xref: /linux/drivers/net/ethernet/broadcom/bcm63xx_enet.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = napi_alloc_skb(&priv->napi, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget) {
508 		/* rx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete_done(napi, rx_work_done);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put(skb, needed);
613 		memset(data, 0, needed);
614 	}
615 
616 	/* point to the next available desc */
617 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 	priv->tx_skb[priv->tx_curr_desc] = skb;
619 
620 	/* fill descriptor */
621 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 				       DMA_TO_DEVICE);
623 
624 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 		DMADESC_APPEND_CRC |
627 		DMADESC_OWNER_MASK;
628 
629 	priv->tx_curr_desc++;
630 	if (priv->tx_curr_desc == priv->tx_ring_size) {
631 		priv->tx_curr_desc = 0;
632 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 	}
634 	priv->tx_desc_count--;
635 
636 	/* dma might be already polling, make sure we update desc
637 	 * fields in correct order */
638 	wmb();
639 	desc->len_stat = len_stat;
640 	wmb();
641 
642 	/* kick tx dma */
643 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 				 ENETDMAC_CHANCFG, priv->tx_chan);
645 
646 	/* stop queue if no more desc available */
647 	if (!priv->tx_desc_count)
648 		netif_stop_queue(dev);
649 
650 	dev->stats.tx_bytes += skb->len;
651 	dev->stats.tx_packets++;
652 	ret = NETDEV_TX_OK;
653 
654 out_unlock:
655 	spin_unlock(&priv->tx_lock);
656 	return ret;
657 }
658 
659 /*
660  * Change the interface's mac address.
661  */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 	struct bcm_enet_priv *priv;
665 	struct sockaddr *addr = p;
666 	u32 val;
667 
668 	priv = netdev_priv(dev);
669 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670 
671 	/* use perfect match register 0 to store my mac address */
672 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 	enet_writel(priv, val, ENET_PML_REG(0));
675 
676 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 	val |= ENET_PMH_DATAVALID_MASK;
678 	enet_writel(priv, val, ENET_PMH_REG(0));
679 
680 	return 0;
681 }
682 
683 /*
684  * Change rx mode (promiscuous/allmulti) and update multicast list
685  */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 	struct bcm_enet_priv *priv;
689 	struct netdev_hw_addr *ha;
690 	u32 val;
691 	int i;
692 
693 	priv = netdev_priv(dev);
694 
695 	val = enet_readl(priv, ENET_RXCFG_REG);
696 
697 	if (dev->flags & IFF_PROMISC)
698 		val |= ENET_RXCFG_PROMISC_MASK;
699 	else
700 		val &= ~ENET_RXCFG_PROMISC_MASK;
701 
702 	/* only 3 perfect match registers left, first one is used for
703 	 * own mac address */
704 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 		val |= ENET_RXCFG_ALLMCAST_MASK;
706 	else
707 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
708 
709 	/* no need to set perfect match registers if we catch all
710 	 * multicast */
711 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 		enet_writel(priv, val, ENET_RXCFG_REG);
713 		return;
714 	}
715 
716 	i = 0;
717 	netdev_for_each_mc_addr(ha, dev) {
718 		u8 *dmi_addr;
719 		u32 tmp;
720 
721 		if (i == 3)
722 			break;
723 		/* update perfect match registers */
724 		dmi_addr = ha->addr;
725 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 			(dmi_addr[4] << 8) | dmi_addr[5];
727 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728 
729 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 		tmp |= ENET_PMH_DATAVALID_MASK;
731 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 	}
733 
734 	for (; i < 3; i++) {
735 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 	}
738 
739 	enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741 
742 /*
743  * set mac duplex parameters
744  */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 	u32 val;
748 
749 	val = enet_readl(priv, ENET_TXCTL_REG);
750 	if (fullduplex)
751 		val |= ENET_TXCTL_FD_MASK;
752 	else
753 		val &= ~ENET_TXCTL_FD_MASK;
754 	enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756 
757 /*
758  * set mac flow control parameters
759  */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 	u32 val;
763 
764 	/* rx flow control (pause frame handling) */
765 	val = enet_readl(priv, ENET_RXCFG_REG);
766 	if (rx_en)
767 		val |= ENET_RXCFG_ENFLOW_MASK;
768 	else
769 		val &= ~ENET_RXCFG_ENFLOW_MASK;
770 	enet_writel(priv, val, ENET_RXCFG_REG);
771 
772 	if (!priv->dma_has_sram)
773 		return;
774 
775 	/* tx flow control (pause frame generation) */
776 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 	if (tx_en)
778 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 	else
780 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783 
784 /*
785  * link changed callback (from phylib)
786  */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 	struct bcm_enet_priv *priv;
790 	struct phy_device *phydev;
791 	int status_changed;
792 
793 	priv = netdev_priv(dev);
794 	phydev = dev->phydev;
795 	status_changed = 0;
796 
797 	if (priv->old_link != phydev->link) {
798 		status_changed = 1;
799 		priv->old_link = phydev->link;
800 	}
801 
802 	/* reflect duplex change in mac configuration */
803 	if (phydev->link && phydev->duplex != priv->old_duplex) {
804 		bcm_enet_set_duplex(priv,
805 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 		status_changed = 1;
807 		priv->old_duplex = phydev->duplex;
808 	}
809 
810 	/* enable flow control if remote advertise it (trust phylib to
811 	 * check that duplex is full */
812 	if (phydev->link && phydev->pause != priv->old_pause) {
813 		int rx_pause_en, tx_pause_en;
814 
815 		if (phydev->pause) {
816 			/* pause was advertised by lpa and us */
817 			rx_pause_en = 1;
818 			tx_pause_en = 1;
819 		} else if (!priv->pause_auto) {
820 			/* pause setting overridden by user */
821 			rx_pause_en = priv->pause_rx;
822 			tx_pause_en = priv->pause_tx;
823 		} else {
824 			rx_pause_en = 0;
825 			tx_pause_en = 0;
826 		}
827 
828 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 		status_changed = 1;
830 		priv->old_pause = phydev->pause;
831 	}
832 
833 	if (status_changed) {
834 		pr_info("%s: link %s", dev->name, phydev->link ?
