xref: /linux/drivers/net/ethernet/broadcom/bcm63xx_enet.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 	struct net_device *dev;
301 	struct bcm_enet_priv *priv;
302 
303 	dev = (struct net_device *)data;
304 	priv = netdev_priv(dev);
305 
306 	spin_lock(&priv->rx_lock);
307 	bcm_enet_refill_rx((struct net_device *)data);
308 	spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 	struct bcm_enet_priv *priv;
317 	struct device *kdev;
318 	int processed;
319 
320 	priv = netdev_priv(dev);
321 	kdev = &priv->pdev->dev;
322 	processed = 0;
323 
324 	/* don't scan ring further than number of refilled
325 	 * descriptor */
326 	if (budget > priv->rx_desc_count)
327 		budget = priv->rx_desc_count;
328 
329 	do {
330 		struct bcm_enet_desc *desc;
331 		struct sk_buff *skb;
332 		int desc_idx;
333 		u32 len_stat;
334 		unsigned int len;
335 
336 		desc_idx = priv->rx_curr_desc;
337 		desc = &priv->rx_desc_cpu[desc_idx];
338 
339 		/* make sure we actually read the descriptor status at
340 		 * each loop */
341 		rmb();
342 
343 		len_stat = desc->len_stat;
344 
345 		/* break if dma ownership belongs to hw */
346 		if (len_stat & DMADESC_OWNER_MASK)
347 			break;
348 
349 		processed++;
350 		priv->rx_curr_desc++;
351 		if (priv->rx_curr_desc == priv->rx_ring_size)
352 			priv->rx_curr_desc = 0;
353 		priv->rx_desc_count--;
354 
355 		/* if the packet does not have start of packet _and_
356 		 * end of packet flag set, then just recycle it */
357 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 			dev->stats.rx_dropped++;
360 			continue;
361 		}
362 
363 		/* recycle packet if it's marked as bad */
364 		if (!priv->enet_is_sw &&
365 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
366 			dev->stats.rx_errors++;
367 
368 			if (len_stat & DMADESC_OVSIZE_MASK)
369 				dev->stats.rx_length_errors++;
370 			if (len_stat & DMADESC_CRC_MASK)
371 				dev->stats.rx_crc_errors++;
372 			if (len_stat & DMADESC_UNDER_MASK)
373 				dev->stats.rx_frame_errors++;
374 			if (len_stat & DMADESC_OV_MASK)
375 				dev->stats.rx_fifo_errors++;
376 			continue;
377 		}
378 
379 		/* valid packet */
380 		skb = priv->rx_skb[desc_idx];
381 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 		/* don't include FCS */
383 		len -= 4;
384 
385 		if (len < copybreak) {
386 			struct sk_buff *nskb;
387 
388 			nskb = napi_alloc_skb(&priv->napi, len);
389 			if (!nskb) {
390 				/* forget packet, just rearm desc */
391 				dev->stats.rx_dropped++;
392 				continue;
393 			}
394 
395 			dma_sync_single_for_cpu(kdev, desc->address,
396 						len, DMA_FROM_DEVICE);
397 			memcpy(nskb->data, skb->data, len);
398 			dma_sync_single_for_device(kdev, desc->address,
399 						   len, DMA_FROM_DEVICE);
400 			skb = nskb;
401 		} else {
402 			dma_unmap_single(&priv->pdev->dev, desc->address,
403 					 priv->rx_skb_size, DMA_FROM_DEVICE);
404 			priv->rx_skb[desc_idx] = NULL;
405 		}
406 
407 		skb_put(skb, len);
408 		skb->protocol = eth_type_trans(skb, dev);
409 		dev->stats.rx_packets++;
410 		dev->stats.rx_bytes += len;
411 		netif_receive_skb(skb);
412 
413 	} while (--budget > 0);
414 
415 	if (processed || !priv->rx_desc_count) {
416 		bcm_enet_refill_rx(dev);
417 
418 		/* kick rx dma */
419 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 					 ENETDMAC_CHANCFG, priv->rx_chan);
421 	}
422 
423 	return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 	struct bcm_enet_priv *priv;
433 	int released;
434 
435 	priv = netdev_priv(dev);
436 	released = 0;
437 
438 	while (priv->tx_desc_count < priv->tx_ring_size) {
439 		struct bcm_enet_desc *desc;
440 		struct sk_buff *skb;
441 
442 		/* We run in a bh and fight against start_xmit, which
443 		 * is called with bh disabled  */
444 		spin_lock(&priv->tx_lock);
445 
446 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 			spin_unlock(&priv->tx_lock);
450 			break;
451 		}
452 
453 		/* ensure other field of the descriptor were not read
454 		 * before we checked ownership */
455 		rmb();
456 
457 		skb = priv->tx_skb[priv->tx_dirty_desc];
458 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 				 DMA_TO_DEVICE);
461 
462 		priv->tx_dirty_desc++;
463 		if (priv->tx_dirty_desc == priv->tx_ring_size)
464 			priv->tx_dirty_desc = 0;
465 		priv->tx_desc_count++;
466 
467 		spin_unlock(&priv->tx_lock);
468 
469 		if (desc->len_stat & DMADESC_UNDER_MASK)
470 			dev->stats.tx_errors++;
471 
472 		dev_kfree_skb(skb);
473 		released++;
474 	}
475 
476 	if (netif_queue_stopped(dev) && released)
477 		netif_wake_queue(dev);
478 
479 	return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 	struct bcm_enet_priv *priv;
488 	struct net_device *dev;
489 	int rx_work_done;
490 
491 	priv = container_of(napi, struct bcm_enet_priv, napi);
492 	dev = priv->net_dev;
493 
494 	/* ack interrupts */
495 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 			 ENETDMAC_IR, priv->rx_chan);
497 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 			 ENETDMAC_IR, priv->tx_chan);
499 
500 	/* reclaim sent skb */
501 	bcm_enet_tx_reclaim(dev, 0);
502 
503 	spin_lock(&priv->rx_lock);
504 	rx_work_done = bcm_enet_receive_queue(dev, budget);
505 	spin_unlock(&priv->rx_lock);
506 
507 	if (rx_work_done >= budget) {
508 		/* rx queue is not yet empty/clean */
509 		return rx_work_done;
510 	}
511 
512 	/* no more packet in rx/tx queue, remove device from poll
513 	 * queue */
514 	napi_complete(napi);
515 
516 	/* restore rx/tx interrupt */
517 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 			 ENETDMAC_IRMASK, priv->rx_chan);
519 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 			 ENETDMAC_IRMASK, priv->tx_chan);
521 
522 	return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 	struct net_device *dev;
531 	struct bcm_enet_priv *priv;
532 	u32 stat;
533 
534 	dev = dev_id;
535 	priv = netdev_priv(dev);
536 
537 	stat = enet_readl(priv, ENET_IR_REG);
538 	if (!(stat & ENET_IR_MIB))
539 		return IRQ_NONE;
540 
541 	/* clear & mask interrupt */
542 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 	enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545 	/* read mib registers in workqueue */
546 	schedule_work(&priv->mib_update_task);
547 
548 	return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 	struct net_device *dev;
557 	struct bcm_enet_priv *priv;
558 
559 	dev = dev_id;
560 	priv = netdev_priv(dev);
561 
562 	/* mask rx/tx interrupts */
563 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566 	napi_schedule(&priv->napi);
567 
568 	return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 	struct bcm_enet_priv *priv;
577 	struct bcm_enet_desc *desc;
578 	u32 len_stat;
579 	int ret;
580 
581 	priv = netdev_priv(dev);
582 
583 	/* lock against tx reclaim */
584 	spin_lock(&priv->tx_lock);
585 
586 	/* make sure  the tx hw queue  is not full,  should not happen
587 	 * since we stop queue before it's the case */
588 	if (unlikely(!priv->tx_desc_count)) {
589 		netif_stop_queue(dev);
590 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 			"available?\n");
592 		ret = NETDEV_TX_BUSY;
593 		goto out_unlock;
594 	}
595 
596 	/* pad small packets sent on a switch device */
597 	if (priv->enet_is_sw && skb->len < 64) {
598 		int needed = 64 - skb->len;
599 		char *data;
600 
601 		if (unlikely(skb_tailroom(skb) < needed)) {
602 			struct sk_buff *nskb;
603 
604 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 			if (!nskb) {
606 				ret = NETDEV_TX_BUSY;
607 				goto out_unlock;
608 			}
609 			dev_kfree_skb(skb);
610 			skb = nskb;
611 		}
612 		data = skb_put(skb, needed);
613 		memset(data, 0, needed);
614 	}
615 
616 	/* point to the next available desc */
617 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 	priv->tx_skb[priv->tx_curr_desc] = skb;
619 
620 	/* fill descriptor */
621 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 				       DMA_TO_DEVICE);
623 
624 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 		DMADESC_APPEND_CRC |
627 		DMADESC_OWNER_MASK;
628 
629 	priv->tx_curr_desc++;
630 	if (priv->tx_curr_desc == priv->tx_ring_size) {
631 		priv->tx_curr_desc = 0;
632 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 	}
634 	priv->tx_desc_count--;
635 
636 	/* dma might be already polling, make sure we update desc
637 	 * fields in correct order */
638 	wmb();
639 	desc->len_stat = len_stat;
640 	wmb();
641 
642 	/* kick tx dma */
643 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 				 ENETDMAC_CHANCFG, priv->tx_chan);
645 
646 	/* stop queue if no more desc available */
647 	if (!priv->tx_desc_count)
648 		netif_stop_queue(dev);
649 
650 	dev->stats.tx_bytes += skb->len;
651 	dev->stats.tx_packets++;
652 	ret = NETDEV_TX_OK;
653 
654 out_unlock:
655 	spin_unlock(&priv->tx_lock);
656 	return ret;
657 }
658 
659 /*
660  * Change the interface's mac address.
