb, pad);
1058 			} else {
1059 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1060 				   "ERROR  packet dropped because of alloc failure\n");
1061 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1062 reuse_rx:
1063 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1064 				goto next_rx;
1065 			}
1066 		}
1067 
1068 		skb_put(skb, len);
1069 		skb->protocol = eth_type_trans(skb, bp->dev);
1070 
1071 		/* Set Toeplitz hash for a none-LRO skb */
1072 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1073 		skb_set_hash(skb, rxhash, rxhash_type);
1074 
1075 		skb_checksum_none_assert(skb);
1076 
1077 		if (bp->dev->features & NETIF_F_RXCSUM)
1078 			bnx2x_csum_validate(skb, cqe, fp,
1079 					    bnx2x_fp_qstats(bp, fp));
1080 
1081 		skb_record_rx_queue(skb, fp->rx_queue);
1082 
1083 		/* Check if this packet was timestamped */
1084 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1085 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1086 			bnx2x_set_rx_ts(bp, skb);
1087 
1088 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1089 		    PARSING_FLAGS_VLAN)
1090 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1091 					       le16_to_cpu(cqe_fp->vlan_tag));
1092 
1093 		napi_gro_receive(&fp->napi, skb);
1094 next_rx:
1095 		rx_buf->data = NULL;
1096 
1097 		bd_cons = NEXT_RX_IDX(bd_cons);
1098 		bd_prod = NEXT_RX_IDX(bd_prod);
1099 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1100 		rx_pkt++;
1101 next_cqe:
1102 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1103 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1104 
1105 		/* mark CQE as free */
1106 		BNX2X_SEED_CQE(cqe_fp);
1107 
1108 		if (rx_pkt == budget)
1109 			break;
1110 
1111 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1112 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1113 		cqe_fp = &cqe->fast_path_cqe;
1114 	} /* while */
1115 
1116 	fp->rx_bd_cons = bd_cons;
1117 	fp->rx_bd_prod = bd_prod_fw;
1118 	fp->rx_comp_cons = sw_comp_cons;
1119 	fp->rx_comp_prod = sw_comp_prod;
1120 
1121 	/* Update producers */
1122 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1123 			     fp->rx_sge_prod);
1124 
1125 	return rx_pkt;
1126 }
1127 
1128 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1129 {
1130 	struct bnx2x_fastpath *fp = fp_cookie;
1131 	struct bnx2x *bp = fp->bp;
1132 	u8 cos;
1133 
1134 	DP(NETIF_MSG_INTR,
1135 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1136 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1137 
1138 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1139 
1140 #ifdef BNX2X_STOP_ON_ERROR
1141 	if (unlikely(bp->panic))
1142 		return IRQ_HANDLED;
1143 #endif
1144 
1145 	/* Handle Rx and Tx according to MSI-X vector */
1146 	for_each_cos_in_tx_queue(fp, cos)
1147 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1148 
1149 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1150 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1151 
1152 	return IRQ_HANDLED;
1153 }
1154 
1155 /* HW Lock for shared dual port PHYs */
1156 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1157 {
1158 	mutex_lock(&bp->port.phy_mutex);
1159 
1160 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 }
1162 
1163 void bnx2x_release_phy_lock(struct bnx2x *bp)
1164 {
1165 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1166 
1167 	mutex_unlock(&bp->port.phy_mutex);
1168 }
1169 
1170 /* calculates MF speed according to current linespeed and MF configuration */
1171 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1172 {
1173 	u16 line_speed = bp->link_vars.line_speed;
1174 	if (IS_MF(bp)) {
1175 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1176 						   bp->mf_config[BP_VN(bp)]);
1177 
1178 		/* Calculate the current MAX line speed limit for the MF
1179 		 * devices
1180 		 */
1181 		if (IS_MF_PERCENT_BW(bp))
1182 			line_speed = (line_speed * maxCfg) / 100;
1183 		else { /* SD mode */
1184 			u16 vn_max_rate = maxCfg * 100;
1185 
1186 			if (vn_max_rate < line_speed)
1187 				line_speed = vn_max_rate;
1188 		}
1189 	}
1190 
1191 	return line_speed;
1192 }
1193 
1194 /**
1195  * bnx2x_fill_report_data - fill link report data to report
1196  *
1197  * @bp:		driver handle
1198  * @data:	link state to update
1199  *
1200  * It uses a none-atomic bit operations because is called under the mutex.
1201  */
1202 static void bnx2x_fill_report_data(struct bnx2x *bp,
1203 				   struct bnx2x_link_report_data *data)
1204 {
1205 	memset(data, 0, sizeof(*data));
1206 
1207 	if (IS_PF(bp)) {
1208 		/* Fill the report data: effective line speed */
1209 		data->line_speed = bnx2x_get_mf_speed(bp);
1210 
1211 		/* Link is down */
1212 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1213 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1214 				  &data->link_report_flags);
1215 
1216 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1217 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1218 				  &data->link_report_flags);
1219 
1220 		/* Full DUPLEX */
1221 		if (bp->link_vars.duplex == DUPLEX_FULL)
1222 			__set_bit(BNX2X_LINK_REPORT_FD,
1223 				  &data->link_report_flags);
1224 
1225 		/* Rx Flow Control is ON */
1226 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1227 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1228 				  &data->link_report_flags);
1229 
1230 		/* Tx Flow Control is ON */
1231 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1232 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1233 				  &data->link_report_flags);
1234 	} else { /* VF */
1235 		*data = bp->vf_link_vars;
1236 	}
1237 }
1238 
1239 /**
1240  * bnx2x_link_report - report link status to OS.
1241  *
1242  * @bp:		driver handle
1243  *
1244  * Calls the __bnx2x_link_report() under the same locking scheme
1245  * as a link/PHY state managing code to ensure a consistent link
1246  * reporting.
1247  */
1248 
1249 void bnx2x_link_report(struct bnx2x *bp)
1250 {
1251 	bnx2x_acquire_phy_lock(bp);
1252 	__bnx2x_link_report(bp);
1253 	bnx2x_release_phy_lock(bp);
1254 }
1255 
1256 /**
1257  * __bnx2x_link_report - report link status to OS.
1258  *
1259  * @bp:		driver handle
1260  *
1261  * None atomic implementation.
1262  * Should be called under the phy_lock.
1263  */
1264 void __bnx2x_link_report(struct bnx2x *bp)
1265 {
1266 	struct bnx2x_link_report_data cur_data;
1267 
1268 	if (bp->force_link_down) {
1269 		bp->link_vars.link_up = 0;
1270 		return;
1271 	}
1272 
1273 	/* reread mf_cfg */
1274 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1275 		bnx2x_read_mf_cfg(bp);
1276 
1277 	/* Read the current link report info */
1278 	bnx2x_fill_report_data(bp, &cur_data);
1279 
1280 	/* Don't report link down or exactly the same link status twice */
1281 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1282 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1283 		      &bp->last_reported_link.link_report_flags) &&
1284 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1285 		      &cur_data.link_report_flags)))
1286 		return;
1287 
1288 	bp->link_cnt++;
1289 
1290 	/* We are going to report a new link parameters now -
1291 	 * remember the current data for the next time.
1292 	 */
1293 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1294 
1295 	/* propagate status to VFs */
1296 	if (IS_PF(bp))
1297 		bnx2x_iov_link_update(bp);
1298 
1299 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1300 		     &cur_data.link_report_flags)) {
1301 		netif_carrier_off(bp->dev);
1302 		netdev_err(bp->dev, "NIC Link is Down\n");
1303 		return;
1304 	} else {
1305 		const char *duplex;
1306 		const char *flow;
1307 
1308 		netif_carrier_on(bp->dev);
1309 
1310 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1311 				       &cur_data.link_report_flags))
1312 			duplex = "full";
1313 		else
1314 			duplex = "half";
1315 
1316 		/* Handle the FC at the end so that only these flags would be
1317 		 * possibly set. This way we may easily check if there is no FC
1318 		 * enabled.
1319 		 */
1320 		if (cur_data.link_report_flags) {
1321 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1322 				     &cur_data.link_report_flags)) {
1323 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1324 				     &cur_data.link_report_flags))
1325 					flow = "ON - receive & transmit";
1326 				else
1327 					flow = "ON - receive";
1328 			} else {
1329 				flow = "ON - transmit";
1330 			}
1331 		} else {
1332 			flow = "none";
1333 		}
1334 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1335 			    cur_data.line_speed, duplex, flow);
1336 	}
1337 }
1338 
1339 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1340 {
1341 	int i;
1342 
1343 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1344 		struct eth_rx_sge *sge;
1345 
1346 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1347 		sge->addr_hi =
1348 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1349 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1350 
1351 		sge->addr_lo =
1352 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1353 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1354 	}
1355 }
1356 
1357 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1358 				struct bnx2x_fastpath *fp, int last)
1359 {
1360 	int i;
1361 
1362 	for (i = 0; i < last; i++) {
1363 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1364 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1365 		u8 *data = first_buf->data;
1366 
1367 		if (data == NULL) {
1368 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1369 			continue;
1370 		}
1371 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1372 			dma_unmap_single(&bp->pdev->dev,
1373 					 dma_unmap_addr(first_buf, mapping),
1374 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1375 		bnx2x_frag_free(fp, data);
1376 		first_buf->data = NULL;
1377 	}
1378 }
1379 
1380 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1381 {
1382 	int j;
1383 
1384 	for_each_rx_queue_cnic(bp, j) {
1385 		struct bnx2x_fastpath *fp = &bp->fp[j];
1386 
1387 		fp->rx_bd_cons = 0;
1388 
1389 		/* Activate BD ring */
1390 		/* Warning!
1391 		 * this will generate an interrupt (to the TSTORM)
1392 		 * must only be done after chip is initialized
1393 		 */
1394 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1395 				     fp->rx_sge_prod);
1396 	}
1397 }
1398 
1399 void bnx2x_init_rx_rings(struct bnx2x *bp)
1400 {
1401 	int func = BP_FUNC(bp);
1402 	u16 ring_prod;
1403 	int i, j;
1404 
1405 	/* Allocate TPA resources */
1406 	for_each_eth_queue(bp, j) {
1407 		struct bnx2x_fastpath *fp = &bp->fp[j];
1408 
1409 		DP(NETIF_MSG_IFUP,
1410 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1411 
1412 		if (fp->mode != TPA_MODE_DISABLED) {
1413 			/* Fill the per-aggregation pool */
1414 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1415 				struct bnx2x_agg_info *tpa_info =
1416 					&fp->tpa_info[i];
1417 				struct sw_rx_bd *first_buf =
1418 					&tpa_info->first_buf;
1419 
1420 				first_buf->data =
1421 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1422 				if (!first_buf->data) {
1423 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1424 						  j);
1425 					bnx2x_free_tpa_pool(bp, fp, i);
1426 					fp->mode = TPA_MODE_DISABLED;
1427 					break;
1428 				}
1429 				dma_unmap_addr_set(first_buf, mapping, 0);
1430 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1431 			}
1432 
1433 			/* "next page" elements initialization */
1434 			bnx2x_set_next_page_sgl(fp);
1435 
1436 			/* set SGEs bit mask */
1437 			bnx2x_init_sge_ring_bit_mask(fp);
1438 
1439 			/* Allocate SGEs and initialize the ring elements */
1440 			for (i = 0, ring_prod = 0;
1441 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1442 
1443 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1444 						       GFP_KERNEL) < 0) {
1445 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1446 						  i);
1447 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1448 						  j);
1449 					/* Cleanup already allocated elements */
1450 					bnx2x_free_rx_sge_range(bp, fp,
1451 								ring_prod);
1452 					bnx2x_free_tpa_pool(bp, fp,
1453 							    MAX_AGG_QS(bp));
1454 					fp->mode = TPA_MODE_DISABLED;
1455 					ring_prod = 0;
1456 					break;
1457 				}
1458 				ring_prod = NEXT_SGE_IDX(ring_prod);
1459 			}
1460 
1461 			fp->rx_sge_prod = ring_prod;
1462 		}
1463 	}
1464 
1465 	for_each_eth_queue(bp, j) {
1466 		struct bnx2x_fastpath *fp = &bp->fp[j];
1467 
1468 		fp->rx_bd_cons = 0;
1469 
1470 		/* Activate BD ring */
1471 		/* Warning!