835 			"UP" : "DOWN");
836 		if (phydev->link)
837 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 			       phydev->pause == 1 ? "rx&tx" : "off");
840 
841 		pr_cont("\n");
842 	}
843 }
844 
845 /*
846  * link changed callback (if phylib is not used)
847  */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 	struct bcm_enet_priv *priv;
851 
852 	priv = netdev_priv(dev);
853 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 	netif_carrier_on(dev);
856 
857 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 		dev->name,
859 		priv->force_speed_100 ? 100 : 10,
860 		priv->force_duplex_full ? "full" : "half",
861 		priv->pause_rx ? "rx" : "off",
862 		priv->pause_tx ? "tx" : "off");
863 }
864 
865 /*
866  * open callback, allocate dma rings & buffers and start rx operation
867  */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 	struct bcm_enet_priv *priv;
871 	struct sockaddr addr;
872 	struct device *kdev;
873 	struct phy_device *phydev;
874 	int i, ret;
875 	unsigned int size;
876 	char phy_id[MII_BUS_ID_SIZE + 3];
877 	void *p;
878 	u32 val;
879 
880 	priv = netdev_priv(dev);
881 	kdev = &priv->pdev->dev;
882 
883 	if (priv->has_phy) {
884 		/* connect to PHY */
885 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 			 priv->mii_bus->id, priv->phy_id);
887 
888 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 				     PHY_INTERFACE_MODE_MII);
890 
891 		if (IS_ERR(phydev)) {
892 			dev_err(kdev, "could not attach to PHY\n");
893 			return PTR_ERR(phydev);
894 		}
895 
896 		/* mask with MAC supported features */
897 		phydev->supported &= (SUPPORTED_10baseT_Half |
898 				      SUPPORTED_10baseT_Full |
899 				      SUPPORTED_100baseT_Half |
900 				      SUPPORTED_100baseT_Full |
901 				      SUPPORTED_Autoneg |
902 				      SUPPORTED_Pause |
903 				      SUPPORTED_MII);
904 		phydev->advertising = phydev->supported;
905 
906 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 			phydev->advertising |= SUPPORTED_Pause;
908 		else
909 			phydev->advertising &= ~SUPPORTED_Pause;
910 
911 		phy_attached_info(phydev);
912 
913 		priv->old_link = 0;
914 		priv->old_duplex = -1;
915 		priv->old_pause = -1;
916 	} else {
917 		phydev = NULL;
918 	}
919 
920 	/* mask all interrupts and request them */
921 	enet_writel(priv, 0, ENET_IRMASK_REG);
922 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
923 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
924 
925 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
926 	if (ret)
927 		goto out_phy_disconnect;
928 
929 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
930 			  dev->name, dev);
931 	if (ret)
932 		goto out_freeirq;
933 
934 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
935 			  0, dev->name, dev);
936 	if (ret)
937 		goto out_freeirq_rx;
938 
939 	/* initialize perfect match registers */
940 	for (i = 0; i < 4; i++) {
941 		enet_writel(priv, 0, ENET_PML_REG(i));
942 		enet_writel(priv, 0, ENET_PMH_REG(i));
943 	}
944 
945 	/* write device mac address */
946 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
947 	bcm_enet_set_mac_address(dev, &addr);
948 
949 	/* allocate rx dma ring */
950 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
951 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
952 	if (!p) {
953 		ret = -ENOMEM;
954 		goto out_freeirq_tx;
955 	}
956 
957 	priv->rx_desc_alloc_size = size;
958 	priv->rx_desc_cpu = p;
959 
960 	/* allocate tx dma ring */
961 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
962 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
963 	if (!p) {
964 		ret = -ENOMEM;
965 		goto out_free_rx_ring;
966 	}
967 
968 	priv->tx_desc_alloc_size = size;
969 	priv->tx_desc_cpu = p;
970 
971 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
972 			       GFP_KERNEL);
973 	if (!priv->tx_skb) {
974 		ret = -ENOMEM;
975 		goto out_free_tx_ring;
976 	}
977 
978 	priv->tx_desc_count = priv->tx_ring_size;
979 	priv->tx_dirty_desc = 0;
980 	priv->tx_curr_desc = 0;
981 	spin_lock_init(&priv->tx_lock);
982 
983 	/* init & fill rx ring with skbs */
984 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
985 			       GFP_KERNEL);
986 	if (!priv->rx_skb) {
987 		ret = -ENOMEM;
988 		goto out_free_tx_skb;
989 	}
990 
991 	priv->rx_desc_count = 0;
992 	priv->rx_dirty_desc = 0;
993 	priv->rx_curr_desc = 0;
994 
995 	/* initialize flow control buffer allocation */
996 	if (priv->dma_has_sram)
997 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
998 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
999 	else
1000 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1001 				ENETDMAC_BUFALLOC, priv->rx_chan);
1002 
1003 	if (bcm_enet_refill_rx(dev)) {
1004 		dev_err(kdev, "cannot allocate rx skb queue\n");
1005 		ret = -ENOMEM;
1006 		goto out;
1007 	}
1008 
1009 	/* write rx & tx ring addresses */
1010 	if (priv->dma_has_sram) {
1011 		enet_dmas_writel(priv, priv->rx_desc_dma,
1012 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1013 		enet_dmas_writel(priv, priv->tx_desc_dma,
1014 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1015 	} else {
1016 		enet_dmac_writel(priv, priv->rx_desc_dma,
1017 				ENETDMAC_RSTART, priv->rx_chan);
1018 		enet_dmac_writel(priv, priv->tx_desc_dma,
1019 				ENETDMAC_RSTART, priv->tx_chan);
1020 	}
1021 
1022 	/* clear remaining state ram for rx & tx channel */
1023 	if (priv->dma_has_sram) {
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1028 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1029 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1030 	} else {
1031 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1032 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1033 	}
1034 
1035 	/* set max rx/tx length */
1036 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1037 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1038 
1039 	/* set dma maximum burst len */
1040 	enet_dmac_writel(priv, priv->dma_maxburst,
1041 			 ENETDMAC_MAXBURST, priv->rx_chan);
1042 	enet_dmac_writel(priv, priv->dma_maxburst,
1043 			 ENETDMAC_MAXBURST, priv->tx_chan);
1044 
1045 	/* set correct transmit fifo watermark */
1046 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1047 
1048 	/* set flow control low/high threshold to 1/3 / 2/3 */
1049 	if (priv->dma_has_sram) {
1050 		val = priv->rx_ring_size / 3;
1051 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1052 		val = (priv->rx_ring_size * 2) / 3;
1053 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1054 	} else {
1055 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1056 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1057 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1058 	}
1059 
1060 	/* all set, enable mac and interrupts, start dma engine and
1061 	 * kick rx dma channel */
1062 	wmb();
1063 	val = enet_readl(priv, ENET_CTL_REG);
1064 	val |= ENET_CTL_ENABLE_MASK;
1065 	enet_writel(priv, val, ENET_CTL_REG);
1066 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1067 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1068 			 ENETDMAC_CHANCFG, priv->rx_chan);
1069 
1070 	/* watch "mib counters about to overflow" interrupt */
1071 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1072 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1073 
1074 	/* watch "packet transferred" interrupt in rx and tx */
1075 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 			 ENETDMAC_IR, priv->rx_chan);
1077 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1078 			 ENETDMAC_IR, priv->tx_chan);
1079 
1080 	/* make sure we enable napi before rx interrupt  */
1081 	napi_enable(&priv->napi);
1082 
1083 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 			 ENETDMAC_IRMASK, priv->rx_chan);
1085 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1086 			 ENETDMAC_IRMASK, priv->tx_chan);
1087 
1088 	if (phydev)
1089 		phy_start(phydev);
1090 	else
1091 		bcm_enet_adjust_link(dev);
1092 
1093 	netif_start_queue(dev);
1094 	return 0;
1095 
1096 out:
1097 	for (i = 0; i < priv->rx_ring_size; i++) {
1098 		struct bcm_enet_desc *desc;
1099 
1100 		if (!priv->rx_skb[i])
1101 			continue;
1102 
1103 		desc = &priv->rx_desc_cpu[i];
1104 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1105 				 DMA_FROM_DEVICE);
1106 		kfree_skb(priv->rx_skb[i]);
1107 	}
1108 	kfree(priv->rx_skb);
1109 
1110 out_free_tx_skb:
1111 	kfree(priv->tx_skb);
1112 
1113 out_free_tx_ring:
1114 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1115 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1116 
1117 out_free_rx_ring:
1118 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1119 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1120 
1121 out_freeirq_tx:
1122 	free_irq(priv->irq_tx, dev);
1123 
1124 out_freeirq_rx:
1125 	free_irq(priv->irq_rx, dev);
1126 
1127 out_freeirq:
1128 	free_irq(dev->irq, dev);
1129 
1130 out_phy_disconnect:
1131 	if (phydev)
1132 		phy_disconnect(phydev);
1133 
1134 	return ret;
1135 }
1136 
1137 /*
1138  * disable mac
1139  */
1140 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1141 {
1142 	int limit;
1143 	u32 val;
1144 
1145 	val = enet_readl(priv, ENET_CTL_REG);
1146 	val |= ENET_CTL_DISABLE_MASK;
1147 	enet_writel(priv, val, ENET_CTL_REG);
1148 
1149 	limit = 1000;
1150 	do {
1151 		u32 val;
1152 
1153 		val = enet_readl(priv, ENET_CTL_REG);
1154 		if (!(val & ENET_CTL_DISABLE_MASK))
1155 			break;
1156 		udelay(1);
1157 	} while (limit--);
1158 }
1159 
1160 /*
1161  * disable dma in given channel
1162  */
1163 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1164 {
1165 	int limit;
1166 
1167 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1168 