661  */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 	struct bcm_enet_priv *priv;
665 	struct sockaddr *addr = p;
666 	u32 val;
667 
668 	priv = netdev_priv(dev);
669 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670 
671 	/* use perfect match register 0 to store my mac address */
672 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 	enet_writel(priv, val, ENET_PML_REG(0));
675 
676 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 	val |= ENET_PMH_DATAVALID_MASK;
678 	enet_writel(priv, val, ENET_PMH_REG(0));
679 
680 	return 0;
681 }
682 
683 /*
684  * Change rx mode (promiscuous/allmulti) and update multicast list
685  */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 	struct bcm_enet_priv *priv;
689 	struct netdev_hw_addr *ha;
690 	u32 val;
691 	int i;
692 
693 	priv = netdev_priv(dev);
694 
695 	val = enet_readl(priv, ENET_RXCFG_REG);
696 
697 	if (dev->flags & IFF_PROMISC)
698 		val |= ENET_RXCFG_PROMISC_MASK;
699 	else
700 		val &= ~ENET_RXCFG_PROMISC_MASK;
701 
702 	/* only 3 perfect match registers left, first one is used for
703 	 * own mac address */
704 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 		val |= ENET_RXCFG_ALLMCAST_MASK;
706 	else
707 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
708 
709 	/* no need to set perfect match registers if we catch all
710 	 * multicast */
711 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 		enet_writel(priv, val, ENET_RXCFG_REG);
713 		return;
714 	}
715 
716 	i = 0;
717 	netdev_for_each_mc_addr(ha, dev) {
718 		u8 *dmi_addr;
719 		u32 tmp;
720 
721 		if (i == 3)
722 			break;
723 		/* update perfect match registers */
724 		dmi_addr = ha->addr;
725 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 			(dmi_addr[4] << 8) | dmi_addr[5];
727 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728 
729 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 		tmp |= ENET_PMH_DATAVALID_MASK;
731 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 	}
733 
734 	for (; i < 3; i++) {
735 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 	}
738 
739 	enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741 
742 /*
743  * set mac duplex parameters
744  */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 	u32 val;
748 
749 	val = enet_readl(priv, ENET_TXCTL_REG);
750 	if (fullduplex)
751 		val |= ENET_TXCTL_FD_MASK;
752 	else
753 		val &= ~ENET_TXCTL_FD_MASK;
754 	enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756 
757 /*
758  * set mac flow control parameters
759  */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 	u32 val;
763 
764 	/* rx flow control (pause frame handling) */
765 	val = enet_readl(priv, ENET_RXCFG_REG);
766 	if (rx_en)
767 		val |= ENET_RXCFG_ENFLOW_MASK;
768 	else
769 		val &= ~ENET_RXCFG_ENFLOW_MASK;
770 	enet_writel(priv, val, ENET_RXCFG_REG);
771 
772 	if (!priv->dma_has_sram)
773 		return;
774 
775 	/* tx flow control (pause frame generation) */
776 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 	if (tx_en)
778 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 	else
780 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783 
784 /*
785  * link changed callback (from phylib)
786  */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 	struct bcm_enet_priv *priv;
790 	struct phy_device *phydev;
791 	int status_changed;
792 
793 	priv = netdev_priv(dev);
794 	phydev = priv->phydev;
795 	status_changed = 0;
796 
797 	if (priv->old_link != phydev->link) {
798 		status_changed = 1;
799 		priv->old_link = phydev->link;
800 	}
801 
802 	/* reflect duplex change in mac configuration */
803 	if (phydev->link && phydev->duplex != priv->old_duplex) {
804 		bcm_enet_set_duplex(priv,
805 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 		status_changed = 1;
807 		priv->old_duplex = phydev->duplex;
808 	}
809 
810 	/* enable flow control if remote advertise it (trust phylib to
811 	 * check that duplex is full */
812 	if (phydev->link && phydev->pause != priv->old_pause) {
813 		int rx_pause_en, tx_pause_en;
814 
815 		if (phydev->pause) {
816 			/* pause was advertised by lpa and us */
817 			rx_pause_en = 1;
818 			tx_pause_en = 1;
819 		} else if (!priv->pause_auto) {
820 			/* pause setting overrided by user */
821 			rx_pause_en = priv->pause_rx;
822 			tx_pause_en = priv->pause_tx;
823 		} else {
824 			rx_pause_en = 0;
825 			tx_pause_en = 0;
826 		}
827 
828 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 		status_changed = 1;
830 		priv->old_pause = phydev->pause;
831 	}
832 
833 	if (status_changed) {
834 		pr_info("%s: link %s", dev->name, phydev->link ?
835 			"UP" : "DOWN");
836 		if (phydev->link)
837 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 			       phydev->pause == 1 ? "rx&tx" : "off");
840 
841 		pr_cont("\n");
842 	}
843 }
844 
845 /*
846  * link changed callback (if phylib is not used)
847  */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 	struct bcm_enet_priv *priv;
851 
852 	priv = netdev_priv(dev);
853 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 	netif_carrier_on(dev);
856 
857 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 		dev->name,
859 		priv->force_speed_100 ? 100 : 10,
860 		priv->force_duplex_full ? "full" : "half",
861 		priv->pause_rx ? "rx" : "off",
862 		priv->pause_tx ? "tx" : "off");
863 }
864 
865 /*
866  * open callback, allocate dma rings & buffers and start rx operation
867  */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 	struct bcm_enet_priv *priv;
871 	struct sockaddr addr;
872 	struct device *kdev;
873 	struct phy_device *phydev;
874 	int i, ret;
875 	unsigned int size;
876 	char phy_id[MII_BUS_ID_SIZE + 3];
877 	void *p;
878 	u32 val;
879 
880 	priv = netdev_priv(dev);
881 	kdev = &priv->pdev->dev;
882 
883 	if (priv->has_phy) {
884 		/* connect to PHY */
885 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 			 priv->mii_bus->id, priv->phy_id);
887 
888 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 				     PHY_INTERFACE_MODE_MII);
890 
891 		if (IS_ERR(phydev)) {
892 			dev_err(kdev, "could not attach to PHY\n");
893 			return PTR_ERR(phydev);
894 		}
895 
896 		/* mask with MAC supported features */
897 		phydev->supported &= (SUPPORTED_10baseT_Half |
898 				      SUPPORTED_10baseT_Full |
899 				      SUPPORTED_100baseT_Half |
900 				      SUPPORTED_100baseT_Full |
901 				      SUPPORTED_Autoneg |
902 				      SUPPORTED_Pause |
903 				      SUPPORTED_MII);
904 		phydev->advertising = phydev->supported;
905 
906 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 			phydev->advertising |= SUPPORTED_Pause;
908 		else
909 			phydev->advertising &= ~SUPPORTED_Pause;
910 
911 		phy_attached_info(phydev);
912 
913 		priv->old_link = 0;
914 		priv->old_duplex = -1;
915 		priv->old_pause = -1;
916 		priv->phydev = phydev;
917 	}
918 
919 	/* mask all interrupts and request them */
920 	enet_writel(priv, 0, ENET_IRMASK_REG);
921 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
922 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
923 
924 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
925 	if (ret)
926 		goto out_phy_disconnect;
927 
928 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
929 			  dev->name, dev);
930 	if (ret)
931 		goto out_freeirq;
932 
933 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
934 			  0, dev->name, dev);
935 	if (ret)
936 		goto out_freeirq_rx;
937 
938 	/* initialize perfect match registers */
939 	for (i = 0; i < 4; i++) {
940 		enet_writel(priv, 0, ENET_PML_REG(i));
941 		enet_writel(priv, 0, ENET_PMH_REG(i));
942 	}
943 
944 	/* write device mac address */
945 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
946 	bcm_enet_set_mac_address(dev, &addr);
947 
948 	/* allocate rx dma ring */
949 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
950 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
951 	if (!p) {
952 		ret = -ENOMEM;
953 		goto out_freeirq_tx;
954 	}
955 
956 	priv->rx_desc_alloc_size = size;
957 	priv->rx_desc_cpu = p;
958 
959 	/* allocate tx dma ring */
960 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
961 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
962 	if (!p) {
963 		ret = -ENOMEM;
964 		goto out_free_rx_ring;
965 	}
966 
967 	priv->tx_desc_alloc_size = size;
968 	priv->tx_desc_cpu = p;
969 
970 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
971 			       GFP_KERNEL);
972 	if (!priv->tx_skb) {
973 		ret = -ENOMEM;
974 		goto out_free_tx_ring;
975 	}
976 
977 	priv->tx_desc_count = priv->tx_ring_size;
978 	priv->tx_dirty_desc = 0;
979 	priv->tx_curr_desc = 0;
980 	spin_lock_init(&priv->tx_lock);
981 
982 	/* init & fill rx ring with skbs */
983 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
984 			       GFP_KERNEL);
985 	if (!priv->rx_skb) {
986 		ret = -ENOMEM;
987 		goto out_free_tx_skb;
988 	}
989 
990 	priv->rx_desc_count = 0;
991 	priv->rx_dirty_desc = 0;
992 	priv->rx_curr_desc = 0;
993 
994 	/* initialize flow control buffer allocation */
995 	if (priv->dma_has_sram)
996 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
997 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
998 	else
999 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1000 				ENETDMAC_BUFALLOC, priv->rx_chan);
1001 
1002 	if (bcm_enet_refill_rx(dev)) {
1003 		dev_err(kdev, "cannot allocate rx skb queue\n");
1004 		ret = -ENOMEM;
1005 		goto out;
1006 	}
1007 
1008 	/* write rx & tx ring addresses */
1009 	if (priv->dma_has_sram) {
1010 		enet_dmas_writel(priv, priv->rx_desc_dma,
1011 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1012 		enet_dmas_writel(priv, priv->tx_desc_dma,
1013 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1014 	} else {
1015 		enet_dmac_writel(priv, priv->rx_desc_dma,
1016 				ENETDMAC_RSTART, priv->rx_chan);
1017 		enet_dmac_writel(priv, priv->tx_desc_dma,
1018 				ENETDMAC_RSTART, priv->tx_chan);
1019 	}
1020 
1021 	/* clear remaining state ram for rx & tx channel */
1022 	if (priv->dma_has_sram) {
1023 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1027 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1028 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1029 	} else {
1030 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1031 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1032 	}
1033 
1034 	/* set max rx/tx length */
1035 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1036 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1037 
