1 /* 2 * Driver for BCM963xx builtin Ethernet mac 3 * 4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/clk.h> 24 #include <linux/etherdevice.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/ethtool.h> 28 #include <linux/crc32.h> 29 #include <linux/err.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/platform_device.h> 32 #include <linux/if_vlan.h> 33 34 #include <bcm63xx_dev_enet.h> 35 #include "bcm63xx_enet.h" 36 37 static char bcm_enet_driver_name[] = "bcm63xx_enet"; 38 static char bcm_enet_driver_version[] = "1.0"; 39 40 static int copybreak __read_mostly = 128; 41 module_param(copybreak, int, 0); 42 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 43 44 /* io registers memory shared between all devices */ 45 static void __iomem *bcm_enet_shared_base[3]; 46 47 /* 48 * io helpers to access mac registers 49 */ 50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) 51 { 52 return bcm_readl(priv->base + off); 53 } 54 55 static inline void enet_writel(struct bcm_enet_priv *priv, 56 u32 val, u32 off) 57 { 58 bcm_writel(val, priv->base + off); 59 } 60 61 /* 62 * io helpers to access switch registers 63 */ 64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off) 65 { 66 return bcm_readl(priv->base + off); 67 } 68 69 static inline void enetsw_writel(struct bcm_enet_priv *priv, 70 u32 val, u32 off) 71 { 72 bcm_writel(val, priv->base + off); 73 } 74 75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off) 76 { 77 return bcm_readw(priv->base + off); 78 } 79 80 static inline void enetsw_writew(struct bcm_enet_priv *priv, 81 u16 val, u32 off) 82 { 83 bcm_writew(val, priv->base + off); 84 } 85 86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off) 87 { 88 return bcm_readb(priv->base + off); 89 } 90 91 static inline void enetsw_writeb(struct bcm_enet_priv *priv, 92 u8 val, u32 off) 93 { 94 bcm_writeb(val, priv->base + off); 95 } 96 97 98 /* io helpers to access shared registers */ 99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) 100 { 101 return bcm_readl(bcm_enet_shared_base[0] + off); 102 } 103 104 static inline void enet_dma_writel(struct bcm_enet_priv *priv, 105 u32 val, u32 off) 106 { 107 bcm_writel(val, bcm_enet_shared_base[0] + off); 108 } 109 110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan) 111 { 112 return bcm_readl(bcm_enet_shared_base[1] + 113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 114 } 115 116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv, 117 u32 val, u32 off, int chan) 118 { 119 bcm_writel(val, bcm_enet_shared_base[1] + 120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width); 121 } 122 123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan) 124 { 125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 126 } 127 128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv, 129 u32 val, u32 off, int chan) 130 { 131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width); 132 } 133 134 /* 135 * write given data into mii register and wait for transfer to end 136 * with timeout (average measured transfer time is 25us) 137 */ 138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) 139 { 140 int limit; 141 142 /* make sure mii interrupt status is cleared */ 143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG); 144 145 enet_writel(priv, data, ENET_MIIDATA_REG); 146 wmb(); 147 148 /* busy wait on mii interrupt bit, with timeout */ 149 limit = 1000; 150 do { 151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) 152 break; 153 udelay(1); 154 } while (limit-- > 0); 155 156 return (limit < 0) ? 1 : 0; 157 } 158 159 /* 160 * MII internal read callback 161 */ 162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, 163 int regnum) 164 { 165 u32 tmp, val; 166 167 tmp = regnum << ENET_MIIDATA_REG_SHIFT; 168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 170 tmp |= ENET_MIIDATA_OP_READ_MASK; 171 172 if (do_mdio_op(priv, tmp)) 173 return -1; 174 175 val = enet_readl(priv, ENET_MIIDATA_REG); 176 val &= 0xffff; 177 return val; 178 } 179 180 /* 181 * MII internal write callback 182 */ 183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, 184 int regnum, u16 value) 185 { 186 u32 tmp; 187 188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; 189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; 190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT; 191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; 192 tmp |= ENET_MIIDATA_OP_WRITE_MASK; 193 194 (void)do_mdio_op(priv, tmp); 195 return 0; 196 } 197 198 /* 199 * MII read callback from phylib 200 */ 201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, 202 int regnum) 203 { 204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum); 205 } 206 207 /* 208 * MII write callback from phylib 209 */ 210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, 211 int regnum, u16 value) 212 { 213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); 214 } 215 216 /* 217 * MII read callback from mii core 218 */ 219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, 220 int regnum) 221 { 222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); 223 } 224 225 /* 226 * MII write callback from mii core 227 */ 228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, 229 int regnum, int value) 230 { 231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); 232 } 233 234 /* 235 * refill rx queue 236 */ 237 static int bcm_enet_refill_rx(struct net_device *dev) 238 { 239 struct bcm_enet_priv *priv; 240 241 priv = netdev_priv(dev); 242 243 while (priv->rx_desc_count < priv->rx_ring_size) { 244 struct bcm_enet_desc *desc; 245 struct sk_buff *skb; 246 dma_addr_t p; 247 int desc_idx; 248 u32 len_stat; 249 250 desc_idx = priv->rx_dirty_desc; 251 desc = &priv->rx_desc_cpu[desc_idx]; 252 253 if (!priv->rx_skb[desc_idx]) { 254 skb = netdev_alloc_skb(dev, priv->rx_skb_size); 255 if (!skb) 256 break; 257 priv->rx_skb[desc_idx] = skb; 258 p = dma_map_single(&priv->pdev->dev, skb->data, 259 priv->rx_skb_size, 260 DMA_FROM_DEVICE); 261 desc->address = p; 262 } 263 264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; 265 len_stat |= DMADESC_OWNER_MASK; 266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { 267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 268 priv->rx_dirty_desc = 0; 269 } else { 270 priv->rx_dirty_desc++; 271 } 272 wmb(); 273 desc->len_stat = len_stat; 274 275 priv->rx_desc_count++; 276 277 /* tell dma engine we allocated one buffer */ 278 if (priv->dma_has_sram) 279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); 280 else 281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan); 282 } 283 284 /* If rx ring is still empty, set a timer to try allocating 285 * again at a later time. */ 286 if (priv->rx_desc_count == 0 && netif_running(dev)) { 287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); 288 priv->rx_timeout.expires = jiffies + HZ; 289 add_timer(&priv->rx_timeout); 290 } 291 292 return 0; 293 } 294 295 /* 296 * timer callback to defer refill rx queue in case we're OOM 297 */ 298 static void bcm_enet_refill_rx_timer(unsigned long data) 299 { 300 struct net_device *dev; 301 struct bcm_enet_priv *priv; 302 303 dev = (struct net_device *)data; 304 priv = netdev_priv(dev); 305 306 spin_lock(&priv->rx_lock); 307 bcm_enet_refill_rx((struct net_device *)data); 308 spin_unlock(&priv->rx_lock); 309 } 310 311 /* 312 * extract packet from rx queue 313 */ 314 static int bcm_enet_receive_queue(struct net_device *dev, int budget) 315 { 316 struct bcm_enet_priv *priv; 317 struct device *kdev; 318 int processed; 319 320 priv = netdev_priv(dev); 321 kdev = &priv->pdev->dev; 322 processed = 0; 323 324 /* don't scan ring further than number of refilled 325 * descriptor */ 326 if (budget > priv->rx_desc_count) 327 budget = priv->rx_desc_count; 328 329 do { 330 struct bcm_enet_desc *desc; 331 struct sk_buff *skb; 332 int desc_idx; 333 u32 len_stat; 334 unsigned int len; 335 336 desc_idx = priv->rx_curr_desc; 337 desc = &priv->rx_desc_cpu[desc_idx]; 338 339 /* make sure we actually read the descriptor status at 340 * each loop */ 341 rmb(); 342 343 len_stat = desc->len_stat; 344 345 /* break if dma ownership belongs to hw */ 346 if (len_stat & DMADESC_OWNER_MASK) 347 break; 348 349 processed++; 350 priv->rx_curr_desc++; 351 if (priv->rx_curr_desc == priv->rx_ring_size) 352 priv->rx_curr_desc = 0; 353 priv->rx_desc_count--; 354 355 /* if the packet does not have start of packet _and_ 356 * end of packet flag set, then just recycle it */ 357 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) != 358 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) { 359 dev->stats.rx_dropped++; 360 continue; 361 } 362 363 /* recycle packet if it's marked as bad */ 364 if (!priv->enet_is_sw && 365 unlikely(len_stat & DMADESC_ERR_MASK)) { 366 dev->stats.rx_errors++; 367 368 if (len_stat & DMADESC_OVSIZE_MASK) 369 dev->stats.rx_length_errors++; 370 if (len_stat & DMADESC_CRC_MASK) 371 dev->stats.rx_crc_errors++; 372 if (len_stat & DMADESC_UNDER_MASK) 373 dev->stats.rx_frame_errors++; 374 if (len_stat & DMADESC_OV_MASK) 375 dev->stats.rx_fifo_errors++; 376 continue; 377 } 378 379 /* valid packet */ 380 skb = priv->rx_skb[desc_idx]; 381 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; 382 /* don't include FCS */ 383 len -= 4; 384 385 if (len < copybreak) { 386 struct sk_buff *nskb; 387 388 nskb = napi_alloc_skb(&priv->napi, len); 389 if (!nskb) { 390 /* forget packet, just rearm desc */ 391 dev->stats.rx_dropped++; 392 continue; 393 } 394 395 dma_sync_single_for_cpu(kdev, desc->address, 396 len, DMA_FROM_DEVICE); 397 memcpy(nskb->data, skb->data, len); 398 dma_sync_single_for_device(kdev, desc->address, 399 len, DMA_FROM_DEVICE); 400 skb = nskb; 401 } else { 402 dma_unmap_single(&priv->pdev->dev, desc->address, 403 priv->rx_skb_size, DMA_FROM_DEVICE); 404 priv->rx_skb[desc_idx] = NULL; 405 } 406 407 skb_put(skb, len); 408 skb->protocol = eth_type_trans(skb, dev); 409 dev->stats.rx_packets++; 410 dev->stats.rx_bytes += len; 411 netif_receive_skb(skb); 412 413 } while (--budget > 0); 414 415 if (processed || !priv->rx_desc_count) { 416 bcm_enet_refill_rx(dev); 417 418 /* kick