1472 		 * this will generate an interrupt (to the TSTORM)
1473 		 * must only be done after chip is initialized
1474 		 */
1475 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1476 				     fp->rx_sge_prod);
1477 
1478 		if (j != 0)
1479 			continue;
1480 
1481 		if (CHIP_IS_E1(bp)) {
1482 			REG_WR(bp, BAR_USTRORM_INTMEM +
1483 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1484 			       U64_LO(fp->rx_comp_mapping));
1485 			REG_WR(bp, BAR_USTRORM_INTMEM +
1486 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1487 			       U64_HI(fp->rx_comp_mapping));
1488 		}
1489 	}
1490 }
1491 
1492 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1493 {
1494 	u8 cos;
1495 	struct bnx2x *bp = fp->bp;
1496 
1497 	for_each_cos_in_tx_queue(fp, cos) {
1498 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1499 		unsigned pkts_compl = 0, bytes_compl = 0;
1500 
1501 		u16 sw_prod = txdata->tx_pkt_prod;
1502 		u16 sw_cons = txdata->tx_pkt_cons;
1503 
1504 		while (sw_cons != sw_prod) {
1505 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1506 					  &pkts_compl, &bytes_compl);
1507 			sw_cons++;
1508 		}
1509 
1510 		netdev_tx_reset_queue(
1511 			netdev_get_tx_queue(bp->dev,
1512 					    txdata->txq_index));
1513 	}
1514 }
1515 
1516 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1517 {
1518 	int i;
1519 
1520 	for_each_tx_queue_cnic(bp, i) {
1521 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1522 	}
1523 }
1524 
1525 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1526 {
1527 	int i;
1528 
1529 	for_each_eth_queue(bp, i) {
1530 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1531 	}
1532 }
1533 
1534 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1535 {
1536 	struct bnx2x *bp = fp->bp;
1537 	int i;
1538 
1539 	/* ring wasn't allocated */
1540 	if (fp->rx_buf_ring == NULL)
1541 		return;
1542 
1543 	for (i = 0; i < NUM_RX_BD; i++) {
1544 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1545 		u8 *data = rx_buf->data;
1546 
1547 		if (data == NULL)
1548 			continue;
1549 		dma_unmap_single(&bp->pdev->dev,
1550 				 dma_unmap_addr(rx_buf, mapping),
1551 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1552 
1553 		rx_buf->data = NULL;
1554 		bnx2x_frag_free(fp, data);
1555 	}
1556 }
1557 
1558 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1559 {
1560 	int j;
1561 
1562 	for_each_rx_queue_cnic(bp, j) {
1563 		bnx2x_free_rx_bds(&bp->fp[j]);
1564 	}
1565 }
1566 
1567 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1568 {
1569 	int j;
1570 
1571 	for_each_eth_queue(bp, j) {
1572 		struct bnx2x_fastpath *fp = &bp->fp[j];
1573 
1574 		bnx2x_free_rx_bds(fp);
1575 
1576 		if (fp->mode != TPA_MODE_DISABLED)
1577 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1578 	}
1579 }
1580 
1581 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1582 {
1583 	bnx2x_free_tx_skbs_cnic(bp);
1584 	bnx2x_free_rx_skbs_cnic(bp);
1585 }
1586 
1587 void bnx2x_free_skbs(struct bnx2x *bp)
1588 {
1589 	bnx2x_free_tx_skbs(bp);
1590 	bnx2x_free_rx_skbs(bp);
1591 }
1592 
1593 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1594 {
1595 	/* load old values */
1596 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1597 
1598 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1599 		/* leave all but MAX value */
1600 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1601 
1602 		/* set new MAX value */
1603 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1604 				& FUNC_MF_CFG_MAX_BW_MASK;
1605 
1606 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1607 	}
1608 }
1609 
1610 /**
1611  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1612  *
1613  * @bp:		driver handle
1614  * @nvecs:	number of vectors to be released
1615  */
1616 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1617 {
1618 	int i, offset = 0;
1619 
1620 	if (nvecs == offset)
1621 		return;
1622 
1623 	/* VFs don't have a default SB */
1624 	if (IS_PF(bp)) {
1625 		free_irq(bp->msix_table[offset].vector, bp->dev);
1626 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1627 		   bp->msix_table[offset].vector);
1628 		offset++;
1629 	}
1630 
1631 	if (CNIC_SUPPORT(bp)) {
1632 		if (nvecs == offset)
1633 			return;
1634 		offset++;
1635 	}
1636 
1637 	for_each_eth_queue(bp, i) {
1638 		if (nvecs == offset)
1639 			return;
1640 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1641 		   i, bp->msix_table[offset].vector);
1642 
1643 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1644 	}
1645 }
1646 
1647 void bnx2x_free_irq(struct bnx2x *bp)
1648 {
1649 	if (bp->flags & USING_MSIX_FLAG &&
1650 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1651 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1652 
1653 		/* vfs don't have a default status block */
1654 		if (IS_PF(bp))
1655 			nvecs++;
1656 
1657 		bnx2x_free_msix_irqs(bp, nvecs);
1658 	} else {
1659 		free_irq(bp->dev->irq, bp->dev);
1660 	}
1661 }
1662 
1663 int bnx2x_enable_msix(struct bnx2x *bp)
1664 {
1665 	int msix_vec = 0, i, rc;
1666 
1667 	/* VFs don't have a default status block */
1668 	if (IS_PF(bp)) {
1669 		bp->msix_table[msix_vec].entry = msix_vec;
1670 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1671 			       bp->msix_table[0].entry);
1672 		msix_vec++;
1673 	}
1674 
1675 	/* Cnic requires an msix vector for itself */
1676 	if (CNIC_SUPPORT(bp)) {
1677 		bp->msix_table[msix_vec].entry = msix_vec;
1678 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1679 			       msix_vec, bp->msix_table[msix_vec].entry);
1680 		msix_vec++;
1681 	}
1682 
1683 	/* We need separate vectors for ETH queues only (not FCoE) */
1684 	for_each_eth_queue(bp, i) {
1685 		bp->msix_table[msix_vec].entry = msix_vec;
1686 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1687 			       msix_vec, msix_vec, i);
1688 		msix_vec++;
1689 	}
1690 
1691 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1692 	   msix_vec);
1693 
1694 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1695 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1696 	/*
1697 	 * reconfigure number of tx/rx queues according to available
1698 	 * MSI-X vectors
1699 	 */
1700 	if (rc == -ENOSPC) {
1701 		/* Get by with single vector */
1702 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1703 		if (rc < 0) {
1704 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1705 				       rc);
1706 			goto no_msix;
1707 		}
1708 
1709 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1710 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1711 
1712 		BNX2X_DEV_INFO("set number of queues to 1\n");
1713 		bp->num_ethernet_queues = 1;
1714 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1715 	} else if (rc < 0) {
1716 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1717 		goto no_msix;
1718 	} else if (rc < msix_vec) {
1719 		/* how less vectors we will have? */
1720 		int diff = msix_vec - rc;
1721 
1722 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1723 
1724 		/*
1725 		 * decrease number of queues by number of unallocated entries
1726 		 */
1727 		bp->num_ethernet_queues -= diff;
1728 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1729 
1730 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1731 			       bp->num_queues);
1732 	}
1733 
1734 	bp->flags |= USING_MSIX_FLAG;
1735 
1736 	return 0;
1737 
1738 no_msix:
1739 	/* fall to INTx if not enough memory */
1740 	if (rc == -ENOMEM)
1741 		bp->flags |= DISABLE_MSI_FLAG;
1742 
1743 	return rc;
1744 }
1745 
1746 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1747 {
1748 	int i, rc, offset = 0;
1749 
1750 	/* no default status block for vf */
1751 	if (IS_PF(bp)) {
1752 		rc = request_irq(bp->msix_table[offset++].vector,
1753 				 bnx2x_msix_sp_int, 0,
1754 				 bp->dev->name, bp->dev);
1755 		if (rc) {
1756 			BNX2X_ERR("request sp irq failed\n");
1757 			return -EBUSY;
1758 		}
1759 	}
1760 
1761 	if (CNIC_SUPPORT(bp))
1762 		offset++;
1763 
1764 	for_each_eth_queue(bp, i) {
1765 		struct bnx2x_fastpath *fp = &bp->fp[i];
1766 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1767 			 bp->dev->name, i);
1768 
1769 		rc = request_irq(bp->msix_table[offset].vector,
1770 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1771 		if (rc) {
1772 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1773 			      bp->msix_table[offset].vector, rc);
1774 			bnx2x_free_msix_irqs(bp, offset);
1775 			return -EBUSY;
1776 		}
1777 
1778 		offset++;
1779 	}
1780 
1781 	i = BNX2X_NUM_ETH_QUEUES(bp);
1782 	if (IS_PF(bp)) {
1783 		offset = 1 + CNIC_SUPPORT(bp);
1784 		netdev_info(bp->dev,
1785 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1786 			    bp->msix_table[0].vector,
1787 			    0, bp->msix_table[offset].vector,
1788 			    i - 1, bp->msix_table[offset + i - 1].vector);
1789 	} else {
1790 		offset = CNIC_SUPPORT(bp);
1791 		netdev_info(bp->dev,
1792 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1793 			    0, bp->msix_table[offset].vector,
1794 			    i - 1, bp->msix_table[offset + i - 1].vector);
1795 	}
1796 	return 0;
1797 }
1798 
1799 int bnx2x_enable_msi(struct bnx2x *bp)
1800 {
1801 	int rc;
1802 
1803 	rc = pci_enable_msi(bp->pdev);
1804 	if (rc) {
1805 		BNX2X_DEV_INFO("MSI is not attainable\n");
1806 		return -1;
1807 	}
1808 	bp->flags |= USING_MSI_FLAG;
1809 
1810 	return 0;
1811 }
1812 
1813 static int bnx2x_req_irq(struct bnx2x *bp)
1814 {
1815 	unsigned long flags;
1816 	unsigned int irq;
1817 
1818 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1819 		flags = 0;
1820 	else
1821 		flags = IRQF_SHARED;
1822 
1823 	if (bp->flags & USING_MSIX_FLAG)
1824 		irq = bp->msix_table[0].vector;
1825 	else
1826 		irq = bp->pdev->irq;
1827 
1828 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1829 }
1830 
1831 static int bnx2x_setup_irqs(struct bnx2x *bp)
1832 {
1833 	int rc = 0;
1834 	if (bp->flags & USING_MSIX_FLAG &&
1835 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1836 		rc = bnx2x_req_msix_irqs(bp);
1837 		if (rc)
1838 			return rc;
1839 	} else {
1840 		rc = bnx2x_req_irq(bp);
1841 		if (rc) {
1842 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1843 			return rc;
1844 		}
1845 		if (bp->flags & USING_MSI_FLAG) {
1846 			bp->dev->irq = bp->pdev->irq;
1847 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1848 				    bp->dev->irq);
1849 		}
1850 		if (bp->flags & USING_MSIX_FLAG) {
1851 			bp->dev->irq = bp->msix_table[0].vector;
1852 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1853 				    bp->dev->irq);
1854 		}
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1861 {
1862 	int i;
1863 
1864 	for_each_rx_queue_cnic(bp, i) {
1865 		napi_enable(&bnx2x_fp(bp, i, napi));
1866 	}
1867 }
1868 
1869 static void bnx2x_napi_enable(struct bnx2x *bp)
1870 {
1871 	int i;
1872 
1873 	for_each_eth_queue(bp, i) {
1874 		napi_enable(&bnx2x_fp(bp, i, napi));
1875 	}
1876 }
1877 
1878 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1879 {
1880 	int i;
1881 
1882 	for_each_rx_queue_cnic(bp, i) {
1883 		napi_disable(&bnx2x_fp(bp, i, napi));
1884 	}
1885 }
1886 
1887 static void bnx2x_napi_disable(struct bnx2x *bp)
1888 {
1889 	int i;
1890 
1891 	for_each_eth_queue(bp, i) {
1892 		napi_disable(&bnx2x_fp(bp, i, napi));
1893 	}
1894 }
1895 
1896 void bnx2x_netif_start(struct bnx2x *bp)
1897 {
1898 	if (netif_running(bp->dev)) {
1899 		bnx2x_napi_enable(bp);
1900 		if (CNIC_LOADED(bp))
1901 			bnx2x_napi_enable_cnic(bp);
1902 		bnx2x_int_enable(bp);
1903 		if (bp->state == BNX2X_STATE_OPEN)
1904 			netif_tx_wake_all_queues(bp->dev);
1905 	}
1906 }
1907 
1908 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1909 {
1910 	bnx2x_int_disable_sync(bp, disable_hw);
1911 	bnx2x_napi_disable(bp);
1912 	if (CNIC_LOADED(bp))
1913 		bnx2x_napi_disable_cnic(bp);
1914 }
1915 
1916 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1917 		       struct net_device *sb_dev)
1918 {
1919 	struct bnx2x *bp = netdev_priv(dev);
1920 
1921 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1922 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1923 		u16 ether_type = ntohs(hdr->h_proto);
1924 
1925 		/* Skip VLAN tag if present */
1926 		if (ether_type == ETH_P_8021Q) {
1927 			struct vlan_ethhdr *vhdr =
1928 				(struct vlan_ethhdr *)skb->data;
1929 
1930 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1931 		}
1932 
1933 		/* If ethertype is FCoE or FIP - use FCoE ring */
1934 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1935 			return bnx2x_fcoe_tx(bp, txq_index);
1936 	}
1937 
1938 	/* select a non-FCoE queue */
1939 	return netdev_pick_tx(dev, skb, NULL) %
1940 			(BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1941 }
1942 
1943 void bnx2x_set_num_queues(struct bnx2x *bp)
1944 {
1945 	/* RSS queues */
1946 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1947 
1948 	/* override in STORAGE SD modes */
1949 	if (IS_MF_STORAGE_ONLY(bp))
1950 		bp->num_ethernet_queues = 1;
1951 
1952 	/* Add special queues */
1953 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1954 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1955 
1956 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1957 }
1958 
1959 /**
1960  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1961  *
1962  * @bp:		Driver handle
1963  * @include_cnic: handle cnic case
1964  *
1965  * We currently support for at most 16 Tx queues for each CoS thus we will
1966  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1967  * bp->max_cos.
1968  *
1969  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1970  * index after all ETH L2 indices.
1971  *
1972  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1973  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1974  * 16..31,...) with indices that are not coupled with any real Tx queue.
1975  *
1976  * The proper configuration of skb->queue_mapping is handled by
1977  * bnx2x_select_queue() and __skb_tx_hash().
1978  *
1979  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1980  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1981  */
1982 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1983 {
1984 	int rc, tx, rx;
1985 
1986 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1987 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1988 
1989 /* account for fcoe queue */
1990 	if (include_cnic && !NO_FCOE(bp)) {
1991 		rx++;
1992 		tx++;
1993 	}
1994 
1995 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1996 	if (rc) {
1997 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1998 		return rc;
1999 	}
2000 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
2001 	if (rc) {
2002 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2003 		return rc;
2004 	}
2005 
2006 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2007 			  tx, rx);
2008 
2009 	return rc;
2010 }
2011 
2012 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2013 {
2014 	int i;
2015 
2016 	for_each_queue(bp, i) {
2017 		struct bnx2x_fastpath *fp = &bp->fp[i];
2018 		u32 mtu;
2019 
2020 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2021 		if (IS_FCOE_IDX(i))
2022 			/*
2023 			 * Although there are no IP frames expected to arrive to
2024 			 * this ring we still want to add an
2025 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2026 			 * overrun attack.
2027 			 */
2028 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2029 		else
2030 			mtu = bp->dev->mtu;
2031 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2032 				  IP_HEADER_ALIGNMENT_PADDING +
2033 				  ETH_OVERHEAD +
2034 				  mtu +
2035 				  BNX2X_FW_RX_ALIGN_END;
2036 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2037 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2038 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2039 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2040 		else
2041 			fp->rx_frag_size = 0;
2042 	}
2043 }
2044 
2045 static int bnx2x_init_rss(struct bnx2x *bp)
2046 {
2047 	int i;
2048 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2049 
2050 	/* Prepare the initial contents for the indirection table if RSS is
2051 	 * enabled
2052 	 */
2053 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2054 		bp->rss_conf_obj.ind_table[i] =
2055 			bp->fp->cl_id +
2056 			ethtool_rxfh_indir_default(i, num_eth_queues);
2057 
2058 	/*
2059 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2060 	 * per-port, so if explicit configuration is needed , do it only
2061 	 * for a PMF.
2062 	 *
2063 	 * For 57712 and newer on the other hand it's a per-function
2064 	 * configuration.
2065 	 */
2066 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2067 }
2068 
2069 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2070 	      bool config_hash, bool enable)
2071 {
2072 	struct bnx2x_config_rss_params params = {NULL};
2073 
2074 	/* Although RSS is meaningless when there is a single HW queue we
2075 	 * still need it enabled in order to have HW Rx hash generated.
2076 	 *
2077 	 * if (!is_eth_multi(bp))
2078 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2079 	 */
2080 
2081 	params.rss_obj = rss_obj;
2082 
2083 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2084 
2085 	if (enable) {
2086 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2087 
2088 		/* RSS configuration */
2089 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2090 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2091 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2092 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2093 		if (rss_obj->udp_rss_v4)
2094 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2095 		if (rss_obj->udp_rss_v6)
2096 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2097 
2098 		if (!CHIP_IS_E1x(bp)) {
2099 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2100 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2101 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2102 
2103 			/* valid only for TUNN_MODE_GRE tunnel mode */
2104 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2105 		}
2106 	} else {
2107 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2108 	}
2109 
2110 	/* Hash bits */
2111 	params.rss_result_mask = MULTI_MASK;
2112 
2113 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2114 
2115 	if (config_hash) {
2116 		/* RSS keys */
2117 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2118 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2119 	}
2120 
2121 	if (IS_PF(bp))
2122 		return bnx2x_config_rss(bp, &params);
2123 	else
2124 		return bnx2x_vfpf_config_rss(bp, &params);
2125 }
2126 
2127 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2128 {
2129 	struct bnx2x_func_state_params func_params = {NULL};
2130 
2131 	/* Prepare parameters for function state transitions */
2132 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2133 
2134 	func_params.f_obj = &bp->func_obj;
2135 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2136 
2137 	func_params.params.hw_init.load_phase = load_code;
2138 
2139 	return bnx2x_func_state_change(bp, &func_params);
2140 }
2141 
2142 /*
2143  * Cleans the object that have internal lists without sending
2144  * ramrods. Should be run when interrupts are disabled.
