xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x.h (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /* bnx2x.h: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  */
13 
14 #ifndef BNX2X_H
15 #define BNX2X_H
16 
17 #include <linux/pci.h>
18 #include <linux/netdevice.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/types.h>
21 #include <linux/pci_regs.h>
22 
23 #include <linux/ptp_clock_kernel.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/timecounter.h>
26 
27 /* compilation time flags */
28 
29 /* define this to make the driver freeze on error to allow getting debug info
30  * (you will need to reboot afterwards) */
31 /* #define BNX2X_STOP_ON_ERROR */
32 
33 #define DRV_MODULE_VERSION      "1.710.51-0"
34 #define DRV_MODULE_RELDATE      "2014/02/10"
35 #define BNX2X_BC_VER            0x040200
36 
37 #if defined(CONFIG_DCB)
38 #define BCM_DCBNL
39 #endif
40 
41 #include "bnx2x_hsi.h"
42 
43 #include "../cnic_if.h"
44 
45 #define BNX2X_MIN_MSIX_VEC_CNT(bp)		((bp)->min_msix_vec_cnt)
46 
47 #include <linux/mdio.h>
48 
49 #include "bnx2x_reg.h"
50 #include "bnx2x_fw_defs.h"
51 #include "bnx2x_mfw_req.h"
52 #include "bnx2x_link.h"
53 #include "bnx2x_sp.h"
54 #include "bnx2x_dcb.h"
55 #include "bnx2x_stats.h"
56 #include "bnx2x_vfpf.h"
57 
58 enum bnx2x_int_mode {
59 	BNX2X_INT_MODE_MSIX,
60 	BNX2X_INT_MODE_INTX,
61 	BNX2X_INT_MODE_MSI
62 };
63 
64 /* error/debug prints */
65 
66 #define DRV_MODULE_NAME		"bnx2x"
67 
68 /* for messages that are currently off */
69 #define BNX2X_MSG_OFF			0x0
70 #define BNX2X_MSG_MCP			0x0010000 /* was: NETIF_MSG_HW */
71 #define BNX2X_MSG_STATS			0x0020000 /* was: NETIF_MSG_TIMER */
72 #define BNX2X_MSG_NVM			0x0040000 /* was: NETIF_MSG_HW */
73 #define BNX2X_MSG_DMAE			0x0080000 /* was: NETIF_MSG_HW */
74 #define BNX2X_MSG_SP			0x0100000 /* was: NETIF_MSG_INTR */
75 #define BNX2X_MSG_FP			0x0200000 /* was: NETIF_MSG_INTR */
76 #define BNX2X_MSG_IOV			0x0800000
77 #define BNX2X_MSG_PTP			0x1000000
78 #define BNX2X_MSG_IDLE			0x2000000 /* used for idle check*/
79 #define BNX2X_MSG_ETHTOOL		0x4000000
80 #define BNX2X_MSG_DCB			0x8000000
81 
82 /* regular debug print */
83 #define DP_INNER(fmt, ...)					\
84 	pr_notice("[%s:%d(%s)]" fmt,				\
85 		  __func__, __LINE__,				\
86 		  bp->dev ? (bp->dev->name) : "?",		\
87 		  ##__VA_ARGS__);
88 
89 #define DP(__mask, fmt, ...)					\
90 do {								\
91 	if (unlikely(bp->msg_enable & (__mask)))		\
92 		DP_INNER(fmt, ##__VA_ARGS__);			\
93 } while (0)
94 
95 #define DP_AND(__mask, fmt, ...)				\
96 do {								\
97 	if (unlikely((bp->msg_enable & (__mask)) == __mask))	\
98 		DP_INNER(fmt, ##__VA_ARGS__);			\
99 } while (0)
100 
101 #define DP_CONT(__mask, fmt, ...)				\
102 do {								\
103 	if (unlikely(bp->msg_enable & (__mask)))		\
104 		pr_cont(fmt, ##__VA_ARGS__);			\
105 } while (0)
106 
107 /* errors debug print */
108 #define BNX2X_DBG_ERR(fmt, ...)					\
109 do {								\
110 	if (unlikely(netif_msg_probe(bp)))			\
111 		pr_err("[%s:%d(%s)]" fmt,			\
112 		       __func__, __LINE__,			\
113 		       bp->dev ? (bp->dev->name) : "?",		\
114 		       ##__VA_ARGS__);				\
115 } while (0)
116 
117 /* for errors (never masked) */
118 #define BNX2X_ERR(fmt, ...)					\
119 do {								\
120 	pr_err("[%s:%d(%s)]" fmt,				\
121 	       __func__, __LINE__,				\
122 	       bp->dev ? (bp->dev->name) : "?",			\
123 	       ##__VA_ARGS__);					\
124 } while (0)
125 
126 #define BNX2X_ERROR(fmt, ...)					\
127 	pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
128 
129 /* before we have a dev->name use dev_info() */
130 #define BNX2X_DEV_INFO(fmt, ...)				 \
131 do {								 \
132 	if (unlikely(netif_msg_probe(bp)))			 \
133 		dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__);	 \
134 } while (0)
135 
136 /* Error handling */
137 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
138 #ifdef BNX2X_STOP_ON_ERROR
139 #define bnx2x_panic()				\
140 do {						\
141 	bp->panic = 1;				\
142 	BNX2X_ERR("driver assert\n");		\
143 	bnx2x_panic_dump(bp, true);		\
144 } while (0)
145 #else
146 #define bnx2x_panic()				\
147 do {						\
148 	bp->panic = 1;				\
149 	BNX2X_ERR("driver assert\n");		\
150 	bnx2x_panic_dump(bp, false);		\
151 } while (0)
152 #endif
153 
154 #define bnx2x_mc_addr(ha)      ((ha)->addr)
155 #define bnx2x_uc_addr(ha)      ((ha)->addr)
156 
157 #define U64_LO(x)			((u32)(((u64)(x)) & 0xffffffff))
158 #define U64_HI(x)			((u32)(((u64)(x)) >> 32))
159 #define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
160 
161 #define REG_ADDR(bp, offset)		((bp->regview) + (offset))
162 
163 #define REG_RD(bp, offset)		readl(REG_ADDR(bp, offset))
164 #define REG_RD8(bp, offset)		readb(REG_ADDR(bp, offset))
165 #define REG_RD16(bp, offset)		readw(REG_ADDR(bp, offset))
166 
167 #define REG_WR(bp, offset, val)		writel((u32)val, REG_ADDR(bp, offset))
168 #define REG_WR8(bp, offset, val)	writeb((u8)val, REG_ADDR(bp, offset))
169 #define REG_WR16(bp, offset, val)	writew((u16)val, REG_ADDR(bp, offset))
170 
171 #define REG_RD_IND(bp, offset)		bnx2x_reg_rd_ind(bp, offset)
172 #define REG_WR_IND(bp, offset, val)	bnx2x_reg_wr_ind(bp, offset, val)
173 
174 #define REG_RD_DMAE(bp, offset, valp, len32) \
175 	do { \
176 		bnx2x_read_dmae(bp, offset, len32);\
177 		memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
178 	} while (0)
179 
180 #define REG_WR_DMAE(bp, offset, valp, len32) \
181 	do { \
182 		memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
183 		bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
184 				 offset, len32); \
185 	} while (0)
186 
187 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
188 	REG_WR_DMAE(bp, offset, valp, len32)
189 
190 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
191 	do { \
192 		memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
193 		bnx2x_write_big_buf_wb(bp, addr, len32); \
194 	} while (0)
195 
196 #define SHMEM_ADDR(bp, field)		(bp->common.shmem_base + \
197 					 offsetof(struct shmem_region, field))
198 #define SHMEM_RD(bp, field)		REG_RD(bp, SHMEM_ADDR(bp, field))
199 #define SHMEM_WR(bp, field, val)	REG_WR(bp, SHMEM_ADDR(bp, field), val)
200 
201 #define SHMEM2_ADDR(bp, field)		(bp->common.shmem2_base + \
202 					 offsetof(struct shmem2_region, field))
203 #define SHMEM2_RD(bp, field)		REG_RD(bp, SHMEM2_ADDR(bp, field))
204 #define SHMEM2_WR(bp, field, val)	REG_WR(bp, SHMEM2_ADDR(bp, field), val)
205 #define MF_CFG_ADDR(bp, field)		(bp->common.mf_cfg_base + \
206 					 offsetof(struct mf_cfg, field))
207 #define MF2_CFG_ADDR(bp, field)		(bp->common.mf2_cfg_base + \
208 					 offsetof(struct mf2_cfg, field))
209 
210 #define MF_CFG_RD(bp, field)		REG_RD(bp, MF_CFG_ADDR(bp, field))
211 #define MF_CFG_WR(bp, field, val)	REG_WR(bp,\
212 					       MF_CFG_ADDR(bp, field), (val))
213 #define MF2_CFG_RD(bp, field)		REG_RD(bp, MF2_CFG_ADDR(bp, field))
214 
215 #define SHMEM2_HAS(bp, field)		((bp)->common.shmem2_base &&	\
216 					 (SHMEM2_RD((bp), size) >	\
217 					 offsetof(struct shmem2_region, field)))
218 
219 #define EMAC_RD(bp, reg)		REG_RD(bp, emac_base + reg)
220 #define EMAC_WR(bp, reg, val)		REG_WR(bp, emac_base + reg, val)
221 
222 /* SP SB indices */
223 
224 /* General SP events - stats query, cfc delete, etc  */
225 #define HC_SP_INDEX_ETH_DEF_CONS		3
226 
227 /* EQ completions */
228 #define HC_SP_INDEX_EQ_CONS			7
229 
230 /* FCoE L2 connection completions */
231 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS		6
232 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS		4
233 /* iSCSI L2 */
234 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS		5
235 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS	1
236 
237 /* Special clients parameters */
238 
239 /* SB indices */
240 /* FCoE L2 */
241 #define BNX2X_FCOE_L2_RX_INDEX \
242 	(&bp->def_status_blk->sp_sb.\
243 	index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
244 
245 #define BNX2X_FCOE_L2_TX_INDEX \
246 	(&bp->def_status_blk->sp_sb.\
247 	index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
248 
249 /**
250  *  CIDs and CLIDs:
251  *  CLIDs below is a CLID for func 0, then the CLID for other
252  *  functions will be calculated by the formula:
253  *
254  *  FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
255  *
256  */
257 enum {
258 	BNX2X_ISCSI_ETH_CL_ID_IDX,
259 	BNX2X_FCOE_ETH_CL_ID_IDX,
260 	BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
261 };
262 
263 /* use a value high enough to be above all the PFs, which has least significant
264  * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
265  * calculate doorbell address according to old doorbell configuration scheme
266  * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
267  * We must avoid coming up with cid 8 for iscsi since according to this method
268  * the designated UIO cid will come out 0 and it has a special handling for that
269  * case which doesn't suit us. Therefore will will cieling to closes cid which
270  * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
271  */
272 
273 #define BNX2X_1st_NON_L2_ETH_CID(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
274 					 (bp)->max_cos)
275 /* amount of cids traversed by UIO's DPM addition to doorbell */
276 #define UIO_DPM				8
277 /* roundup to DPM offset */
278 #define UIO_ROUNDUP(bp)			(roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
279 					 UIO_DPM))
280 /* offset to nearest value which has lsb nibble matching DPM */
281 #define UIO_CID_OFFSET(bp)		((UIO_ROUNDUP(bp) + UIO_DPM) % \
282 					 (UIO_DPM * 2))
283 /* add offset to rounded-up cid to get a value which could be used with UIO */
284 #define UIO_DPM_ALIGN(bp)		(UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
285 /* but wait - avoid UIO special case for cid 0 */
286 #define UIO_DPM_CID0_OFFSET(bp)		((UIO_DPM * 2) * \
287 					 (UIO_DPM_ALIGN(bp) == UIO_DPM))
288 /* Properly DPM aligned CID dajusted to cid 0 secal case */
289 #define BNX2X_CNIC_START_ETH_CID(bp)	(UIO_DPM_ALIGN(bp) + \
290 					 (UIO_DPM_CID0_OFFSET(bp)))
291 /* how many cids were wasted  - need this value for cid allocation */
292 #define UIO_CID_PAD(bp)			(BNX2X_CNIC_START_ETH_CID(bp) - \
293 					 BNX2X_1st_NON_L2_ETH_CID(bp))
294 	/* iSCSI L2 */
295 #define	BNX2X_ISCSI_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp))
296 	/* FCoE L2 */
297 #define	BNX2X_FCOE_ETH_CID(bp)		(BNX2X_CNIC_START_ETH_CID(bp) + 1)
298 
299 #define CNIC_SUPPORT(bp)		((bp)->cnic_support)
300 #define CNIC_ENABLED(bp)		((bp)->cnic_enabled)
301 #define CNIC_LOADED(bp)			((bp)->cnic_loaded)
302 #define FCOE_INIT(bp)			((bp)->fcoe_init)
303 
304 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
305 	AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
306 
307 #define SM_RX_ID			0
308 #define SM_TX_ID			1
309 
310 /* defines for multiple tx priority indices */
311 #define FIRST_TX_ONLY_COS_INDEX		1
312 #define FIRST_TX_COS_INDEX		0
313 
314 /* rules for calculating the cids of tx-only connections */
315 #define CID_TO_FP(cid, bp)		((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
316 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
317 				(cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
318 
319 /* fp index inside class of service range */
320 #define FP_COS_TO_TXQ(fp, cos, bp) \
321 			((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
322 
323 /* Indexes for transmission queues array:
324  * txdata for RSS i CoS j is at location i + (j * num of RSS)
325  * txdata for FCoE (if exist) is at location max cos * num of RSS
326  * txdata for FWD (if exist) is one location after FCoE
327  * txdata for OOO (if exist) is one location after FWD
328  */
329 enum {
330 	FCOE_TXQ_IDX_OFFSET,
331 	FWD_TXQ_IDX_OFFSET,
332 	OOO_TXQ_IDX_OFFSET,
333 };
334 #define MAX_ETH_TXQ_IDX(bp)	(BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
335 #define FCOE_TXQ_IDX(bp)	(MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
336 
337 /* fast path */
338 /*
339  * This driver uses new build_skb() API :
340  * RX ring buffer contains pointer to kmalloc() data only,
341  * skb are built only after Hardware filled the frame.