rx dma */ 419 enet_dmac_writel(priv, priv->dma_chan_en_mask, 420 ENETDMAC_CHANCFG, priv->rx_chan); 421 } 422 423 return processed; 424 } 425 426 427 /* 428 * try to or force reclaim of transmitted buffers 429 */ 430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force) 431 { 432 struct bcm_enet_priv *priv; 433 int released; 434 435 priv = netdev_priv(dev); 436 released = 0; 437 438 while (priv->tx_desc_count < priv->tx_ring_size) { 439 struct bcm_enet_desc *desc; 440 struct sk_buff *skb; 441 442 /* We run in a bh and fight against start_xmit, which 443 * is called with bh disabled */ 444 spin_lock(&priv->tx_lock); 445 446 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; 447 448 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { 449 spin_unlock(&priv->tx_lock); 450 break; 451 } 452 453 /* ensure other field of the descriptor were not read 454 * before we checked ownership */ 455 rmb(); 456 457 skb = priv->tx_skb[priv->tx_dirty_desc]; 458 priv->tx_skb[priv->tx_dirty_desc] = NULL; 459 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, 460 DMA_TO_DEVICE); 461 462 priv->tx_dirty_desc++; 463 if (priv->tx_dirty_desc == priv->tx_ring_size) 464 priv->tx_dirty_desc = 0; 465 priv->tx_desc_count++; 466 467 spin_unlock(&priv->tx_lock); 468 469 if (desc->len_stat & DMADESC_UNDER_MASK) 470 dev->stats.tx_errors++; 471 472 dev_kfree_skb(skb); 473 released++; 474 } 475 476 if (netif_queue_stopped(dev) && released) 477 netif_wake_queue(dev); 478 479 return released; 480 } 481 482 /* 483 * poll func, called by network core 484 */ 485 static int bcm_enet_poll(struct napi_struct *napi, int budget) 486 { 487 struct bcm_enet_priv *priv; 488 struct net_device *dev; 489 int rx_work_done; 490 491 priv = container_of(napi, struct bcm_enet_priv, napi); 492 dev = priv->net_dev; 493 494 /* ack interrupts */ 495 enet_dmac_writel(priv, priv->dma_chan_int_mask, 496 ENETDMAC_IR, priv->rx_chan); 497 enet_dmac_writel(priv, priv->dma_chan_int_mask, 498 ENETDMAC_IR, priv->tx_chan); 499 500 /* reclaim sent skb */ 501 bcm_enet_tx_reclaim(dev, 0); 502 503 spin_lock(&priv->rx_lock); 504 rx_work_done = bcm_enet_receive_queue(dev, budget); 505 spin_unlock(&priv->rx_lock); 506 507 if (rx_work_done >= budget) { 508 /* rx queue is not yet empty/clean */ 509 return rx_work_done; 510 } 511 512 /* no more packet in rx/tx queue, remove device from poll 513 * queue */ 514 napi_complete(napi); 515 516 /* restore rx/tx interrupt */ 517 enet_dmac_writel(priv, priv->dma_chan_int_mask, 518 ENETDMAC_IRMASK, priv->rx_chan); 519 enet_dmac_writel(priv, priv->dma_chan_int_mask, 520 ENETDMAC_IRMASK, priv->tx_chan); 521 522 return rx_work_done; 523 } 524 525 /* 526 * mac interrupt handler 527 */ 528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) 529 { 530 struct net_device *dev; 531 struct bcm_enet_priv *priv; 532 u32 stat; 533 534 dev = dev_id; 535 priv = netdev_priv(dev); 536 537 stat = enet_readl(priv, ENET_IR_REG); 538 if (!(stat & ENET_IR_MIB)) 539 return IRQ_NONE; 540 541 /* clear & mask interrupt */ 542 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 543 enet_writel(priv, 0, ENET_IRMASK_REG); 544 545 /* read mib registers in workqueue */ 546 schedule_work(&priv->mib_update_task); 547 548 return IRQ_HANDLED; 549 } 550 551 /* 552 * rx/tx dma interrupt handler 553 */ 554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) 555 { 556 struct net_device *dev; 557 struct bcm_enet_priv *priv; 558 559 dev = dev_id; 560 priv = netdev_priv(dev); 561 562 /* mask rx/tx interrupts */ 563 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 565 566 napi_schedule(&priv->napi); 567 568 return IRQ_HANDLED; 569 } 570 571 /* 572 * tx request callback 573 */ 574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 575 { 576 struct bcm_enet_priv *priv; 577 struct bcm_enet_desc *desc; 578 u32 len_stat; 579 int ret; 580 581 priv = netdev_priv(dev); 582 583 /* lock against tx reclaim */ 584 spin_lock(&priv->tx_lock); 585 586 /* make sure the tx hw queue is not full, should not happen 587 * since we stop queue before it's the case */ 588 if (unlikely(!priv->tx_desc_count)) { 589 netif_stop_queue(dev); 590 dev_err(&priv->pdev->dev, "xmit called with no tx desc " 591 "available?\n"); 592 ret = NETDEV_TX_BUSY; 593 goto out_unlock; 594 } 595 596 /* pad small packets sent on a switch device */ 597 if (priv->enet_is_sw && skb->len < 64) { 598 int needed = 64 - skb->len; 599 char *data; 600 601 if (unlikely(skb_tailroom(skb) < needed)) { 602 struct sk_buff *nskb; 603 604 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC); 605 if (!nskb) { 606 ret = NETDEV_TX_BUSY; 607 goto out_unlock; 608 } 609 dev_kfree_skb(skb); 610 skb = nskb; 611 } 612 data = skb_put(skb, needed); 613 memset(data, 0, needed); 614 } 615 616 /* point to the next available desc */ 617 desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; 618 priv->tx_skb[priv->tx_curr_desc] = skb; 619 620 /* fill descriptor */ 621 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, 622 DMA_TO_DEVICE); 623 624 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; 625 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) | 626 DMADESC_APPEND_CRC | 627 DMADESC_OWNER_MASK; 628 629 priv->tx_curr_desc++; 630 if (priv->tx_curr_desc == priv->tx_ring_size) { 631 priv->tx_curr_desc = 0; 632 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift); 633 } 634 priv->tx_desc_count--; 635 636 /* dma might be already polling, make sure we update desc 637 * fields in correct order */ 638 wmb(); 639 desc->len_stat = len_stat; 640 wmb(); 641 642 /* kick tx dma */ 643 enet_dmac_writel(priv, priv->dma_chan_en_mask, 644 ENETDMAC_CHANCFG, priv->tx_chan); 645 646 /* stop queue if no more desc available */ 647 if (!priv->tx_desc_count) 648 netif_stop_queue(dev); 649 650 dev->stats.tx_bytes += skb->len; 651 dev->stats.tx_packets++; 652 ret = NETDEV_TX_OK; 653 654 out_unlock: 655 spin_unlock(&priv->tx_lock); 656 return ret; 657 } 658 659 /* 660 * Change the interface's mac address. 661 */ 662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p) 663 { 664 struct bcm_enet_priv *priv; 665 struct sockaddr *addr = p; 666 u32 val; 667 668 priv = netdev_priv(dev); 669 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 670 671 /* use perfect match register 0 to store my mac address */ 672 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | 673 (dev->dev_addr[4] << 8) | dev->dev_addr[5]; 674 enet_writel(priv, val, ENET_PML_REG(0)); 675 676 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); 677 val |= ENET_PMH_DATAVALID_MASK; 678 enet_writel(priv, val, ENET_PMH_REG(0)); 679 680 return 0; 681 } 682 683 /* 684 * Change rx mode (promiscuous/allmulti) and update multicast list 685 */ 686 static void bcm_enet_set_multicast_list(struct net_device *dev) 687 { 688 struct bcm_enet_priv *priv; 689 struct netdev_hw_addr *ha; 690 u32 val; 691 int i; 692 693 priv = netdev_priv(dev); 694 695 val = enet_readl(priv, ENET_RXCFG_REG); 696 697 if (dev->flags & IFF_PROMISC) 698 val |= ENET_RXCFG_PROMISC_MASK; 699 else 700 val &= ~ENET_RXCFG_PROMISC_MASK; 701 702 /* only 3 perfect match registers left, first one is used for 703 * own mac address */ 704 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3) 705 val |= ENET_RXCFG_ALLMCAST_MASK; 706 else 707 val &= ~ENET_RXCFG_ALLMCAST_MASK; 708 709 /* no need to set perfect match registers if we catch all 710 * multicast */ 711 if (val & ENET_RXCFG_ALLMCAST_MASK) { 712 enet_writel(priv, val, ENET_RXCFG_REG); 713 return; 714 } 715 716 i = 0; 717 netdev_for_each_mc_addr(ha, dev) { 718 u8 *dmi_addr; 719 u32 tmp; 720 721 if (i == 3) 722 break; 723 /* update perfect match registers */ 724 dmi_addr = ha->addr; 725 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | 726 (dmi_addr[4] << 8) | dmi_addr[5]; 727 enet_writel(priv, tmp, ENET_PML_REG(i + 1)); 728 729 tmp = (dmi_addr[0] << 8 | dmi_addr[1]); 730 tmp |= ENET_PMH_DATAVALID_MASK; 731 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1)); 732 } 733 734 for (; i < 3; i++) { 735 enet_writel(priv, 0, ENET_PML_REG(i + 1)); 736 enet_writel(priv, 0, ENET_PMH_REG(i + 1)); 737 } 738 739 enet_writel(priv, val, ENET_RXCFG_REG); 740 } 741 742 /* 743 * set mac duplex parameters 744 */ 745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) 746 { 747 u32 val; 748 749 val = enet_readl(priv, ENET_TXCTL_REG); 750 if (fullduplex) 751 val |= ENET_TXCTL_FD_MASK; 752 else 753 val &= ~ENET_TXCTL_FD_MASK; 754 enet_writel(priv, val, ENET_TXCTL_REG); 755 } 756 757 /* 758 * set mac flow control parameters 759 */ 760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) 761 { 762 u32 val; 763 764 /* rx flow control (pause frame handling) */ 765 val = enet_readl(priv, ENET_RXCFG_REG); 766 if (rx_en) 767 val |= ENET_RXCFG_ENFLOW_MASK; 768 else 769 val &= ~ENET_RXCFG_ENFLOW_MASK; 770 enet_writel(priv, val, ENET_RXCFG_REG); 771 772 if (!priv->dma_has_sram) 773 return; 774 775 /* tx flow control (pause frame generation) */ 776 val = enet_dma_readl(priv, ENETDMA_CFG_REG); 777 if (tx_en) 778 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 779 else 780 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); 781 enet_dma_writel(priv, val, ENETDMA_CFG_REG); 782 } 783 784 /* 785 * link changed callback (from phylib) 786 */ 787 static void bcm_enet_adjust_phy_link(struct net_device *dev) 788 { 789 struct bcm_enet_priv *priv; 790 struct phy_device *phydev; 791 int status_changed; 792 793 priv = netdev_priv(dev); 794 phydev = priv->phydev; 795 status_changed = 0; 796 797 if (priv->old_link != phydev->link) { 798 status_changed = 1; 799 priv->old_link = phydev->link; 800 } 801 802 /* reflect duplex change in mac configuration */ 803 if (phydev->link && phydev->duplex != priv->old_duplex) { 804 bcm_enet_set_duplex(priv, 805 (phydev->duplex == DUPLEX_FULL) ? 