xref: /linux/drivers/net/ethernet/broadcom/bcmsysport.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Broadcom BCM7xxx System Port Ethernet MAC driver
3  *
4  * Copyright (C) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
12 
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/of.h>
21 #include <linux/of_net.h>
22 #include <linux/of_mdio.h>
23 #include <linux/phy.h>
24 #include <linux/phy_fixed.h>
25 #include <net/ip.h>
26 #include <net/ipv6.h>
27 
28 #include "bcmsysport.h"
29 
30 /* I/O accessors register helpers */
31 #define BCM_SYSPORT_IO_MACRO(name, offset) \
32 static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off)	\
33 {									\
34 	u32 reg = __raw_readl(priv->base + offset + off);		\
35 	return reg;							\
36 }									\
37 static inline void name##_writel(struct bcm_sysport_priv *priv,		\
38 				  u32 val, u32 off)			\
39 {									\
40 	__raw_writel(val, priv->base + offset + off);			\
41 }									\
42 
43 BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET);
44 BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET);
45 BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET);
46 BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET);
47 BCM_SYSPORT_IO_MACRO(rdma, SYS_PORT_RDMA_OFFSET);
48 BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET);
49 BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET);
50 BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET);
51 BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET);
52 BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET);
53 
54 /* L2-interrupt masking/unmasking helpers, does automatic saving of the applied
55  * mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths.
56   */
57 #define BCM_SYSPORT_INTR_L2(which)	\
58 static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \
59 						u32 mask)		\
60 {									\
61 	intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR);	\
62 	priv->irq##which##_mask &= ~(mask);				\
63 }									\
64 static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \
65 						u32 mask)		\
66 {									\
67 	intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET);	\
68 	priv->irq##which##_mask |= (mask);				\
69 }									\
70 
71 BCM_SYSPORT_INTR_L2(0)
72 BCM_SYSPORT_INTR_L2(1)
73 
74 /* Register accesses to GISB/RBUS registers are expensive (few hundred
75  * nanoseconds), so keep the check for 64-bits explicit here to save
76  * one register write per-packet on 32-bits platforms.
77  */
78 static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv,
79 				     void __iomem *d,
80 				     dma_addr_t addr)
81 {
82 #ifdef CONFIG_PHYS_ADDR_T_64BIT
83 	__raw_writel(upper_32_bits(addr) & DESC_ADDR_HI_MASK,
84 		     d + DESC_ADDR_HI_STATUS_LEN);
85 #endif
86 	__raw_writel(lower_32_bits(addr), d + DESC_ADDR_LO);
87 }
88 
89 static inline void tdma_port_write_desc_addr(struct bcm_sysport_priv *priv,
90 					     struct dma_desc *desc,
91 					     unsigned int port)
92 {
93 	/* Ports are latched, so write upper address first */
94 	tdma_writel(priv, desc->addr_status_len, TDMA_WRITE_PORT_HI(port));
95 	tdma_writel(priv, desc->addr_lo, TDMA_WRITE_PORT_LO(port));
96 }
97 
98 /* Ethtool operations */
99 static int bcm_sysport_set_settings(struct net_device *dev,
100 				    struct ethtool_cmd *cmd)
101 {
102 	struct bcm_sysport_priv *priv = netdev_priv(dev);
103 
104 	if (!netif_running(dev))
105 		return -EINVAL;
106 
107 	return phy_ethtool_sset(priv->phydev, cmd);
108 }
109 
110 static int bcm_sysport_get_settings(struct net_device *dev,
111 				    struct ethtool_cmd *cmd)
112 {
113 	struct bcm_sysport_priv *priv = netdev_priv(dev);
114 
115 	if (!netif_running(dev))
116 		return -EINVAL;
117 
118 	return phy_ethtool_gset(priv->phydev, cmd);
119 }
120 
121 static int bcm_sysport_set_rx_csum(struct net_device *dev,
122 				   netdev_features_t wanted)
123 {
124 	struct bcm_sysport_priv *priv = netdev_priv(dev);
125 	u32 reg;
126 
127 	priv->rx_chk_en = !!(wanted & NETIF_F_RXCSUM);
128 	reg = rxchk_readl(priv, RXCHK_CONTROL);
129 	if (priv->rx_chk_en)
130 		reg |= RXCHK_EN;
131 	else
132 		reg &= ~RXCHK_EN;
133 
134 	/* If UniMAC forwards CRC, we need to skip over it to get
135 	 * a valid CHK bit to be set in the per-packet status word
136 	 */
137 	if (priv->rx_chk_en && priv->crc_fwd)
138 		reg |= RXCHK_SKIP_FCS;
139 	else
140 		reg &= ~RXCHK_SKIP_FCS;
141 
142 	/* If Broadcom tags are enabled (e.g: using a switch), make
143 	 * sure we tell the RXCHK hardware to expect a 4-bytes Broadcom
144 	 * tag after the Ethernet MAC Source Address.
145 	 */
146 	if (netdev_uses_dsa(dev))
147 		reg |= RXCHK_BRCM_TAG_EN;
148 	else
149 		reg &= ~RXCHK_BRCM_TAG_EN;
150 
151 	rxchk_writel(priv, reg, RXCHK_CONTROL);
152 
153 	return 0;
154 }
155 
156 static int bcm_sysport_set_tx_csum(struct net_device *dev,
157 				   netdev_features_t wanted)
158 {
159 	struct bcm_sysport_priv *priv = netdev_priv(dev);
160 	u32 reg;
161 
162 	/* Hardware transmit checksum requires us to enable the Transmit status
163 	 * block prepended to the packet contents
164 	 */
165 	priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
166 	reg = tdma_readl(priv, TDMA_CONTROL);
167 	if (priv->tsb_en)
168 		reg |= TSB_EN;
169 	else
170 		reg &= ~TSB_EN;
171 	tdma_writel(priv, reg, TDMA_CONTROL);
172 
173 	return 0;
174 }
175 
176 static int bcm_sysport_set_features(struct net_device *dev,
177 				    netdev_features_t features)
178 {
179 	netdev_features_t changed = features ^ dev->features;
180 	netdev_features_t wanted = dev->wanted_features;
181 	int ret = 0;
182 
183 	if (changed & NETIF_F_RXCSUM)
184 		ret = bcm_sysport_set_rx_csum(dev, wanted);
185 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
186 		ret = bcm_sysport_set_tx_csum(dev, wanted);
187 
188 	return ret;
189 }
190 
191 /* Hardware counters must be kept in sync because the order/offset
192  * is important here (order in structure declaration = order in hardware)
193  */
194 static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = {
195 	/* general stats */
196 	STAT_NETDEV(rx_packets),
197 	STAT_NETDEV(tx_packets),
198 	STAT_NETDEV(rx_bytes),
199 	STAT_NETDEV(tx_bytes),
200 	STAT_NETDEV(rx_errors),
201 	STAT_NETDEV(tx_errors),
202 	STAT_NETDEV(rx_dropped),
203 	STAT_NETDEV(tx_dropped),
204 	STAT_NETDEV(multicast),
205 	/* UniMAC RSV counters */
206 	STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
207 	STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
208 	STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
209 	STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
210 	STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
211 	STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
212 	STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
213 	STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
214 	STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
215 	STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
216 	STAT_MIB_RX("rx_pkts", mib.rx.pkt),
217 	STAT_MIB_RX("rx_bytes", mib.rx.bytes),
218 	STAT_MIB_RX("rx_multicast", mib.rx.mca),
219 	STAT_MIB_RX("rx_broadcast", mib.rx.bca),
220 	STAT_MIB_RX("rx_fcs", mib.rx.fcs),
221 	STAT_MIB_RX("rx_control", mib.rx.cf),
222 	STAT_MIB_RX("rx_pause", mib.rx.pf),
223 	STAT_MIB_RX("rx_unknown", mib.rx.uo),
224 	STAT_MIB_RX("rx_align", mib.rx.aln),
225 	STAT_MIB_RX("rx_outrange", mib.rx.flr),
226 	STAT_MIB_RX("rx_code", mib.rx.cde),
227 	STAT_MIB_RX("rx_carrier", mib.rx.fcr),
228 	STAT_MIB_RX("rx_oversize", mib.rx.ovr),
229 	STAT_MIB_RX("rx_jabber", mib.rx.jbr),
230 	STAT_MIB_RX("rx_mtu_err", mib.rx.mtue),
231 	STAT_MIB_RX("rx_good_pkts", mib.rx.pok),
232 	STAT_MIB_RX("rx_unicast", mib.rx.uc),
233 	STAT_MIB_RX("rx_ppp", mib.rx.ppp),
234 	STAT_MIB_RX("rx_crc", mib.rx.rcrc),
235 	/* UniMAC TSV counters */
236 	STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
237 	STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
238 	STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