342  */
343 struct sw_rx_bd {
344 	u8		*data;
345 	DEFINE_DMA_UNMAP_ADDR(mapping);
346 };
347 
348 struct sw_tx_bd {
349 	struct sk_buff	*skb;
350 	u16		first_bd;
351 	u8		flags;
352 /* Set on the first BD descriptor when there is a split BD */
353 #define BNX2X_TSO_SPLIT_BD		(1<<0)
354 #define BNX2X_HAS_SECOND_PBD		(1<<1)
355 };
356 
357 struct sw_rx_page {
358 	struct page	*page;
359 	DEFINE_DMA_UNMAP_ADDR(mapping);
360 };
361 
362 union db_prod {
363 	struct doorbell_set_prod data;
364 	u32		raw;
365 };
366 
367 /* dropless fc FW/HW related params */
368 #define BRB_SIZE(bp)		(CHIP_IS_E3(bp) ? 1024 : 512)
369 #define MAX_AGG_QS(bp)		(CHIP_IS_E1(bp) ? \
370 					ETH_MAX_AGGREGATION_QUEUES_E1 :\
371 					ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
372 #define FW_DROP_LEVEL(bp)	(3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
373 #define FW_PREFETCH_CNT		16
374 #define DROPLESS_FC_HEADROOM	100
375 
376 /* MC hsi */
377 #define BCM_PAGE_SHIFT		12
378 #define BCM_PAGE_SIZE		(1 << BCM_PAGE_SHIFT)
379 #define BCM_PAGE_MASK		(~(BCM_PAGE_SIZE - 1))
380 #define BCM_PAGE_ALIGN(addr)	(((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
381 
382 #define PAGES_PER_SGE_SHIFT	0
383 #define PAGES_PER_SGE		(1 << PAGES_PER_SGE_SHIFT)
384 #define SGE_PAGE_SIZE		PAGE_SIZE
385 #define SGE_PAGE_SHIFT		PAGE_SHIFT
386 #define SGE_PAGE_ALIGN(addr)	PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
387 #define SGE_PAGES		(SGE_PAGE_SIZE * PAGES_PER_SGE)
388 #define TPA_AGG_SIZE		min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
389 					    SGE_PAGES), 0xffff)
390 
391 /* SGE ring related macros */
392 #define NUM_RX_SGE_PAGES	2
393 #define RX_SGE_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
394 #define NEXT_PAGE_SGE_DESC_CNT	2
395 #define MAX_RX_SGE_CNT		(RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
396 /* RX_SGE_CNT is promised to be a power of 2 */
397 #define RX_SGE_MASK		(RX_SGE_CNT - 1)
398 #define NUM_RX_SGE		(RX_SGE_CNT * NUM_RX_SGE_PAGES)
399 #define MAX_RX_SGE		(NUM_RX_SGE - 1)
400 #define NEXT_SGE_IDX(x)		((((x) & RX_SGE_MASK) == \
401 				  (MAX_RX_SGE_CNT - 1)) ? \
402 					(x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
403 					(x) + 1)
404 #define RX_SGE(x)		((x) & MAX_RX_SGE)
405 
406 /*
407  * Number of required  SGEs is the sum of two:
408  * 1. Number of possible opened aggregations (next packet for
409  *    these aggregations will probably consume SGE immediately)
410  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
411  *    after placement on BD for new TPA aggregation)
412  *
413  * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
414  */
415 #define NUM_SGE_REQ		(MAX_AGG_QS(bp) + \
416 					(BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
417 #define NUM_SGE_PG_REQ		((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
418 						MAX_RX_SGE_CNT)
419 #define SGE_TH_LO(bp)		(NUM_SGE_REQ + \
420 				 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
421 #define SGE_TH_HI(bp)		(SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
422 
423 /* Manipulate a bit vector defined as an array of u64 */
424 
425 /* Number of bits in one sge_mask array element */
426 #define BIT_VEC64_ELEM_SZ		64
427 #define BIT_VEC64_ELEM_SHIFT		6
428 #define BIT_VEC64_ELEM_MASK		((u64)BIT_VEC64_ELEM_SZ - 1)
429 
430 #define __BIT_VEC64_SET_BIT(el, bit) \
431 	do { \
432 		el = ((el) | ((u64)0x1 << (bit))); \
433 	} while (0)
434 
435 #define __BIT_VEC64_CLEAR_BIT(el, bit) \
436 	do { \
437 		el = ((el) & (~((u64)0x1 << (bit)))); \
438 	} while (0)
439 
440 #define BIT_VEC64_SET_BIT(vec64, idx) \
441 	__BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
442 			   (idx) & BIT_VEC64_ELEM_MASK)
443 
444 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \
445 	__BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
446 			     (idx) & BIT_VEC64_ELEM_MASK)
447 
448 #define BIT_VEC64_TEST_BIT(vec64, idx) \
449 	(((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
450 	((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
451 
452 /* Creates a bitmask of all ones in less significant bits.
453    idx - index of the most significant bit in the created mask */
454 #define BIT_VEC64_ONES_MASK(idx) \
455 		(((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
456 #define BIT_VEC64_ELEM_ONE_MASK	((u64)(~0))
457 
458 /*******************************************************/
459 
460 /* Number of u64 elements in SGE mask array */
461 #define RX_SGE_MASK_LEN			(NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
462 #define RX_SGE_MASK_LEN_MASK		(RX_SGE_MASK_LEN - 1)
463 #define NEXT_SGE_MASK_ELEM(el)		(((el) + 1) & RX_SGE_MASK_LEN_MASK)
464 
465 union host_hc_status_block {
466 	/* pointer to fp status block e1x */
467 	struct host_hc_status_block_e1x *e1x_sb;
468 	/* pointer to fp status block e2 */
469 	struct host_hc_status_block_e2  *e2_sb;
470 };
471 
472 struct bnx2x_agg_info {
473 	/*
474 	 * First aggregation buffer is a data buffer, the following - are pages.
475 	 * We will preallocate the data buffer for each aggregation when
476 	 * we open the interface and will replace the BD at the consumer
477 	 * with this one when we receive the TPA_START CQE in order to
478 	 * keep the Rx BD ring consistent.
479 	 */
480 	struct sw_rx_bd		first_buf;
481 	u8			tpa_state;
482 #define BNX2X_TPA_START			1
483 #define BNX2X_TPA_STOP			2
484 #define BNX2X_TPA_ERROR			3
485 	u8			placement_offset;
486 	u16			parsing_flags;
487 	u16			vlan_tag;
488 	u16			len_on_bd;
489 	u32			rxhash;
490 	enum pkt_hash_types	rxhash_type;
491 	u16			gro_size;
492 	u16			full_page;
493 };
494 
495 #define Q_STATS_OFFSET32(stat_name) \
496 			(offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
497 
498 struct bnx2x_fp_txdata {
499 
500 	struct sw_tx_bd		*tx_buf_ring;
501 
502 	union eth_tx_bd_types	*tx_desc_ring;
503 	dma_addr_t		tx_desc_mapping;
504 
505 	u32			cid;
506 
507 	union db_prod		tx_db;
508 
509 	u16			tx_pkt_prod;
510 	u16			tx_pkt_cons;
511 	u16			tx_bd_prod;
512 	u16			tx_bd_cons;
513 
514 	unsigned long		tx_pkt;
515 
516 	__le16			*tx_cons_sb;
517 
518 	int			txq_index;
519 	struct bnx2x_fastpath	*parent_fp;
520 	int			tx_ring_size;
521 };
522 
523 enum bnx2x_tpa_mode_t {
524 	TPA_MODE_LRO,
525 	TPA_MODE_GRO
526 };
527 
528 struct bnx2x_fastpath {
529 	struct bnx2x		*bp; /* parent */
530 
531 	struct napi_struct	napi;
532 
533 #ifdef CONFIG_NET_RX_BUSY_POLL
534 	unsigned int state;
535 #define BNX2X_FP_STATE_IDLE		      0
536 #define BNX2X_FP_STATE_NAPI		(1 << 0)    /* NAPI owns this FP */
537 #define BNX2X_FP_STATE_POLL		(1 << 1)    /* poll owns this FP */
538 #define BNX2X_FP_STATE_DISABLED		(1 << 2)
539 #define BNX2X_FP_STATE_NAPI_YIELD	(1 << 3)    /* NAPI yielded this FP */
540 #define BNX2X_FP_STATE_POLL_YIELD	(1 << 4)    /* poll yielded this FP */
541 #define BNX2X_FP_OWNED	(BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
542 #define BNX2X_FP_YIELD	(BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
543 #define BNX2X_FP_LOCKED	(BNX2X_FP_OWNED | BNX2X_FP_STATE_DISABLED)
544 #define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
545 	/* protect state */
546 	spinlock_t lock;
547 #endif /* CONFIG_NET_RX_BUSY_POLL */
548 
549 	union host_hc_status_block	status_blk;
550 	/* chip independent shortcuts into sb structure */
551 	__le16			*sb_index_values;
552 	__le16			*sb_running_index;
553 	/* chip independent shortcut into rx_prods_offset memory */
554 	u32			ustorm_rx_prods_offset;
555 
556 	u32			rx_buf_size;
557 	u32			rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
558 	dma_addr_t		status_blk_mapping;
559 
560 	enum bnx2x_tpa_mode_t	mode;
561 
562 	u8			max_cos; /* actual number of active tx coses */
563 	struct bnx2x_fp_txdata	*txdata_ptr[BNX2X_MULTI_TX_COS];
564 
565 	struct sw_rx_bd		*rx_buf_ring;	/* BDs mappings ring */
566 	struct sw_rx_page	*rx_page_ring;	/* SGE pages mappings ring */
567 
568 	struct eth_rx_bd	*rx_desc_ring;
569 	dma_addr_t		rx_desc_mapping;
570 
571 	union eth_rx_cqe	*rx_comp_ring;
572 	dma_addr_t		rx_comp_mapping;
573 
574 	/* SGE ring */
575 	struct eth_rx_sge	*rx_sge_ring;
576 	dma_addr_t		rx_sge_mapping;
577 
578 	u64			sge_mask[RX_SGE_MASK_LEN];
579 
580 	u32			cid;
581 
582 	__le16			fp_hc_idx;
583 
584 	u8			index;		/* number in fp array */
585 	u8			rx_queue;	/* index for skb_record */
586 	u8			cl_id;		/* eth client id */
587 	u8			cl_qzone_id;
588 	u8			fw_sb_id;	/* status block number in FW */
589 	u8			igu_sb_id;	/* status block number in HW */
590 
591 	u16			rx_bd_prod;
592 	u16			rx_bd_cons;
593 	u16			rx_comp_prod;
594 	u16			rx_comp_cons;
595 	u16			rx_sge_prod;
596 	/* The last maximal completed SGE */
597 	u16			last_max_sge;
598 	__le16			*rx_cons_sb;
599 	unsigned long		rx_pkt,
600 				rx_calls;
601 
602 	/* TPA related */
603 	struct bnx2x_agg_info	*tpa_info;
604 	u8			disable_tpa;
605 #ifdef BNX2X_STOP_ON_ERROR
606 	u64			tpa_queue_used;
607 #endif
608 	/* The size is calculated using the following:
609 	     sizeof name field from netdev structure +
610 	     4 ('-Xx-' string) +
611 	     4 (for the digits and to make it DWORD aligned) */
612 #define FP_NAME_SIZE		(sizeof(((struct net_device *)0)->name) + 8)
613 	char			name[FP_NAME_SIZE];
614 };
615 
616 #define bnx2x_fp(bp, nr, var)	((bp)->fp[(nr)].var)
617 #define bnx2x_sp_obj(bp, fp)	((bp)->sp_objs[(fp)->index])
618 #define bnx2x_fp_stats(bp, fp)	(&((bp)->fp_stats[(fp)->index]))
619 #define bnx2x_fp_qstats(bp, fp)	(&((bp)->fp_stats[(fp)->index].eth_q_stats))
620 
621 #ifdef CONFIG_NET_RX_BUSY_POLL
622 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
623 {
624 	spin_lock_init(&fp->lock);
625 	fp->state = BNX2X_FP_STATE_IDLE;
626 }
627 
628 /* called from the device poll routine to get ownership of a FP */
629 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
630 {
631 	bool rc = true;
632 
633 	spin_lock_bh(&fp->lock);
634 	if (fp->state & BNX2X_FP_LOCKED) {
635 		WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
636 		fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
637 		rc = false;
638 	} else {
639 		/* we don't care if someone yielded */
640 		fp->state = BNX2X_FP_STATE_NAPI;
641 	}
642 	spin_unlock_bh(&fp->lock);
643 	return rc;
644 }
645 
646 /* returns true is someone tried to get the FP while napi had it */
647 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
648 {
649 	bool rc = false;
650 
651 	spin_lock_bh(&fp->lock);
652 	WARN_ON(fp->state &
653 		(BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
654 
655 	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
656 		rc = true;
657 
658 	/* state ==> idle, unless currently disabled */
659 	fp->state &= BNX2X_FP_STATE_DISABLED;
660 	spin_unlock_bh(&fp->lock);
661 	return rc;
662 }
663 
664 /* called from bnx2x_low_latency_poll() */
665 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
666 {
667 	bool rc = true;
668 
669 	spin_lock_bh(&fp->lock);
670 	if ((fp->state & BNX2X_FP_LOCKED)) {
671 		fp->state |= BNX2X_FP_STATE_POLL_YIELD;
672 		rc = false;
673 	} else {
674 		/* preserve yield marks */
675 		fp->state |= BNX2X_FP_STATE_POLL;
676 	}
677 	spin_unlock_bh(&fp->lock);
678 	return rc;
679 }
680 
681 /* returns true if someone tried to get the FP while it was locked */
682 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
683 {
684 	bool rc = false;
685 
686 	spin_lock_bh(&fp->lock);
687 	WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
688 
689 	if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
690 		rc = true;
691 
692 	/* state ==> idle, unless currently disabled */
693 	fp->state &= BNX2X_FP_STATE_DISABLED;
694 	spin_unlock_bh(&fp->lock);