1169 	limit = 1000;
1170 	do {
1171 		u32 val;
1172 
1173 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1174 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1175 			break;
1176 		udelay(1);
1177 	} while (limit--);
1178 }
1179 
1180 /*
1181  * stop callback
1182  */
1183 static int bcm_enet_stop(struct net_device *dev)
1184 {
1185 	struct bcm_enet_priv *priv;
1186 	struct device *kdev;
1187 	int i;
1188 
1189 	priv = netdev_priv(dev);
1190 	kdev = &priv->pdev->dev;
1191 
1192 	netif_stop_queue(dev);
1193 	napi_disable(&priv->napi);
1194 	if (priv->has_phy)
1195 		phy_stop(dev->phydev);
1196 	del_timer_sync(&priv->rx_timeout);
1197 
1198 	/* mask all interrupts */
1199 	enet_writel(priv, 0, ENET_IRMASK_REG);
1200 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1201 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1202 
1203 	/* make sure no mib update is scheduled */
1204 	cancel_work_sync(&priv->mib_update_task);
1205 
1206 	/* disable dma & mac */
1207 	bcm_enet_disable_dma(priv, priv->tx_chan);
1208 	bcm_enet_disable_dma(priv, priv->rx_chan);
1209 	bcm_enet_disable_mac(priv);
1210 
1211 	/* force reclaim of all tx buffers */
1212 	bcm_enet_tx_reclaim(dev, 1);
1213 
1214 	/* free the rx skb ring */
1215 	for (i = 0; i < priv->rx_ring_size; i++) {
1216 		struct bcm_enet_desc *desc;
1217 
1218 		if (!priv->rx_skb[i])
1219 			continue;
1220 
1221 		desc = &priv->rx_desc_cpu[i];
1222 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1223 				 DMA_FROM_DEVICE);
1224 		kfree_skb(priv->rx_skb[i]);
1225 	}
1226 
1227 	/* free remaining allocated memory */
1228 	kfree(priv->rx_skb);
1229 	kfree(priv->tx_skb);
1230 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1231 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1232 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1233 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1234 	free_irq(priv->irq_tx, dev);
1235 	free_irq(priv->irq_rx, dev);
1236 	free_irq(dev->irq, dev);
1237 
1238 	/* release phy */
1239 	if (priv->has_phy)
1240 		phy_disconnect(dev->phydev);
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * ethtool callbacks
1247  */
1248 struct bcm_enet_stats {
1249 	char stat_string[ETH_GSTRING_LEN];
1250 	int sizeof_stat;
1251 	int stat_offset;
1252 	int mib_reg;
1253 };
1254 
1255 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1256 		     offsetof(struct bcm_enet_priv, m)
1257 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1258 		     offsetof(struct net_device_stats, m)
1259 
1260 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1261 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1262 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1263 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1264 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1265 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1266 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1267 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1268 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1269 
1270 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1271 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1272 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1273 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1274 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1275 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1276 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1277 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1278 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1279 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1280 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1281 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1282 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1283 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1284 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1285 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1286 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1287 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1288 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1289 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1290 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1291 
1292 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1293 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1294 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1295 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1296 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1297 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1298 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1299 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1300 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1301 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1302 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1303 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1304 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1305 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1306 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1307 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1308 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1309 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1310 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1311 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1312 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1313 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1314 
1315 };
1316 
1317 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1318 
1319 static const u32 unused_mib_regs[] = {
1320 	ETH_MIB_TX_ALL_OCTETS,
1321 	ETH_MIB_TX_ALL_PKTS,
1322 	ETH_MIB_RX_ALL_OCTETS,
1323 	ETH_MIB_RX_ALL_PKTS,
1324 };
1325 
1326 
1327 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1328 				 struct ethtool_drvinfo *drvinfo)
1329 {
1330 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1331 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1332 		sizeof(drvinfo->version));
1333 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1334 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1335 }
1336 
1337 static int bcm_enet_get_sset_count(struct net_device *netdev,
1338 					int string_set)
1339 {
1340 	switch (string_set) {
1341 	case ETH_SS_STATS:
1342 		return BCM_ENET_STATS_LEN;
1343 	default:
1344 		return -EINVAL;
1345 	}
1346 }
1347 
1348 static void bcm_enet_get_strings(struct net_device *netdev,
1349 				 u32 stringset, u8 *data)
1350 {
1351 	int i;
1352 
1353 	switch (stringset) {
1354 	case ETH_SS_STATS:
1355 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1356 			memcpy(data + i * ETH_GSTRING_LEN,
1357 			       bcm_enet_gstrings_stats[i].stat_string,
1358 			       ETH_GSTRING_LEN);
1359 		}
1360 		break;
1361 	}
1362 }
1363 
1364 static void update_mib_counters(struct bcm_enet_priv *priv)
1365 {
1366 	int i;
1367 
1368 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1369 		const struct bcm_enet_stats *s;
1370 		u32 val;
1371 		char *p;
1372 
1373 		s = &bcm_enet_gstrings_stats[i];
1374 		if (s->mib_reg == -1)
1375 			continue;
1376 
1377 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1378 		p = (char *)priv + s->stat_offset;
1379 
1380 		if (s->sizeof_stat == sizeof(u64))
1381 			*(u64 *)p += val;
1382 		else
1383 			*(u32 *)p += val;
1384 	}
1385 
1386 	/* also empty unused mib counters to make sure mib counter
1387 	 * overflow interrupt is cleared */
1388 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1389 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1390 }
1391 
1392 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1393 {
1394 	struct bcm_enet_priv *priv;
1395 
1396 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1397 	mutex_lock(&priv->mib_update_lock);
1398 	update_mib_counters(priv);
1399 	mutex_unlock(&priv->mib_update_lock);
1400 
1401 	/* reenable mib interrupt */
1402 	if (netif_running(priv->net_dev))
1403 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1404 }
1405 
1406 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1407 				       struct ethtool_stats *stats,
1408 				       u64 *data)
1409 {
1410 	struct bcm_enet_priv *priv;
1411 	int i;
1412 
1413 	priv = netdev_priv(netdev);
1414 
1415 	mutex_lock(&priv->mib_update_lock);
1416 	update_mib_counters(priv);
1417 
1418 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1419 		const struct bcm_enet_stats *s;
1420 		char *p;
1421 
1422 		s = &bcm_enet_gstrings_stats[i];
1423 		if (s->mib_reg == -1)
1424 			p = (char *)&netdev->stats;
1425 		else
1426 			p = (char *)priv;
1427 		p += s->stat_offset;
1428 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1429 			*(u64 *)p : *(u32 *)p;
1430 	}
1431 	mutex_unlock(&priv->mib_update_lock);
1432 }
1433 
1434 static int bcm_enet_nway_reset(struct net_device *dev)
1435 {
1436 	struct bcm_enet_priv *priv;
1437 
1438 	priv = netdev_priv(dev);
1439 	if (priv->has_phy)
1440 		return phy_ethtool_nway_reset(dev);
1441 
1442 	return -EOPNOTSUPP;
1443 }
1444 
1445 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1446 				       struct ethtool_link_ksettings *cmd)
1447 {
1448 	struct bcm_enet_priv *priv;
1449 	u32 supported, advertising;
1450 
1451 	priv = netdev_priv(dev);
1452 
1453 	if (priv->has_phy) {
1454 		if (!dev->phydev)
1455 			return -ENODEV;
1456 		return phy_ethtool_ksettings_get(dev->phydev, cmd);
1457 	} else {
1458 		cmd->base.autoneg = 0;
1459 		cmd->base.speed = (priv->force_speed_100) ?
1460 			SPEED_100 : SPEED_10;
1461 		cmd->base.duplex = (priv->force_duplex_full) ?