2145  */
2146 void bnx2x_squeeze_objects(struct bnx2x *bp)
2147 {
2148 	int rc;
2149 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2150 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2151 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2152 
2153 	/***************** Cleanup MACs' object first *************************/
2154 
2155 	/* Wait for completion of requested */
2156 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2157 	/* Perform a dry cleanup */
2158 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2159 
2160 	/* Clean ETH primary MAC */
2161 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2162 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2163 				 &ramrod_flags);
2164 	if (rc != 0)
2165 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2166 
2167 	/* Cleanup UC list */
2168 	vlan_mac_flags = 0;
2169 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2170 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2171 				 &ramrod_flags);
2172 	if (rc != 0)
2173 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2174 
2175 	/***************** Now clean mcast object *****************************/
2176 	rparam.mcast_obj = &bp->mcast_obj;
2177 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2178 
2179 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2180 	 * we take a lock surrounding both the initial send and the CONTs,
2181 	 * as we don't want a true completion to disrupt us in the middle.
2182 	 */
2183 	netif_addr_lock_bh(bp->dev);
2184 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2185 	if (rc < 0)
2186 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2187 			  rc);
2188 
2189 	/* ...and wait until all pending commands are cleared */
2190 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2191 	while (rc != 0) {
2192 		if (rc < 0) {
2193 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2194 				  rc);
2195 			netif_addr_unlock_bh(bp->dev);
2196 			return;
2197 		}
2198 
2199 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2200 	}
2201 	netif_addr_unlock_bh(bp->dev);
2202 }
2203 
2204 #ifndef BNX2X_STOP_ON_ERROR
2205 #define LOAD_ERROR_EXIT(bp, label) \
2206 	do { \
2207 		(bp)->state = BNX2X_STATE_ERROR; \
2208 		goto label; \
2209 	} while (0)
2210 
2211 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2212 	do { \
2213 		bp->cnic_loaded = false; \
2214 		goto label; \
2215 	} while (0)
2216 #else /*BNX2X_STOP_ON_ERROR*/
2217 #define LOAD_ERROR_EXIT(bp, label) \
2218 	do { \
2219 		(bp)->state = BNX2X_STATE_ERROR; \
2220 		(bp)->panic = 1; \
2221 		return -EBUSY; \
2222 	} while (0)
2223 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2224 	do { \
2225 		bp->cnic_loaded = false; \
2226 		(bp)->panic = 1; \
2227 		return -EBUSY; \
2228 	} while (0)
2229 #endif /*BNX2X_STOP_ON_ERROR*/
2230 
2231 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2232 {
2233 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2234 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2235 	return;
2236 }
2237 
2238 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2239 {
2240 	int num_groups, vf_headroom = 0;
2241 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2242 
2243 	/* number of queues for statistics is number of eth queues + FCoE */
2244 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2245 
2246 	/* Total number of FW statistics requests =
2247 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2248 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2249 	 * for fcoe l2 queue if applicable)
2250 	 */
2251 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2252 
2253 	/* vf stats appear in the request list, but their data is allocated by
2254 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2255 	 * it is used to determine where to place the vf stats queries in the
2256 	 * request struct
2257 	 */
2258 	if (IS_SRIOV(bp))
2259 		vf_headroom = bnx2x_vf_headroom(bp);
2260 
2261 	/* Request is built from stats_query_header and an array of
2262 	 * stats_query_cmd_group each of which contains
2263 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2264 	 * configured in the stats_query_header.
2265 	 */
2266 	num_groups =
2267 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2268 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2269 		 1 : 0));
2270 
2271 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2272 	   bp->fw_stats_num, vf_headroom, num_groups);
2273 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2274 		num_groups * sizeof(struct stats_query_cmd_group);
2275 
2276 	/* Data for statistics requests + stats_counter
2277 	 * stats_counter holds per-STORM counters that are incremented
2278 	 * when STORM has finished with the current request.
2279 	 * memory for FCoE offloaded statistics are counted anyway,
2280 	 * even if they will not be sent.
2281 	 * VF stats are not accounted for here as the data of VF stats is stored
2282 	 * in memory allocated by the VF, not here.
2283 	 */
2284 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2285 		sizeof(struct per_pf_stats) +
2286 		sizeof(struct fcoe_statistics_params) +
2287 		sizeof(struct per_queue_stats) * num_queue_stats +
2288 		sizeof(struct stats_counter);
2289 
2290 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2291 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2292 	if (!bp->fw_stats)
2293 		goto alloc_mem_err;
2294 
2295 	/* Set shortcuts */
2296 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2297 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2298 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2299 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2300 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2301 		bp->fw_stats_req_sz;
2302 
2303 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2304 	   U64_HI(bp->fw_stats_req_mapping),
2305 	   U64_LO(bp->fw_stats_req_mapping));
2306 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2307 	   U64_HI(bp->fw_stats_data_mapping),
2308 	   U64_LO(bp->fw_stats_data_mapping));
2309 	return 0;
2310 
2311 alloc_mem_err:
2312 	bnx2x_free_fw_stats_mem(bp);
2313 	BNX2X_ERR("Can't allocate FW stats memory\n");
2314 	return -ENOMEM;
2315 }
2316 
2317 /* send load request to mcp and analyze response */
2318 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2319 {
2320 	u32 param;
2321 
2322 	/* init fw_seq */
2323 	bp->fw_seq =
2324 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2325 		 DRV_MSG_SEQ_NUMBER_MASK);
2326 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2327 
2328 	/* Get current FW pulse sequence */
2329 	bp->fw_drv_pulse_wr_seq =
2330 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2331 		 DRV_PULSE_SEQ_MASK);
2332 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2333 
2334 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2335 
2336 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2337 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2338 
2339 	/* load request */
2340 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2341 
2342 	/* if mcp fails to respond we must abort */
2343 	if (!(*load_code)) {
2344 		BNX2X_ERR("MCP response failure, aborting\n");
2345 		return -EBUSY;
2346 	}
2347 
2348 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2349 	 * must abort
2350 	 */
2351 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2352 		BNX2X_ERR("MCP refused load request, aborting\n");
2353 		return -EBUSY;
2354 	}
2355 	return 0;
2356 }
2357 
2358 /* check whether another PF has already loaded FW to chip. In
2359  * virtualized environments a pf from another VM may have already
2360  * initialized the device including loading FW
2361  */
2362 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2363 {
2364 	/* is another pf loaded on this engine? */
2365 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2366 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2367 		/* build my FW version dword */
2368 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2369 			(BCM_5710_FW_MINOR_VERSION << 8) +
2370 			(BCM_5710_FW_REVISION_VERSION << 16) +
2371 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2372 
2373 		/* read loaded FW from chip */
2374 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2375 
2376 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2377 		   loaded_fw, my_fw);
2378 
2379 		/* abort nic load if version mismatch */
2380 		if (my_fw != loaded_fw) {
2381 			if (print_err)
2382 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2383 					  loaded_fw, my_fw);
2384 			else
2385 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2386 					       loaded_fw, my_fw);
2387 			return -EBUSY;
2388 		}
2389 	}
2390 	return 0;
2391 }
2392 
2393 /* returns the "mcp load_code" according to global load_count array */
2394 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2395 {
2396 	int path = BP_PATH(bp);
2397 
2398 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2399 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2400 	   bnx2x_load_count[path][2]);
2401 	bnx2x_load_count[path][0]++;
2402 	bnx2x_load_count[path][1 + port]++;
2403 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2404 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2405 	   bnx2x_load_count[path][2]);
2406 	if (bnx2x_load_count[path][0] == 1)
2407 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2408 	else if (bnx2x_load_count[path][1 + port] == 1)
2409 		return FW_MSG_CODE_DRV_LOAD_PORT;
2410 	else
2411 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2412 }
2413 
2414 /* mark PMF if applicable */
2415 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2416 {
2417 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2418 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2419 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2420 		bp->port.pmf = 1;
2421 		/* We need the barrier to ensure the ordering between the
2422 		 * writing to bp->port.pmf here and reading it from the
2423 		 * bnx2x_periodic_task().
2424 		 */
2425 		smp_mb();
2426 	} else {
2427 		bp->port.pmf = 0;
2428 	}
2429 
2430 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2431 }
2432 
2433 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2434 {
2435 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2436 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2437 	    (bp->common.shmem2_base)) {
2438 		if (SHMEM2_HAS(bp, dcc_support))
2439 			SHMEM2_WR(bp, dcc_support,
2440 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2441 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2442 		if (SHMEM2_HAS(bp, afex_driver_support))
2443 			SHMEM2_WR(bp, afex_driver_support,
2444 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2445 	}
2446 
2447 	/* Set AFEX default VLAN tag to an invalid value */
2448 	bp->afex_def_vlan_tag = -1;
2449 }
2450 
2451 /**
2452  * bnx2x_bz_fp - zero content of the fastpath structure.
2453  *
2454  * @bp:		driver handle
2455  * @index:	fastpath index to be zeroed
2456  *
2457  * Makes sure the contents of the bp->fp[index].napi is kept
2458  * intact.
2459  */
2460 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2461 {
2462 	struct bnx2x_fastpath *fp = &bp->fp[index];
2463 	int cos;
2464 	struct napi_struct orig_napi = fp->napi;
2465 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2466 
2467 	/* bzero bnx2x_fastpath contents */
2468 	if (fp->tpa_info)
2469 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2470 		       sizeof(struct bnx2x_agg_info));
2471 	memset(fp, 0, sizeof(*fp));
2472 
2473 	/* Restore the NAPI object as it has been already initialized */
2474 	fp->napi = orig_napi;
2475 	fp->tpa_info = orig_tpa_info;
2476 	fp->bp = bp;
2477 	fp->index = index;
2478 	if (IS_ETH_FP(fp))
2479 		fp->max_cos = bp->max_cos;
2480 	else
2481 		/* Special queues support only one CoS */
2482 		fp->max_cos = 1;
2483 
2484 	/* Init txdata pointers */
2485 	if (IS_FCOE_FP(fp))
2486 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2487 	if (IS_ETH_FP(fp))
2488 		for_each_cos_in_tx_queue(fp, cos)
2489 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2490 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2491 
2492 	/* set the tpa flag for each queue. The tpa flag determines the queue
2493 	 * minimal size so it must be set prior to queue memory allocation
2494 	 */
2495 	if (bp->dev->features & NETIF_F_LRO)
2496 		fp->mode = TPA_MODE_LRO;
2497 	else if (bp->dev->features & NETIF_F_GRO_HW)
2498 		fp->mode = TPA_MODE_GRO;
2499 	else
2500 		fp->mode = TPA_MODE_DISABLED;
2501 
2502 	/* We don't want TPA if it's disabled in bp
2503 	 * or if this is an FCoE L2 ring.
2504 	 */
2505 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2506 		fp->mode = TPA_MODE_DISABLED;
2507 }
2508 
2509 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2510 {
2511 	u32 cur;
2512 
2513 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2514 		return;
2515 
2516 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2517 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2518 	   cur, state);
2519 
2520 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2521 }
2522 
2523 int bnx2x_load_cnic(struct bnx2x *bp)
2524 {
2525 	int i, rc, port = BP_PORT(bp);
2526 
2527 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2528 
2529 	mutex_init(&bp->cnic_mutex);
2530 
2531 	if (IS_PF(bp)) {
2532 		rc = bnx2x_alloc_mem_cnic(bp);
2533 		if (rc) {
2534 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2535 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2536 		}
2537 	}
2538 
2539 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2540 	if (rc) {
2541 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2542 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2543 	}
2544 
2545 	/* Update the number of queues with the cnic queues */
2546 	rc = bnx2x_set_real_num_queues(bp, 1);
2547 	if (rc) {
2548 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2549 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2550 	}
2551 
2552 	/* Add all CNIC NAPI objects */
2553 	bnx2x_add_all_napi_cnic(bp);
2554 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2555 	bnx2x_napi_enable_cnic(bp);
2556 
2557 	rc = bnx2x_init_hw_func_cnic(bp);
2558 	if (rc)
2559 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2560 
2561 	bnx2x_nic_init_cnic(bp);
2562 
2563 	if (IS_PF(bp)) {
2564 		/* Enable Timer scan */
2565 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2566 
2567 		/* setup cnic queues */
2568 		for_each_cnic_queue(bp, i) {
2569 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2570 			if (rc) {
2571 				BNX2X_ERR("Queue setup failed\n");
2572 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2573 			}
2574 		}
2575 	}
2576 
2577 	/* Initialize Rx filter. */
2578 	bnx2x_set_rx_mode_inner(bp);
2579 
2580 	/* re-read iscsi info */
2581 	bnx2x_get_iscsi_info(bp);
2582 	bnx2x_setup_cnic_irq_info(bp);
2583 	bnx2x_setup_cnic_info(bp);
2584 	bp->cnic_loaded = true;
2585 	if (bp->state == BNX2X_STATE_OPEN)
2586 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2587 
2588 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2589 
2590 	return 0;
2591 
2592 #ifndef BNX2X_STOP_ON_ERROR
2593 load_error_cnic2:
2594 	/* Disable Timer scan */
2595 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2596 
2597 load_error_cnic1:
2598 	bnx2x_napi_disable_cnic(bp);
2599 	/* Update the number of queues without the cnic queues */
2600 	if (bnx2x_set_real_num_queues(bp, 0))
2601 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2602 load_error_cnic0:
2603 	BNX2X_ERR("CNIC-related load failed\n");
2604 	bnx2x_free_fp_mem_cnic(bp);
2605 	bnx2x_free_mem_cnic(bp);
2606 	return rc;
2607 #endif /* ! BNX2X_STOP_ON_ERROR */
2608 }
2609 
2610 /* must be called with rtnl_lock */
2611 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2612 {
2613 	int port = BP_PORT(bp);
2614 	int i, rc = 0, load_code = 0;
2615 
2616 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2617 	DP(NETIF_MSG_IFUP,
2618 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2619 
2620 #ifdef BNX2X_STOP_ON_ERROR
2621 	if (unlikely(bp->panic)) {
2622 		BNX2X_ERR("Can't load NIC when there is panic\n");
2623 		return -EPERM;
2624 	}
2625 #endif
2626 
2627 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2628 
2629 	/* zero the structure w/o any lock, before SP handler is initialized */
2630 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2631 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2632 		&bp->last_reported_link.link_report_flags);
2633 
2634 	if (IS_PF(bp))
2635 		/* must be called before memory allocation and HW init */
2636 		bnx2x_ilt_set_info(bp);
2637 
2638 	/*
2639 	 * Zero fastpath structures preserving invariants like napi, which are
2640 	 * allocated only once, fp index, max_cos, bp pointer.
2641 	 * Also set fp->mode and txdata_ptr.
