xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c (revision 151ebcf0797b1a3ba53c8843dc21748c80e098c7)
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/gro.h>
29 #include <net/ipv6.h>
30 #include <net/ip6_checksum.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35 
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40 
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 	int i;
44 
45 	/* Add NAPI objects */
46 	for_each_rx_queue_cnic(bp, i) {
47 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
48 	}
49 }
50 
51 static void bnx2x_add_all_napi(struct bnx2x *bp)
52 {
53 	int i;
54 
55 	/* Add NAPI objects */
56 	for_each_eth_queue(bp, i) {
57 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll);
58 	}
59 }
60 
61 static int bnx2x_calc_num_queues(struct bnx2x *bp)
62 {
63 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
64 
65 	/* Reduce memory usage in kdump environment by using only one queue */
66 	if (is_kdump_kernel())
67 		nq = 1;
68 
69 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
70 	return nq;
71 }
72 
73 /**
74  * bnx2x_move_fp - move content of the fastpath structure.
75  *
76  * @bp:		driver handle
77  * @from:	source FP index
78  * @to:		destination FP index
79  *
80  * Makes sure the contents of the bp->fp[to].napi is kept
81  * intact. This is done by first copying the napi struct from
82  * the target to the source, and then mem copying the entire
83  * source onto the target. Update txdata pointers and related
84  * content.
85  */
86 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
87 {
88 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
89 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
90 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
91 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
92 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
93 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
94 	int old_max_eth_txqs, new_max_eth_txqs;
95 	int old_txdata_index = 0, new_txdata_index = 0;
96 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
97 
98 	/* Copy the NAPI object as it has been already initialized */
99 	from_fp->napi = to_fp->napi;
100 
101 	/* Move bnx2x_fastpath contents */
102 	memcpy(to_fp, from_fp, sizeof(*to_fp));
103 	to_fp->index = to;
104 
105 	/* Retain the tpa_info of the original `to' version as we don't want
106 	 * 2 FPs to contain the same tpa_info pointer.
107 	 */
108 	to_fp->tpa_info = old_tpa_info;
109 
110 	/* move sp_objs contents as well, as their indices match fp ones */
111 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
112 
113 	/* move fp_stats contents as well, as their indices match fp ones */
114 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
115 
116 	/* Update txdata pointers in fp and move txdata content accordingly:
117 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
118 	 * decremented by max_cos x delta.
119 	 */
120 
121 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
122 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
123 				(bp)->max_cos;
124 	if (from == FCOE_IDX(bp)) {
125 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
126 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
127 	}
128 
129 	memcpy(&bp->bnx2x_txq[new_txdata_index],
130 	       &bp->bnx2x_txq[old_txdata_index],
131 	       sizeof(struct bnx2x_fp_txdata));
132 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
133 }
134 
135 /**
136  * bnx2x_fill_fw_str - Fill buffer with FW version string.
137  *
138  * @bp:        driver handle
139  * @buf:       character buffer to fill with the fw name
140  * @buf_len:   length of the above buffer
141  *
142  */
143 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
144 {
145 	if (IS_PF(bp)) {
146 		u8 phy_fw_ver[PHY_FW_VER_LEN];
147 
148 		phy_fw_ver[0] = '\0';
149 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
150 					     phy_fw_ver, sizeof(phy_fw_ver));
151 		/* This may become truncated. */
152 		scnprintf(buf, buf_len,
153 			 "%sbc %d.%d.%d%s%s",
154 			 bp->fw_ver,
155 			 (bp->common.bc_ver & 0xff0000) >> 16,
156 			 (bp->common.bc_ver & 0xff00) >> 8,
157 			 (bp->common.bc_ver & 0xff),
158 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
159 	} else {
160 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
161 	}
162 }
163 
164 /**
165  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
166  *
167  * @bp:	driver handle
168  * @delta:	number of eth queues which were not allocated
169  */
170 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
171 {
172 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
173 
174 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 	 * backward along the array could cause memory to be overridden
176 	 */
177 	for (cos = 1; cos < bp->max_cos; cos++) {
178 		for (i = 0; i < old_eth_num - delta; i++) {
179 			struct bnx2x_fastpath *fp = &bp->fp[i];
180 			int new_idx = cos * (old_eth_num - delta) + i;
181 
182 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
183 			       sizeof(struct bnx2x_fp_txdata));
184 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
185 		}
186 	}
187 }
188 
189 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
190 
191 /* free skb in the packet ring at pos idx
192  * return idx of last bd freed
193  */
194 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
195 			     u16 idx, unsigned int *pkts_compl,
196 			     unsigned int *bytes_compl)
197 {
198 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
199 	struct eth_tx_start_bd *tx_start_bd;
200 	struct eth_tx_bd *tx_data_bd;
201 	struct sk_buff *skb = tx_buf->skb;
202 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
203 	int nbd;
204 	u16 split_bd_len = 0;
205 
206 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
207 	prefetch(&skb->end);
208 
209 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
210 	   txdata->txq_index, idx, tx_buf, skb);
211 
212 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
213 
214 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
217 		BNX2X_ERR("BAD nbd!\n");
218 		bnx2x_panic();
219 	}
220 #endif
221 	new_cons = nbd + tx_buf->first_bd;
222 
223 	/* Get the next bd */
224 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
225 
226 	/* Skip a parse bd... */
227 	--nbd;
228 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
229 
230 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
231 		/* Skip second parse bd... */
232 		--nbd;
233 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
234 	}
235 
236 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
238 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
239 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
240 		--nbd;
241 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
242 	}
243 
244 	/* unmap first bd */
245 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
246 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
247 			 DMA_TO_DEVICE);
248 
249 	/* now free frags */
250 	while (nbd > 0) {
251 
252 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
253 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
254 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
255 		if (--nbd)
256 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
257 	}
258 
259 	/* release skb */
260 	WARN_ON(!skb);
261 	if (likely(skb)) {
262 		(*pkts_compl)++;
263 		(*bytes_compl) += skb->len;
264 		dev_kfree_skb_any(skb);
265 	}
266 
267 	tx_buf->first_bd = 0;
268 	tx_buf->skb = NULL;
269 
270 	return new_cons;
271 }
272 
273 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
274 {
275 	struct netdev_queue *txq;
276 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
277 	unsigned int pkts_compl = 0, bytes_compl = 0;
278 
279 #ifdef BNX2X_STOP_ON_ERROR
280 	if (unlikely(bp->panic))
281 		return -1;
282 #endif
283 
284 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
285 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
286 	sw_cons = txdata->tx_pkt_cons;
287 
288 	/* Ensure subsequent loads occur after hw_cons */
289 	smp_rmb();
290 
291 	while (sw_cons != hw_cons) {
292 		u16 pkt_cons;
293 
294 		pkt_cons = TX_BD(sw_cons);
295 
296 		DP(NETIF_MSG_TX_DONE,
297 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
298 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
299 
300 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
301 					    &pkts_compl, &bytes_compl);
302 
303 		sw_cons++;
304 	}
305 
306 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
307 
308 	txdata->tx_pkt_cons = sw_cons;
309 	txdata->tx_bd_cons = bd_cons;
310 
311 	/* Need to make the tx_bd_cons update visible to start_xmit()
312 	 * before checking for netif_tx_queue_stopped().  Without the
313 	 * memory barrier, there is a small possibility that
314 	 * start_xmit() will miss it and cause the queue to be stopped
315 	 * forever.
316 	 * On the other hand we need an rmb() here to ensure the proper
317 	 * ordering of bit testing in the following
318 	 * netif_tx_queue_stopped(txq) call.
319 	 */
320 	smp_mb();
321 
322 	if (unlikely(netif_tx_queue_stopped(txq))) {
323 		/* Taking tx_lock() is needed to prevent re-enabling the queue
324 		 * while it's empty. This could have happen if rx_action() gets
325 		 * suspended in bnx2x_tx_int() after the condition before
326 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
327 		 *
328 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 		 * sends some packets consuming the whole queue again->
330 		 * stops the queue
331 		 */
332 
333 		__netif_tx_lock(txq, smp_processor_id());
334 
335 		if ((netif_tx_queue_stopped(txq)) &&
336 		    (bp->state == BNX2X_STATE_OPEN) &&
337 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
338 			netif_tx_wake_queue(txq);
339 
340 		__netif_tx_unlock(txq);
341 	}
342 	return 0;
343 }
344 
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
346 					     u16 idx)
347 {
348 	u16 last_max = fp->last_max_sge;
349 
350 	if (SUB_S16(idx, last_max) > 0)
351 		fp->last_max_sge = idx;
352 }
353 
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
355 					 u16 sge_len,
356 					 struct eth_end_agg_rx_cqe *cqe)
357 {
358 	struct bnx2x *bp = fp->bp;
359 	u16 last_max, last_elem, first_elem;
360 	u16 delta = 0;
361 	u16 i;
362 
363 	if (!sge_len)
364 		return;
365 
366 	/* First mark all used pages */
367 	for (i = 0; i < sge_len; i++)
368 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
369 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
370 
371 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
372 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
373 
374 	/* Here we assume that the last SGE index is the biggest */
375 	prefetch((void *)(fp->sge_mask));
376 	bnx2x_update_last_max_sge(fp,
377 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
378 
379 	last_max = RX_SGE(fp->last_max_sge);
380 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
381 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
382 
383 	/* If ring is not full */
384 	if (last_elem + 1 != first_elem)
385 		last_elem++;
386 
387 	/* Now update the prod */
388 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
389 		if (likely(fp->sge_mask[i]))
390 			break;
391 
392 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
393 		delta += BIT_VEC64_ELEM_SZ;
394 	}
395 
396 	if (delta > 0) {
397 		fp->rx_sge_prod += delta;
398 		/* clear page-end entries */
399 		bnx2x_clear_sge_mask_next_elems(fp);
400 	}
401 
402 	DP(NETIF_MSG_RX_STATUS,
403 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
404 	   fp->last_max_sge, fp->rx_sge_prod);
405 }
406 
407 /* Get Toeplitz hash value in the skb using the value from the
408  * CQE (calculated by HW).
409  */
410 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
411 			    const struct eth_fast_path_rx_cqe *cqe,
412 			    enum pkt_hash_types *rxhash_type)
413 {
414 	/* Get Toeplitz hash from CQE */
415 	if ((bp->dev->features & NETIF_F_RXHASH) &&
416 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
417 		enum eth_rss_hash_type htype;
418 
419 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
420 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
421 				(htype == TCP_IPV6_HASH_TYPE)) ?
422 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
423 
424 		return le32_to_cpu(cqe->rss_hash_result);
425 	}
426 	*rxhash_type = PKT_HASH_TYPE_NONE;
427 	return 0;
428 }
429 
430 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
431 			    u16 cons, u16 prod,
432 			    struct eth_fast_path_rx_cqe *cqe)
433 {
434 	struct bnx2x *bp = fp->bp;
435 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
436 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
437 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
438 	dma_addr_t mapping;
439 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
440 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
441 
442 	/* print error if current state != stop */
443 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
444 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
445 
446 	/* Try to map an empty data buffer from the aggregation info  */
447 	mapping = dma_map_single(&bp->pdev->dev,
448 				 first_buf->data + NET_SKB_PAD,
449 				 fp->rx_buf_size, DMA_FROM_DEVICE);
450 	/*
451 	 *  ...if it fails - move the skb from the consumer to the producer
452 	 *  and set the current aggregation state as ERROR to drop it
453 	 *  when TPA_STOP arrives.
454 	 */
455 
456 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
457 		/* Move the BD from the consumer to the producer */
458 		bnx2x_reuse_rx_data(fp, cons, prod);
459 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
460 		return;
461 	}
462 
463 	/* move empty data from pool to prod */
464 	prod_rx_buf->data = first_buf->data;
465 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
466 	/* point prod_bd to new data */
467 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
468 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
469 
470 	/* move partial skb from cons to pool (don't unmap yet) */
471 	*first_buf = *cons_rx_buf;
472 
473 	/* mark bin state as START */
474 	tpa_info->parsing_flags =
475 		le16_to_cpu(cqe->pars_flags.flags);
476 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
477 	tpa_info->tpa_state = BNX2X_TPA_START;
478 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
479 	tpa_info->placement_offset = cqe->placement_offset;
480 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
481 	if (fp->mode == TPA_MODE_GRO) {
482 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
483 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
484 		tpa_info->gro_size = gro_size;
485 	}
486 
487 #ifdef BNX2X_STOP_ON_ERROR
488 	fp->tpa_queue_used |= (1 << queue);
489 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
490 	   fp->tpa_queue_used);
491 #endif
492 }
493 
494 /* Timestamp option length allowed for TPA aggregation:
495  *
496  *		nop nop kind length echo val
497  */
498 #define TPA_TSTAMP_OPT_LEN	12
499 /**
500  * bnx2x_set_gro_params - compute GRO values
501  *
502  * @skb:		packet skb
503  * @parsing_flags:	parsing flags from the START CQE
504  * @len_on_bd:		total length of the first packet for the
505  *			aggregation.
506  * @pkt_len:		length of all segments
507  * @num_of_coalesced_segs: count of segments
508  *
509  * Approximate value of the MSS for this aggregation calculated using
510  * the first packet of it.
511  * Compute number of aggregated segments, and gso_type.
512  */
513 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
514 				 u16 len_on_bd, unsigned int pkt_len,
515 				 u16 num_of_coalesced_segs)
516 {
517 	/* TPA aggregation won't have either IP options or TCP options
518 	 * other than timestamp or IPv6 extension headers.
519 	 */
520 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
521 
522 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
523 	    PRS_FLAG_OVERETH_IPV6) {
524 		hdrs_len += sizeof(struct ipv6hdr);
525 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
526 	} else {
527 		hdrs_len += sizeof(struct iphdr);
528 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
529 	}
530 
531 	/* Check if there was a TCP timestamp, if there is it's will
532 	 * always be 12 bytes length: nop nop kind length echo val.
533 	 *
534 	 * Otherwise FW would close the aggregation.
535 	 */
536 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
537 		hdrs_len += TPA_TSTAMP_OPT_LEN;
538 
539 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
540 
541 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 	 * to skb_shinfo(skb)->gso_segs
543 	 */
544 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
545 }
546 
547 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
548 			      u16 index, gfp_t gfp_mask)
549 {
550 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
551 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
552 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
553 	dma_addr_t mapping;
554 
555 	if (!pool->page) {
556 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
557 		if (unlikely(!pool->page))
558 			return -ENOMEM;
559 
560 		pool->offset = 0;
561 	}
562 
563 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
564 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
565 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
566 		BNX2X_ERR("Can't map sge\n");
567 		return -ENOMEM;
568 	}
569 
570 	sw_buf->page = pool->page;
571 	sw_buf->offset = pool->offset;
572 
573 	dma_unmap_addr_set(sw_buf, mapping, mapping);
574 
575 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
576 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
577 
578 	pool->offset += SGE_PAGE_SIZE;
579 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
580 		get_page(pool->page);
581 	else
582 		pool->page = NULL;
583 	return 0;
584 }
585 
586 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
587 			       struct bnx2x_agg_info *tpa_info,
588 			       u16 pages,
589 			       struct sk_buff *skb,
590 			       struct eth_end_agg_rx_cqe *cqe,
591 			       u16 cqe_idx)
592 {
593 	struct sw_rx_page *rx_pg, old_rx_pg;
594 	u32 i, frag_len, frag_size;
595 	int err, j, frag_id = 0;
596 	u16 len_on_bd = tpa_info->len_on_bd;
597 	u16 full_page = 0, gro_size = 0;
598 
599 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
600 
601 	if (fp->mode == TPA_MODE_GRO) {
602 		gro_size = tpa_info->gro_size;
603 		full_page = tpa_info->full_page;
604 	}
605 
606 	/* This is needed in order to enable forwarding support */
607 	if (frag_size)
608 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
609 				     le16_to_cpu(cqe->pkt_len),
610 				     le16_to_cpu(cqe->num_of_coalesced_segs));
611 
612 #ifdef BNX2X_STOP_ON_ERROR
613 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
614 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
615 			  pages, cqe_idx);
616 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
617 		bnx2x_panic();
618 		return -EINVAL;
619 	}
620 #endif
621 
622 	/* Run through the SGL and compose the fragmented skb */
623 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
624 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
625 
626 		/* FW gives the indices of the SGE as if the ring is an array
627 		   (meaning that "next" element will consume 2 indices) */
628 		if (fp->mode == TPA_MODE_GRO)
629 			frag_len = min_t(u32, frag_size, (u32)full_page);
630 		else /* LRO */
631 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
632 
633 		rx_pg = &fp->rx_page_ring[sge_idx];
634 		old_rx_pg = *rx_pg;
635 
636 		/* If we fail to allocate a substitute page, we simply stop
637 		   where we are and drop the whole packet */
638 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
639 		if (unlikely(err)) {
640 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
641 			return err;
642 		}
643 
644 		dma_unmap_page(&bp->pdev->dev,
645 			       dma_unmap_addr(&old_rx_pg, mapping),
646 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
647 		/* Add one frag and update the appropriate fields in the skb */
648 		if (fp->mode == TPA_MODE_LRO)
649 			skb_fill_page_desc(skb, j, old_rx_pg.page,
650 					   old_rx_pg.offset, frag_len);
651 		else { /* GRO */
652 			int rem;
653 			int offset = 0;
654 			for (rem = frag_len; rem > 0; rem -= gro_size) {
655 				int len = rem > gro_size ? gro_size : rem;
656 				skb_fill_page_desc(skb, frag_id++,
657 						   old_rx_pg.page,
658 						   old_rx_pg.offset + offset,
659 						   len);
660 				if (offset)
661 					get_page(old_rx_pg.page);
662 				offset += len;
663 			}
664 		}
665 
666 		skb->data_len += frag_len;
667 		skb->truesize += SGE_PAGES;
668 		skb->len += frag_len;
669 
670 		frag_size -= frag_len;
671 	}
672 
673 	return 0;
674 }
675 
676 static struct sk_buff *
677 bnx2x_build_skb(const struct bnx2x_fastpath *fp, void *data)
678 {
679 	struct sk_buff *skb;
680 
681 	if (fp->rx_frag_size)
682 		skb = build_skb(data, fp->rx_frag_size);
683 	else
684 		skb = slab_build_skb(data);
685 	return skb;
686 }
687 
688 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
689 {
690 	if (fp->rx_frag_size)
691 		skb_free_frag(data);
692 	else
693 		kfree(data);
694 }
695 
696 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
697 {
698 	if (fp->rx_frag_size) {
699 		/* GFP_KERNEL allocations are used only during initialization */
700 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
701 			return (void *)__get_free_page(gfp_mask);
702 
703 		return napi_alloc_frag(fp->rx_frag_size);
704 	}
705 
706 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
707 }
708 
709 #ifdef CONFIG_INET
710 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
711 {
712 	const struct iphdr *iph = ip_hdr(skb);
713 	struct tcphdr *th;
714 
715 	skb_set_transport_header(skb, sizeof(struct iphdr));
716 	th = tcp_hdr(skb);
717 
718 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
719 				  iph->saddr, iph->daddr, 0);
720 }
721 
722 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
723 {
724 	struct ipv6hdr *iph = ipv6_hdr(skb);
725 	struct tcphdr *th;
726 
727 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
728 	th = tcp_hdr(skb);
729 
730 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
731 				  &iph->saddr, &iph->daddr, 0);
732 }
733 
734 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
735 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
736 {
737 	skb_reset_network_header(skb);
738 	gro_func(bp, skb);
739 	tcp_gro_complete(skb);
740 }
741 #endif
742 
743 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
744 			       struct sk_buff *skb)
745 {
746 #ifdef CONFIG_INET
747 	if (skb_shinfo(skb)->gso_size) {
748 		switch (be16_to_cpu(skb->protocol)) {
749 		case ETH_P_IP:
750 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
751 			break;
752 		case ETH_P_IPV6:
753 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
754 			break;
755 		default:
756 			netdev_WARN_ONCE(bp->dev,
757 					 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
758 					 be16_to_cpu(skb->protocol));
759 		}
760 	}
761 #endif
762 	skb_record_rx_queue(skb, fp->rx_queue);
763 	napi_gro_receive(&fp->napi, skb);
764 }
765 
766 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
767 			   struct bnx2x_agg_info *tpa_info,
768 			   u16 pages,
769 			   struct eth_end_agg_rx_cqe *cqe,
770 			   u16 cqe_idx)
771 {
772 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
773 	u8 pad = tpa_info->placement_offset;
774 	u16 len = tpa_info->len_on_bd;
775 	struct sk_buff *skb = NULL;
776 	u8 *new_data, *data = rx_buf->data;
777 	u8 old_tpa_state = tpa_info->tpa_state;
778 
779 	tpa_info->tpa_state = BNX2X_TPA_STOP;
780 
781 	/* If we there was an error during the handling of the TPA_START -
782 	 * drop this aggregation.