695 	return rc;
696 }
697 
698 /* true if a socket is polling, even if it did not get the lock */
699 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
700 {
701 	WARN_ON(!(fp->state & BNX2X_FP_OWNED));
702 	return fp->state & BNX2X_FP_USER_PEND;
703 }
704 
705 /* false if fp is currently owned */
706 static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
707 {
708 	int rc = true;
709 
710 	spin_lock_bh(&fp->lock);
711 	if (fp->state & BNX2X_FP_OWNED)
712 		rc = false;
713 	fp->state |= BNX2X_FP_STATE_DISABLED;
714 	spin_unlock_bh(&fp->lock);
715 
716 	return rc;
717 }
718 #else
719 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
720 {
721 }
722 
723 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
724 {
725 	return true;
726 }
727 
728 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
729 {
730 	return false;
731 }
732 
733 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
734 {
735 	return false;
736 }
737 
738 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
739 {
740 	return false;
741 }
742 
743 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
744 {
745 	return false;
746 }
747 static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
748 {
749 	return true;
750 }
751 #endif /* CONFIG_NET_RX_BUSY_POLL */
752 
753 /* Use 2500 as a mini-jumbo MTU for FCoE */
754 #define BNX2X_FCOE_MINI_JUMBO_MTU	2500
755 
756 #define	FCOE_IDX_OFFSET		0
757 
758 #define FCOE_IDX(bp)		(BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
759 				 FCOE_IDX_OFFSET)
760 #define bnx2x_fcoe_fp(bp)	(&bp->fp[FCOE_IDX(bp)])
761 #define bnx2x_fcoe(bp, var)	(bnx2x_fcoe_fp(bp)->var)
762 #define bnx2x_fcoe_inner_sp_obj(bp)	(&bp->sp_objs[FCOE_IDX(bp)])
763 #define bnx2x_fcoe_sp_obj(bp, var)	(bnx2x_fcoe_inner_sp_obj(bp)->var)
764 #define bnx2x_fcoe_tx(bp, var)	(bnx2x_fcoe_fp(bp)-> \
765 						txdata_ptr[FIRST_TX_COS_INDEX] \
766 						->var)
767 
768 #define IS_ETH_FP(fp)		((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
769 #define IS_FCOE_FP(fp)		((fp)->index == FCOE_IDX((fp)->bp))
770 #define IS_FCOE_IDX(idx)	((idx) == FCOE_IDX(bp))
771 
772 /* MC hsi */
773 #define MAX_FETCH_BD		13	/* HW max BDs per packet */
774 #define RX_COPY_THRESH		92
775 
776 #define NUM_TX_RINGS		16
777 #define TX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
778 #define NEXT_PAGE_TX_DESC_CNT	1
779 #define MAX_TX_DESC_CNT		(TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
780 #define NUM_TX_BD		(TX_DESC_CNT * NUM_TX_RINGS)
781 #define MAX_TX_BD		(NUM_TX_BD - 1)
782 #define MAX_TX_AVAIL		(MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
783 #define NEXT_TX_IDX(x)		((((x) & MAX_TX_DESC_CNT) == \
784 				  (MAX_TX_DESC_CNT - 1)) ? \
785 					(x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
786 					(x) + 1)
787 #define TX_BD(x)		((x) & MAX_TX_BD)
788 #define TX_BD_POFF(x)		((x) & MAX_TX_DESC_CNT)
789 
790 /* number of NEXT_PAGE descriptors may be required during placement */
791 #define NEXT_CNT_PER_TX_PKT(bds)	\
792 				(((bds) + MAX_TX_DESC_CNT - 1) / \
793 				 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
794 /* max BDs per tx packet w/o next_pages:
795  * START_BD		- describes packed
796  * START_BD(splitted)	- includes unpaged data segment for GSO
797  * PARSING_BD		- for TSO and CSUM data
798  * PARSING_BD2		- for encapsulation data
799  * Frag BDs		- describes pages for frags
800  */
801 #define BDS_PER_TX_PKT		4
802 #define MAX_BDS_PER_TX_PKT	(MAX_SKB_FRAGS + BDS_PER_TX_PKT)
803 /* max BDs per tx packet including next pages */
804 #define MAX_DESC_PER_TX_PKT	(MAX_BDS_PER_TX_PKT + \
805 				 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
806 
807 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
808 #define NUM_RX_RINGS		8
809 #define RX_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
810 #define NEXT_PAGE_RX_DESC_CNT	2
811 #define MAX_RX_DESC_CNT		(RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
812 #define RX_DESC_MASK		(RX_DESC_CNT - 1)
813 #define NUM_RX_BD		(RX_DESC_CNT * NUM_RX_RINGS)
814 #define MAX_RX_BD		(NUM_RX_BD - 1)
815 #define MAX_RX_AVAIL		(MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
816 
817 /* dropless fc calculations for BDs
818  *
819  * Number of BDs should as number of buffers in BRB:
820  * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
821  * "next" elements on each page
822  */
823 #define NUM_BD_REQ		BRB_SIZE(bp)
824 #define NUM_BD_PG_REQ		((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
825 					      MAX_RX_DESC_CNT)
826 #define BD_TH_LO(bp)		(NUM_BD_REQ + \
827 				 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
828 				 FW_DROP_LEVEL(bp))
829 #define BD_TH_HI(bp)		(BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
830 
831 #define MIN_RX_AVAIL		((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
832 
833 #define MIN_RX_SIZE_TPA_HW	(CHIP_IS_E1(bp) ? \
834 					ETH_MIN_RX_CQES_WITH_TPA_E1 : \
835 					ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
836 #define MIN_RX_SIZE_NONTPA_HW   ETH_MIN_RX_CQES_WITHOUT_TPA
837 #define MIN_RX_SIZE_TPA		(max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
838 #define MIN_RX_SIZE_NONTPA	(max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
839 								MIN_RX_AVAIL))
840 
841 #define NEXT_RX_IDX(x)		((((x) & RX_DESC_MASK) == \
842 				  (MAX_RX_DESC_CNT - 1)) ? \
843 					(x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
844 					(x) + 1)
845 #define RX_BD(x)		((x) & MAX_RX_BD)
846 
847 /*
848  * As long as CQE is X times bigger than BD entry we have to allocate X times
849  * more pages for CQ ring in order to keep it balanced with BD ring
850  */
851 #define CQE_BD_REL	(sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
852 #define NUM_RCQ_RINGS		(NUM_RX_RINGS * CQE_BD_REL)
853 #define RCQ_DESC_CNT		(BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
854 #define NEXT_PAGE_RCQ_DESC_CNT	1
855 #define MAX_RCQ_DESC_CNT	(RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
856 #define NUM_RCQ_BD		(RCQ_DESC_CNT * NUM_RCQ_RINGS)
857 #define MAX_RCQ_BD		(NUM_RCQ_BD - 1)
858 #define MAX_RCQ_AVAIL		(MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
859 #define NEXT_RCQ_IDX(x)		((((x) & MAX_RCQ_DESC_CNT) == \
860 				  (MAX_RCQ_DESC_CNT - 1)) ? \
861 					(x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
862 					(x) + 1)
863 #define RCQ_BD(x)		((x) & MAX_RCQ_BD)
864 
865 /* dropless fc calculations for RCQs
866  *
867  * Number of RCQs should be as number of buffers in BRB:
868  * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
869  * "next" elements on each page
870  */
871 #define NUM_RCQ_REQ		BRB_SIZE(bp)
872 #define NUM_RCQ_PG_REQ		((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
873 					      MAX_RCQ_DESC_CNT)
874 #define RCQ_TH_LO(bp)		(NUM_RCQ_REQ + \
875 				 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
876 				 FW_DROP_LEVEL(bp))
877 #define RCQ_TH_HI(bp)		(RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
878 
879 /* This is needed for determining of last_max */
880 #define SUB_S16(a, b)		(s16)((s16)(a) - (s16)(b))
881 #define SUB_S32(a, b)		(s32)((s32)(a) - (s32)(b))
882 
883 #define BNX2X_SWCID_SHIFT	17
884 #define BNX2X_SWCID_MASK	((0x1 << BNX2X_SWCID_SHIFT) - 1)
885 
886 /* used on a CID received from the HW */
887 #define SW_CID(x)			(le32_to_cpu(x) & BNX2X_SWCID_MASK)
888 #define CQE_CMD(x)			(le32_to_cpu(x) >> \
889 					COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
890 
891 #define BD_UNMAP_ADDR(bd)		HILO_U64(le32_to_cpu((bd)->addr_hi), \
892 						 le32_to_cpu((bd)->addr_lo))
893 #define BD_UNMAP_LEN(bd)		(le16_to_cpu((bd)->nbytes))
894 
895 #define BNX2X_DB_MIN_SHIFT		3	/* 8 bytes */
896 #define BNX2X_DB_SHIFT			3	/* 8 bytes*/
897 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
898 #error "Min DB doorbell stride is 8"
899 #endif
900 #define DOORBELL(bp, cid, val) \
901 	do { \
902 		writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
903 	} while (0)
904 
905 /* TX CSUM helpers */
906 #define SKB_CS_OFF(skb)		(offsetof(struct tcphdr, check) - \
907 				 skb->csum_offset)
908 #define SKB_CS(skb)		(*(u16 *)(skb_transport_header(skb) + \
909 					  skb->csum_offset))
910 
911 #define pbd_tcp_flags(tcp_hdr)	(ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
912 
913 #define XMIT_PLAIN		0
914 #define XMIT_CSUM_V4		(1 << 0)
915 #define XMIT_CSUM_V6		(1 << 1)
916 #define XMIT_CSUM_TCP		(1 << 2)
917 #define XMIT_GSO_V4		(1 << 3)
918 #define XMIT_GSO_V6		(1 << 4)
919 #define XMIT_CSUM_ENC_V4	(1 << 5)
920 #define XMIT_CSUM_ENC_V6	(1 << 6)
921 #define XMIT_GSO_ENC_V4		(1 << 7)
922 #define XMIT_GSO_ENC_V6		(1 << 8)
923 
924 #define XMIT_CSUM_ENC		(XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
925 #define XMIT_GSO_ENC		(XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
926 
927 #define XMIT_CSUM		(XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
928 #define XMIT_GSO		(XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
929 
930 /* stuff added to make the code fit 80Col */
931 #define CQE_TYPE(cqe_fp_flags)	 ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
932 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
933 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
934 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
935 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
936 
937 #define ETH_RX_ERROR_FALGS		ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
938 
939 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
940 				(((le16_to_cpu(flags) & \
941 				   PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
942 				  PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
943 				 == PRS_FLAG_OVERETH_IPV4)
944 #define BNX2X_RX_SUM_FIX(cqe) \
945 	BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
946 
947 #define FP_USB_FUNC_OFF	\
948 			offsetof(struct cstorm_status_block_u, func)
949 #define FP_CSB_FUNC_OFF	\
950 			offsetof(struct cstorm_status_block_c, func)
951 
952 #define HC_INDEX_ETH_RX_CQ_CONS		1
953 
954 #define HC_INDEX_OOO_TX_CQ_CONS		4
955 
956 #define HC_INDEX_ETH_TX_CQ_CONS_COS0	5
957 
958 #define HC_INDEX_ETH_TX_CQ_CONS_COS1	6
959 
960 #define HC_INDEX_ETH_TX_CQ_CONS_COS2	7
961 
962 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS	HC_INDEX_ETH_TX_CQ_CONS_COS0
963 
964 #define BNX2X_RX_SB_INDEX \
965 	(&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
966 
967 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
968 
969 #define BNX2X_TX_SB_INDEX_COS0 \
970 	(&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
971 
972 /* end of fast path */
973 
974 /* common */
975 
976 struct bnx2x_common {
977 
978 	u32			chip_id;
979 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
980 #define CHIP_ID(bp)			(bp->common.chip_id & 0xfffffff0)
981 
982 #define CHIP_NUM(bp)			(bp->common.chip_id >> 16)
983 #define CHIP_NUM_57710			0x164e
984 #define CHIP_NUM_57711			0x164f
985 #define CHIP_NUM_57711E			0x1650
986 #define CHIP_NUM_57712			0x1662
987 #define CHIP_NUM_57712_MF		0x1663
988 #define CHIP_NUM_57712_VF		0x166f
989 #define CHIP_NUM_57713			0x1651
990 #define CHIP_NUM_57713E			0x1652
991 #define CHIP_NUM_57800			0x168a
992 #define CHIP_NUM_57800_MF		0x16a5
993 #define CHIP_NUM_57800_VF		0x16a9
994 #define CHIP_NUM_57810			0x168e
995 #define CHIP_NUM_57810_MF		0x16ae
996 #define CHIP_NUM_57810_VF		0x16af
997 #define CHIP_NUM_57811			0x163d
998 #define CHIP_NUM_57811_MF		0x163e
999 #define CHIP_NUM_57811_VF		0x163f
1000 #define CHIP_NUM_57840_OBSOLETE		0x168d
1001 #define CHIP_NUM_57840_MF_OBSOLETE	0x16ab
1002 #define CHIP_NUM_57840_4_10		0x16a1
1003 #define CHIP_NUM_57840_2_20		0x16a2
1004 #define CHIP_NUM_57840_MF		0x16a4