2642 	 */
2643 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2644 	for_each_queue(bp, i)
2645 		bnx2x_bz_fp(bp, i);
2646 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2647 				  bp->num_cnic_queues) *
2648 				  sizeof(struct bnx2x_fp_txdata));
2649 
2650 	bp->fcoe_init = false;
2651 
2652 	/* Set the receive queues buffer size */
2653 	bnx2x_set_rx_buf_size(bp);
2654 
2655 	if (IS_PF(bp)) {
2656 		rc = bnx2x_alloc_mem(bp);
2657 		if (rc) {
2658 			BNX2X_ERR("Unable to allocate bp memory\n");
2659 			return rc;
2660 		}
2661 	}
2662 
2663 	/* need to be done after alloc mem, since it's self adjusting to amount
2664 	 * of memory available for RSS queues
2665 	 */
2666 	rc = bnx2x_alloc_fp_mem(bp);
2667 	if (rc) {
2668 		BNX2X_ERR("Unable to allocate memory for fps\n");
2669 		LOAD_ERROR_EXIT(bp, load_error0);
2670 	}
2671 
2672 	/* Allocated memory for FW statistics  */
2673 	rc = bnx2x_alloc_fw_stats_mem(bp);
2674 	if (rc)
2675 		LOAD_ERROR_EXIT(bp, load_error0);
2676 
2677 	/* request pf to initialize status blocks */
2678 	if (IS_VF(bp)) {
2679 		rc = bnx2x_vfpf_init(bp);
2680 		if (rc)
2681 			LOAD_ERROR_EXIT(bp, load_error0);
2682 	}
2683 
2684 	/* As long as bnx2x_alloc_mem() may possibly update
2685 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2686 	 * come after it. At this stage cnic queues are not counted.
2687 	 */
2688 	rc = bnx2x_set_real_num_queues(bp, 0);
2689 	if (rc) {
2690 		BNX2X_ERR("Unable to set real_num_queues\n");
2691 		LOAD_ERROR_EXIT(bp, load_error0);
2692 	}
2693 
2694 	/* configure multi cos mappings in kernel.
2695 	 * this configuration may be overridden by a multi class queue
2696 	 * discipline or by a dcbx negotiation result.
2697 	 */
2698 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2699 
2700 	/* Add all NAPI objects */
2701 	bnx2x_add_all_napi(bp);
2702 	DP(NETIF_MSG_IFUP, "napi added\n");
2703 	bnx2x_napi_enable(bp);
2704 
2705 	if (IS_PF(bp)) {
2706 		/* set pf load just before approaching the MCP */
2707 		bnx2x_set_pf_load(bp);
2708 
2709 		/* if mcp exists send load request and analyze response */
2710 		if (!BP_NOMCP(bp)) {
2711 			/* attempt to load pf */
2712 			rc = bnx2x_nic_load_request(bp, &load_code);
2713 			if (rc)
2714 				LOAD_ERROR_EXIT(bp, load_error1);
2715 
2716 			/* what did mcp say? */
2717 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2718 			if (rc) {
2719 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2720 				LOAD_ERROR_EXIT(bp, load_error2);
2721 			}
2722 		} else {
2723 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2724 		}
2725 
2726 		/* mark pmf if applicable */
2727 		bnx2x_nic_load_pmf(bp, load_code);
2728 
2729 		/* Init Function state controlling object */
2730 		bnx2x__init_func_obj(bp);
2731 
2732 		/* Initialize HW */
2733 		rc = bnx2x_init_hw(bp, load_code);
2734 		if (rc) {
2735 			BNX2X_ERR("HW init failed, aborting\n");
2736 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2737 			LOAD_ERROR_EXIT(bp, load_error2);
2738 		}
2739 	}
2740 
2741 	bnx2x_pre_irq_nic_init(bp);
2742 
2743 	/* Connect to IRQs */
2744 	rc = bnx2x_setup_irqs(bp);
2745 	if (rc) {
2746 		BNX2X_ERR("setup irqs failed\n");
2747 		if (IS_PF(bp))
2748 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2749 		LOAD_ERROR_EXIT(bp, load_error2);
2750 	}
2751 
2752 	/* Init per-function objects */
2753 	if (IS_PF(bp)) {
2754 		/* Setup NIC internals and enable interrupts */
2755 		bnx2x_post_irq_nic_init(bp, load_code);
2756 
2757 		bnx2x_init_bp_objs(bp);
2758 		bnx2x_iov_nic_init(bp);
2759 
2760 		/* Set AFEX default VLAN tag to an invalid value */
2761 		bp->afex_def_vlan_tag = -1;
2762 		bnx2x_nic_load_afex_dcc(bp, load_code);
2763 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2764 		rc = bnx2x_func_start(bp);
2765 		if (rc) {
2766 			BNX2X_ERR("Function start failed!\n");
2767 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2768 
2769 			LOAD_ERROR_EXIT(bp, load_error3);
2770 		}
2771 
2772 		/* Send LOAD_DONE command to MCP */
2773 		if (!BP_NOMCP(bp)) {
2774 			load_code = bnx2x_fw_command(bp,
2775 						     DRV_MSG_CODE_LOAD_DONE, 0);
2776 			if (!load_code) {
2777 				BNX2X_ERR("MCP response failure, aborting\n");
2778 				rc = -EBUSY;
2779 				LOAD_ERROR_EXIT(bp, load_error3);
2780 			}
2781 		}
2782 
2783 		/* initialize FW coalescing state machines in RAM */
2784 		bnx2x_update_coalesce(bp);
2785 	}
2786 
2787 	/* setup the leading queue */
2788 	rc = bnx2x_setup_leading(bp);
2789 	if (rc) {
2790 		BNX2X_ERR("Setup leading failed!\n");
2791 		LOAD_ERROR_EXIT(bp, load_error3);
2792 	}
2793 
2794 	/* set up the rest of the queues */
2795 	for_each_nondefault_eth_queue(bp, i) {
2796 		if (IS_PF(bp))
2797 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2798 		else /* VF */
2799 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2800 		if (rc) {
2801 			BNX2X_ERR("Queue %d setup failed\n", i);
2802 			LOAD_ERROR_EXIT(bp, load_error3);
2803 		}
2804 	}
2805 
2806 	/* setup rss */
2807 	rc = bnx2x_init_rss(bp);
2808 	if (rc) {
2809 		BNX2X_ERR("PF RSS init failed\n");
2810 		LOAD_ERROR_EXIT(bp, load_error3);
2811 	}
2812 
2813 	/* Now when Clients are configured we are ready to work */
2814 	bp->state = BNX2X_STATE_OPEN;
2815 
2816 	/* Configure a ucast MAC */
2817 	if (IS_PF(bp))
2818 		rc = bnx2x_set_eth_mac(bp, true);
2819 	else /* vf */
2820 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2821 					   true);
2822 	if (rc) {
2823 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2824 		LOAD_ERROR_EXIT(bp, load_error3);
2825 	}
2826 
2827 	if (IS_PF(bp) && bp->pending_max) {
2828 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2829 		bp->pending_max = 0;
2830 	}
2831 
2832 	bp->force_link_down = false;
2833 	if (bp->port.pmf) {
2834 		rc = bnx2x_initial_phy_init(bp, load_mode);
2835 		if (rc)
2836 			LOAD_ERROR_EXIT(bp, load_error3);
2837 	}
2838 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2839 
2840 	/* Start fast path */
2841 
2842 	/* Re-configure vlan filters */
2843 	rc = bnx2x_vlan_reconfigure_vid(bp);
2844 	if (rc)
2845 		LOAD_ERROR_EXIT(bp, load_error3);
2846 
2847 	/* Initialize Rx filter. */
2848 	bnx2x_set_rx_mode_inner(bp);
2849 
2850 	if (bp->flags & PTP_SUPPORTED) {
2851 		bnx2x_register_phc(bp);
2852 		bnx2x_init_ptp(bp);
2853 		bnx2x_configure_ptp_filters(bp);
2854 	}
2855 	/* Start Tx */
2856 	switch (load_mode) {
2857 	case LOAD_NORMAL:
2858 		/* Tx queue should be only re-enabled */
2859 		netif_tx_wake_all_queues(bp->dev);
2860 		break;
2861 
2862 	case LOAD_OPEN:
2863 		netif_tx_start_all_queues(bp->dev);
2864 		smp_mb__after_atomic();
2865 		break;
2866 
2867 	case LOAD_DIAG:
2868 	case LOAD_LOOPBACK_EXT:
2869 		bp->state = BNX2X_STATE_DIAG;
2870 		break;
2871 
2872 	default:
2873 		break;
2874 	}
2875 
2876 	if (bp->port.pmf)
2877 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2878 	else
2879 		bnx2x__link_status_update(bp);
2880 
2881 	/* start the timer */
2882 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2883 
2884 	if (CNIC_ENABLED(bp))
2885 		bnx2x_load_cnic(bp);
2886 
2887 	if (IS_PF(bp))
2888 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2889 
2890 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2891 		/* mark driver is loaded in shmem2 */
2892 		u32 val;
2893 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2894 		val &= ~DRV_FLAGS_MTU_MASK;
2895 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2896 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2897 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2898 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2899 	}
2900 
2901 	/* Wait for all pending SP commands to complete */
2902 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2903 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2904 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2905 		return -EBUSY;
2906 	}
2907 
2908 	/* Update driver data for On-Chip MFW dump. */
2909 	if (IS_PF(bp))
2910 		bnx2x_update_mfw_dump(bp);
2911 
2912 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2913 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2914 		bnx2x_dcbx_init(bp, false);
2915 
2916 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2917 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2918 
2919 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2920 
2921 	return 0;
2922 
2923 #ifndef BNX2X_STOP_ON_ERROR
2924 load_error3:
2925 	if (IS_PF(bp)) {
2926 		bnx2x_int_disable_sync(bp, 1);
2927 
2928 		/* Clean queueable objects */
2929 		bnx2x_squeeze_objects(bp);
2930 	}
2931 
2932 	/* Free SKBs, SGEs, TPA pool and driver internals */
2933 	bnx2x_free_skbs(bp);
2934 	for_each_rx_queue(bp, i)
2935 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2936 
2937 	/* Release IRQs */
2938 	bnx2x_free_irq(bp);
2939 load_error2:
2940 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2941 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2942 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2943 	}
2944 
2945 	bp->port.pmf = 0;
2946 load_error1:
2947 	bnx2x_napi_disable(bp);
2948 	bnx2x_del_all_napi(bp);
2949 
2950 	/* clear pf_load status, as it was already set */
2951 	if (IS_PF(bp))
2952 		bnx2x_clear_pf_load(bp);
2953 load_error0:
2954 	bnx2x_free_fw_stats_mem(bp);
2955 	bnx2x_free_fp_mem(bp);
2956 	bnx2x_free_mem(bp);
2957 
2958 	return rc;
2959 #endif /* ! BNX2X_STOP_ON_ERROR */
2960 }
2961 
2962 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2963 {
2964 	u8 rc = 0, cos, i;
2965 
2966 	/* Wait until tx fastpath tasks complete */
2967 	for_each_tx_queue(bp, i) {
2968 		struct bnx2x_fastpath *fp = &bp->fp[i];
2969 
2970 		for_each_cos_in_tx_queue(fp, cos)
2971 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2972 		if (rc)
2973 			return rc;
2974 	}
2975 	return 0;
2976 }
2977 
2978 /* must be called with rtnl_lock */
2979 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2980 {
2981 	int i;
2982 	bool global = false;
2983 
2984 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2985 
2986 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2987 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2988 
2989 	/* mark driver is unloaded in shmem2 */
2990 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2991 		u32 val;
2992 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2993 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2994 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2995 	}
2996 
2997 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2998 	    (bp->state == BNX2X_STATE_CLOSED ||
2999 	     bp->state == BNX2X_STATE_ERROR)) {
3000 		/* We can get here if the driver has been unloaded
3001 		 * during parity error recovery and is either waiting for a
3002 		 * leader to complete or for other functions to unload and
3003 		 * then ifdown has been issued. In this case we want to
3004 		 * unload and let other functions to complete a recovery
3005 		 * process.
3006 		 */
3007 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3008 		bp->is_leader = 0;
3009 		bnx2x_release_leader_lock(bp);
3010 		smp_mb();
3011 
3012 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3013 		BNX2X_ERR("Can't unload in closed or error state\n");
3014 		return -EINVAL;
3015 	}
3016 
3017 	/* Nothing to do during unload if previous bnx2x_nic_load()
3018 	 * have not completed successfully - all resources are released.
3019 	 *
3020 	 * we can get here only after unsuccessful ndo_* callback, during which
3021 	 * dev->IFF_UP flag is still on.
3022 	 */
3023 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3024 		return 0;
3025 
3026 	/* It's important to set the bp->state to the value different from
3027 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3028 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3029 	 */
3030 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3031 	smp_mb();
3032 
3033 	/* indicate to VFs that the PF is going down */
3034 	bnx2x_iov_channel_down(bp);
3035 
3036 	if (CNIC_LOADED(bp))
3037 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3038 
3039 	/* Stop Tx */
3040 	bnx2x_tx_disable(bp);
3041 	netdev_reset_tc(bp->dev);
3042 
3043 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3044 
3045 	del_timer_sync(&bp->timer);
3046 
3047 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3048 		/* Set ALWAYS_ALIVE bit in shmem */
3049 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3050 		bnx2x_drv_pulse(bp);
3051 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3052 		bnx2x_save_statistics(bp);
3053 	}
3054 
3055 	/* wait till consumers catch up with producers in all queues.
3056 	 * If we're recovering, FW can't write to host so no reason
3057 	 * to wait for the queues to complete all Tx.
3058 	 */
3059 	if (unload_mode != UNLOAD_RECOVERY)
3060 		bnx2x_drain_tx_queues(bp);
3061 
3062 	/* if VF indicate to PF this function is going down (PF will delete sp
3063 	 * elements and clear initializations
3064 	 */
3065 	if (IS_VF(bp)) {
3066 		bnx2x_clear_vlan_info(bp);
3067 		bnx2x_vfpf_close_vf(bp);
3068 	} else if (unload_mode != UNLOAD_RECOVERY) {
3069 		/* if this is a normal/close unload need to clean up chip*/
3070 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3071 	} else {
3072 		/* Send the UNLOAD_REQUEST to the MCP */
3073 		bnx2x_send_unload_req(bp, unload_mode);
3074 
3075 		/* Prevent transactions to host from the functions on the
3076 		 * engine that doesn't reset global blocks in case of global
3077 		 * attention once global blocks are reset and gates are opened
3078 		 * (the engine which leader will perform the recovery
3079 		 * last).
3080 		 */
3081 		if (!CHIP_IS_E1x(bp))
3082 			bnx2x_pf_disable(bp);
3083 
3084 		/* Disable HW interrupts, NAPI */
3085 		bnx2x_netif_stop(bp, 1);
3086 		/* Delete all NAPI objects */
3087 		bnx2x_del_all_napi(bp);
3088 		if (CNIC_LOADED(bp))
3089 			bnx2x_del_all_napi_cnic(bp);
3090 		/* Release IRQs */
3091 		bnx2x_free_irq(bp);
3092 
3093 		/* Report UNLOAD_DONE to MCP */
3094 		bnx2x_send_unload_done(bp, false);
3095 	}
3096 
3097 	/*
3098 	 * At this stage no more interrupts will arrive so we may safely clean
3099 	 * the queueable objects here in case they failed to get cleaned so far.