239 	STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
240 	STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
241 	STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
242 	STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
243 	STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
244 	STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
245 	STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
246 	STAT_MIB_TX("tx_pkts", mib.tx.pkts),
247 	STAT_MIB_TX("tx_multicast", mib.tx.mca),
248 	STAT_MIB_TX("tx_broadcast", mib.tx.bca),
249 	STAT_MIB_TX("tx_pause", mib.tx.pf),
250 	STAT_MIB_TX("tx_control", mib.tx.cf),
251 	STAT_MIB_TX("tx_fcs_err", mib.tx.fcs),
252 	STAT_MIB_TX("tx_oversize", mib.tx.ovr),
253 	STAT_MIB_TX("tx_defer", mib.tx.drf),
254 	STAT_MIB_TX("tx_excess_defer", mib.tx.edf),
255 	STAT_MIB_TX("tx_single_col", mib.tx.scl),
256 	STAT_MIB_TX("tx_multi_col", mib.tx.mcl),
257 	STAT_MIB_TX("tx_late_col", mib.tx.lcl),
258 	STAT_MIB_TX("tx_excess_col", mib.tx.ecl),
259 	STAT_MIB_TX("tx_frags", mib.tx.frg),
260 	STAT_MIB_TX("tx_total_col", mib.tx.ncl),
261 	STAT_MIB_TX("tx_jabber", mib.tx.jbr),
262 	STAT_MIB_TX("tx_bytes", mib.tx.bytes),
263 	STAT_MIB_TX("tx_good_pkts", mib.tx.pok),
264 	STAT_MIB_TX("tx_unicast", mib.tx.uc),
265 	/* UniMAC RUNT counters */
266 	STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
267 	STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
268 	STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
269 	STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
270 	/* RXCHK misc statistics */
271 	STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR),
272 	STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc,
273 		   RXCHK_OTHER_DISC_CNTR),
274 	/* RBUF misc statistics */
275 	STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR),
276 	STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR),
277 	STAT_MIB_SOFT("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
278 	STAT_MIB_SOFT("rx_dma_failed", mib.rx_dma_failed),
279 	STAT_MIB_SOFT("tx_dma_failed", mib.tx_dma_failed),
280 };
281 
282 #define BCM_SYSPORT_STATS_LEN	ARRAY_SIZE(bcm_sysport_gstrings_stats)
283 
284 static void bcm_sysport_get_drvinfo(struct net_device *dev,
285 				    struct ethtool_drvinfo *info)
286 {
287 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
288 	strlcpy(info->version, "0.1", sizeof(info->version));
289 	strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
290 }
291 
292 static u32 bcm_sysport_get_msglvl(struct net_device *dev)
293 {
294 	struct bcm_sysport_priv *priv = netdev_priv(dev);
295 
296 	return priv->msg_enable;
297 }
298 
299 static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable)
300 {
301 	struct bcm_sysport_priv *priv = netdev_priv(dev);
302 
303 	priv->msg_enable = enable;
304 }
305 
306 static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set)
307 {
308 	switch (string_set) {
309 	case ETH_SS_STATS:
310 		return BCM_SYSPORT_STATS_LEN;
311 	default:
312 		return -EOPNOTSUPP;
313 	}
314 }
315 
316 static void bcm_sysport_get_strings(struct net_device *dev,
317 				    u32 stringset, u8 *data)
318 {
319 	int i;
320 
321 	switch (stringset) {
322 	case ETH_SS_STATS:
323 		for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
324 			memcpy(data + i * ETH_GSTRING_LEN,
325 			       bcm_sysport_gstrings_stats[i].stat_string,
326 			       ETH_GSTRING_LEN);
327 		}
328 		break;
329 	default:
330 		break;
331 	}
332 }
333 
334 static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv)
335 {
336 	int i, j = 0;
337 
338 	for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
339 		const struct bcm_sysport_stats *s;
340 		u8 offset = 0;
341 		u32 val = 0;
342 		char *p;
343 
344 		s = &bcm_sysport_gstrings_stats[i];
345 		switch (s->type) {
346 		case BCM_SYSPORT_STAT_NETDEV:
347 		case BCM_SYSPORT_STAT_SOFT:
348 			continue;
349 		case BCM_SYSPORT_STAT_MIB_RX:
350 		case BCM_SYSPORT_STAT_MIB_TX:
351 		case BCM_SYSPORT_STAT_RUNT:
352 			if (s->type != BCM_SYSPORT_STAT_MIB_RX)
353 				offset = UMAC_MIB_STAT_OFFSET;
354 			val = umac_readl(priv, UMAC_MIB_START + j + offset);
355 			break;
356 		case BCM_SYSPORT_STAT_RXCHK:
357 			val = rxchk_readl(priv, s->reg_offset);
358 			if (val == ~0)
359 				rxchk_writel(priv, 0, s->reg_offset);
360 			break;
361 		case BCM_SYSPORT_STAT_RBUF:
362 			val = rbuf_readl(priv, s->reg_offset);
363 			if (val == ~0)
364 				rbuf_writel(priv, 0, s->reg_offset);
365 			break;
366 		}
367 
368 		j += s->stat_sizeof;
369 		p = (char *)priv + s->stat_offset;
370 		*(u32 *)p = val;
371 	}
372 
373 	netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n");
374 }
375 
376 static void bcm_sysport_get_stats(struct net_device *dev,
377 				  struct ethtool_stats *stats, u64 *data)
378 {
379 	struct bcm_sysport_priv *priv = netdev_priv(dev);
380 	int i;
381 
382 	if (netif_running(dev))
383 		bcm_sysport_update_mib_counters(priv);
384 
385 	for (i =  0; i < BCM_SYSPORT_STATS_LEN; i++) {
386 		const struct bcm_sysport_stats *s;
387 		char *p;
388 
389 		s = &bcm_sysport_gstrings_stats[i];
390 		if (s->type == BCM_SYSPORT_STAT_NETDEV)
391 			p = (char *)&dev->stats;
392 		else
393 			p = (char *)priv;
394 		p += s->stat_offset;
395 		data[i] = *(u32 *)p;
396 	}
397 }
398 
399 static void bcm_sysport_get_wol(struct net_device *dev,
400 				struct ethtool_wolinfo *wol)
401 {
402 	struct bcm_sysport_priv *priv = netdev_priv(dev);
403 	u32 reg;
404 
405 	wol->supported = WAKE_MAGIC | WAKE_MAGICSECURE;
406 	wol->wolopts = priv->wolopts;
407 
408 	if (!(priv->wolopts & WAKE_MAGICSECURE))
409 		return;
410 
411 	/* Return the programmed SecureOn password */
412 	reg = umac_readl(priv, UMAC_PSW_MS);
413 	put_unaligned_be16(reg, &wol->sopass[0]);
414 	reg = umac_readl(priv, UMAC_PSW_LS);
415 	put_unaligned_be32(reg, &wol->sopass[2]);
416 }
417 
418 static int bcm_sysport_set_wol(struct net_device *dev,
419 			       struct ethtool_wolinfo *wol)
420 {
421 	struct bcm_sysport_priv *priv = netdev_priv(dev);
422 	struct device *kdev = &priv->pdev->dev;
423 	u32 supported = WAKE_MAGIC | WAKE_MAGICSECURE;
424 
425 	if (!device_can_wakeup(kdev))
426 		return -ENOTSUPP;
427 
428 	if (wol->wolopts & ~supported)
429 		return -EINVAL;
430 
431 	/* Program the SecureOn password */
432 	if (wol->wolopts & WAKE_MAGICSECURE) {
433 		umac_writel(priv, get_unaligned_be16(&wol->sopass[0]),
434 			    UMAC_PSW_MS);
435 		umac_writel(priv, get_unaligned_be32(&wol->sopass[2]),
436 			    UMAC_PSW_LS);
437 	}
438 
439 	/* Flag the device and relevant IRQ as wakeup capable */
440 	if (wol->wolopts) {
441 		device_set_wakeup_enable(kdev, 1);
442 		if (priv->wol_irq_disabled)
443 			enable_irq_wake(priv->wol_irq);
444 		priv->wol_irq_disabled = 0;
445 	} else {
446 		device_set_wakeup_enable(kdev, 0);
447 		/* Avoid unbalanced disable_irq_wake calls */
448 		if (!priv->wol_irq_disabled)
449 			disable_irq_wake(priv->wol_irq);
450 		priv->wol_irq_disabled = 1;
451 	}
452 
453 	priv->wolopts = wol->wolopts;
454 
455 	return 0;
456 }
457 
458 static int bcm_sysport_get_coalesce(struct net_device *dev,
459 				    struct ethtool_coalesce *ec)
460 {
461 	struct bcm_sysport_priv *priv = netdev_priv(dev);
462 	u32 reg;
463 
464 	reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(0));
465 
466 	ec->tx_coalesce_usecs = (reg >> RING_TIMEOUT_SHIFT) * 8192 / 1000;
467 	ec->tx_max_coalesced_frames = reg & RING_INTR_THRESH_MASK;
468 
469 	reg = rdma_readl(priv, RDMA_MBDONE_INTR);
470 
471 	ec->rx_coalesce_usecs = (reg >> RDMA_TIMEOUT_SHIFT) * 8192 / 1000;
472 	ec->rx_max_coalesced_frames = reg & RDMA_INTR_THRESH_MASK;
473 
474 	return 0;
475 }
476 
477 static int bcm_sysport_set_coalesce(struct net_device *dev,
478 				    struct ethtool_coalesce *ec)
479 {
480 	struct bcm_sysport_priv *priv = netdev_priv(dev);
481 	unsigned int i;
482 	u32 reg;
483 
484 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
485 	 * divided by 1024, which yield roughly 8.192 us, our maximum value has
486 	 * to fit in the RING_TIMEOUT_MASK (16 bits).