783 	 */
784 	if (old_tpa_state == BNX2X_TPA_ERROR)
785 		goto drop;
786 
787 	/* Try to allocate the new data */
788 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
789 	/* Unmap skb in the pool anyway, as we are going to change
790 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
791 	   fails. */
792 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
793 			 fp->rx_buf_size, DMA_FROM_DEVICE);
794 	if (likely(new_data))
795 		skb = bnx2x_build_skb(fp, data);
796 
797 	if (likely(skb)) {
798 #ifdef BNX2X_STOP_ON_ERROR
799 		if (pad + len > fp->rx_buf_size) {
800 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
801 				  pad, len, fp->rx_buf_size);
802 			bnx2x_panic();
803 			bnx2x_frag_free(fp, new_data);
804 			return;
805 		}
806 #endif
807 
808 		skb_reserve(skb, pad + NET_SKB_PAD);
809 		skb_put(skb, len);
810 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
811 
812 		skb->protocol = eth_type_trans(skb, bp->dev);
813 		skb->ip_summed = CHECKSUM_UNNECESSARY;
814 
815 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
816 					 skb, cqe, cqe_idx)) {
817 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
818 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
819 			bnx2x_gro_receive(bp, fp, skb);
820 		} else {
821 			DP(NETIF_MSG_RX_STATUS,
822 			   "Failed to allocate new pages - dropping packet!\n");
823 			dev_kfree_skb_any(skb);
824 		}
825 
826 		/* put new data in bin */
827 		rx_buf->data = new_data;
828 
829 		return;
830 	}
831 	if (new_data)
832 		bnx2x_frag_free(fp, new_data);
833 drop:
834 	/* drop the packet and keep the buffer in the bin */
835 	DP(NETIF_MSG_RX_STATUS,
836 	   "Failed to allocate or map a new skb - dropping packet!\n");
837 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
838 }
839 
840 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
841 			       u16 index, gfp_t gfp_mask)
842 {
843 	u8 *data;
844 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
845 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
846 	dma_addr_t mapping;
847 
848 	data = bnx2x_frag_alloc(fp, gfp_mask);
849 	if (unlikely(data == NULL))
850 		return -ENOMEM;
851 
852 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
853 				 fp->rx_buf_size,
854 				 DMA_FROM_DEVICE);
855 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
856 		bnx2x_frag_free(fp, data);
857 		BNX2X_ERR("Can't map rx data\n");
858 		return -ENOMEM;
859 	}
860 
861 	rx_buf->data = data;
862 	dma_unmap_addr_set(rx_buf, mapping, mapping);
863 
864 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
865 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
866 
867 	return 0;
868 }
869 
870 static
871 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
872 				 struct bnx2x_fastpath *fp,
873 				 struct bnx2x_eth_q_stats *qstats)
874 {
875 	/* Do nothing if no L4 csum validation was done.
876 	 * We do not check whether IP csum was validated. For IPv4 we assume
877 	 * that if the card got as far as validating the L4 csum, it also
878 	 * validated the IP csum. IPv6 has no IP csum.
879 	 */
880 	if (cqe->fast_path_cqe.status_flags &
881 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
882 		return;
883 
884 	/* If L4 validation was done, check if an error was found. */
885 
886 	if (cqe->fast_path_cqe.type_error_flags &
887 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
888 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
889 		qstats->hw_csum_err++;
890 	else
891 		skb->ip_summed = CHECKSUM_UNNECESSARY;
892 }
893 
894 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
895 {
896 	struct bnx2x *bp = fp->bp;
897 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
898 	u16 sw_comp_cons, sw_comp_prod;
899 	int rx_pkt = 0;
900 	union eth_rx_cqe *cqe;
901 	struct eth_fast_path_rx_cqe *cqe_fp;
902 
903 #ifdef BNX2X_STOP_ON_ERROR
904 	if (unlikely(bp->panic))
905 		return 0;
906 #endif
907 	if (budget <= 0)
908 		return rx_pkt;
909 
910 	bd_cons = fp->rx_bd_cons;
911 	bd_prod = fp->rx_bd_prod;
912 	bd_prod_fw = bd_prod;
913 	sw_comp_cons = fp->rx_comp_cons;
914 	sw_comp_prod = fp->rx_comp_prod;
915 
916 	comp_ring_cons = RCQ_BD(sw_comp_cons);
917 	cqe = &fp->rx_comp_ring[comp_ring_cons];
918 	cqe_fp = &cqe->fast_path_cqe;
919 
920 	DP(NETIF_MSG_RX_STATUS,
921 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
922 
923 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
924 		struct sw_rx_bd *rx_buf = NULL;
925 		struct sk_buff *skb;
926 		u8 cqe_fp_flags;
927 		enum eth_rx_cqe_type cqe_fp_type;
928 		u16 len, pad, queue;
929 		u8 *data;
930 		u32 rxhash;
931 		enum pkt_hash_types rxhash_type;
932 
933 #ifdef BNX2X_STOP_ON_ERROR
934 		if (unlikely(bp->panic))
935 			return 0;
936 #endif
937 
938 		bd_prod = RX_BD(bd_prod);
939 		bd_cons = RX_BD(bd_cons);
940 
941 		/* A rmb() is required to ensure that the CQE is not read
942 		 * before it is written by the adapter DMA.  PCI ordering
943 		 * rules will make sure the other fields are written before
944 		 * the marker at the end of struct eth_fast_path_rx_cqe
945 		 * but without rmb() a weakly ordered processor can process
946 		 * stale data.  Without the barrier TPA state-machine might
947 		 * enter inconsistent state and kernel stack might be
948 		 * provided with incorrect packet description - these lead
949 		 * to various kernel crashed.
950 		 */
951 		rmb();
952 
953 		cqe_fp_flags = cqe_fp->type_error_flags;
954 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
955 
956 		DP(NETIF_MSG_RX_STATUS,
957 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
958 		   CQE_TYPE(cqe_fp_flags),
959 		   cqe_fp_flags, cqe_fp->status_flags,
960 		   le32_to_cpu(cqe_fp->rss_hash_result),
961 		   le16_to_cpu(cqe_fp->vlan_tag),
962 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
963 
964 		/* is this a slowpath msg? */
965 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
966 			bnx2x_sp_event(fp, cqe);
967 			goto next_cqe;
968 		}
969 
970 		rx_buf = &fp->rx_buf_ring[bd_cons];
971 		data = rx_buf->data;
972 
973 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
974 			struct bnx2x_agg_info *tpa_info;
975 			u16 frag_size, pages;
976 #ifdef BNX2X_STOP_ON_ERROR
977 			/* sanity check */
978 			if (fp->mode == TPA_MODE_DISABLED &&
979 			    (CQE_TYPE_START(cqe_fp_type) ||
980 			     CQE_TYPE_STOP(cqe_fp_type)))
981 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
982 					  CQE_TYPE(cqe_fp_type));
983 #endif
984 
985 			if (CQE_TYPE_START(cqe_fp_type)) {
986 				u16 queue = cqe_fp->queue_index;
987 				DP(NETIF_MSG_RX_STATUS,
988 				   "calling tpa_start on queue %d\n",
989 				   queue);
990 
991 				bnx2x_tpa_start(fp, queue,
992 						bd_cons, bd_prod,
993 						cqe_fp);
994 
995 				goto next_rx;
996 			}
997 			queue = cqe->end_agg_cqe.queue_index;
998 			tpa_info = &fp->tpa_info[queue];
999 			DP(NETIF_MSG_RX_STATUS,
1000 			   "calling tpa_stop on queue %d\n",
1001 			   queue);
1002 
1003 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
1004 				    tpa_info->len_on_bd;
1005 
1006 			if (fp->mode == TPA_MODE_GRO)
1007 				pages = (frag_size + tpa_info->full_page - 1) /
1008 					 tpa_info->full_page;
1009 			else
1010 				pages = SGE_PAGE_ALIGN(frag_size) >>
1011 					SGE_PAGE_SHIFT;
1012 
1013 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
1014 				       &cqe->end_agg_cqe, comp_ring_cons);
1015 #ifdef BNX2X_STOP_ON_ERROR
1016 			if (bp->panic)
1017 				return 0;
1018 #endif
1019 
1020 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1021 			goto next_cqe;
1022 		}
1023 		/* non TPA */
1024 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1025 		pad = cqe_fp->placement_offset;
1026 		dma_sync_single_for_cpu(&bp->pdev->dev,
1027 					dma_unmap_addr(rx_buf, mapping),
1028 					pad + RX_COPY_THRESH,
1029 					DMA_FROM_DEVICE);
1030 		pad += NET_SKB_PAD;
1031 		prefetch(data + pad); /* speedup eth_type_trans() */
1032 		/* is this an error packet? */
1033 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1034 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1035 			   "ERROR  flags %x  rx packet %u\n",
1036 			   cqe_fp_flags, sw_comp_cons);
1037 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1038 			goto reuse_rx;
1039 		}
1040 
1041 		/* Since we don't have a jumbo ring
1042 		 * copy small packets if mtu > 1500
1043 		 */
1044 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1045 		    (len <= RX_COPY_THRESH)) {
1046 			skb = napi_alloc_skb(&fp->napi, len);
1047 			if (skb == NULL) {
1048 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1049 				   "ERROR  packet dropped because of alloc failure\n");
1050 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1051 				goto reuse_rx;
1052 			}
1053 			memcpy(skb->data, data + pad, len);
1054 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1055 		} else {
1056 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1057 						       GFP_ATOMIC) == 0)) {
1058 				dma_unmap_single(&bp->pdev->dev,
1059 						 dma_unmap_addr(rx_buf, mapping),
1060 						 fp->rx_buf_size,
1061 						 DMA_FROM_DEVICE);
1062 				skb = bnx2x_build_skb(fp, data);
1063 				if (unlikely(!skb)) {
1064 					bnx2x_frag_free(fp, data);
1065 					bnx2x_fp_qstats(bp, fp)->
1066 							rx_skb_alloc_failed++;
1067 					goto next_rx;
1068 				}
1069 				skb_reserve(skb, pad);
1070 			} else {
1071 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1072 				   "ERROR  packet dropped because of alloc failure\n");
1073 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1074 reuse_rx:
1075 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1076 				goto next_rx;
1077 			}
1078 		}
1079 
1080 		skb_put(skb, len);
1081 		skb->protocol = eth_type_trans(skb, bp->dev);
1082 
1083 		/* Set Toeplitz hash for a none-LRO skb */
1084 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1085 		skb_set_hash(skb, rxhash, rxhash_type);
1086 
1087 		skb_checksum_none_assert(skb);
1088 
1089 		if (bp->dev->features & NETIF_F_RXCSUM)
1090 			bnx2x_csum_validate(skb, cqe, fp,
1091 					    bnx2x_fp_qstats(bp, fp));
1092 
1093 		skb_record_rx_queue(skb, fp->rx_queue);
1094 
1095 		/* Check if this packet was timestamped */
1096 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1097 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1098 			bnx2x_set_rx_ts(bp, skb);
1099 
1100 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1101 		    PARSING_FLAGS_VLAN)
1102 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1103 					       le16_to_cpu(cqe_fp->vlan_tag));
1104 
1105 		napi_gro_receive(&fp->napi, skb);
1106 next_rx:
1107 		rx_buf->data = NULL;
1108 
1109 		bd_cons = NEXT_RX_IDX(bd_cons);
1110 		bd_prod = NEXT_RX_IDX(bd_prod);
1111 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1112 		rx_pkt++;
1113 next_cqe:
1114 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1115 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1116 
1117 		/* mark CQE as free */
1118 		BNX2X_SEED_CQE(cqe_fp);
1119 
1120 		if (rx_pkt == budget)
1121 			break;
1122 
1123 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1124 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1125 		cqe_fp = &cqe->fast_path_cqe;
1126 	} /* while */
1127 
1128 	fp->rx_bd_cons = bd_cons;
1129 	fp->rx_bd_prod = bd_prod_fw;
1130 	fp->rx_comp_cons = sw_comp_cons;
1131 	fp->rx_comp_prod = sw_comp_prod;
1132 
1133 	/* Update producers */
1134 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1135 			     fp->rx_sge_prod);
1136 
1137 	return rx_pkt;
1138 }
1139 
1140 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1141 {
1142 	struct bnx2x_fastpath *fp = fp_cookie;
1143 	struct bnx2x *bp = fp->bp;
1144 	u8 cos;
1145 
1146 	DP(NETIF_MSG_INTR,
1147 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1148 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1149 
1150 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1151 
1152 #ifdef BNX2X_STOP_ON_ERROR
1153 	if (unlikely(bp->panic))
1154 		return IRQ_HANDLED;
1155 #endif
1156 
1157 	/* Handle Rx and Tx according to MSI-X vector */
1158 	for_each_cos_in_tx_queue(fp, cos)
1159 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1160 
1161 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1162 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1163 
1164 	return IRQ_HANDLED;
1165 }
1166 
1167 /* HW Lock for shared dual port PHYs */
1168 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1169 {
1170 	mutex_lock(&bp->port.phy_mutex);
1171 
1172 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1173 }
1174 
1175 void bnx2x_release_phy_lock(struct bnx2x *bp)
1176 {
1177 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1178 
1179 	mutex_unlock(&bp->port.phy_mutex);
1180 }
1181 
1182 /* calculates MF speed according to current linespeed and MF configuration */
1183 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1184 {
1185 	u16 line_speed = bp->link_vars.line_speed;
1186 	if (IS_MF(bp)) {
1187 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1188 						   bp->mf_config[BP_VN(bp)]);
1189 
1190 		/* Calculate the current MAX line speed limit for the MF
1191 		 * devices
1192 		 */
1193 		if (IS_MF_PERCENT_BW(bp))
1194 			line_speed = (line_speed * maxCfg) / 100;
1195 		else { /* SD mode */
1196 			u16 vn_max_rate = maxCfg * 100;
1197 
1198 			if (vn_max_rate < line_speed)
1199 				line_speed = vn_max_rate;
1200 		}
1201 	}
1202 
1203 	return line_speed;
1204 }
1205 
1206 /**
1207  * bnx2x_fill_report_data - fill link report data to report
1208  *
1209  * @bp:		driver handle
1210  * @data:	link state to update
1211  *
1212  * It uses a none-atomic bit operations because is called under the mutex.
1213  */
1214 static void bnx2x_fill_report_data(struct bnx2x *bp,
1215 				   struct bnx2x_link_report_data *data)
1216 {
1217 	memset(data, 0, sizeof(*data));
1218 
1219 	if (IS_PF(bp)) {
1220 		/* Fill the report data: effective line speed */
1221 		data->line_speed = bnx2x_get_mf_speed(bp);
1222 
1223 		/* Link is down */
1224 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1225 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1226 				  &data->link_report_flags);
1227 
1228 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1229 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1230 				  &data->link_report_flags);
1231 
1232 		/* Full DUPLEX */
1233 		if (bp->link_vars.duplex == DUPLEX_FULL)
1234 			__set_bit(BNX2X_LINK_REPORT_FD,
1235 				  &data->link_report_flags);
1236 
1237 		/* Rx Flow Control is ON */
1238 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1239 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1240 				  &data->link_report_flags);
1241 
1242 		/* Tx Flow Control is ON */
1243 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1244 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1245 				  &data->link_report_flags);
1246 	} else { /* VF */
1247 		*data = bp->vf_link_vars;
1248 	}
1249 }
1250 
1251 /**
1252  * bnx2x_link_report - report link status to OS.
1253  *
1254  * @bp:		driver handle
1255  *
1256  * Calls the __bnx2x_link_report() under the same locking scheme
1257  * as a link/PHY state managing code to ensure a consistent link
1258  * reporting.
1259  */
1260 
1261 void bnx2x_link_report(struct bnx2x *bp)
1262 {
1263 	bnx2x_acquire_phy_lock(bp);
1264 	__bnx2x_link_report(bp);
1265 	bnx2x_release_phy_lock(bp);
1266 }
1267 
1268 /**
1269  * __bnx2x_link_report - report link status to OS.
1270  *
1271  * @bp:		driver handle
1272  *
1273  * None atomic implementation.
1274  * Should be called under the phy_lock.
1275  */
1276 void __bnx2x_link_report(struct bnx2x *bp)
1277 {
1278 	struct bnx2x_link_report_data cur_data;
1279 
1280 	if (bp->force_link_down) {
1281 		bp->link_vars.link_up = 0;
1282 		return;
1283 	}
1284 
1285 	/* reread mf_cfg */
1286 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1287 		bnx2x_read_mf_cfg(bp);
1288 
1289 	/* Read the current link report info */
1290 	bnx2x_fill_report_data(bp, &cur_data);
1291 
1292 	/* Don't report link down or exactly the same link status twice */
1293 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1294 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1295 		      &bp->last_reported_link.link_report_flags) &&
1296 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1297 		      &cur_data.link_report_flags)))
1298 		return;
1299 
1300 	bp->link_cnt++;
1301 
1302 	/* We are going to report a new link parameters now -
1303 	 * remember the current data for the next time.
1304 	 */
1305 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1306 
1307 	/* propagate status to VFs */
1308 	if (IS_PF(bp))
1309 		bnx2x_iov_link_update(bp);
1310 
1311 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1312 		     &cur_data.link_report_flags)) {
1313 		netif_carrier_off(bp->dev);
1314 		netdev_err(bp->dev, "NIC Link is Down\n");
1315 		return;
1316 	} else {
1317 		const char *duplex;
1318 		const char *flow;
1319 
1320 		netif_carrier_on(bp->dev);
1321 
1322 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1323 				       &cur_data.link_report_flags))
1324 			duplex = "full";
1325 		else
1326 			duplex = "half";
1327 
1328 		/* Handle the FC at the end so that only these flags would be
1329 		 * possibly set. This way we may easily check if there is no FC
1330 		 * enabled.