1462 			DUPLEX_FULL : DUPLEX_HALF;
1463 		supported = ADVERTISED_10baseT_Half |
1464 			ADVERTISED_10baseT_Full |
1465 			ADVERTISED_100baseT_Half |
1466 			ADVERTISED_100baseT_Full;
1467 		advertising = 0;
1468 		ethtool_convert_legacy_u32_to_link_mode(
1469 			cmd->link_modes.supported, supported);
1470 		ethtool_convert_legacy_u32_to_link_mode(
1471 			cmd->link_modes.advertising, advertising);
1472 		cmd->base.port = PORT_MII;
1473 	}
1474 	return 0;
1475 }
1476 
1477 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1478 				       const struct ethtool_link_ksettings *cmd)
1479 {
1480 	struct bcm_enet_priv *priv;
1481 
1482 	priv = netdev_priv(dev);
1483 	if (priv->has_phy) {
1484 		if (!dev->phydev)
1485 			return -ENODEV;
1486 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1487 	} else {
1488 
1489 		if (cmd->base.autoneg ||
1490 		    (cmd->base.speed != SPEED_100 &&
1491 		     cmd->base.speed != SPEED_10) ||
1492 		    cmd->base.port != PORT_MII)
1493 			return -EINVAL;
1494 
1495 		priv->force_speed_100 =
1496 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1497 		priv->force_duplex_full =
1498 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1499 
1500 		if (netif_running(dev))
1501 			bcm_enet_adjust_link(dev);
1502 		return 0;
1503 	}
1504 }
1505 
1506 static void bcm_enet_get_ringparam(struct net_device *dev,
1507 				   struct ethtool_ringparam *ering)
1508 {
1509 	struct bcm_enet_priv *priv;
1510 
1511 	priv = netdev_priv(dev);
1512 
1513 	/* rx/tx ring is actually only limited by memory */
1514 	ering->rx_max_pending = 8192;
1515 	ering->tx_max_pending = 8192;
1516 	ering->rx_pending = priv->rx_ring_size;
1517 	ering->tx_pending = priv->tx_ring_size;
1518 }
1519 
1520 static int bcm_enet_set_ringparam(struct net_device *dev,
1521 				  struct ethtool_ringparam *ering)
1522 {
1523 	struct bcm_enet_priv *priv;
1524 	int was_running;
1525 
1526 	priv = netdev_priv(dev);
1527 
1528 	was_running = 0;
1529 	if (netif_running(dev)) {
1530 		bcm_enet_stop(dev);
1531 		was_running = 1;
1532 	}
1533 
1534 	priv->rx_ring_size = ering->rx_pending;
1535 	priv->tx_ring_size = ering->tx_pending;
1536 
1537 	if (was_running) {
1538 		int err;
1539 
1540 		err = bcm_enet_open(dev);
1541 		if (err)
1542 			dev_close(dev);
1543 		else
1544 			bcm_enet_set_multicast_list(dev);
1545 	}
1546 	return 0;
1547 }
1548 
1549 static void bcm_enet_get_pauseparam(struct net_device *dev,
1550 				    struct ethtool_pauseparam *ecmd)
1551 {
1552 	struct bcm_enet_priv *priv;
1553 
1554 	priv = netdev_priv(dev);
1555 	ecmd->autoneg = priv->pause_auto;
1556 	ecmd->rx_pause = priv->pause_rx;
1557 	ecmd->tx_pause = priv->pause_tx;
1558 }
1559 
1560 static int bcm_enet_set_pauseparam(struct net_device *dev,
1561 				   struct ethtool_pauseparam *ecmd)
1562 {
1563 	struct bcm_enet_priv *priv;
1564 
1565 	priv = netdev_priv(dev);
1566 
1567 	if (priv->has_phy) {
1568 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1569 			/* asymetric pause mode not supported,
1570 			 * actually possible but integrated PHY has RO
1571 			 * asym_pause bit */
1572 			return -EINVAL;
1573 		}
1574 	} else {
1575 		/* no pause autoneg on direct mii connection */
1576 		if (ecmd->autoneg)
1577 			return -EINVAL;
1578 	}
1579 
1580 	priv->pause_auto = ecmd->autoneg;
1581 	priv->pause_rx = ecmd->rx_pause;
1582 	priv->pause_tx = ecmd->tx_pause;
1583 
1584 	return 0;
1585 }
1586 
1587 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1588 	.get_strings		= bcm_enet_get_strings,
1589 	.get_sset_count		= bcm_enet_get_sset_count,
1590 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1591 	.nway_reset		= bcm_enet_nway_reset,
1592 	.get_drvinfo		= bcm_enet_get_drvinfo,
1593 	.get_link		= ethtool_op_get_link,
1594 	.get_ringparam		= bcm_enet_get_ringparam,
1595 	.set_ringparam		= bcm_enet_set_ringparam,
1596 	.get_pauseparam		= bcm_enet_get_pauseparam,
1597 	.set_pauseparam		= bcm_enet_set_pauseparam,
1598 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1599 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1600 };
1601 
1602 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1603 {
1604 	struct bcm_enet_priv *priv;
1605 
1606 	priv = netdev_priv(dev);
1607 	if (priv->has_phy) {
1608 		if (!dev->phydev)
1609 			return -ENODEV;
1610 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1611 	} else {
1612 		struct mii_if_info mii;
1613 
1614 		mii.dev = dev;
1615 		mii.mdio_read = bcm_enet_mdio_read_mii;
1616 		mii.mdio_write = bcm_enet_mdio_write_mii;
1617 		mii.phy_id = 0;
1618 		mii.phy_id_mask = 0x3f;
1619 		mii.reg_num_mask = 0x1f;
1620 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1621 	}
1622 }
1623 
1624 /*
1625  * adjust mtu, can't be called while device is running
1626  */
1627 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1628 {
1629 	struct bcm_enet_priv *priv = netdev_priv(dev);
1630 	int actual_mtu = new_mtu;
1631 
1632 	if (netif_running(dev))
1633 		return -EBUSY;
1634 
1635 	/* add ethernet header + vlan tag size */
1636 	actual_mtu += VLAN_ETH_HLEN;
1637 
1638 	/*
1639 	 * setup maximum size before we get overflow mark in
1640 	 * descriptor, note that this will not prevent reception of
1641 	 * big frames, they will be split into multiple buffers
1642 	 * anyway
1643 	 */
1644 	priv->hw_mtu = actual_mtu;
1645 
1646 	/*
1647 	 * align rx buffer size to dma burst len, account FCS since
1648 	 * it's appended
1649 	 */
1650 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1651 				  priv->dma_maxburst * 4);
1652 
1653 	dev->mtu = new_mtu;
1654 	return 0;
1655 }
1656 
1657 /*
1658  * preinit hardware to allow mii operation while device is down
1659  */
1660 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1661 {
1662 	u32 val;
1663 	int limit;
1664 
1665 	/* make sure mac is disabled */
1666 	bcm_enet_disable_mac(priv);
1667 
1668 	/* soft reset mac */
1669 	val = ENET_CTL_SRESET_MASK;
1670 	enet_writel(priv, val, ENET_CTL_REG);
1671 	wmb();
1672 
1673 	limit = 1000;
1674 	do {
1675 		val = enet_readl(priv, ENET_CTL_REG);
1676 		if (!(val & ENET_CTL_SRESET_MASK))
1677 			break;
1678 		udelay(1);
1679 	} while (limit--);
1680 
1681 	/* select correct mii interface */
1682 	val = enet_readl(priv, ENET_CTL_REG);
1683 	if (priv->use_external_mii)
1684 		val |= ENET_CTL_EPHYSEL_MASK;
1685 	else
1686 		val &= ~ENET_CTL_EPHYSEL_MASK;
1687 	enet_writel(priv, val, ENET_CTL_REG);
1688 
1689 	/* turn on mdc clock */
1690 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1691 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1692 
1693 	/* set mib counters to self-clear when read */
1694 	val = enet_readl(priv, ENET_MIBCTL_REG);
1695 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1696 	enet_writel(priv, val, ENET_MIBCTL_REG);
1697 }
1698 
1699 static const struct net_device_ops bcm_enet_ops = {
1700 	.ndo_open		= bcm_enet_open,
1701 	.ndo_stop		= bcm_enet_stop,
1702 	.ndo_start_xmit		= bcm_enet_start_xmit,
1703 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1704 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1705 	.ndo_do_ioctl		= bcm_enet_ioctl,
1706 	.ndo_change_mtu		= bcm_enet_change_mtu,
1707 };
1708 
1709 /*
1710  * allocate netdevice, request register memory and register device.