487 	 */
488 	if (ec->tx_max_coalesced_frames > RING_INTR_THRESH_MASK ||
489 	    ec->tx_coalesce_usecs > (RING_TIMEOUT_MASK * 8) + 1 ||
490 	    ec->rx_max_coalesced_frames > RDMA_INTR_THRESH_MASK ||
491 	    ec->rx_coalesce_usecs > (RDMA_TIMEOUT_MASK * 8) + 1)
492 		return -EINVAL;
493 
494 	if ((ec->tx_coalesce_usecs == 0 && ec->tx_max_coalesced_frames == 0) ||
495 	    (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0))
496 		return -EINVAL;
497 
498 	for (i = 0; i < dev->num_tx_queues; i++) {
499 		reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(i));
500 		reg &= ~(RING_INTR_THRESH_MASK |
501 			 RING_TIMEOUT_MASK << RING_TIMEOUT_SHIFT);
502 		reg |= ec->tx_max_coalesced_frames;
503 		reg |= DIV_ROUND_UP(ec->tx_coalesce_usecs * 1000, 8192) <<
504 			 RING_TIMEOUT_SHIFT;
505 		tdma_writel(priv, reg, TDMA_DESC_RING_INTR_CONTROL(i));
506 	}
507 
508 	reg = rdma_readl(priv, RDMA_MBDONE_INTR);
509 	reg &= ~(RDMA_INTR_THRESH_MASK |
510 		 RDMA_TIMEOUT_MASK << RDMA_TIMEOUT_SHIFT);
511 	reg |= ec->rx_max_coalesced_frames;
512 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192) <<
513 			    RDMA_TIMEOUT_SHIFT;
514 	rdma_writel(priv, reg, RDMA_MBDONE_INTR);
515 
516 	return 0;
517 }
518 
519 static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb)
520 {
521 	dev_kfree_skb_any(cb->skb);
522 	cb->skb = NULL;
523 	dma_unmap_addr_set(cb, dma_addr, 0);
524 }
525 
526 static struct sk_buff *bcm_sysport_rx_refill(struct bcm_sysport_priv *priv,
527 					     struct bcm_sysport_cb *cb)
528 {
529 	struct device *kdev = &priv->pdev->dev;
530 	struct net_device *ndev = priv->netdev;
531 	struct sk_buff *skb, *rx_skb;
532 	dma_addr_t mapping;
533 
534 	/* Allocate a new SKB for a new packet */
535 	skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH);
536 	if (!skb) {
537 		priv->mib.alloc_rx_buff_failed++;
538 		netif_err(priv, rx_err, ndev, "SKB alloc failed\n");
539 		return NULL;
540 	}
541 
542 	mapping = dma_map_single(kdev, skb->data,
543 				 RX_BUF_LENGTH, DMA_FROM_DEVICE);
544 	if (dma_mapping_error(kdev, mapping)) {
545 		priv->mib.rx_dma_failed++;
546 		dev_kfree_skb_any(skb);
547 		netif_err(priv, rx_err, ndev, "DMA mapping failure\n");
548 		return NULL;
549 	}
550 
551 	/* Grab the current SKB on the ring */
552 	rx_skb = cb->skb;
553 	if (likely(rx_skb))
554 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
555 				 RX_BUF_LENGTH, DMA_FROM_DEVICE);
556 
557 	/* Put the new SKB on the ring */
558 	cb->skb = skb;
559 	dma_unmap_addr_set(cb, dma_addr, mapping);
560 	dma_desc_set_addr(priv, cb->bd_addr, mapping);
561 
562 	netif_dbg(priv, rx_status, ndev, "RX refill\n");
563 
564 	/* Return the current SKB to the caller */
565 	return rx_skb;
566 }
567 
568 static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv)
569 {
570 	struct bcm_sysport_cb *cb;
571 	struct sk_buff *skb;
572 	unsigned int i;
573 
574 	for (i = 0; i < priv->num_rx_bds; i++) {
575 		cb = &priv->rx_cbs[i];
576 		skb = bcm_sysport_rx_refill(priv, cb);
577 		if (skb)
578 			dev_kfree_skb(skb);
579 		if (!cb->skb)
580 			return -ENOMEM;
581 	}
582 
583 	return 0;
584 }
585 
586 /* Poll the hardware for up to budget packets to process */
587 static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv,
588 					unsigned int budget)
589 {
590 	struct net_device *ndev = priv->netdev;
591 	unsigned int processed = 0, to_process;
592 	struct bcm_sysport_cb *cb;
593 	struct sk_buff *skb;
594 	unsigned int p_index;
595 	u16 len, status;
596 	struct bcm_rsb *rsb;
597 
598 	/* Determine how much we should process since last call */
599 	p_index = rdma_readl(priv, RDMA_PROD_INDEX);
600 	p_index &= RDMA_PROD_INDEX_MASK;
601 
602 	if (p_index < priv->rx_c_index)
603 		to_process = (RDMA_CONS_INDEX_MASK + 1) -
604 			priv->rx_c_index + p_index;
605 	else
606 		to_process = p_index - priv->rx_c_index;
607 
608 	netif_dbg(priv, rx_status, ndev,
609 		  "p_index=%d rx_c_index=%d to_process=%d\n",
610 		  p_index, priv->rx_c_index, to_process);
611 
612 	while ((processed < to_process) && (processed < budget)) {
613 		cb = &priv->rx_cbs[priv->rx_read_ptr];
614 		skb = bcm_sysport_rx_refill(priv, cb);
615 
616 
617 		/* We do not have a backing SKB, so we do not a corresponding
618 		 * DMA mapping for this incoming packet since
619 		 * bcm_sysport_rx_refill always either has both skb and mapping
620 		 * or none.
621 		 */
622 		if (unlikely(!skb)) {
623 			netif_err(priv, rx_err, ndev, "out of memory!\n");
624 			ndev->stats.rx_dropped++;
625 			ndev->stats.rx_errors++;
626 			goto next;
627 		}
628 
629 		/* Extract the Receive Status Block prepended */
630 		rsb = (struct bcm_rsb *)skb->data;
631 		len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK;
632 		status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) &
633 			  DESC_STATUS_MASK;
634 
635 		netif_dbg(priv, rx_status, ndev,
636 			  "p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n",
637 			  p_index, priv->rx_c_index, priv->rx_read_ptr,
638 			  len, status);
639 
640 		if (unlikely(len > RX_BUF_LENGTH)) {
641 			netif_err(priv, rx_status, ndev, "oversized packet\n");
642 			ndev->stats.rx_length_errors++;
643 			ndev->stats.rx_errors++;
644 			dev_kfree_skb_any(skb);
645 			goto next;
646 		}
647 
648 		if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) {
649 			netif_err(priv, rx_status, ndev, "fragmented packet!\n");
650 			ndev->stats.rx_dropped++;
651 			ndev->stats.rx_errors++;
652 			dev_kfree_skb_any(skb);
653 			goto next;
654 		}
655 
656 		if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) {
657 			netif_err(priv, rx_err, ndev, "error packet\n");
658 			if (status & RX_STATUS_OVFLOW)
659 				ndev->stats.rx_over_errors++;
660 			ndev->stats.rx_dropped++;
661 			ndev->stats.rx_errors++;
662 			dev_kfree_skb_any(skb);
663 			goto next;
664 		}
665 
666 		skb_put(skb, len);
667 
668 		/* Hardware validated our checksum */
669 		if (likely(status & DESC_L4_CSUM))
670 			skb->ip_summed = CHECKSUM_UNNECESSARY;
671 
672 		/* Hardware pre-pends packets with 2bytes before Ethernet
673 		 * header plus we have the Receive Status Block, strip off all
674 		 * of this from the SKB.
675 		 */
676 		skb_pull(skb, sizeof(*rsb) + 2);
677 		len -= (sizeof(*rsb) + 2);
678 
679 		/* UniMAC may forward CRC */
680 		if (priv->crc_fwd) {
681 			skb_trim(skb, len - ETH_FCS_LEN);
682 			len -= ETH_FCS_LEN;
683 		}
684 
685 		skb->protocol = eth_type_trans(skb, ndev);
686 		ndev->stats.rx_packets++;
687 		ndev->stats.rx_bytes += len;
688 
689 		napi_gro_receive(&priv->napi, skb);
690 next:
691 		processed++;
692 		priv->rx_read_ptr++;
693 
694 		if (priv->rx_read_ptr == priv->num_rx_bds)
695 			priv->rx_read_ptr = 0;
696 	}
697 
698 	return processed;
699 }
700 
701 static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_priv *priv,
702 				       struct bcm_sysport_cb *cb,
703 				       unsigned int *bytes_compl,
704 				       unsigned int *pkts_compl)
705 {
706 	struct device *kdev = &priv->pdev->dev;
707 	struct net_device *ndev = priv->netdev;
708 
709 	if (cb->skb) {
710 		ndev->stats.tx_bytes += cb->skb->len;
711 		*bytes_compl += cb->skb->len;
712 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
713 				 dma_unmap_len(cb, dma_len),
714 				 DMA_TO_DEVICE);
715 		ndev->stats.tx_packets++;
716 		(*pkts_compl)++;
717 		bcm_sysport_free_cb(cb);
718 	/* SKB fragment */
719 	} else if (dma_unmap_addr(cb, dma_addr)) {
720 		ndev->stats.tx_bytes += dma_unmap_len(cb, dma_len);
721 		dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr),
722 			       dma_unmap_len(cb, dma_len), DMA_TO_DEVICE);
723 		dma_unmap_addr_set(cb, dma_addr, 0);
724 	}
725 }
726 
727 /* Reclaim queued SKBs for transmission completion, lockless version */
728 static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
729 					     struct bcm_sysport_tx_ring *ring)
730 {
731 	struct net_device *ndev = priv->netdev;
732 	unsigned int c_index, last_c_index, last_tx_cn, num_tx_cbs;
733 	unsigned int pkts_compl = 0, bytes_compl = 0;
734 	struct bcm_sysport_cb *cb;
735 	struct netdev_queue *txq;
736 	u32 hw_ind;
737 
738 	txq = netdev_get_tx_queue(ndev, ring->index);
739 
740 	/* Compute how many descriptors have been processed since last call */
741 	hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index));
742 	c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK;
743 	ring->p_index = (hw_ind & RING_PROD_INDEX_MASK);
744 
745 	last_c_index = ring->c_index;
746 	num_tx_cbs = ring->size;
747 
748 	c_index &= (num_tx_cbs - 1);
749 
750 	if (c_index >= last_c_index)
751 		last_tx_cn = c_index - last_c_index;
752 	else
753 		last_tx_cn = num_tx_cbs - last_c_index + c_index;
754 
755 	netif_dbg(priv, tx_done, ndev,
756 		  "ring=%d c_index=%d last_tx_cn=%d last_c_index=%d\n",