1331 		 */
1332 		if (cur_data.link_report_flags) {
1333 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1334 				     &cur_data.link_report_flags)) {
1335 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1336 				     &cur_data.link_report_flags))
1337 					flow = "ON - receive & transmit";
1338 				else
1339 					flow = "ON - receive";
1340 			} else {
1341 				flow = "ON - transmit";
1342 			}
1343 		} else {
1344 			flow = "none";
1345 		}
1346 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1347 			    cur_data.line_speed, duplex, flow);
1348 	}
1349 }
1350 
1351 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1352 {
1353 	int i;
1354 
1355 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1356 		struct eth_rx_sge *sge;
1357 
1358 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1359 		sge->addr_hi =
1360 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1361 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1362 
1363 		sge->addr_lo =
1364 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1365 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1366 	}
1367 }
1368 
1369 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1370 				struct bnx2x_fastpath *fp, int last)
1371 {
1372 	int i;
1373 
1374 	for (i = 0; i < last; i++) {
1375 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1376 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1377 		u8 *data = first_buf->data;
1378 
1379 		if (data == NULL) {
1380 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1381 			continue;
1382 		}
1383 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1384 			dma_unmap_single(&bp->pdev->dev,
1385 					 dma_unmap_addr(first_buf, mapping),
1386 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1387 		bnx2x_frag_free(fp, data);
1388 		first_buf->data = NULL;
1389 	}
1390 }
1391 
1392 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1393 {
1394 	int j;
1395 
1396 	for_each_rx_queue_cnic(bp, j) {
1397 		struct bnx2x_fastpath *fp = &bp->fp[j];
1398 
1399 		fp->rx_bd_cons = 0;
1400 
1401 		/* Activate BD ring */
1402 		/* Warning!
1403 		 * this will generate an interrupt (to the TSTORM)
1404 		 * must only be done after chip is initialized
1405 		 */
1406 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1407 				     fp->rx_sge_prod);
1408 	}
1409 }
1410 
1411 void bnx2x_init_rx_rings(struct bnx2x *bp)
1412 {
1413 	int func = BP_FUNC(bp);
1414 	u16 ring_prod;
1415 	int i, j;
1416 
1417 	/* Allocate TPA resources */
1418 	for_each_eth_queue(bp, j) {
1419 		struct bnx2x_fastpath *fp = &bp->fp[j];
1420 
1421 		DP(NETIF_MSG_IFUP,
1422 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1423 
1424 		if (fp->mode != TPA_MODE_DISABLED) {
1425 			/* Fill the per-aggregation pool */
1426 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1427 				struct bnx2x_agg_info *tpa_info =
1428 					&fp->tpa_info[i];
1429 				struct sw_rx_bd *first_buf =
1430 					&tpa_info->first_buf;
1431 
1432 				first_buf->data =
1433 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1434 				if (!first_buf->data) {
1435 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1436 						  j);
1437 					bnx2x_free_tpa_pool(bp, fp, i);
1438 					fp->mode = TPA_MODE_DISABLED;
1439 					break;
1440 				}
1441 				dma_unmap_addr_set(first_buf, mapping, 0);
1442 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1443 			}
1444 
1445 			/* "next page" elements initialization */
1446 			bnx2x_set_next_page_sgl(fp);
1447 
1448 			/* set SGEs bit mask */
1449 			bnx2x_init_sge_ring_bit_mask(fp);
1450 
1451 			/* Allocate SGEs and initialize the ring elements */
1452 			for (i = 0, ring_prod = 0;
1453 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1454 
1455 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1456 						       GFP_KERNEL) < 0) {
1457 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1458 						  i);
1459 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1460 						  j);
1461 					/* Cleanup already allocated elements */
1462 					bnx2x_free_rx_sge_range(bp, fp,
1463 								ring_prod);
1464 					bnx2x_free_tpa_pool(bp, fp,
1465 							    MAX_AGG_QS(bp));
1466 					fp->mode = TPA_MODE_DISABLED;
1467 					ring_prod = 0;
1468 					break;
1469 				}
1470 				ring_prod = NEXT_SGE_IDX(ring_prod);
1471 			}
1472 
1473 			fp->rx_sge_prod = ring_prod;
1474 		}
1475 	}
1476 
1477 	for_each_eth_queue(bp, j) {
1478 		struct bnx2x_fastpath *fp = &bp->fp[j];
1479 
1480 		fp->rx_bd_cons = 0;
1481 
1482 		/* Activate BD ring */
1483 		/* Warning!
1484 		 * this will generate an interrupt (to the TSTORM)
1485 		 * must only be done after chip is initialized
1486 		 */
1487 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1488 				     fp->rx_sge_prod);
1489 
1490 		if (j != 0)
1491 			continue;
1492 
1493 		if (CHIP_IS_E1(bp)) {
1494 			REG_WR(bp, BAR_USTRORM_INTMEM +
1495 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1496 			       U64_LO(fp->rx_comp_mapping));
1497 			REG_WR(bp, BAR_USTRORM_INTMEM +
1498 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1499 			       U64_HI(fp->rx_comp_mapping));
1500 		}
1501 	}
1502 }
1503 
1504 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1505 {
1506 	u8 cos;
1507 	struct bnx2x *bp = fp->bp;
1508 
1509 	for_each_cos_in_tx_queue(fp, cos) {
1510 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1511 		unsigned pkts_compl = 0, bytes_compl = 0;
1512 
1513 		u16 sw_prod = txdata->tx_pkt_prod;
1514 		u16 sw_cons = txdata->tx_pkt_cons;
1515 
1516 		while (sw_cons != sw_prod) {
1517 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1518 					  &pkts_compl, &bytes_compl);
1519 			sw_cons++;
1520 		}
1521 
1522 		netdev_tx_reset_queue(
1523 			netdev_get_tx_queue(bp->dev,
1524 					    txdata->txq_index));
1525 	}
1526 }
1527 
1528 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1529 {
1530 	int i;
1531 
1532 	for_each_tx_queue_cnic(bp, i) {
1533 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1534 	}
1535 }
1536 
1537 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1538 {
1539 	int i;
1540 
1541 	for_each_eth_queue(bp, i) {
1542 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1543 	}
1544 }
1545 
1546 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1547 {
1548 	struct bnx2x *bp = fp->bp;
1549 	int i;
1550 
1551 	/* ring wasn't allocated */
1552 	if (fp->rx_buf_ring == NULL)
1553 		return;
1554 
1555 	for (i = 0; i < NUM_RX_BD; i++) {
1556 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1557 		u8 *data = rx_buf->data;
1558 
1559 		if (data == NULL)
1560 			continue;
1561 		dma_unmap_single(&bp->pdev->dev,
1562 				 dma_unmap_addr(rx_buf, mapping),
1563 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1564 
1565 		rx_buf->data = NULL;
1566 		bnx2x_frag_free(fp, data);
1567 	}
1568 }
1569 
1570 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1571 {
1572 	int j;
1573 
1574 	for_each_rx_queue_cnic(bp, j) {
1575 		bnx2x_free_rx_bds(&bp->fp[j]);
1576 	}
1577 }
1578 
1579 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1580 {
1581 	int j;
1582 
1583 	for_each_eth_queue(bp, j) {
1584 		struct bnx2x_fastpath *fp = &bp->fp[j];
1585 
1586 		bnx2x_free_rx_bds(fp);
1587 
1588 		if (fp->mode != TPA_MODE_DISABLED)
1589 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1590 	}
1591 }
1592 
1593 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1594 {
1595 	bnx2x_free_tx_skbs_cnic(bp);
1596 	bnx2x_free_rx_skbs_cnic(bp);
1597 }
1598 
1599 void bnx2x_free_skbs(struct bnx2x *bp)
1600 {
1601 	bnx2x_free_tx_skbs(bp);
1602 	bnx2x_free_rx_skbs(bp);
1603 }
1604 
1605 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1606 {
1607 	/* load old values */
1608 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1609 
1610 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1611 		/* leave all but MAX value */
1612 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1613 
1614 		/* set new MAX value */
1615 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1616 				& FUNC_MF_CFG_MAX_BW_MASK;
1617 
1618 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1619 	}
1620 }
1621 
1622 /**
1623  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1624  *
1625  * @bp:		driver handle
1626  * @nvecs:	number of vectors to be released
1627  */
1628 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1629 {
1630 	int i, offset = 0;
1631 
1632 	if (nvecs == offset)
1633 		return;
1634 
1635 	/* VFs don't have a default SB */
1636 	if (IS_PF(bp)) {
1637 		free_irq(bp->msix_table[offset].vector, bp->dev);
1638 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1639 		   bp->msix_table[offset].vector);
1640 		offset++;
1641 	}
1642 
1643 	if (CNIC_SUPPORT(bp)) {
1644 		if (nvecs == offset)
1645 			return;
1646 		offset++;
1647 	}
1648 
1649 	for_each_eth_queue(bp, i) {
1650 		if (nvecs == offset)
1651 			return;
1652 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1653 		   i, bp->msix_table[offset].vector);
1654 
1655 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1656 	}
1657 }
1658 
1659 void bnx2x_free_irq(struct bnx2x *bp)
1660 {
1661 	if (bp->flags & USING_MSIX_FLAG &&
1662 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1663 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1664 
1665 		/* vfs don't have a default status block */
1666 		if (IS_PF(bp))
1667 			nvecs++;
1668 
1669 		bnx2x_free_msix_irqs(bp, nvecs);
1670 	} else {
1671 		free_irq(bp->dev->irq, bp->dev);
1672 	}
1673 }
1674 
1675 int bnx2x_enable_msix(struct bnx2x *bp)
1676 {
1677 	int msix_vec = 0, i, rc;
1678 
1679 	/* VFs don't have a default status block */
1680 	if (IS_PF(bp)) {
1681 		bp->msix_table[msix_vec].entry = msix_vec;
1682 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1683 			       bp->msix_table[0].entry);
1684 		msix_vec++;
1685 	}
1686 
1687 	/* Cnic requires an msix vector for itself */
1688 	if (CNIC_SUPPORT(bp)) {
1689 		bp->msix_table[msix_vec].entry = msix_vec;
1690 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1691 			       msix_vec, bp->msix_table[msix_vec].entry);
1692 		msix_vec++;
1693 	}
1694 
1695 	/* We need separate vectors for ETH queues only (not FCoE) */
1696 	for_each_eth_queue(bp, i) {
1697 		bp->msix_table[msix_vec].entry = msix_vec;
1698 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1699 			       msix_vec, msix_vec, i);
1700 		msix_vec++;
1701 	}
1702 
1703 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1704 	   msix_vec);
1705 
1706 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1707 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1708 	/*
1709 	 * reconfigure number of tx/rx queues according to available
1710 	 * MSI-X vectors
1711 	 */
1712 	if (rc == -ENOSPC) {
1713 		/* Get by with single vector */
1714 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1715 		if (rc < 0) {
1716 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1717 				       rc);
1718 			goto no_msix;
1719 		}
1720 
1721 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1722 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1723 
1724 		BNX2X_DEV_INFO("set number of queues to 1\n");
1725 		bp->num_ethernet_queues = 1;
1726 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1727 	} else if (rc < 0) {
1728 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1729 		goto no_msix;
1730 	} else if (rc < msix_vec) {
1731 		/* how less vectors we will have? */
1732 		int diff = msix_vec - rc;
1733 
1734 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1735 
1736 		/*
1737 		 * decrease number of queues by number of unallocated entries
1738 		 */
1739 		bp->num_ethernet_queues -= diff;
1740 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1741 
1742 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1743 			       bp->num_queues);
1744 	}
1745 
1746 	bp->flags |= USING_MSIX_FLAG;
1747 
1748 	return 0;
1749 
1750 no_msix:
1751 	/* fall to INTx if not enough memory */
1752 	if (rc == -ENOMEM)
1753 		bp->flags |= DISABLE_MSI_FLAG;
1754 
1755 	return rc;
1756 }
1757 
1758 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1759 {
1760 	int i, rc, offset = 0;
1761 
1762 	/* no default status block for vf */
1763 	if (IS_PF(bp)) {
1764 		rc = request_irq(bp->msix_table[offset++].vector,
1765 				 bnx2x_msix_sp_int, 0,
1766 				 bp->dev->name, bp->dev);
1767 		if (rc) {
1768 			BNX2X_ERR("request sp irq failed\n");
1769 			return -EBUSY;
1770 		}
1771 	}
1772 
1773 	if (CNIC_SUPPORT(bp))
1774 		offset++;
1775 
1776 	for_each_eth_queue(bp, i) {
1777 		struct bnx2x_fastpath *fp = &bp->fp[i];
1778 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1779 			 bp->dev->name, i);
1780 
1781 		rc = request_irq(bp->msix_table[offset].vector,
1782 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1783 		if (rc) {
1784 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1785 			      bp->msix_table[offset].vector, rc);
1786 			bnx2x_free_msix_irqs(bp, offset);
1787 			return -EBUSY;
1788 		}
1789 
1790 		offset++;
1791 	}
1792 
1793 	i = BNX2X_NUM_ETH_QUEUES(bp);
1794 	if (IS_PF(bp)) {
1795 		offset = 1 + CNIC_SUPPORT(bp);
1796 		netdev_info(bp->dev,
1797 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1798 			    bp->msix_table[0].vector,
1799 			    0, bp->msix_table[offset].vector,
1800 			    i - 1, bp->msix_table[offset + i - 1].vector);
1801 	} else {
1802 		offset = CNIC_SUPPORT(bp);
1803 		netdev_info(bp->dev,
1804 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1805 			    0, bp->msix_table[offset].vector,
1806 			    i - 1, bp->msix_table[offset + i - 1].vector);
1807 	}
1808 	return 0;
1809 }
1810 
1811 int bnx2x_enable_msi(struct bnx2x *bp)
1812 {
1813 	int rc;
1814 
1815 	rc = pci_enable_msi(bp->pdev);
1816 	if (rc) {
1817 		BNX2X_DEV_INFO("MSI is not attainable\n");
1818 		return -1;
1819 	}
1820 	bp->flags |= USING_MSI_FLAG;
1821 
1822 	return 0;
1823 }
1824 
1825 static int bnx2x_req_irq(struct bnx2x *bp)
1826 {
1827 	unsigned long flags;
1828 	unsigned int irq;
1829 
1830 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1831 		flags = 0;
1832 	else
1833 		flags = IRQF_SHARED;
1834 
1835 	if (bp->flags & USING_MSIX_FLAG)
1836 		irq = bp->msix_table[0].vector;
1837 	else
1838 		irq = bp->pdev->irq;
1839 
1840 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1841 }
1842 
1843 static int bnx2x_setup_irqs(struct bnx2x *bp)
1844 {
1845 	int rc = 0;
1846 	if (bp->flags & USING_MSIX_FLAG &&
1847 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1848 		rc = bnx2x_req_msix_irqs(bp);
1849 		if (rc)
1850 			return rc;
1851 	} else {
1852 		rc = bnx2x_req_irq(bp);
1853 		if (rc) {
1854 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1855 			return rc;
1856 		}
1857 		if (bp->flags & USING_MSI_FLAG) {
1858 			bp->dev->irq = bp->pdev->irq;
1859 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1860 				    bp->dev->irq);
1861 		}
1862 		if (bp->flags & USING_MSIX_FLAG) {
1863 			bp->dev->irq = bp->msix_table[0].vector;
1864 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1865 				    bp->dev->irq);
1866 		}
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1873 {
1874 	int i;
1875 
1876 	for_each_rx_queue_cnic(bp, i) {
1877 		napi_enable(&bnx2x_fp(bp, i, napi));
1878 	}
1879 }
1880 
1881 static void bnx2x_napi_enable(struct bnx2x *bp)
1882 {
1883 	int i;
1884 
1885 	for_each_eth_queue(bp, i) {
1886 		napi_enable(&bnx2x_fp(bp, i, napi));
1887 	}
1888 }
1889 
1890 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1891 {
1892 	int i;
1893 
1894 	for_each_rx_queue_cnic(bp, i) {
1895 		napi_disable(&bnx2x_fp(bp, i, napi));
1896 	}
1897 }
1898 
1899 static void bnx2x_napi_disable(struct bnx2x *bp)
1900 {
1901 	int i;
1902 
1903 	for_each_eth_queue(bp, i) {
1904 		napi_disable(&bnx2x_fp(bp, i, napi));
1905 	}
1906 }
1907 
1908 void bnx2x_netif_start(struct bnx2x *bp)
1909 {
1910 	if (netif_running(bp->dev)) {
1911 		bnx2x_napi_enable(bp);
1912 		if (CNIC_LOADED(bp))
1913 			bnx2x_napi_enable_cnic(bp);
1914 		bnx2x_int_enable(bp);
1915 		if (bp->state == BNX2X_STATE_OPEN)
1916 			netif_tx_wake_all_queues(bp->dev);
1917 	}
1918 }
1919 
1920 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1921 {
1922 	bnx2x_int_disable_sync(bp, disable_hw);
1923 	bnx2x_napi_disable(bp);
1924 	if (CNIC_LOADED(bp))
1925 		bnx2x_napi_disable_cnic(bp);
1926 }
1927 
1928 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1929 		       struct net_device *sb_dev)
1930 {
1931 	struct bnx2x *bp = netdev_priv(dev);
1932 
1933 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1934 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1935 		u16 ether_type = ntohs(hdr->h_proto);
1936 
1937 		/* Skip VLAN tag if present */
1938 		if (ether_type == ETH_P_8021Q) {
1939 			struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
1940 
1941 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1942 		}
1943 
1944 		/* If ethertype is FCoE or FIP - use FCoE ring */
1945 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1946 			return bnx2x_fcoe_tx(bp, txq_index);
1947 	}
1948 
1949 	/* select a non-FCoE queue */
1950 	return netdev_pick_tx(dev, skb, NULL) %
1951 			(BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos);
1952 }
1953 
1954 void bnx2x_set_num_queues(struct bnx2x *bp)
1955 {
1956 	/* RSS queues */
1957 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1958 
1959 	/* override in STORAGE SD modes */
1960 	if (IS_MF_STORAGE_ONLY(bp))
1961 		bp->num_ethernet_queues = 1;
1962 
1963 	/* Add special queues */
1964 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1965 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1966 
1967 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1968 }
1969 
1970 /**
1971  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1972  *
1973  * @bp:		Driver handle
1974  * @include_cnic: handle cnic case
1975  *
1976  * We currently support for at most 16 Tx queues for each CoS thus we will
1977  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1978  * bp->max_cos.
1979  *
1980  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1981  * index after all ETH L2 indices.
1982  *
1983  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1984  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1985  * 16..31,...) with indices that are not coupled with any real Tx queue.
1986  *
1987  * The proper configuration of skb->queue_mapping is handled by
1988  * bnx2x_select_queue() and __skb_tx_hash().