1038 	/* set dma maximum burst len */
1039 	enet_dmac_writel(priv, priv->dma_maxburst,
1040 			 ENETDMAC_MAXBURST, priv->rx_chan);
1041 	enet_dmac_writel(priv, priv->dma_maxburst,
1042 			 ENETDMAC_MAXBURST, priv->tx_chan);
1043 
1044 	/* set correct transmit fifo watermark */
1045 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1046 
1047 	/* set flow control low/high threshold to 1/3 / 2/3 */
1048 	if (priv->dma_has_sram) {
1049 		val = priv->rx_ring_size / 3;
1050 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1051 		val = (priv->rx_ring_size * 2) / 3;
1052 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1053 	} else {
1054 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1055 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1056 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1057 	}
1058 
1059 	/* all set, enable mac and interrupts, start dma engine and
1060 	 * kick rx dma channel */
1061 	wmb();
1062 	val = enet_readl(priv, ENET_CTL_REG);
1063 	val |= ENET_CTL_ENABLE_MASK;
1064 	enet_writel(priv, val, ENET_CTL_REG);
1065 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1066 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1067 			 ENETDMAC_CHANCFG, priv->rx_chan);
1068 
1069 	/* watch "mib counters about to overflow" interrupt */
1070 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1071 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1072 
1073 	/* watch "packet transferred" interrupt in rx and tx */
1074 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1075 			 ENETDMAC_IR, priv->rx_chan);
1076 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1077 			 ENETDMAC_IR, priv->tx_chan);
1078 
1079 	/* make sure we enable napi before rx interrupt  */
1080 	napi_enable(&priv->napi);
1081 
1082 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1083 			 ENETDMAC_IRMASK, priv->rx_chan);
1084 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1085 			 ENETDMAC_IRMASK, priv->tx_chan);
1086 
1087 	if (priv->has_phy)
1088 		phy_start(priv->phydev);
1089 	else
1090 		bcm_enet_adjust_link(dev);
1091 
1092 	netif_start_queue(dev);
1093 	return 0;
1094 
1095 out:
1096 	for (i = 0; i < priv->rx_ring_size; i++) {
1097 		struct bcm_enet_desc *desc;
1098 
1099 		if (!priv->rx_skb[i])
1100 			continue;
1101 
1102 		desc = &priv->rx_desc_cpu[i];
1103 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1104 				 DMA_FROM_DEVICE);
1105 		kfree_skb(priv->rx_skb[i]);
1106 	}
1107 	kfree(priv->rx_skb);
1108 
1109 out_free_tx_skb:
1110 	kfree(priv->tx_skb);
1111 
1112 out_free_tx_ring:
1113 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1114 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1115 
1116 out_free_rx_ring:
1117 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1118 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1119 
1120 out_freeirq_tx:
1121 	free_irq(priv->irq_tx, dev);
1122 
1123 out_freeirq_rx:
1124 	free_irq(priv->irq_rx, dev);
1125 
1126 out_freeirq:
1127 	free_irq(dev->irq, dev);
1128 
1129 out_phy_disconnect:
1130 	phy_disconnect(priv->phydev);
1131 
1132 	return ret;
1133 }
1134 
1135 /*
1136  * disable mac
1137  */
1138 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1139 {
1140 	int limit;
1141 	u32 val;
1142 
1143 	val = enet_readl(priv, ENET_CTL_REG);
1144 	val |= ENET_CTL_DISABLE_MASK;
1145 	enet_writel(priv, val, ENET_CTL_REG);
1146 
1147 	limit = 1000;
1148 	do {
1149 		u32 val;
1150 
1151 		val = enet_readl(priv, ENET_CTL_REG);
1152 		if (!(val & ENET_CTL_DISABLE_MASK))
1153 			break;
1154 		udelay(1);
1155 	} while (limit--);
1156 }
1157 
1158 /*
1159  * disable dma in given channel
1160  */
1161 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1162 {
1163 	int limit;
1164 
1165 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1166 
1167 	limit = 1000;
1168 	do {
1169 		u32 val;
1170 
1171 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1172 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1173 			break;
1174 		udelay(1);
1175 	} while (limit--);
1176 }
1177 
1178 /*
1179  * stop callback
1180  */
1181 static int bcm_enet_stop(struct net_device *dev)
1182 {
1183 	struct bcm_enet_priv *priv;
1184 	struct device *kdev;
1185 	int i;
1186 
1187 	priv = netdev_priv(dev);
1188 	kdev = &priv->pdev->dev;
1189 
1190 	netif_stop_queue(dev);
1191 	napi_disable(&priv->napi);
1192 	if (priv->has_phy)
1193 		phy_stop(priv->phydev);
1194 	del_timer_sync(&priv->rx_timeout);
1195 
1196 	/* mask all interrupts */
1197 	enet_writel(priv, 0, ENET_IRMASK_REG);
1198 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1199 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1200 
1201 	/* make sure no mib update is scheduled */
1202 	cancel_work_sync(&priv->mib_update_task);
1203 
1204 	/* disable dma & mac */
1205 	bcm_enet_disable_dma(priv, priv->tx_chan);
1206 	bcm_enet_disable_dma(priv, priv->rx_chan);
1207 	bcm_enet_disable_mac(priv);
1208 
1209 	/* force reclaim of all tx buffers */
1210 	bcm_enet_tx_reclaim(dev, 1);
1211 
1212 	/* free the rx skb ring */
1213 	for (i = 0; i < priv->rx_ring_size; i++) {
1214 		struct bcm_enet_desc *desc;
1215 
1216 		if (!priv->rx_skb[i])
1217 			continue;
1218 
1219 		desc = &priv->rx_desc_cpu[i];
1220 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1221 				 DMA_FROM_DEVICE);
1222 		kfree_skb(priv->rx_skb[i]);
1223 	}
1224 
1225 	/* free remaining allocated memory */
1226 	kfree(priv->rx_skb);
1227 	kfree(priv->tx_skb);
1228 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1229 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1230 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1231 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1232 	free_irq(priv->irq_tx, dev);
1233 	free_irq(priv->irq_rx, dev);
1234 	free_irq(dev->irq, dev);
1235 
1236 	/* release phy */
1237 	if (priv->has_phy) {
1238 		phy_disconnect(priv->phydev);
1239 		priv->phydev = NULL;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 /*
1246  * ethtool callbacks
1247  */
1248 struct bcm_enet_stats {
1249 	char stat_string[ETH_GSTRING_LEN];
1250 	int sizeof_stat;
1251 	int stat_offset;
1252 	int mib_reg;
1253 };
1254 
1255 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1256 		     offsetof(struct bcm_enet_priv, m)
1257 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1258 		     offsetof(struct net_device_stats, m)
1259 
1260 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1261 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1262 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1263 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1264 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1265 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1266 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1267 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1268 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1269 
1270 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1271 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1272 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1273 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1274 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1275 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1276 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1277 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1278 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1279 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1280 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1281 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1282 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1283 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1284 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1285 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1286 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1287 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1288 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1289 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1290 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1291 
1292 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1293 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1294 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1295 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1296 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1297 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1298 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1299 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1300 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1301 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1302 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1303 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1304 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1305 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1306 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1307 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1308 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1309 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1310 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1311 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1312 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1313 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1314 
1315 };
1316 
1317 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1318 
1319 static const u32 unused_mib_regs[] = {
1320 	ETH_MIB_TX_ALL_OCTETS,
1321 	ETH_MIB_TX_ALL_PKTS,
1322 	ETH_MIB_RX_ALL_OCTETS,
1323 	ETH_MIB_RX_ALL_PKTS,
1324 };
1325 
1326 
1327 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1328 				 struct ethtool_drvinfo *drvinfo)
1329 {
1330 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1331 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1332 		sizeof(drvinfo->version));
1333 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1334 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1335 }
1336 
1337 static int bcm_enet_get_sset_count(struct net_device *netdev,
1338 					int string_set)
1339 {
1340 	switch (string_set) {
1341 	case ETH_SS_STATS:
1342 		return BCM_ENET_STATS_LEN;
1343 	default:
1344 		return -EINVAL;
1345 	}
1346 }
1347 
1348 static void bcm_enet_get_strings(struct net_device *netdev,
1349 				 u32 stringset, u8 *data)
1350 {