1005 #define CHIP_NUM_57840_VF		0x16ad
1006 #define CHIP_IS_E1(bp)			(CHIP_NUM(bp) == CHIP_NUM_57710)
1007 #define CHIP_IS_57711(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711)
1008 #define CHIP_IS_57711E(bp)		(CHIP_NUM(bp) == CHIP_NUM_57711E)
1009 #define CHIP_IS_57712(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712)
1010 #define CHIP_IS_57712_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_VF)
1011 #define CHIP_IS_57712_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57712_MF)
1012 #define CHIP_IS_57800(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800)
1013 #define CHIP_IS_57800_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_MF)
1014 #define CHIP_IS_57800_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57800_VF)
1015 #define CHIP_IS_57810(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810)
1016 #define CHIP_IS_57810_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_MF)
1017 #define CHIP_IS_57810_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57810_VF)
1018 #define CHIP_IS_57811(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811)
1019 #define CHIP_IS_57811_MF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_MF)
1020 #define CHIP_IS_57811_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57811_VF)
1021 #define CHIP_IS_57840(bp)		\
1022 		((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
1023 		 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
1024 		 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
1025 #define CHIP_IS_57840_MF(bp)	((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
1026 				 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
1027 #define CHIP_IS_57840_VF(bp)		(CHIP_NUM(bp) == CHIP_NUM_57840_VF)
1028 #define CHIP_IS_E1H(bp)			(CHIP_IS_57711(bp) || \
1029 					 CHIP_IS_57711E(bp))
1030 #define CHIP_IS_57811xx(bp)		(CHIP_IS_57811(bp) || \
1031 					 CHIP_IS_57811_MF(bp) || \
1032 					 CHIP_IS_57811_VF(bp))
1033 #define CHIP_IS_E2(bp)			(CHIP_IS_57712(bp) || \
1034 					 CHIP_IS_57712_MF(bp) || \
1035 					 CHIP_IS_57712_VF(bp))
1036 #define CHIP_IS_E3(bp)			(CHIP_IS_57800(bp) || \
1037 					 CHIP_IS_57800_MF(bp) || \
1038 					 CHIP_IS_57800_VF(bp) || \
1039 					 CHIP_IS_57810(bp) || \
1040 					 CHIP_IS_57810_MF(bp) || \
1041 					 CHIP_IS_57810_VF(bp) || \
1042 					 CHIP_IS_57811xx(bp) || \
1043 					 CHIP_IS_57840(bp) || \
1044 					 CHIP_IS_57840_MF(bp) || \
1045 					 CHIP_IS_57840_VF(bp))
1046 #define CHIP_IS_E1x(bp)			(CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
1047 #define USES_WARPCORE(bp)		(CHIP_IS_E3(bp))
1048 #define IS_E1H_OFFSET			(!CHIP_IS_E1(bp))
1049 
1050 #define CHIP_REV_SHIFT			12
1051 #define CHIP_REV_MASK			(0xF << CHIP_REV_SHIFT)
1052 #define CHIP_REV_VAL(bp)		(bp->common.chip_id & CHIP_REV_MASK)
1053 #define CHIP_REV_Ax			(0x0 << CHIP_REV_SHIFT)
1054 #define CHIP_REV_Bx			(0x1 << CHIP_REV_SHIFT)
1055 /* assume maximum 5 revisions */
1056 #define CHIP_REV_IS_SLOW(bp)		(CHIP_REV_VAL(bp) > 0x00005000)
1057 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
1058 #define CHIP_REV_IS_EMUL(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1059 					 !(CHIP_REV_VAL(bp) & 0x00001000))
1060 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
1061 #define CHIP_REV_IS_FPGA(bp)		((CHIP_REV_IS_SLOW(bp)) && \
1062 					 (CHIP_REV_VAL(bp) & 0x00001000))
1063 
1064 #define CHIP_TIME(bp)			((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
1065 					((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
1066 
1067 #define CHIP_METAL(bp)			(bp->common.chip_id & 0x00000ff0)
1068 #define CHIP_BOND_ID(bp)		(bp->common.chip_id & 0x0000000f)
1069 #define CHIP_REV_SIM(bp)		(((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
1070 					   (CHIP_REV_SHIFT + 1)) \
1071 						<< CHIP_REV_SHIFT)
1072 #define CHIP_REV(bp)			(CHIP_REV_IS_SLOW(bp) ? \
1073 						CHIP_REV_SIM(bp) :\
1074 						CHIP_REV_VAL(bp))
1075 #define CHIP_IS_E3B0(bp)		(CHIP_IS_E3(bp) && \
1076 					 (CHIP_REV(bp) == CHIP_REV_Bx))
1077 #define CHIP_IS_E3A0(bp)		(CHIP_IS_E3(bp) && \
1078 					 (CHIP_REV(bp) == CHIP_REV_Ax))
1079 /* This define is used in two main places:
1080  * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
1081  * to nic-only mode or to offload mode. Offload mode is configured if either the
1082  * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
1083  * registered for this port (which means that the user wants storage services).
1084  * 2. During cnic-related load, to know if offload mode is already configured in
1085  * the HW or needs to be configured.
1086  * Since the transition from nic-mode to offload-mode in HW causes traffic
1087  * corruption, nic-mode is configured only in ports on which storage services
1088  * where never requested.
1089  */
1090 #define CONFIGURE_NIC_MODE(bp)		(!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
1091 
1092 	int			flash_size;
1093 #define BNX2X_NVRAM_1MB_SIZE			0x20000	/* 1M bit in bytes */
1094 #define BNX2X_NVRAM_TIMEOUT_COUNT		30000
1095 #define BNX2X_NVRAM_PAGE_SIZE			256
1096 
1097 	u32			shmem_base;
1098 	u32			shmem2_base;
1099 	u32			mf_cfg_base;
1100 	u32			mf2_cfg_base;
1101 
1102 	u32			hw_config;
1103 
1104 	u32			bc_ver;
1105 
1106 	u8			int_block;
1107 #define INT_BLOCK_HC			0
1108 #define INT_BLOCK_IGU			1
1109 #define INT_BLOCK_MODE_NORMAL		0
1110 #define INT_BLOCK_MODE_BW_COMP		2
1111 #define CHIP_INT_MODE_IS_NBC(bp)		\
1112 			(!CHIP_IS_E1x(bp) &&	\
1113 			!((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
1114 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
1115 
1116 	u8			chip_port_mode;
1117 #define CHIP_4_PORT_MODE			0x0
1118 #define CHIP_2_PORT_MODE			0x1
1119 #define CHIP_PORT_MODE_NONE			0x2
1120 #define CHIP_MODE(bp)			(bp->common.chip_port_mode)
1121 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
1122 
1123 	u32			boot_mode;
1124 };
1125 
1126 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
1127 #define BNX2X_IGU_STAS_MSG_VF_CNT 64
1128 #define BNX2X_IGU_STAS_MSG_PF_CNT 4
1129 
1130 #define MAX_IGU_ATTN_ACK_TO       100
1131 /* end of common */
1132 
1133 /* port */
1134 
1135 struct bnx2x_port {
1136 	u32			pmf;
1137 
1138 	u32			link_config[LINK_CONFIG_SIZE];
1139 
1140 	u32			supported[LINK_CONFIG_SIZE];
1141 
1142 	u32			advertising[LINK_CONFIG_SIZE];
1143 
1144 	u32			phy_addr;
1145 
1146 	/* used to synchronize phy accesses */
1147 	struct mutex		phy_mutex;
1148 
1149 	u32			port_stx;
1150 
1151 	struct nig_stats	old_nig_stats;
1152 };
1153 
1154 /* end of port */
1155 
1156 #define STATS_OFFSET32(stat_name) \
1157 			(offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1158 
1159 /* slow path */
1160 #define BNX2X_MAX_NUM_OF_VFS	64
1161 #define BNX2X_VF_CID_WND	4 /* log num of queues per VF. HW config. */
1162 #define BNX2X_CIDS_PER_VF	(1 << BNX2X_VF_CID_WND)
1163 
1164 /* We need to reserve doorbell addresses for all VF and queue combinations */
1165 #define BNX2X_VF_CIDS		(BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1166 
1167 /* The doorbell is configured to have the same number of CIDs for PFs and for
1168  * VFs. For this reason the PF CID zone is as large as the VF zone.
1169  */
1170 #define BNX2X_FIRST_VF_CID	BNX2X_VF_CIDS
1171 #define BNX2X_MAX_NUM_VF_QUEUES	64
1172 #define BNX2X_VF_ID_INVALID	0xFF
1173 
1174 /* the number of VF CIDS multiplied by the amount of bytes reserved for each
1175  * cid must not exceed the size of the VF doorbell
1176  */
1177 #define BNX2X_VF_BAR_SIZE	512
1178 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1179 #error "VF doorbell bar size is 512"
1180 #endif
1181 
1182 /*
1183  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1184  * control by the number of fast-path status blocks supported by the
1185  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1186  * status block represents an independent interrupts context that can
1187  * serve a regular L2 networking queue. However special L2 queues such
1188  * as the FCoE queue do not require a FP-SB and other components like
1189  * the CNIC may consume FP-SB reducing the number of possible L2 queues
1190  *
1191  * If the maximum number of FP-SB available is X then:
1192  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1193  *    regular L2 queues is Y=X-1
1194  * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1195  * c. If the FCoE L2 queue is supported the actual number of L2 queues
1196  *    is Y+1
1197  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1198  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
1199  *    FP interrupt context for the CNIC).
1200  * e. The number of HW context (CID count) is always X or X+1 if FCoE
1201  *    L2 queue is supported. The cid for the FCoE L2 queue is always X.
1202  */
1203 
1204 /* fast-path interrupt contexts E1x */
1205 #define FP_SB_MAX_E1x		16
1206 /* fast-path interrupt contexts E2 */
1207 #define FP_SB_MAX_E2		HC_SB_MAX_SB_E2
1208 
1209 union cdu_context {
1210 	struct eth_context eth;
1211 	char pad[1024];
1212 };
1213 
1214 /* CDU host DB constants */
1215 #define CDU_ILT_PAGE_SZ_HW	2
1216 #define CDU_ILT_PAGE_SZ		(8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1217 #define ILT_PAGE_CIDS		(CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1218 
1219 #define CNIC_ISCSI_CID_MAX	256
1220 #define CNIC_FCOE_CID_MAX	2048
1221 #define CNIC_CID_MAX		(CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1222 #define CNIC_ILT_LINES		DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1223 
1224 #define QM_ILT_PAGE_SZ_HW	0
1225 #define QM_ILT_PAGE_SZ		(4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1226 #define QM_CID_ROUND		1024
1227 
1228 /* TM (timers) host DB constants */
1229 #define TM_ILT_PAGE_SZ_HW	0
1230 #define TM_ILT_PAGE_SZ		(4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1231 #define TM_CONN_NUM		(BNX2X_FIRST_VF_CID + \
1232 				 BNX2X_VF_CIDS + \
1233 				 CNIC_ISCSI_CID_MAX)
1234 #define TM_ILT_SZ		(8 * TM_CONN_NUM)
1235 #define TM_ILT_LINES		DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1236 
1237 /* SRC (Searcher) host DB constants */
1238 #define SRC_ILT_PAGE_SZ_HW	0
1239 #define SRC_ILT_PAGE_SZ		(4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1240 #define SRC_HASH_BITS		10
1241 #define SRC_CONN_NUM		(1 << SRC_HASH_BITS) /* 1024 */
1242 #define SRC_ILT_SZ		(sizeof(struct src_ent) * SRC_CONN_NUM)
1243 #define SRC_T2_SZ		SRC_ILT_SZ
1244 #define SRC_ILT_LINES		DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1245 
1246 #define MAX_DMAE_C		8
1247 
1248 /* DMA memory not used in fastpath */
1249 struct bnx2x_slowpath {
1250 	union {
1251 		struct mac_configuration_cmd		e1x;
1252 		struct eth_classify_rules_ramrod_data	e2;
1253 	} mac_rdata;
1254 
1255 	union {
1256 		struct tstorm_eth_mac_filter_config	e1x;
1257 		struct eth_filter_rules_ramrod_data	e2;
1258 	} rx_mode_rdata;
1259 
1260 	union {
1261 		struct mac_configuration_cmd		e1;
1262 		struct eth_multicast_rules_ramrod_data  e2;
1263 	} mcast_rdata;
1264 
1265 	struct eth_rss_update_ramrod_data	rss_rdata;
1266 
1267 	/* Queue State related ramrods are always sent under rtnl_lock */
1268 	union {
1269 		struct client_init_ramrod_data  init_data;
1270 		struct client_update_ramrod_data update_data;
1271 		struct tpa_update_ramrod_data tpa_data;
1272 	} q_rdata;
1273 
1274 	union {
1275 		struct function_start_data	func_start;
1276 		/* pfc configuration for DCBX ramrod */
1277 		struct flow_control_configuration pfc_config;
1278 	} func_rdata;
1279 
1280 	/* afex ramrod can not be a part of func_rdata union because these
1281 	 * events might arrive in parallel to other events from func_rdata.