1989  *
1990  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1991  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1992  */
1993 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1994 {
1995 	int rc, tx, rx;
1996 
1997 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1998 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1999 
2000 /* account for fcoe queue */
2001 	if (include_cnic && !NO_FCOE(bp)) {
2002 		rx++;
2003 		tx++;
2004 	}
2005 
2006 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
2007 	if (rc) {
2008 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
2009 		return rc;
2010 	}
2011 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
2012 	if (rc) {
2013 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
2014 		return rc;
2015 	}
2016 
2017 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
2018 			  tx, rx);
2019 
2020 	return rc;
2021 }
2022 
2023 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2024 {
2025 	int i;
2026 
2027 	for_each_queue(bp, i) {
2028 		struct bnx2x_fastpath *fp = &bp->fp[i];
2029 		u32 mtu;
2030 
2031 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2032 		if (IS_FCOE_IDX(i))
2033 			/*
2034 			 * Although there are no IP frames expected to arrive to
2035 			 * this ring we still want to add an
2036 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2037 			 * overrun attack.
2038 			 */
2039 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2040 		else
2041 			mtu = bp->dev->mtu;
2042 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2043 				  IP_HEADER_ALIGNMENT_PADDING +
2044 				  ETH_OVERHEAD +
2045 				  mtu +
2046 				  BNX2X_FW_RX_ALIGN_END;
2047 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2048 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2049 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2050 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2051 		else
2052 			fp->rx_frag_size = 0;
2053 	}
2054 }
2055 
2056 static int bnx2x_init_rss(struct bnx2x *bp)
2057 {
2058 	int i;
2059 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2060 
2061 	/* Prepare the initial contents for the indirection table if RSS is
2062 	 * enabled
2063 	 */
2064 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2065 		bp->rss_conf_obj.ind_table[i] =
2066 			bp->fp->cl_id +
2067 			ethtool_rxfh_indir_default(i, num_eth_queues);
2068 
2069 	/*
2070 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2071 	 * per-port, so if explicit configuration is needed , do it only
2072 	 * for a PMF.
2073 	 *
2074 	 * For 57712 and newer on the other hand it's a per-function
2075 	 * configuration.
2076 	 */
2077 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2078 }
2079 
2080 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2081 	      bool config_hash, bool enable)
2082 {
2083 	struct bnx2x_config_rss_params params = {NULL};
2084 
2085 	/* Although RSS is meaningless when there is a single HW queue we
2086 	 * still need it enabled in order to have HW Rx hash generated.
2087 	 *
2088 	 * if (!is_eth_multi(bp))
2089 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2090 	 */
2091 
2092 	params.rss_obj = rss_obj;
2093 
2094 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2095 
2096 	if (enable) {
2097 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2098 
2099 		/* RSS configuration */
2100 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2101 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2102 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2103 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2104 		if (rss_obj->udp_rss_v4)
2105 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2106 		if (rss_obj->udp_rss_v6)
2107 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2108 
2109 		if (!CHIP_IS_E1x(bp)) {
2110 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2111 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2112 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2113 
2114 			/* valid only for TUNN_MODE_GRE tunnel mode */
2115 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2116 		}
2117 	} else {
2118 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2119 	}
2120 
2121 	/* Hash bits */
2122 	params.rss_result_mask = MULTI_MASK;
2123 
2124 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2125 
2126 	if (config_hash) {
2127 		/* RSS keys */
2128 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2129 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2130 	}
2131 
2132 	if (IS_PF(bp))
2133 		return bnx2x_config_rss(bp, &params);
2134 	else
2135 		return bnx2x_vfpf_config_rss(bp, &params);
2136 }
2137 
2138 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2139 {
2140 	struct bnx2x_func_state_params func_params = {NULL};
2141 
2142 	/* Prepare parameters for function state transitions */
2143 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2144 
2145 	func_params.f_obj = &bp->func_obj;
2146 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2147 
2148 	func_params.params.hw_init.load_phase = load_code;
2149 
2150 	return bnx2x_func_state_change(bp, &func_params);
2151 }
2152 
2153 /*
2154  * Cleans the object that have internal lists without sending
2155  * ramrods. Should be run when interrupts are disabled.
2156  */
2157 void bnx2x_squeeze_objects(struct bnx2x *bp)
2158 {
2159 	int rc;
2160 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2161 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2162 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2163 
2164 	/***************** Cleanup MACs' object first *************************/
2165 
2166 	/* Wait for completion of requested */
2167 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2168 	/* Perform a dry cleanup */
2169 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2170 
2171 	/* Clean ETH primary MAC */
2172 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2173 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2174 				 &ramrod_flags);
2175 	if (rc != 0)
2176 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2177 
2178 	/* Cleanup UC list */
2179 	vlan_mac_flags = 0;
2180 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2181 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2182 				 &ramrod_flags);
2183 	if (rc != 0)
2184 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2185 
2186 	/***************** Now clean mcast object *****************************/
2187 	rparam.mcast_obj = &bp->mcast_obj;
2188 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2189 
2190 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2191 	 * we take a lock surrounding both the initial send and the CONTs,
2192 	 * as we don't want a true completion to disrupt us in the middle.
2193 	 */
2194 	netif_addr_lock_bh(bp->dev);
2195 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2196 	if (rc < 0)
2197 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2198 			  rc);
2199 
2200 	/* ...and wait until all pending commands are cleared */
2201 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2202 	while (rc != 0) {
2203 		if (rc < 0) {
2204 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2205 				  rc);
2206 			netif_addr_unlock_bh(bp->dev);
2207 			return;
2208 		}
2209 
2210 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2211 	}
2212 	netif_addr_unlock_bh(bp->dev);
2213 }
2214 
2215 #ifndef BNX2X_STOP_ON_ERROR
2216 #define LOAD_ERROR_EXIT(bp, label) \
2217 	do { \
2218 		(bp)->state = BNX2X_STATE_ERROR; \
2219 		goto label; \
2220 	} while (0)
2221 
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2223 	do { \
2224 		bp->cnic_loaded = false; \
2225 		goto label; \
2226 	} while (0)
2227 #else /*BNX2X_STOP_ON_ERROR*/
2228 #define LOAD_ERROR_EXIT(bp, label) \
2229 	do { \
2230 		(bp)->state = BNX2X_STATE_ERROR; \
2231 		(bp)->panic = 1; \
2232 		return -EBUSY; \
2233 	} while (0)
2234 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2235 	do { \
2236 		bp->cnic_loaded = false; \
2237 		(bp)->panic = 1; \
2238 		return -EBUSY; \
2239 	} while (0)
2240 #endif /*BNX2X_STOP_ON_ERROR*/
2241 
2242 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2243 {
2244 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2245 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2246 	return;
2247 }
2248 
2249 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2250 {
2251 	int num_groups, vf_headroom = 0;
2252 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2253 
2254 	/* number of queues for statistics is number of eth queues + FCoE */
2255 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2256 
2257 	/* Total number of FW statistics requests =
2258 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2259 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2260 	 * for fcoe l2 queue if applicable)
2261 	 */
2262 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2263 
2264 	/* vf stats appear in the request list, but their data is allocated by
2265 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2266 	 * it is used to determine where to place the vf stats queries in the
2267 	 * request struct
2268 	 */
2269 	if (IS_SRIOV(bp))
2270 		vf_headroom = bnx2x_vf_headroom(bp);
2271 
2272 	/* Request is built from stats_query_header and an array of
2273 	 * stats_query_cmd_group each of which contains
2274 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2275 	 * configured in the stats_query_header.
2276 	 */
2277 	num_groups =
2278 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2279 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2280 		 1 : 0));
2281 
2282 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2283 	   bp->fw_stats_num, vf_headroom, num_groups);
2284 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2285 		num_groups * sizeof(struct stats_query_cmd_group);
2286 
2287 	/* Data for statistics requests + stats_counter
2288 	 * stats_counter holds per-STORM counters that are incremented
2289 	 * when STORM has finished with the current request.
2290 	 * memory for FCoE offloaded statistics are counted anyway,
2291 	 * even if they will not be sent.
2292 	 * VF stats are not accounted for here as the data of VF stats is stored
2293 	 * in memory allocated by the VF, not here.
2294 	 */
2295 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2296 		sizeof(struct per_pf_stats) +
2297 		sizeof(struct fcoe_statistics_params) +
2298 		sizeof(struct per_queue_stats) * num_queue_stats +
2299 		sizeof(struct stats_counter);
2300 
2301 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2302 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2303 	if (!bp->fw_stats)
2304 		goto alloc_mem_err;
2305 
2306 	/* Set shortcuts */
2307 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2308 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2309 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2310 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2311 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2312 		bp->fw_stats_req_sz;
2313 
2314 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2315 	   U64_HI(bp->fw_stats_req_mapping),
2316 	   U64_LO(bp->fw_stats_req_mapping));
2317 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2318 	   U64_HI(bp->fw_stats_data_mapping),
2319 	   U64_LO(bp->fw_stats_data_mapping));
2320 	return 0;
2321 
2322 alloc_mem_err:
2323 	bnx2x_free_fw_stats_mem(bp);
2324 	BNX2X_ERR("Can't allocate FW stats memory\n");
2325 	return -ENOMEM;
2326 }
2327 
2328 /* send load request to mcp and analyze response */
2329 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2330 {
2331 	u32 param;
2332 
2333 	/* init fw_seq */
2334 	bp->fw_seq =
2335 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2336 		 DRV_MSG_SEQ_NUMBER_MASK);
2337 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2338 
2339 	/* Get current FW pulse sequence */
2340 	bp->fw_drv_pulse_wr_seq =
2341 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2342 		 DRV_PULSE_SEQ_MASK);
2343 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2344 
2345 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2346 
2347 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2348 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2349 
2350 	/* load request */
2351 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2352 
2353 	/* if mcp fails to respond we must abort */
2354 	if (!(*load_code)) {
2355 		BNX2X_ERR("MCP response failure, aborting\n");
2356 		return -EBUSY;
2357 	}
2358 
2359 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2360 	 * must abort
2361 	 */
2362 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2363 		BNX2X_ERR("MCP refused load request, aborting\n");
2364 		return -EBUSY;
2365 	}
2366 	return 0;
2367 }
2368 
2369 /* check whether another PF has already loaded FW to chip. In
2370  * virtualized environments a pf from another VM may have already
2371  * initialized the device including loading FW
2372  */
2373 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2374 {
2375 	/* is another pf loaded on this engine? */
2376 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2377 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2378 		u8 loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng;
2379 		u32 loaded_fw;
2380 
2381 		/* read loaded FW from chip */
2382 		loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2383 
2384 		loaded_fw_major = loaded_fw & 0xff;
2385 		loaded_fw_minor = (loaded_fw >> 8) & 0xff;
2386 		loaded_fw_rev = (loaded_fw >> 16) & 0xff;
2387 		loaded_fw_eng = (loaded_fw >> 24) & 0xff;
2388 
2389 		DP(BNX2X_MSG_SP, "loaded fw 0x%x major 0x%x minor 0x%x rev 0x%x eng 0x%x\n",
2390 		   loaded_fw, loaded_fw_major, loaded_fw_minor, loaded_fw_rev, loaded_fw_eng);
2391 
2392 		/* abort nic load if version mismatch */
2393 		if (loaded_fw_major != BCM_5710_FW_MAJOR_VERSION ||
2394 		    loaded_fw_minor != BCM_5710_FW_MINOR_VERSION ||
2395 		    loaded_fw_eng != BCM_5710_FW_ENGINEERING_VERSION ||
2396 		    loaded_fw_rev < BCM_5710_FW_REVISION_VERSION_V15) {
2397 			if (print_err)
2398 				BNX2X_ERR("loaded FW incompatible. Aborting\n");
2399 			else
2400 				BNX2X_DEV_INFO("loaded FW incompatible, possibly due to MF UNDI\n");
2401 
2402 			return -EBUSY;
2403 		}
2404 	}
2405 	return 0;
2406 }
2407 
2408 /* returns the "mcp load_code" according to global load_count array */
2409 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2410 {
2411 	int path = BP_PATH(bp);
2412 
2413 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2414 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2415 	   bnx2x_load_count[path][2]);
2416 	bnx2x_load_count[path][0]++;
2417 	bnx2x_load_count[path][1 + port]++;
2418 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2419 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2420 	   bnx2x_load_count[path][2]);
2421 	if (bnx2x_load_count[path][0] == 1)
2422 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2423 	else if (bnx2x_load_count[path][1 + port] == 1)
2424 		return FW_MSG_CODE_DRV_LOAD_PORT;
2425 	else
2426 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2427 }
2428 
2429 /* mark PMF if applicable */
2430 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2431 {
2432 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2433 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2434 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2435 		bp->port.pmf = 1;
2436 		/* We need the barrier to ensure the ordering between the
2437 		 * writing to bp->port.pmf here and reading it from the
2438 		 * bnx2x_periodic_task().
2439 		 */
2440 		smp_mb();
2441 	} else {
2442 		bp->port.pmf = 0;
2443 	}
2444 
2445 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2446 }
2447 
2448 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2449 {
2450 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2451 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2452 	    (bp->common.shmem2_base)) {
2453 		if (SHMEM2_HAS(bp, dcc_support))
2454 			SHMEM2_WR(bp, dcc_support,
2455 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2456 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2457 		if (SHMEM2_HAS(bp, afex_driver_support))
2458 			SHMEM2_WR(bp, afex_driver_support,
2459 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2460 	}
2461 
2462 	/* Set AFEX default VLAN tag to an invalid value */
2463 	bp->afex_def_vlan_tag = -1;
2464 }
2465 
2466 /**
2467  * bnx2x_bz_fp - zero content of the fastpath structure.
2468  *
2469  * @bp:		driver handle
2470  * @index:	fastpath index to be zeroed
2471  *
2472  * Makes sure the contents of the bp->fp[index].napi is kept
2473  * intact.
2474  */
2475 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2476 {
2477 	struct bnx2x_fastpath *fp = &bp->fp[index];
2478 	int cos;
2479 	struct napi_struct orig_napi = fp->napi;
2480 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2481 
2482 	/* bzero bnx2x_fastpath contents */
2483 	if (fp->tpa_info)
2484 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2485 		       sizeof(struct bnx2x_agg_info));
2486 	memset(fp, 0, sizeof(*fp));
2487 
2488 	/* Restore the NAPI object as it has been already initialized */
2489 	fp->napi = orig_napi;
2490 	fp->tpa_info = orig_tpa_info;
2491 	fp->bp = bp;
2492 	fp->index = index;
2493 	if (IS_ETH_FP(fp))
2494 		fp->max_cos = bp->max_cos;
2495 	else
2496 		/* Special queues support only one CoS */
2497 		fp->max_cos = 1;
2498 
2499 	/* Init txdata pointers */
2500 	if (IS_FCOE_FP(fp))
2501 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2502 	if (IS_ETH_FP(fp))
2503 		for_each_cos_in_tx_queue(fp, cos)
2504 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2505 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2506 
2507 	/* set the tpa flag for each queue. The tpa flag determines the queue
2508 	 * minimal size so it must be set prior to queue memory allocation
2509 	 */
2510 	if (bp->dev->features & NETIF_F_LRO)
2511 		fp->mode = TPA_MODE_LRO;
2512 	else if (bp->dev->features & NETIF_F_GRO_HW)
2513 		fp->mode = TPA_MODE_GRO;
2514 	else
2515 		fp->mode = TPA_MODE_DISABLED;
2516 
2517 	/* We don't want TPA if it's disabled in bp
2518 	 * or if this is an FCoE L2 ring.
2519 	 */
2520 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2521 		fp->mode = TPA_MODE_DISABLED;
2522 }
2523 
2524 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2525 {
2526 	u32 cur;
2527 
2528 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2529 		return;
2530 
2531 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2532 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2533 	   cur, state);
2534 
2535 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2536 }
2537 
2538 int bnx2x_load_cnic(struct bnx2x *bp)
2539 {
2540 	int i, rc, port = BP_PORT(bp);
2541 
2542 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2543 
2544 	mutex_init(&bp->cnic_mutex);
2545 
2546 	if (IS_PF(bp)) {
2547 		rc = bnx2x_alloc_mem_cnic(bp);
2548 		if (rc) {
2549 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2550 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2551 		}
2552 	}
2553 
2554 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2555 	if (rc) {
2556 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2557 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2558 	}
2559 
2560 	/* Update the number of queues with the cnic queues */
2561 	rc = bnx2x_set_real_num_queues(bp, 1);
2562 	if (rc) {
2563 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2564 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2565 	}
2566 
2567 	/* Add all CNIC NAPI objects */
2568 	bnx2x_add_all_napi_cnic(bp);
2569 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2570 	bnx2x_napi_enable_cnic(bp);
2571 
2572 	rc = bnx2x_init_hw_func_cnic(bp);
2573 	if (rc)
2574 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2575 
2576 	bnx2x_nic_init_cnic(bp);
2577 
2578 	if (IS_PF(bp)) {
2579 		/* Enable Timer scan */
2580 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2581 
2582 		/* setup cnic queues */
2583 		for_each_cnic_queue(bp, i) {
2584 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2585 			if (rc) {
2586 				BNX2X_ERR("Queue setup failed\n");
2587 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2588 			}
2589 		}
2590 	}
2591 
2592 	/* Initialize Rx filter. */
2593 	bnx2x_set_rx_mode_inner(bp);
2594 
2595 	/* re-read iscsi info */
2596 	bnx2x_get_iscsi_info(bp);
2597 	bnx2x_setup_cnic_irq_info(bp);
2598 	bnx2x_setup_cnic_info(bp);
2599 	bp->cnic_loaded = true;
2600 	if (bp->state == BNX2X_STATE_OPEN)
2601 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2602 
2603 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2604 
2605 	return 0;
2606 
2607 #ifndef BNX2X_STOP_ON_ERROR
2608 load_error_cnic2:
2609 	/* Disable Timer scan */
2610 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2611 
2612 load_error_cnic1:
2613 	bnx2x_napi_disable_cnic(bp);
2614 	/* Update the number of queues without the cnic queues */
2615 	if (bnx2x_set_real_num_queues(bp, 0))
2616 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2617 load_error_cnic0:
2618 	BNX2X_ERR("CNIC-related load failed\n");
2619 	bnx2x_free_fp_mem_cnic(bp);
2620 	bnx2x_free_mem_cnic(bp);
2621 	return rc;
2622 #endif /* ! BNX2X_STOP_ON_ERROR */
2623 }
2624 
2625 /* must be called with rtnl_lock */
2626 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2627 {
2628 	int port = BP_PORT(bp);
2629 	int i, rc = 0, load_code = 0;
2630 
2631 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2632 	DP(NETIF_MSG_IFUP,
2633 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2634 
2635 #ifdef BNX2X_STOP_ON_ERROR
2636 	if (unlikely(bp->panic)) {
2637 		BNX2X_ERR("Can't load NIC when there is panic\n");
2638 		return -EPERM;
2639 	}
2640 #endif
2641 
2642 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2643 
2644 	/* zero the structure w/o any lock, before SP handler is initialized */
2645 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2646 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2647 		&bp->last_reported_link.link_report_flags);
2648 
2649 	if (IS_PF(bp))
2650 		/* must be called before memory allocation and HW init */
2651 		bnx2x_ilt_set_info(bp);
2652 
2653 	/*
2654 	 * Zero fastpath structures preserving invariants like napi, which are
2655 	 * allocated only once, fp index, max_cos, bp pointer.
2656 	 * Also set fp->mode and txdata_ptr.