1351 	int i;
1352 
1353 	switch (stringset) {
1354 	case ETH_SS_STATS:
1355 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1356 			memcpy(data + i * ETH_GSTRING_LEN,
1357 			       bcm_enet_gstrings_stats[i].stat_string,
1358 			       ETH_GSTRING_LEN);
1359 		}
1360 		break;
1361 	}
1362 }
1363 
1364 static void update_mib_counters(struct bcm_enet_priv *priv)
1365 {
1366 	int i;
1367 
1368 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1369 		const struct bcm_enet_stats *s;
1370 		u32 val;
1371 		char *p;
1372 
1373 		s = &bcm_enet_gstrings_stats[i];
1374 		if (s->mib_reg == -1)
1375 			continue;
1376 
1377 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1378 		p = (char *)priv + s->stat_offset;
1379 
1380 		if (s->sizeof_stat == sizeof(u64))
1381 			*(u64 *)p += val;
1382 		else
1383 			*(u32 *)p += val;
1384 	}
1385 
1386 	/* also empty unused mib counters to make sure mib counter
1387 	 * overflow interrupt is cleared */
1388 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1389 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1390 }
1391 
1392 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1393 {
1394 	struct bcm_enet_priv *priv;
1395 
1396 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1397 	mutex_lock(&priv->mib_update_lock);
1398 	update_mib_counters(priv);
1399 	mutex_unlock(&priv->mib_update_lock);
1400 
1401 	/* reenable mib interrupt */
1402 	if (netif_running(priv->net_dev))
1403 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1404 }
1405 
1406 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1407 				       struct ethtool_stats *stats,
1408 				       u64 *data)
1409 {
1410 	struct bcm_enet_priv *priv;
1411 	int i;
1412 
1413 	priv = netdev_priv(netdev);
1414 
1415 	mutex_lock(&priv->mib_update_lock);
1416 	update_mib_counters(priv);
1417 
1418 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1419 		const struct bcm_enet_stats *s;
1420 		char *p;
1421 
1422 		s = &bcm_enet_gstrings_stats[i];
1423 		if (s->mib_reg == -1)
1424 			p = (char *)&netdev->stats;
1425 		else
1426 			p = (char *)priv;
1427 		p += s->stat_offset;
1428 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1429 			*(u64 *)p : *(u32 *)p;
1430 	}
1431 	mutex_unlock(&priv->mib_update_lock);
1432 }
1433 
1434 static int bcm_enet_nway_reset(struct net_device *dev)
1435 {
1436 	struct bcm_enet_priv *priv;
1437 
1438 	priv = netdev_priv(dev);
1439 	if (priv->has_phy) {
1440 		if (!priv->phydev)
1441 			return -ENODEV;
1442 		return genphy_restart_aneg(priv->phydev);
1443 	}
1444 
1445 	return -EOPNOTSUPP;
1446 }
1447 
1448 static int bcm_enet_get_settings(struct net_device *dev,
1449 				 struct ethtool_cmd *cmd)
1450 {
1451 	struct bcm_enet_priv *priv;
1452 
1453 	priv = netdev_priv(dev);
1454 
1455 	cmd->maxrxpkt = 0;
1456 	cmd->maxtxpkt = 0;
1457 
1458 	if (priv->has_phy) {
1459 		if (!priv->phydev)
1460 			return -ENODEV;
1461 		return phy_ethtool_gset(priv->phydev, cmd);
1462 	} else {
1463 		cmd->autoneg = 0;
1464 		ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
1465 					    ? SPEED_100 : SPEED_10));
1466 		cmd->duplex = (priv->force_duplex_full) ?
1467 			DUPLEX_FULL : DUPLEX_HALF;
1468 		cmd->supported = ADVERTISED_10baseT_Half  |
1469 			ADVERTISED_10baseT_Full |
1470 			ADVERTISED_100baseT_Half |
1471 			ADVERTISED_100baseT_Full;
1472 		cmd->advertising = 0;
1473 		cmd->port = PORT_MII;
1474 		cmd->transceiver = XCVR_EXTERNAL;
1475 	}
1476 	return 0;
1477 }
1478 
1479 static int bcm_enet_set_settings(struct net_device *dev,
1480 				 struct ethtool_cmd *cmd)
1481 {
1482 	struct bcm_enet_priv *priv;
1483 
1484 	priv = netdev_priv(dev);
1485 	if (priv->has_phy) {
1486 		if (!priv->phydev)
1487 			return -ENODEV;
1488 		return phy_ethtool_sset(priv->phydev, cmd);
1489 	} else {
1490 
1491 		if (cmd->autoneg ||
1492 		    (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1493 		    cmd->port != PORT_MII)
1494 			return -EINVAL;
1495 
1496 		priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1497 		priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1498 
1499 		if (netif_running(dev))
1500 			bcm_enet_adjust_link(dev);
1501 		return 0;
1502 	}
1503 }
1504 
1505 static void bcm_enet_get_ringparam(struct net_device *dev,
1506 				   struct ethtool_ringparam *ering)
1507 {
1508 	struct bcm_enet_priv *priv;
1509 
1510 	priv = netdev_priv(dev);
1511 
1512 	/* rx/tx ring is actually only limited by memory */
1513 	ering->rx_max_pending = 8192;
1514 	ering->tx_max_pending = 8192;
1515 	ering->rx_pending = priv->rx_ring_size;
1516 	ering->tx_pending = priv->tx_ring_size;
1517 }
1518 
1519 static int bcm_enet_set_ringparam(struct net_device *dev,
1520 				  struct ethtool_ringparam *ering)
1521 {
1522 	struct bcm_enet_priv *priv;
1523 	int was_running;
1524 
1525 	priv = netdev_priv(dev);
1526 
1527 	was_running = 0;
1528 	if (netif_running(dev)) {
1529 		bcm_enet_stop(dev);
1530 		was_running = 1;
1531 	}
1532 
1533 	priv->rx_ring_size = ering->rx_pending;
1534 	priv->tx_ring_size = ering->tx_pending;
1535 
1536 	if (was_running) {
1537 		int err;
1538 
1539 		err = bcm_enet_open(dev);
1540 		if (err)
1541 			dev_close(dev);
1542 		else
1543 			bcm_enet_set_multicast_list(dev);
1544 	}
1545 	return 0;
1546 }
1547 
1548 static void bcm_enet_get_pauseparam(struct net_device *dev,
1549 				    struct ethtool_pauseparam *ecmd)
1550 {
1551 	struct bcm_enet_priv *priv;
1552 
1553 	priv = netdev_priv(dev);
1554 	ecmd->autoneg = priv->pause_auto;
1555 	ecmd->rx_pause = priv->pause_rx;
1556 	ecmd->tx_pause = priv->pause_tx;
1557 }
1558 
1559 static int bcm_enet_set_pauseparam(struct net_device *dev,
1560 				   struct ethtool_pauseparam *ecmd)
1561 {
1562 	struct bcm_enet_priv *priv;
1563 
1564 	priv = netdev_priv(dev);
1565 
1566 	if (priv->has_phy) {
1567 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1568 			/* asymetric pause mode not supported,
1569 			 * actually possible but integrated PHY has RO
1570 			 * asym_pause bit */
1571 			return -EINVAL;
1572 		}
1573 	} else {
1574 		/* no pause autoneg on direct mii connection */
1575 		if (ecmd->autoneg)
1576 			return -EINVAL;
1577 	}
1578 
1579 	priv->pause_auto = ecmd->autoneg;
1580 	priv->pause_rx = ecmd->rx_pause;
1581 	priv->pause_tx = ecmd->tx_pause;
1582 
1583 	return 0;
1584 }
1585 
1586 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1587 	.get_strings		= bcm_enet_get_strings,
1588 	.get_sset_count		= bcm_enet_get_sset_count,
1589 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1590 	.nway_reset		= bcm_enet_nway_reset,
1591 	.get_settings		= bcm_enet_get_settings,
1592 	.set_settings		= bcm_enet_set_settings,
1593 	.get_drvinfo		= bcm_enet_get_drvinfo,
1594 	.get_link		= ethtool_op_get_link,
1595 	.get_ringparam		= bcm_enet_get_ringparam,
1596 	.set_ringparam		= bcm_enet_set_ringparam,
1597 	.get_pauseparam		= bcm_enet_get_pauseparam,
1598 	.set_pauseparam		= bcm_enet_set_pauseparam,
1599 };
1600 
1601 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1602 {
1603 	struct bcm_enet_priv *priv;
1604 
1605 	priv = netdev_priv(dev);
1606 	if (priv->has_phy) {
1607 		if (!priv->phydev)
1608 			return -ENODEV;
1609 		return phy_mii_ioctl(priv->phydev, rq, cmd);
1610 	} else {
1611 		struct mii_if_info mii;
1612 
1613 		mii.dev = dev;
1614 		mii.mdio_read = bcm_enet_mdio_read_mii;
1615 		mii.mdio_write = bcm_enet_mdio_write_mii;
1616 		mii.phy_id = 0;
1617 		mii.phy_id_mask = 0x3f;
1618 		mii.reg_num_mask = 0x1f;
1619 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1620 	}
1621 }
1622 
1623 /*
1624  * calculate actual hardware mtu
1625  */
1626 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1627 {
1628 	int actual_mtu;
1629 
1630 	actual_mtu = mtu;
1631 
1632 	/* add ethernet header + vlan tag size */
1633 	actual_mtu += VLAN_ETH_HLEN;
1634 
1635 	if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1636 		return -EINVAL;
1637 
1638 	/*
1639 	 * setup maximum size before we get overflow mark in
1640 	 * descriptor, note that this will not prevent reception of
1641 	 * big frames, they will be split into multiple buffers
1642 	 * anyway
1643 	 */
1644 	priv->hw_mtu = actual_mtu;
1645 
1646 	/*
1647 	 * align rx buffer size to dma burst len, account FCS since
1648 	 * it's appended
1649 	 */
1650 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1651 				  priv->dma_maxburst * 4);
1652 	return 0;
1653 }
1654 
1655 /*
1656  * adjust mtu, can't be called while device is running
1657  */
1658 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1659 {
1660 	int ret;
1661 
1662 	if (netif_running(dev))
1663 		return -EBUSY;
1664 
1665 	ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1666 	if (ret)
1667 		return ret;
1668 	dev->mtu = new_mtu;
1669 	return 0;
1670 }
1671 
1672 /*
1673  * preinit hardware to allow mii operation while device is down
1674  */
1675 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1676 {
1677 	u32 val;
1678 	int limit;
1679 
1680 	/* make sure mac is disabled */
1681 	bcm_enet_disable_mac(priv);
1682 
1683 	/* soft reset mac */
1684 	val = ENET_CTL_SRESET_MASK;
1685 	enet_writel(priv, val, ENET_CTL_REG);
1686 	wmb();
1687 
1688 	limit = 1000;
1689 	do {
1690 		val = enet_readl(priv, ENET_CTL_REG);
1691 		if (!(val & ENET_CTL_SRESET_MASK))
1692 			break;
1693 		udelay(1);
1694 	} while (limit--);
1695 
1696 	/* select correct mii interface */
1697 	val = enet_readl(priv, ENET_CTL_REG);
1698 	if (priv->use_external_mii)
1699 		val |= ENET_CTL_EPHYSEL_MASK;
1700 	else
1701 		val &= ~ENET_CTL_EPHYSEL_MASK;
1702 	enet_writel(priv, val, ENET_CTL_REG);
1703 
1704 	/* turn on mdc clock */
1705 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1706 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1707 
1708 	/* set mib counters to self-clear when read */
1709 	val = enet_readl(priv, ENET_MIBCTL_REG);
1710 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1711 	enet_writel(priv, val, ENET_MIBCTL_REG);
1712 }
1713 
1714 static const struct net_device_ops bcm_enet_ops = {
1715 	.ndo_open		= bcm_enet_open,
1716 	.ndo_stop		= bcm_enet_stop,
1717 	.ndo_start_xmit		= bcm_enet_start_xmit,
1718 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1719 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1720 	.ndo_do_ioctl		= bcm_enet_ioctl,
1721 	.ndo_change_mtu		= bcm_enet_change_mtu,
1722 };
1723 
1724 /*
1725  * allocate netdevice, request register memory and register device.