1 : 0); 806 status_changed = 1; 807 priv->old_duplex = phydev->duplex; 808 } 809 810 /* enable flow control if remote advertise it (trust phylib to 811 * check that duplex is full */ 812 if (phydev->link && phydev->pause != priv->old_pause) { 813 int rx_pause_en, tx_pause_en; 814 815 if (phydev->pause) { 816 /* pause was advertised by lpa and us */ 817 rx_pause_en = 1; 818 tx_pause_en = 1; 819 } else if (!priv->pause_auto) { 820 /* pause setting overrided by user */ 821 rx_pause_en = priv->pause_rx; 822 tx_pause_en = priv->pause_tx; 823 } else { 824 rx_pause_en = 0; 825 tx_pause_en = 0; 826 } 827 828 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); 829 status_changed = 1; 830 priv->old_pause = phydev->pause; 831 } 832 833 if (status_changed) { 834 pr_info("%s: link %s", dev->name, phydev->link ? 835 "UP" : "DOWN"); 836 if (phydev->link) 837 pr_cont(" - %d/%s - flow control %s", phydev->speed, 838 DUPLEX_FULL == phydev->duplex ? "full" : "half", 839 phydev->pause == 1 ? "rx&tx" : "off"); 840 841 pr_cont("\n"); 842 } 843 } 844 845 /* 846 * link changed callback (if phylib is not used) 847 */ 848 static void bcm_enet_adjust_link(struct net_device *dev) 849 { 850 struct bcm_enet_priv *priv; 851 852 priv = netdev_priv(dev); 853 bcm_enet_set_duplex(priv, priv->force_duplex_full); 854 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); 855 netif_carrier_on(dev); 856 857 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", 858 dev->name, 859 priv->force_speed_100 ? 100 : 10, 860 priv->force_duplex_full ? "full" : "half", 861 priv->pause_rx ? "rx" : "off", 862 priv->pause_tx ? "tx" : "off"); 863 } 864 865 /* 866 * open callback, allocate dma rings & buffers and start rx operation 867 */ 868 static int bcm_enet_open(struct net_device *dev) 869 { 870 struct bcm_enet_priv *priv; 871 struct sockaddr addr; 872 struct device *kdev; 873 struct phy_device *phydev; 874 int i, ret; 875 unsigned int size; 876 char phy_id[MII_BUS_ID_SIZE + 3]; 877 void *p; 878 u32 val; 879 880 priv = netdev_priv(dev); 881 kdev = &priv->pdev->dev; 882 883 if (priv->has_phy) { 884 /* connect to PHY */ 885 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, 886 priv->mii_bus->id, priv->phy_id); 887 888 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link, 889 PHY_INTERFACE_MODE_MII); 890 891 if (IS_ERR(phydev)) { 892 dev_err(kdev, "could not attach to PHY\n"); 893 return PTR_ERR(phydev); 894 } 895 896 /* mask with MAC supported features */ 897 phydev->supported &= (SUPPORTED_10baseT_Half | 898 SUPPORTED_10baseT_Full | 899 SUPPORTED_100baseT_Half | 900 SUPPORTED_100baseT_Full | 901 SUPPORTED_Autoneg | 902 SUPPORTED_Pause | 903 SUPPORTED_MII); 904 phydev->advertising = phydev->supported; 905 906 if (priv->pause_auto && priv->pause_rx && priv->pause_tx) 907 phydev->advertising |= SUPPORTED_Pause; 908 else 909 phydev->advertising &= ~SUPPORTED_Pause; 910 911 phy_attached_info(phydev); 912 913 priv->old_link = 0; 914 priv->old_duplex = -1; 915 priv->old_pause = -1; 916 priv->phydev = phydev; 917 } 918 919 /* mask all interrupts and request them */ 920 enet_writel(priv, 0, ENET_IRMASK_REG); 921 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 922 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 923 924 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); 925 if (ret) 926 goto out_phy_disconnect; 927 928 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0, 929 dev->name, dev); 930 if (ret) 931 goto out_freeirq; 932 933 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 934 0, dev->name, dev); 935 if (ret) 936 goto out_freeirq_rx; 937 938 /* initialize perfect match registers */ 939 for (i = 0; i < 4; i++) { 940 enet_writel(priv, 0, ENET_PML_REG(i)); 941 enet_writel(priv, 0, ENET_PMH_REG(i)); 942 } 943 944 /* write device mac address */ 945 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); 946 bcm_enet_set_mac_address(dev, &addr); 947 948 /* allocate rx dma ring */ 949 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 950 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 951 if (!p) { 952 ret = -ENOMEM; 953 goto out_freeirq_tx; 954 } 955 956 priv->rx_desc_alloc_size = size; 957 priv->rx_desc_cpu = p; 958 959 /* allocate tx dma ring */ 960 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 961 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 962 if (!p) { 963 ret = -ENOMEM; 964 goto out_free_rx_ring; 965 } 966 967 priv->tx_desc_alloc_size = size; 968 priv->tx_desc_cpu = p; 969 970 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *), 971 GFP_KERNEL); 972 if (!priv->tx_skb) { 973 ret = -ENOMEM; 974 goto out_free_tx_ring; 975 } 976 977 priv->tx_desc_count = priv->tx_ring_size; 978 priv->tx_dirty_desc = 0; 979 priv->tx_curr_desc = 0; 980 spin_lock_init(&priv->tx_lock); 981 982 /* init & fill rx ring with skbs */ 983 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *), 984 GFP_KERNEL); 985 if (!priv->rx_skb) { 986 ret = -ENOMEM; 987 goto out_free_tx_skb; 988 } 989 990 priv->rx_desc_count = 0; 991 priv->rx_dirty_desc = 0; 992 priv->rx_curr_desc = 0; 993 994 /* initialize flow control buffer allocation */ 995 if (priv->dma_has_sram) 996 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 997 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 998 else 999 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 1000 ENETDMAC_BUFALLOC, priv->rx_chan); 1001 1002 if (bcm_enet_refill_rx(dev)) { 1003 dev_err(kdev, "cannot allocate rx skb queue\n"); 1004 ret = -ENOMEM; 1005 goto out; 1006 } 1007 1008 /* write rx & tx ring addresses */ 1009 if (priv->dma_has_sram) { 1010 enet_dmas_writel(priv, priv->rx_desc_dma, 1011 ENETDMAS_RSTART_REG, priv->rx_chan); 1012 enet_dmas_writel(priv, priv->tx_desc_dma, 1013 ENETDMAS_RSTART_REG, priv->tx_chan); 1014 } else { 1015 enet_dmac_writel(priv, priv->rx_desc_dma, 1016 ENETDMAC_RSTART, priv->rx_chan); 1017 enet_dmac_writel(priv, priv->tx_desc_dma, 1018 ENETDMAC_RSTART, priv->tx_chan); 1019 } 1020 1021 /* clear remaining state ram for rx & tx channel */ 1022 if (priv->dma_has_sram) { 1023 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 1024 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 1025 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 1026 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 1027 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 1028 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 1029 } else { 1030 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan); 1031 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan); 1032 } 1033 1034 /* set max rx/tx length */ 1035 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); 1036 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); 1037 1038 /* set dma maximum burst len */ 1039 enet_dmac_writel(priv, priv->dma_maxburst, 1040 ENETDMAC_MAXBURST, priv->rx_chan); 1041 enet_dmac_writel(priv, priv->dma_maxburst, 1042 ENETDMAC_MAXBURST, priv->tx_chan); 1043 1044 /* set correct transmit fifo watermark */ 1045 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); 1046 1047 /* set flow control low/high threshold to 1/3 / 2/3 */ 1048 if (priv->dma_has_sram) { 1049 val = priv->rx_ring_size / 3; 1050 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 1051 val = (priv->rx_ring_size * 2) / 3; 1052 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 1053 } else { 1054 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan); 1055 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan); 1056 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan); 1057 } 1058 1059 /* all set, enable mac and interrupts, start dma engine and 1060 * kick rx dma channel */ 1061 wmb(); 1062 val = enet_readl(priv, ENET_CTL_REG); 1063 val |= ENET_CTL_ENABLE_MASK; 1064 enet_writel(priv, val, ENET_CTL_REG); 1065 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 1066 enet_dmac_writel(priv, priv->dma_chan_en_mask, 1067 ENETDMAC_CHANCFG, priv->rx_chan); 1068 1069 /* watch "mib counters about to overflow" interrupt */ 1070 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); 1071 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1072 1073 /* watch "packet transferred" interrupt in rx and tx */ 1074 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1075 ENETDMAC_IR, priv->rx_chan); 1076 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1077 ENETDMAC_IR, priv->tx_chan); 1078 1079 /* make sure we enable napi before rx interrupt */ 1080 napi_enable(&priv->napi); 1081 1082 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1083 ENETDMAC_IRMASK, priv->rx_chan); 1084 enet_dmac_writel(priv, priv->dma_chan_int_mask, 1085 ENETDMAC_IRMASK, priv->tx_chan); 1086 1087 if (priv->has_phy) 1088 phy_start(priv->phydev); 1089 else 1090 bcm_enet_adjust_link(dev); 1091 1092 netif_start_queue(dev); 1093 return 0; 1094 1095 out: 1096 for (i = 0; i < priv->rx_ring_size; i++) { 1097 struct bcm_enet_desc *desc; 1098 1099 if (!priv->rx_skb[i]) 1100 continue; 1101 1102 desc = &priv->rx_desc_cpu[i]; 1103 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1104 DMA_FROM_DEVICE); 1105 kfree_skb(priv->rx_skb[i]); 1106 } 1107 kfree(priv->rx_skb); 1108 1109 out_free_tx_skb: 1110 kfree(priv->tx_skb); 1111 1112 out_free_tx_ring: 1113 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1114 priv->tx_desc_cpu, priv->tx_desc_dma); 1115 1116 out_free_rx_ring: 1117 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1118 priv->rx_desc_cpu, priv->rx_desc_dma); 1119 1120 out_freeirq_tx: 1121 free_irq(priv->irq_tx, dev); 1122 1123 out_freeirq_rx: 1124 free_irq(priv->irq_rx, dev); 1125 1126 out_freeirq: 1127 free_irq(dev->irq, dev); 1128 1129 out_phy_disconnect: 1130 phy_disconnect(priv->phydev); 1131 1132 return ret; 1133 } 1134 1135 /* 1136 * disable mac 1137 */ 1138 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) 1139 { 1140 int limit; 1141 u32 val; 1142 1143 val = enet_readl(priv, ENET_CTL_REG); 1144 val |= ENET_CTL_DISABLE_MASK; 1145 enet_writel(priv, val, ENET_CTL_REG); 1146 1147 limit = 1000; 1148 do { 1149 u32 val; 1150 1151 val = enet_readl(priv, ENET_CTL_REG); 1152 if (!(val & ENET_CTL_DISABLE_MASK)) 1153 break; 1154 udelay(1); 1155 } while (limit--); 1156 } 1157 1158 /* 1159 * disable dma in given channel 1160 */ 1161 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) 1162 { 1163 int limit; 1164 1165 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan); 1166 1167 limit = 1000; 1168 do { 1169 u32 val; 1170 1171 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan); 1172 if (!