1711  */
1712 static int bcm_enet_probe(struct platform_device *pdev)
1713 {
1714 	struct bcm_enet_priv *priv;
1715 	struct net_device *dev;
1716 	struct bcm63xx_enet_platform_data *pd;
1717 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1718 	struct mii_bus *bus;
1719 	const char *clk_name;
1720 	int i, ret;
1721 
1722 	/* stop if shared driver failed, assume driver->probe will be
1723 	 * called in the same order we register devices (correct ?) */
1724 	if (!bcm_enet_shared_base[0])
1725 		return -ENODEV;
1726 
1727 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1728 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1729 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1730 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1731 		return -ENODEV;
1732 
1733 	ret = 0;
1734 	dev = alloc_etherdev(sizeof(*priv));
1735 	if (!dev)
1736 		return -ENOMEM;
1737 	priv = netdev_priv(dev);
1738 
1739 	priv->enet_is_sw = false;
1740 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1741 
1742 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1743 	if (ret)
1744 		goto out;
1745 
1746 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1747 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1748 	if (IS_ERR(priv->base)) {
1749 		ret = PTR_ERR(priv->base);
1750 		goto out;
1751 	}
1752 
1753 	dev->irq = priv->irq = res_irq->start;
1754 	priv->irq_rx = res_irq_rx->start;
1755 	priv->irq_tx = res_irq_tx->start;
1756 	priv->mac_id = pdev->id;
1757 
1758 	/* get rx & tx dma channel id for this mac */
1759 	if (priv->mac_id == 0) {
1760 		priv->rx_chan = 0;
1761 		priv->tx_chan = 1;
1762 		clk_name = "enet0";
1763 	} else {
1764 		priv->rx_chan = 2;
1765 		priv->tx_chan = 3;
1766 		clk_name = "enet1";
1767 	}
1768 
1769 	priv->mac_clk = clk_get(&pdev->dev, clk_name);
1770 	if (IS_ERR(priv->mac_clk)) {
1771 		ret = PTR_ERR(priv->mac_clk);
1772 		goto out;
1773 	}
1774 	clk_prepare_enable(priv->mac_clk);
1775 
1776 	/* initialize default and fetch platform data */
1777 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1778 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1779 
1780 	pd = dev_get_platdata(&pdev->dev);
1781 	if (pd) {
1782 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1783 		priv->has_phy = pd->has_phy;
1784 		priv->phy_id = pd->phy_id;
1785 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1786 		priv->phy_interrupt = pd->phy_interrupt;
1787 		priv->use_external_mii = !pd->use_internal_phy;
1788 		priv->pause_auto = pd->pause_auto;
1789 		priv->pause_rx = pd->pause_rx;
1790 		priv->pause_tx = pd->pause_tx;
1791 		priv->force_duplex_full = pd->force_duplex_full;
1792 		priv->force_speed_100 = pd->force_speed_100;
1793 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1794 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1795 		priv->dma_chan_width = pd->dma_chan_width;
1796 		priv->dma_has_sram = pd->dma_has_sram;
1797 		priv->dma_desc_shift = pd->dma_desc_shift;
1798 	}
1799 
1800 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1801 		/* using internal PHY, enable clock */
1802 		priv->phy_clk = clk_get(&pdev->dev, "ephy");
1803 		if (IS_ERR(priv->phy_clk)) {
1804 			ret = PTR_ERR(priv->phy_clk);
1805 			priv->phy_clk = NULL;
1806 			goto out_put_clk_mac;
1807 		}
1808 		clk_prepare_enable(priv->phy_clk);
1809 	}
1810 
1811 	/* do minimal hardware init to be able to probe mii bus */
1812 	bcm_enet_hw_preinit(priv);
1813 
1814 	/* MII bus registration */
1815 	if (priv->has_phy) {
1816 
1817 		priv->mii_bus = mdiobus_alloc();
1818 		if (!priv->mii_bus) {
1819 			ret = -ENOMEM;
1820 			goto out_uninit_hw;
1821 		}
1822 
1823 		bus = priv->mii_bus;
1824 		bus->name = "bcm63xx_enet MII bus";
1825 		bus->parent = &pdev->dev;
1826 		bus->priv = priv;
1827 		bus->read = bcm_enet_mdio_read_phylib;
1828 		bus->write = bcm_enet_mdio_write_phylib;
1829 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1830 
1831 		/* only probe bus where we think the PHY is, because
1832 		 * the mdio read operation return 0 instead of 0xffff
1833 		 * if a slave is not present on hw */
1834 		bus->phy_mask = ~(1 << priv->phy_id);
1835 
1836 		if (priv->has_phy_interrupt)
1837 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1838 
1839 		ret = mdiobus_register(bus);
1840 		if (ret) {
1841 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1842 			goto out_free_mdio;
1843 		}
1844 	} else {
1845 
1846 		/* run platform code to initialize PHY device */
1847 		if (pd && pd->mii_config &&
1848 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1849 				   bcm_enet_mdio_write_mii)) {
1850 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1851 			goto out_uninit_hw;
1852 		}
1853 	}
1854 
1855 	spin_lock_init(&priv->rx_lock);
1856 
1857 	/* init rx timeout (used for oom) */
1858 	init_timer(&priv->rx_timeout);
1859 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1860 	priv->rx_timeout.data = (unsigned long)dev;
1861 
1862 	/* init the mib update lock&work */
1863 	mutex_init(&priv->mib_update_lock);
1864 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1865 
1866 	/* zero mib counters */
1867 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1868 		enet_writel(priv, 0, ENET_MIB_REG(i));
1869 
1870 	/* register netdevice */
1871 	dev->netdev_ops = &bcm_enet_ops;
1872 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1873 
1874 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1875 	/* MTU range: 46 - 2028 */
1876 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1877 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1878 	SET_NETDEV_DEV(dev, &pdev->dev);
1879 
1880 	ret = register_netdev(dev);
1881 	if (ret)
1882 		goto out_unregister_mdio;
1883 
1884 	netif_carrier_off(dev);
1885 	platform_set_drvdata(pdev, dev);
1886 	priv->pdev = pdev;
1887 	priv->net_dev = dev;
1888 
1889 	return 0;
1890 
1891 out_unregister_mdio:
1892 	if (priv->mii_bus)
1893 		mdiobus_unregister(priv->mii_bus);
1894 
1895 out_free_mdio:
1896 	if (priv->mii_bus)
1897 		mdiobus_free(priv->mii_bus);
1898 
1899 out_uninit_hw:
1900 	/* turn off mdc clock */
1901 	enet_writel(priv, 0, ENET_MIISC_REG);
1902 	if (priv->phy_clk) {
1903 		clk_disable_unprepare(priv->phy_clk);
1904 		clk_put(priv->phy_clk);
1905 	}
1906 
1907 out_put_clk_mac:
1908 	clk_disable_unprepare(priv->mac_clk);
1909 	clk_put(priv->mac_clk);
1910 out:
1911 	free_netdev(dev);
1912 	return ret;
1913 }
1914 
1915 
1916 /*
1917  * exit func, stops hardware and unregisters netdevice
1918  */
1919 static int bcm_enet_remove(struct platform_device *pdev)
1920 {
1921 	struct bcm_enet_priv *priv;
1922 	struct net_device *dev;
1923 
1924 	/* stop netdevice */
1925 	dev = platform_get_drvdata(pdev);
1926 	priv = netdev_priv(dev);
1927 	unregister_netdev(dev);
1928 
1929 	/* turn off mdc clock */
1930 	enet_writel(priv, 0, ENET_MIISC_REG);
1931 
1932 	if (priv->has_phy) {
1933 		mdiobus_unregister(priv->mii_bus);
1934 		mdiobus_free(priv->mii_bus);
1935 	} else {
1936 		struct bcm63xx_enet_platform_data *pd;
1937 
1938 		pd = dev_get_platdata(&pdev->dev);
1939 		if (pd && pd->mii_config)
1940 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1941 				       bcm_enet_mdio_write_mii);
1942 	}
1943 
1944 	/* disable hw block clocks */
1945 	if (priv->phy_clk) {
1946 		clk_disable_unprepare(priv->phy_clk);
1947 		clk_put(priv->phy_clk);
1948 	}
1949 	clk_disable_unprepare(priv->mac_clk);
1950 	clk_put(priv->mac_clk);
1951 
1952 	free_netdev(dev);
1953 	return 0;
1954 }
1955 
1956 struct platform_driver bcm63xx_enet_driver = {
1957 	.probe	= bcm_enet_probe,
1958 	.remove	= bcm_enet_remove,
1959 	.driver	= {
1960 		.name	= "bcm63xx_enet",
1961 		.owner  = THIS_MODULE,
1962 	},
1963 };
1964 
1965 /*
1966  * switch mii access callbacks
1967  */
1968 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1969 				int ext, int phy_id, int location)
1970 {
1971 	u32 reg;
1972 	int ret;
1973 
1974 	spin_lock_bh(&priv->enetsw_mdio_lock);
1975 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1976 
1977 	reg = ENETSW_MDIOC_RD_MASK |
1978 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1979 		(location << ENETSW_MDIOC_REG_SHIFT);
1980 
1981 	if (ext)
1982 		reg |= ENETSW_MDIOC_EXT_MASK;
1983 
1984 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1985 	udelay(50);
1986 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1987 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1988 	return ret;
1989 }
1990 
1991 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1992 				 int ext, int phy_id, int location,
1993 				 uint16_t data)
1994 {
1995 	u32 reg;
1996 
1997 	spin_lock_bh(&priv->enetsw_mdio_lock);
1998 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1999 
2000 	reg = ENETSW_MDIOC_WR_MASK |
2001 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2002 		(location << ENETSW_MDIOC_REG_SHIFT);
2003 
2004 	if (ext)
2005 		reg |= ENETSW_MDIOC_EXT_MASK;
2006 
2007 	reg |= data;
2008 
2009 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2010 	udelay(50);
2011 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2012 }
2013 
2014 static inline int bcm_enet_port_is_rgmii(int portid)
2015 {
2016 	return portid >= ENETSW_RGMII_PORT0;
2017 }
2018 
2019 /*
2020  * enet sw PHY polling
2021  */
2022 static void swphy_poll_timer(unsigned long data)
2023 {
2024 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2025 	unsigned int i;
2026 
2027 	for (i = 0; i < priv->num_ports; i++) {
2028 		struct bcm63xx_enetsw_port *port;
2029 		int val, j, up, advertise, lpa, speed, duplex, media;
2030 		int external_phy = bcm_enet_port_is_rgmii(i);
2031 		u8 override;
2032 
2033 		port = &priv->used_ports[i];
2034 		if (!port->used)
2035 			continue;
2036 
2037 		if (port->bypass_link)
2038 			continue;
2039 
2040 		/* dummy read to clear */
2041 		for (j = 0; j < 2; j++)
2042 			val = bcmenet_sw_mdio_read(priv, external_phy,
2043 						   port->phy_id, MII_BMSR);
2044 
2045 		if (val == 0xffff)
2046 			continue;
2047 
2048 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2049 		if (!(up ^ priv->sw_port_link[i]))
2050 			continue;
2051 
2052 		priv->sw_port_link[i] = up;
2053 
2054 		/* link changed */
2055 		if (!up) {