3100 	 */
3101 	if (IS_PF(bp))
3102 		bnx2x_squeeze_objects(bp);
3103 
3104 	/* There should be no more pending SP commands at this stage */
3105 	bp->sp_state = 0;
3106 
3107 	bp->port.pmf = 0;
3108 
3109 	/* clear pending work in rtnl task */
3110 	bp->sp_rtnl_state = 0;
3111 	smp_mb();
3112 
3113 	/* Free SKBs, SGEs, TPA pool and driver internals */
3114 	bnx2x_free_skbs(bp);
3115 	if (CNIC_LOADED(bp))
3116 		bnx2x_free_skbs_cnic(bp);
3117 	for_each_rx_queue(bp, i)
3118 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3119 
3120 	bnx2x_free_fp_mem(bp);
3121 	if (CNIC_LOADED(bp))
3122 		bnx2x_free_fp_mem_cnic(bp);
3123 
3124 	if (IS_PF(bp)) {
3125 		if (CNIC_LOADED(bp))
3126 			bnx2x_free_mem_cnic(bp);
3127 	}
3128 	bnx2x_free_mem(bp);
3129 
3130 	bp->state = BNX2X_STATE_CLOSED;
3131 	bp->cnic_loaded = false;
3132 
3133 	/* Clear driver version indication in shmem */
3134 	if (IS_PF(bp) && !BP_NOMCP(bp))
3135 		bnx2x_update_mng_version(bp);
3136 
3137 	/* Check if there are pending parity attentions. If there are - set
3138 	 * RECOVERY_IN_PROGRESS.
3139 	 */
3140 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3141 		bnx2x_set_reset_in_progress(bp);
3142 
3143 		/* Set RESET_IS_GLOBAL if needed */
3144 		if (global)
3145 			bnx2x_set_reset_global(bp);
3146 	}
3147 
3148 	/* The last driver must disable a "close the gate" if there is no
3149 	 * parity attention or "process kill" pending.
3150 	 */
3151 	if (IS_PF(bp) &&
3152 	    !bnx2x_clear_pf_load(bp) &&
3153 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3154 		bnx2x_disable_close_the_gate(bp);
3155 
3156 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3157 
3158 	return 0;
3159 }
3160 
3161 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3162 {
3163 	u16 pmcsr;
3164 
3165 	/* If there is no power capability, silently succeed */
3166 	if (!bp->pdev->pm_cap) {
3167 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3168 		return 0;
3169 	}
3170 
3171 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3172 
3173 	switch (state) {
3174 	case PCI_D0:
3175 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3176 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3177 				       PCI_PM_CTRL_PME_STATUS));
3178 
3179 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3180 			/* delay required during transition out of D3hot */
3181 			msleep(20);
3182 		break;
3183 
3184 	case PCI_D3hot:
3185 		/* If there are other clients above don't
3186 		   shut down the power */
3187 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3188 			return 0;
3189 		/* Don't shut down the power for emulation and FPGA */
3190 		if (CHIP_REV_IS_SLOW(bp))
3191 			return 0;
3192 
3193 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3194 		pmcsr |= 3;
3195 
3196 		if (bp->wol)
3197 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3198 
3199 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3200 				      pmcsr);
3201 
3202 		/* No more memory access after this point until
3203 		* device is brought back to D0.
3204 		*/
3205 		break;
3206 
3207 	default:
3208 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3209 		return -EINVAL;
3210 	}
3211 	return 0;
3212 }
3213 
3214 /*
3215  * net_device service functions
3216  */
3217 static int bnx2x_poll(struct napi_struct *napi, int budget)
3218 {
3219 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3220 						 napi);
3221 	struct bnx2x *bp = fp->bp;
3222 	int rx_work_done;
3223 	u8 cos;
3224 
3225 #ifdef BNX2X_STOP_ON_ERROR
3226 	if (unlikely(bp->panic)) {
3227 		napi_complete(napi);
3228 		return 0;
3229 	}
3230 #endif
3231 	for_each_cos_in_tx_queue(fp, cos)
3232 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3233 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3234 
3235 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3236 
3237 	if (rx_work_done < budget) {
3238 		/* No need to update SB for FCoE L2 ring as long as
3239 		 * it's connected to the default SB and the SB
3240 		 * has been updated when NAPI was scheduled.
3241 		 */
3242 		if (IS_FCOE_FP(fp)) {
3243 			napi_complete_done(napi, rx_work_done);
3244 		} else {
3245 			bnx2x_update_fpsb_idx(fp);
3246 			/* bnx2x_has_rx_work() reads the status block,
3247 			 * thus we need to ensure that status block indices
3248 			 * have been actually read (bnx2x_update_fpsb_idx)
3249 			 * prior to this check (bnx2x_has_rx_work) so that
3250 			 * we won't write the "newer" value of the status block
3251 			 * to IGU (if there was a DMA right after
3252 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3253 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3254 			 * to right before bnx2x_ack_sb). In this case there
3255 			 * will never be another interrupt until there is
3256 			 * another update of the status block, while there
3257 			 * is still unhandled work.
3258 			 */
3259 			rmb();
3260 
3261 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3262 				if (napi_complete_done(napi, rx_work_done)) {
3263 					/* Re-enable interrupts */
3264 					DP(NETIF_MSG_RX_STATUS,
3265 					   "Update index to %d\n", fp->fp_hc_idx);
3266 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3267 						     le16_to_cpu(fp->fp_hc_idx),
3268 						     IGU_INT_ENABLE, 1);
3269 				}
3270 			} else {
3271 				rx_work_done = budget;
3272 			}
3273 		}
3274 	}
3275 
3276 	return rx_work_done;
3277 }
3278 
3279 /* we split the first BD into headers and data BDs
3280  * to ease the pain of our fellow microcode engineers
3281  * we use one mapping for both BDs
3282  */
3283 static u16 bnx2x_tx_split(struct bnx2x *bp,
3284 			  struct bnx2x_fp_txdata *txdata,
3285 			  struct sw_tx_bd *tx_buf,
3286 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3287 			  u16 bd_prod)
3288 {
3289 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3290 	struct eth_tx_bd *d_tx_bd;
3291 	dma_addr_t mapping;
3292 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3293 
3294 	/* first fix first BD */
3295 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3296 
3297 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3298 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3299 
3300 	/* now get a new data BD
3301 	 * (after the pbd) and fill it */
3302 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3303 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3304 
3305 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3306 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3307 
3308 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3309 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3310 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3311 
3312 	/* this marks the BD as one that has no individual mapping */
3313 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3314 
3315 	DP(NETIF_MSG_TX_QUEUED,
3316 	   "TSO split data size is %d (%x:%x)\n",
3317 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3318 
3319 	/* update tx_bd */
3320 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3321 
3322 	return bd_prod;
3323 }
3324 
3325 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3326 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3327 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3328 {
3329 	__sum16 tsum = (__force __sum16) csum;
3330 
3331 	if (fix > 0)
3332 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3333 				  csum_partial(t_header - fix, fix, 0)));
3334 
3335 	else if (fix < 0)
3336 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3337 				  csum_partial(t_header, -fix, 0)));
3338 
3339 	return bswab16(tsum);
3340 }
3341 
3342 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3343 {
3344 	u32 rc;
3345 	__u8 prot = 0;
3346 	__be16 protocol;
3347 
3348 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3349 		return XMIT_PLAIN;
3350 
3351 	protocol = vlan_get_protocol(skb);
3352 	if (protocol == htons(ETH_P_IPV6)) {
3353 		rc = XMIT_CSUM_V6;
3354 		prot = ipv6_hdr(skb)->nexthdr;
3355 	} else {
3356 		rc = XMIT_CSUM_V4;
3357 		prot = ip_hdr(skb)->protocol;
3358 	}
3359 
3360 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3361 		if (inner_ip_hdr(skb)->version == 6) {
3362 			rc |= XMIT_CSUM_ENC_V6;
3363 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3364 				rc |= XMIT_CSUM_TCP;
3365 		} else {
3366 			rc |= XMIT_CSUM_ENC_V4;
3367 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3368 				rc |= XMIT_CSUM_TCP;
3369 		}
3370 	}
3371 	if (prot == IPPROTO_TCP)
3372 		rc |= XMIT_CSUM_TCP;
3373 
3374 	if (skb_is_gso(skb)) {
3375 		if (skb_is_gso_v6(skb)) {
3376 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3377 			if (rc & XMIT_CSUM_ENC)
3378 				rc |= XMIT_GSO_ENC_V6;
3379 		} else {
3380 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3381 			if (rc & XMIT_CSUM_ENC)
3382 				rc |= XMIT_GSO_ENC_V4;
3383 		}
3384 	}
3385 
3386 	return rc;
3387 }
3388 
3389 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3390 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3391 
3392 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3393 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3394 
3395 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3396 /* check if packet requires linearization (packet is too fragmented)
3397    no need to check fragmentation if page size > 8K (there will be no
3398    violation to FW restrictions) */
3399 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3400 			     u32 xmit_type)
3401 {
3402 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3403 	int to_copy = 0, hlen = 0;
3404 
3405 	if (xmit_type & XMIT_GSO_ENC)
3406 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3407 
3408 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3409 		if (xmit_type & XMIT_GSO) {
3410 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3411 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3412 			/* Number of windows to check */
3413 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3414 			int wnd_idx = 0;
3415 			int frag_idx = 0;
3416 			u32 wnd_sum = 0;
3417 
3418 			/* Headers length */
3419 			if (xmit_type & XMIT_GSO_ENC)
3420 				hlen = (int)(skb_inner_transport_header(skb) -
3421 					     skb->data) +
3422 					     inner_tcp_hdrlen(skb);
3423 			else
3424 				hlen = (int)(skb_transport_header(skb) -
3425 					     skb->data) + tcp_hdrlen(skb);
3426 
3427 			/* Amount of data (w/o headers) on linear part of SKB*/
3428 			first_bd_sz = skb_headlen(skb) - hlen;
3429 
3430 			wnd_sum  = first_bd_sz;
3431 
3432 			/* Calculate the first sum - it's special */
3433 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3434 				wnd_sum +=
3435 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3436 
3437 			/* If there was data on linear skb data - check it */
3438 			if (first_bd_sz > 0) {
3439 				if (unlikely(wnd_sum < lso_mss)) {
3440 					to_copy = 1;
3441 					goto exit_lbl;
3442 				}
3443 
3444 				wnd_sum -= first_bd_sz;
3445 			}
3446 
3447 			/* Others are easier: run through the frag list and
3448 			   check all windows */
3449 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3450 				wnd_sum +=
3451 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3452 
3453 				if (unlikely(wnd_sum < lso_mss)) {
3454 					to_copy = 1;
3455 					break;
3456 				}
3457 				wnd_sum -=
3458 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3459 			}
3460 		} else {
3461 			/* in non-LSO too fragmented packet should always
3462 			   be linearized */
3463 			to_copy = 1;
3464 		}
3465 	}
3466 
3467 exit_lbl:
3468 	if (unlikely(to_copy))
3469 		DP(NETIF_MSG_TX_QUEUED,
3470 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3471 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3472 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3473 
3474 	return to_copy;
3475 }
3476 #endif
3477 
3478 /**
3479  * bnx2x_set_pbd_gso - update PBD in GSO case.
3480  *
3481  * @skb:	packet skb
3482  * @pbd:	parse BD
3483  * @xmit_type:	xmit flags
3484  */
3485 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3486 			      struct eth_tx_parse_bd_e1x *pbd,
3487 			      u32 xmit_type)
3488 {
3489 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3490 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3491 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3492 
3493 	if (xmit_type & XMIT_GSO_V4) {
3494 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3495 		pbd->tcp_pseudo_csum =
3496 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3497 						   ip_hdr(skb)->daddr,
3498 						   0, IPPROTO_TCP, 0));
3499 	} else {
3500 		pbd->tcp_pseudo_csum =
3501 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3502 						 &ipv6_hdr(skb)->daddr,
3503 						 0, IPPROTO_TCP, 0));
3504 	}
3505 
3506 	pbd->global_data |=
3507 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3508 }
3509 
3510 /**
3511  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3512  *
3513  * @bp:			driver handle
3514  * @skb:		packet skb
3515  * @parsing_data:	data to be updated
3516  * @xmit_type:		xmit flags
3517  *
3518  * 57712/578xx related, when skb has encapsulation
3519  */
3520 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3521 				 u32 *parsing_data, u32 xmit_type)
3522 {
3523 	*parsing_data |=
3524 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3525 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3526 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3527 
3528 	if (xmit_type & XMIT_CSUM_TCP) {
3529 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3530 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3531 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3532 
3533 		return skb_inner_transport_header(skb) +
3534 			inner_tcp_hdrlen(skb) - skb->data;
3535 	}
3536 
3537 	/* We support checksum offload for TCP and UDP only.
3538 	 * No need to pass the UDP header length - it's a constant.
3539 	 */
3540 	return skb_inner_transport_header(skb) +
3541 		sizeof(struct udphdr) - skb->data;
3542 }
3543 
3544 /**
3545  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3546  *
3547  * @bp:			driver handle
3548  * @skb:		packet skb
3549  * @parsing_data:	data to be updated
3550  * @xmit_type:		xmit flags
3551  *
3552  * 57712/578xx related
3553  */
3554 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3555 				u32 *parsing_data, u32 xmit_type)
3556 {
3557 	*parsing_data |=
3558 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3559 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3560 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3561 
3562 	if (xmit_type & XMIT_CSUM_TCP) {
3563 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3564 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3565 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3566 
3567 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3568 	}
3569 	/* We support checksum offload for TCP and UDP only.
3570 	 * No need to pass the UDP header length - it's a constant.