(val & ENETDMAC_CHANCFG_EN_MASK)) 1173 break; 1174 udelay(1); 1175 } while (limit--); 1176 } 1177 1178 /* 1179 * stop callback 1180 */ 1181 static int bcm_enet_stop(struct net_device *dev) 1182 { 1183 struct bcm_enet_priv *priv; 1184 struct device *kdev; 1185 int i; 1186 1187 priv = netdev_priv(dev); 1188 kdev = &priv->pdev->dev; 1189 1190 netif_stop_queue(dev); 1191 napi_disable(&priv->napi); 1192 if (priv->has_phy) 1193 phy_stop(priv->phydev); 1194 del_timer_sync(&priv->rx_timeout); 1195 1196 /* mask all interrupts */ 1197 enet_writel(priv, 0, ENET_IRMASK_REG); 1198 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 1199 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 1200 1201 /* make sure no mib update is scheduled */ 1202 cancel_work_sync(&priv->mib_update_task); 1203 1204 /* disable dma & mac */ 1205 bcm_enet_disable_dma(priv, priv->tx_chan); 1206 bcm_enet_disable_dma(priv, priv->rx_chan); 1207 bcm_enet_disable_mac(priv); 1208 1209 /* force reclaim of all tx buffers */ 1210 bcm_enet_tx_reclaim(dev, 1); 1211 1212 /* free the rx skb ring */ 1213 for (i = 0; i < priv->rx_ring_size; i++) { 1214 struct bcm_enet_desc *desc; 1215 1216 if (!priv->rx_skb[i]) 1217 continue; 1218 1219 desc = &priv->rx_desc_cpu[i]; 1220 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 1221 DMA_FROM_DEVICE); 1222 kfree_skb(priv->rx_skb[i]); 1223 } 1224 1225 /* free remaining allocated memory */ 1226 kfree(priv->rx_skb); 1227 kfree(priv->tx_skb); 1228 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 1229 priv->rx_desc_cpu, priv->rx_desc_dma); 1230 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 1231 priv->tx_desc_cpu, priv->tx_desc_dma); 1232 free_irq(priv->irq_tx, dev); 1233 free_irq(priv->irq_rx, dev); 1234 free_irq(dev->irq, dev); 1235 1236 /* release phy */ 1237 if (priv->has_phy) { 1238 phy_disconnect(priv->phydev); 1239 priv->phydev = NULL; 1240 } 1241 1242 return 0; 1243 } 1244 1245 /* 1246 * ethtool callbacks 1247 */ 1248 struct bcm_enet_stats { 1249 char stat_string[ETH_GSTRING_LEN]; 1250 int sizeof_stat; 1251 int stat_offset; 1252 int mib_reg; 1253 }; 1254 1255 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ 1256 offsetof(struct bcm_enet_priv, m) 1257 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \ 1258 offsetof(struct net_device_stats, m) 1259 1260 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { 1261 { "rx_packets", DEV_STAT(rx_packets), -1 }, 1262 { "tx_packets", DEV_STAT(tx_packets), -1 }, 1263 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 1264 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 1265 { "rx_errors", DEV_STAT(rx_errors), -1 }, 1266 { "tx_errors", DEV_STAT(tx_errors), -1 }, 1267 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 1268 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 1269 1270 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, 1271 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, 1272 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, 1273 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, 1274 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, 1275 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, 1276 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, 1277 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, 1278 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, 1279 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, 1280 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, 1281 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, 1282 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, 1283 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, 1284 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, 1285 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, 1286 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, 1287 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, 1288 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, 1289 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, 1290 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, 1291 1292 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, 1293 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, 1294 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, 1295 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, 1296 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, 1297 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, 1298 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, 1299 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, 1300 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, 1301 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, 1302 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, 1303 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, 1304 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, 1305 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, 1306 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, 1307 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, 1308 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, 1309 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, 1310 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, 1311 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, 1312 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, 1313 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, 1314 1315 }; 1316 1317 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats) 1318 1319 static const u32 unused_mib_regs[] = { 1320 ETH_MIB_TX_ALL_OCTETS, 1321 ETH_MIB_TX_ALL_PKTS, 1322 ETH_MIB_RX_ALL_OCTETS, 1323 ETH_MIB_RX_ALL_PKTS, 1324 }; 1325 1326 1327 static void bcm_enet_get_drvinfo(struct net_device *netdev, 1328 struct ethtool_drvinfo *drvinfo) 1329 { 1330 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver)); 1331 strlcpy(drvinfo->version, bcm_enet_driver_version, 1332 sizeof(drvinfo->version)); 1333 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 1334 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info)); 1335 } 1336 1337 static int bcm_enet_get_sset_count(struct net_device *netdev, 1338 int string_set) 1339 { 1340 switch (string_set) { 1341 case ETH_SS_STATS: 1342 return BCM_ENET_STATS_LEN; 1343 default: 1344 return -EINVAL; 1345 } 1346 } 1347 1348 static void bcm_enet_get_strings(struct net_device *netdev, 1349 u32 stringset, u8 *data) 1350 { 1351 int i; 1352 1353 switch (stringset) { 1354 case ETH_SS_STATS: 1355 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1356 memcpy(data + i * ETH_GSTRING_LEN, 1357 bcm_enet_gstrings_stats[i].stat_string, 1358 ETH_GSTRING_LEN); 1359 } 1360 break; 1361 } 1362 } 1363 1364 static void update_mib_counters(struct bcm_enet_priv *priv) 1365 { 1366 int i; 1367 1368 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1369 const struct bcm_enet_stats *s; 1370 u32 val; 1371 char *p; 1372 1373 s = &bcm_enet_gstrings_stats[i]; 1374 if (s->mib_reg == -1) 1375 continue; 1376 1377 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); 1378 p = (char *)priv + s->stat_offset; 1379 1380 if (s->sizeof_stat == sizeof(u64)) 1381 *(u64 *)p += val; 1382 else 1383 *(u32 *)p += val; 1384 } 1385 1386 /* also empty unused mib counters to make sure mib counter 1387 * overflow interrupt is cleared */ 1388 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) 1389 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); 1390 } 1391 1392 static void bcm_enet_update_mib_counters_defer(struct work_struct *t) 1393 { 1394 struct bcm_enet_priv *priv; 1395 1396 priv = container_of(t, struct bcm_enet_priv, mib_update_task); 1397 mutex_lock(&priv->mib_update_lock); 1398 update_mib_counters(priv); 1399 mutex_unlock(&priv->mib_update_lock); 1400 1401 /* reenable mib interrupt */ 1402 if (netif_running(priv->net_dev)) 1403 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); 1404 } 1405 1406 static void bcm_enet_get_ethtool_stats(struct net_device *netdev, 1407 struct ethtool_stats *stats, 1408 u64 *data) 1409 { 1410 struct bcm_enet_priv *priv; 1411 int i; 1412 1413 priv = netdev_priv(netdev); 1414 1415 mutex_lock(&priv->mib_update_lock); 1416 update_mib_counters(priv); 1417 1418 for (i = 0; i < BCM_ENET_STATS_LEN; i++) { 1419 const struct bcm_enet_stats *s; 1420 char *p; 1421 1422 s = &bcm_enet_gstrings_stats[i]; 1423 if (s->mib_reg == -1) 1424 p = (char *)&netdev->stats; 1425 else 1426 p = (char *)priv; 1427 p += s->stat_offset; 1428 data[i] = (s->sizeof_stat == sizeof(u64)) ? 1429 *(u64 *)p : *(u32 *)p; 1430 } 1431 mutex_unlock(&priv->mib_update_lock); 1432 } 1433 1434 static int bcm_enet_nway_reset(struct net_device *dev) 1435 { 1436 struct bcm_enet_priv *priv; 1437 1438 priv = netdev_priv(dev); 1439 if (priv->has_phy) { 1440 if (!priv->phydev) 1441 return -ENODEV; 1442 return genphy_restart_aneg(priv->phydev); 1443 } 1444 1445 return -EOPNOTSUPP; 1446 } 1447 1448 static int bcm_enet_get_settings(struct net_device *dev, 1449 struct ethtool_cmd *cmd) 1450 { 1451 struct bcm_enet_priv *priv; 1452 1453 priv = netdev_priv(dev); 1454 1455 cmd->maxrxpkt = 0; 1456 cmd->maxtxpkt = 0; 1457 1458 if (priv->has_phy) { 1459 if (!priv->phydev) 1460 return -ENODEV; 1461 return phy_ethtool_gset(priv->phydev, cmd); 1462 } else { 1463 cmd->autoneg = 0; 1464 ethtool_cmd_speed_set(cmd, ((priv->force_speed_100) 1465 ? SPEED_100 : SPEED_10)); 1466 cmd->duplex = (priv->force_duplex_full) ? 