1282 	 * Therefore, if they would have been defined in the same union,
1283 	 * data can get corrupted.
1284 	 */
1285 	union {
1286 		struct afex_vif_list_ramrod_data	viflist_data;
1287 		struct function_update_data		func_update;
1288 	} func_afex_rdata;
1289 
1290 	/* used by dmae command executer */
1291 	struct dmae_command		dmae[MAX_DMAE_C];
1292 
1293 	u32				stats_comp;
1294 	union mac_stats			mac_stats;
1295 	struct nig_stats		nig_stats;
1296 	struct host_port_stats		port_stats;
1297 	struct host_func_stats		func_stats;
1298 
1299 	u32				wb_comp;
1300 	u32				wb_data[4];
1301 
1302 	union drv_info_to_mcp		drv_info_to_mcp;
1303 };
1304 
1305 #define bnx2x_sp(bp, var)		(&bp->slowpath->var)
1306 #define bnx2x_sp_mapping(bp, var) \
1307 		(bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1308 
1309 /* attn group wiring */
1310 #define MAX_DYNAMIC_ATTN_GRPS		8
1311 
1312 struct attn_route {
1313 	u32 sig[5];
1314 };
1315 
1316 struct iro {
1317 	u32 base;
1318 	u16 m1;
1319 	u16 m2;
1320 	u16 m3;
1321 	u16 size;
1322 };
1323 
1324 struct hw_context {
1325 	union cdu_context *vcxt;
1326 	dma_addr_t cxt_mapping;
1327 	size_t size;
1328 };
1329 
1330 /* forward */
1331 struct bnx2x_ilt;
1332 
1333 struct bnx2x_vfdb;
1334 
1335 enum bnx2x_recovery_state {
1336 	BNX2X_RECOVERY_DONE,
1337 	BNX2X_RECOVERY_INIT,
1338 	BNX2X_RECOVERY_WAIT,
1339 	BNX2X_RECOVERY_FAILED,
1340 	BNX2X_RECOVERY_NIC_LOADING
1341 };
1342 
1343 /*
1344  * Event queue (EQ or event ring) MC hsi
1345  * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1346  */
1347 #define NUM_EQ_PAGES		1
1348 #define EQ_DESC_CNT_PAGE	(BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1349 #define EQ_DESC_MAX_PAGE	(EQ_DESC_CNT_PAGE - 1)
1350 #define NUM_EQ_DESC		(EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1351 #define EQ_DESC_MASK		(NUM_EQ_DESC - 1)
1352 #define MAX_EQ_AVAIL		(EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1353 
1354 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1355 #define NEXT_EQ_IDX(x)		((((x) & EQ_DESC_MAX_PAGE) == \
1356 				  (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1357 
1358 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1359 #define EQ_DESC(x)		((x) & EQ_DESC_MASK)
1360 
1361 #define BNX2X_EQ_INDEX \
1362 	(&bp->def_status_blk->sp_sb.\
1363 	index_values[HC_SP_INDEX_EQ_CONS])
1364 
1365 /* This is a data that will be used to create a link report message.
1366  * We will keep the data used for the last link report in order
1367  * to prevent reporting the same link parameters twice.
1368  */
1369 struct bnx2x_link_report_data {
1370 	u16 line_speed;			/* Effective line speed */
1371 	unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1372 };
1373 
1374 enum {
1375 	BNX2X_LINK_REPORT_FD,		/* Full DUPLEX */
1376 	BNX2X_LINK_REPORT_LINK_DOWN,
1377 	BNX2X_LINK_REPORT_RX_FC_ON,
1378 	BNX2X_LINK_REPORT_TX_FC_ON,
1379 };
1380 
1381 enum {
1382 	BNX2X_PORT_QUERY_IDX,
1383 	BNX2X_PF_QUERY_IDX,
1384 	BNX2X_FCOE_QUERY_IDX,
1385 	BNX2X_FIRST_QUEUE_QUERY_IDX,
1386 };
1387 
1388 struct bnx2x_fw_stats_req {
1389 	struct stats_query_header hdr;
1390 	struct stats_query_entry query[FP_SB_MAX_E1x+
1391 		BNX2X_FIRST_QUEUE_QUERY_IDX];
1392 };
1393 
1394 struct bnx2x_fw_stats_data {
1395 	struct stats_counter		storm_counters;
1396 	struct per_port_stats		port;
1397 	struct per_pf_stats		pf;
1398 	struct fcoe_statistics_params	fcoe;
1399 	struct per_queue_stats		queue_stats[1];
1400 };
1401 
1402 /* Public slow path states */
1403 enum sp_rtnl_flag {
1404 	BNX2X_SP_RTNL_SETUP_TC,
1405 	BNX2X_SP_RTNL_TX_TIMEOUT,
1406 	BNX2X_SP_RTNL_FAN_FAILURE,
1407 	BNX2X_SP_RTNL_AFEX_F_UPDATE,
1408 	BNX2X_SP_RTNL_ENABLE_SRIOV,
1409 	BNX2X_SP_RTNL_VFPF_MCAST,
1410 	BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1411 	BNX2X_SP_RTNL_RX_MODE,
1412 	BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1413 	BNX2X_SP_RTNL_TX_STOP,
1414 	BNX2X_SP_RTNL_GET_DRV_VERSION,
1415 };
1416 
1417 enum bnx2x_iov_flag {
1418 	BNX2X_IOV_HANDLE_VF_MSG,
1419 	BNX2X_IOV_HANDLE_FLR,
1420 };
1421 
1422 struct bnx2x_prev_path_list {
1423 	struct list_head list;
1424 	u8 bus;
1425 	u8 slot;
1426 	u8 path;
1427 	u8 aer;
1428 	u8 undi;
1429 };
1430 
1431 struct bnx2x_sp_objs {
1432 	/* MACs object */
1433 	struct bnx2x_vlan_mac_obj mac_obj;
1434 
1435 	/* Queue State object */
1436 	struct bnx2x_queue_sp_obj q_obj;
1437 };
1438 
1439 struct bnx2x_fp_stats {
1440 	struct tstorm_per_queue_stats old_tclient;
1441 	struct ustorm_per_queue_stats old_uclient;
1442 	struct xstorm_per_queue_stats old_xclient;
1443 	struct bnx2x_eth_q_stats eth_q_stats;
1444 	struct bnx2x_eth_q_stats_old eth_q_stats_old;
1445 };
1446 
1447 enum {
1448 	SUB_MF_MODE_UNKNOWN = 0,
1449 	SUB_MF_MODE_UFP,
1450 	SUB_MF_MODE_NPAR1_DOT_5,
1451 };
1452 
1453 struct bnx2x {
1454 	/* Fields used in the tx and intr/napi performance paths
1455 	 * are grouped together in the beginning of the structure
1456 	 */
1457 	struct bnx2x_fastpath	*fp;
1458 	struct bnx2x_sp_objs	*sp_objs;
1459 	struct bnx2x_fp_stats	*fp_stats;
1460 	struct bnx2x_fp_txdata	*bnx2x_txq;
1461 	void __iomem		*regview;
1462 	void __iomem		*doorbells;
1463 	u16			db_size;
1464 
1465 	u8			pf_num;	/* absolute PF number */
1466 	u8			pfid;	/* per-path PF number */
1467 	int			base_fw_ndsb; /**/
1468 #define BP_PATH(bp)			(CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1469 #define BP_PORT(bp)			(bp->pfid & 1)
1470 #define BP_FUNC(bp)			(bp->pfid)
1471 #define BP_ABS_FUNC(bp)			(bp->pf_num)
1472 #define BP_VN(bp)			((bp)->pfid >> 1)
1473 #define BP_MAX_VN_NUM(bp)		(CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1474 #define BP_L_ID(bp)			(BP_VN(bp) << 2)
1475 #define BP_FW_MB_IDX_VN(bp, vn)		(BP_PORT(bp) +\
1476 	  (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2  : 1))
1477 #define BP_FW_MB_IDX(bp)		BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1478 
1479 #ifdef CONFIG_BNX2X_SRIOV
1480 	/* protects vf2pf mailbox from simultaneous access */
1481 	struct mutex		vf2pf_mutex;
1482 	/* vf pf channel mailbox contains request and response buffers */
1483 	struct bnx2x_vf_mbx_msg	*vf2pf_mbox;
1484 	dma_addr_t		vf2pf_mbox_mapping;
1485 
1486 	/* we set aside a copy of the acquire response */
1487 	struct pfvf_acquire_resp_tlv acquire_resp;
1488 
1489 	/* bulletin board for messages from pf to vf */
1490 	union pf_vf_bulletin   *pf2vf_bulletin;
1491 	dma_addr_t		pf2vf_bulletin_mapping;
1492 
1493 	union pf_vf_bulletin		shadow_bulletin;
1494 	struct pf_vf_bulletin_content	old_bulletin;
1495 
1496 	u16 requested_nr_virtfn;
1497 #endif /* CONFIG_BNX2X_SRIOV */
1498 
1499 	struct net_device	*dev;
1500 	struct pci_dev		*pdev;
1501 
1502 	const struct iro	*iro_arr;
1503 #define IRO (bp->iro_arr)
1504 
1505 	enum bnx2x_recovery_state recovery_state;
1506 	int			is_leader;
1507 	struct msix_entry	*msix_table;
1508 
1509 	int			tx_ring_size;
1510 
1511 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1512 #define ETH_OVREHEAD		(ETH_HLEN + 8 + 8)
1513 #define ETH_MIN_PACKET_SIZE		60
1514 #define ETH_MAX_PACKET_SIZE		1500
1515 #define ETH_MAX_JUMBO_PACKET_SIZE	9600
1516 /* TCP with Timestamp Option (32) + IPv6 (40) */
1517 #define ETH_MAX_TPA_HEADER_SIZE		72
1518 
1519 	/* Max supported alignment is 256 (8 shift)
1520 	 * minimal alignment shift 6 is optimal for 57xxx HW performance
1521 	 */
1522 #define BNX2X_RX_ALIGN_SHIFT		max(6, min(8, L1_CACHE_SHIFT))
1523 
1524 	/* FW uses 2 Cache lines Alignment for start packet and size
1525 	 *
1526 	 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1527 	 * at the end of skb->data, to avoid wasting a full cache line.
1528 	 * This reduces memory use (skb->truesize).
1529 	 */
1530 #define BNX2X_FW_RX_ALIGN_START	(1UL << BNX2X_RX_ALIGN_SHIFT)
1531 
1532 #define BNX2X_FW_RX_ALIGN_END					\
1533 	max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT,			\
1534 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1535 
1536 #define BNX2X_PXP_DRAM_ALIGN		(BNX2X_RX_ALIGN_SHIFT - 5)
1537 
1538 	struct host_sp_status_block *def_status_blk;
1539 #define DEF_SB_IGU_ID			16
1540 #define DEF_SB_ID			HC_SP_SB_ID
1541 	__le16			def_idx;
1542 	__le16			def_att_idx;
1543 	u32			attn_state;
1544 	struct attn_route	attn_group[MAX_DYNAMIC_ATTN_GRPS];
1545 
1546 	/* slow path ring */
1547 	struct eth_spe		*spq;
1548 	dma_addr_t		spq_mapping;
1549 	u16			spq_prod_idx;
1550 	struct eth_spe		*spq_prod_bd;
1551 	struct eth_spe		*spq_last_bd;
1552 	__le16			*dsb_sp_prod;
1553 	atomic_t		cq_spq_left; /* ETH_XXX ramrods credit */
1554 	/* used to synchronize spq accesses */
1555 	spinlock_t		spq_lock;
1556 
1557 	/* event queue */
1558 	union event_ring_elem	*eq_ring;
1559 	dma_addr_t		eq_mapping;
1560 	u16			eq_prod;
1561 	u16			eq_cons;
1562 	__le16			*eq_cons_sb;
1563 	atomic_t		eq_spq_left; /* COMMON_XXX ramrods credit */
1564 
1565 	/* Counter for marking that there is a STAT_QUERY ramrod pending */
1566 	u16			stats_pending;
1567 	/*  Counter for completed statistics ramrods */
1568 	u16			stats_comp;
1569 
1570 	/* End of fields used in the performance code paths */
1571 
1572 	int			panic;
1573 	int			msg_enable;
1574 
1575 	u32			flags;
1576 #define PCIX_FLAG			(1 << 0)
1577 #define PCI_32BIT_FLAG			(1 << 1)
1578 #define ONE_PORT_FLAG			(1 << 2)
1579 #define NO_WOL_FLAG			(1 << 3)
1580 #define USING_MSIX_FLAG			(1 << 5)
1581 #define USING_MSI_FLAG			(1 << 6)
1582 #define DISABLE_MSI_FLAG		(1 << 7)
1583 #define TPA_ENABLE_FLAG			(1 << 8)
1584 #define NO_MCP_FLAG			(1 << 9)
1585 #define GRO_ENABLE_FLAG			(1 << 10)
1586 #define MF_FUNC_DIS			(1 << 11)
1587 #define OWN_CNIC_IRQ			(1 << 12)
1588 #define NO_ISCSI_OOO_FLAG		(1 << 13)
1589 #define NO_ISCSI_FLAG			(1 << 14)
1590 #define NO_FCOE_FLAG			(1 << 15)
1591 #define BC_SUPPORTS_PFC_STATS		(1 << 17)
1592 #define TX_SWITCHING			(1 << 18)
1593 #define BC_SUPPORTS_FCOE_FEATURES	(1 << 19)
1594 #define USING_SINGLE_MSIX_FLAG		(1 << 20)
1595 #define BC_SUPPORTS_DCBX_MSG_NON_PMF	(1 << 21)
1596 #define IS_VF_FLAG			(1 << 22)
1597 #define BC_SUPPORTS_RMMOD_CMD		(1 << 23)
1598 #define HAS_PHYS_PORT_ID		(1 << 24)
1599 #define AER_ENABLED			(1 << 25)
1600 #define PTP_SUPPORTED			(1 << 26)
1601 #define TX_TIMESTAMPING_EN		(1 << 27)
1602 
1603 #define BP_NOMCP(bp)			((bp)->flags & NO_MCP_FLAG)
1604 
1605 #ifdef CONFIG_BNX2X_SRIOV
1606 #define IS_VF(bp)			((bp)->flags & IS_VF_FLAG)
1607 #define IS_PF(bp)			(!((bp)->flags & IS_VF_FLAG))
1608 #else
1609 #define IS_VF(bp)			false
1610 #define IS_PF(bp)			true
1611 #endif
1612 
1613 #define NO_ISCSI(bp)		((bp)->flags & NO_ISCSI_FLAG)
1614 #define NO_ISCSI_OOO(bp)	((bp)->flags & NO_ISCSI_OOO_FLAG)
1615 #define NO_FCOE(bp)		((bp)->flags & NO_FCOE_FLAG)
1616 
1617 	u8			cnic_support;
1618 	bool			cnic_enabled;
1619 	bool			cnic_loaded;
1620 	struct cnic_eth_dev	*(*cnic_probe)(struct net_device *);
1621 
1622 	/* Flag that indicates that we can start looking for FCoE L2 queue
1623 	 * completions in the default status block.