2657 	 */
2658 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2659 	for_each_queue(bp, i)
2660 		bnx2x_bz_fp(bp, i);
2661 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2662 				  bp->num_cnic_queues) *
2663 				  sizeof(struct bnx2x_fp_txdata));
2664 
2665 	bp->fcoe_init = false;
2666 
2667 	/* Set the receive queues buffer size */
2668 	bnx2x_set_rx_buf_size(bp);
2669 
2670 	if (IS_PF(bp)) {
2671 		rc = bnx2x_alloc_mem(bp);
2672 		if (rc) {
2673 			BNX2X_ERR("Unable to allocate bp memory\n");
2674 			return rc;
2675 		}
2676 	}
2677 
2678 	/* need to be done after alloc mem, since it's self adjusting to amount
2679 	 * of memory available for RSS queues
2680 	 */
2681 	rc = bnx2x_alloc_fp_mem(bp);
2682 	if (rc) {
2683 		BNX2X_ERR("Unable to allocate memory for fps\n");
2684 		LOAD_ERROR_EXIT(bp, load_error0);
2685 	}
2686 
2687 	/* Allocated memory for FW statistics  */
2688 	rc = bnx2x_alloc_fw_stats_mem(bp);
2689 	if (rc)
2690 		LOAD_ERROR_EXIT(bp, load_error0);
2691 
2692 	/* request pf to initialize status blocks */
2693 	if (IS_VF(bp)) {
2694 		rc = bnx2x_vfpf_init(bp);
2695 		if (rc)
2696 			LOAD_ERROR_EXIT(bp, load_error0);
2697 	}
2698 
2699 	/* As long as bnx2x_alloc_mem() may possibly update
2700 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2701 	 * come after it. At this stage cnic queues are not counted.
2702 	 */
2703 	rc = bnx2x_set_real_num_queues(bp, 0);
2704 	if (rc) {
2705 		BNX2X_ERR("Unable to set real_num_queues\n");
2706 		LOAD_ERROR_EXIT(bp, load_error0);
2707 	}
2708 
2709 	/* configure multi cos mappings in kernel.
2710 	 * this configuration may be overridden by a multi class queue
2711 	 * discipline or by a dcbx negotiation result.
2712 	 */
2713 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2714 
2715 	/* Add all NAPI objects */
2716 	bnx2x_add_all_napi(bp);
2717 	DP(NETIF_MSG_IFUP, "napi added\n");
2718 	bnx2x_napi_enable(bp);
2719 	bp->nic_stopped = false;
2720 
2721 	if (IS_PF(bp)) {
2722 		/* set pf load just before approaching the MCP */
2723 		bnx2x_set_pf_load(bp);
2724 
2725 		/* if mcp exists send load request and analyze response */
2726 		if (!BP_NOMCP(bp)) {
2727 			/* attempt to load pf */
2728 			rc = bnx2x_nic_load_request(bp, &load_code);
2729 			if (rc)
2730 				LOAD_ERROR_EXIT(bp, load_error1);
2731 
2732 			/* what did mcp say? */
2733 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2734 			if (rc) {
2735 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2736 				LOAD_ERROR_EXIT(bp, load_error2);
2737 			}
2738 		} else {
2739 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2740 		}
2741 
2742 		/* mark pmf if applicable */
2743 		bnx2x_nic_load_pmf(bp, load_code);
2744 
2745 		/* Init Function state controlling object */
2746 		bnx2x__init_func_obj(bp);
2747 
2748 		/* Initialize HW */
2749 		rc = bnx2x_init_hw(bp, load_code);
2750 		if (rc) {
2751 			BNX2X_ERR("HW init failed, aborting\n");
2752 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2753 			LOAD_ERROR_EXIT(bp, load_error2);
2754 		}
2755 	}
2756 
2757 	bnx2x_pre_irq_nic_init(bp);
2758 
2759 	/* Connect to IRQs */
2760 	rc = bnx2x_setup_irqs(bp);
2761 	if (rc) {
2762 		BNX2X_ERR("setup irqs failed\n");
2763 		if (IS_PF(bp))
2764 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2765 		LOAD_ERROR_EXIT(bp, load_error2);
2766 	}
2767 
2768 	/* Init per-function objects */
2769 	if (IS_PF(bp)) {
2770 		/* Setup NIC internals and enable interrupts */
2771 		bnx2x_post_irq_nic_init(bp, load_code);
2772 
2773 		bnx2x_init_bp_objs(bp);
2774 		bnx2x_iov_nic_init(bp);
2775 
2776 		/* Set AFEX default VLAN tag to an invalid value */
2777 		bp->afex_def_vlan_tag = -1;
2778 		bnx2x_nic_load_afex_dcc(bp, load_code);
2779 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2780 		rc = bnx2x_func_start(bp);
2781 		if (rc) {
2782 			BNX2X_ERR("Function start failed!\n");
2783 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2784 
2785 			LOAD_ERROR_EXIT(bp, load_error3);
2786 		}
2787 
2788 		/* Send LOAD_DONE command to MCP */
2789 		if (!BP_NOMCP(bp)) {
2790 			load_code = bnx2x_fw_command(bp,
2791 						     DRV_MSG_CODE_LOAD_DONE, 0);
2792 			if (!load_code) {
2793 				BNX2X_ERR("MCP response failure, aborting\n");
2794 				rc = -EBUSY;
2795 				LOAD_ERROR_EXIT(bp, load_error3);
2796 			}
2797 		}
2798 
2799 		/* initialize FW coalescing state machines in RAM */
2800 		bnx2x_update_coalesce(bp);
2801 	}
2802 
2803 	/* setup the leading queue */
2804 	rc = bnx2x_setup_leading(bp);
2805 	if (rc) {
2806 		BNX2X_ERR("Setup leading failed!\n");
2807 		LOAD_ERROR_EXIT(bp, load_error3);
2808 	}
2809 
2810 	/* set up the rest of the queues */
2811 	for_each_nondefault_eth_queue(bp, i) {
2812 		if (IS_PF(bp))
2813 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2814 		else /* VF */
2815 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2816 		if (rc) {
2817 			BNX2X_ERR("Queue %d setup failed\n", i);
2818 			LOAD_ERROR_EXIT(bp, load_error3);
2819 		}
2820 	}
2821 
2822 	/* setup rss */
2823 	rc = bnx2x_init_rss(bp);
2824 	if (rc) {
2825 		BNX2X_ERR("PF RSS init failed\n");
2826 		LOAD_ERROR_EXIT(bp, load_error3);
2827 	}
2828 
2829 	/* Now when Clients are configured we are ready to work */
2830 	bp->state = BNX2X_STATE_OPEN;
2831 
2832 	/* Configure a ucast MAC */
2833 	if (IS_PF(bp))
2834 		rc = bnx2x_set_eth_mac(bp, true);
2835 	else /* vf */
2836 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2837 					   true);
2838 	if (rc) {
2839 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2840 		LOAD_ERROR_EXIT(bp, load_error3);
2841 	}
2842 
2843 	if (IS_PF(bp) && bp->pending_max) {
2844 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2845 		bp->pending_max = 0;
2846 	}
2847 
2848 	bp->force_link_down = false;
2849 	if (bp->port.pmf) {
2850 		rc = bnx2x_initial_phy_init(bp, load_mode);
2851 		if (rc)
2852 			LOAD_ERROR_EXIT(bp, load_error3);
2853 	}
2854 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2855 
2856 	/* Start fast path */
2857 
2858 	/* Re-configure vlan filters */
2859 	rc = bnx2x_vlan_reconfigure_vid(bp);
2860 	if (rc)
2861 		LOAD_ERROR_EXIT(bp, load_error3);
2862 
2863 	/* Initialize Rx filter. */
2864 	bnx2x_set_rx_mode_inner(bp);
2865 
2866 	if (bp->flags & PTP_SUPPORTED) {
2867 		bnx2x_register_phc(bp);
2868 		bnx2x_init_ptp(bp);
2869 		bnx2x_configure_ptp_filters(bp);
2870 	}
2871 	/* Start Tx */
2872 	switch (load_mode) {
2873 	case LOAD_NORMAL:
2874 		/* Tx queue should be only re-enabled */
2875 		netif_tx_wake_all_queues(bp->dev);
2876 		break;
2877 
2878 	case LOAD_OPEN:
2879 		netif_tx_start_all_queues(bp->dev);
2880 		smp_mb__after_atomic();
2881 		break;
2882 
2883 	case LOAD_DIAG:
2884 	case LOAD_LOOPBACK_EXT:
2885 		bp->state = BNX2X_STATE_DIAG;
2886 		break;
2887 
2888 	default:
2889 		break;
2890 	}
2891 
2892 	if (bp->port.pmf)
2893 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2894 	else
2895 		bnx2x__link_status_update(bp);
2896 
2897 	/* start the timer */
2898 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2899 
2900 	if (CNIC_ENABLED(bp))
2901 		bnx2x_load_cnic(bp);
2902 
2903 	if (IS_PF(bp))
2904 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2905 
2906 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2907 		/* mark driver is loaded in shmem2 */
2908 		u32 val;
2909 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2910 		val &= ~DRV_FLAGS_MTU_MASK;
2911 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2912 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2913 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2914 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2915 	}
2916 
2917 	/* Wait for all pending SP commands to complete */
2918 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2919 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2920 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2921 		return -EBUSY;
2922 	}
2923 
2924 	/* Update driver data for On-Chip MFW dump. */
2925 	if (IS_PF(bp))
2926 		bnx2x_update_mfw_dump(bp);
2927 
2928 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2929 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2930 		bnx2x_dcbx_init(bp, false);
2931 
2932 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2933 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2934 
2935 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2936 
2937 	return 0;
2938 
2939 #ifndef BNX2X_STOP_ON_ERROR
2940 load_error3:
2941 	if (IS_PF(bp)) {
2942 		bnx2x_int_disable_sync(bp, 1);
2943 
2944 		/* Clean queueable objects */
2945 		bnx2x_squeeze_objects(bp);
2946 	}
2947 
2948 	/* Free SKBs, SGEs, TPA pool and driver internals */
2949 	bnx2x_free_skbs(bp);
2950 	for_each_rx_queue(bp, i)
2951 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2952 
2953 	/* Release IRQs */
2954 	bnx2x_free_irq(bp);
2955 load_error2:
2956 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2957 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2958 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2959 	}
2960 
2961 	bp->port.pmf = 0;
2962 load_error1:
2963 	bnx2x_napi_disable(bp);
2964 	bnx2x_del_all_napi(bp);
2965 	bp->nic_stopped = true;
2966 
2967 	/* clear pf_load status, as it was already set */
2968 	if (IS_PF(bp))
2969 		bnx2x_clear_pf_load(bp);
2970 load_error0:
2971 	bnx2x_free_fw_stats_mem(bp);
2972 	bnx2x_free_fp_mem(bp);
2973 	bnx2x_free_mem(bp);
2974 
2975 	return rc;
2976 #endif /* ! BNX2X_STOP_ON_ERROR */
2977 }
2978 
2979 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2980 {
2981 	u8 rc = 0, cos, i;
2982 
2983 	/* Wait until tx fastpath tasks complete */
2984 	for_each_tx_queue(bp, i) {
2985 		struct bnx2x_fastpath *fp = &bp->fp[i];
2986 
2987 		for_each_cos_in_tx_queue(fp, cos)
2988 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2989 		if (rc)
2990 			return rc;
2991 	}
2992 	return 0;
2993 }
2994 
2995 /* must be called with rtnl_lock */
2996 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2997 {
2998 	int i;
2999 	bool global = false;
3000 
3001 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
3002 
3003 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
3004 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
3005 
3006 	/* mark driver is unloaded in shmem2 */
3007 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
3008 		u32 val;
3009 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
3010 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
3011 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
3012 	}
3013 
3014 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
3015 	    (bp->state == BNX2X_STATE_CLOSED ||
3016 	     bp->state == BNX2X_STATE_ERROR)) {
3017 		/* We can get here if the driver has been unloaded
3018 		 * during parity error recovery and is either waiting for a
3019 		 * leader to complete or for other functions to unload and
3020 		 * then ifdown has been issued. In this case we want to
3021 		 * unload and let other functions to complete a recovery
3022 		 * process.
3023 		 */
3024 		bp->recovery_state = BNX2X_RECOVERY_DONE;
3025 		bp->is_leader = 0;
3026 		bnx2x_release_leader_lock(bp);
3027 		smp_mb();
3028 
3029 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
3030 		BNX2X_ERR("Can't unload in closed or error state\n");
3031 		return -EINVAL;
3032 	}
3033 
3034 	/* Nothing to do during unload if previous bnx2x_nic_load()
3035 	 * have not completed successfully - all resources are released.
3036 	 *
3037 	 * we can get here only after unsuccessful ndo_* callback, during which
3038 	 * dev->IFF_UP flag is still on.
3039 	 */
3040 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3041 		return 0;
3042 
3043 	/* It's important to set the bp->state to the value different from
3044 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3045 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3046 	 */
3047 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3048 	smp_mb();
3049 
3050 	/* indicate to VFs that the PF is going down */
3051 	bnx2x_iov_channel_down(bp);
3052 
3053 	if (CNIC_LOADED(bp))
3054 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3055 
3056 	/* Stop Tx */
3057 	bnx2x_tx_disable(bp);
3058 	netdev_reset_tc(bp->dev);
3059 
3060 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3061 
3062 	del_timer_sync(&bp->timer);
3063 
3064 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
3065 		/* Set ALWAYS_ALIVE bit in shmem */
3066 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3067 		bnx2x_drv_pulse(bp);
3068 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3069 		bnx2x_save_statistics(bp);
3070 	}
3071 
3072 	/* wait till consumers catch up with producers in all queues.
3073 	 * If we're recovering, FW can't write to host so no reason
3074 	 * to wait for the queues to complete all Tx.
3075 	 */
3076 	if (unload_mode != UNLOAD_RECOVERY)
3077 		bnx2x_drain_tx_queues(bp);
3078 
3079 	/* if VF indicate to PF this function is going down (PF will delete sp
3080 	 * elements and clear initializations
3081 	 */
3082 	if (IS_VF(bp)) {
3083 		bnx2x_clear_vlan_info(bp);
3084 		bnx2x_vfpf_close_vf(bp);
3085 	} else if (unload_mode != UNLOAD_RECOVERY) {
3086 		/* if this is a normal/close unload need to clean up chip*/
3087 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3088 	} else {
3089 		/* Send the UNLOAD_REQUEST to the MCP */
3090 		bnx2x_send_unload_req(bp, unload_mode);
3091 
3092 		/* Prevent transactions to host from the functions on the
3093 		 * engine that doesn't reset global blocks in case of global
3094 		 * attention once global blocks are reset and gates are opened
3095 		 * (the engine which leader will perform the recovery
3096 		 * last).
3097 		 */
3098 		if (!CHIP_IS_E1x(bp))
3099 			bnx2x_pf_disable(bp);
3100 
3101 		if (!bp->nic_stopped) {
3102 			/* Disable HW interrupts, NAPI */
3103 			bnx2x_netif_stop(bp, 1);
3104 			/* Delete all NAPI objects */
3105 			bnx2x_del_all_napi(bp);
3106 			if (CNIC_LOADED(bp))
3107 				bnx2x_del_all_napi_cnic(bp);
3108 			/* Release IRQs */
3109 			bnx2x_free_irq(bp);
3110 			bp->nic_stopped = true;
3111 		}
3112 
3113 		/* Report UNLOAD_DONE to MCP */
3114 		bnx2x_send_unload_done(bp, false);
3115 	}
3116 
3117 	/*
3118 	 * At this stage no more interrupts will arrive so we may safely clean
3119 	 * the queueable objects here in case they failed to get cleaned so far.
3120 	 */
3121 	if (IS_PF(bp))
3122 		bnx2x_squeeze_objects(bp);
3123 
3124 	/* There should be no more pending SP commands at this stage */
3125 	bp->sp_state = 0;
3126 
3127 	bp->port.pmf = 0;
3128 
3129 	/* clear pending work in rtnl task */
3130 	bp->sp_rtnl_state = 0;
3131 	smp_mb();
3132 
3133 	/* Free SKBs, SGEs, TPA pool and driver internals */
3134 	bnx2x_free_skbs(bp);
3135 	if (CNIC_LOADED(bp))
3136 		bnx2x_free_skbs_cnic(bp);
3137 	for_each_rx_queue(bp, i)
3138 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3139 
3140 	bnx2x_free_fp_mem(bp);
3141 	if (CNIC_LOADED(bp))
3142 		bnx2x_free_fp_mem_cnic(bp);
3143 
3144 	if (IS_PF(bp)) {
3145 		if (CNIC_LOADED(bp))
3146 			bnx2x_free_mem_cnic(bp);
3147 	}
3148 	bnx2x_free_mem(bp);
3149 
3150 	bp->state = BNX2X_STATE_CLOSED;
3151 	bp->cnic_loaded = false;
3152 
3153 	/* Clear driver version indication in shmem */
3154 	if (IS_PF(bp) && !BP_NOMCP(bp))
3155 		bnx2x_update_mng_version(bp);
3156 
3157 	/* Check if there are pending parity attentions. If there are - set
3158 	 * RECOVERY_IN_PROGRESS.
3159 	 */
3160 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3161 		bnx2x_set_reset_in_progress(bp);
3162 
3163 		/* Set RESET_IS_GLOBAL if needed */
3164 		if (global)
3165 			bnx2x_set_reset_global(bp);
3166 	}
3167 
3168 	/* The last driver must disable a "close the gate" if there is no
3169 	 * parity attention or "process kill" pending.
3170 	 */
3171 	if (IS_PF(bp) &&
3172 	    !bnx2x_clear_pf_load(bp) &&
3173 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3174 		bnx2x_disable_close_the_gate(bp);
3175 
3176 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3177 
3178 	return 0;
3179 }
3180 
3181 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3182 {
3183 	u16 pmcsr;
3184 
3185 	/* If there is no power capability, silently succeed */
3186 	if (!bp->pdev->pm_cap) {
3187 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3188 		return 0;
3189 	}
3190 
3191 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3192 
3193 	switch (state) {
3194 	case PCI_D0:
3195 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3196 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3197 				       PCI_PM_CTRL_PME_STATUS));
3198 
3199 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3200 			/* delay required during transition out of D3hot */
3201 			msleep(20);
3202 		break;
3203 
3204 	case PCI_D3hot:
3205 		/* If there are other clients above don't
3206 		   shut down the power */
3207 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3208 			return 0;
3209 		/* Don't shut down the power for emulation and FPGA */
3210 		if (CHIP_REV_IS_SLOW(bp))
3211 			return 0;
3212 
3213 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3214 		pmcsr |= 3;
3215 
3216 		if (bp->wol)
3217 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3218 
3219 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3220 				      pmcsr);
3221 
3222 		/* No more memory access after this point until
3223 		* device is brought back to D0.
3224 		*/
3225 		break;
3226 
3227 	default:
3228 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3229 		return -EINVAL;
3230 	}
3231 	return 0;
3232 }
3233 
3234 /*
3235  * net_device service functions
3236  */
3237 static int bnx2x_poll(struct napi_struct *napi, int budget)
3238 {
3239 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3240 						 napi);
3241 	struct bnx2x *bp = fp->bp;
3242 	int rx_work_done;
3243 	u8 cos;
3244 
3245 #ifdef BNX2X_STOP_ON_ERROR
3246 	if (unlikely(bp->panic)) {
3247 		napi_complete(napi);
3248 		return 0;
3249 	}
3250 #endif
3251 	for_each_cos_in_tx_queue(fp, cos)
3252 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3253 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3254 
3255 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3256 
3257 	if (rx_work_done < budget) {
3258 		/* No need to update SB for FCoE L2 ring as long as
3259 		 * it's connected to the default SB and the SB
3260 		 * has been updated when NAPI was scheduled.