757 		  ring->index, c_index, last_tx_cn, last_c_index);
758 
759 	while (last_tx_cn-- > 0) {
760 		cb = ring->cbs + last_c_index;
761 		bcm_sysport_tx_reclaim_one(priv, cb, &bytes_compl, &pkts_compl);
762 
763 		ring->desc_count++;
764 		last_c_index++;
765 		last_c_index &= (num_tx_cbs - 1);
766 	}
767 
768 	ring->c_index = c_index;
769 
770 	if (netif_tx_queue_stopped(txq) && pkts_compl)
771 		netif_tx_wake_queue(txq);
772 
773 	netif_dbg(priv, tx_done, ndev,
774 		  "ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n",
775 		  ring->index, ring->c_index, pkts_compl, bytes_compl);
776 
777 	return pkts_compl;
778 }
779 
780 /* Locked version of the per-ring TX reclaim routine */
781 static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
782 					   struct bcm_sysport_tx_ring *ring)
783 {
784 	unsigned int released;
785 	unsigned long flags;
786 
787 	spin_lock_irqsave(&ring->lock, flags);
788 	released = __bcm_sysport_tx_reclaim(priv, ring);
789 	spin_unlock_irqrestore(&ring->lock, flags);
790 
791 	return released;
792 }
793 
794 static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget)
795 {
796 	struct bcm_sysport_tx_ring *ring =
797 		container_of(napi, struct bcm_sysport_tx_ring, napi);
798 	unsigned int work_done = 0;
799 
800 	work_done = bcm_sysport_tx_reclaim(ring->priv, ring);
801 
802 	if (work_done == 0) {
803 		napi_complete(napi);
804 		/* re-enable TX interrupt */
805 		intrl2_1_mask_clear(ring->priv, BIT(ring->index));
806 
807 		return 0;
808 	}
809 
810 	return budget;
811 }
812 
813 static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv)
814 {
815 	unsigned int q;
816 
817 	for (q = 0; q < priv->netdev->num_tx_queues; q++)
818 		bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]);
819 }
820 
821 static int bcm_sysport_poll(struct napi_struct *napi, int budget)
822 {
823 	struct bcm_sysport_priv *priv =
824 		container_of(napi, struct bcm_sysport_priv, napi);
825 	unsigned int work_done = 0;
826 
827 	work_done = bcm_sysport_desc_rx(priv, budget);
828 
829 	priv->rx_c_index += work_done;
830 	priv->rx_c_index &= RDMA_CONS_INDEX_MASK;
831 	rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX);
832 
833 	if (work_done < budget) {
834 		napi_complete_done(napi, work_done);
835 		/* re-enable RX interrupts */
836 		intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE);
837 	}
838 
839 	return work_done;
840 }
841 
842 static void bcm_sysport_resume_from_wol(struct bcm_sysport_priv *priv)
843 {
844 	u32 reg;
845 
846 	/* Stop monitoring MPD interrupt */
847 	intrl2_0_mask_set(priv, INTRL2_0_MPD);
848 
849 	/* Clear the MagicPacket detection logic */
850 	reg = umac_readl(priv, UMAC_MPD_CTRL);
851 	reg &= ~MPD_EN;
852 	umac_writel(priv, reg, UMAC_MPD_CTRL);
853 
854 	netif_dbg(priv, wol, priv->netdev, "resumed from WOL\n");
855 }
856 
857 /* RX and misc interrupt routine */
858 static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id)
859 {
860 	struct net_device *dev = dev_id;
861 	struct bcm_sysport_priv *priv = netdev_priv(dev);
862 
863 	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
864 			  ~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
865 	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
866 
867 	if (unlikely(priv->irq0_stat == 0)) {
868 		netdev_warn(priv->netdev, "spurious RX interrupt\n");
869 		return IRQ_NONE;
870 	}
871 
872 	if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) {
873 		if (likely(napi_schedule_prep(&priv->napi))) {
874 			/* disable RX interrupts */
875 			intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE);
876 			__napi_schedule_irqoff(&priv->napi);
877 		}
878 	}
879 
880 	/* TX ring is full, perform a full reclaim since we do not know
881 	 * which one would trigger this interrupt
882 	 */
883 	if (priv->irq0_stat & INTRL2_0_TX_RING_FULL)
884 		bcm_sysport_tx_reclaim_all(priv);
885 
886 	if (priv->irq0_stat & INTRL2_0_MPD) {
887 		netdev_info(priv->netdev, "Wake-on-LAN interrupt!\n");
888 		bcm_sysport_resume_from_wol(priv);
889 	}
890 
891 	return IRQ_HANDLED;
892 }
893 
894 /* TX interrupt service routine */
895 static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id)
896 {
897 	struct net_device *dev = dev_id;
898 	struct bcm_sysport_priv *priv = netdev_priv(dev);
899 	struct bcm_sysport_tx_ring *txr;
900 	unsigned int ring;
901 
902 	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
903 				~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
904 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
905 
906 	if (unlikely(priv->irq1_stat == 0)) {
907 		netdev_warn(priv->netdev, "spurious TX interrupt\n");
908 		return IRQ_NONE;
909 	}
910 
911 	for (ring = 0; ring < dev->num_tx_queues; ring++) {
912 		if (!(priv->irq1_stat & BIT(ring)))
913 			continue;
914 
915 		txr = &priv->tx_rings[ring];
916 
917 		if (likely(napi_schedule_prep(&txr->napi))) {
918 			intrl2_1_mask_set(priv, BIT(ring));
919 			__napi_schedule_irqoff(&txr->napi);
920 		}
921 	}
922 
923 	return IRQ_HANDLED;
924 }
925 
926 static irqreturn_t bcm_sysport_wol_isr(int irq, void *dev_id)
927 {
928 	struct bcm_sysport_priv *priv = dev_id;
929 
930 	pm_wakeup_event(&priv->pdev->dev, 0);
931 
932 	return IRQ_HANDLED;
933 }
934 
935 #ifdef CONFIG_NET_POLL_CONTROLLER
936 static void bcm_sysport_poll_controller(struct net_device *dev)
937 {
938 	struct bcm_sysport_priv *priv = netdev_priv(dev);
939 
940 	disable_irq(priv->irq0);
941 	bcm_sysport_rx_isr(priv->irq0, priv);
942 	enable_irq(priv->irq0);
943 
944 	disable_irq(priv->irq1);
945 	bcm_sysport_tx_isr(priv->irq1, priv);
946 	enable_irq(priv->irq1);
947 }
948 #endif
949 
950 static struct sk_buff *bcm_sysport_insert_tsb(struct sk_buff *skb,
951 					      struct net_device *dev)
952 {
953 	struct sk_buff *nskb;
954 	struct bcm_tsb *tsb;
955 	u32 csum_info;
956 	u8 ip_proto;
957 	u16 csum_start;
958 	u16 ip_ver;
959 
960 	/* Re-allocate SKB if needed */
961 	if (unlikely(skb_headroom(skb) < sizeof(*tsb))) {
962 		nskb = skb_realloc_headroom(skb, sizeof(*tsb));
963 		dev_kfree_skb(skb);
964 		if (!nskb) {
965 			dev->stats.tx_errors++;
966 			dev->stats.tx_dropped++;
967 			return NULL;
968 		}
969 		skb = nskb;
970 	}
971 
972 	tsb = (struct bcm_tsb *)skb_push(skb, sizeof(*tsb));
973 	/* Zero-out TSB by default */
974 	memset(tsb, 0, sizeof(*tsb));
975 
976 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
977 		ip_ver = htons(skb->protocol);
978 		switch (ip_ver) {
979 		case ETH_P_IP:
980 			ip_proto = ip_hdr(skb)->protocol;
981 			break;
982 		case ETH_P_IPV6:
983 			ip_proto = ipv6_hdr(skb)->nexthdr;
984 			break;
985 		default:
986 			return skb;
987 		}
988 
989 		/* Get the checksum offset and the L4 (transport) offset */
990 		csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb);
991 		csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK;
992 		csum_info |= (csum_start << L4_PTR_SHIFT);
993 
994 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
995 			csum_info |= L4_LENGTH_VALID;
996 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
997 				csum_info |= L4_UDP;
998 		} else {
999 			csum_info = 0;
1000 		}
1001 
1002 		tsb->l4_ptr_dest_map = csum_info;
1003 	}
1004 
1005 	return skb;
1006 }
1007 
1008 static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb,
1009 				    struct net_device *dev)
1010 {
1011 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1012 	struct device *kdev = &priv->pdev->dev;
1013 	struct bcm_sysport_tx_ring *ring;
1014 	struct bcm_sysport_cb *cb;
1015 	struct netdev_queue *txq;
1016 	struct dma_desc *desc;
1017 	unsigned int skb_len;
1018 	unsigned long flags;
1019 	dma_addr_t mapping;
1020 	u32 len_status;
1021 	u16 queue;
1022 	int ret;
1023 
1024 	queue = skb_get_queue_mapping(skb);
1025 	txq = netdev_get_tx_queue(dev, queue);
1026 	ring = &priv->tx_rings[queue];
1027 
1028 	/* lock against tx reclaim in BH context and TX ring full interrupt */
1029 	spin_lock_irqsave(&ring->lock, flags);
1030 	if (unlikely(ring->desc_count == 0)) {
1031 		netif_tx_stop_queue(txq);
1032 		netdev_err(dev, "queue %d awake and ring full!\n", queue);
1033 		ret = NETDEV_TX_BUSY;
1034 		goto out;
1035 	}
1036 
1037 	/* Insert TSB and checksum infos */
1038 	if (priv->tsb_en) {
1039 		skb = bcm_sysport_insert_tsb(skb, dev);
1040 		if (!skb) {
1041 			ret = NETDEV_TX_OK;
1042 			goto out;
1043 		}
1044 	}
1045 
1046 	/* The Ethernet switch we are interfaced with needs packets to be at
1047 	 * least 64 bytes (including FCS) otherwise they will be discarded when
1048 	 * they enter the switch port logic. When Broadcom tags are enabled, we
1049 	 * need to make sure that packets are at least 68 bytes
1050 	 * (including FCS and tag) because the length verification is done after
1051 	 * the Broadcom tag is stripped off the ingress packet.