3571 	 */
3572 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3573 }
3574 
3575 /* set FW indication according to inner or outer protocols if tunneled */
3576 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3577 			       struct eth_tx_start_bd *tx_start_bd,
3578 			       u32 xmit_type)
3579 {
3580 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3581 
3582 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3583 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3584 
3585 	if (!(xmit_type & XMIT_CSUM_TCP))
3586 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3587 }
3588 
3589 /**
3590  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3591  *
3592  * @bp:		driver handle
3593  * @skb:	packet skb
3594  * @pbd:	parse BD to be updated
3595  * @xmit_type:	xmit flags
3596  */
3597 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3598 			     struct eth_tx_parse_bd_e1x *pbd,
3599 			     u32 xmit_type)
3600 {
3601 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3602 
3603 	/* for now NS flag is not used in Linux */
3604 	pbd->global_data =
3605 		cpu_to_le16(hlen |
3606 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3607 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3608 
3609 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3610 			skb_network_header(skb)) >> 1;
3611 
3612 	hlen += pbd->ip_hlen_w;
3613 
3614 	/* We support checksum offload for TCP and UDP only */
3615 	if (xmit_type & XMIT_CSUM_TCP)
3616 		hlen += tcp_hdrlen(skb) / 2;
3617 	else
3618 		hlen += sizeof(struct udphdr) / 2;
3619 
3620 	pbd->total_hlen_w = cpu_to_le16(hlen);
3621 	hlen = hlen*2;
3622 
3623 	if (xmit_type & XMIT_CSUM_TCP) {
3624 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3625 
3626 	} else {
3627 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3628 
3629 		DP(NETIF_MSG_TX_QUEUED,
3630 		   "hlen %d  fix %d  csum before fix %x\n",
3631 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3632 
3633 		/* HW bug: fixup the CSUM */
3634 		pbd->tcp_pseudo_csum =
3635 			bnx2x_csum_fix(skb_transport_header(skb),
3636 				       SKB_CS(skb), fix);
3637 
3638 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3639 		   pbd->tcp_pseudo_csum);
3640 	}
3641 
3642 	return hlen;
3643 }
3644 
3645 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3646 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3647 				      struct eth_tx_parse_2nd_bd *pbd2,
3648 				      u16 *global_data,
3649 				      u32 xmit_type)
3650 {
3651 	u16 hlen_w = 0;
3652 	u8 outerip_off, outerip_len = 0;
3653 
3654 	/* from outer IP to transport */
3655 	hlen_w = (skb_inner_transport_header(skb) -
3656 		  skb_network_header(skb)) >> 1;
3657 
3658 	/* transport len */
3659 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3660 
3661 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3662 
3663 	/* outer IP header info */
3664 	if (xmit_type & XMIT_CSUM_V4) {
3665 		struct iphdr *iph = ip_hdr(skb);
3666 		u32 csum = (__force u32)(~iph->check) -
3667 			   (__force u32)iph->tot_len -
3668 			   (__force u32)iph->frag_off;
3669 
3670 		outerip_len = iph->ihl << 1;
3671 
3672 		pbd2->fw_ip_csum_wo_len_flags_frag =
3673 			bswab16(csum_fold((__force __wsum)csum));
3674 	} else {
3675 		pbd2->fw_ip_hdr_to_payload_w =
3676 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3677 		pbd_e2->data.tunnel_data.flags |=
3678 			ETH_TUNNEL_DATA_IPV6_OUTER;
3679 	}
3680 
3681 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3682 
3683 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3684 
3685 	/* inner IP header info */
3686 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3687 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3688 
3689 		pbd_e2->data.tunnel_data.pseudo_csum =
3690 			bswab16(~csum_tcpudp_magic(
3691 					inner_ip_hdr(skb)->saddr,
3692 					inner_ip_hdr(skb)->daddr,
3693 					0, IPPROTO_TCP, 0));
3694 	} else {
3695 		pbd_e2->data.tunnel_data.pseudo_csum =
3696 			bswab16(~csum_ipv6_magic(
3697 					&inner_ipv6_hdr(skb)->saddr,
3698 					&inner_ipv6_hdr(skb)->daddr,
3699 					0, IPPROTO_TCP, 0));
3700 	}
3701 
3702 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3703 
3704 	*global_data |=
3705 		outerip_off |
3706 		(outerip_len <<
3707 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3708 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3709 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3710 
3711 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3712 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3713 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3714 	}
3715 }
3716 
3717 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3718 					 u32 xmit_type)
3719 {
3720 	struct ipv6hdr *ipv6;
3721 
3722 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3723 		return;
3724 
3725 	if (xmit_type & XMIT_GSO_ENC_V6)
3726 		ipv6 = inner_ipv6_hdr(skb);
3727 	else /* XMIT_GSO_V6 */
3728 		ipv6 = ipv6_hdr(skb);
3729 
3730 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3731 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3732 }
3733 
3734 /* called with netif_tx_lock
3735  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3736  * netif_wake_queue()
3737  */
3738 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3739 {
3740 	struct bnx2x *bp = netdev_priv(dev);
3741 
3742 	struct netdev_queue *txq;
3743 	struct bnx2x_fp_txdata *txdata;
3744 	struct sw_tx_bd *tx_buf;
3745 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3746 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3747 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3748 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3749 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3750 	u32 pbd_e2_parsing_data = 0;
3751 	u16 pkt_prod, bd_prod;
3752 	int nbd, txq_index;
3753 	dma_addr_t mapping;
3754 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3755 	int i;
3756 	u8 hlen = 0;
3757 	__le16 pkt_size = 0;
3758 	struct ethhdr *eth;
3759 	u8 mac_type = UNICAST_ADDRESS;
3760 
3761 #ifdef BNX2X_STOP_ON_ERROR
3762 	if (unlikely(bp->panic))
3763 		return NETDEV_TX_BUSY;
3764 #endif
3765 
3766 	txq_index = skb_get_queue_mapping(skb);
3767 	txq = netdev_get_tx_queue(dev, txq_index);
3768 
3769 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3770 
3771 	txdata = &bp->bnx2x_txq[txq_index];
3772 
3773 	/* enable this debug print to view the transmission queue being used
3774 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3775 	   txq_index, fp_index, txdata_index); */
3776 
3777 	/* enable this debug print to view the transmission details
3778 	DP(NETIF_MSG_TX_QUEUED,
3779 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3780 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3781 
3782 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3783 			skb_shinfo(skb)->nr_frags +
3784 			BDS_PER_TX_PKT +
3785 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3786 		/* Handle special storage cases separately */
3787 		if (txdata->tx_ring_size == 0) {
3788 			struct bnx2x_eth_q_stats *q_stats =
3789 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3790 			q_stats->driver_filtered_tx_pkt++;
3791 			dev_kfree_skb(skb);
3792 			return NETDEV_TX_OK;
3793 		}
3794 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3795 		netif_tx_stop_queue(txq);
3796 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3797 
3798 		return NETDEV_TX_BUSY;
3799 	}
3800 
3801 	DP(NETIF_MSG_TX_QUEUED,
3802 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3803 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3804 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3805 	   skb->len);
3806 
3807 	eth = (struct ethhdr *)skb->data;
3808 
3809 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3810 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3811 		if (is_broadcast_ether_addr(eth->h_dest))
3812 			mac_type = BROADCAST_ADDRESS;
3813 		else
3814 			mac_type = MULTICAST_ADDRESS;
3815 	}
3816 
3817 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3818 	/* First, check if we need to linearize the skb (due to FW
3819 	   restrictions). No need to check fragmentation if page size > 8K
3820 	   (there will be no violation to FW restrictions) */
3821 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3822 		/* Statistics of linearization */
3823 		bp->lin_cnt++;
3824 		if (skb_linearize(skb) != 0) {
3825 			DP(NETIF_MSG_TX_QUEUED,
3826 			   "SKB linearization failed - silently dropping this SKB\n");
3827 			dev_kfree_skb_any(skb);
3828 			return NETDEV_TX_OK;
3829 		}
3830 	}
3831 #endif
3832 	/* Map skb linear data for DMA */
3833 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3834 				 skb_headlen(skb), DMA_TO_DEVICE);
3835 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3836 		DP(NETIF_MSG_TX_QUEUED,
3837 		   "SKB mapping failed - silently dropping this SKB\n");
3838 		dev_kfree_skb_any(skb);
3839 		return NETDEV_TX_OK;
3840 	}
3841 	/*
3842 	Please read carefully. First we use one BD which we mark as start,
3843 	then we have a parsing info BD (used for TSO or xsum),
3844 	and only then we have the rest of the TSO BDs.
3845 	(don't forget to mark the last one as last,
3846 	and to unmap only AFTER you write to the BD ...)
3847 	And above all, all pdb sizes are in words - NOT DWORDS!
3848 	*/
3849 
3850 	/* get current pkt produced now - advance it just before sending packet
3851 	 * since mapping of pages may fail and cause packet to be dropped
3852 	 */
3853 	pkt_prod = txdata->tx_pkt_prod;
3854 	bd_prod = TX_BD(txdata->tx_bd_prod);
3855 
3856 	/* get a tx_buf and first BD
3857 	 * tx_start_bd may be changed during SPLIT,
3858 	 * but first_bd will always stay first
3859 	 */
3860 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3861 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3862 	first_bd = tx_start_bd;
3863 
3864 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3865 
3866 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3867 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3868 			bp->eth_stats.ptp_skip_tx_ts++;
3869 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3870 		} else if (bp->ptp_tx_skb) {
3871 			bp->eth_stats.ptp_skip_tx_ts++;
3872 			netdev_err_once(bp->dev,
3873 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3874 		} else {
3875 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3876 			/* schedule check for Tx timestamp */
3877 			bp->ptp_tx_skb = skb_get(skb);
3878 			bp->ptp_tx_start = jiffies;
3879 			schedule_work(&bp->ptp_task);
3880 		}
3881 	}
3882 
3883 	/* header nbd: indirectly zero other flags! */
3884 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3885 
3886 	/* remember the first BD of the packet */
3887 	tx_buf->first_bd = txdata->tx_bd_prod;
3888 	tx_buf->skb = skb;
3889 	tx_buf->flags = 0;
3890 
3891 	DP(NETIF_MSG_TX_QUEUED,
3892 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3893 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3894 
3895 	if (skb_vlan_tag_present(skb)) {
3896 		tx_start_bd->vlan_or_ethertype =
3897 		    cpu_to_le16(skb_vlan_tag_get(skb));
3898 		tx_start_bd->bd_flags.as_bitfield |=
3899 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3900 	} else {
3901 		/* when transmitting in a vf, start bd must hold the ethertype
3902 		 * for fw to enforce it
3903 		 */
3904 		u16 vlan_tci = 0;
3905 #ifndef BNX2X_STOP_ON_ERROR
3906 		if (IS_VF(bp)) {
3907 #endif
3908 			/* Still need to consider inband vlan for enforced */
3909 			if (__vlan_get_tag(skb, &vlan_tci)) {
3910 				tx_start_bd->vlan_or_ethertype =
3911 					cpu_to_le16(ntohs(eth->h_proto));
3912 			} else {
3913 				tx_start_bd->bd_flags.as_bitfield |=
3914 					(X_ETH_INBAND_VLAN <<
3915 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3916 				tx_start_bd->vlan_or_ethertype =
3917 					cpu_to_le16(vlan_tci);
3918 			}
3919 #ifndef BNX2X_STOP_ON_ERROR
3920 		} else {
3921 			/* used by FW for packet accounting */
3922 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3923 		}
3924 #endif
3925 	}
3926 
3927 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3928 
3929 	/* turn on parsing and get a BD */
3930 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3931 
3932 	if (xmit_type & XMIT_CSUM)
3933 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3934 
3935 	if (!CHIP_IS_E1x(bp)) {
3936 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3937 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3938 
3939 		if (xmit_type & XMIT_CSUM_ENC) {
3940 			u16 global_data = 0;
3941 
3942 			/* Set PBD in enc checksum offload case */
3943 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3944 						      &pbd_e2_parsing_data,
3945 						      xmit_type);
3946 
3947 			/* turn on 2nd parsing and get a BD */
3948 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3949 
3950 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3951 
3952 			memset(pbd2, 0, sizeof(*pbd2));
3953 
3954 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3955 				(skb_inner_network_header(skb) -
3956 				 skb->data) >> 1;
3957 
3958 			if (xmit_type & XMIT_GSO_ENC)
3959 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3960 							  &global_data,
3961 							  xmit_type);
3962 
3963 			pbd2->global_data = cpu_to_le16(global_data);
3964 
3965 			/* add addition parse BD indication to start BD */
3966 			SET_FLAG(tx_start_bd->general_data,
3967 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3968 			/* set encapsulation flag in start BD */
3969 			SET_FLAG(tx_start_bd->general_data,
3970 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3971 
3972 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3973 
3974 			nbd++;
3975 		} else if (xmit_type & XMIT_CSUM) {
3976 			/* Set PBD in checksum offload case w/o encapsulation */
3977 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3978 						     &pbd_e2_parsing_data,
3979 						     xmit_type);
3980 		}
3981 
3982 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3983 		/* Add the macs to the parsing BD if this is a vf or if
3984 		 * Tx Switching is enabled.
3985 		 */
3986 		if (IS_VF(bp)) {
3987 			/* override GRE parameters in BD */
3988 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3989 					      &pbd_e2->data.mac_addr.src_mid,
3990 					      &pbd_e2->data.mac_addr.src_lo,
3991 					      eth->h_source);
3992 
3993 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3994 					      &pbd_e2->data.mac_addr.dst_mid,
3995 					      &pbd_e2->data.mac_addr.dst_lo,
3996 					      eth->h_dest);
3997 		} else {
3998 			if (bp->flags & TX_SWITCHING)
3999 				bnx2x_set_fw_mac_addr(
4000 						&pbd_e2->data.mac_addr.dst_hi,
4001 						&pbd_e2->data.mac_addr.dst_mid,
4002 						&pbd_e2->data.mac_addr.dst_lo,
4003 						eth->h_dest);
4004 #ifdef BNX2X_STOP_ON_ERROR
4005 			/* Enforce security is always set in Stop on Error -
4006 			 * source mac should be present in the parsing BD
4007 			 */
4008 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4009 					      &pbd_e2->data.mac_addr.src_mid,
4010 					      &pbd_e2->data.mac_addr.src_lo,
4011 					      eth->h_source);
4012 #endif
4013 		}
4014 
4015 		SET_FLAG(pbd_e2_parsing_data,
4016 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4017 	} else {
4018 		u16 global_data = 0;
4019 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4020 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4021 		/* Set PBD in checksum offload case */
4022 		if (xmit_type & XMIT_CSUM)
4023 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4024 
4025 		SET_FLAG(global_data,
4026 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4027 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4028 	}
4029 
4030 	/* Setup the data pointer of the first BD of the packet */
4031 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4032 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4033 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4034 	pkt_size = tx_start_bd->nbytes;
4035 
4036 	DP(NETIF_MSG_TX_QUEUED,
4037 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4038 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4039 	   le16_to_cpu(tx_start_bd->nbytes),
4040 	   tx_start_bd->bd_flags.as_bitfield,
4041 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4042 
4043 	if (xmit_type & XMIT_GSO) {
4044 
4045 		DP(NETIF_MSG_TX_QUEUED,
4046 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4047 		   skb->len, hlen, skb_headlen(skb),
4048 		   skb_shinfo(skb)->gso_size);
4049 
4050 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4051 
4052 		if (unlikely(skb_headlen(skb) > hlen)) {
4053 			nbd++;
4054 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4055 						 &tx_start_bd, hlen,
4056 						 bd_prod);
4057 		}
4058 		if (!CHIP_IS_E1x(bp))
4059 			pbd_e2_parsing_data |=
4060 				(skb_shinfo(skb)->gso_size <<
4061 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4062 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4063 		else
4064 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4065 	}
4066 
4067 	/* Set the PBD's parsing_data field if not zero
4068 	 * (for the chips newer than 57711).