2056 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2057 				 port->name);
2058 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2059 				      ENETSW_PORTOV_REG(i));
2060 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2061 				      ENETSW_PTCTRL_TXDIS_MASK,
2062 				      ENETSW_PTCTRL_REG(i));
2063 			continue;
2064 		}
2065 
2066 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2067 						 port->phy_id, MII_ADVERTISE);
2068 
2069 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2070 					   MII_LPA);
2071 
2072 		/* figure out media and duplex from advertise and LPA values */
2073 		media = mii_nway_result(lpa & advertise);
2074 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2075 
2076 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2077 			speed = 100;
2078 		else
2079 			speed = 10;
2080 
2081 		if (val & BMSR_ESTATEN) {
2082 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2083 						port->phy_id, MII_CTRL1000);
2084 
2085 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2086 						port->phy_id, MII_STAT1000);
2087 
2088 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2089 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2090 				speed = 1000;
2091 				duplex = (lpa & LPA_1000FULL);
2092 			}
2093 		}
2094 
2095 		dev_info(&priv->pdev->dev,
2096 			 "link UP on %s, %dMbps, %s-duplex\n",
2097 			 port->name, speed, duplex ? "full" : "half");
2098 
2099 		override = ENETSW_PORTOV_ENABLE_MASK |
2100 			ENETSW_PORTOV_LINKUP_MASK;
2101 
2102 		if (speed == 1000)
2103 			override |= ENETSW_IMPOV_1000_MASK;
2104 		else if (speed == 100)
2105 			override |= ENETSW_IMPOV_100_MASK;
2106 		if (duplex)
2107 			override |= ENETSW_IMPOV_FDX_MASK;
2108 
2109 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2110 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2111 	}
2112 
2113 	priv->swphy_poll.expires = jiffies + HZ;
2114 	add_timer(&priv->swphy_poll);
2115 }
2116 
2117 /*
2118  * open callback, allocate dma rings & buffers and start rx operation
2119  */
2120 static int bcm_enetsw_open(struct net_device *dev)
2121 {
2122 	struct bcm_enet_priv *priv;
2123 	struct device *kdev;
2124 	int i, ret;
2125 	unsigned int size;
2126 	void *p;
2127 	u32 val;
2128 
2129 	priv = netdev_priv(dev);
2130 	kdev = &priv->pdev->dev;
2131 
2132 	/* mask all interrupts and request them */
2133 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2134 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2135 
2136 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2137 			  0, dev->name, dev);
2138 	if (ret)
2139 		goto out_freeirq;
2140 
2141 	if (priv->irq_tx != -1) {
2142 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2143 				  0, dev->name, dev);
2144 		if (ret)
2145 			goto out_freeirq_rx;
2146 	}
2147 
2148 	/* allocate rx dma ring */
2149 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2150 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2151 	if (!p) {
2152 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2153 		ret = -ENOMEM;
2154 		goto out_freeirq_tx;
2155 	}
2156 
2157 	memset(p, 0, size);
2158 	priv->rx_desc_alloc_size = size;
2159 	priv->rx_desc_cpu = p;
2160 
2161 	/* allocate tx dma ring */
2162 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2163 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2164 	if (!p) {
2165 		dev_err(kdev, "cannot allocate tx ring\n");
2166 		ret = -ENOMEM;
2167 		goto out_free_rx_ring;
2168 	}
2169 
2170 	memset(p, 0, size);
2171 	priv->tx_desc_alloc_size = size;
2172 	priv->tx_desc_cpu = p;
2173 
2174 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2175 			       GFP_KERNEL);
2176 	if (!priv->tx_skb) {
2177 		dev_err(kdev, "cannot allocate rx skb queue\n");
2178 		ret = -ENOMEM;
2179 		goto out_free_tx_ring;
2180 	}
2181 
2182 	priv->tx_desc_count = priv->tx_ring_size;
2183 	priv->tx_dirty_desc = 0;
2184 	priv->tx_curr_desc = 0;
2185 	spin_lock_init(&priv->tx_lock);
2186 
2187 	/* init & fill rx ring with skbs */
2188 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2189 			       GFP_KERNEL);
2190 	if (!priv->rx_skb) {
2191 		dev_err(kdev, "cannot allocate rx skb queue\n");
2192 		ret = -ENOMEM;
2193 		goto out_free_tx_skb;
2194 	}
2195 
2196 	priv->rx_desc_count = 0;
2197 	priv->rx_dirty_desc = 0;
2198 	priv->rx_curr_desc = 0;
2199 
2200 	/* disable all ports */
2201 	for (i = 0; i < priv->num_ports; i++) {
2202 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2203 			      ENETSW_PORTOV_REG(i));
2204 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2205 			      ENETSW_PTCTRL_TXDIS_MASK,
2206 			      ENETSW_PTCTRL_REG(i));
2207 
2208 		priv->sw_port_link[i] = 0;
2209 	}
2210 
2211 	/* reset mib */
2212 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2213 	val |= ENETSW_GMCR_RST_MIB_MASK;
2214 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2215 	mdelay(1);
2216 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2217 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2218 	mdelay(1);
2219 
2220 	/* force CPU port state */
2221 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2222 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2223 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2224 
2225 	/* enable switch forward engine */
2226 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2227 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2228 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2229 
2230 	/* enable jumbo on all ports */
2231 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2232 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2233 
2234 	/* initialize flow control buffer allocation */
2235 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2236 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2237 
2238 	if (bcm_enet_refill_rx(dev)) {
2239 		dev_err(kdev, "cannot allocate rx skb queue\n");
2240 		ret = -ENOMEM;
2241 		goto out;
2242 	}
2243 
2244 	/* write rx & tx ring addresses */
2245 	enet_dmas_writel(priv, priv->rx_desc_dma,
2246 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2247 	enet_dmas_writel(priv, priv->tx_desc_dma,
2248 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2249 
2250 	/* clear remaining state ram for rx & tx channel */
2251 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2252 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2253 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2254 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2255 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2256 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2257 
2258 	/* set dma maximum burst len */
2259 	enet_dmac_writel(priv, priv->dma_maxburst,
2260 			 ENETDMAC_MAXBURST, priv->rx_chan);
2261 	enet_dmac_writel(priv, priv->dma_maxburst,
2262 			 ENETDMAC_MAXBURST, priv->tx_chan);
2263 
2264 	/* set flow control low/high threshold to 1/3 / 2/3 */
2265 	val = priv->rx_ring_size / 3;
2266 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2267 	val = (priv->rx_ring_size * 2) / 3;
2268 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2269 
2270 	/* all set, enable mac and interrupts, start dma engine and
2271 	 * kick rx dma channel
2272 	 */
2273 	wmb();
2274 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2275 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2276 			 ENETDMAC_CHANCFG, priv->rx_chan);
2277 
2278 	/* watch "packet transferred" interrupt in rx and tx */
2279 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2280 			 ENETDMAC_IR, priv->rx_chan);
2281 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2282 			 ENETDMAC_IR, priv->tx_chan);
2283 
2284 	/* make sure we enable napi before rx interrupt  */
2285 	napi_enable(&priv->napi);
2286 
2287 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2288 			 ENETDMAC_IRMASK, priv->rx_chan);
2289 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2290 			 ENETDMAC_IRMASK, priv->tx_chan);
2291 
2292 	netif_carrier_on(dev);
2293 	netif_start_queue(dev);
2294 
2295 	/* apply override config for bypass_link ports here. */
2296 	for (i = 0; i < priv->num_ports; i++) {
2297 		struct bcm63xx_enetsw_port *port;
2298 		u8 override;
2299 		port = &priv->used_ports[i];
2300 		if (!port->used)
2301 			continue;
2302 
2303 		if (!port->bypass_link)
2304 			continue;
2305 
2306 		override = ENETSW_PORTOV_ENABLE_MASK |
2307 			ENETSW_PORTOV_LINKUP_MASK;
2308 
2309 		switch (port->force_speed) {
2310 		case 1000:
2311 			override |= ENETSW_IMPOV_1000_MASK;
2312 			break;
2313 		case 100:
2314 			override |= ENETSW_IMPOV_100_MASK;
2315 			break;
2316 		case 10:
2317 			break;
2318 		default:
2319 			pr_warn("invalid forced speed on port %s: assume 10\n",
2320 			       port->name);
2321 			break;
2322 		}
2323 
2324 		if (port->force_duplex_full)
2325 			override |= ENETSW_IMPOV_FDX_MASK;
2326 
2327 
2328 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2329 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2330 	}
2331 
2332 	/* start phy polling timer */
2333 	init_timer(&priv->swphy_poll);
2334 	priv->swphy_poll.function = swphy_poll_timer;
2335 	priv->swphy_poll.data = (unsigned long)priv;
2336 	priv->swphy_poll.expires = jiffies;
2337 	add_timer(&priv->swphy_poll);
2338 	return 0;
2339 
2340 out:
2341 	for (i = 0; i < priv->rx_ring_size; i++) {
2342 		struct bcm_enet_desc *desc;
2343 
2344 		if (!priv->rx_skb[i])
2345 			continue;
2346 
2347 		desc = &priv->rx_desc_cpu[i];
2348 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2349 				 DMA_FROM_DEVICE);
2350 		kfree_skb(priv->rx_skb[i]);
2351 	}
2352 	kfree(priv->rx_skb);
2353 
2354 out_free_tx_skb:
2355 	kfree(priv->tx_skb);
2356 
2357 out_free_tx_ring:
2358 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2359 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2360 
2361 out_free_rx_ring:
2362 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2363 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2364 
2365 out_freeirq_tx:
2366 	if (priv->irq_tx != -1)
2367 		free_irq(priv->irq_tx, dev);
2368 
2369 out_freeirq_rx:
2370 	free_irq(priv->irq_rx, dev);
2371 
2372 out_freeirq:
2373 	return ret;
2374 }
2375 
2376 /* stop callback */