1052 	 */
1053 	if (skb_padto(skb, ETH_ZLEN + ENET_BRCM_TAG_LEN)) {
1054 		ret = NETDEV_TX_OK;
1055 		goto out;
1056 	}
1057 
1058 	skb_len = skb->len < ETH_ZLEN + ENET_BRCM_TAG_LEN ?
1059 			ETH_ZLEN + ENET_BRCM_TAG_LEN : skb->len;
1060 
1061 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1062 	if (dma_mapping_error(kdev, mapping)) {
1063 		priv->mib.tx_dma_failed++;
1064 		netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n",
1065 			  skb->data, skb_len);
1066 		ret = NETDEV_TX_OK;
1067 		goto out;
1068 	}
1069 
1070 	/* Remember the SKB for future freeing */
1071 	cb = &ring->cbs[ring->curr_desc];
1072 	cb->skb = skb;
1073 	dma_unmap_addr_set(cb, dma_addr, mapping);
1074 	dma_unmap_len_set(cb, dma_len, skb_len);
1075 
1076 	/* Fetch a descriptor entry from our pool */
1077 	desc = ring->desc_cpu;
1078 
1079 	desc->addr_lo = lower_32_bits(mapping);
1080 	len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK;
1081 	len_status |= (skb_len << DESC_LEN_SHIFT);
1082 	len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) <<
1083 		       DESC_STATUS_SHIFT;
1084 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1085 		len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT);
1086 
1087 	ring->curr_desc++;
1088 	if (ring->curr_desc == ring->size)
1089 		ring->curr_desc = 0;
1090 	ring->desc_count--;
1091 
1092 	/* Ensure write completion of the descriptor status/length
1093 	 * in DRAM before the System Port WRITE_PORT register latches
1094 	 * the value
1095 	 */
1096 	wmb();
1097 	desc->addr_status_len = len_status;
1098 	wmb();
1099 
1100 	/* Write this descriptor address to the RING write port */
1101 	tdma_port_write_desc_addr(priv, desc, ring->index);
1102 
1103 	/* Check ring space and update SW control flow */
1104 	if (ring->desc_count == 0)
1105 		netif_tx_stop_queue(txq);
1106 
1107 	netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n",
1108 		  ring->index, ring->desc_count, ring->curr_desc);
1109 
1110 	ret = NETDEV_TX_OK;
1111 out:
1112 	spin_unlock_irqrestore(&ring->lock, flags);
1113 	return ret;
1114 }
1115 
1116 static void bcm_sysport_tx_timeout(struct net_device *dev)
1117 {
1118 	netdev_warn(dev, "transmit timeout!\n");
1119 
1120 	netif_trans_update(dev);
1121 	dev->stats.tx_errors++;
1122 
1123 	netif_tx_wake_all_queues(dev);
1124 }
1125 
1126 /* phylib adjust link callback */
1127 static void bcm_sysport_adj_link(struct net_device *dev)
1128 {
1129 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1130 	struct phy_device *phydev = priv->phydev;
1131 	unsigned int changed = 0;
1132 	u32 cmd_bits = 0, reg;
1133 
1134 	if (priv->old_link != phydev->link) {
1135 		changed = 1;
1136 		priv->old_link = phydev->link;
1137 	}
1138 
1139 	if (priv->old_duplex != phydev->duplex) {
1140 		changed = 1;
1141 		priv->old_duplex = phydev->duplex;
1142 	}
1143 
1144 	switch (phydev->speed) {
1145 	case SPEED_2500:
1146 		cmd_bits = CMD_SPEED_2500;
1147 		break;
1148 	case SPEED_1000:
1149 		cmd_bits = CMD_SPEED_1000;
1150 		break;
1151 	case SPEED_100:
1152 		cmd_bits = CMD_SPEED_100;
1153 		break;
1154 	case SPEED_10:
1155 		cmd_bits = CMD_SPEED_10;
1156 		break;
1157 	default:
1158 		break;
1159 	}
1160 	cmd_bits <<= CMD_SPEED_SHIFT;
1161 
1162 	if (phydev->duplex == DUPLEX_HALF)
1163 		cmd_bits |= CMD_HD_EN;
1164 
1165 	if (priv->old_pause != phydev->pause) {
1166 		changed = 1;
1167 		priv->old_pause = phydev->pause;
1168 	}
1169 
1170 	if (!phydev->pause)
1171 		cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE;
1172 
1173 	if (!changed)
1174 		return;
1175 
1176 	if (phydev->link) {
1177 		reg = umac_readl(priv, UMAC_CMD);
1178 		reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) |
1179 			CMD_HD_EN | CMD_RX_PAUSE_IGNORE |
1180 			CMD_TX_PAUSE_IGNORE);
1181 		reg |= cmd_bits;
1182 		umac_writel(priv, reg, UMAC_CMD);
1183 	}
1184 
1185 	phy_print_status(priv->phydev);
1186 }
1187 
1188 static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv,
1189 				    unsigned int index)
1190 {
1191 	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
1192 	struct device *kdev = &priv->pdev->dev;
1193 	size_t size;
1194 	void *p;
1195 	u32 reg;
1196 
1197 	/* Simple descriptors partitioning for now */
1198 	size = 256;
1199 
1200 	/* We just need one DMA descriptor which is DMA-able, since writing to
1201 	 * the port will allocate a new descriptor in its internal linked-list
1202 	 */
1203 	p = dma_zalloc_coherent(kdev, sizeof(struct dma_desc), &ring->desc_dma,
1204 				GFP_KERNEL);
1205 	if (!p) {
1206 		netif_err(priv, hw, priv->netdev, "DMA alloc failed\n");
1207 		return -ENOMEM;
1208 	}
1209 
1210 	ring->cbs = kcalloc(size, sizeof(struct bcm_sysport_cb), GFP_KERNEL);
1211 	if (!ring->cbs) {
1212 		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
1213 		return -ENOMEM;
1214 	}
1215 
1216 	/* Initialize SW view of the ring */
1217 	spin_lock_init(&ring->lock);
1218 	ring->priv = priv;
1219 	netif_tx_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64);
1220 	ring->index = index;
1221 	ring->size = size;
1222 	ring->alloc_size = ring->size;
1223 	ring->desc_cpu = p;
1224 	ring->desc_count = ring->size;
1225 	ring->curr_desc = 0;
1226 
1227 	/* Initialize HW ring */
1228 	tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index));
1229 	tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index));
1230 	tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index));
1231 	tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index));
1232 	tdma_writel(priv, RING_IGNORE_STATUS, TDMA_DESC_RING_MAPPING(index));
1233 	tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index));
1234 
1235 	/* Program the number of descriptors as MAX_THRESHOLD and half of
1236 	 * its size for the hysteresis trigger
1237 	 */
1238 	tdma_writel(priv, ring->size |
1239 			1 << RING_HYST_THRESH_SHIFT,
1240 			TDMA_DESC_RING_MAX_HYST(index));
1241 
1242 	/* Enable the ring queue in the arbiter */
1243 	reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN);
1244 	reg |= (1 << index);
1245 	tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN);
1246 
1247 	napi_enable(&ring->napi);
1248 
1249 	netif_dbg(priv, hw, priv->netdev,
1250 		  "TDMA cfg, size=%d, desc_cpu=%p\n",
1251 		  ring->size, ring->desc_cpu);
1252 
1253 	return 0;
1254 }
1255 
1256 static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv,
1257 				     unsigned int index)
1258 {
1259 	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
1260 	struct device *kdev = &priv->pdev->dev;
1261 	u32 reg;
1262 
1263 	/* Caller should stop the TDMA engine */
1264 	reg = tdma_readl(priv, TDMA_STATUS);
1265 	if (!(reg & TDMA_DISABLED))
1266 		netdev_warn(priv->netdev, "TDMA not stopped!\n");
1267 
1268 	/* ring->cbs is the last part in bcm_sysport_init_tx_ring which could
1269 	 * fail, so by checking this pointer we know whether the TX ring was
1270 	 * fully initialized or not.