1726  */
1727 static int bcm_enet_probe(struct platform_device *pdev)
1728 {
1729 	struct bcm_enet_priv *priv;
1730 	struct net_device *dev;
1731 	struct bcm63xx_enet_platform_data *pd;
1732 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1733 	struct mii_bus *bus;
1734 	const char *clk_name;
1735 	int i, ret;
1736 
1737 	/* stop if shared driver failed, assume driver->probe will be
1738 	 * called in the same order we register devices (correct ?) */
1739 	if (!bcm_enet_shared_base[0])
1740 		return -ENODEV;
1741 
1742 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1743 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1744 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1745 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1746 		return -ENODEV;
1747 
1748 	ret = 0;
1749 	dev = alloc_etherdev(sizeof(*priv));
1750 	if (!dev)
1751 		return -ENOMEM;
1752 	priv = netdev_priv(dev);
1753 
1754 	priv->enet_is_sw = false;
1755 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1756 
1757 	ret = compute_hw_mtu(priv, dev->mtu);
1758 	if (ret)
1759 		goto out;
1760 
1761 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1762 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1763 	if (IS_ERR(priv->base)) {
1764 		ret = PTR_ERR(priv->base);
1765 		goto out;
1766 	}
1767 
1768 	dev->irq = priv->irq = res_irq->start;
1769 	priv->irq_rx = res_irq_rx->start;
1770 	priv->irq_tx = res_irq_tx->start;
1771 	priv->mac_id = pdev->id;
1772 
1773 	/* get rx & tx dma channel id for this mac */
1774 	if (priv->mac_id == 0) {
1775 		priv->rx_chan = 0;
1776 		priv->tx_chan = 1;
1777 		clk_name = "enet0";
1778 	} else {
1779 		priv->rx_chan = 2;
1780 		priv->tx_chan = 3;
1781 		clk_name = "enet1";
1782 	}
1783 
1784 	priv->mac_clk = clk_get(&pdev->dev, clk_name);
1785 	if (IS_ERR(priv->mac_clk)) {
1786 		ret = PTR_ERR(priv->mac_clk);
1787 		goto out;
1788 	}
1789 	clk_prepare_enable(priv->mac_clk);
1790 
1791 	/* initialize default and fetch platform data */
1792 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1793 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1794 
1795 	pd = dev_get_platdata(&pdev->dev);
1796 	if (pd) {
1797 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1798 		priv->has_phy = pd->has_phy;
1799 		priv->phy_id = pd->phy_id;
1800 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1801 		priv->phy_interrupt = pd->phy_interrupt;
1802 		priv->use_external_mii = !pd->use_internal_phy;
1803 		priv->pause_auto = pd->pause_auto;
1804 		priv->pause_rx = pd->pause_rx;
1805 		priv->pause_tx = pd->pause_tx;
1806 		priv->force_duplex_full = pd->force_duplex_full;
1807 		priv->force_speed_100 = pd->force_speed_100;
1808 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1809 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1810 		priv->dma_chan_width = pd->dma_chan_width;
1811 		priv->dma_has_sram = pd->dma_has_sram;
1812 		priv->dma_desc_shift = pd->dma_desc_shift;
1813 	}
1814 
1815 	if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1816 		/* using internal PHY, enable clock */
1817 		priv->phy_clk = clk_get(&pdev->dev, "ephy");
1818 		if (IS_ERR(priv->phy_clk)) {
1819 			ret = PTR_ERR(priv->phy_clk);
1820 			priv->phy_clk = NULL;
1821 			goto out_put_clk_mac;
1822 		}
1823 		clk_prepare_enable(priv->phy_clk);
1824 	}
1825 
1826 	/* do minimal hardware init to be able to probe mii bus */
1827 	bcm_enet_hw_preinit(priv);
1828 
1829 	/* MII bus registration */
1830 	if (priv->has_phy) {
1831 
1832 		priv->mii_bus = mdiobus_alloc();
1833 		if (!priv->mii_bus) {
1834 			ret = -ENOMEM;
1835 			goto out_uninit_hw;
1836 		}
1837 
1838 		bus = priv->mii_bus;
1839 		bus->name = "bcm63xx_enet MII bus";
1840 		bus->parent = &pdev->dev;
1841 		bus->priv = priv;
1842 		bus->read = bcm_enet_mdio_read_phylib;
1843 		bus->write = bcm_enet_mdio_write_phylib;
1844 		sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1845 
1846 		/* only probe bus where we think the PHY is, because
1847 		 * the mdio read operation return 0 instead of 0xffff
1848 		 * if a slave is not present on hw */
1849 		bus->phy_mask = ~(1 << priv->phy_id);
1850 
1851 		if (priv->has_phy_interrupt)
1852 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1853 
1854 		ret = mdiobus_register(bus);
1855 		if (ret) {
1856 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1857 			goto out_free_mdio;
1858 		}
1859 	} else {
1860 
1861 		/* run platform code to initialize PHY device */
1862 		if (pd && pd->mii_config &&
1863 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1864 				   bcm_enet_mdio_write_mii)) {
1865 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1866 			goto out_uninit_hw;
1867 		}
1868 	}
1869 
1870 	spin_lock_init(&priv->rx_lock);
1871 
1872 	/* init rx timeout (used for oom) */
1873 	init_timer(&priv->rx_timeout);
1874 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1875 	priv->rx_timeout.data = (unsigned long)dev;
1876 
1877 	/* init the mib update lock&work */
1878 	mutex_init(&priv->mib_update_lock);
1879 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1880 
1881 	/* zero mib counters */
1882 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1883 		enet_writel(priv, 0, ENET_MIB_REG(i));
1884 
1885 	/* register netdevice */
1886 	dev->netdev_ops = &bcm_enet_ops;
1887 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1888 
1889 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1890 	SET_NETDEV_DEV(dev, &pdev->dev);
1891 
1892 	ret = register_netdev(dev);
1893 	if (ret)
1894 		goto out_unregister_mdio;
1895 
1896 	netif_carrier_off(dev);
1897 	platform_set_drvdata(pdev, dev);
1898 	priv->pdev = pdev;
1899 	priv->net_dev = dev;
1900 
1901 	return 0;
1902 
1903 out_unregister_mdio:
1904 	if (priv->mii_bus)
1905 		mdiobus_unregister(priv->mii_bus);
1906 
1907 out_free_mdio:
1908 	if (priv->mii_bus)
1909 		mdiobus_free(priv->mii_bus);
1910 
1911 out_uninit_hw:
1912 	/* turn off mdc clock */
1913 	enet_writel(priv, 0, ENET_MIISC_REG);
1914 	if (priv->phy_clk) {
1915 		clk_disable_unprepare(priv->phy_clk);
1916 		clk_put(priv->phy_clk);
1917 	}
1918 
1919 out_put_clk_mac:
1920 	clk_disable_unprepare(priv->mac_clk);
1921 	clk_put(priv->mac_clk);
1922 out:
1923 	free_netdev(dev);
1924 	return ret;
1925 }
1926 
1927 
1928 /*
1929  * exit func, stops hardware and unregisters netdevice
1930  */
1931 static int bcm_enet_remove(struct platform_device *pdev)
1932 {
1933 	struct bcm_enet_priv *priv;
1934 	struct net_device *dev;
1935 
1936 	/* stop netdevice */
1937 	dev = platform_get_drvdata(pdev);
1938 	priv = netdev_priv(dev);
1939 	unregister_netdev(dev);
1940 
1941 	/* turn off mdc clock */
1942 	enet_writel(priv, 0, ENET_MIISC_REG);
1943 
1944 	if (priv->has_phy) {
1945 		mdiobus_unregister(priv->mii_bus);
1946 		mdiobus_free(priv->mii_bus);
1947 	} else {
1948 		struct bcm63xx_enet_platform_data *pd;
1949 
1950 		pd = dev_get_platdata(&pdev->dev);
1951 		if (pd && pd->mii_config)
1952 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1953 				       bcm_enet_mdio_write_mii);
1954 	}
1955 
1956 	/* disable hw block clocks */
1957 	if (priv->phy_clk) {
1958 		clk_disable_unprepare(priv->phy_clk);
1959 		clk_put(priv->phy_clk);
1960 	}
1961 	clk_disable_unprepare(priv->mac_clk);
1962 	clk_put(priv->mac_clk);
1963 
1964 	free_netdev(dev);
1965 	return 0;
1966 }
1967 
1968 struct platform_driver bcm63xx_enet_driver = {
1969 	.probe	= bcm_enet_probe,
1970 	.remove	= bcm_enet_remove,
1971 	.driver	= {
1972 		.name	= "bcm63xx_enet",
1973 		.owner  = THIS_MODULE,
1974 	},
1975 };
1976 
1977 /*
1978  * switch mii access callbacks
1979  */