2377 static int bcm_enetsw_stop(struct net_device *dev)
2378 {
2379 	struct bcm_enet_priv *priv;
2380 	struct device *kdev;
2381 	int i;
2382 
2383 	priv = netdev_priv(dev);
2384 	kdev = &priv->pdev->dev;
2385 
2386 	del_timer_sync(&priv->swphy_poll);
2387 	netif_stop_queue(dev);
2388 	napi_disable(&priv->napi);
2389 	del_timer_sync(&priv->rx_timeout);
2390 
2391 	/* mask all interrupts */
2392 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2393 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2394 
2395 	/* disable dma & mac */
2396 	bcm_enet_disable_dma(priv, priv->tx_chan);
2397 	bcm_enet_disable_dma(priv, priv->rx_chan);
2398 
2399 	/* force reclaim of all tx buffers */
2400 	bcm_enet_tx_reclaim(dev, 1);
2401 
2402 	/* free the rx skb ring */
2403 	for (i = 0; i < priv->rx_ring_size; i++) {
2404 		struct bcm_enet_desc *desc;
2405 
2406 		if (!priv->rx_skb[i])
2407 			continue;
2408 
2409 		desc = &priv->rx_desc_cpu[i];
2410 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2411 				 DMA_FROM_DEVICE);
2412 		kfree_skb(priv->rx_skb[i]);
2413 	}
2414 
2415 	/* free remaining allocated memory */
2416 	kfree(priv->rx_skb);
2417 	kfree(priv->tx_skb);
2418 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2419 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2420 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2421 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2422 	if (priv->irq_tx != -1)
2423 		free_irq(priv->irq_tx, dev);
2424 	free_irq(priv->irq_rx, dev);
2425 
2426 	return 0;
2427 }
2428 
2429 /* try to sort out phy external status by walking the used_port field
2430  * in the bcm_enet_priv structure. in case the phy address is not
2431  * assigned to any physical port on the switch, assume it is external
2432  * (and yell at the user).
2433  */
2434 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2435 {
2436 	int i;
2437 
2438 	for (i = 0; i < priv->num_ports; ++i) {
2439 		if (!priv->used_ports[i].used)
2440 			continue;
2441 		if (priv->used_ports[i].phy_id == phy_id)
2442 			return bcm_enet_port_is_rgmii(i);
2443 	}
2444 
2445 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2446 		    phy_id);
2447 	return 1;
2448 }
2449 
2450 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2451  * external/internal status of the given phy_id first.
2452  */
2453 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2454 				    int location)
2455 {
2456 	struct bcm_enet_priv *priv;
2457 
2458 	priv = netdev_priv(dev);
2459 	return bcmenet_sw_mdio_read(priv,
2460 				    bcm_enetsw_phy_is_external(priv, phy_id),
2461 				    phy_id, location);
2462 }
2463 
2464 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2465  * external/internal status of the given phy_id first.
2466  */
2467 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2468 				      int location,
2469 				      int val)
2470 {
2471 	struct bcm_enet_priv *priv;
2472 
2473 	priv = netdev_priv(dev);
2474 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2475 			      phy_id, location, val);
2476 }
2477 
2478 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2479 {
2480 	struct mii_if_info mii;
2481 
2482 	mii.dev = dev;
2483 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2484 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2485 	mii.phy_id = 0;
2486 	mii.phy_id_mask = 0x3f;
2487 	mii.reg_num_mask = 0x1f;
2488 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2489 
2490 }
2491 
2492 static const struct net_device_ops bcm_enetsw_ops = {
2493 	.ndo_open		= bcm_enetsw_open,
2494 	.ndo_stop		= bcm_enetsw_stop,
2495 	.ndo_start_xmit		= bcm_enet_start_xmit,
2496 	.ndo_change_mtu		= bcm_enet_change_mtu,
2497 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2498 };
2499 
2500 
2501 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2502 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2503 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2504 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2505 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2506 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2507 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2508 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2509 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2510 
2511 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2512 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2513 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2514 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2515 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2516 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2517 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2518 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2519 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2520 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2521 	  ETHSW_MIB_RX_1024_1522 },
2522 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2523 	  ETHSW_MIB_RX_1523_2047 },
2524 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2525 	  ETHSW_MIB_RX_2048_4095 },
2526 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2527 	  ETHSW_MIB_RX_4096_8191 },
2528 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2529 	  ETHSW_MIB_RX_8192_9728 },
2530 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2531 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2532 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2533 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2534 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2535 
2536 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2537 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2538 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2539 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2540 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2541 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2542 
2543 };
2544 
2545 #define BCM_ENETSW_STATS_LEN	\
2546 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2547 
2548 static void bcm_enetsw_get_strings(struct net_device *netdev,
2549 				   u32 stringset, u8 *data)
2550 {
2551 	int i;
2552 
2553 	switch (stringset) {
2554 	case ETH_SS_STATS:
2555 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2556 			memcpy(data + i * ETH_GSTRING_LEN,
2557 			       bcm_enetsw_gstrings_stats[i].stat_string,
2558 			       ETH_GSTRING_LEN);
2559 		}
2560 		break;
2561 	}
2562 }
2563 
2564 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2565 				     int string_set)
2566 {
2567 	switch (string_set) {
2568 	case ETH_SS_STATS:
2569 		return BCM_ENETSW_STATS_LEN;
2570 	default:
2571 		return -EINVAL;
2572 	}
2573 }
2574 
2575 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2576 				   struct ethtool_drvinfo *drvinfo)
2577 {
2578 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2579 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2580 	strncpy(drvinfo->fw_version, "N/A", 32);
2581 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2582 }
2583 
2584 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2585 					 struct ethtool_stats *stats,
2586 					 u64 *data)
2587 {
2588 	struct bcm_enet_priv *priv;
2589 	int i;
2590 
2591 	priv = netdev_priv(netdev);
2592 
2593 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2594 		const struct bcm_enet_stats *s;
2595 		u32 lo, hi;
2596 		char *p;
2597 		int reg;
2598 
2599 		s = &bcm_enetsw_gstrings_stats[i];
2600 
2601 		reg = s->mib_reg;
2602 		if (reg == -1)
2603 			continue;
2604 
2605 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2606 		p = (char *)priv + s->stat_offset;
2607 
2608 		if (s->sizeof_stat == sizeof(u64)) {
2609 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2610 			*(u64 *)p = ((u64)hi << 32 | lo);
2611 		} else {
2612 			*(u32 *)p = lo;
2613 		}
2614 	}
2615 
2616 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2617 		const struct bcm_enet_stats *s;
2618 		char *p;
2619 
2620 		s = &bcm_enetsw_gstrings_stats[i];
2621 
2622 		if (s->mib_reg == -1)
2623 			p = (char *)&netdev->stats + s->stat_offset;
2624 		else
2625 			p = (char *)priv + s->stat_offset;
2626 
2627 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2628 			*(u64 *)p : *(u32 *)p;
2629 	}
2630 }
2631 
2632 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2633 				     struct ethtool_ringparam *ering)
2634 {
2635 	struct bcm_enet_priv *priv;
2636 
2637 	priv = netdev_priv(dev);
2638 
2639 	/* rx/tx ring is actually only limited by memory */
2640 	ering->rx_max_pending = 8192;
2641 	ering->tx_max_pending = 8192;
2642 	ering->rx_mini_max_pending = 0;
2643 	ering->rx_jumbo_max_pending = 0;
2644 	ering->rx_pending = priv->rx_ring_size;
2645 	ering->tx_pending = priv->tx_ring_size;
2646 }
2647 
2648 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2649 				    struct ethtool_ringparam *ering)
2650 {
2651 	struct bcm_enet_priv *priv;
2652 	int was_running;
2653 
2654 	priv = netdev_priv(dev);
2655 
2656 	was_running = 0;
2657 	if (netif_running(dev)) {
2658 		bcm_enetsw_stop(dev);
2659 		was_running = 1;
2660 	}
2661 
2662 	priv->rx_ring_size = ering->rx_pending;
2663 	priv->tx_ring_size = ering->tx_pending;
2664 
2665 	if (was_running) {
2666 		int err;
2667 
2668 		err = bcm_enetsw_open(dev);
2669 		if (err)
2670 			dev_close(dev);
2671 	}
2672 	return 0;
2673 }
2674 
2675 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2676 	.get_strings		= bcm_enetsw_get_strings,
2677 	.get_sset_count		= bcm_enetsw_get_sset_count,
2678 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2679 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2680 	.get_ringparam		= bcm_enetsw_get_ringparam,
2681 	.set_ringparam		= bcm_enetsw_set_ringparam,
2682 };
2683 
2684 /* allocate netdevice, request register memory and register device. */
2685 static int bcm_enetsw_probe(struct platform_device *pdev)
2686 {
2687 	struct bcm_enet_priv *priv;
2688 	struct net_device *dev;
2689 	struct bcm63xx_enetsw_platform_data *pd;
2690 	struct resource *res_mem;
2691 	int ret, irq_rx, irq_tx;
2692 
2693 	/* stop if shared driver failed, assume driver->probe will be
2694 	 * called in the same order we register devices (correct ?)