1271 	 */
1272 	if (!ring->cbs)
1273 		return;
1274 
1275 	napi_disable(&ring->napi);
1276 	netif_napi_del(&ring->napi);
1277 
1278 	bcm_sysport_tx_reclaim(priv, ring);
1279 
1280 	kfree(ring->cbs);
1281 	ring->cbs = NULL;
1282 
1283 	if (ring->desc_dma) {
1284 		dma_free_coherent(kdev, sizeof(struct dma_desc),
1285 				  ring->desc_cpu, ring->desc_dma);
1286 		ring->desc_dma = 0;
1287 	}
1288 	ring->size = 0;
1289 	ring->alloc_size = 0;
1290 
1291 	netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n");
1292 }
1293 
1294 /* RDMA helper */
1295 static inline int rdma_enable_set(struct bcm_sysport_priv *priv,
1296 				  unsigned int enable)
1297 {
1298 	unsigned int timeout = 1000;
1299 	u32 reg;
1300 
1301 	reg = rdma_readl(priv, RDMA_CONTROL);
1302 	if (enable)
1303 		reg |= RDMA_EN;
1304 	else
1305 		reg &= ~RDMA_EN;
1306 	rdma_writel(priv, reg, RDMA_CONTROL);
1307 
1308 	/* Poll for RMDA disabling completion */
1309 	do {
1310 		reg = rdma_readl(priv, RDMA_STATUS);
1311 		if (!!(reg & RDMA_DISABLED) == !enable)
1312 			return 0;
1313 		usleep_range(1000, 2000);
1314 	} while (timeout-- > 0);
1315 
1316 	netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n");
1317 
1318 	return -ETIMEDOUT;
1319 }
1320 
1321 /* TDMA helper */
1322 static inline int tdma_enable_set(struct bcm_sysport_priv *priv,
1323 				  unsigned int enable)
1324 {
1325 	unsigned int timeout = 1000;
1326 	u32 reg;
1327 
1328 	reg = tdma_readl(priv, TDMA_CONTROL);
1329 	if (enable)
1330 		reg |= TDMA_EN;
1331 	else
1332 		reg &= ~TDMA_EN;
1333 	tdma_writel(priv, reg, TDMA_CONTROL);
1334 
1335 	/* Poll for TMDA disabling completion */
1336 	do {
1337 		reg = tdma_readl(priv, TDMA_STATUS);
1338 		if (!!(reg & TDMA_DISABLED) == !enable)
1339 			return 0;
1340 
1341 		usleep_range(1000, 2000);
1342 	} while (timeout-- > 0);
1343 
1344 	netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n");
1345 
1346 	return -ETIMEDOUT;
1347 }
1348 
1349 static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv)
1350 {
1351 	struct bcm_sysport_cb *cb;
1352 	u32 reg;
1353 	int ret;
1354 	int i;
1355 
1356 	/* Initialize SW view of the RX ring */
1357 	priv->num_rx_bds = NUM_RX_DESC;
1358 	priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET;
1359 	priv->rx_c_index = 0;
1360 	priv->rx_read_ptr = 0;
1361 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct bcm_sysport_cb),
1362 				GFP_KERNEL);
1363 	if (!priv->rx_cbs) {
1364 		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
1365 		return -ENOMEM;
1366 	}
1367 
1368 	for (i = 0; i < priv->num_rx_bds; i++) {
1369 		cb = priv->rx_cbs + i;
1370 		cb->bd_addr = priv->rx_bds + i * DESC_SIZE;
1371 	}
1372 
1373 	ret = bcm_sysport_alloc_rx_bufs(priv);
1374 	if (ret) {
1375 		netif_err(priv, hw, priv->netdev, "SKB allocation failed\n");
1376 		return ret;
1377 	}
1378 
1379 	/* Initialize HW, ensure RDMA is disabled */
1380 	reg = rdma_readl(priv, RDMA_STATUS);
1381 	if (!(reg & RDMA_DISABLED))
1382 		rdma_enable_set(priv, 0);
1383 
1384 	rdma_writel(priv, 0, RDMA_WRITE_PTR_LO);
1385 	rdma_writel(priv, 0, RDMA_WRITE_PTR_HI);
1386 	rdma_writel(priv, 0, RDMA_PROD_INDEX);
1387 	rdma_writel(priv, 0, RDMA_CONS_INDEX);
1388 	rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT |
1389 			  RX_BUF_LENGTH, RDMA_RING_BUF_SIZE);
1390 	/* Operate the queue in ring mode */
1391 	rdma_writel(priv, 0, RDMA_START_ADDR_HI);
1392 	rdma_writel(priv, 0, RDMA_START_ADDR_LO);
1393 	rdma_writel(priv, 0, RDMA_END_ADDR_HI);
1394 	rdma_writel(priv, NUM_HW_RX_DESC_WORDS - 1, RDMA_END_ADDR_LO);
1395 
1396 	rdma_writel(priv, 1, RDMA_MBDONE_INTR);
1397 
1398 	netif_dbg(priv, hw, priv->netdev,
1399 		  "RDMA cfg, num_rx_bds=%d, rx_bds=%p\n",
1400 		  priv->num_rx_bds, priv->rx_bds);
1401 
1402 	return 0;
1403 }
1404 
1405 static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv)
1406 {
1407 	struct bcm_sysport_cb *cb;
1408 	unsigned int i;
1409 	u32 reg;
1410 
1411 	/* Caller should ensure RDMA is disabled */
1412 	reg = rdma_readl(priv, RDMA_STATUS);
1413 	if (!(reg & RDMA_DISABLED))
1414 		netdev_warn(priv->netdev, "RDMA not stopped!\n");
1415 
1416 	for (i = 0; i < priv->num_rx_bds; i++) {
1417 		cb = &priv->rx_cbs[i];
1418 		if (dma_unmap_addr(cb, dma_addr))
1419 			dma_unmap_single(&priv->pdev->dev,
1420 					 dma_unmap_addr(cb, dma_addr),
1421 					 RX_BUF_LENGTH, DMA_FROM_DEVICE);
1422 		bcm_sysport_free_cb(cb);
1423 	}
1424 
1425 	kfree(priv->rx_cbs);
1426 	priv->rx_cbs = NULL;
1427 
1428 	netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n");
1429 }
1430 
1431 static void bcm_sysport_set_rx_mode(struct net_device *dev)
1432 {
1433 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1434 	u32 reg;
1435 
1436 	reg = umac_readl(priv, UMAC_CMD);
1437 	if (dev->flags & IFF_PROMISC)
1438 		reg |= CMD_PROMISC;
1439 	else
1440 		reg &= ~CMD_PROMISC;
1441 	umac_writel(priv, reg, UMAC_CMD);
1442 
1443 	/* No support for ALLMULTI */
1444 	if (dev->flags & IFF_ALLMULTI)
1445 		return;
1446 }
1447 
1448 static inline void umac_enable_set(struct bcm_sysport_priv *priv,
1449 				   u32 mask, unsigned int enable)
1450 {
1451 	u32 reg;
1452 
1453 	reg = umac_readl(priv, UMAC_CMD);
1454 	if (enable)
1455 		reg |= mask;
1456 	else
1457 		reg &= ~mask;
1458 	umac_writel(priv, reg, UMAC_CMD);
1459 
1460 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
1461 	 * to be processed (1 msec).
1462 	 */
1463 	if (enable == 0)
1464 		usleep_range(1000, 2000);
1465 }
1466 
1467 static inline void umac_reset(struct bcm_sysport_priv *priv)
1468 {
1469 	u32 reg;
1470 
1471 	reg = umac_readl(priv, UMAC_CMD);
1472 	reg |= CMD_SW_RESET;
1473 	umac_writel(priv, reg, UMAC_CMD);
1474 	udelay(10);
1475 	reg = umac_readl(priv, UMAC_CMD);
1476 	reg &= ~CMD_SW_RESET;
1477 	umac_writel(priv, reg, UMAC_CMD);
1478 }
1479 
1480 static void umac_set_hw_addr(struct bcm_sysport_priv *priv,
1481 			     unsigned char *addr)
1482 {
1483 	umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
1484 			(addr[2] << 8) | addr[3], UMAC_MAC0);
1485 	umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
1486 }
1487 
1488 static void topctrl_flush(struct bcm_sysport_priv *priv)
1489 {
1490 	topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
1491 	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
1492 	mdelay(1);
1493 	topctrl_writel(priv, 0, RX_FLUSH_CNTL);
1494 	topctrl_writel(priv, 0, TX_FLUSH_CNTL);
1495 }
1496 
1497 static int bcm_sysport_change_mac(struct net_device *dev, void *p)
1498 {
1499 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1500 	struct sockaddr *addr = p;
1501 
1502 	if (!is_valid_ether_addr(addr->sa_data))
1503 		return -EINVAL;
1504 
1505 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1506 
1507 	/* interface is disabled, changes to MAC will be reflected on next
1508 	 * open call
1509 	 */
1510 	if (!netif_running(dev))
1511 		return 0;
1512 
1513 	umac_set_hw_addr(priv, dev->dev_addr);
1514 
1515 	return 0;
1516 }
1517 
1518 static void bcm_sysport_netif_start(struct net_device *dev)
1519 {
1520 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1521 
1522 	/* Enable NAPI */
1523 	napi_enable(&priv->napi);
1524 
1525 	/* Enable RX interrupt and TX ring full interrupt */
1526 	intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
1527 
1528 	phy_start(priv->phydev);
1529 
1530 	/* Enable TX interrupts for the 32 TXQs */
1531 	intrl2_1_mask_clear(priv, 0xffffffff);
1532 
1533 	/* Last call before we start the real business */
1534 	netif_tx_start_all_queues(dev);
1535 }
1536 
1537 static void rbuf_init(struct bcm_sysport_priv *priv)
1538 {
1539 	u32 reg;
1540 
1541 	reg = rbuf_readl(priv, RBUF_CONTROL);
1542 	reg |= RBUF_4B_ALGN | RBUF_RSB_EN;
1543 	rbuf_writel(priv, reg, RBUF_CONTROL);
1544 }
1545 