3261 		 */
3262 		if (IS_FCOE_FP(fp)) {
3263 			napi_complete_done(napi, rx_work_done);
3264 		} else {
3265 			bnx2x_update_fpsb_idx(fp);
3266 			/* bnx2x_has_rx_work() reads the status block,
3267 			 * thus we need to ensure that status block indices
3268 			 * have been actually read (bnx2x_update_fpsb_idx)
3269 			 * prior to this check (bnx2x_has_rx_work) so that
3270 			 * we won't write the "newer" value of the status block
3271 			 * to IGU (if there was a DMA right after
3272 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3273 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3274 			 * to right before bnx2x_ack_sb). In this case there
3275 			 * will never be another interrupt until there is
3276 			 * another update of the status block, while there
3277 			 * is still unhandled work.
3278 			 */
3279 			rmb();
3280 
3281 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3282 				if (napi_complete_done(napi, rx_work_done)) {
3283 					/* Re-enable interrupts */
3284 					DP(NETIF_MSG_RX_STATUS,
3285 					   "Update index to %d\n", fp->fp_hc_idx);
3286 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3287 						     le16_to_cpu(fp->fp_hc_idx),
3288 						     IGU_INT_ENABLE, 1);
3289 				}
3290 			} else {
3291 				rx_work_done = budget;
3292 			}
3293 		}
3294 	}
3295 
3296 	return rx_work_done;
3297 }
3298 
3299 /* we split the first BD into headers and data BDs
3300  * to ease the pain of our fellow microcode engineers
3301  * we use one mapping for both BDs
3302  */
3303 static u16 bnx2x_tx_split(struct bnx2x *bp,
3304 			  struct bnx2x_fp_txdata *txdata,
3305 			  struct sw_tx_bd *tx_buf,
3306 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3307 			  u16 bd_prod)
3308 {
3309 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3310 	struct eth_tx_bd *d_tx_bd;
3311 	dma_addr_t mapping;
3312 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3313 
3314 	/* first fix first BD */
3315 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3316 
3317 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3318 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3319 
3320 	/* now get a new data BD
3321 	 * (after the pbd) and fill it */
3322 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3323 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3324 
3325 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3326 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3327 
3328 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3329 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3330 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3331 
3332 	/* this marks the BD as one that has no individual mapping */
3333 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3334 
3335 	DP(NETIF_MSG_TX_QUEUED,
3336 	   "TSO split data size is %d (%x:%x)\n",
3337 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3338 
3339 	/* update tx_bd */
3340 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3341 
3342 	return bd_prod;
3343 }
3344 
3345 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3346 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3347 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3348 {
3349 	__sum16 tsum = (__force __sum16) csum;
3350 
3351 	if (fix > 0)
3352 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3353 				  csum_partial(t_header - fix, fix, 0)));
3354 
3355 	else if (fix < 0)
3356 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3357 				  csum_partial(t_header, -fix, 0)));
3358 
3359 	return bswab16(tsum);
3360 }
3361 
3362 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3363 {
3364 	u32 rc;
3365 	__u8 prot = 0;
3366 	__be16 protocol;
3367 
3368 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3369 		return XMIT_PLAIN;
3370 
3371 	protocol = vlan_get_protocol(skb);
3372 	if (protocol == htons(ETH_P_IPV6)) {
3373 		rc = XMIT_CSUM_V6;
3374 		prot = ipv6_hdr(skb)->nexthdr;
3375 	} else {
3376 		rc = XMIT_CSUM_V4;
3377 		prot = ip_hdr(skb)->protocol;
3378 	}
3379 
3380 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3381 		if (inner_ip_hdr(skb)->version == 6) {
3382 			rc |= XMIT_CSUM_ENC_V6;
3383 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3384 				rc |= XMIT_CSUM_TCP;
3385 		} else {
3386 			rc |= XMIT_CSUM_ENC_V4;
3387 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3388 				rc |= XMIT_CSUM_TCP;
3389 		}
3390 	}
3391 	if (prot == IPPROTO_TCP)
3392 		rc |= XMIT_CSUM_TCP;
3393 
3394 	if (skb_is_gso(skb)) {
3395 		if (skb_is_gso_v6(skb)) {
3396 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3397 			if (rc & XMIT_CSUM_ENC)
3398 				rc |= XMIT_GSO_ENC_V6;
3399 		} else {
3400 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3401 			if (rc & XMIT_CSUM_ENC)
3402 				rc |= XMIT_GSO_ENC_V4;
3403 		}
3404 	}
3405 
3406 	return rc;
3407 }
3408 
3409 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3410 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3411 
3412 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3413 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3414 
3415 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3416 /* check if packet requires linearization (packet is too fragmented)
3417    no need to check fragmentation if page size > 8K (there will be no
3418    violation to FW restrictions) */
3419 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3420 			     u32 xmit_type)
3421 {
3422 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3423 	int to_copy = 0, hlen = 0;
3424 
3425 	if (xmit_type & XMIT_GSO_ENC)
3426 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3427 
3428 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3429 		if (xmit_type & XMIT_GSO) {
3430 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3431 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3432 			/* Number of windows to check */
3433 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3434 			int wnd_idx = 0;
3435 			int frag_idx = 0;
3436 			u32 wnd_sum = 0;
3437 
3438 			/* Headers length */
3439 			if (xmit_type & XMIT_GSO_ENC)
3440 				hlen = skb_inner_tcp_all_headers(skb);
3441 			else
3442 				hlen = skb_tcp_all_headers(skb);
3443 
3444 			/* Amount of data (w/o headers) on linear part of SKB*/
3445 			first_bd_sz = skb_headlen(skb) - hlen;
3446 
3447 			wnd_sum  = first_bd_sz;
3448 
3449 			/* Calculate the first sum - it's special */
3450 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3451 				wnd_sum +=
3452 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3453 
3454 			/* If there was data on linear skb data - check it */
3455 			if (first_bd_sz > 0) {
3456 				if (unlikely(wnd_sum < lso_mss)) {
3457 					to_copy = 1;
3458 					goto exit_lbl;
3459 				}
3460 
3461 				wnd_sum -= first_bd_sz;
3462 			}
3463 
3464 			/* Others are easier: run through the frag list and
3465 			   check all windows */
3466 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3467 				wnd_sum +=
3468 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3469 
3470 				if (unlikely(wnd_sum < lso_mss)) {
3471 					to_copy = 1;
3472 					break;
3473 				}
3474 				wnd_sum -=
3475 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3476 			}
3477 		} else {
3478 			/* in non-LSO too fragmented packet should always
3479 			   be linearized */
3480 			to_copy = 1;
3481 		}
3482 	}
3483 
3484 exit_lbl:
3485 	if (unlikely(to_copy))
3486 		DP(NETIF_MSG_TX_QUEUED,
3487 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3488 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3489 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3490 
3491 	return to_copy;
3492 }
3493 #endif
3494 
3495 /**
3496  * bnx2x_set_pbd_gso - update PBD in GSO case.
3497  *
3498  * @skb:	packet skb
3499  * @pbd:	parse BD
3500  * @xmit_type:	xmit flags
3501  */
3502 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3503 			      struct eth_tx_parse_bd_e1x *pbd,
3504 			      u32 xmit_type)
3505 {
3506 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3507 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3508 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3509 
3510 	if (xmit_type & XMIT_GSO_V4) {
3511 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3512 		pbd->tcp_pseudo_csum =
3513 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3514 						   ip_hdr(skb)->daddr,
3515 						   0, IPPROTO_TCP, 0));
3516 	} else {
3517 		pbd->tcp_pseudo_csum =
3518 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3519 						 &ipv6_hdr(skb)->daddr,
3520 						 0, IPPROTO_TCP, 0));
3521 	}
3522 
3523 	pbd->global_data |=
3524 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3525 }
3526 
3527 /**
3528  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3529  *
3530  * @bp:			driver handle
3531  * @skb:		packet skb
3532  * @parsing_data:	data to be updated
3533  * @xmit_type:		xmit flags
3534  *
3535  * 57712/578xx related, when skb has encapsulation
3536  */
3537 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3538 				 u32 *parsing_data, u32 xmit_type)
3539 {
3540 	*parsing_data |=
3541 		((skb_inner_transport_offset(skb) >> 1) <<
3542 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3543 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3544 
3545 	if (xmit_type & XMIT_CSUM_TCP) {
3546 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3547 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3548 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3549 
3550 		return skb_inner_tcp_all_headers(skb);
3551 	}
3552 
3553 	/* We support checksum offload for TCP and UDP only.
3554 	 * No need to pass the UDP header length - it's a constant.
3555 	 */
3556 	return skb_inner_transport_offset(skb) + sizeof(struct udphdr);
3557 }
3558 
3559 /**
3560  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3561  *
3562  * @bp:			driver handle
3563  * @skb:		packet skb
3564  * @parsing_data:	data to be updated
3565  * @xmit_type:		xmit flags
3566  *
3567  * 57712/578xx related
3568  */
3569 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3570 				u32 *parsing_data, u32 xmit_type)
3571 {
3572 	*parsing_data |=
3573 		((skb_transport_offset(skb) >> 1) <<
3574 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3575 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3576 
3577 	if (xmit_type & XMIT_CSUM_TCP) {
3578 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3579 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3580 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3581 
3582 		return skb_tcp_all_headers(skb);
3583 	}
3584 	/* We support checksum offload for TCP and UDP only.
3585 	 * No need to pass the UDP header length - it's a constant.
3586 	 */
3587 	return skb_transport_offset(skb) + sizeof(struct udphdr);
3588 }
3589 
3590 /* set FW indication according to inner or outer protocols if tunneled */
3591 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3592 			       struct eth_tx_start_bd *tx_start_bd,
3593 			       u32 xmit_type)
3594 {
3595 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3596 
3597 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3598 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3599 
3600 	if (!(xmit_type & XMIT_CSUM_TCP))
3601 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3602 }
3603 
3604 /**
3605  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3606  *
3607  * @bp:		driver handle
3608  * @skb:	packet skb
3609  * @pbd:	parse BD to be updated
3610  * @xmit_type:	xmit flags
3611  */
3612 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3613 			     struct eth_tx_parse_bd_e1x *pbd,
3614 			     u32 xmit_type)
3615 {
3616 	u8 hlen = skb_network_offset(skb) >> 1;
3617 
3618 	/* for now NS flag is not used in Linux */
3619 	pbd->global_data =
3620 		cpu_to_le16(hlen |
3621 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3622 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3623 
3624 	pbd->ip_hlen_w = skb_network_header_len(skb) >> 1;
3625 
3626 	hlen += pbd->ip_hlen_w;
3627 
3628 	/* We support checksum offload for TCP and UDP only */
3629 	if (xmit_type & XMIT_CSUM_TCP)
3630 		hlen += tcp_hdrlen(skb) / 2;
3631 	else
3632 		hlen += sizeof(struct udphdr) / 2;
3633 
3634 	pbd->total_hlen_w = cpu_to_le16(hlen);
3635 	hlen = hlen*2;
3636 
3637 	if (xmit_type & XMIT_CSUM_TCP) {
3638 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3639 
3640 	} else {
3641 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3642 
3643 		DP(NETIF_MSG_TX_QUEUED,
3644 		   "hlen %d  fix %d  csum before fix %x\n",
3645 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3646 
3647 		/* HW bug: fixup the CSUM */
3648 		pbd->tcp_pseudo_csum =
3649 			bnx2x_csum_fix(skb_transport_header(skb),
3650 				       SKB_CS(skb), fix);
3651 
3652 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3653 		   pbd->tcp_pseudo_csum);
3654 	}
3655 
3656 	return hlen;
3657 }
3658 
3659 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3660 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3661 				      struct eth_tx_parse_2nd_bd *pbd2,
3662 				      u16 *global_data,
3663 				      u32 xmit_type)
3664 {
3665 	u16 hlen_w = 0;
3666 	u8 outerip_off, outerip_len = 0;
3667 
3668 	/* from outer IP to transport */
3669 	hlen_w = skb_inner_transport_offset(skb) >> 1;
3670 
3671 	/* transport len */
3672 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3673 
3674 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3675 
3676 	/* outer IP header info */
3677 	if (xmit_type & XMIT_CSUM_V4) {
3678 		struct iphdr *iph = ip_hdr(skb);
3679 		u32 csum = (__force u32)(~iph->check) -
3680 			   (__force u32)iph->tot_len -
3681 			   (__force u32)iph->frag_off;
3682 
3683 		outerip_len = iph->ihl << 1;
3684 
3685 		pbd2->fw_ip_csum_wo_len_flags_frag =
3686 			bswab16(csum_fold((__force __wsum)csum));
3687 	} else {
3688 		pbd2->fw_ip_hdr_to_payload_w =
3689 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3690 		pbd_e2->data.tunnel_data.flags |=
3691 			ETH_TUNNEL_DATA_IPV6_OUTER;
3692 	}
3693 
3694 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3695 
3696 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3697 
3698 	/* inner IP header info */
3699 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3700 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3701 
3702 		pbd_e2->data.tunnel_data.pseudo_csum =
3703 			bswab16(~csum_tcpudp_magic(
3704 					inner_ip_hdr(skb)->saddr,
3705 					inner_ip_hdr(skb)->daddr,
3706 					0, IPPROTO_TCP, 0));
3707 	} else {
3708 		pbd_e2->data.tunnel_data.pseudo_csum =
3709 			bswab16(~csum_ipv6_magic(
3710 					&inner_ipv6_hdr(skb)->saddr,
3711 					&inner_ipv6_hdr(skb)->daddr,
3712 					0, IPPROTO_TCP, 0));
3713 	}
3714 
3715 	outerip_off = (skb_network_offset(skb)) >> 1;
3716 
3717 	*global_data |=
3718 		outerip_off |
3719 		(outerip_len <<
3720 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3721 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3722 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3723 
3724 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3725 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3726 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3727 	}
3728 }
3729 
3730 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3731 					 u32 xmit_type)
3732 {
3733 	struct ipv6hdr *ipv6;
3734 
3735 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3736 		return;
3737 
3738 	if (xmit_type & XMIT_GSO_ENC_V6)
3739 		ipv6 = inner_ipv6_hdr(skb);
3740 	else /* XMIT_GSO_V6 */
3741 		ipv6 = ipv6_hdr(skb);
3742 
3743 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3744 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3745 }
3746 
3747 /* called with netif_tx_lock
3748  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3749  * netif_wake_queue()
3750  */
3751 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3752 {
3753 	struct bnx2x *bp = netdev_priv(dev);
3754 
3755 	struct netdev_queue *txq;
3756 	struct bnx2x_fp_txdata *txdata;
3757 	struct sw_tx_bd *tx_buf;
3758 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3759 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3760 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3761 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3762 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3763 	u32 pbd_e2_parsing_data = 0;
3764 	u16 pkt_prod, bd_prod;
3765 	int nbd, txq_index;
3766 	dma_addr_t mapping;
3767 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3768 	int i;
3769 	u8 hlen = 0;
3770 	__le16 pkt_size = 0;
3771 	struct ethhdr *eth;
3772 	u8 mac_type = UNICAST_ADDRESS;
3773 
3774 #ifdef BNX2X_STOP_ON_ERROR
3775 	if (unlikely(bp->panic))
3776 		return NETDEV_TX_BUSY;
3777 #endif
3778 
3779 	txq_index = skb_get_queue_mapping(skb);
3780 	txq = netdev_get_tx_queue(dev, txq_index);
3781 
3782 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3783 
3784 	txdata = &bp->bnx2x_txq[txq_index];
3785 
3786 	/* enable this debug print to view the transmission queue being used
3787 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3788 	   txq_index, fp_index, txdata_index); */
3789 
3790 	/* enable this debug print to view the transmission details
3791 	DP(NETIF_MSG_TX_QUEUED,
3792 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3793 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3794 
3795 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3796 			skb_shinfo(skb)->nr_frags +
3797 			BDS_PER_TX_PKT +
3798 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3799 		/* Handle special storage cases separately */
3800 		if (txdata->tx_ring_size == 0) {
3801 			struct bnx2x_eth_q_stats *q_stats =
3802 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3803 			q_stats->driver_filtered_tx_pkt++;
3804 			dev_kfree_skb(skb);
3805 			return NETDEV_TX_OK;
3806 		}
3807 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3808 		netif_tx_stop_queue(txq);
3809 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3810 
3811 		return NETDEV_TX_BUSY;
3812 	}
3813 
3814 	DP(NETIF_MSG_TX_QUEUED,
3815 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3816 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3817 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3818 	   skb->len);
3819 
3820 	eth = (struct ethhdr *)skb->data;
3821 
3822 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3823 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3824 		if (is_broadcast_ether_addr(eth->h_dest))
3825 			mac_type = BROADCAST_ADDRESS;
3826 		else
3827 			mac_type = MULTICAST_ADDRESS;
3828 	}
3829 
3830 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3831 	/* First, check if we need to linearize the skb (due to FW
3832 	   restrictions). No need to check fragmentation if page size > 8K
3833 	   (there will be no violation to FW restrictions) */
3834 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3835 		/* Statistics of linearization */
3836 		bp->lin_cnt++;
3837 		if (skb_linearize(skb) != 0) {
3838 			DP(NETIF_MSG_TX_QUEUED,
3839 			   "SKB linearization failed - silently dropping this SKB\n");
3840 			dev_kfree_skb_any(skb);
3841 			return NETDEV_TX_OK;
3842 		}
3843 	}
3844 #endif
3845 	/* Map skb linear data for DMA */
3846 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3847 				 skb_headlen(skb), DMA_TO_DEVICE);
3848 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3849 		DP(NETIF_MSG_TX_QUEUED,
3850 		   "SKB mapping failed - silently dropping this SKB\n");
3851 		dev_kfree_skb_any(skb);
3852 		return NETDEV_TX_OK;
3853 	}
3854 	/*
3855 	Please read carefully. First we use one BD which we mark as start,
3856 	then we have a parsing info BD (used for TSO or xsum),
3857 	and only then we have the rest of the TSO BDs.
3858 	(don't forget to mark the last one as last,
3859 	and to unmap only AFTER you write to the BD ...)