1467 DUPLEX_FULL : DUPLEX_HALF; 1468 cmd->supported = ADVERTISED_10baseT_Half | 1469 ADVERTISED_10baseT_Full | 1470 ADVERTISED_100baseT_Half | 1471 ADVERTISED_100baseT_Full; 1472 cmd->advertising = 0; 1473 cmd->port = PORT_MII; 1474 cmd->transceiver = XCVR_EXTERNAL; 1475 } 1476 return 0; 1477 } 1478 1479 static int bcm_enet_set_settings(struct net_device *dev, 1480 struct ethtool_cmd *cmd) 1481 { 1482 struct bcm_enet_priv *priv; 1483 1484 priv = netdev_priv(dev); 1485 if (priv->has_phy) { 1486 if (!priv->phydev) 1487 return -ENODEV; 1488 return phy_ethtool_sset(priv->phydev, cmd); 1489 } else { 1490 1491 if (cmd->autoneg || 1492 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || 1493 cmd->port != PORT_MII) 1494 return -EINVAL; 1495 1496 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0; 1497 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0; 1498 1499 if (netif_running(dev)) 1500 bcm_enet_adjust_link(dev); 1501 return 0; 1502 } 1503 } 1504 1505 static void bcm_enet_get_ringparam(struct net_device *dev, 1506 struct ethtool_ringparam *ering) 1507 { 1508 struct bcm_enet_priv *priv; 1509 1510 priv = netdev_priv(dev); 1511 1512 /* rx/tx ring is actually only limited by memory */ 1513 ering->rx_max_pending = 8192; 1514 ering->tx_max_pending = 8192; 1515 ering->rx_pending = priv->rx_ring_size; 1516 ering->tx_pending = priv->tx_ring_size; 1517 } 1518 1519 static int bcm_enet_set_ringparam(struct net_device *dev, 1520 struct ethtool_ringparam *ering) 1521 { 1522 struct bcm_enet_priv *priv; 1523 int was_running; 1524 1525 priv = netdev_priv(dev); 1526 1527 was_running = 0; 1528 if (netif_running(dev)) { 1529 bcm_enet_stop(dev); 1530 was_running = 1; 1531 } 1532 1533 priv->rx_ring_size = ering->rx_pending; 1534 priv->tx_ring_size = ering->tx_pending; 1535 1536 if (was_running) { 1537 int err; 1538 1539 err = bcm_enet_open(dev); 1540 if (err) 1541 dev_close(dev); 1542 else 1543 bcm_enet_set_multicast_list(dev); 1544 } 1545 return 0; 1546 } 1547 1548 static void bcm_enet_get_pauseparam(struct net_device *dev, 1549 struct ethtool_pauseparam *ecmd) 1550 { 1551 struct bcm_enet_priv *priv; 1552 1553 priv = netdev_priv(dev); 1554 ecmd->autoneg = priv->pause_auto; 1555 ecmd->rx_pause = priv->pause_rx; 1556 ecmd->tx_pause = priv->pause_tx; 1557 } 1558 1559 static int bcm_enet_set_pauseparam(struct net_device *dev, 1560 struct ethtool_pauseparam *ecmd) 1561 { 1562 struct bcm_enet_priv *priv; 1563 1564 priv = netdev_priv(dev); 1565 1566 if (priv->has_phy) { 1567 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { 1568 /* asymetric pause mode not supported, 1569 * actually possible but integrated PHY has RO 1570 * asym_pause bit */ 1571 return -EINVAL; 1572 } 1573 } else { 1574 /* no pause autoneg on direct mii connection */ 1575 if (ecmd->autoneg) 1576 return -EINVAL; 1577 } 1578 1579 priv->pause_auto = ecmd->autoneg; 1580 priv->pause_rx = ecmd->rx_pause; 1581 priv->pause_tx = ecmd->tx_pause; 1582 1583 return 0; 1584 } 1585 1586 static const struct ethtool_ops bcm_enet_ethtool_ops = { 1587 .get_strings = bcm_enet_get_strings, 1588 .get_sset_count = bcm_enet_get_sset_count, 1589 .get_ethtool_stats = bcm_enet_get_ethtool_stats, 1590 .nway_reset = bcm_enet_nway_reset, 1591 .get_settings = bcm_enet_get_settings, 1592 .set_settings = bcm_enet_set_settings, 1593 .get_drvinfo = bcm_enet_get_drvinfo, 1594 .get_link = ethtool_op_get_link, 1595 .get_ringparam = bcm_enet_get_ringparam, 1596 .set_ringparam = bcm_enet_set_ringparam, 1597 .get_pauseparam = bcm_enet_get_pauseparam, 1598 .set_pauseparam = bcm_enet_set_pauseparam, 1599 }; 1600 1601 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1602 { 1603 struct bcm_enet_priv *priv; 1604 1605 priv = netdev_priv(dev); 1606 if (priv->has_phy) { 1607 if (!priv->phydev) 1608 return -ENODEV; 1609 return phy_mii_ioctl(priv->phydev, rq, cmd); 1610 } else { 1611 struct mii_if_info mii; 1612 1613 mii.dev = dev; 1614 mii.mdio_read = bcm_enet_mdio_read_mii; 1615 mii.mdio_write = bcm_enet_mdio_write_mii; 1616 mii.phy_id = 0; 1617 mii.phy_id_mask = 0x3f; 1618 mii.reg_num_mask = 0x1f; 1619 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 1620 } 1621 } 1622 1623 /* 1624 * calculate actual hardware mtu 1625 */ 1626 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu) 1627 { 1628 int actual_mtu; 1629 1630 actual_mtu = mtu; 1631 1632 /* add ethernet header + vlan tag size */ 1633 actual_mtu += VLAN_ETH_HLEN; 1634 1635 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU) 1636 return -EINVAL; 1637 1638 /* 1639 * setup maximum size before we get overflow mark in 1640 * descriptor, note that this will not prevent reception of 1641 * big frames, they will be split into multiple buffers 1642 * anyway 1643 */ 1644 priv->hw_mtu = actual_mtu; 1645 1646 /* 1647 * align rx buffer size to dma burst len, account FCS since 1648 * it's appended 1649 */ 1650 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, 1651 priv->dma_maxburst * 4); 1652 return 0; 1653 } 1654 1655 /* 1656 * adjust mtu, can't be called while device is running 1657 */ 1658 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) 1659 { 1660 int ret; 1661 1662 if (netif_running(dev)) 1663 return -EBUSY; 1664 1665 ret = compute_hw_mtu(netdev_priv(dev), new_mtu); 1666 if (ret) 1667 return ret; 1668 dev->mtu = new_mtu; 1669 return 0; 1670 } 1671 1672 /* 1673 * preinit hardware to allow mii operation while device is down 1674 */ 1675 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) 1676 { 1677 u32 val; 1678 int limit; 1679 1680 /* make sure mac is disabled */ 1681 bcm_enet_disable_mac(priv); 1682 1683 /* soft reset mac */ 1684 val = ENET_CTL_SRESET_MASK; 1685 enet_writel(priv, val, ENET_CTL_REG); 1686 wmb(); 1687 1688 limit = 1000; 1689 do { 1690 val = enet_readl(priv, ENET_CTL_REG); 1691 if (!(val & ENET_CTL_SRESET_MASK)) 1692 break; 1693 udelay(1); 1694 } while (limit--); 1695 1696 /* select correct mii interface */ 1697 val = enet_readl(priv, ENET_CTL_REG); 1698 if (priv->use_external_mii) 1699 val |= ENET_CTL_EPHYSEL_MASK; 1700 else 1701 val &= ~ENET_CTL_EPHYSEL_MASK; 1702 enet_writel(priv, val, ENET_CTL_REG); 1703 1704 /* turn on mdc clock */ 1705 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | 1706 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); 1707 1708 /* set mib counters to self-clear when read */ 1709 val = enet_readl(priv, ENET_MIBCTL_REG); 1710 val |= ENET_MIBCTL_RDCLEAR_MASK; 1711 enet_writel(priv, val, ENET_MIBCTL_REG); 1712 } 1713 1714 static const struct net_device_ops bcm_enet_ops = { 1715 .ndo_open = bcm_enet_open, 1716 .ndo_stop = bcm_enet_stop, 1717 .ndo_start_xmit = bcm_enet_start_xmit, 1718 .ndo_set_mac_address = bcm_enet_set_mac_address, 1719 .ndo_set_rx_mode = bcm_enet_set_multicast_list, 1720 .ndo_do_ioctl = bcm_enet_ioctl, 1721 .ndo_change_mtu = bcm_enet_change_mtu, 1722 }; 1723 1724 /* 1725 * allocate netdevice, request register memory and register device. 1726 */ 1727 static int bcm_enet_probe(struct platform_device *pdev) 1728 { 1729 struct bcm_enet_priv *priv; 1730 struct net_device *dev; 1731 struct bcm63xx_enet_platform_data *pd; 1732 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx; 1733 struct mii_bus *bus; 1734 const char *clk_name; 1735 int i, ret; 1736 1737 /* stop if shared driver failed, assume driver->probe will be 1738 * called in the same order we register devices (correct ?) */ 1739 if (!bcm_enet_shared_base[0]) 1740 return -ENODEV; 1741 1742 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1743 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); 1744 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); 1745 if (!res_irq || !res_irq_rx || !res_irq_tx) 1746 return -ENODEV; 1747 1748 ret = 0; 1749 dev = alloc_etherdev(sizeof(*priv)); 1750 if (!dev) 1751 return -ENOMEM; 1752 priv = netdev_priv(dev); 1753 1754 priv->enet_is_sw = false; 1755 priv->dma_maxburst = BCMENET_DMA_MAXBURST; 1756 1757 ret = compute_hw_mtu(priv, dev->mtu); 1758 if (ret) 1759 goto out; 1760 1761 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1762 priv->base = devm_ioremap_resource(&pdev->dev, res_mem); 1763 if (IS_ERR(priv->base)) { 1764 ret = PTR_ERR(priv->base); 1765 goto out; 1766 } 1767 1768 dev->irq = priv->irq = res_irq->start; 1769 priv->irq_rx = res_irq_rx->start; 1770 priv->irq_tx = res_irq_tx->start; 1771 priv->mac_id = pdev->id; 1772 1773 /* get rx & tx dma channel id for this mac */ 1774 if (priv->mac_id == 0) { 1775 priv->rx_chan = 0; 1776 priv->tx_chan = 1; 1777 clk_name = "enet0"; 1778 } else { 1779 priv->rx_chan = 2; 1780 priv->tx_chan = 3; 1781 clk_name = "enet1"; 1782 } 1783 1784 priv->mac_clk = clk_get(&pdev->dev, clk_name); 1785 if (IS_ERR(priv->mac_clk)) { 1786 ret = PTR_ERR(priv->mac_clk); 1787 goto out; 1788 } 1789 clk_prepare_enable(priv->mac_clk); 1790 1791 /* initialize default and fetch platform data */ 1792 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 1793 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 1794 1795 pd = dev_get_platdata(&pdev->dev); 1796 if (pd) { 1797 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 1798 priv->has_phy = pd->has_phy; 1799 priv->phy_id = pd->phy_id; 1800 priv->has_phy_interrupt = pd->has_phy_interrupt; 1801 priv->phy_interrupt = pd->phy_interrupt; 1802 priv->use_external_mii = !pd->use_internal_phy; 1803 priv->pause_auto = pd->pause_auto; 1804 priv->pause_rx = pd->pause_rx; 1805 priv->pause_tx = pd->pause_tx; 1806 priv->force_duplex_full = pd->force_duplex_full; 1807 priv->force_speed_100 = pd->force_speed_100; 1808 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 1809 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 1810 priv->dma_chan_width = pd->dma_chan_width; 1811 priv->dma_has_sram = pd->dma_has_sram; 1812 priv->dma_desc_shift = pd->dma_desc_shift; 1813 } 1814 1815 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) { 1816 /* using internal PHY, enable clock */ 1817 priv->phy_clk = clk_get(&pdev->dev, "ephy"); 1818 if (IS_ERR(priv->phy_clk)) { 1819 ret = PTR_ERR(priv->phy_clk); 1820 priv->phy_clk = NULL; 1821 goto out_put_clk_mac; 1822 } 1823 clk_prepare_enable(priv->phy_clk); 1824 } 1825 1826 /* do minimal hardware init to be able to probe mii bus */ 1827 bcm_enet_hw_preinit(priv); 1828 1829 /* MII bus registration */ 1830 if (priv->has_phy) { 1831 1832 priv->mii_bus = mdiobus_alloc(); 1833 if (!priv->mii_bus) { 1834 ret = -ENOMEM; 1835 goto out_uninit_hw; 1836 } 1837 1838 bus = priv->mii_bus; 1839 bus->name = "bcm63xx_enet MII bus"; 1840 bus->parent = &pdev->dev; 1841 bus->priv = priv; 1842 bus->read = bcm_enet_mdio_read_phylib; 1843 bus->write = bcm_enet_mdio_write_phylib; 1844 sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id); 1845 1846 /* only probe bus where we think the PHY is, because 1847 * the mdio read operation return 0 instead of 0xffff 1848 * if a slave is not present on hw */ 