1624 	 */
1625 	bool			fcoe_init;
1626 
1627 	int			mrrs;
1628 
1629 	struct delayed_work	sp_task;
1630 	struct delayed_work	iov_task;
1631 
1632 	atomic_t		interrupt_occurred;
1633 	struct delayed_work	sp_rtnl_task;
1634 
1635 	struct delayed_work	period_task;
1636 	struct timer_list	timer;
1637 	int			current_interval;
1638 
1639 	u16			fw_seq;
1640 	u16			fw_drv_pulse_wr_seq;
1641 	u32			func_stx;
1642 
1643 	struct link_params	link_params;
1644 	struct link_vars	link_vars;
1645 	u32			link_cnt;
1646 	struct bnx2x_link_report_data last_reported_link;
1647 
1648 	struct mdio_if_info	mdio;
1649 
1650 	struct bnx2x_common	common;
1651 	struct bnx2x_port	port;
1652 
1653 	struct cmng_init	cmng;
1654 
1655 	u32			mf_config[E1HVN_MAX];
1656 	u32			mf_ext_config;
1657 	u32			path_has_ovlan; /* E3 */
1658 	u16			mf_ov;
1659 	u8			mf_mode;
1660 #define IS_MF(bp)		(bp->mf_mode != 0)
1661 #define IS_MF_SI(bp)		(bp->mf_mode == MULTI_FUNCTION_SI)
1662 #define IS_MF_SD(bp)		(bp->mf_mode == MULTI_FUNCTION_SD)
1663 #define IS_MF_AFEX(bp)		(bp->mf_mode == MULTI_FUNCTION_AFEX)
1664 	u8			mf_sub_mode;
1665 #define IS_MF_UFP(bp)		(IS_MF_SD(bp) && \
1666 				 bp->mf_sub_mode == SUB_MF_MODE_UFP)
1667 
1668 	u8			wol;
1669 
1670 	int			rx_ring_size;
1671 
1672 	u16			tx_quick_cons_trip_int;
1673 	u16			tx_quick_cons_trip;
1674 	u16			tx_ticks_int;
1675 	u16			tx_ticks;
1676 
1677 	u16			rx_quick_cons_trip_int;
1678 	u16			rx_quick_cons_trip;
1679 	u16			rx_ticks_int;
1680 	u16			rx_ticks;
1681 /* Maximal coalescing timeout in us */
1682 #define BNX2X_MAX_COALESCE_TOUT		(0xff*BNX2X_BTR)
1683 
1684 	u32			lin_cnt;
1685 
1686 	u16			state;
1687 #define BNX2X_STATE_CLOSED		0
1688 #define BNX2X_STATE_OPENING_WAIT4_LOAD	0x1000
1689 #define BNX2X_STATE_OPENING_WAIT4_PORT	0x2000
1690 #define BNX2X_STATE_OPEN		0x3000
1691 #define BNX2X_STATE_CLOSING_WAIT4_HALT	0x4000
1692 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1693 
1694 #define BNX2X_STATE_DIAG		0xe000
1695 #define BNX2X_STATE_ERROR		0xf000
1696 
1697 #define BNX2X_MAX_PRIORITY		8
1698 	int			num_queues;
1699 	uint			num_ethernet_queues;
1700 	uint			num_cnic_queues;
1701 	int			disable_tpa;
1702 
1703 	u32			rx_mode;
1704 #define BNX2X_RX_MODE_NONE		0
1705 #define BNX2X_RX_MODE_NORMAL		1
1706 #define BNX2X_RX_MODE_ALLMULTI		2
1707 #define BNX2X_RX_MODE_PROMISC		3
1708 #define BNX2X_MAX_MULTICAST		64
1709 
1710 	u8			igu_dsb_id;
1711 	u8			igu_base_sb;
1712 	u8			igu_sb_cnt;
1713 	u8			min_msix_vec_cnt;
1714 
1715 	u32			igu_base_addr;
1716 	dma_addr_t		def_status_blk_mapping;
1717 
1718 	struct bnx2x_slowpath	*slowpath;
1719 	dma_addr_t		slowpath_mapping;
1720 
1721 	/* Mechanism protecting the drv_info_to_mcp */
1722 	struct mutex		drv_info_mutex;
1723 	bool			drv_info_mng_owner;
1724 
1725 	/* Total number of FW statistics requests */
1726 	u8			fw_stats_num;
1727 
1728 	/*
1729 	 * This is a memory buffer that will contain both statistics
1730 	 * ramrod request and data.
1731 	 */
1732 	void			*fw_stats;
1733 	dma_addr_t		fw_stats_mapping;
1734 
1735 	/*
1736 	 * FW statistics request shortcut (points at the
1737 	 * beginning of fw_stats buffer).
1738 	 */
1739 	struct bnx2x_fw_stats_req	*fw_stats_req;
1740 	dma_addr_t			fw_stats_req_mapping;
1741 	int				fw_stats_req_sz;
1742 
1743 	/*
1744 	 * FW statistics data shortcut (points at the beginning of
1745 	 * fw_stats buffer + fw_stats_req_sz).
1746 	 */
1747 	struct bnx2x_fw_stats_data	*fw_stats_data;
1748 	dma_addr_t			fw_stats_data_mapping;
1749 	int				fw_stats_data_sz;
1750 
1751 	/* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1752 	 * context size we need 8 ILT entries.
1753 	 */
1754 #define ILT_MAX_L2_LINES	32
1755 	struct hw_context	context[ILT_MAX_L2_LINES];
1756 
1757 	struct bnx2x_ilt	*ilt;
1758 #define BP_ILT(bp)		((bp)->ilt)
1759 #define ILT_MAX_LINES		256
1760 /*
1761  * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1762  * to CNIC.
1763  */
1764 #define BNX2X_MAX_RSS_COUNT(bp)	((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1765 
1766 /*
1767  * Maximum CID count that might be required by the bnx2x:
1768  * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1769  */
1770 
1771 #define BNX2X_L2_CID_COUNT(bp)	(BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1772 				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1773 #define BNX2X_L2_MAX_CID(bp)	(BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1774 				+ CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1775 #define L2_ILT_LINES(bp)	(DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1776 					ILT_PAGE_CIDS))
1777 
1778 	int			qm_cid_count;
1779 
1780 	bool			dropless_fc;
1781 
1782 	void			*t2;
1783 	dma_addr_t		t2_mapping;
1784 	struct cnic_ops	__rcu	*cnic_ops;
1785 	void			*cnic_data;
1786 	u32			cnic_tag;
1787 	struct cnic_eth_dev	cnic_eth_dev;
1788 	union host_hc_status_block cnic_sb;
1789 	dma_addr_t		cnic_sb_mapping;
1790 	struct eth_spe		*cnic_kwq;
1791 	struct eth_spe		*cnic_kwq_prod;
1792 	struct eth_spe		*cnic_kwq_cons;
1793 	struct eth_spe		*cnic_kwq_last;
1794 	u16			cnic_kwq_pending;
1795 	u16			cnic_spq_pending;
1796 	u8			fip_mac[ETH_ALEN];
1797 	struct mutex		cnic_mutex;
1798 	struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1799 
1800 	/* Start index of the "special" (CNIC related) L2 clients */
1801 	u8				cnic_base_cl_id;
1802 
1803 	int			dmae_ready;
1804 	/* used to synchronize dmae accesses */
1805 	spinlock_t		dmae_lock;
1806 
1807 	/* used to protect the FW mail box */
1808 	struct mutex		fw_mb_mutex;
1809 
1810 	/* used to synchronize stats collecting */
1811 	int			stats_state;
1812 
1813 	/* used for synchronization of concurrent threads statistics handling */
1814 	struct mutex		stats_lock;
1815 
1816 	/* used by dmae command loader */
1817 	struct dmae_command	stats_dmae;
1818 	int			executer_idx;
1819 
1820 	u16			stats_counter;
1821 	struct bnx2x_eth_stats	eth_stats;
1822 	struct host_func_stats		func_stats;
1823 	struct bnx2x_eth_stats_old	eth_stats_old;
1824 	struct bnx2x_net_stats_old	net_stats_old;
1825 	struct bnx2x_fw_port_stats_old	fw_stats_old;
1826 	bool			stats_init;
1827 
1828 	struct z_stream_s	*strm;
1829 	void			*gunzip_buf;
1830 	dma_addr_t		gunzip_mapping;
1831 	int			gunzip_outlen;
1832 #define FW_BUF_SIZE			0x8000
1833 #define GUNZIP_BUF(bp)			(bp->gunzip_buf)
1834 #define GUNZIP_PHYS(bp)			(bp->gunzip_mapping)
1835 #define GUNZIP_OUTLEN(bp)		(bp->gunzip_outlen)
1836 
1837 	struct raw_op		*init_ops;
1838 	/* Init blocks offsets inside init_ops */
1839 	u16			*init_ops_offsets;
1840 	/* Data blob - has 32 bit granularity */
1841 	u32			*init_data;
1842 	u32			init_mode_flags;
1843 #define INIT_MODE_FLAGS(bp)	(bp->init_mode_flags)
1844 	/* Zipped PRAM blobs - raw data */
1845 	const u8		*tsem_int_table_data;
1846 	const u8		*tsem_pram_data;
1847 	const u8		*usem_int_table_data;
1848 	const u8		*usem_pram_data;
1849 	const u8		*xsem_int_table_data;
1850 	const u8		*xsem_pram_data;
1851 	const u8		*csem_int_table_data;
1852 	const u8		*csem_pram_data;
1853 #define INIT_OPS(bp)			(bp->init_ops)
1854 #define INIT_OPS_OFFSETS(bp)		(bp->init_ops_offsets)
1855 #define INIT_DATA(bp)			(bp->init_data)
1856 #define INIT_TSEM_INT_TABLE_DATA(bp)	(bp->tsem_int_table_data)
1857 #define INIT_TSEM_PRAM_DATA(bp)		(bp->tsem_pram_data)
1858 #define INIT_USEM_INT_TABLE_DATA(bp)	(bp->usem_int_table_data)
1859 #define INIT_USEM_PRAM_DATA(bp)		(bp->usem_pram_data)
1860 #define INIT_XSEM_INT_TABLE_DATA(bp)	(bp->xsem_int_table_data)
1861 #define INIT_XSEM_PRAM_DATA(bp)		(bp->xsem_pram_data)
1862 #define INIT_CSEM_INT_TABLE_DATA(bp)	(bp->csem_int_table_data)
1863 #define INIT_CSEM_PRAM_DATA(bp)		(bp->csem_pram_data)
1864 
1865 #define PHY_FW_VER_LEN			20
1866 	char			fw_ver[32];
1867 	const struct firmware	*firmware;
1868 
1869 	struct bnx2x_vfdb	*vfdb;
1870 #define IS_SRIOV(bp)		((bp)->vfdb)
1871 
1872 	/* DCB support on/off */
1873 	u16 dcb_state;
1874 #define BNX2X_DCB_STATE_OFF			0
1875 #define BNX2X_DCB_STATE_ON			1
1876 
1877 	/* DCBX engine mode */
1878 	int dcbx_enabled;
1879 #define BNX2X_DCBX_ENABLED_OFF			0
1880 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF		1
1881 #define BNX2X_DCBX_ENABLED_ON_NEG_ON		2
1882 #define BNX2X_DCBX_ENABLED_INVALID		(-1)
1883 
1884 	bool dcbx_mode_uset;
1885 
1886 	struct bnx2x_config_dcbx_params		dcbx_config_params;
1887 	struct bnx2x_dcbx_port_params		dcbx_port_params;
1888 	int					dcb_version;
1889 
1890 	/* CAM credit pools */
1891 
1892 	/* used only in sriov */
1893 	struct bnx2x_credit_pool_obj		vlans_pool;
1894 
1895 	struct bnx2x_credit_pool_obj		macs_pool;
1896 
1897 	/* RX_MODE object */
1898 	struct bnx2x_rx_mode_obj		rx_mode_obj;
1899 
1900 	/* MCAST object */
1901 	struct bnx2x_mcast_obj			mcast_obj;
1902 
1903 	/* RSS configuration object */
1904 	struct bnx2x_rss_config_obj		rss_conf_obj;
1905 
1906 	/* Function State controlling object */
1907 	struct bnx2x_func_sp_obj		func_obj;
1908 
1909 	unsigned long				sp_state;
1910 
1911 	/* operation indication for the sp_rtnl task */
1912 	unsigned long				sp_rtnl_state;
1913 
1914 	/* Indication of the IOV tasks */
1915 	unsigned long				iov_task_state;
1916 
1917 	/* DCBX Negotiation results */
1918 	struct dcbx_features			dcbx_local_feat;
1919 	u32					dcbx_error;
1920 
1921 #ifdef BCM_DCBNL
1922 	struct dcbx_features			dcbx_remote_feat;
1923 	u32					dcbx_remote_flags;
1924 #endif
1925 	/* AFEX: store default vlan used */
1926 	int					afex_def_vlan_tag;
1927 	enum mf_cfg_afex_vlan_mode		afex_vlan_mode;
1928 	u32					pending_max;
1929 
1930 	/* multiple tx classes of service */
1931 	u8					max_cos;
1932 
1933 	/* priority to cos mapping */
1934 	u8					prio_to_cos[8];
1935 
1936 	int fp_array_size;
1937 	u32 dump_preset_idx;
1938 
1939 	u8					phys_port_id[ETH_ALEN];
1940 
1941 	/* PTP related context */
1942 	struct ptp_clock *ptp_clock;
1943 	struct ptp_clock_info ptp_clock_info;
1944 	struct work_struct ptp_task;
1945 	struct cyclecounter cyclecounter;
1946 	struct timecounter timecounter;
1947 	bool timecounter_init_done;
1948 	struct sk_buff *ptp_tx_skb;
1949 	unsigned long ptp_tx_start;
1950 	bool hwtstamp_ioctl_called;
1951 	u16 tx_type;
1952 	u16 rx_filter;
1953 
1954 	struct bnx2x_link_report_data		vf_link_vars;
1955 };
1956 
1957 /* Tx queues may be less or equal to Rx queues */
1958 extern int num_queues;
1959 #define BNX2X_NUM_QUEUES(bp)	(bp->num_queues)
1960 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1961 #define BNX2X_NUM_NON_CNIC_QUEUES(bp)	(BNX2X_NUM_QUEUES(bp) - \
1962 					 (bp)->num_cnic_queues)
1963 #define BNX2X_NUM_RX_QUEUES(bp)	BNX2X_NUM_QUEUES(bp)
1964 
1965 #define is_multi(bp)		(BNX2X_NUM_QUEUES(bp) > 1)
1966 
1967 #define BNX2X_MAX_QUEUES(bp)	BNX2X_MAX_RSS_COUNT(bp)
1968 /* #define is_eth_multi(bp)	(BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1969 
1970 #define RSS_IPV4_CAP_MASK						\
1971 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1972 
1973 #define RSS_IPV4_TCP_CAP_MASK						\
1974 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1975 
1976 #define RSS_IPV6_CAP_MASK						\
1977 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1978 
1979 #define RSS_IPV6_TCP_CAP_MASK						\
1980 	TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1981 
1982 /* func init flags */
1983 #define FUNC_FLG_RSS		0x0001
1984 #define FUNC_FLG_STATS		0x0002
1985 /* removed  FUNC_FLG_UNMATCHED	0x0004 */
1986 #define FUNC_FLG_TPA		0x0008
1987 #define FUNC_FLG_SPQ		0x0010
1988 #define FUNC_FLG_LEADING	0x0020	/* PF only */
1989 #define FUNC_FLG_LEADING_STATS	0x0040
1990 struct bnx2x_func_init_params {
1991 	/* dma */
1992 	dma_addr_t	fw_stat_map;	/* valid iff FUNC_FLG_STATS */
1993 	dma_addr_t	spq_map;	/* valid iff FUNC_FLG_SPQ */
1994 
1995 	u16		func_flgs;
1996 	u16		func_id;	/* abs fid */
1997 	u16		pf_id;
1998 	u16		spq_prod;	/* valid iff FUNC_FLG_SPQ */
1999 };
2000 
2001 #define for_each_cnic_queue(bp, var) \
2002 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2003 	     (var)++) \