1546 static int bcm_sysport_open(struct net_device *dev)
1547 {
1548 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1549 	unsigned int i;
1550 	int ret;
1551 
1552 	/* Reset UniMAC */
1553 	umac_reset(priv);
1554 
1555 	/* Flush TX and RX FIFOs at TOPCTRL level */
1556 	topctrl_flush(priv);
1557 
1558 	/* Disable the UniMAC RX/TX */
1559 	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0);
1560 
1561 	/* Enable RBUF 2bytes alignment and Receive Status Block */
1562 	rbuf_init(priv);
1563 
1564 	/* Set maximum frame length */
1565 	umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1566 
1567 	/* Set MAC address */
1568 	umac_set_hw_addr(priv, dev->dev_addr);
1569 
1570 	/* Read CRC forward */
1571 	priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD);
1572 
1573 	priv->phydev = of_phy_connect(dev, priv->phy_dn, bcm_sysport_adj_link,
1574 					0, priv->phy_interface);
1575 	if (!priv->phydev) {
1576 		netdev_err(dev, "could not attach to PHY\n");
1577 		return -ENODEV;
1578 	}
1579 
1580 	/* Reset house keeping link status */
1581 	priv->old_duplex = -1;
1582 	priv->old_link = -1;
1583 	priv->old_pause = -1;
1584 
1585 	/* mask all interrupts and request them */
1586 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
1587 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1588 	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1589 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
1590 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1591 	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1592 
1593 	ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev);
1594 	if (ret) {
1595 		netdev_err(dev, "failed to request RX interrupt\n");
1596 		goto out_phy_disconnect;
1597 	}
1598 
1599 	ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0, dev->name, dev);
1600 	if (ret) {
1601 		netdev_err(dev, "failed to request TX interrupt\n");
1602 		goto out_free_irq0;
1603 	}
1604 
1605 	/* Initialize both hardware and software ring */
1606 	for (i = 0; i < dev->num_tx_queues; i++) {
1607 		ret = bcm_sysport_init_tx_ring(priv, i);
1608 		if (ret) {
1609 			netdev_err(dev, "failed to initialize TX ring %d\n",
1610 				   i);
1611 			goto out_free_tx_ring;
1612 		}
1613 	}
1614 
1615 	/* Initialize linked-list */
1616 	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
1617 
1618 	/* Initialize RX ring */
1619 	ret = bcm_sysport_init_rx_ring(priv);
1620 	if (ret) {
1621 		netdev_err(dev, "failed to initialize RX ring\n");
1622 		goto out_free_rx_ring;
1623 	}
1624 
1625 	/* Turn on RDMA */
1626 	ret = rdma_enable_set(priv, 1);
1627 	if (ret)
1628 		goto out_free_rx_ring;
1629 
1630 	/* Turn on TDMA */
1631 	ret = tdma_enable_set(priv, 1);
1632 	if (ret)
1633 		goto out_clear_rx_int;
1634 
1635 	/* Turn on UniMAC TX/RX */
1636 	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 1);
1637 
1638 	bcm_sysport_netif_start(dev);
1639 
1640 	return 0;
1641 
1642 out_clear_rx_int:
1643 	intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
1644 out_free_rx_ring:
1645 	bcm_sysport_fini_rx_ring(priv);
1646 out_free_tx_ring:
1647 	for (i = 0; i < dev->num_tx_queues; i++)
1648 		bcm_sysport_fini_tx_ring(priv, i);
1649 	free_irq(priv->irq1, dev);
1650 out_free_irq0:
1651 	free_irq(priv->irq0, dev);
1652 out_phy_disconnect:
1653 	phy_disconnect(priv->phydev);
1654 	return ret;
1655 }
1656 
1657 static void bcm_sysport_netif_stop(struct net_device *dev)
1658 {
1659 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1660 
1661 	/* stop all software from updating hardware */
1662 	netif_tx_stop_all_queues(dev);
1663 	napi_disable(&priv->napi);
1664 	phy_stop(priv->phydev);
1665 
1666 	/* mask all interrupts */
1667 	intrl2_0_mask_set(priv, 0xffffffff);
1668 	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1669 	intrl2_1_mask_set(priv, 0xffffffff);
1670 	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1671 }
1672 
1673 static int bcm_sysport_stop(struct net_device *dev)
1674 {
1675 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1676 	unsigned int i;
1677 	int ret;
1678 
1679 	bcm_sysport_netif_stop(dev);
1680 
1681 	/* Disable UniMAC RX */
1682 	umac_enable_set(priv, CMD_RX_EN, 0);
1683 
1684 	ret = tdma_enable_set(priv, 0);
1685 	if (ret) {
1686 		netdev_err(dev, "timeout disabling RDMA\n");
1687 		return ret;
1688 	}
1689 
1690 	/* Wait for a maximum packet size to be drained */
1691 	usleep_range(2000, 3000);
1692 
1693 	ret = rdma_enable_set(priv, 0);
1694 	if (ret) {
1695 		netdev_err(dev, "timeout disabling TDMA\n");
1696 		return ret;
1697 	}
1698 
1699 	/* Disable UniMAC TX */
1700 	umac_enable_set(priv, CMD_TX_EN, 0);
1701 
1702 	/* Free RX/TX rings SW structures */
1703 	for (i = 0; i < dev->num_tx_queues; i++)
1704 		bcm_sysport_fini_tx_ring(priv, i);
1705 	bcm_sysport_fini_rx_ring(priv);
1706 
1707 	free_irq(priv->irq0, dev);
1708 	free_irq(priv->irq1, dev);
1709 
1710 	/* Disconnect from PHY */
1711 	phy_disconnect(priv->phydev);
1712 
1713 	return 0;
1714 }
1715 
1716 static struct ethtool_ops bcm_sysport_ethtool_ops = {
1717 	.get_settings		= bcm_sysport_get_settings,
1718 	.set_settings		= bcm_sysport_set_settings,
1719 	.get_drvinfo		= bcm_sysport_get_drvinfo,
1720 	.get_msglevel		= bcm_sysport_get_msglvl,
1721 	.set_msglevel		= bcm_sysport_set_msglvl,
1722 	.get_link		= ethtool_op_get_link,
1723 	.get_strings		= bcm_sysport_get_strings,
1724 	.get_ethtool_stats	= bcm_sysport_get_stats,
1725 	.get_sset_count		= bcm_sysport_get_sset_count,
1726 	.get_wol		= bcm_sysport_get_wol,
1727 	.set_wol		= bcm_sysport_set_wol,
1728 	.get_coalesce		= bcm_sysport_get_coalesce,
1729 	.set_coalesce		= bcm_sysport_set_coalesce,
1730 };
1731 
1732 static const struct net_device_ops bcm_sysport_netdev_ops = {
1733 	.ndo_start_xmit		= bcm_sysport_xmit,
1734 	.ndo_tx_timeout		= bcm_sysport_tx_timeout,
1735 	.ndo_open		= bcm_sysport_open,
1736 	.ndo_stop		= bcm_sysport_stop,
1737 	.ndo_set_features	= bcm_sysport_set_features,
1738 	.ndo_set_rx_mode	= bcm_sysport_set_rx_mode,
1739 	.ndo_set_mac_address	= bcm_sysport_change_mac,
1740 #ifdef CONFIG_NET_POLL_CONTROLLER
1741 	.ndo_poll_controller	= bcm_sysport_poll_controller,
1742 #endif
1743 };
1744 
1745 #define REV_FMT	"v%2x.%02x"
1746 
1747 static int bcm_sysport_probe(struct platform_device *pdev)
1748 {
1749 	struct bcm_sysport_priv *priv;
1750 	struct device_node *dn;
1751 	struct net_device *dev;
1752 	const void *macaddr;
1753 	struct resource *r;
1754 	u32 txq, rxq;
1755 	int ret;
1756 
1757 	dn = pdev->dev.of_node;
1758 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1759 
1760 	/* Read the Transmit/Receive Queue properties */
1761 	if (of_property_read_u32(dn, "systemport,num-txq", &txq))
1762 		txq = TDMA_NUM_RINGS;
1763 	if (of_property_read_u32(dn, "systemport,num-rxq", &rxq))
1764 		rxq = 1;
1765 
1766 	dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq);
1767 	if (!dev)
1768 		return -ENOMEM;
1769 
1770 	/* Initialize private members */
1771 	priv = netdev_priv(dev);
1772 
1773 	priv->irq0 = platform_get_irq(pdev, 0);
1774 	priv->irq1 = platform_get_irq(pdev, 1);
1775 	priv->wol_irq = platform_get_irq(pdev, 2);
1776 	if (priv->irq0 <= 0 || priv->irq1 <= 0) {
1777 		dev_err(&pdev->dev, "invalid interrupts\n");
1778 		ret = -EINVAL;
1779 		goto err;
1780 	}
1781 
1782 	priv->base = devm_ioremap_resource(&pdev->dev, r);
1783 	if (IS_ERR(priv->base)) {
1784 		ret = PTR_ERR(priv->base);
1785 		goto err;
1786 	}
1787 
1788 	priv->netdev = dev;
1789 	priv->pdev = pdev;
1790 
1791 	priv->phy_interface = of_get_phy_mode(dn);
1792 	/* Default to GMII interface mode */
1793 	if (priv->phy_interface < 0)
1794 		priv->phy_interface = PHY_INTERFACE_MODE_GMII;
1795 
1796 	/* In the case of a fixed PHY, the DT node associated
1797 	 * to the PHY is the Ethernet MAC DT node.