4069 	 */
4070 	if (pbd_e2_parsing_data)
4071 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4072 
4073 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4074 
4075 	/* Handle fragmented skb */
4076 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4077 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4078 
4079 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4080 					   skb_frag_size(frag), DMA_TO_DEVICE);
4081 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4082 			unsigned int pkts_compl = 0, bytes_compl = 0;
4083 
4084 			DP(NETIF_MSG_TX_QUEUED,
4085 			   "Unable to map page - dropping packet...\n");
4086 
4087 			/* we need unmap all buffers already mapped
4088 			 * for this SKB;
4089 			 * first_bd->nbd need to be properly updated
4090 			 * before call to bnx2x_free_tx_pkt
4091 			 */
4092 			first_bd->nbd = cpu_to_le16(nbd);
4093 			bnx2x_free_tx_pkt(bp, txdata,
4094 					  TX_BD(txdata->tx_pkt_prod),
4095 					  &pkts_compl, &bytes_compl);
4096 			return NETDEV_TX_OK;
4097 		}
4098 
4099 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4100 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4101 		if (total_pkt_bd == NULL)
4102 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4103 
4104 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4105 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4106 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4107 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4108 		nbd++;
4109 
4110 		DP(NETIF_MSG_TX_QUEUED,
4111 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4112 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4113 		   le16_to_cpu(tx_data_bd->nbytes));
4114 	}
4115 
4116 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4117 
4118 	/* update with actual num BDs */
4119 	first_bd->nbd = cpu_to_le16(nbd);
4120 
4121 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4122 
4123 	/* now send a tx doorbell, counting the next BD
4124 	 * if the packet contains or ends with it
4125 	 */
4126 	if (TX_BD_POFF(bd_prod) < nbd)
4127 		nbd++;
4128 
4129 	/* total_pkt_bytes should be set on the first data BD if
4130 	 * it's not an LSO packet and there is more than one
4131 	 * data BD. In this case pkt_size is limited by an MTU value.
4132 	 * However we prefer to set it for an LSO packet (while we don't
4133 	 * have to) in order to save some CPU cycles in a none-LSO
4134 	 * case, when we much more care about them.
4135 	 */
4136 	if (total_pkt_bd != NULL)
4137 		total_pkt_bd->total_pkt_bytes = pkt_size;
4138 
4139 	if (pbd_e1x)
4140 		DP(NETIF_MSG_TX_QUEUED,
4141 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4142 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4143 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4144 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4145 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4146 	if (pbd_e2)
4147 		DP(NETIF_MSG_TX_QUEUED,
4148 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4149 		   pbd_e2,
4150 		   pbd_e2->data.mac_addr.dst_hi,
4151 		   pbd_e2->data.mac_addr.dst_mid,
4152 		   pbd_e2->data.mac_addr.dst_lo,
4153 		   pbd_e2->data.mac_addr.src_hi,
4154 		   pbd_e2->data.mac_addr.src_mid,
4155 		   pbd_e2->data.mac_addr.src_lo,
4156 		   pbd_e2->parsing_data);
4157 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4158 
4159 	netdev_tx_sent_queue(txq, skb->len);
4160 
4161 	skb_tx_timestamp(skb);
4162 
4163 	txdata->tx_pkt_prod++;
4164 	/*
4165 	 * Make sure that the BD data is updated before updating the producer
4166 	 * since FW might read the BD right after the producer is updated.
4167 	 * This is only applicable for weak-ordered memory model archs such
4168 	 * as IA-64. The following barrier is also mandatory since FW will
4169 	 * assumes packets must have BDs.
4170 	 */
4171 	wmb();
4172 
4173 	txdata->tx_db.data.prod += nbd;
4174 	/* make sure descriptor update is observed by HW */
4175 	wmb();
4176 
4177 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4178 
4179 	txdata->tx_bd_prod += nbd;
4180 
4181 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4182 		netif_tx_stop_queue(txq);
4183 
4184 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4185 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4186 		 * fp->bd_tx_cons */
4187 		smp_mb();
4188 
4189 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4190 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4191 			netif_tx_wake_queue(txq);
4192 	}
4193 	txdata->tx_pkt++;
4194 
4195 	return NETDEV_TX_OK;
4196 }
4197 
4198 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4199 {
4200 	int mfw_vn = BP_FW_MB_IDX(bp);
4201 	u32 tmp;
4202 
4203 	/* If the shmem shouldn't affect configuration, reflect */
4204 	if (!IS_MF_BD(bp)) {
4205 		int i;
4206 
4207 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4208 			c2s_map[i] = i;
4209 		*c2s_default = 0;
4210 
4211 		return;
4212 	}
4213 
4214 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4215 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4216 	c2s_map[0] = tmp & 0xff;
4217 	c2s_map[1] = (tmp >> 8) & 0xff;
4218 	c2s_map[2] = (tmp >> 16) & 0xff;
4219 	c2s_map[3] = (tmp >> 24) & 0xff;
4220 
4221 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4222 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4223 	c2s_map[4] = tmp & 0xff;
4224 	c2s_map[5] = (tmp >> 8) & 0xff;
4225 	c2s_map[6] = (tmp >> 16) & 0xff;
4226 	c2s_map[7] = (tmp >> 24) & 0xff;
4227 
4228 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4229 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4230 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4231 }
4232 
4233 /**
4234  * bnx2x_setup_tc - routine to configure net_device for multi tc
4235  *
4236  * @dev: net device to configure
4237  * @num_tc: number of traffic classes to enable
4238  *
4239  * callback connected to the ndo_setup_tc function pointer
4240  */
4241 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4242 {
4243 	struct bnx2x *bp = netdev_priv(dev);
4244 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4245 	int cos, prio, count, offset;
4246 
4247 	/* setup tc must be called under rtnl lock */
4248 	ASSERT_RTNL();
4249 
4250 	/* no traffic classes requested. Aborting */
4251 	if (!num_tc) {
4252 		netdev_reset_tc(dev);
4253 		return 0;
4254 	}
4255 
4256 	/* requested to support too many traffic classes */
4257 	if (num_tc > bp->max_cos) {
4258 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4259 			  num_tc, bp->max_cos);
4260 		return -EINVAL;
4261 	}
4262 
4263 	/* declare amount of supported traffic classes */
4264 	if (netdev_set_num_tc(dev, num_tc)) {
4265 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4266 		return -EINVAL;
4267 	}
4268 
4269 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4270 
4271 	/* configure priority to traffic class mapping */
4272 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4273 		int outer_prio = c2s_map[prio];
4274 
4275 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4276 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4277 		   "mapping priority %d to tc %d\n",
4278 		   outer_prio, bp->prio_to_cos[outer_prio]);
4279 	}
4280 
4281 	/* Use this configuration to differentiate tc0 from other COSes
4282 	   This can be used for ets or pfc, and save the effort of setting
4283 	   up a multio class queue disc or negotiating DCBX with a switch
4284 	netdev_set_prio_tc_map(dev, 0, 0);
4285 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4286 	for (prio = 1; prio < 16; prio++) {
4287 		netdev_set_prio_tc_map(dev, prio, 1);
4288 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4289 	} */
4290 
4291 	/* configure traffic class to transmission queue mapping */
4292 	for (cos = 0; cos < bp->max_cos; cos++) {
4293 		count = BNX2X_NUM_ETH_QUEUES(bp);
4294 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4295 		netdev_set_tc_queue(dev, cos, count, offset);
4296 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4297 		   "mapping tc %d to offset %d count %d\n",
4298 		   cos, offset, count);
4299 	}
4300 
4301 	return 0;
4302 }
4303 
4304 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4305 		     void *type_data)
4306 {
4307 	struct tc_mqprio_qopt *mqprio = type_data;
4308 
4309 	if (type != TC_SETUP_QDISC_MQPRIO)
4310 		return -EOPNOTSUPP;
4311 
4312 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4313 
4314 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4315 }
4316 
4317 /* called with rtnl_lock */
4318 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4319 {
4320 	struct sockaddr *addr = p;
4321 	struct bnx2x *bp = netdev_priv(dev);
4322 	int rc = 0;
4323 
4324 	if (!is_valid_ether_addr(addr->sa_data)) {
4325 		BNX2X_ERR("Requested MAC address is not valid\n");
4326 		return -EINVAL;
4327 	}
4328 
4329 	if (IS_MF_STORAGE_ONLY(bp)) {
4330 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4331 		return -EINVAL;
4332 	}
4333 
4334 	if (netif_running(dev))  {
4335 		rc = bnx2x_set_eth_mac(bp, false);
4336 		if (rc)
4337 			return rc;
4338 	}
4339 
4340 	eth_hw_addr_set(dev, addr->sa_data);
4341 
4342 	if (netif_running(dev))
4343 		rc = bnx2x_set_eth_mac(bp, true);
4344 
4345 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4346 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4347 
4348 	return rc;
4349 }
4350 
4351 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4352 {
4353 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4354 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4355 	u8 cos;
4356 
4357 	/* Common */
4358 
4359 	if (IS_FCOE_IDX(fp_index)) {
4360 		memset(sb, 0, sizeof(union host_hc_status_block));
4361 		fp->status_blk_mapping = 0;
4362 	} else {
4363 		/* status blocks */
4364 		if (!CHIP_IS_E1x(bp))
4365 			BNX2X_PCI_FREE(sb->e2_sb,
4366 				       bnx2x_fp(bp, fp_index,
4367 						status_blk_mapping),
4368 				       sizeof(struct host_hc_status_block_e2));
4369 		else
4370 			BNX2X_PCI_FREE(sb->e1x_sb,
4371 				       bnx2x_fp(bp, fp_index,
4372 						status_blk_mapping),
4373 				       sizeof(struct host_hc_status_block_e1x));
4374 	}
4375 
4376 	/* Rx */
4377 	if (!skip_rx_queue(bp, fp_index)) {
4378 		bnx2x_free_rx_bds(fp);
4379 
4380 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4381 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4382 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4383 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4384 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4385 
4386 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4387 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4388 			       sizeof(struct eth_fast_path_rx_cqe) *
4389 			       NUM_RCQ_BD);
4390 
4391 		/* SGE ring */
4392 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4393 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4394 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4395 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4396 	}
4397 
4398 	/* Tx */
4399 	if (!skip_tx_queue(bp, fp_index)) {
4400 		/* fastpath tx rings: tx_buf tx_desc */
4401 		for_each_cos_in_tx_queue(fp, cos) {
4402 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4403 
4404 			DP(NETIF_MSG_IFDOWN,
4405 			   "freeing tx memory of fp %d cos %d cid %d\n",
4406 			   fp_index, cos, txdata->cid);
4407 
4408 			BNX2X_FREE(txdata->tx_buf_ring);
4409 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4410 				txdata->tx_desc_mapping,
4411 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4412 		}
4413 	}
4414 	/* end of fastpath */
4415 }
4416 
4417 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4418 {
4419 	int i;
4420 	for_each_cnic_queue(bp, i)
4421 		bnx2x_free_fp_mem_at(bp, i);
4422 }
4423 
4424 void bnx2x_free_fp_mem(struct bnx2x *bp)
4425 {
4426 	int i;
4427 	for_each_eth_queue(bp, i)
4428 		bnx2x_free_fp_mem_at(bp, i);
4429 }
4430 
4431 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4432 {
4433 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4434 	if (!CHIP_IS_E1x(bp)) {
4435 		bnx2x_fp(bp, index, sb_index_values) =
4436 			(__le16 *)status_blk.e2_sb->sb.index_values;
4437 		bnx2x_fp(bp, index, sb_running_index) =
4438 			(__le16 *)status_blk.e2_sb->sb.running_index;
4439 	} else {
4440 		bnx2x_fp(bp, index, sb_index_values) =
4441 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4442 		bnx2x_fp(bp, index, sb_running_index) =
4443 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4444 	}
4445 }
4446 
4447 /* Returns the number of actually allocated BDs */
4448 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4449 			      int rx_ring_size)
4450 {
4451 	struct bnx2x *bp = fp->bp;
4452 	u16 ring_prod, cqe_ring_prod;
4453 	int i, failure_cnt = 0;
4454 
4455 	fp->rx_comp_cons = 0;
4456 	cqe_ring_prod = ring_prod = 0;
4457 
4458 	/* This routine is called only during fo init so
4459 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4460 	 */
4461 	for (i = 0; i < rx_ring_size; i++) {
4462 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4463 			failure_cnt++;
4464 			continue;
4465 		}
4466 		ring_prod = NEXT_RX_IDX(ring_prod);
4467 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4468 		WARN_ON(ring_prod <= (i - failure_cnt));
4469 	}
4470 
4471 	if (failure_cnt)
4472 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4473 			  i - failure_cnt, fp->index);
4474 
4475 	fp->rx_bd_prod = ring_prod;
4476 	/* Limit the CQE producer by the CQE ring size */
4477 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4478 			       cqe_ring_prod);
4479 
4480 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4481 
4482 	return i - failure_cnt;
4483 }
4484 
4485 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4486 {
4487 	int i;
4488 
4489 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4490 		struct eth_rx_cqe_next_page *nextpg;
4491 
4492 		nextpg = (struct eth_rx_cqe_next_page *)
4493 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4494 		nextpg->addr_hi =
4495 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4496 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4497 		nextpg->addr_lo =
4498 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4499 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4500 	}
4501 }
4502 
4503 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4504 {
4505 	union host_hc_status_block *sb;
4506 	struct bnx2x_fastpath *fp = &bp->fp[index];
4507 	int ring_size = 0;
4508 	u8 cos;
4509 	int rx_ring_size = 0;
4510 
4511 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4512 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4513 		bp->rx_ring_size = rx_ring_size;
4514 	} else if (!bp->rx_ring_size) {
4515 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4516 
4517 		if (CHIP_IS_E3(bp)) {
4518 			u32 cfg = SHMEM_RD(bp,
4519 					   dev_info.port_hw_config[BP_PORT(bp)].
4520 					   default_cfg);
4521 
4522 			/* Decrease ring size for 1G functions */
4523 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4524 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4525 				rx_ring_size /= 10;
4526 		}
4527 
4528 		/* allocate at least number of buffers required by FW */
4529 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4530 				     MIN_RX_SIZE_TPA, rx_ring_size);
4531 
4532 		bp->rx_ring_size = rx_ring_size;
4533 	} else /* if rx_ring_size specified - use it */
4534 		rx_ring_size = bp->rx_ring_size;
4535 
4536 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4537 
4538 	/* Common */
4539 	sb = &bnx2x_fp(bp, index, status_blk);
4540 
4541 	if (!IS_FCOE_IDX(index)) {
4542 		/* status blocks */
4543 		if (!CHIP_IS_E1x(bp)) {
4544 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4545 						    sizeof(struct host_hc_status_block_e2));
4546 			if (!sb->e2_sb)
4547 				goto alloc_mem_err;
4548 		} else {
4549 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4550 						     sizeof(struct host_hc_status_block_e1x));
4551 			if (!sb->e1x_sb)
4552 				goto alloc_mem_err;
4553 		}
4554 	}
4555 
4556 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4557 	 * set shortcuts for it.