2004 		if (skip_queue(bp, var))	\
2005 			continue;		\
2006 		else
2007 
2008 #define for_each_eth_queue(bp, var) \
2009 	for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
2010 
2011 #define for_each_nondefault_eth_queue(bp, var) \
2012 	for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
2013 
2014 #define for_each_queue(bp, var) \
2015 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2016 		if (skip_queue(bp, var))	\
2017 			continue;		\
2018 		else
2019 
2020 /* Skip forwarding FP */
2021 #define for_each_valid_rx_queue(bp, var)			\
2022 	for ((var) = 0;						\
2023 	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
2024 		      BNX2X_NUM_ETH_QUEUES(bp));		\
2025 	     (var)++)						\
2026 		if (skip_rx_queue(bp, var))			\
2027 			continue;				\
2028 		else
2029 
2030 #define for_each_rx_queue_cnic(bp, var) \
2031 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2032 	     (var)++) \
2033 		if (skip_rx_queue(bp, var))	\
2034 			continue;		\
2035 		else
2036 
2037 #define for_each_rx_queue(bp, var) \
2038 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2039 		if (skip_rx_queue(bp, var))	\
2040 			continue;		\
2041 		else
2042 
2043 /* Skip OOO FP */
2044 #define for_each_valid_tx_queue(bp, var)			\
2045 	for ((var) = 0;						\
2046 	     (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) :	\
2047 		      BNX2X_NUM_ETH_QUEUES(bp));		\
2048 	     (var)++)						\
2049 		if (skip_tx_queue(bp, var))			\
2050 			continue;				\
2051 		else
2052 
2053 #define for_each_tx_queue_cnic(bp, var) \
2054 	for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2055 	     (var)++) \
2056 		if (skip_tx_queue(bp, var))	\
2057 			continue;		\
2058 		else
2059 
2060 #define for_each_tx_queue(bp, var) \
2061 	for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2062 		if (skip_tx_queue(bp, var))	\
2063 			continue;		\
2064 		else
2065 
2066 #define for_each_nondefault_queue(bp, var) \
2067 	for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2068 		if (skip_queue(bp, var))	\
2069 			continue;		\
2070 		else
2071 
2072 #define for_each_cos_in_tx_queue(fp, var) \
2073 	for ((var) = 0; (var) < (fp)->max_cos; (var)++)
2074 
2075 /* skip rx queue
2076  * if FCOE l2 support is disabled and this is the fcoe L2 queue
2077  */
2078 #define skip_rx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2079 
2080 /* skip tx queue
2081  * if FCOE l2 support is disabled and this is the fcoe L2 queue
2082  */
2083 #define skip_tx_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2084 
2085 #define skip_queue(bp, idx)	(NO_FCOE(bp) && IS_FCOE_IDX(idx))
2086 
2087 /**
2088  * bnx2x_set_mac_one - configure a single MAC address
2089  *
2090  * @bp:			driver handle
2091  * @mac:		MAC to configure
2092  * @obj:		MAC object handle
2093  * @set:		if 'true' add a new MAC, otherwise - delete
2094  * @mac_type:		the type of the MAC to configure (e.g. ETH, UC list)
2095  * @ramrod_flags:	RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
2096  *
2097  * Configures one MAC according to provided parameters or continues the
2098  * execution of previously scheduled commands if RAMROD_CONT is set in
2099  * ramrod_flags.
2100  *
2101  * Returns zero if operation has successfully completed, a positive value if the
2102  * operation has been successfully scheduled and a negative - if a requested
2103  * operations has failed.
2104  */
2105 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
2106 		      struct bnx2x_vlan_mac_obj *obj, bool set,
2107 		      int mac_type, unsigned long *ramrod_flags);
2108 /**
2109  * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2110  *
2111  * @bp:			driver handle
2112  * @mac_obj:		MAC object handle
2113  * @mac_type:		type of the MACs to clear (BNX2X_XXX_MAC)
2114  * @wait_for_comp:	if 'true' block until completion
2115  *
2116  * Deletes all MACs of the specific type (e.g. ETH, UC list).
2117  *
2118  * Returns zero if operation has successfully completed, a positive value if the
2119  * operation has been successfully scheduled and a negative - if a requested
2120  * operations has failed.
2121  */
2122 int bnx2x_del_all_macs(struct bnx2x *bp,
2123 		       struct bnx2x_vlan_mac_obj *mac_obj,
2124 		       int mac_type, bool wait_for_comp);
2125 
2126 /* Init Function API  */
2127 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2128 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2129 		    u8 vf_valid, int fw_sb_id, int igu_sb_id);
2130 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2131 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2132 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2134 void bnx2x_read_mf_cfg(struct bnx2x *bp);
2135 
2136 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2137 
2138 /* dmae */
2139 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2140 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2141 		      u32 len32);
2142 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2143 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2144 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2145 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2146 		      bool with_comp, u8 comp_type);
2147 
2148 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2149 			       u8 src_type, u8 dst_type);
2150 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2151 			       u32 *comp);
2152 
2153 /* FLR related routines */
2154 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2155 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2156 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2157 u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2158 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2159 				    char *msg, u32 poll_cnt);
2160 
2161 void bnx2x_calc_fc_adv(struct bnx2x *bp);
2162 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2163 		  u32 data_hi, u32 data_lo, int cmd_type);
2164 void bnx2x_update_coalesce(struct bnx2x *bp);
2165 int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2166 
2167 bool bnx2x_port_after_undi(struct bnx2x *bp);
2168 
2169 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2170 			   int wait)
2171 {
2172 	u32 val;
2173 
2174 	do {
2175 		val = REG_RD(bp, reg);
2176 		if (val == expected)
2177 			break;
2178 		ms -= wait;
2179 		msleep(wait);
2180 
2181 	} while (ms > 0);
2182 
2183 	return val;
2184 }
2185 
2186 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2187 			    bool is_pf);
2188 
2189 #define BNX2X_ILT_ZALLOC(x, y, size)					\
2190 	x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2191 
2192 #define BNX2X_ILT_FREE(x, y, size) \
2193 	do { \
2194 		if (x) { \
2195 			dma_free_coherent(&bp->pdev->dev, size, x, y); \
2196 			x = NULL; \
2197 			y = 0; \
2198 		} \
2199 	} while (0)
2200 
2201 #define ILOG2(x)	(ilog2((x)))
2202 
2203 #define ILT_NUM_PAGE_ENTRIES	(3072)
2204 /* In 57710/11 we use whole table since we have 8 func
2205  * In 57712 we have only 4 func, but use same size per func, then only half of
2206  * the table in use
2207  */
2208 #define ILT_PER_FUNC		(ILT_NUM_PAGE_ENTRIES/8)
2209 
2210 #define FUNC_ILT_BASE(func)	(func * ILT_PER_FUNC)
2211 /*
2212  * the phys address is shifted right 12 bits and has an added
2213  * 1=valid bit added to the 53rd bit
2214  * then since this is a wide register(TM)
2215  * we split it into two 32 bit writes
2216  */
2217 #define ONCHIP_ADDR1(x)		((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2218 #define ONCHIP_ADDR2(x)		((u32)((1 << 20) | ((u64)x >> 44)))
2219 
2220 /* load/unload mode */
2221 #define LOAD_NORMAL			0
2222 #define LOAD_OPEN			1
2223 #define LOAD_DIAG			2
2224 #define LOAD_LOOPBACK_EXT		3
2225 #define UNLOAD_NORMAL			0
2226 #define UNLOAD_CLOSE			1
2227 #define UNLOAD_RECOVERY			2
2228 
2229 /* DMAE command defines */
2230 #define DMAE_TIMEOUT			-1
2231 #define DMAE_PCI_ERROR			-2	/* E2 and onward */
2232 #define DMAE_NOT_RDY			-3
2233 #define DMAE_PCI_ERR_FLAG		0x80000000
2234 
2235 #define DMAE_SRC_PCI			0
2236 #define DMAE_SRC_GRC			1
2237 
2238 #define DMAE_DST_NONE			0
2239 #define DMAE_DST_PCI			1
2240 #define DMAE_DST_GRC			2
2241 
2242 #define DMAE_COMP_PCI			0
2243 #define DMAE_COMP_GRC			1
2244 
2245 /* E2 and onward - PCI error handling in the completion */
2246 
2247 #define DMAE_COMP_REGULAR		0
2248 #define DMAE_COM_SET_ERR		1
2249 
2250 #define DMAE_CMD_SRC_PCI		(DMAE_SRC_PCI << \
2251 						DMAE_COMMAND_SRC_SHIFT)
2252 #define DMAE_CMD_SRC_GRC		(DMAE_SRC_GRC << \
2253 						DMAE_COMMAND_SRC_SHIFT)
2254 
2255 #define DMAE_CMD_DST_PCI		(DMAE_DST_PCI << \
2256 						DMAE_COMMAND_DST_SHIFT)
2257 #define DMAE_CMD_DST_GRC		(DMAE_DST_GRC << \
2258 						DMAE_COMMAND_DST_SHIFT)
2259 
2260 #define DMAE_CMD_C_DST_PCI		(DMAE_COMP_PCI << \
2261 						DMAE_COMMAND_C_DST_SHIFT)
2262 #define DMAE_CMD_C_DST_GRC		(DMAE_COMP_GRC << \
2263 						DMAE_COMMAND_C_DST_SHIFT)
2264 
2265 #define DMAE_CMD_C_ENABLE		DMAE_COMMAND_C_TYPE_ENABLE
2266 
2267 #define DMAE_CMD_ENDIANITY_NO_SWAP	(0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2268 #define DMAE_CMD_ENDIANITY_B_SWAP	(1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2269 #define DMAE_CMD_ENDIANITY_DW_SWAP	(2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2270 #define DMAE_CMD_ENDIANITY_B_DW_SWAP	(3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2271 
2272 #define DMAE_CMD_PORT_0			0
2273 #define DMAE_CMD_PORT_1			DMAE_COMMAND_PORT
2274 
2275 #define DMAE_CMD_SRC_RESET		DMAE_COMMAND_SRC_RESET
2276 #define DMAE_CMD_DST_RESET		DMAE_COMMAND_DST_RESET
2277 #define DMAE_CMD_E1HVN_SHIFT		DMAE_COMMAND_E1HVN_SHIFT
2278 
2279 #define DMAE_SRC_PF			0
2280 #define DMAE_SRC_VF			1
2281 
2282 #define DMAE_DST_PF			0
2283 #define DMAE_DST_VF			1
2284 
2285 #define DMAE_C_SRC			0
2286 #define DMAE_C_DST			1
2287 
2288 #define DMAE_LEN32_RD_MAX		0x80
2289 #define DMAE_LEN32_WR_MAX(bp)		(CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2290 
2291 #define DMAE_COMP_VAL			0x60d0d0ae /* E2 and on - upper bit
2292 						    * indicates error
2293 						    */
2294 
2295 #define MAX_DMAE_C_PER_PORT		8
2296 #define INIT_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2297 					 BP_VN(bp))
2298 #define PMF_DMAE_C(bp)			(BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2299 					 E1HVN_MAX)
2300 
2301 /* PCIE link and speed */
2302 #define PCICFG_LINK_WIDTH		0x1f00000
2303 #define PCICFG_LINK_WIDTH_SHIFT		20
2304 #define PCICFG_LINK_SPEED		0xf0000
2305 #define PCICFG_LINK_SPEED_SHIFT		16
2306 
2307 #define BNX2X_NUM_TESTS_SF		7
2308 #define BNX2X_NUM_TESTS_MF		3
2309 #define BNX2X_NUM_TESTS(bp)		(IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2310 					     IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF)
2311 
2312 #define BNX2X_PHY_LOOPBACK		0
2313 #define BNX2X_MAC_LOOPBACK		1
2314 #define BNX2X_EXT_LOOPBACK		2
2315 #define BNX2X_PHY_LOOPBACK_FAILED	1
2316 #define BNX2X_MAC_LOOPBACK_FAILED	2
2317 #define BNX2X_EXT_LOOPBACK_FAILED	3
2318 #define BNX2X_LOOPBACK_FAILED		(BNX2X_MAC_LOOPBACK_FAILED | \
2319 					 BNX2X_PHY_LOOPBACK_FAILED)
2320 
2321 #define STROM_ASSERT_ARRAY_SIZE		50
2322 
2323 /* must be used on a CID before placing it on a HW ring */
2324 #define HW_CID(bp, x)			((BP_PORT(bp) << 23) | \
2325 					 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2326 					 (x))
2327 
2328 #define SP_DESC_CNT		(BCM_PAGE_SIZE / sizeof(struct eth_spe))
2329 #define MAX_SP_DESC_CNT			(SP_DESC_CNT - 1)
2330 
2331 #define BNX2X_BTR			4
2332 #define MAX_SPQ_PENDING			8
2333 
2334 /* CMNG constants, as derived from system spec calculations */
2335 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2336 #define DEF_MIN_RATE					100
2337 /* resolution of the rate shaping timer - 400 usec */
2338 #define RS_PERIODIC_TIMEOUT_USEC			400
2339 /* number of bytes in single QM arbitration cycle -
2340  * coefficient for calculating the fairness timer */
2341 #define QM_ARB_BYTES					160000
2342 /* resolution of Min algorithm 1:100 */
2343 #define MIN_RES						100