1980 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1981 				int ext, int phy_id, int location)
1982 {
1983 	u32 reg;
1984 	int ret;
1985 
1986 	spin_lock_bh(&priv->enetsw_mdio_lock);
1987 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1988 
1989 	reg = ENETSW_MDIOC_RD_MASK |
1990 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1991 		(location << ENETSW_MDIOC_REG_SHIFT);
1992 
1993 	if (ext)
1994 		reg |= ENETSW_MDIOC_EXT_MASK;
1995 
1996 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1997 	udelay(50);
1998 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1999 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2000 	return ret;
2001 }
2002 
2003 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2004 				 int ext, int phy_id, int location,
2005 				 uint16_t data)
2006 {
2007 	u32 reg;
2008 
2009 	spin_lock_bh(&priv->enetsw_mdio_lock);
2010 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2011 
2012 	reg = ENETSW_MDIOC_WR_MASK |
2013 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2014 		(location << ENETSW_MDIOC_REG_SHIFT);
2015 
2016 	if (ext)
2017 		reg |= ENETSW_MDIOC_EXT_MASK;
2018 
2019 	reg |= data;
2020 
2021 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2022 	udelay(50);
2023 	spin_unlock_bh(&priv->enetsw_mdio_lock);
2024 }
2025 
2026 static inline int bcm_enet_port_is_rgmii(int portid)
2027 {
2028 	return portid >= ENETSW_RGMII_PORT0;
2029 }
2030 
2031 /*
2032  * enet sw PHY polling
2033  */
2034 static void swphy_poll_timer(unsigned long data)
2035 {
2036 	struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2037 	unsigned int i;
2038 
2039 	for (i = 0; i < priv->num_ports; i++) {
2040 		struct bcm63xx_enetsw_port *port;
2041 		int val, j, up, advertise, lpa, speed, duplex, media;
2042 		int external_phy = bcm_enet_port_is_rgmii(i);
2043 		u8 override;
2044 
2045 		port = &priv->used_ports[i];
2046 		if (!port->used)
2047 			continue;
2048 
2049 		if (port->bypass_link)
2050 			continue;
2051 
2052 		/* dummy read to clear */
2053 		for (j = 0; j < 2; j++)
2054 			val = bcmenet_sw_mdio_read(priv, external_phy,
2055 						   port->phy_id, MII_BMSR);
2056 
2057 		if (val == 0xffff)
2058 			continue;
2059 
2060 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2061 		if (!(up ^ priv->sw_port_link[i]))
2062 			continue;
2063 
2064 		priv->sw_port_link[i] = up;
2065 
2066 		/* link changed */
2067 		if (!up) {
2068 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2069 				 port->name);
2070 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2071 				      ENETSW_PORTOV_REG(i));
2072 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2073 				      ENETSW_PTCTRL_TXDIS_MASK,
2074 				      ENETSW_PTCTRL_REG(i));
2075 			continue;
2076 		}
2077 
2078 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2079 						 port->phy_id, MII_ADVERTISE);
2080 
2081 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2082 					   MII_LPA);
2083 
2084 		/* figure out media and duplex from advertise and LPA values */
2085 		media = mii_nway_result(lpa & advertise);
2086 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2087 
2088 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2089 			speed = 100;
2090 		else
2091 			speed = 10;
2092 
2093 		if (val & BMSR_ESTATEN) {
2094 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2095 						port->phy_id, MII_CTRL1000);
2096 
2097 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2098 						port->phy_id, MII_STAT1000);
2099 
2100 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2101 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2102 				speed = 1000;
2103 				duplex = (lpa & LPA_1000FULL);
2104 			}
2105 		}
2106 
2107 		dev_info(&priv->pdev->dev,
2108 			 "link UP on %s, %dMbps, %s-duplex\n",
2109 			 port->name, speed, duplex ? "full" : "half");
2110 
2111 		override = ENETSW_PORTOV_ENABLE_MASK |
2112 			ENETSW_PORTOV_LINKUP_MASK;
2113 
2114 		if (speed == 1000)
2115 			override |= ENETSW_IMPOV_1000_MASK;
2116 		else if (speed == 100)
2117 			override |= ENETSW_IMPOV_100_MASK;
2118 		if (duplex)
2119 			override |= ENETSW_IMPOV_FDX_MASK;
2120 
2121 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2122 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2123 	}
2124 
2125 	priv->swphy_poll.expires = jiffies + HZ;
2126 	add_timer(&priv->swphy_poll);
2127 }
2128 
2129 /*
2130  * open callback, allocate dma rings & buffers and start rx operation
2131  */
2132 static int bcm_enetsw_open(struct net_device *dev)
2133 {
2134 	struct bcm_enet_priv *priv;
2135 	struct device *kdev;
2136 	int i, ret;
2137 	unsigned int size;
2138 	void *p;
2139 	u32 val;
2140 
2141 	priv = netdev_priv(dev);
2142 	kdev = &priv->pdev->dev;
2143 
2144 	/* mask all interrupts and request them */
2145 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2146 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2147 
2148 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2149 			  0, dev->name, dev);
2150 	if (ret)
2151 		goto out_freeirq;
2152 
2153 	if (priv->irq_tx != -1) {
2154 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2155 				  0, dev->name, dev);
2156 		if (ret)
2157 			goto out_freeirq_rx;
2158 	}
2159 
2160 	/* allocate rx dma ring */
2161 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2162 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2163 	if (!p) {
2164 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2165 		ret = -ENOMEM;
2166 		goto out_freeirq_tx;
2167 	}
2168 
2169 	memset(p, 0, size);
2170 	priv->rx_desc_alloc_size = size;
2171 	priv->rx_desc_cpu = p;
2172 
2173 	/* allocate tx dma ring */
2174 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2175 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2176 	if (!p) {
2177 		dev_err(kdev, "cannot allocate tx ring\n");
2178 		ret = -ENOMEM;
2179 		goto out_free_rx_ring;
2180 	}
2181 
2182 	memset(p, 0, size);
2183 	priv->tx_desc_alloc_size = size;
2184 	priv->tx_desc_cpu = p;
2185 
2186 	priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2187 			       GFP_KERNEL);
2188 	if (!priv->tx_skb) {
2189 		dev_err(kdev, "cannot allocate rx skb queue\n");
2190 		ret = -ENOMEM;
2191 		goto out_free_tx_ring;
2192 	}
2193 
2194 	priv->tx_desc_count = priv->tx_ring_size;
2195 	priv->tx_dirty_desc = 0;
2196 	priv->tx_curr_desc = 0;
2197 	spin_lock_init(&priv->tx_lock);
2198 
2199 	/* init & fill rx ring with skbs */
2200 	priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2201 			       GFP_KERNEL);
2202 	if (!priv->rx_skb) {
2203 		dev_err(kdev, "cannot allocate rx skb queue\n");
2204 		ret = -ENOMEM;
2205 		goto out_free_tx_skb;
2206 	}
2207 
2208 	priv->rx_desc_count = 0;
2209 	priv->rx_dirty_desc = 0;
2210 	priv->rx_curr_desc = 0;
2211 
2212 	/* disable all ports */
2213 	for (i = 0; i < priv->num_ports; i++) {
2214 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2215 			      ENETSW_PORTOV_REG(i));
2216 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2217 			      ENETSW_PTCTRL_TXDIS_MASK,
2218 			      ENETSW_PTCTRL_REG(i));
2219 
2220 		priv->sw_port_link[i] = 0;
2221 	}
2222 
2223 	/* reset mib */
2224 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2225 	val |= ENETSW_GMCR_RST_MIB_MASK;
2226 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2227 	mdelay(1);
2228 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2229 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2230 	mdelay(1);
2231 
2232 	/* force CPU port state */
2233 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2234 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2235 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2236 
2237 	/* enable switch forward engine */