1849 bus->phy_mask = ~(1 << priv->phy_id); 1850 1851 if (priv->has_phy_interrupt) 1852 bus->irq[priv->phy_id] = priv->phy_interrupt; 1853 1854 ret = mdiobus_register(bus); 1855 if (ret) { 1856 dev_err(&pdev->dev, "unable to register mdio bus\n"); 1857 goto out_free_mdio; 1858 } 1859 } else { 1860 1861 /* run platform code to initialize PHY device */ 1862 if (pd && pd->mii_config && 1863 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, 1864 bcm_enet_mdio_write_mii)) { 1865 dev_err(&pdev->dev, "unable to configure mdio bus\n"); 1866 goto out_uninit_hw; 1867 } 1868 } 1869 1870 spin_lock_init(&priv->rx_lock); 1871 1872 /* init rx timeout (used for oom) */ 1873 init_timer(&priv->rx_timeout); 1874 priv->rx_timeout.function = bcm_enet_refill_rx_timer; 1875 priv->rx_timeout.data = (unsigned long)dev; 1876 1877 /* init the mib update lock&work */ 1878 mutex_init(&priv->mib_update_lock); 1879 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); 1880 1881 /* zero mib counters */ 1882 for (i = 0; i < ENET_MIB_REG_COUNT; i++) 1883 enet_writel(priv, 0, ENET_MIB_REG(i)); 1884 1885 /* register netdevice */ 1886 dev->netdev_ops = &bcm_enet_ops; 1887 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 1888 1889 dev->ethtool_ops = &bcm_enet_ethtool_ops; 1890 SET_NETDEV_DEV(dev, &pdev->dev); 1891 1892 ret = register_netdev(dev); 1893 if (ret) 1894 goto out_unregister_mdio; 1895 1896 netif_carrier_off(dev); 1897 platform_set_drvdata(pdev, dev); 1898 priv->pdev = pdev; 1899 priv->net_dev = dev; 1900 1901 return 0; 1902 1903 out_unregister_mdio: 1904 if (priv->mii_bus) 1905 mdiobus_unregister(priv->mii_bus); 1906 1907 out_free_mdio: 1908 if (priv->mii_bus) 1909 mdiobus_free(priv->mii_bus); 1910 1911 out_uninit_hw: 1912 /* turn off mdc clock */ 1913 enet_writel(priv, 0, ENET_MIISC_REG); 1914 if (priv->phy_clk) { 1915 clk_disable_unprepare(priv->phy_clk); 1916 clk_put(priv->phy_clk); 1917 } 1918 1919 out_put_clk_mac: 1920 clk_disable_unprepare(priv->mac_clk); 1921 clk_put(priv->mac_clk); 1922 out: 1923 free_netdev(dev); 1924 return ret; 1925 } 1926 1927 1928 /* 1929 * exit func, stops hardware and unregisters netdevice 1930 */ 1931 static int bcm_enet_remove(struct platform_device *pdev) 1932 { 1933 struct bcm_enet_priv *priv; 1934 struct net_device *dev; 1935 1936 /* stop netdevice */ 1937 dev = platform_get_drvdata(pdev); 1938 priv = netdev_priv(dev); 1939 unregister_netdev(dev); 1940 1941 /* turn off mdc clock */ 1942 enet_writel(priv, 0, ENET_MIISC_REG); 1943 1944 if (priv->has_phy) { 1945 mdiobus_unregister(priv->mii_bus); 1946 mdiobus_free(priv->mii_bus); 1947 } else { 1948 struct bcm63xx_enet_platform_data *pd; 1949 1950 pd = dev_get_platdata(&pdev->dev); 1951 if (pd && pd->mii_config) 1952 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, 1953 bcm_enet_mdio_write_mii); 1954 } 1955 1956 /* disable hw block clocks */ 1957 if (priv->phy_clk) { 1958 clk_disable_unprepare(priv->phy_clk); 1959 clk_put(priv->phy_clk); 1960 } 1961 clk_disable_unprepare(priv->mac_clk); 1962 clk_put(priv->mac_clk); 1963 1964 free_netdev(dev); 1965 return 0; 1966 } 1967 1968 struct platform_driver bcm63xx_enet_driver = { 1969 .probe = bcm_enet_probe, 1970 .remove = bcm_enet_remove, 1971 .driver = { 1972 .name = "bcm63xx_enet", 1973 .owner = THIS_MODULE, 1974 }, 1975 }; 1976 1977 /* 1978 * switch mii access callbacks 1979 */ 1980 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv, 1981 int ext, int phy_id, int location) 1982 { 1983 u32 reg; 1984 int ret; 1985 1986 spin_lock_bh(&priv->enetsw_mdio_lock); 1987 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 1988 1989 reg = ENETSW_MDIOC_RD_MASK | 1990 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 1991 (location << ENETSW_MDIOC_REG_SHIFT); 1992 1993 if (ext) 1994 reg |= ENETSW_MDIOC_EXT_MASK; 1995 1996 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 1997 udelay(50); 1998 ret = enetsw_readw(priv, ENETSW_MDIOD_REG); 1999 spin_unlock_bh(&priv->enetsw_mdio_lock); 2000 return ret; 2001 } 2002 2003 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv, 2004 int ext, int phy_id, int location, 2005 uint16_t data) 2006 { 2007 u32 reg; 2008 2009 spin_lock_bh(&priv->enetsw_mdio_lock); 2010 enetsw_writel(priv, 0, ENETSW_MDIOC_REG); 2011 2012 reg = ENETSW_MDIOC_WR_MASK | 2013 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) | 2014 (location << ENETSW_MDIOC_REG_SHIFT); 2015 2016 if (ext) 2017 reg |= ENETSW_MDIOC_EXT_MASK; 2018 2019 reg |= data; 2020 2021 enetsw_writel(priv, reg, ENETSW_MDIOC_REG); 2022 udelay(50); 2023 spin_unlock_bh(&priv->enetsw_mdio_lock); 2024 } 2025 2026 static inline int bcm_enet_port_is_rgmii(int portid) 2027 { 2028 return portid >= ENETSW_RGMII_PORT0; 2029 } 2030 2031 /* 2032 * enet sw PHY polling 2033 */ 2034 static void swphy_poll_timer(unsigned long data) 2035 { 2036 struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data; 2037 unsigned int i; 2038 2039 for (i = 0; i < priv->num_ports; i++) { 2040 struct bcm63xx_enetsw_port *port; 2041 int val, j, up, advertise, lpa, speed, duplex, media; 2042 int external_phy = bcm_enet_port_is_rgmii(i); 2043 u8 override; 2044 2045 port = &priv->used_ports[i]; 2046 if (!port->used) 2047 continue; 2048 2049 if (port->bypass_link) 2050 continue; 2051 2052 /* dummy read to clear */ 2053 for (j = 0; j < 2; j++) 2054 val = bcmenet_sw_mdio_read(priv, external_phy, 2055 port->phy_id, MII_BMSR); 2056 2057 if (val == 0xffff) 2058 continue; 2059 2060 up = (val & BMSR_LSTATUS) ? 1 : 0; 2061 if (!(up ^ priv->sw_port_link[i])) 2062 continue; 2063 2064 priv->sw_port_link[i] = up; 2065 2066 /* link changed */ 2067 if (!up) { 2068 dev_info(&priv->pdev->dev, "link DOWN on %s\n", 2069 port->name); 2070 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2071 ENETSW_PORTOV_REG(i)); 2072 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2073 ENETSW_PTCTRL_TXDIS_MASK, 2074 ENETSW_PTCTRL_REG(i)); 2075 continue; 2076 } 2077 2078 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2079 port->phy_id, MII_ADVERTISE); 2080 2081 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id, 2082 MII_LPA); 2083 2084 /* figure out media and duplex from advertise and LPA values */ 2085 media = mii_nway_result(lpa & advertise); 2086 duplex = (media & ADVERTISE_FULL) ? 1 : 0; 2087 2088 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF)) 2089 speed = 100; 2090 else 2091 speed = 10; 2092 2093 if (val & BMSR_ESTATEN) { 2094 advertise = bcmenet_sw_mdio_read(priv, external_phy, 2095 port->phy_id, MII_CTRL1000); 2096 2097 lpa = bcmenet_sw_mdio_read(priv, external_phy, 2098 port->phy_id, MII_STAT1000); 2099 2100 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF) 2101 && lpa & (LPA_1000FULL | LPA_1000HALF)) { 2102 speed = 1000; 2103 duplex = (lpa & LPA_1000FULL); 2104 } 2105 } 2106 2107 dev_info(&priv->pdev->dev, 2108 "link UP on %s, %dMbps, %s-duplex\n", 2109 port->name, speed, duplex ? "full" : "half"); 2110 2111 override = ENETSW_PORTOV_ENABLE_MASK | 2112 ENETSW_PORTOV_LINKUP_MASK; 2113 2114 if (speed == 1000) 2115 override |= ENETSW_IMPOV_1000_MASK; 2116 else if (speed == 100) 2117 override |= ENETSW_IMPOV_100_MASK; 2118 if (duplex) 2119 override |= ENETSW_IMPOV_FDX_MASK; 2120 2121 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2122 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2123 } 2124 2125 priv->swphy_poll.expires = jiffies + HZ; 2126 add_timer(&priv->swphy_poll); 2127 } 2128 2129 /* 2130 * open callback, allocate dma rings & buffers and start rx operation 2131 */ 2132 static int bcm_enetsw_open(struct net_device *dev) 2133 { 2134 struct bcm_enet_priv *priv; 2135 struct device *kdev; 2136 int i, ret; 2137 unsigned int size; 2138 void *p; 2139 u32 val; 2140 2141 priv = netdev_priv(dev); 2142 kdev = &priv->pdev->dev; 2143 2144 /* mask all interrupts and request them */ 2145 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2146 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2147 2148 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 2149 0, dev->name, dev); 2150 if (ret) 2151 goto out_freeirq; 2152 2153 if (priv->irq_tx != -1) { 2154 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, 2155 0, dev->name, dev); 2156 if (ret) 2157 goto out_freeirq_rx; 2158 } 2159 2160 /* allocate rx dma ring */ 2161 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); 2162 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); 2163 if (!p) { 2164 dev_err(kdev, "cannot allocate rx ring %u\n", size); 2165 ret = -ENOMEM; 2166 goto out_freeirq_tx; 2167 } 2168 2169 memset(p, 0, size); 2170 priv->rx_desc_alloc_size = size; 2171 priv->rx_desc_cpu = p; 2172 2173 /* allocate tx dma ring */ 2174 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); 2175 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); 2176 if (!p) { 2177 dev_err(kdev, "cannot allocate tx ring\n"); 2178 ret = -ENOMEM; 2179 goto out_free_rx_ring; 2180 } 2181 2182 memset(p, 0, size); 2183 priv->tx_desc_alloc_size = size; 2184 priv->tx_desc_cpu = p; 2185 2186 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size, 2187 GFP_KERNEL); 2188 if (!priv->tx_skb) { 2189 dev_err(kdev, "cannot allocate rx skb queue\n"); 2190 ret = -ENOMEM; 2191 goto out_free_tx_ring; 2192 } 2193 2194 priv->tx_desc_count = priv->tx_ring_size; 2195 priv->tx_dirty_desc = 0; 2196 priv->tx_curr_desc = 0; 2197 spin_lock_init(&priv->tx_lock); 2198 2199 /* init & fill rx ring with skbs */ 2200 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size, 2201 GFP_KERNEL); 2202 if (!priv->rx_skb) { 2203 dev_err(kdev, "cannot allocate rx skb queue\n"); 2204 ret = -ENOMEM; 2205 goto out_free_tx_skb; 2206 } 2207 2208 priv->rx_desc_count = 0; 2209 priv->rx_dirty_desc = 0; 2210 priv->rx_curr_desc = 0; 2211 2212 /* disable all ports */ 2213 for (i = 0; i < priv->num_ports; i++) { 2214 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK, 2215 ENETSW_PORTOV_REG(i)); 2216 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK | 2217 ENETSW_PTCTRL_TXDIS_MASK, 2218 ENETSW_PTCTRL_REG(i)); 2219 2220 priv->sw_port_link[i] = 0; 2221 } 2222 2223 /* reset mib */ 2224 val = enetsw_readb(priv, ENETSW_GMCR_REG); 2225 val |= ENETSW_GMCR_RST_MIB_MASK; 2226 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2227 mdelay(1); 2228 val &= ~ENETSW_GMCR_RST_MIB_MASK; 2229 enetsw_writeb(priv, val, ENETSW_GMCR_REG); 2230 mdelay(1); 2231 2232 /* force CPU port state */ 2233 val = enetsw_readb(priv, ENETSW_IMPOV_REG); 2234 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK; 2235 enetsw_writeb(priv, val, ENETSW_IMPOV_REG); 2236 2237 /* enable switch forward engine */ 2238 val = enetsw_readb(priv, ENETSW_SWMODE_REG); 2239 val |= ENETSW_SWMODE_FWD_EN_MASK; 2240 enetsw_writeb(priv, val, ENETSW_SWMODE_REG); 2241 2242 /* enable jumbo on all ports */ 2243 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG); 2244 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG); 2245 2246 /* initialize flow control buffer allocation */ 2247 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, 2248 ENETDMA_BUFALLOC_REG(priv->rx_chan)); 2249 2250 if (bcm_enet_refill_rx(dev)) { 2251 dev_err(kdev, "cannot allocate rx skb queue\n"); 2252 ret = -ENOMEM; 2253 goto out; 2254 } 2255 2256 /* write rx & tx ring addresses */ 2257 enet_dmas_writel(priv, priv->rx_desc_dma, 2258 ENETDMAS_RSTART_REG, priv->rx_chan); 2259 enet_dmas_writel(priv, priv->tx_desc_dma, 2260 ENETDMAS_RSTART_REG, priv->tx_chan); 2261 2262 /* clear remaining state ram for rx & tx channel */ 2263 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan); 2264 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan); 2265 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan); 2266 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan); 2267 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan); 2268 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan); 2269 2270 /* set dma maximum burst len */ 2271 enet_dmac_writel(priv, priv->dma_maxburst, 2272 ENETDMAC_MAXBURST, priv->rx_chan); 2273 enet_dmac_writel(priv, priv->dma_maxburst, 2274 ENETDMAC_MAXBURST, priv->tx_chan); 2275 2276 /* set flow control low/high threshold to 1/3 / 2/3 */ 2277 val = priv->rx_ring_size / 3; 2278 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); 2279 val = (priv->rx_ring_size * 2) / 3; 2280 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); 2281 2282 /* all set, enable mac and interrupts, start dma engine and 2283 * kick rx dma channel 2284 */ 2285 wmb(); 2286 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); 2287 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK, 2288 ENETDMAC_CHANCFG, priv->rx_chan); 2289 2290 /* watch "packet transferred" interrupt in rx and tx */ 2291 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2292 ENETDMAC_IR, priv->rx_chan); 2293 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2294 ENETDMAC_IR, priv->tx_chan); 2295 2296 /* make sure we enable napi before rx interrupt */ 2297 napi_enable(&priv->napi); 2298 2299 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2300 ENETDMAC_IRMASK, priv->rx_chan); 2301 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK, 2302 ENETDMAC_IRMASK, priv->tx_chan); 2303 2304 netif_carrier_on(dev); 2305 netif_start_queue(dev); 2306 2307 /* apply override config for bypass_link ports here. */ 2308 for (i = 0; i < priv->num_ports; i++) { 2309 struct bcm63xx_enetsw_port *port; 2310 u8 override; 2311 port = &priv->used_ports[i]; 2312 if (!port->used) 2313 continue; 2314 2315 if (!port->bypass_link) 2316 continue; 2317 2318 override = ENETSW_PORTOV_ENABLE_MASK | 2319 ENETSW_PORTOV_LINKUP_MASK; 2320 2321 switch (port->force_speed) { 2322 case 1000: 2323 override |= ENETSW_IMPOV_1000_MASK; 2324 break; 2325 case 100: 2326 override |= ENETSW_IMPOV_100_MASK; 2327 break; 2328 case 10: 2329 break; 2330 default: 2331 pr_warn("invalid forced speed on port %s: assume 10\n", 2332 port->name); 2333 break; 2334 } 2335 2336 if (port->force_duplex_full) 2337 override |= ENETSW_IMPOV_FDX_MASK; 2338 2339 2340 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i)); 2341 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i)); 2342 } 2343 2344 /* start phy polling timer */ 2345 init_timer(&priv->swphy_poll); 2346 priv->swphy_poll.function = swphy_poll_timer; 2347 priv->swphy_poll.data = (unsigned long)priv; 2348 priv->swphy_poll.expires = jiffies; 2349 add_timer(&priv->swphy_poll); 2350 return 0; 2351 2352 out: 2353 for (i = 0; i < priv->rx_ring_size; i++) { 2354 struct bcm_enet_desc *desc; 2355 2356 if (!priv->rx_skb[i]) 2357 continue; 2358 2359 desc = &priv->rx_desc_cpu[i]; 2360 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2361 DMA_FROM_DEVICE); 2362 kfree_skb(priv->rx_skb[i]); 2363 } 2364 kfree(priv->rx_skb); 2365 2366 out_free_tx_skb: 2367 kfree(priv->tx_skb); 2368 2369 out_free_tx_ring: 2370 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2371 priv->tx_desc_cpu, priv->tx_desc_dma); 2372 2373 out_free_rx_ring: 2374 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2375 priv->rx_desc_cpu, priv->rx_desc_dma); 2376 2377 out_freeirq_tx: 2378 if (priv->irq_tx != -1) 2379 free_irq(priv->irq_tx, dev); 2380 2381 out_freeirq_rx: 2382 free_irq(priv->irq_rx, dev); 2383 2384 out_freeirq: 2385 return ret; 2386 } 2387 2388 /* stop callback */ 2389 static int bcm_enetsw_stop(struct net_device *dev) 2390 { 2391 struct bcm_enet_priv *priv; 2392 struct device *kdev; 2393 int i; 2394 2395 priv = netdev_priv(dev); 2396 kdev = &priv->pdev->dev; 2397 2398 del_timer_sync(&priv->swphy_poll); 2399 netif_stop_queue(dev); 2400 napi_disable(&priv->napi); 2401 del_timer_sync(&priv->rx_timeout); 2402 2403 /* mask all interrupts */ 2404 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan); 2405 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan); 2406 2407 /* disable dma & mac */ 2408 bcm_enet_disable_dma(priv, priv->tx_chan); 2409 bcm_enet_disable_dma(priv, priv->rx_chan); 2410 2411 /* force reclaim of all tx buffers */ 2412 bcm_enet_tx_reclaim(dev, 1); 2413 2414 /* free the rx skb ring */ 2415 for (i = 0; i < priv->rx_ring_size; i++) { 2416 struct bcm_enet_desc *desc; 2417 2418 if (!priv->rx_skb[i]) 2419 continue; 2420 2421 desc = &priv->rx_desc_cpu[i]; 2422 dma_unmap_single(kdev, desc->address, priv->rx_skb_size, 2423 DMA_FROM_DEVICE); 2424 kfree_skb(priv->rx_skb[i]); 2425 } 2426 2427 /* free remaining allocated memory */ 2428 kfree(priv->rx_skb); 2429 kfree(priv->tx_skb); 2430 dma_free_coherent(kdev, priv->rx_desc_alloc_size, 2431 priv->rx_desc_cpu, priv->rx_desc_dma); 2432 dma_free_coherent(kdev, priv->tx_desc_alloc_size, 2433 priv->tx_desc_cpu, priv->tx_desc_dma); 2434 if (priv->irq_tx != -1) 2435 free_irq(priv->irq_tx, dev); 2436 free_irq(priv->irq_rx, dev); 2437 2438 return 0; 2439 } 2440 2441 /* try to sort out phy external status by walking the used_port field 2442 * in the bcm_enet_priv structure. in case the phy address is not 2443 * assigned to any physical port on the switch, assume it is external 2444 * (and yell at the user). 2445 */ 2446 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id) 2447 { 2448 int i; 2449 2450 for (i = 0; i < priv->num_ports; ++i) { 2451 if (!priv->used_ports[i].used) 2452 continue; 2453 if (priv->used_ports[i].phy_id == phy_id) 2454 return bcm_enet_port_is_rgmii(i); 2455 } 2456 2457 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n", 2458 phy_id); 2459 return 1; 2460 } 2461 2462 /* can't use bcmenet_sw_mdio_read directly as we need to sort out 2463 * external/internal status of the given phy_id first. 2464 */ 2465 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id, 2466 int location) 2467 { 2468 struct bcm_enet_priv *priv; 2469 2470 priv = netdev_priv(dev); 2471 return bcmenet_sw_mdio_read(priv, 2472 bcm_enetsw_phy_is_external(priv, phy_id), 2473 phy_id, location); 2474 } 2475 2476 /* can't use bcmenet_sw_mdio_write directly as we need to sort out 2477 * external/internal status of the given phy_id first. 2478 */ 2479 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id, 2480 int location, 2481 int val) 2482 { 2483 struct bcm_enet_priv *priv; 2484 2485 priv = netdev_priv(dev); 2486 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id), 2487 phy_id, location, val); 2488 } 2489 2490 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2491 { 2492 struct mii_if_info mii; 2493 2494 mii.dev = dev; 2495 mii.mdio_read = bcm_enetsw_mii_mdio_read; 2496 mii.mdio_write = bcm_enetsw_mii_mdio_write; 2497 mii.phy_id = 0; 2498 mii.phy_id_mask = 0x3f; 2499 mii.reg_num_mask = 0x1f; 2500 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); 2501 2502 } 2503 2504 static const struct net_device_ops bcm_enetsw_ops = { 2505 .ndo_open = bcm_enetsw_open, 2506 .ndo_stop = bcm_enetsw_stop, 2507 .ndo_start_xmit = bcm_enet_start_xmit, 2508 .ndo_change_mtu = bcm_enet_change_mtu, 2509 .ndo_do_ioctl = bcm_enetsw_ioctl, 2510 }; 2511 2512 2513 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = { 2514 { "rx_packets", DEV_STAT(rx_packets), -1 }, 2515 { "tx_packets", DEV_STAT(tx_packets), -1 }, 2516 { "rx_bytes", DEV_STAT(rx_bytes), -1 }, 2517 { "tx_bytes", DEV_STAT(tx_bytes), -1 }, 2518 { "rx_errors", DEV_STAT(rx_errors), -1 }, 2519 { "tx_errors", DEV_STAT(tx_errors), -1 }, 2520 { "rx_dropped", DEV_STAT(rx_dropped), -1 }, 2521 { "tx_dropped", DEV_STAT(tx_dropped), -1 }, 2522 2523 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT }, 2524 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST }, 2525 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST }, 2526 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT }, 2527 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 }, 2528 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 }, 2529 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 }, 2530 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 }, 2531 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023}, 2532 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max), 2533 ETHSW_MIB_RX_1024_1522 }, 2534 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047), 2535 ETHSW_MIB_RX_1523_2047 }, 2536 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095), 2537 ETHSW_MIB_RX_2048_4095 }, 2538 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191), 2539 ETHSW_MIB_RX_4096_8191 }, 2540 