2344 /* how many bytes above threshold for the minimal credit of Min algorithm*/
2345 #define MIN_ABOVE_THRESH				32768
2346 /* Fairness algorithm integration time coefficient -
2347  * for calculating the actual Tfair */
2348 #define T_FAIR_COEF	((MIN_ABOVE_THRESH +  QM_ARB_BYTES) * 8 * MIN_RES)
2349 /* Memory of fairness algorithm . 2 cycles */
2350 #define FAIR_MEM					2
2351 
2352 #define ATTN_NIG_FOR_FUNC		(1L << 8)
2353 #define ATTN_SW_TIMER_4_FUNC		(1L << 9)
2354 #define GPIO_2_FUNC			(1L << 10)
2355 #define GPIO_3_FUNC			(1L << 11)
2356 #define GPIO_4_FUNC			(1L << 12)
2357 #define ATTN_GENERAL_ATTN_1		(1L << 13)
2358 #define ATTN_GENERAL_ATTN_2		(1L << 14)
2359 #define ATTN_GENERAL_ATTN_3		(1L << 15)
2360 #define ATTN_GENERAL_ATTN_4		(1L << 13)
2361 #define ATTN_GENERAL_ATTN_5		(1L << 14)
2362 #define ATTN_GENERAL_ATTN_6		(1L << 15)
2363 
2364 #define ATTN_HARD_WIRED_MASK		0xff00
2365 #define ATTENTION_ID			4
2366 
2367 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \
2368 				 IS_MF_FCOE_AFEX(bp))
2369 
2370 /* stuff added to make the code fit 80Col */
2371 
2372 #define BNX2X_PMF_LINK_ASSERT \
2373 	GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2374 
2375 #define BNX2X_MC_ASSERT_BITS \
2376 	(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2377 	 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2378 	 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2379 	 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2380 
2381 #define BNX2X_MCP_ASSERT \
2382 	GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2383 
2384 #define BNX2X_GRC_TIMEOUT	GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2385 #define BNX2X_GRC_RSV		(GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2386 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2387 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2388 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2389 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2390 				 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2391 
2392 #define HW_INTERRUT_ASSERT_SET_0 \
2393 				(AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2394 				 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2395 				 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2396 				 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2397 				 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2398 #define HW_PRTY_ASSERT_SET_0	(AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2399 				 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2400 				 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2401 				 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2402 				 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2403 				 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2404 				 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2405 #define HW_INTERRUT_ASSERT_SET_1 \
2406 				(AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2407 				 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2408 				 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2409 				 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2410 				 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2411 				 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2412 				 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2413 				 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2414 				 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2415 				 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2416 				 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2417 #define HW_PRTY_ASSERT_SET_1	(AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2418 				 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2419 				 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2420 				 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2421 				 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2422 				 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2423 				 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2424 				 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2425 			     AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2426 				 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2427 				 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2428 				 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2429 				 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2430 				 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2431 				 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2432 				 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2433 #define HW_INTERRUT_ASSERT_SET_2 \
2434 				(AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2435 				 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2436 				 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2437 			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2438 				 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2439 #define HW_PRTY_ASSERT_SET_2	(AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2440 				 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2441 			AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2442 				 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2443 				 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2444 				 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2445 				 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2446 				 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2447 
2448 #define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2449 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2450 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2451 		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2452 
2453 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2454 			      AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2455 
2456 #define MULTI_MASK			0x7f
2457 
2458 #define DEF_USB_FUNC_OFF	offsetof(struct cstorm_def_status_block_u, func)
2459 #define DEF_CSB_FUNC_OFF	offsetof(struct cstorm_def_status_block_c, func)
2460 #define DEF_XSB_FUNC_OFF	offsetof(struct xstorm_def_status_block, func)
2461 #define DEF_TSB_FUNC_OFF	offsetof(struct tstorm_def_status_block, func)
2462 
2463 #define DEF_USB_IGU_INDEX_OFF \
2464 			offsetof(struct cstorm_def_status_block_u, igu_index)
2465 #define DEF_CSB_IGU_INDEX_OFF \
2466 			offsetof(struct cstorm_def_status_block_c, igu_index)
2467 #define DEF_XSB_IGU_INDEX_OFF \
2468 			offsetof(struct xstorm_def_status_block, igu_index)
2469 #define DEF_TSB_IGU_INDEX_OFF \
2470 			offsetof(struct tstorm_def_status_block, igu_index)
2471 
2472 #define DEF_USB_SEGMENT_OFF \
2473 			offsetof(struct cstorm_def_status_block_u, segment)
2474 #define DEF_CSB_SEGMENT_OFF \
2475 			offsetof(struct cstorm_def_status_block_c, segment)
2476 #define DEF_XSB_SEGMENT_OFF \
2477 			offsetof(struct xstorm_def_status_block, segment)
2478 #define DEF_TSB_SEGMENT_OFF \
2479 			offsetof(struct tstorm_def_status_block, segment)
2480 
2481 #define BNX2X_SP_DSB_INDEX \
2482 		(&bp->def_status_blk->sp_sb.\
2483 					index_values[HC_SP_INDEX_ETH_DEF_CONS])
2484 
2485 #define CAM_IS_INVALID(x) \
2486 	(GET_FLAG(x.flags, \
2487 	MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2488 	(T_ETH_MAC_COMMAND_INVALIDATE))
2489 
2490 /* Number of u32 elements in MC hash array */
2491 #define MC_HASH_SIZE			8
2492 #define MC_HASH_OFFSET(bp, i)		(BAR_TSTRORM_INTMEM + \
2493 	TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2494 
2495 #ifndef PXP2_REG_PXP2_INT_STS
2496 #define PXP2_REG_PXP2_INT_STS		PXP2_REG_PXP2_INT_STS_0
2497 #endif
2498 
2499 #ifndef ETH_MAX_RX_CLIENTS_E2
2500 #define ETH_MAX_RX_CLIENTS_E2		ETH_MAX_RX_CLIENTS_E1H
2501 #endif
2502 
2503 #define BNX2X_VPD_LEN			128
2504 #define VENDOR_ID_LEN			4
2505 
2506 #define VF_ACQUIRE_THRESH		3
2507 #define VF_ACQUIRE_MAC_FILTERS		1
2508 #define VF_ACQUIRE_MC_FILTERS		10
2509 
2510 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2511 			    (!((me_reg) & ME_REG_VF_ERR)))
2512 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err);
2513 
2514 /* Congestion management fairness mode */
2515 #define CMNG_FNS_NONE			0
2516 #define CMNG_FNS_MINMAX			1
2517 
2518 #define HC_SEG_ACCESS_DEF		0   /*Driver decision 0-3*/
2519 #define HC_SEG_ACCESS_ATTN		4
2520 #define HC_SEG_ACCESS_NORM		0   /*Driver decision 0-1*/
2521 
2522 static const u32 dmae_reg_go_c[] = {
2523 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2524 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2525 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2526 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2527 };
2528 
2529 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2530 void bnx2x_notify_link_changed(struct bnx2x *bp);
2531 
2532 #define BNX2X_MF_SD_PROTOCOL(bp) \
2533 	((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2534 
2535 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2536 	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2537 
2538 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2539 	(BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2540 
2541 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2542 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2543 #define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp))
2544 
2545 #define IS_MF_ISCSI_ONLY(bp)    (IS_MF_ISCSI_SD(bp) ||  IS_MF_ISCSI_SI(bp))
2546 
2547 #define BNX2X_MF_EXT_PROTOCOL_MASK					\
2548 				(MACP_FUNC_CFG_FLAGS_ETHERNET |		\
2549 				 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD |	\
2550 				 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2551 
2552 #define BNX2X_MF_EXT_PROT(bp)	((bp)->mf_ext_config &			\
2553 				 BNX2X_MF_EXT_PROTOCOL_MASK)
2554 
2555 #define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)				\
2556 		(BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2557 
2558 #define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)				\
2559 		(BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2560 
2561 #define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp)				\
2562 		(BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD)
2563 
2564 #define IS_MF_FCOE_AFEX(bp)						\
2565 		(IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))
2566 
2567 #define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)				\
2568 				(IS_MF_SD(bp) &&			\
2569 				 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) ||	\
2570 				  BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2571 
2572 #define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp)				\
2573 				(IS_MF_SI(bp) &&			\
2574 				 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) ||	\
2575 				  BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)))
2576 
2577 #define IS_MF_STORAGE_PERSONALITY_ONLY(bp)				\
2578 			(IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) ||	\
2579 			 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp))
2580 
2581 
2582 #define SET_FLAG(value, mask, flag) \
2583 	do {\
2584 		(value) &= ~(mask);\
2585 		(value) |= ((flag) << (mask##_SHIFT));\
2586 	} while (0)
2587 
2588 #define GET_FLAG(value, mask) \
2589 	(((value) & (mask)) >> (mask##_SHIFT))
2590 
2591 #define GET_FIELD(value, fname) \
2592 	(((value) & (fname##_MASK)) >> (fname##_SHIFT))
2593 
2594 enum {
2595 	SWITCH_UPDATE,
2596 	AFEX_UPDATE,
2597 };
2598 
2599 #define NUM_MACS	8
2600 
2601 void bnx2x_set_local_cmng(struct bnx2x *bp);
2602 
2603 void bnx2x_update_mng_version(struct bnx2x *bp);
2604 
2605 #define MCPR_SCRATCH_BASE(bp) \
2606 	(CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
2607 
2608 #define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX))
2609 
2610 void bnx2x_init_ptp(struct bnx2x *bp);
2611 int bnx2x_configure_ptp_filters(struct bnx2x *bp);
2612 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb);
2613 
2614 #define BNX2X_MAX_PHC_DRIFT 31000000
2615 #define BNX2X_PTP_TX_TIMEOUT
2616 
2617 #endif /* bnx2x.h */
2618