1798 	 */
1799 	if (of_phy_is_fixed_link(dn)) {
1800 		ret = of_phy_register_fixed_link(dn);
1801 		if (ret) {
1802 			dev_err(&pdev->dev, "failed to register fixed PHY\n");
1803 			goto err;
1804 		}
1805 
1806 		priv->phy_dn = dn;
1807 	}
1808 
1809 	/* Initialize netdevice members */
1810 	macaddr = of_get_mac_address(dn);
1811 	if (!macaddr || !is_valid_ether_addr(macaddr)) {
1812 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
1813 		eth_hw_addr_random(dev);
1814 	} else {
1815 		ether_addr_copy(dev->dev_addr, macaddr);
1816 	}
1817 
1818 	SET_NETDEV_DEV(dev, &pdev->dev);
1819 	dev_set_drvdata(&pdev->dev, dev);
1820 	dev->ethtool_ops = &bcm_sysport_ethtool_ops;
1821 	dev->netdev_ops = &bcm_sysport_netdev_ops;
1822 	netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64);
1823 
1824 	/* HW supported features, none enabled by default */
1825 	dev->hw_features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA |
1826 				NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1827 
1828 	/* Request the WOL interrupt and advertise suspend if available */
1829 	priv->wol_irq_disabled = 1;
1830 	ret = devm_request_irq(&pdev->dev, priv->wol_irq,
1831 			       bcm_sysport_wol_isr, 0, dev->name, priv);
1832 	if (!ret)
1833 		device_set_wakeup_capable(&pdev->dev, 1);
1834 
1835 	/* Set the needed headroom once and for all */
1836 	BUILD_BUG_ON(sizeof(struct bcm_tsb) != 8);
1837 	dev->needed_headroom += sizeof(struct bcm_tsb);
1838 
1839 	/* libphy will adjust the link state accordingly */
1840 	netif_carrier_off(dev);
1841 
1842 	ret = register_netdev(dev);
1843 	if (ret) {
1844 		dev_err(&pdev->dev, "failed to register net_device\n");
1845 		goto err;
1846 	}
1847 
1848 	priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK;
1849 	dev_info(&pdev->dev,
1850 		 "Broadcom SYSTEMPORT" REV_FMT
1851 		 " at 0x%p (irqs: %d, %d, TXQs: %d, RXQs: %d)\n",
1852 		 (priv->rev >> 8) & 0xff, priv->rev & 0xff,
1853 		 priv->base, priv->irq0, priv->irq1, txq, rxq);
1854 
1855 	return 0;
1856 err:
1857 	free_netdev(dev);
1858 	return ret;
1859 }
1860 
1861 static int bcm_sysport_remove(struct platform_device *pdev)
1862 {
1863 	struct net_device *dev = dev_get_drvdata(&pdev->dev);
1864 
1865 	/* Not much to do, ndo_close has been called
1866 	 * and we use managed allocations
1867 	 */
1868 	unregister_netdev(dev);
1869 	free_netdev(dev);
1870 	dev_set_drvdata(&pdev->dev, NULL);
1871 
1872 	return 0;
1873 }
1874 
1875 #ifdef CONFIG_PM_SLEEP
1876 static int bcm_sysport_suspend_to_wol(struct bcm_sysport_priv *priv)
1877 {
1878 	struct net_device *ndev = priv->netdev;
1879 	unsigned int timeout = 1000;
1880 	u32 reg;
1881 
1882 	/* Password has already been programmed */
1883 	reg = umac_readl(priv, UMAC_MPD_CTRL);
1884 	reg |= MPD_EN;
1885 	reg &= ~PSW_EN;
1886 	if (priv->wolopts & WAKE_MAGICSECURE)
1887 		reg |= PSW_EN;
1888 	umac_writel(priv, reg, UMAC_MPD_CTRL);
1889 
1890 	/* Make sure RBUF entered WoL mode as result */
1891 	do {
1892 		reg = rbuf_readl(priv, RBUF_STATUS);
1893 		if (reg & RBUF_WOL_MODE)
1894 			break;
1895 
1896 		udelay(10);
1897 	} while (timeout-- > 0);
1898 
1899 	/* Do not leave the UniMAC RBUF matching only MPD packets */
1900 	if (!timeout) {
1901 		reg = umac_readl(priv, UMAC_MPD_CTRL);
1902 		reg &= ~MPD_EN;
1903 		umac_writel(priv, reg, UMAC_MPD_CTRL);
1904 		netif_err(priv, wol, ndev, "failed to enter WOL mode\n");
1905 		return -ETIMEDOUT;
1906 	}
1907 
1908 	/* UniMAC receive needs to be turned on */
1909 	umac_enable_set(priv, CMD_RX_EN, 1);
1910 
1911 	/* Enable the interrupt wake-up source */
1912 	intrl2_0_mask_clear(priv, INTRL2_0_MPD);
1913 
1914 	netif_dbg(priv, wol, ndev, "entered WOL mode\n");
1915 
1916 	return 0;
1917 }
1918 
1919 static int bcm_sysport_suspend(struct device *d)
1920 {
1921 	struct net_device *dev = dev_get_drvdata(d);
1922 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1923 	unsigned int i;
1924 	int ret = 0;
1925 	u32 reg;
1926 
1927 	if (!netif_running(dev))
1928 		return 0;
1929 
1930 	bcm_sysport_netif_stop(dev);
1931 
1932 	phy_suspend(priv->phydev);
1933 
1934 	netif_device_detach(dev);
1935 
1936 	/* Disable UniMAC RX */
1937 	umac_enable_set(priv, CMD_RX_EN, 0);
1938 
1939 	ret = rdma_enable_set(priv, 0);
1940 	if (ret) {
1941 		netdev_err(dev, "RDMA timeout!\n");
1942 		return ret;
1943 	}
1944 
1945 	/* Disable RXCHK if enabled */
1946 	if (priv->rx_chk_en) {
1947 		reg = rxchk_readl(priv, RXCHK_CONTROL);
1948 		reg &= ~RXCHK_EN;
1949 		rxchk_writel(priv, reg, RXCHK_CONTROL);
1950 	}
1951 
1952 	/* Flush RX pipe */
1953 	if (!priv->wolopts)
1954 		topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
1955 
1956 	ret = tdma_enable_set(priv, 0);
1957 	if (ret) {
1958 		netdev_err(dev, "TDMA timeout!\n");
1959 		return ret;
1960 	}
1961 
1962 	/* Wait for a packet boundary */
1963 	usleep_range(2000, 3000);
1964 
1965 	umac_enable_set(priv, CMD_TX_EN, 0);
1966 
1967 	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
1968 
1969 	/* Free RX/TX rings SW structures */
1970 	for (i = 0; i < dev->num_tx_queues; i++)
1971 		bcm_sysport_fini_tx_ring(priv, i);
1972 	bcm_sysport_fini_rx_ring(priv);
1973 
1974 	/* Get prepared for Wake-on-LAN */
1975 	if (device_may_wakeup(d) && priv->wolopts)
1976 		ret = bcm_sysport_suspend_to_wol(priv);
1977 
1978 	return ret;
1979 }
1980 
1981 static int bcm_sysport_resume(struct device *d)
1982 {
1983 	struct net_device *dev = dev_get_drvdata(d);
1984 	struct bcm_sysport_priv *priv = netdev_priv(dev);
1985 	unsigned int i;
1986 	u32 reg;
1987 	int ret;
1988 
1989 	if (!netif_running(dev))
1990 		return 0;
1991 
1992 	umac_reset(priv);
1993 
1994 	/* We may have been suspended and never received a WOL event that
1995 	 * would turn off MPD detection, take care of that now
1996 	 */
1997 	bcm_sysport_resume_from_wol(priv);
1998 
1999 	/* Initialize both hardware and software ring */
2000 	for (i = 0; i < dev->num_tx_queues; i++) {
2001 		ret = bcm_sysport_init_tx_ring(priv, i);
2002 		if (ret) {
2003 			netdev_err(dev, "failed to initialize TX ring %d\n",
2004 				   i);
2005 			goto out_free_tx_rings;
2006 		}
2007 	}
2008 
2009 	/* Initialize linked-list */
2010 	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
2011 
2012 	/* Initialize RX ring */
2013 	ret = bcm_sysport_init_rx_ring(priv);
2014 	if (ret) {
2015 		netdev_err(dev, "failed to initialize RX ring\n");
2016 		goto out_free_rx_ring;
2017 	}
2018 
2019 	netif_device_attach(dev);
2020 
2021 	/* RX pipe enable */
2022 	topctrl_writel(priv, 0, RX_FLUSH_CNTL);
2023 
2024 	ret = rdma_enable_set(priv, 1);
2025 	if (ret) {
2026 		netdev_err(dev, "failed to enable RDMA\n");
2027 		goto out_free_rx_ring;
2028 	}
2029 
2030 	/* Enable rxhck */
2031 	if (priv->rx_chk_en) {
2032 		reg = rxchk_readl(priv, RXCHK_CONTROL);
2033 		reg |= RXCHK_EN;
2034 		rxchk_writel(priv, reg, RXCHK_CONTROL);
2035 	}
2036 
2037 	rbuf_init(priv);
2038 
2039 	/* Set maximum frame length */
2040 	umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2041 
2042 	/* Set MAC address */
2043 	umac_set_hw_addr(priv, dev->dev_addr);
2044 
2045 	umac_enable_set(priv, CMD_RX_EN, 1);
2046 
2047 	/* TX pipe enable */
2048 	topctrl_writel(priv, 0, TX_FLUSH_CNTL);
2049 
2050 	umac_enable_set(priv, CMD_TX_EN, 1);
2051 
2052 	ret = tdma_enable_set(priv, 1);
2053 	if (ret) {
2054 		netdev_err(dev, "TDMA timeout!\n");
2055 		goto out_free_rx_ring;
2056 	}
2057 
2058 	phy_resume(priv->phydev);
2059 
2060 	bcm_sysport_netif_start(dev);
2061 
2062 	return 0;
2063 
2064 out_free_rx_ring:
2065 	bcm_sysport_fini_rx_ring(priv);
2066 out_free_tx_rings:
2067 	for (i = 0; i < dev->num_tx_queues; i++)
2068 		bcm_sysport_fini_tx_ring(priv, i);
2069 	return ret;
2070 }
2071 #endif
2072 
2073 static SIMPLE_DEV_PM_OPS(bcm_sysport_pm_ops,
2074 		bcm_sysport_suspend, bcm_sysport_resume);
2075 
2076 static const struct of_device_id bcm_sysport_of_match[] = {
2077 	{ .compatible = "brcm,systemport-v1.00" },
2078 	{ .compatible = "brcm,systemport" },
2079 	{ /* sentinel */ }
2080 };
2081 MODULE_DEVICE_TABLE(of, bcm_sysport_of_match);
2082 
2083 static struct platform_driver bcm_sysport_driver = {
2084 	.probe	= bcm_sysport_probe,
2085 	.remove	= bcm_sysport_remove,
2086 	.driver =  {
2087 		.name = "brcm-systemport",
2088 		.of_match_table = bcm_sysport_of_match,
2089 		.pm = &bcm_sysport_pm_ops,
2090 	},
2091 };
2092 module_platform_driver(bcm_sysport_driver);
2093 
2094 MODULE_AUTHOR("Broadcom Corporation");
2095 MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver");
2096 MODULE_ALIAS("platform:brcm-systemport");
2097 MODULE_LICENSE("GPL");
2098