3860 	And above all, all pdb sizes are in words - NOT DWORDS!
3861 	*/
3862 
3863 	/* get current pkt produced now - advance it just before sending packet
3864 	 * since mapping of pages may fail and cause packet to be dropped
3865 	 */
3866 	pkt_prod = txdata->tx_pkt_prod;
3867 	bd_prod = TX_BD(txdata->tx_bd_prod);
3868 
3869 	/* get a tx_buf and first BD
3870 	 * tx_start_bd may be changed during SPLIT,
3871 	 * but first_bd will always stay first
3872 	 */
3873 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3874 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3875 	first_bd = tx_start_bd;
3876 
3877 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3878 
3879 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3880 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3881 			bp->eth_stats.ptp_skip_tx_ts++;
3882 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3883 		} else if (bp->ptp_tx_skb) {
3884 			bp->eth_stats.ptp_skip_tx_ts++;
3885 			netdev_err_once(bp->dev,
3886 					"Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3887 		} else {
3888 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3889 			/* schedule check for Tx timestamp */
3890 			bp->ptp_tx_skb = skb_get(skb);
3891 			bp->ptp_tx_start = jiffies;
3892 			schedule_work(&bp->ptp_task);
3893 		}
3894 	}
3895 
3896 	/* header nbd: indirectly zero other flags! */
3897 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3898 
3899 	/* remember the first BD of the packet */
3900 	tx_buf->first_bd = txdata->tx_bd_prod;
3901 	tx_buf->skb = skb;
3902 	tx_buf->flags = 0;
3903 
3904 	DP(NETIF_MSG_TX_QUEUED,
3905 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3906 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3907 
3908 	if (skb_vlan_tag_present(skb)) {
3909 		tx_start_bd->vlan_or_ethertype =
3910 		    cpu_to_le16(skb_vlan_tag_get(skb));
3911 		tx_start_bd->bd_flags.as_bitfield |=
3912 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3913 	} else {
3914 		/* when transmitting in a vf, start bd must hold the ethertype
3915 		 * for fw to enforce it
3916 		 */
3917 		u16 vlan_tci = 0;
3918 #ifndef BNX2X_STOP_ON_ERROR
3919 		if (IS_VF(bp)) {
3920 #endif
3921 			/* Still need to consider inband vlan for enforced */
3922 			if (__vlan_get_tag(skb, &vlan_tci)) {
3923 				tx_start_bd->vlan_or_ethertype =
3924 					cpu_to_le16(ntohs(eth->h_proto));
3925 			} else {
3926 				tx_start_bd->bd_flags.as_bitfield |=
3927 					(X_ETH_INBAND_VLAN <<
3928 					 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3929 				tx_start_bd->vlan_or_ethertype =
3930 					cpu_to_le16(vlan_tci);
3931 			}
3932 #ifndef BNX2X_STOP_ON_ERROR
3933 		} else {
3934 			/* used by FW for packet accounting */
3935 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3936 		}
3937 #endif
3938 	}
3939 
3940 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3941 
3942 	/* turn on parsing and get a BD */
3943 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3944 
3945 	if (xmit_type & XMIT_CSUM)
3946 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3947 
3948 	if (!CHIP_IS_E1x(bp)) {
3949 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3950 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3951 
3952 		if (xmit_type & XMIT_CSUM_ENC) {
3953 			u16 global_data = 0;
3954 
3955 			/* Set PBD in enc checksum offload case */
3956 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3957 						      &pbd_e2_parsing_data,
3958 						      xmit_type);
3959 
3960 			/* turn on 2nd parsing and get a BD */
3961 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3962 
3963 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3964 
3965 			memset(pbd2, 0, sizeof(*pbd2));
3966 
3967 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3968 				(skb_inner_network_header(skb) -
3969 				 skb->data) >> 1;
3970 
3971 			if (xmit_type & XMIT_GSO_ENC)
3972 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3973 							  &global_data,
3974 							  xmit_type);
3975 
3976 			pbd2->global_data = cpu_to_le16(global_data);
3977 
3978 			/* add addition parse BD indication to start BD */
3979 			SET_FLAG(tx_start_bd->general_data,
3980 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3981 			/* set encapsulation flag in start BD */
3982 			SET_FLAG(tx_start_bd->general_data,
3983 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3984 
3985 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3986 
3987 			nbd++;
3988 		} else if (xmit_type & XMIT_CSUM) {
3989 			/* Set PBD in checksum offload case w/o encapsulation */
3990 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3991 						     &pbd_e2_parsing_data,
3992 						     xmit_type);
3993 		}
3994 
3995 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3996 		/* Add the macs to the parsing BD if this is a vf or if
3997 		 * Tx Switching is enabled.
3998 		 */
3999 		if (IS_VF(bp)) {
4000 			/* override GRE parameters in BD */
4001 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4002 					      &pbd_e2->data.mac_addr.src_mid,
4003 					      &pbd_e2->data.mac_addr.src_lo,
4004 					      eth->h_source);
4005 
4006 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
4007 					      &pbd_e2->data.mac_addr.dst_mid,
4008 					      &pbd_e2->data.mac_addr.dst_lo,
4009 					      eth->h_dest);
4010 		} else {
4011 			if (bp->flags & TX_SWITCHING)
4012 				bnx2x_set_fw_mac_addr(
4013 						&pbd_e2->data.mac_addr.dst_hi,
4014 						&pbd_e2->data.mac_addr.dst_mid,
4015 						&pbd_e2->data.mac_addr.dst_lo,
4016 						eth->h_dest);
4017 #ifdef BNX2X_STOP_ON_ERROR
4018 			/* Enforce security is always set in Stop on Error -
4019 			 * source mac should be present in the parsing BD
4020 			 */
4021 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
4022 					      &pbd_e2->data.mac_addr.src_mid,
4023 					      &pbd_e2->data.mac_addr.src_lo,
4024 					      eth->h_source);
4025 #endif
4026 		}
4027 
4028 		SET_FLAG(pbd_e2_parsing_data,
4029 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
4030 	} else {
4031 		u16 global_data = 0;
4032 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
4033 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
4034 		/* Set PBD in checksum offload case */
4035 		if (xmit_type & XMIT_CSUM)
4036 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
4037 
4038 		SET_FLAG(global_data,
4039 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
4040 		pbd_e1x->global_data |= cpu_to_le16(global_data);
4041 	}
4042 
4043 	/* Setup the data pointer of the first BD of the packet */
4044 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4045 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4046 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4047 	pkt_size = tx_start_bd->nbytes;
4048 
4049 	DP(NETIF_MSG_TX_QUEUED,
4050 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4051 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4052 	   le16_to_cpu(tx_start_bd->nbytes),
4053 	   tx_start_bd->bd_flags.as_bitfield,
4054 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4055 
4056 	if (xmit_type & XMIT_GSO) {
4057 
4058 		DP(NETIF_MSG_TX_QUEUED,
4059 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4060 		   skb->len, hlen, skb_headlen(skb),
4061 		   skb_shinfo(skb)->gso_size);
4062 
4063 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4064 
4065 		if (unlikely(skb_headlen(skb) > hlen)) {
4066 			nbd++;
4067 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4068 						 &tx_start_bd, hlen,
4069 						 bd_prod);
4070 		}
4071 		if (!CHIP_IS_E1x(bp))
4072 			pbd_e2_parsing_data |=
4073 				(skb_shinfo(skb)->gso_size <<
4074 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4075 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4076 		else
4077 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4078 	}
4079 
4080 	/* Set the PBD's parsing_data field if not zero
4081 	 * (for the chips newer than 57711).
4082 	 */
4083 	if (pbd_e2_parsing_data)
4084 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4085 
4086 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4087 
4088 	/* Handle fragmented skb */
4089 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4090 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4091 
4092 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4093 					   skb_frag_size(frag), DMA_TO_DEVICE);
4094 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4095 			unsigned int pkts_compl = 0, bytes_compl = 0;
4096 
4097 			DP(NETIF_MSG_TX_QUEUED,
4098 			   "Unable to map page - dropping packet...\n");
4099 
4100 			/* we need unmap all buffers already mapped
4101 			 * for this SKB;
4102 			 * first_bd->nbd need to be properly updated
4103 			 * before call to bnx2x_free_tx_pkt
4104 			 */
4105 			first_bd->nbd = cpu_to_le16(nbd);
4106 			bnx2x_free_tx_pkt(bp, txdata,
4107 					  TX_BD(txdata->tx_pkt_prod),
4108 					  &pkts_compl, &bytes_compl);
4109 			return NETDEV_TX_OK;
4110 		}
4111 
4112 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4113 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4114 		if (total_pkt_bd == NULL)
4115 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4116 
4117 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4118 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4119 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4120 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4121 		nbd++;
4122 
4123 		DP(NETIF_MSG_TX_QUEUED,
4124 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4125 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4126 		   le16_to_cpu(tx_data_bd->nbytes));
4127 	}
4128 
4129 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4130 
4131 	/* update with actual num BDs */
4132 	first_bd->nbd = cpu_to_le16(nbd);
4133 
4134 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4135 
4136 	/* now send a tx doorbell, counting the next BD
4137 	 * if the packet contains or ends with it
4138 	 */
4139 	if (TX_BD_POFF(bd_prod) < nbd)
4140 		nbd++;
4141 
4142 	/* total_pkt_bytes should be set on the first data BD if
4143 	 * it's not an LSO packet and there is more than one
4144 	 * data BD. In this case pkt_size is limited by an MTU value.
4145 	 * However we prefer to set it for an LSO packet (while we don't
4146 	 * have to) in order to save some CPU cycles in a none-LSO
4147 	 * case, when we much more care about them.
4148 	 */
4149 	if (total_pkt_bd != NULL)
4150 		total_pkt_bd->total_pkt_bytes = pkt_size;
4151 
4152 	if (pbd_e1x)
4153 		DP(NETIF_MSG_TX_QUEUED,
4154 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4155 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4156 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4157 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4158 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4159 	if (pbd_e2)
4160 		DP(NETIF_MSG_TX_QUEUED,
4161 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4162 		   pbd_e2,
4163 		   pbd_e2->data.mac_addr.dst_hi,
4164 		   pbd_e2->data.mac_addr.dst_mid,
4165 		   pbd_e2->data.mac_addr.dst_lo,
4166 		   pbd_e2->data.mac_addr.src_hi,
4167 		   pbd_e2->data.mac_addr.src_mid,
4168 		   pbd_e2->data.mac_addr.src_lo,
4169 		   pbd_e2->parsing_data);
4170 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4171 
4172 	netdev_tx_sent_queue(txq, skb->len);
4173 
4174 	skb_tx_timestamp(skb);
4175 
4176 	txdata->tx_pkt_prod++;
4177 	/*
4178 	 * Make sure that the BD data is updated before updating the producer
4179 	 * since FW might read the BD right after the producer is updated.
4180 	 * This is only applicable for weak-ordered memory model archs such
4181 	 * as IA-64. The following barrier is also mandatory since FW will
4182 	 * assumes packets must have BDs.
4183 	 */
4184 	wmb();
4185 
4186 	txdata->tx_db.data.prod += nbd;
4187 	/* make sure descriptor update is observed by HW */
4188 	wmb();
4189 
4190 	DOORBELL_RELAXED(bp, txdata->cid, txdata->tx_db.raw);
4191 
4192 	txdata->tx_bd_prod += nbd;
4193 
4194 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4195 		netif_tx_stop_queue(txq);
4196 
4197 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4198 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4199 		 * fp->bd_tx_cons */
4200 		smp_mb();
4201 
4202 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4203 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4204 			netif_tx_wake_queue(txq);
4205 	}
4206 	txdata->tx_pkt++;
4207 
4208 	return NETDEV_TX_OK;
4209 }
4210 
4211 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4212 {
4213 	int mfw_vn = BP_FW_MB_IDX(bp);
4214 	u32 tmp;
4215 
4216 	/* If the shmem shouldn't affect configuration, reflect */
4217 	if (!IS_MF_BD(bp)) {
4218 		int i;
4219 
4220 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4221 			c2s_map[i] = i;
4222 		*c2s_default = 0;
4223 
4224 		return;
4225 	}
4226 
4227 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4228 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4229 	c2s_map[0] = tmp & 0xff;
4230 	c2s_map[1] = (tmp >> 8) & 0xff;
4231 	c2s_map[2] = (tmp >> 16) & 0xff;
4232 	c2s_map[3] = (tmp >> 24) & 0xff;
4233 
4234 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4235 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4236 	c2s_map[4] = tmp & 0xff;
4237 	c2s_map[5] = (tmp >> 8) & 0xff;
4238 	c2s_map[6] = (tmp >> 16) & 0xff;
4239 	c2s_map[7] = (tmp >> 24) & 0xff;
4240 
4241 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4242 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4243 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4244 }
4245 
4246 /**
4247  * bnx2x_setup_tc - routine to configure net_device for multi tc
4248  *
4249  * @dev: net device to configure
4250  * @num_tc: number of traffic classes to enable
4251  *
4252  * callback connected to the ndo_setup_tc function pointer
4253  */
4254 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4255 {
4256 	struct bnx2x *bp = netdev_priv(dev);
4257 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4258 	int cos, prio, count, offset;
4259 
4260 	/* setup tc must be called under rtnl lock */
4261 	ASSERT_RTNL();
4262 
4263 	/* no traffic classes requested. Aborting */
4264 	if (!num_tc) {
4265 		netdev_reset_tc(dev);
4266 		return 0;
4267 	}
4268 
4269 	/* requested to support too many traffic classes */
4270 	if (num_tc > bp->max_cos) {
4271 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4272 			  num_tc, bp->max_cos);
4273 		return -EINVAL;
4274 	}
4275 
4276 	/* declare amount of supported traffic classes */
4277 	if (netdev_set_num_tc(dev, num_tc)) {
4278 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4279 		return -EINVAL;
4280 	}
4281 
4282 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4283 
4284 	/* configure priority to traffic class mapping */
4285 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4286 		int outer_prio = c2s_map[prio];
4287 
4288 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4289 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4290 		   "mapping priority %d to tc %d\n",
4291 		   outer_prio, bp->prio_to_cos[outer_prio]);
4292 	}
4293 
4294 	/* Use this configuration to differentiate tc0 from other COSes
4295 	   This can be used for ets or pfc, and save the effort of setting
4296 	   up a multio class queue disc or negotiating DCBX with a switch
4297 	netdev_set_prio_tc_map(dev, 0, 0);
4298 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4299 	for (prio = 1; prio < 16; prio++) {
4300 		netdev_set_prio_tc_map(dev, prio, 1);
4301 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4302 	} */
4303 
4304 	/* configure traffic class to transmission queue mapping */
4305 	for (cos = 0; cos < bp->max_cos; cos++) {
4306 		count = BNX2X_NUM_ETH_QUEUES(bp);
4307 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4308 		netdev_set_tc_queue(dev, cos, count, offset);
4309 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4310 		   "mapping tc %d to offset %d count %d\n",
4311 		   cos, offset, count);
4312 	}
4313 
4314 	return 0;
4315 }
4316 
4317 int __bnx2x_setup_tc(struct net_device *dev, enum tc_setup_type type,
4318 		     void *type_data)
4319 {
4320 	struct tc_mqprio_qopt *mqprio = type_data;
4321 
4322 	if (type != TC_SETUP_QDISC_MQPRIO)
4323 		return -EOPNOTSUPP;
4324 
4325 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4326 
4327 	return bnx2x_setup_tc(dev, mqprio->num_tc);
4328 }
4329 
4330 /* called with rtnl_lock */
4331 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4332 {
4333 	struct sockaddr *addr = p;
4334 	struct bnx2x *bp = netdev_priv(dev);
4335 	int rc = 0;
4336 
4337 	if (!is_valid_ether_addr(addr->sa_data)) {
4338 		BNX2X_ERR("Requested MAC address is not valid\n");
4339 		return -EINVAL;
4340 	}
4341 
4342 	if (IS_MF_STORAGE_ONLY(bp)) {
4343 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4344 		return -EINVAL;
4345 	}
4346 
4347 	if (netif_running(dev))  {
4348 		rc = bnx2x_set_eth_mac(bp, false);
4349 		if (rc)
4350 			return rc;
4351 	}
4352 
4353 	eth_hw_addr_set(dev, addr->sa_data);
4354 
4355 	if (netif_running(dev))
4356 		rc = bnx2x_set_eth_mac(bp, true);
4357 
4358 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4359 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4360 
4361 	return rc;
4362 }
4363 
4364 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4365 {
4366 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4367 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4368 	u8 cos;
4369 
4370 	/* Common */
4371 
4372 	if (IS_FCOE_IDX(fp_index)) {
4373 		memset(sb, 0, sizeof(union host_hc_status_block));
4374 		fp->status_blk_mapping = 0;
4375 	} else {
4376 		/* status blocks */
4377 		if (!CHIP_IS_E1x(bp))
4378 			BNX2X_PCI_FREE(sb->e2_sb,
4379 				       bnx2x_fp(bp, fp_index,
4380 						status_blk_mapping),
4381 				       sizeof(struct host_hc_status_block_e2));
4382 		else
4383 			BNX2X_PCI_FREE(sb->e1x_sb,
4384 				       bnx2x_fp(bp, fp_index,
4385 						status_blk_mapping),
4386 				       sizeof(struct host_hc_status_block_e1x));
4387 	}
4388 
4389 	/* Rx */
4390 	if (!skip_rx_queue(bp, fp_index)) {
4391 		bnx2x_free_rx_bds(fp);
4392 
4393 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4394 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4395 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4396 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4397 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4398 
4399 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4400 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4401 			       sizeof(struct eth_fast_path_rx_cqe) *
4402 			       NUM_RCQ_BD);
4403 
4404 		/* SGE ring */
4405 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4406 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4407 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4408 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4409 	}
4410 
4411 	/* Tx */
4412 	if (!skip_tx_queue(bp, fp_index)) {
4413 		/* fastpath tx rings: tx_buf tx_desc */
4414 		for_each_cos_in_tx_queue(fp, cos) {
4415 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4416 
4417 			DP(NETIF_MSG_IFDOWN,
4418 			   "freeing tx memory of fp %d cos %d cid %d\n",
4419 			   fp_index, cos, txdata->cid);
4420 
4421 			BNX2X_FREE(txdata->tx_buf_ring);
4422 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4423 				txdata->tx_desc_mapping,
4424 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4425 		}
4426 	}
4427 	/* end of fastpath */
4428 }
4429 
4430 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4431 {
4432 	int i;
4433 	for_each_cnic_queue(bp, i)
4434 		bnx2x_free_fp_mem_at(bp, i);
4435 }
4436 
4437 void bnx2x_free_fp_mem(struct bnx2x *bp)
4438 {
4439 	int i;
4440 	for_each_eth_queue(bp, i)
4441 		bnx2x_free_fp_mem_at(bp, i);
4442 }
4443 
4444 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4445 {
4446 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4447 	if (!CHIP_IS_E1x(bp)) {
4448 		bnx2x_fp(bp, index, sb_index_values) =
4449 			(__le16 *)status_blk.e2_sb->sb.index_values;
4450 		bnx2x_fp(bp, index, sb_running_index) =
4451 			(__le16 *)status_blk.e2_sb->sb.running_index;
4452 	} else {
4453 		bnx2x_fp(bp, index, sb_index_values) =
4454 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4455 		bnx2x_fp(bp, index, sb_running_index) =
4456 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4457 	}
4458 }
4459 
4460 /* Returns the number of actually allocated BDs */
4461 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4462 			      int rx_ring_size)
4463 {
4464 	struct bnx2x *bp = fp->bp;
4465 	u16 ring_prod, cqe_ring_prod;
4466 	int i, failure_cnt = 0;
4467 
4468 	fp->rx_comp_cons = 0;
4469 	cqe_ring_prod = ring_prod = 0;
4470 
4471 	/* This routine is called only during fo init so
4472 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4473 	 */
4474 	for (i = 0; i < rx_ring_size; i++) {
4475 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4476 			failure_cnt++;
4477 			continue;
4478 		}
4479 		ring_prod = NEXT_RX_IDX(ring_prod);
4480 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4481 		WARN_ON(ring_prod <= (i - failure_cnt));
4482 	}
4483 
4484 	if (failure_cnt)
4485 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4486 			  i - failure_cnt, fp->index);
4487 
4488 	fp->rx_bd_prod = ring_prod;
4489 	/* Limit the CQE producer by the CQE ring size */
4490 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4491 			       cqe_ring_prod);
4492 
4493 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4494 
4495 	return i - failure_cnt;
4496 }
4497 
4498 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4499 {
4500 	int i;
4501 
4502 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4503 		struct eth_rx_cqe_next_page *nextpg;
4504 
4505 		nextpg = (struct eth_rx_cqe_next_page *)
4506 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4507 		nextpg->addr_hi =
4508 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4509 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4510 		nextpg->addr_lo =
4511 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4512 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4513 	}
4514 }
4515 
4516 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4517 {
4518 	union host_hc_status_block *sb;
4519 	struct bnx2x_fastpath *fp = &bp->fp[index];
4520 	int ring_size = 0;
4521 	u8 cos;
4522 	int rx_ring_size = 0;
4523 
4524 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4525 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4526 		bp->rx_ring_size = rx_ring_size;
4527 	} else if (!bp->rx_ring_size) {
4528 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4529 
4530 		if (CHIP_IS_E3(bp)) {
4531 			u32 cfg = SHMEM_RD(bp,
4532 					   dev_info.port_hw_config[BP_PORT(bp)].