4558 	 */
4559 	if (!IS_FCOE_IDX(index))
4560 		set_sb_shortcuts(bp, index);
4561 
4562 	/* Tx */
4563 	if (!skip_tx_queue(bp, index)) {
4564 		/* fastpath tx rings: tx_buf tx_desc */
4565 		for_each_cos_in_tx_queue(fp, cos) {
4566 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4567 
4568 			DP(NETIF_MSG_IFUP,
4569 			   "allocating tx memory of fp %d cos %d\n",
4570 			   index, cos);
4571 
4572 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4573 						      sizeof(struct sw_tx_bd),
4574 						      GFP_KERNEL);
4575 			if (!txdata->tx_buf_ring)
4576 				goto alloc_mem_err;
4577 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4578 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4579 			if (!txdata->tx_desc_ring)
4580 				goto alloc_mem_err;
4581 		}
4582 	}
4583 
4584 	/* Rx */
4585 	if (!skip_rx_queue(bp, index)) {
4586 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4587 		bnx2x_fp(bp, index, rx_buf_ring) =
4588 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4589 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4590 			goto alloc_mem_err;
4591 		bnx2x_fp(bp, index, rx_desc_ring) =
4592 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4593 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4594 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4595 			goto alloc_mem_err;
4596 
4597 		/* Seed all CQEs by 1s */
4598 		bnx2x_fp(bp, index, rx_comp_ring) =
4599 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4600 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4601 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4602 			goto alloc_mem_err;
4603 
4604 		/* SGE ring */
4605 		bnx2x_fp(bp, index, rx_page_ring) =
4606 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4607 				GFP_KERNEL);
4608 		if (!bnx2x_fp(bp, index, rx_page_ring))
4609 			goto alloc_mem_err;
4610 		bnx2x_fp(bp, index, rx_sge_ring) =
4611 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4612 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4613 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4614 			goto alloc_mem_err;
4615 		/* RX BD ring */
4616 		bnx2x_set_next_page_rx_bd(fp);
4617 
4618 		/* CQ ring */
4619 		bnx2x_set_next_page_rx_cq(fp);
4620 
4621 		/* BDs */
4622 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4623 		if (ring_size < rx_ring_size)
4624 			goto alloc_mem_err;
4625 	}
4626 
4627 	return 0;
4628 
4629 /* handles low memory cases */
4630 alloc_mem_err:
4631 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4632 						index, ring_size);
4633 	/* FW will drop all packets if queue is not big enough,
4634 	 * In these cases we disable the queue
4635 	 * Min size is different for OOO, TPA and non-TPA queues
4636 	 */
4637 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4638 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4639 			/* release memory allocated for this queue */
4640 			bnx2x_free_fp_mem_at(bp, index);
4641 			return -ENOMEM;
4642 	}
4643 	return 0;
4644 }
4645 
4646 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4647 {
4648 	if (!NO_FCOE(bp))
4649 		/* FCoE */
4650 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4651 			/* we will fail load process instead of mark
4652 			 * NO_FCOE_FLAG
4653 			 */
4654 			return -ENOMEM;
4655 
4656 	return 0;
4657 }
4658 
4659 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4660 {
4661 	int i;
4662 
4663 	/* 1. Allocate FP for leading - fatal if error
4664 	 * 2. Allocate RSS - fix number of queues if error
4665 	 */
4666 
4667 	/* leading */
4668 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4669 		return -ENOMEM;
4670 
4671 	/* RSS */
4672 	for_each_nondefault_eth_queue(bp, i)
4673 		if (bnx2x_alloc_fp_mem_at(bp, i))
4674 			break;
4675 
4676 	/* handle memory failures */
4677 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4678 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4679 
4680 		WARN_ON(delta < 0);
4681 		bnx2x_shrink_eth_fp(bp, delta);
4682 		if (CNIC_SUPPORT(bp))
4683 			/* move non eth FPs next to last eth FP
4684 			 * must be done in that order
4685 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4686 			 */
4687 
4688 			/* move FCoE fp even NO_FCOE_FLAG is on */
4689 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4690 		bp->num_ethernet_queues -= delta;
4691 		bp->num_queues = bp->num_ethernet_queues +
4692 				 bp->num_cnic_queues;
4693 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4694 			  bp->num_queues + delta, bp->num_queues);
4695 	}
4696 
4697 	return 0;
4698 }
4699 
4700 void bnx2x_free_mem_bp(struct bnx2x *bp)
4701 {
4702 	int i;
4703 
4704 	for (i = 0; i < bp->fp_array_size; i++)
4705 		kfree(bp->fp[i].tpa_info);
4706 	kfree(bp->fp);
4707 	kfree(bp->sp_objs);
4708 	kfree(bp->fp_stats);
4709 	kfree(bp->bnx2x_txq);
4710 	kfree(bp->msix_table);
4711 	kfree(bp->ilt);
4712 }
4713 
4714 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4715 {
4716 	struct bnx2x_fastpath *fp;
4717 	struct msix_entry *tbl;
4718 	struct bnx2x_ilt *ilt;
4719 	int msix_table_size = 0;
4720 	int fp_array_size, txq_array_size;
4721 	int i;
4722 
4723 	/*
4724 	 * The biggest MSI-X table we might need is as a maximum number of fast
4725 	 * path IGU SBs plus default SB (for PF only).
4726 	 */
4727 	msix_table_size = bp->igu_sb_cnt;
4728 	if (IS_PF(bp))
4729 		msix_table_size++;
4730 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4731 
4732 	/* fp array: RSS plus CNIC related L2 queues */
4733 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4734 	bp->fp_array_size = fp_array_size;
4735 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4736 
4737 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4738 	if (!fp)
4739 		goto alloc_err;
4740 	for (i = 0; i < bp->fp_array_size; i++) {
4741 		fp[i].tpa_info =
4742 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4743 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4744 		if (!(fp[i].tpa_info))
4745 			goto alloc_err;
4746 	}
4747 
4748 	bp->fp = fp;
4749 
4750 	/* allocate sp objs */
4751 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4752 			      GFP_KERNEL);
4753 	if (!bp->sp_objs)
4754 		goto alloc_err;
4755 
4756 	/* allocate fp_stats */
4757 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4758 			       GFP_KERNEL);
4759 	if (!bp->fp_stats)
4760 		goto alloc_err;
4761 
4762 	/* Allocate memory for the transmission queues array */
4763 	txq_array_size =
4764 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4765 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4766 
4767 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4768 				GFP_KERNEL);
4769 	if (!bp->bnx2x_txq)
4770 		goto alloc_err;
4771 
4772 	/* msix table */
4773 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4774 	if (!tbl)
4775 		goto alloc_err;
4776 	bp->msix_table = tbl;
4777 
4778 	/* ilt */
4779 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4780 	if (!ilt)
4781 		goto alloc_err;
4782 	bp->ilt = ilt;
4783 
4784 	return 0;
4785 alloc_err:
4786 	bnx2x_free_mem_bp(bp);
4787 	return -ENOMEM;
4788 }
4789 
4790 int bnx2x_reload_if_running(struct net_device *dev)
4791 {
4792 	struct bnx2x *bp = netdev_priv(dev);
4793 
4794 	if (unlikely(!netif_running(dev)))
4795 		return 0;
4796 
4797 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4798 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4799 }
4800 
4801 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4802 {
4803 	u32 sel_phy_idx = 0;
4804 	if (bp->link_params.num_phys <= 1)
4805 		return INT_PHY;
4806 
4807 	if (bp->link_vars.link_up) {
4808 		sel_phy_idx = EXT_PHY1;
4809 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4810 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4811 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4812 			sel_phy_idx = EXT_PHY2;
4813 	} else {
4814 
4815 		switch (bnx2x_phy_selection(&bp->link_params)) {
4816 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4817 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4818 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4819 		       sel_phy_idx = EXT_PHY1;
4820 		       break;
4821 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4822 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4823 		       sel_phy_idx = EXT_PHY2;
4824 		       break;
4825 		}
4826 	}
4827 
4828 	return sel_phy_idx;
4829 }
4830 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4831 {
4832 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4833 	/*
4834 	 * The selected activated PHY is always after swapping (in case PHY
4835 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4836 	 * the configuration
4837 	 */
4838 
4839 	if (bp->link_params.multi_phy_config &
4840 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4841 		if (sel_phy_idx == EXT_PHY1)
4842 			sel_phy_idx = EXT_PHY2;
4843 		else if (sel_phy_idx == EXT_PHY2)
4844 			sel_phy_idx = EXT_PHY1;
4845 	}
4846 	return LINK_CONFIG_IDX(sel_phy_idx);
4847 }
4848 
4849 #ifdef NETDEV_FCOE_WWNN
4850 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4851 {
4852 	struct bnx2x *bp = netdev_priv(dev);
4853 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4854 
4855 	switch (type) {
4856 	case NETDEV_FCOE_WWNN:
4857 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4858 				cp->fcoe_wwn_node_name_lo);
4859 		break;
4860 	case NETDEV_FCOE_WWPN:
4861 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4862 				cp->fcoe_wwn_port_name_lo);
4863 		break;
4864 	default:
4865 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4866 		return -EINVAL;
4867 	}
4868 
4869 	return 0;
4870 }
4871 #endif
4872 
4873 /* called with rtnl_lock */
4874 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4875 {
4876 	struct bnx2x *bp = netdev_priv(dev);
4877 
4878 	if (pci_num_vf(bp->pdev)) {
4879 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4880 		return -EPERM;
4881 	}
4882 
4883 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4884 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4885 		return -EAGAIN;
4886 	}
4887 
4888 	/* This does not race with packet allocation
4889 	 * because the actual alloc size is
4890 	 * only updated as part of load
4891 	 */
4892 	dev->mtu = new_mtu;
4893 
4894 	if (!bnx2x_mtu_allows_gro(new_mtu))
4895 		dev->features &= ~NETIF_F_GRO_HW;
4896 
4897 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4898 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4899 
4900 	return bnx2x_reload_if_running(dev);
4901 }
4902 
4903 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4904 				     netdev_features_t features)
4905 {
4906 	struct bnx2x *bp = netdev_priv(dev);
4907 
4908 	if (pci_num_vf(bp->pdev)) {
4909 		netdev_features_t changed = dev->features ^ features;
4910 
4911 		/* Revert the requested changes in features if they
4912 		 * would require internal reload of PF in bnx2x_set_features().
4913 		 */
4914 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4915 			features &= ~NETIF_F_RXCSUM;
4916 			features |= dev->features & NETIF_F_RXCSUM;
4917 		}
4918 
4919 		if (changed & NETIF_F_LOOPBACK) {
4920 			features &= ~NETIF_F_LOOPBACK;
4921 			features |= dev->features & NETIF_F_LOOPBACK;
4922 		}
4923 	}
4924 
4925 	/* TPA requires Rx CSUM offloading */
4926 	if (!(features & NETIF_F_RXCSUM))
4927 		features &= ~NETIF_F_LRO;
4928 
4929 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4930 		features &= ~NETIF_F_GRO_HW;
4931 	if (features & NETIF_F_GRO_HW)
4932 		features &= ~NETIF_F_LRO;
4933 
4934 	return features;
4935 }
4936 
4937 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4938 {
4939 	struct bnx2x *bp = netdev_priv(dev);
4940 	netdev_features_t changes = features ^ dev->features;
4941 	bool bnx2x_reload = false;
4942 	int rc;
4943 
4944 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4945 	if (!pci_num_vf(bp->pdev)) {
4946 		if (features & NETIF_F_LOOPBACK) {
4947 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4948 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4949 				bnx2x_reload = true;
4950 			}
4951 		} else {
4952 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4953 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4954 				bnx2x_reload = true;
4955 			}
4956 		}
4957 	}
4958 
4959 	/* Don't care about GRO changes */
4960 	changes &= ~NETIF_F_GRO;
4961 
4962 	if (changes)
4963 		bnx2x_reload = true;
4964 
4965 	if (bnx2x_reload) {
4966 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4967 			dev->features = features;
4968 			rc = bnx2x_reload_if_running(dev);
4969 			return rc ? rc : 1;
4970 		}
4971 		/* else: bnx2x_nic_load() will be called at end of recovery */
4972 	}
4973 
4974 	return 0;
4975 }
4976 
4977 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4978 {
4979 	struct bnx2x *bp = netdev_priv(dev);
4980 
4981 	/* We want the information of the dump logged,
4982 	 * but calling bnx2x_panic() would kill all chances of recovery.
4983 	 */
4984 	if (!bp->panic)
4985 #ifndef BNX2X_STOP_ON_ERROR
4986 		bnx2x_panic_dump(bp, false);
4987 #else
4988 		bnx2x_panic();
4989 #endif
4990 
4991 	/* This allows the netif to be shutdown gracefully before resetting */
4992 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4993 }
4994 
4995 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
4996 {
4997 	struct pci_dev *pdev = to_pci_dev(dev_d);
4998 	struct net_device *dev = pci_get_drvdata(pdev);
4999 	struct bnx2x *bp;
5000 
5001 	if (!dev) {
5002 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5003 		return -ENODEV;
5004 	}
5005 	bp = netdev_priv(dev);
5006 
5007 	rtnl_lock();
5008 
5009 	if (!netif_running(dev)) {
5010 		rtnl_unlock();
5011 		return 0;
5012 	}
5013 
5014 	netif_device_detach(dev);
5015 
5016 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5017 
5018 	rtnl_unlock();
5019 
5020 	return 0;
5021 }
5022 
5023 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5024 {
5025 	struct pci_dev *pdev = to_pci_dev(dev_d);
5026 	struct net_device *dev = pci_get_drvdata(pdev);
5027 	struct bnx2x *bp;
5028 	int rc;
5029 
5030 	if (!dev) {
5031 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5032 		return -ENODEV;
5033 	}
5034 	bp = netdev_priv(dev);
5035 
5036 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5037 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5038 		return -EAGAIN;
5039 	}
5040 
5041 	rtnl_lock();
5042 
5043 	if (!netif_running(dev)) {
5044 		rtnl_unlock();
5045 		return 0;
5046 	}
5047 
5048 	netif_device_attach(dev);
5049 
5050 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5051 
5052 	rtnl_unlock();
5053 
5054 	return rc;
5055 }
5056 
5057 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5058 
5059 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5060 			      u32 cid)
5061 {
5062 	if (!cxt) {
5063 		BNX2X_ERR("bad context pointer %p\n", cxt);
5064 		return;
5065 	}
5066 
5067 	/* ustorm cxt validation */
5068 	cxt->ustorm_ag_context.cdu_usage =
5069 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5070 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5071 	/* xcontext validation */
5072 	cxt->xstorm_ag_context.cdu_reserved =
5073 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5074 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5075 }
5076 
5077 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5078 				    u8 fw_sb_id, u8 sb_index,
5079 				    u8 ticks)
5080 {
5081 	u32 addr = BAR_CSTRORM_INTMEM +
5082 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5083 	REG_WR8(bp, addr, ticks);
5084 	DP(NETIF_MSG_IFUP,
5085 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5086 	   port, fw_sb_id, sb_index, ticks);
5087 }
5088 
5089 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5090 				    u16 fw_sb_id, u8 sb_index,
5091 				    u8 disable)
5092 {
5093 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5094 	u32 addr = BAR_CSTRORM_INTMEM +
5095 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5096 	u8 flags = REG_RD8(bp, addr);
5097 	/* clear and set */
5098 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5099 	flags |= enable_flag;
5100 	REG_WR8(bp, addr, flags);
5101 	DP(NETIF_MSG_IFUP,
5102 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5103 	   port, fw_sb_id, sb_index, disable);
5104 }
5105 
5106 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5107 				    u8 sb_index, u8 disable, u16 usec)
5108 {
5109 	int port = BP_PORT(bp);
5110 	u8 ticks = usec / BNX2X_BTR;
5111 
5112 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5113 
5114 	disable = disable ? 1 : (usec ? 0 : 1);
5115 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5116 }
5117 
5118 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5119 			    u32 verbose)
5120 {
5121 	smp_mb__before_atomic();
5122 	set_bit(flag, &bp->sp_rtnl_state);
5123 	smp_mb__after_atomic();
5124 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5125 	   flag);
5126 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5127 }
5128