2238 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2239 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2240 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2241 
2242 	/* enable jumbo on all ports */
2243 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2244 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2245 
2246 	/* initialize flow control buffer allocation */
2247 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2248 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2249 
2250 	if (bcm_enet_refill_rx(dev)) {
2251 		dev_err(kdev, "cannot allocate rx skb queue\n");
2252 		ret = -ENOMEM;
2253 		goto out;
2254 	}
2255 
2256 	/* write rx & tx ring addresses */
2257 	enet_dmas_writel(priv, priv->rx_desc_dma,
2258 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2259 	enet_dmas_writel(priv, priv->tx_desc_dma,
2260 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2261 
2262 	/* clear remaining state ram for rx & tx channel */
2263 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2264 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2265 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2266 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2267 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2268 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2269 
2270 	/* set dma maximum burst len */
2271 	enet_dmac_writel(priv, priv->dma_maxburst,
2272 			 ENETDMAC_MAXBURST, priv->rx_chan);
2273 	enet_dmac_writel(priv, priv->dma_maxburst,
2274 			 ENETDMAC_MAXBURST, priv->tx_chan);
2275 
2276 	/* set flow control low/high threshold to 1/3 / 2/3 */
2277 	val = priv->rx_ring_size / 3;
2278 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2279 	val = (priv->rx_ring_size * 2) / 3;
2280 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2281 
2282 	/* all set, enable mac and interrupts, start dma engine and
2283 	 * kick rx dma channel
2284 	 */
2285 	wmb();
2286 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2287 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2288 			 ENETDMAC_CHANCFG, priv->rx_chan);
2289 
2290 	/* watch "packet transferred" interrupt in rx and tx */
2291 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2292 			 ENETDMAC_IR, priv->rx_chan);
2293 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2294 			 ENETDMAC_IR, priv->tx_chan);
2295 
2296 	/* make sure we enable napi before rx interrupt  */
2297 	napi_enable(&priv->napi);
2298 
2299 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2300 			 ENETDMAC_IRMASK, priv->rx_chan);
2301 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2302 			 ENETDMAC_IRMASK, priv->tx_chan);
2303 
2304 	netif_carrier_on(dev);
2305 	netif_start_queue(dev);
2306 
2307 	/* apply override config for bypass_link ports here. */
2308 	for (i = 0; i < priv->num_ports; i++) {
2309 		struct bcm63xx_enetsw_port *port;
2310 		u8 override;
2311 		port = &priv->used_ports[i];
2312 		if (!port->used)
2313 			continue;
2314 
2315 		if (!port->bypass_link)
2316 			continue;
2317 
2318 		override = ENETSW_PORTOV_ENABLE_MASK |
2319 			ENETSW_PORTOV_LINKUP_MASK;
2320 
2321 		switch (port->force_speed) {
2322 		case 1000:
2323 			override |= ENETSW_IMPOV_1000_MASK;
2324 			break;
2325 		case 100:
2326 			override |= ENETSW_IMPOV_100_MASK;
2327 			break;
2328 		case 10:
2329 			break;
2330 		default:
2331 			pr_warn("invalid forced speed on port %s: assume 10\n",
2332 			       port->name);
2333 			break;
2334 		}
2335 
2336 		if (port->force_duplex_full)
2337 			override |= ENETSW_IMPOV_FDX_MASK;
2338 
2339 
2340 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2341 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2342 	}
2343 
2344 	/* start phy polling timer */
2345 	init_timer(&priv->swphy_poll);
2346 	priv->swphy_poll.function = swphy_poll_timer;
2347 	priv->swphy_poll.data = (unsigned long)priv;
2348 	priv->swphy_poll.expires = jiffies;
2349 	add_timer(&priv->swphy_poll);
2350 	return 0;
2351 
2352 out:
2353 	for (i = 0; i < priv->rx_ring_size; i++) {
2354 		struct bcm_enet_desc *desc;
2355 
2356 		if (!priv->rx_skb[i])
2357 			continue;
2358 
2359 		desc = &priv->rx_desc_cpu[i];
2360 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2361 				 DMA_FROM_DEVICE);
2362 		kfree_skb(priv->rx_skb[i]);
2363 	}
2364 	kfree(priv->rx_skb);
2365 
2366 out_free_tx_skb:
2367 	kfree(priv->tx_skb);
2368 
2369 out_free_tx_ring:
2370 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2371 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2372 
2373 out_free_rx_ring:
2374 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2375 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2376 
2377 out_freeirq_tx:
2378 	if (priv->irq_tx != -1)
2379 		free_irq(priv->irq_tx, dev);
2380 
2381 out_freeirq_rx:
2382 	free_irq(priv->irq_rx, dev);
2383 
2384 out_freeirq:
2385 	return ret;
2386 }
2387 
2388 /* stop callback */
2389 static int bcm_enetsw_stop(struct net_device *dev)
2390 {
2391 	struct bcm_enet_priv *priv;
2392 	struct device *kdev;
2393 	int i;
2394 
2395 	priv = netdev_priv(dev);
2396 	kdev = &priv->pdev->dev;
2397 
2398 	del_timer_sync(&priv->swphy_poll);
2399 	netif_stop_queue(dev);
2400 	napi_disable(&priv->napi);
2401 	del_timer_sync(&priv->rx_timeout);
2402 
2403 	/* mask all interrupts */
2404 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2405 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2406 
2407 	/* disable dma & mac */
2408 	bcm_enet_disable_dma(priv, priv->tx_chan);
2409 	bcm_enet_disable_dma(priv, priv->rx_chan);
2410 
2411 	/* force reclaim of all tx buffers */
2412 	bcm_enet_tx_reclaim(dev, 1);
2413 
2414 	/* free the rx skb ring */
2415 	for (i = 0; i < priv->rx_ring_size; i++) {
2416 		struct bcm_enet_desc *desc;
2417 
2418 		if (!priv->rx_skb[i])
2419 			continue;
2420 
2421 		desc = &priv->rx_desc_cpu[i];
2422 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2423 				 DMA_FROM_DEVICE);
2424 		kfree_skb(priv->rx_skb[i]);
2425 	}
2426 
2427 	/* free remaining allocated memory */
2428 	kfree(priv->rx_skb);
2429 	kfree(priv->tx_skb);
2430 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2431 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2432 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2433 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2434 	if (priv->irq_tx != -1)
2435 		free_irq(priv->irq_tx, dev);
2436 	free_irq(priv->irq_rx, dev);
2437 
2438 	return 0;
2439 }
2440 
2441 /* try to sort out phy external status by walking the used_port field
2442  * in the bcm_enet_priv structure. in case the phy address is not
2443  * assigned to any physical port on the switch, assume it is external
2444  * (and yell at the user).
2445  */
2446 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2447 {
2448 	int i;
2449 
2450 	for (i = 0; i < priv->num_ports; ++i) {
2451 		if (!priv->used_ports[i].used)
2452 			continue;
2453 		if (priv->used_ports[i].phy_id == phy_id)
2454 			return bcm_enet_port_is_rgmii(i);
2455 	}
2456 
2457 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2458 		    phy_id);
2459 	return 1;
2460 }
2461 
2462 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2463  * external/internal status of the given phy_id first.
2464  */
2465 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2466 				    int location)
2467 {
2468 	struct bcm_enet_priv *priv;
2469 
2470 	priv = netdev_priv(dev);
2471 	return bcmenet_sw_mdio_read(priv,
2472 				    bcm_enetsw_phy_is_external(priv, phy_id),
2473 				    phy_id, location);
2474 }
2475 
2476 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2477  * external/internal status of the given phy_id first.