4533 					   default_cfg);
4534 
4535 			/* Decrease ring size for 1G functions */
4536 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4537 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4538 				rx_ring_size /= 10;
4539 		}
4540 
4541 		/* allocate at least number of buffers required by FW */
4542 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4543 				     MIN_RX_SIZE_TPA, rx_ring_size);
4544 
4545 		bp->rx_ring_size = rx_ring_size;
4546 	} else /* if rx_ring_size specified - use it */
4547 		rx_ring_size = bp->rx_ring_size;
4548 
4549 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4550 
4551 	/* Common */
4552 	sb = &bnx2x_fp(bp, index, status_blk);
4553 
4554 	if (!IS_FCOE_IDX(index)) {
4555 		/* status blocks */
4556 		if (!CHIP_IS_E1x(bp)) {
4557 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4558 						    sizeof(struct host_hc_status_block_e2));
4559 			if (!sb->e2_sb)
4560 				goto alloc_mem_err;
4561 		} else {
4562 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4563 						     sizeof(struct host_hc_status_block_e1x));
4564 			if (!sb->e1x_sb)
4565 				goto alloc_mem_err;
4566 		}
4567 	}
4568 
4569 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4570 	 * set shortcuts for it.
4571 	 */
4572 	if (!IS_FCOE_IDX(index))
4573 		set_sb_shortcuts(bp, index);
4574 
4575 	/* Tx */
4576 	if (!skip_tx_queue(bp, index)) {
4577 		/* fastpath tx rings: tx_buf tx_desc */
4578 		for_each_cos_in_tx_queue(fp, cos) {
4579 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4580 
4581 			DP(NETIF_MSG_IFUP,
4582 			   "allocating tx memory of fp %d cos %d\n",
4583 			   index, cos);
4584 
4585 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4586 						      sizeof(struct sw_tx_bd),
4587 						      GFP_KERNEL);
4588 			if (!txdata->tx_buf_ring)
4589 				goto alloc_mem_err;
4590 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4591 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4592 			if (!txdata->tx_desc_ring)
4593 				goto alloc_mem_err;
4594 		}
4595 	}
4596 
4597 	/* Rx */
4598 	if (!skip_rx_queue(bp, index)) {
4599 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4600 		bnx2x_fp(bp, index, rx_buf_ring) =
4601 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4602 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4603 			goto alloc_mem_err;
4604 		bnx2x_fp(bp, index, rx_desc_ring) =
4605 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4606 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4607 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4608 			goto alloc_mem_err;
4609 
4610 		/* Seed all CQEs by 1s */
4611 		bnx2x_fp(bp, index, rx_comp_ring) =
4612 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4613 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4614 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4615 			goto alloc_mem_err;
4616 
4617 		/* SGE ring */
4618 		bnx2x_fp(bp, index, rx_page_ring) =
4619 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4620 				GFP_KERNEL);
4621 		if (!bnx2x_fp(bp, index, rx_page_ring))
4622 			goto alloc_mem_err;
4623 		bnx2x_fp(bp, index, rx_sge_ring) =
4624 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4625 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4626 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4627 			goto alloc_mem_err;
4628 		/* RX BD ring */
4629 		bnx2x_set_next_page_rx_bd(fp);
4630 
4631 		/* CQ ring */
4632 		bnx2x_set_next_page_rx_cq(fp);
4633 
4634 		/* BDs */
4635 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4636 		if (ring_size < rx_ring_size)
4637 			goto alloc_mem_err;
4638 	}
4639 
4640 	return 0;
4641 
4642 /* handles low memory cases */
4643 alloc_mem_err:
4644 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4645 						index, ring_size);
4646 	/* FW will drop all packets if queue is not big enough,
4647 	 * In these cases we disable the queue
4648 	 * Min size is different for OOO, TPA and non-TPA queues
4649 	 */
4650 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4651 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4652 			/* release memory allocated for this queue */
4653 			bnx2x_free_fp_mem_at(bp, index);
4654 			return -ENOMEM;
4655 	}
4656 	return 0;
4657 }
4658 
4659 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4660 {
4661 	if (!NO_FCOE(bp))
4662 		/* FCoE */
4663 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4664 			/* we will fail load process instead of mark
4665 			 * NO_FCOE_FLAG
4666 			 */
4667 			return -ENOMEM;
4668 
4669 	return 0;
4670 }
4671 
4672 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4673 {
4674 	int i;
4675 
4676 	/* 1. Allocate FP for leading - fatal if error
4677 	 * 2. Allocate RSS - fix number of queues if error
4678 	 */
4679 
4680 	/* leading */
4681 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4682 		return -ENOMEM;
4683 
4684 	/* RSS */
4685 	for_each_nondefault_eth_queue(bp, i)
4686 		if (bnx2x_alloc_fp_mem_at(bp, i))
4687 			break;
4688 
4689 	/* handle memory failures */
4690 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4691 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4692 
4693 		WARN_ON(delta < 0);
4694 		bnx2x_shrink_eth_fp(bp, delta);
4695 		if (CNIC_SUPPORT(bp))
4696 			/* move non eth FPs next to last eth FP
4697 			 * must be done in that order
4698 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4699 			 */
4700 
4701 			/* move FCoE fp even NO_FCOE_FLAG is on */
4702 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4703 		bp->num_ethernet_queues -= delta;
4704 		bp->num_queues = bp->num_ethernet_queues +
4705 				 bp->num_cnic_queues;
4706 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4707 			  bp->num_queues + delta, bp->num_queues);
4708 	}
4709 
4710 	return 0;
4711 }
4712 
4713 void bnx2x_free_mem_bp(struct bnx2x *bp)
4714 {
4715 	int i;
4716 
4717 	for (i = 0; i < bp->fp_array_size; i++)
4718 		kfree(bp->fp[i].tpa_info);
4719 	kfree(bp->fp);
4720 	kfree(bp->sp_objs);
4721 	kfree(bp->fp_stats);
4722 	kfree(bp->bnx2x_txq);
4723 	kfree(bp->msix_table);
4724 	kfree(bp->ilt);
4725 }
4726 
4727 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4728 {
4729 	struct bnx2x_fastpath *fp;
4730 	struct msix_entry *tbl;
4731 	struct bnx2x_ilt *ilt;
4732 	int msix_table_size = 0;
4733 	int fp_array_size, txq_array_size;
4734 	int i;
4735 
4736 	/*
4737 	 * The biggest MSI-X table we might need is as a maximum number of fast
4738 	 * path IGU SBs plus default SB (for PF only).
4739 	 */
4740 	msix_table_size = bp->igu_sb_cnt;
4741 	if (IS_PF(bp))
4742 		msix_table_size++;
4743 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4744 
4745 	/* fp array: RSS plus CNIC related L2 queues */
4746 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4747 	bp->fp_array_size = fp_array_size;
4748 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4749 
4750 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4751 	if (!fp)
4752 		goto alloc_err;
4753 	for (i = 0; i < bp->fp_array_size; i++) {
4754 		fp[i].tpa_info =
4755 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4756 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4757 		if (!(fp[i].tpa_info))
4758 			goto alloc_err;
4759 	}
4760 
4761 	bp->fp = fp;
4762 
4763 	/* allocate sp objs */
4764 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4765 			      GFP_KERNEL);
4766 	if (!bp->sp_objs)
4767 		goto alloc_err;
4768 
4769 	/* allocate fp_stats */
4770 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4771 			       GFP_KERNEL);
4772 	if (!bp->fp_stats)
4773 		goto alloc_err;
4774 
4775 	/* Allocate memory for the transmission queues array */
4776 	txq_array_size =
4777 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4778 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4779 
4780 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4781 				GFP_KERNEL);
4782 	if (!bp->bnx2x_txq)
4783 		goto alloc_err;
4784 
4785 	/* msix table */
4786 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4787 	if (!tbl)
4788 		goto alloc_err;
4789 	bp->msix_table = tbl;
4790 
4791 	/* ilt */
4792 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4793 	if (!ilt)
4794 		goto alloc_err;
4795 	bp->ilt = ilt;
4796 
4797 	return 0;
4798 alloc_err:
4799 	bnx2x_free_mem_bp(bp);
4800 	return -ENOMEM;
4801 }
4802 
4803 int bnx2x_reload_if_running(struct net_device *dev)
4804 {
4805 	struct bnx2x *bp = netdev_priv(dev);
4806 
4807 	if (unlikely(!netif_running(dev)))
4808 		return 0;
4809 
4810 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4811 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4812 }
4813 
4814 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4815 {
4816 	u32 sel_phy_idx = 0;
4817 	if (bp->link_params.num_phys <= 1)
4818 		return INT_PHY;
4819 
4820 	if (bp->link_vars.link_up) {
4821 		sel_phy_idx = EXT_PHY1;
4822 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4823 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4824 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4825 			sel_phy_idx = EXT_PHY2;
4826 	} else {
4827 
4828 		switch (bnx2x_phy_selection(&bp->link_params)) {
4829 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4830 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4831 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4832 		       sel_phy_idx = EXT_PHY1;
4833 		       break;
4834 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4835 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4836 		       sel_phy_idx = EXT_PHY2;
4837 		       break;
4838 		}
4839 	}
4840 
4841 	return sel_phy_idx;
4842 }
4843 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4844 {
4845 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4846 	/*
4847 	 * The selected activated PHY is always after swapping (in case PHY
4848 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4849 	 * the configuration
4850 	 */
4851 
4852 	if (bp->link_params.multi_phy_config &
4853 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4854 		if (sel_phy_idx == EXT_PHY1)
4855 			sel_phy_idx = EXT_PHY2;
4856 		else if (sel_phy_idx == EXT_PHY2)
4857 			sel_phy_idx = EXT_PHY1;
4858 	}
4859 	return LINK_CONFIG_IDX(sel_phy_idx);
4860 }
4861 
4862 #ifdef NETDEV_FCOE_WWNN
4863 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4864 {
4865 	struct bnx2x *bp = netdev_priv(dev);
4866 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4867 
4868 	switch (type) {
4869 	case NETDEV_FCOE_WWNN:
4870 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4871 				cp->fcoe_wwn_node_name_lo);
4872 		break;
4873 	case NETDEV_FCOE_WWPN:
4874 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4875 				cp->fcoe_wwn_port_name_lo);
4876 		break;
4877 	default:
4878 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4879 		return -EINVAL;
4880 	}
4881 
4882 	return 0;
4883 }
4884 #endif
4885 
4886 /* called with rtnl_lock */
4887 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4888 {
4889 	struct bnx2x *bp = netdev_priv(dev);
4890 
4891 	if (pci_num_vf(bp->pdev)) {
4892 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4893 		return -EPERM;
4894 	}
4895 
4896 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4897 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4898 		return -EAGAIN;
4899 	}
4900 
4901 	/* This does not race with packet allocation
4902 	 * because the actual alloc size is
4903 	 * only updated as part of load
4904 	 */
4905 	WRITE_ONCE(dev->mtu, new_mtu);
4906 
4907 	if (!bnx2x_mtu_allows_gro(new_mtu))
4908 		dev->features &= ~NETIF_F_GRO_HW;
4909 
4910 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4911 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4912 
4913 	return bnx2x_reload_if_running(dev);
4914 }
4915 
4916 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4917 				     netdev_features_t features)
4918 {
4919 	struct bnx2x *bp = netdev_priv(dev);
4920 
4921 	if (pci_num_vf(bp->pdev)) {
4922 		netdev_features_t changed = dev->features ^ features;
4923 
4924 		/* Revert the requested changes in features if they
4925 		 * would require internal reload of PF in bnx2x_set_features().
4926 		 */
4927 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4928 			features &= ~NETIF_F_RXCSUM;
4929 			features |= dev->features & NETIF_F_RXCSUM;
4930 		}
4931 
4932 		if (changed & NETIF_F_LOOPBACK) {
4933 			features &= ~NETIF_F_LOOPBACK;
4934 			features |= dev->features & NETIF_F_LOOPBACK;
4935 		}
4936 	}
4937 
4938 	/* TPA requires Rx CSUM offloading */
4939 	if (!(features & NETIF_F_RXCSUM))
4940 		features &= ~NETIF_F_LRO;
4941 
4942 	if (!(features & NETIF_F_GRO) || !bnx2x_mtu_allows_gro(dev->mtu))
4943 		features &= ~NETIF_F_GRO_HW;
4944 	if (features & NETIF_F_GRO_HW)
4945 		features &= ~NETIF_F_LRO;
4946 
4947 	return features;
4948 }
4949 
4950 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4951 {
4952 	struct bnx2x *bp = netdev_priv(dev);
4953 	netdev_features_t changes = features ^ dev->features;
4954 	bool bnx2x_reload = false;
4955 	int rc;
4956 
4957 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4958 	if (!pci_num_vf(bp->pdev)) {
4959 		if (features & NETIF_F_LOOPBACK) {
4960 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4961 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4962 				bnx2x_reload = true;
4963 			}
4964 		} else {
4965 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4966 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4967 				bnx2x_reload = true;
4968 			}
4969 		}
4970 	}
4971 
4972 	/* Don't care about GRO changes */
4973 	changes &= ~NETIF_F_GRO;
4974 
4975 	if (changes)
4976 		bnx2x_reload = true;
4977 
4978 	if (bnx2x_reload) {
4979 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4980 			dev->features = features;
4981 			rc = bnx2x_reload_if_running(dev);
4982 			return rc ? rc : 1;
4983 		}
4984 		/* else: bnx2x_nic_load() will be called at end of recovery */
4985 	}
4986 
4987 	return 0;
4988 }
4989 
4990 void bnx2x_tx_timeout(struct net_device *dev, unsigned int txqueue)
4991 {
4992 	struct bnx2x *bp = netdev_priv(dev);
4993 
4994 	/* We want the information of the dump logged,
4995 	 * but calling bnx2x_panic() would kill all chances of recovery.
4996 	 */
4997 	if (!bp->panic)
4998 #ifndef BNX2X_STOP_ON_ERROR
4999 		bnx2x_panic_dump(bp, false);
5000 #else
5001 		bnx2x_panic();
5002 #endif
5003 
5004 	/* This allows the netif to be shutdown gracefully before resetting */
5005 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
5006 }
5007 
5008 static int __maybe_unused bnx2x_suspend(struct device *dev_d)
5009 {
5010 	struct pci_dev *pdev = to_pci_dev(dev_d);
5011 	struct net_device *dev = pci_get_drvdata(pdev);
5012 	struct bnx2x *bp;
5013 
5014 	if (!dev) {
5015 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5016 		return -ENODEV;
5017 	}
5018 	bp = netdev_priv(dev);
5019 
5020 	rtnl_lock();
5021 
5022 	if (!netif_running(dev)) {
5023 		rtnl_unlock();
5024 		return 0;
5025 	}
5026 
5027 	netif_device_detach(dev);
5028 
5029 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
5030 
5031 	rtnl_unlock();
5032 
5033 	return 0;
5034 }
5035 
5036 static int __maybe_unused bnx2x_resume(struct device *dev_d)
5037 {
5038 	struct pci_dev *pdev = to_pci_dev(dev_d);
5039 	struct net_device *dev = pci_get_drvdata(pdev);
5040 	struct bnx2x *bp;
5041 	int rc;
5042 
5043 	if (!dev) {
5044 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
5045 		return -ENODEV;
5046 	}
5047 	bp = netdev_priv(dev);
5048 
5049 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5050 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5051 		return -EAGAIN;
5052 	}
5053 
5054 	rtnl_lock();
5055 
5056 	if (!netif_running(dev)) {
5057 		rtnl_unlock();
5058 		return 0;
5059 	}
5060 
5061 	netif_device_attach(dev);
5062 
5063 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5064 
5065 	rtnl_unlock();
5066 
5067 	return rc;
5068 }
5069 
5070 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops, bnx2x_suspend, bnx2x_resume);
5071 
5072 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5073 			      u32 cid)
5074 {
5075 	if (!cxt) {
5076 		BNX2X_ERR("bad context pointer %p\n", cxt);
5077 		return;
5078 	}
5079 
5080 	/* ustorm cxt validation */
5081 	cxt->ustorm_ag_context.cdu_usage =
5082 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5083 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5084 	/* xcontext validation */
5085 	cxt->xstorm_ag_context.cdu_reserved =
5086 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5087 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5088 }
5089 
5090 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5091 				    u8 fw_sb_id, u8 sb_index,
5092 				    u8 ticks)
5093 {
5094 	u32 addr = BAR_CSTRORM_INTMEM +
5095 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5096 	REG_WR8(bp, addr, ticks);
5097 	DP(NETIF_MSG_IFUP,
5098 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5099 	   port, fw_sb_id, sb_index, ticks);
5100 }
5101 
5102 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5103 				    u16 fw_sb_id, u8 sb_index,
5104 				    u8 disable)
5105 {
5106 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5107 	u32 addr = BAR_CSTRORM_INTMEM +
5108 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5109 	u8 flags = REG_RD8(bp, addr);
5110 	/* clear and set */
5111 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5112 	flags |= enable_flag;
5113 	REG_WR8(bp, addr, flags);
5114 	DP(NETIF_MSG_IFUP,
5115 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5116 	   port, fw_sb_id, sb_index, disable);
5117 }
5118 
5119 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5120 				    u8 sb_index, u8 disable, u16 usec)
5121 {
5122 	int port = BP_PORT(bp);
5123 	u8 ticks = usec / BNX2X_BTR;
5124 
5125 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5126 
5127 	disable = disable ? 1 : (usec ? 0 : 1);
5128 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5129 }
5130 
5131 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5132 			    u32 verbose)
5133 {
5134 	smp_mb__before_atomic();
5135 	set_bit(flag, &bp->sp_rtnl_state);
5136 	smp_mb__after_atomic();
5137 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5138 	   flag);
5139 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5140 }
5141