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728), 2541 ETHSW_MIB_RX_8192_9728 }, 2542 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR }, 2543 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC }, 2544 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP }, 2545 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND }, 2546 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE }, 2547 2548 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT }, 2549 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST }, 2550 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT }, 2551 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT }, 2552 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE }, 2553 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS }, 2554 2555 }; 2556 2557 #define BCM_ENETSW_STATS_LEN \ 2558 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats)) 2559 2560 static void bcm_enetsw_get_strings(struct net_device *netdev, 2561 u32 stringset, u8 *data) 2562 { 2563 int i; 2564 2565 switch (stringset) { 2566 case ETH_SS_STATS: 2567 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2568 memcpy(data + i * ETH_GSTRING_LEN, 2569 bcm_enetsw_gstrings_stats[i].stat_string, 2570 ETH_GSTRING_LEN); 2571 } 2572 break; 2573 } 2574 } 2575 2576 static int bcm_enetsw_get_sset_count(struct net_device *netdev, 2577 int string_set) 2578 { 2579 switch (string_set) { 2580 case ETH_SS_STATS: 2581 return BCM_ENETSW_STATS_LEN; 2582 default: 2583 return -EINVAL; 2584 } 2585 } 2586 2587 static void bcm_enetsw_get_drvinfo(struct net_device *netdev, 2588 struct ethtool_drvinfo *drvinfo) 2589 { 2590 strncpy(drvinfo->driver, bcm_enet_driver_name, 32); 2591 strncpy(drvinfo->version, bcm_enet_driver_version, 32); 2592 strncpy(drvinfo->fw_version, "N/A", 32); 2593 strncpy(drvinfo->bus_info, "bcm63xx", 32); 2594 } 2595 2596 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev, 2597 struct ethtool_stats *stats, 2598 u64 *data) 2599 { 2600 struct bcm_enet_priv *priv; 2601 int i; 2602 2603 priv = netdev_priv(netdev); 2604 2605 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2606 const struct bcm_enet_stats *s; 2607 u32 lo, hi; 2608 char *p; 2609 int reg; 2610 2611 s = &bcm_enetsw_gstrings_stats[i]; 2612 2613 reg = s->mib_reg; 2614 if (reg == -1) 2615 continue; 2616 2617 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg)); 2618 p = (char *)priv + s->stat_offset; 2619 2620 if (s->sizeof_stat == sizeof(u64)) { 2621 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1)); 2622 *(u64 *)p = ((u64)hi << 32 | lo); 2623 } else { 2624 *(u32 *)p = lo; 2625 } 2626 } 2627 2628 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) { 2629 const struct bcm_enet_stats *s; 2630 char *p; 2631 2632 s = &bcm_enetsw_gstrings_stats[i]; 2633 2634 if (s->mib_reg == -1) 2635 p = (char *)&netdev->stats + s->stat_offset; 2636 else 2637 p = (char *)priv + s->stat_offset; 2638 2639 data[i] = (s->sizeof_stat == sizeof(u64)) ? 2640 *(u64 *)p : *(u32 *)p; 2641 } 2642 } 2643 2644 static void bcm_enetsw_get_ringparam(struct net_device *dev, 2645 struct ethtool_ringparam *ering) 2646 { 2647 struct bcm_enet_priv *priv; 2648 2649 priv = netdev_priv(dev); 2650 2651 /* rx/tx ring is actually only limited by memory */ 2652 ering->rx_max_pending = 8192; 2653 ering->tx_max_pending = 8192; 2654 ering->rx_mini_max_pending = 0; 2655 ering->rx_jumbo_max_pending = 0; 2656 ering->rx_pending = priv->rx_ring_size; 2657 ering->tx_pending = priv->tx_ring_size; 2658 } 2659 2660 static int bcm_enetsw_set_ringparam(struct net_device *dev, 2661 struct ethtool_ringparam *ering) 2662 { 2663 struct bcm_enet_priv *priv; 2664 int was_running; 2665 2666 priv = netdev_priv(dev); 2667 2668 was_running = 0; 2669 if (netif_running(dev)) { 2670 bcm_enetsw_stop(dev); 2671 was_running = 1; 2672 } 2673 2674 priv->rx_ring_size = ering->rx_pending; 2675 priv->tx_ring_size = ering->tx_pending; 2676 2677 if (was_running) { 2678 int err; 2679 2680 err = bcm_enetsw_open(dev); 2681 if (err) 2682 dev_close(dev); 2683 } 2684 return 0; 2685 } 2686 2687 static struct ethtool_ops bcm_enetsw_ethtool_ops = { 2688 .get_strings = bcm_enetsw_get_strings, 2689 .get_sset_count = bcm_enetsw_get_sset_count, 2690 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats, 2691 .get_drvinfo = bcm_enetsw_get_drvinfo, 2692 .get_ringparam = bcm_enetsw_get_ringparam, 2693 .set_ringparam = bcm_enetsw_set_ringparam, 2694 }; 2695 2696 /* allocate netdevice, request register memory and register device. */ 2697 static int bcm_enetsw_probe(struct platform_device *pdev) 2698 { 2699 struct bcm_enet_priv *priv; 2700 struct net_device *dev; 2701 struct bcm63xx_enetsw_platform_data *pd; 2702 struct resource *res_mem; 2703 int ret, irq_rx, irq_tx; 2704 2705 /* stop if shared driver failed, assume driver->probe will be 2706 * called in the same order we register devices (correct ?) 2707 */ 2708 if (!bcm_enet_shared_base[0]) 2709 return -ENODEV; 2710 2711 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2712 irq_rx = platform_get_irq(pdev, 0); 2713 irq_tx = platform_get_irq(pdev, 1); 2714 if (!res_mem || irq_rx < 0) 2715 return -ENODEV; 2716 2717 ret = 0; 2718 dev = alloc_etherdev(sizeof(*priv)); 2719 if (!dev) 2720 return -ENOMEM; 2721 priv = netdev_priv(dev); 2722 memset(priv, 0, sizeof(*priv)); 2723 2724 /* initialize default and fetch platform data */ 2725 priv->enet_is_sw = true; 2726 priv->irq_rx = irq_rx; 2727 priv->irq_tx = irq_tx; 2728 priv->rx_ring_size = BCMENET_DEF_RX_DESC; 2729 priv->tx_ring_size = BCMENET_DEF_TX_DESC; 2730 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST; 2731 2732 pd = dev_get_platdata(&pdev->dev); 2733 if (pd) { 2734 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); 2735 memcpy(priv->used_ports, pd->used_ports, 2736 sizeof(pd->used_ports)); 2737 priv->num_ports = pd->num_ports; 2738 priv->dma_has_sram = pd->dma_has_sram; 2739 priv->dma_chan_en_mask = pd->dma_chan_en_mask; 2740 priv->dma_chan_int_mask = pd->dma_chan_int_mask; 2741 priv->dma_chan_width = pd->dma_chan_width; 2742 } 2743 2744 ret = compute_hw_mtu(priv, dev->mtu); 2745 if (ret) 2746 goto out; 2747 2748 if (!request_mem_region(res_mem->start, resource_size(res_mem), 2749 "bcm63xx_enetsw")) { 2750 ret = -EBUSY; 2751 goto out; 2752 } 2753 2754 priv->base = ioremap(res_mem->start, resource_size(res_mem)); 2755 if (priv->base == NULL) { 2756 ret = -ENOMEM; 2757 goto out_release_mem; 2758 } 2759 2760 priv->mac_clk = clk_get(&pdev->dev, "enetsw"); 2761 if (IS_ERR(priv->mac_clk)) { 2762 ret = PTR_ERR(priv->mac_clk); 2763 goto out_unmap; 2764 } 2765 clk_enable(priv->mac_clk); 2766 2767 priv->rx_chan = 0; 2768 priv->tx_chan = 1; 2769 spin_lock_init(&priv->rx_lock); 2770 2771 /* init rx timeout (used for oom) */ 2772 init_timer(&priv->rx_timeout); 2773 priv->rx_timeout.function = bcm_enet_refill_rx_timer; 2774 priv->rx_timeout.data = (unsigned long)dev; 2775 2776 /* register netdevice */ 2777 dev->netdev_ops = &bcm_enetsw_ops; 2778 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); 2779 dev->ethtool_ops = &bcm_enetsw_ethtool_ops; 2780 SET_NETDEV_DEV(dev, &pdev->dev); 2781 2782 spin_lock_init(&priv->enetsw_mdio_lock); 2783 2784 ret = register_netdev(dev); 2785 if (ret) 2786 goto out_put_clk; 2787 2788 netif_carrier_off(dev); 2789 platform_set_drvdata(pdev, dev); 2790 priv->pdev = pdev; 2791 priv->net_dev = dev; 2792 2793 return 0; 2794 2795 out_put_clk: 2796 clk_put(priv->mac_clk); 2797 2798 out_unmap: 2799 iounmap(priv->base); 2800 2801 out_release_mem: 2802 release_mem_region(res_mem->start, resource_size(res_mem)); 2803 out: 2804 free_netdev(dev); 2805 return ret; 2806 } 2807 2808 2809 /* exit func, stops hardware and unregisters netdevice */ 2810 static int bcm_enetsw_remove(struct platform_device *pdev) 2811 { 2812 struct bcm_enet_priv *priv; 2813 struct net_device *dev; 2814 struct resource *res; 2815 2816 /* stop netdevice */ 2817 dev = platform_get_drvdata(pdev); 2818 priv = netdev_priv(dev); 2819 unregister_netdev(dev); 2820 2821 /* release device resources */ 2822 iounmap(priv->base); 2823 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2824 release_mem_region(res->start, resource_size(res)); 2825 2826 free_netdev(dev); 2827 return 0; 2828 } 2829 2830 struct platform_driver bcm63xx_enetsw_driver = { 2831 .probe = bcm_enetsw_probe, 2832 .remove = bcm_enetsw_remove, 2833 .driver = { 2834 .name = "bcm63xx_enetsw", 2835 .owner = THIS_MODULE, 2836 }, 2837 }; 2838 2839 /* reserve & remap memory space shared between all macs */ 2840 static int bcm_enet_shared_probe(struct platform_device *pdev) 2841 { 2842 struct resource *res; 2843 void __iomem *p[3]; 2844 unsigned int i; 2845 2846 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base)); 2847 2848 for (i = 0; i < 3; i++) { 2849 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 2850 p[i] = devm_ioremap_resource(&pdev->dev, res); 2851 if (IS_ERR(p[i])) 2852 return PTR_ERR(p[i]); 2853 } 2854 2855 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base)); 2856 2857 return 0; 2858 } 2859 2860 static int bcm_enet_shared_remove(struct platform_device *pdev) 2861 { 2862 return 0; 2863 } 2864 2865 /* this "shared" driver is needed because both macs share a single 2866 * address space 2867 */ 2868 struct platform_driver bcm63xx_enet_shared_driver = { 2869 .probe = bcm_enet_shared_probe, 2870 .remove = bcm_enet_shared_remove, 2871 .driver = { 2872 .name = "bcm63xx_enet_shared", 2873 .owner = THIS_MODULE, 2874 }, 2875 }; 2876 2877 static struct platform_driver * const drivers[] = { 2878 &bcm63xx_enet_shared_driver, 2879 &bcm63xx_enet_driver, 2880 &bcm63xx_enetsw_driver, 2881 }; 2882 2883 /* entry point */ 2884 static int __init bcm_enet_init(void) 2885 { 2886 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2887 } 2888 2889 static void __exit bcm_enet_exit(void) 2890 { 2891 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2892 } 2893 2894 2895 module_init(bcm_enet_init); 2896 module_exit(bcm_enet_exit); 2897 2898 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); 2899 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); 2900 MODULE_LICENSE("GPL"); 2901