2478  */
2479 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2480 				      int location,
2481 				      int val)
2482 {
2483 	struct bcm_enet_priv *priv;
2484 
2485 	priv = netdev_priv(dev);
2486 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2487 			      phy_id, location, val);
2488 }
2489 
2490 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2491 {
2492 	struct mii_if_info mii;
2493 
2494 	mii.dev = dev;
2495 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2496 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2497 	mii.phy_id = 0;
2498 	mii.phy_id_mask = 0x3f;
2499 	mii.reg_num_mask = 0x1f;
2500 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2501 
2502 }
2503 
2504 static const struct net_device_ops bcm_enetsw_ops = {
2505 	.ndo_open		= bcm_enetsw_open,
2506 	.ndo_stop		= bcm_enetsw_stop,
2507 	.ndo_start_xmit		= bcm_enet_start_xmit,
2508 	.ndo_change_mtu		= bcm_enet_change_mtu,
2509 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2510 };
2511 
2512 
2513 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2514 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2515 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2516 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2517 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2518 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2519 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2520 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2521 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2522 
2523 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2524 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2525 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2526 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2527 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2528 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2529 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2530 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2531 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2532 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2533 	  ETHSW_MIB_RX_1024_1522 },
2534 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2535 	  ETHSW_MIB_RX_1523_2047 },
2536 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2537 	  ETHSW_MIB_RX_2048_4095 },
2538 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2539 	  ETHSW_MIB_RX_4096_8191 },
2540 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2541 	  ETHSW_MIB_RX_8192_9728 },
2542 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2543 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2544 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2545 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2546 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2547 
2548 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2549 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2550 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2551 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2552 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2553 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2554 
2555 };
2556 
2557 #define BCM_ENETSW_STATS_LEN	\
2558 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2559 
2560 static void bcm_enetsw_get_strings(struct net_device *netdev,
2561 				   u32 stringset, u8 *data)
2562 {
2563 	int i;
2564 
2565 	switch (stringset) {
2566 	case ETH_SS_STATS:
2567 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2568 			memcpy(data + i * ETH_GSTRING_LEN,
2569 			       bcm_enetsw_gstrings_stats[i].stat_string,
2570 			       ETH_GSTRING_LEN);
2571 		}
2572 		break;
2573 	}
2574 }
2575 
2576 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2577 				     int string_set)
2578 {
2579 	switch (string_set) {
2580 	case ETH_SS_STATS:
2581 		return BCM_ENETSW_STATS_LEN;
2582 	default:
2583 		return -EINVAL;
2584 	}
2585 }
2586 
2587 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2588 				   struct ethtool_drvinfo *drvinfo)
2589 {
2590 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2591 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2592 	strncpy(drvinfo->fw_version, "N/A", 32);
2593 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2594 }
2595 
2596 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2597 					 struct ethtool_stats *stats,
2598 					 u64 *data)
2599 {
2600 	struct bcm_enet_priv *priv;
2601 	int i;
2602 
2603 	priv = netdev_priv(netdev);
2604 
2605 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2606 		const struct bcm_enet_stats *s;
2607 		u32 lo, hi;
2608 		char *p;
2609 		int reg;
2610 
2611 		s = &bcm_enetsw_gstrings_stats[i];
2612 
2613 		reg = s->mib_reg;
2614 		if (reg == -1)
2615 			continue;
2616 
2617 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2618 		p = (char *)priv + s->stat_offset;
2619 
2620 		if (s->sizeof_stat == sizeof(u64)) {
2621 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2622 			*(u64 *)p = ((u64)hi << 32 | lo);
2623 		} else {
2624 			*(u32 *)p = lo;
2625 		}
2626 	}
2627 
2628 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2629 		const struct bcm_enet_stats *s;
2630 		char *p;
2631 
2632 		s = &bcm_enetsw_gstrings_stats[i];
2633 
2634 		if (s->mib_reg == -1)
2635 			p = (char *)&netdev->stats + s->stat_offset;
2636 		else
2637 			p = (char *)priv + s->stat_offset;
2638 
2639 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2640 			*(u64 *)p : *(u32 *)p;
2641 	}
2642 }
2643 
2644 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2645 				     struct ethtool_ringparam *ering)
2646 {
2647 	struct bcm_enet_priv *priv;
2648 
2649 	priv = netdev_priv(dev);
2650 
2651 	/* rx/tx ring is actually only limited by memory */
2652 	ering->rx_max_pending = 8192;
2653 	ering->tx_max_pending = 8192;
2654 	ering->rx_mini_max_pending = 0;
2655 	ering->rx_jumbo_max_pending = 0;
2656 	ering->rx_pending = priv->rx_ring_size;
2657 	ering->tx_pending = priv->tx_ring_size;
2658 }
2659 
2660 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2661 				    struct ethtool_ringparam *ering)
2662 {
2663 	struct bcm_enet_priv *priv;
2664 	int was_running;
2665 
2666 	priv = netdev_priv(dev);
2667 
2668 	was_running = 0;
2669 	if (netif_running(dev)) {
2670 		bcm_enetsw_stop(dev);
2671 		was_running = 1;
2672 	}
2673 
2674 	priv->rx_ring_size = ering->rx_pending;
2675 	priv->tx_ring_size = ering->tx_pending;
2676 
2677 	if (was_running) {
2678 		int err;
2679 
2680 		err = bcm_enetsw_open(dev);
2681 		if (err)
2682 			dev_close(dev);
2683 	}
2684 	return 0;
2685 }
2686 
2687 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2688 	.get_strings		= bcm_enetsw_get_strings,
2689 	.get_sset_count		= bcm_enetsw_get_sset_count,
2690 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2691 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2692 	.get_ringparam		= bcm_enetsw_get_ringparam,
2693 	.set_ringparam		= bcm_enetsw_set_ringparam,
2694 };
2695 
2696 /* allocate netdevice, request register memory and register device. */
2697 static int bcm_enetsw_probe(struct platform_device *pdev)
2698 {
2699 	struct bcm_enet_priv *priv;
2700 	struct net_device *dev;
2701 	struct bcm63xx_enetsw_platform_data *pd;
2702 	struct resource *res_mem;
2703 	int ret, irq_rx, irq_tx;
2704 
2705 	/* stop if shared driver failed, assume driver->probe will be
2706 	 * called in the same order we register devices (correct ?)
2707 	 */
2708 	if (!bcm_enet_shared_base[0])
2709 		return -ENODEV;
2710 
2711 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2712 	irq_rx = platform_get_irq(pdev, 0);
2713 	irq_tx = platform_get_irq(pdev, 1);
2714 	if (!res_mem || irq_rx < 0)
2715 		return -ENODEV;
2716 
2717 	ret = 0;
2718 	dev = alloc_etherdev(sizeof(*priv));
2719 	if (!dev)
2720 		return -ENOMEM;
2721 	priv = netdev_priv(dev);
2722 	memset(priv, 0, sizeof(*priv));
2723 
2724 	/* initialize default and fetch platform data */
2725 	priv->enet_is_sw = true;
2726 	priv->irq_rx = irq_rx;
2727 	priv->irq_tx = irq_tx;
2728 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2729 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2730 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2731 
2732 	pd = dev_get_platdata(&pdev->dev);
2733 	if (pd) {
2734 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2735 		memcpy(priv->used_ports, pd->used_ports,
2736 		       sizeof(pd->used_ports));
2737 		priv->num_ports = pd->num_ports;
2738 		priv->dma_has_sram = pd->dma_has_sram;
2739 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2740 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2741 		priv->dma_chan_width = pd->dma_chan_width;
2742 	}
2743 
2744 	ret = compute_hw_mtu(priv, dev->mtu);
2745 	if (ret)
2746 		goto out;
2747 
2748 	if (!request_mem_region(res_mem->start, resource_size(res_mem),
2749 				"bcm63xx_enetsw")) {
2750 		ret = -EBUSY;
2751 		goto out;
2752 	}
2753 
2754 	priv->base = ioremap(res_mem->start, resource_size(res_mem));
2755 	if (priv->base == NULL) {
2756 		ret = -ENOMEM;
2757 		goto out_release_mem;
2758 	}
2759 
2760 	priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2761 	if (IS_ERR(priv->mac_clk)) {
2762 		ret = PTR_ERR(priv->mac_clk);
2763 		goto out_unmap;
2764 	}
2765 	clk_enable(priv->mac_clk);
2766 
2767 	priv->rx_chan = 0;
2768 	priv->tx_chan = 1;
2769 	spin_lock_init(&priv->rx_lock);
2770 
2771 	/* init rx timeout (used for oom) */
2772 	init_timer(&priv->rx_timeout);
2773 	priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2774 	priv->rx_timeout.data = (unsigned long)dev;
2775 
2776 	/* register netdevice */
2777 	dev->netdev_ops = &bcm_enetsw_ops;
2778 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2779 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2780 	SET_NETDEV_DEV(dev, &pdev->dev);
2781 
2782 	spin_lock_init(&priv->enetsw_mdio_lock);
2783 
2784 	ret = register_netdev(dev);
2785 	if (ret)
2786 		goto out_put_clk;
2787 
2788 	netif_carrier_off(dev);
2789 	platform_set_drvdata(pdev, dev);
2790 	priv->pdev = pdev;
2791 	priv->net_dev = dev;
2792 
2793 	return 0;
2794 
2795 out_put_clk:
2796 	clk_put(priv->mac_clk);
2797 
2798 out_unmap:
2799 	iounmap(priv->base);
2800 
2801 out_release_mem:
2802 	release_mem_region(res_mem->start, resource_size(res_mem));
2803 out:
2804 	free_netdev(dev);
2805 	return ret;
2806 }
2807 
2808 
2809 /* exit func, stops hardware and unregisters netdevice */
2810 static int bcm_enetsw_remove(struct platform_device *pdev)
2811 {
2812 	struct bcm_enet_priv *priv;
2813 	struct net_device *dev;
2814 	struct resource *res;
2815 
2816 	/* stop netdevice */
2817 	dev = platform_get_drvdata(pdev);
2818 	priv = netdev_priv(dev);
2819 	unregister_netdev(dev);
2820 
2821 	/* release device resources */
2822 	iounmap(priv->base);
2823 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2824 	release_mem_region(res->start, resource_size(res));
2825 
2826 	free_netdev(dev);
2827 	return 0;
2828 }
2829 
2830 struct platform_driver bcm63xx_enetsw_driver = {
2831 	.probe	= bcm_enetsw_probe,
2832 	.remove	= bcm_enetsw_remove,
2833 	.driver	= {
2834 		.name	= "bcm63xx_enetsw",
2835 		.owner  = THIS_MODULE,
2836 	},
2837 };
2838 
2839 /* reserve & remap memory space shared between all macs */
2840 static int bcm_enet_shared_probe(struct platform_device *pdev)
2841 {
2842 	struct resource *res;
2843 	void __iomem *p[3];
2844 	unsigned int i;
2845 
2846 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2847 
2848 	for (i = 0; i < 3; i++) {
2849 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2850 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2851 		if (IS_ERR(p[i]))
2852 			return PTR_ERR(p[i]);
2853 	}
2854 
2855 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2856 
2857 	return 0;
2858 }
2859 
2860 static int bcm_enet_shared_remove(struct platform_device *pdev)
2861 {
2862 	return 0;
2863 }
2864 
2865 /* this "shared" driver is needed because both macs share a single
2866  * address space
2867  */
2868 struct platform_driver bcm63xx_enet_shared_driver = {
2869 	.probe	= bcm_enet_shared_probe,
2870 	.remove	= bcm_enet_shared_remove,
2871 	.driver	= {
2872 		.name	= "bcm63xx_enet_shared",
2873 		.owner  = THIS_MODULE,
2874 	},
2875 };
2876 
2877 static struct platform_driver * const drivers[] = {
2878 	&bcm63xx_enet_shared_driver,
2879 	&bcm63xx_enet_driver,
2880 	&bcm63xx_enetsw_driver,
2881 };
2882 
2883 /* entry point */
2884 static int __init bcm_enet_init(void)
2885 {
2886 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2887 }
2888 
2889 static void __exit bcm_enet_exit(void)
2890 {
2891 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2892 }
2893 
2894 
2895 module_init(bcm_enet_init);
2896 module_exit(bcm_enet_exit);
2897 
2898 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2899 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2900 MODULE_LICENSE("GPL");
2901