2695 	 */
2696 	if (!bcm_enet_shared_base[0])
2697 		return -ENODEV;
2698 
2699 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2700 	irq_rx = platform_get_irq(pdev, 0);
2701 	irq_tx = platform_get_irq(pdev, 1);
2702 	if (!res_mem || irq_rx < 0)
2703 		return -ENODEV;
2704 
2705 	ret = 0;
2706 	dev = alloc_etherdev(sizeof(*priv));
2707 	if (!dev)
2708 		return -ENOMEM;
2709 	priv = netdev_priv(dev);
2710 	memset(priv, 0, sizeof(*priv));
2711 
2712 	/* initialize default and fetch platform data */
2713 	priv->enet_is_sw = true;
2714 	priv->irq_rx = irq_rx;
2715 	priv->irq_tx = irq_tx;
2716 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2717 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2718 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2719 
2720 	pd = dev_get_platdata(&pdev->dev);
2721 	if (pd) {
2722 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2723 		memcpy(priv->used_ports, pd->used_ports,
2724 		       sizeof(pd->used_ports));
2725 		priv->num_ports = pd->num_ports;
2726 		priv->dma_has_sram = pd->dma_has_sram;
2727 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2728 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2729 		priv->dma_chan_width = pd->dma_chan_width;
2730 	}
2731 
2732 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2733 	if (ret)
2734 		goto out;
2735 
2736 	if (!request_mem_region(res_mem->start, resource_size(res_mem),
2737 				"bcm63xx_enetsw")) {
2738 		ret = -EBUSY;
2739 		goto out;
2740 	}
2741 
2742 	priv->base = ioremap(res_mem->start, resource_size(res_mem));
2743 	if (priv->base == NULL) {
2744 		ret = -ENOMEM;
2745 		goto out_release_mem;
2746 	}
2747 
2748 	priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2749 	if (IS_ERR(priv->mac_clk)) {
2750 		ret = PTR_ERR(priv->mac_clk);
2751 		goto out_unmap;
2752 	}
2753 	clk_enable(priv->mac_clk);
2754 
2755 	priv->rx_chan = 0;
2756 	priv->tx_chan = 1;
2757 	spin_lock_init(&priv->rx_lock);
2758 
2759 	/* init rx timeout (used for oom) */
2760 	init_timer(&priv->rx_timeout);
2761 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2762 	priv->rx_timeout.data = (unsigned long)dev;
2763 
2764 	/* register netdevice */
2765 	dev->netdev_ops = &bcm_enetsw_ops;
2766 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2767 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2768 	SET_NETDEV_DEV(dev, &pdev->dev);
2769 
2770 	spin_lock_init(&priv->enetsw_mdio_lock);
2771 
2772 	ret = register_netdev(dev);
2773 	if (ret)
2774 		goto out_put_clk;
2775 
2776 	netif_carrier_off(dev);
2777 	platform_set_drvdata(pdev, dev);
2778 	priv->pdev = pdev;
2779 	priv->net_dev = dev;
2780 
2781 	return 0;
2782 
2783 out_put_clk:
2784 	clk_put(priv->mac_clk);
2785 
2786 out_unmap:
2787 	iounmap(priv->base);
2788 
2789 out_release_mem:
2790 	release_mem_region(res_mem->start, resource_size(res_mem));
2791 out:
2792 	free_netdev(dev);
2793 	return ret;
2794 }
2795 
2796 
2797 /* exit func, stops hardware and unregisters netdevice */
2798 static int bcm_enetsw_remove(struct platform_device *pdev)
2799 {
2800 	struct bcm_enet_priv *priv;
2801 	struct net_device *dev;
2802 	struct resource *res;
2803 
2804 	/* stop netdevice */
2805 	dev = platform_get_drvdata(pdev);
2806 	priv = netdev_priv(dev);
2807 	unregister_netdev(dev);
2808 
2809 	/* release device resources */
2810 	iounmap(priv->base);
2811 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2812 	release_mem_region(res->start, resource_size(res));
2813 
2814 	free_netdev(dev);
2815 	return 0;
2816 }
2817 
2818 struct platform_driver bcm63xx_enetsw_driver = {
2819 	.probe	= bcm_enetsw_probe,
2820 	.remove	= bcm_enetsw_remove,
2821 	.driver	= {
2822 		.name	= "bcm63xx_enetsw",
2823 		.owner  = THIS_MODULE,
2824 	},
2825 };
2826 
2827 /* reserve & remap memory space shared between all macs */
2828 static int bcm_enet_shared_probe(struct platform_device *pdev)
2829 {
2830 	struct resource *res;
2831 	void __iomem *p[3];
2832 	unsigned int i;
2833 
2834 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2835 
2836 	for (i = 0; i < 3; i++) {
2837 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2838 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2839 		if (IS_ERR(p[i]))
2840 			return PTR_ERR(p[i]);
2841 	}
2842 
2843 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2844 
2845 	return 0;
2846 }
2847 
2848 static int bcm_enet_shared_remove(struct platform_device *pdev)
2849 {
2850 	return 0;
2851 }
2852 
2853 /* this "shared" driver is needed because both macs share a single
2854  * address space
2855  */
2856 struct platform_driver bcm63xx_enet_shared_driver = {
2857 	.probe	= bcm_enet_shared_probe,
2858 	.remove	= bcm_enet_shared_remove,
2859 	.driver	= {
2860 		.name	= "bcm63xx_enet_shared",
2861 		.owner  = THIS_MODULE,
2862 	},
2863 };
2864 
2865 static struct platform_driver * const drivers[] = {
2866 	&bcm63xx_enet_shared_driver,
2867 	&bcm63xx_enet_driver,
2868 	&bcm63xx_enetsw_driver,
2869 };
2870 
2871 /* entry point */
2872 static int __init bcm_enet_init(void)
2873 {
2874 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2875 }
2876 
2877 static void __exit bcm_enet_exit(void)
2878 {
2879 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2880 }
2881 
2882 
2883 module_init(bcm_enet_init);
2884 module_exit(bcm_enet_exit);
2885 
2886 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2887 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2888 MODULE_LICENSE("GPL");
2889