xref: /linux/drivers/net/ethernet/broadcom/asp2/bcmasp_intf.c (revision e28c5efc31397af17bc5a7d55b963f59bcde0166)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)			"bcmasp_intf: " fmt
3 
4 #include <asm/byteorder.h>
5 #include <linux/brcmphy.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/etherdevice.h>
9 #include <linux/netdevice.h>
10 #include <linux/of_net.h>
11 #include <linux/of_mdio.h>
12 #include <linux/phy.h>
13 #include <linux/phy_fixed.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/platform_device.h>
16 #include <net/ip.h>
17 #include <net/ipv6.h>
18 
19 #include "bcmasp.h"
20 #include "bcmasp_intf_defs.h"
21 
22 static int incr_ring(int index, int ring_count)
23 {
24 	index++;
25 	if (index == ring_count)
26 		return 0;
27 
28 	return index;
29 }
30 
31 /* Points to last byte of descriptor */
32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg,
33 				 int ring_count)
34 {
35 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
36 
37 	addr += DESC_SIZE;
38 	if (addr > end)
39 		return beg + DESC_SIZE - 1;
40 
41 	return addr;
42 }
43 
44 /* Points to first byte of descriptor */
45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg,
46 				  int ring_count)
47 {
48 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
49 
50 	addr += DESC_SIZE;
51 	if (addr >= end)
52 		return beg;
53 
54 	return addr;
55 }
56 
57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en)
58 {
59 	if (en) {
60 		tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE);
61 		tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN |
62 				TX_EPKT_C_CFG_MISC_PT |
63 				(intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)),
64 				TX_EPKT_C_CFG_MISC);
65 	} else {
66 		tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
67 		tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
68 	}
69 }
70 
71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en)
72 {
73 	if (en)
74 		rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN,
75 				RX_EDPKT_CFG_ENABLE);
76 	else
77 		rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
78 }
79 
80 static void bcmasp_set_rx_mode(struct net_device *dev)
81 {
82 	unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
83 	struct bcmasp_intf *intf = netdev_priv(dev);
84 	struct netdev_hw_addr *ha;
85 	int ret;
86 
87 	spin_lock_bh(&intf->parent->mda_lock);
88 
89 	bcmasp_disable_all_filters(intf);
90 
91 	if (dev->flags & IFF_PROMISC)
92 		goto set_promisc;
93 
94 	bcmasp_set_promisc(intf, 0);
95 
96 	bcmasp_set_broad(intf, 1);
97 
98 	bcmasp_set_oaddr(intf, dev->dev_addr, 1);
99 
100 	if (dev->flags & IFF_ALLMULTI) {
101 		bcmasp_set_allmulti(intf, 1);
102 	} else {
103 		bcmasp_set_allmulti(intf, 0);
104 
105 		netdev_for_each_mc_addr(ha, dev) {
106 			ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
107 			if (ret) {
108 				intf->mib.mc_filters_full_cnt++;
109 				goto set_promisc;
110 			}
111 		}
112 	}
113 
114 	netdev_for_each_uc_addr(ha, dev) {
115 		ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
116 		if (ret) {
117 			intf->mib.uc_filters_full_cnt++;
118 			goto set_promisc;
119 		}
120 	}
121 
122 	spin_unlock_bh(&intf->parent->mda_lock);
123 	return;
124 
125 set_promisc:
126 	bcmasp_set_promisc(intf, 1);
127 	intf->mib.promisc_filters_cnt++;
128 
129 	/* disable all filters used by this port */
130 	bcmasp_disable_all_filters(intf);
131 
132 	spin_unlock_bh(&intf->parent->mda_lock);
133 }
134 
135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index)
136 {
137 	struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index];
138 
139 	txcb->skb = NULL;
140 	dma_unmap_addr_set(txcb, dma_addr, 0);
141 	dma_unmap_len_set(txcb, dma_len, 0);
142 	txcb->last = false;
143 }
144 
145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt)
146 {
147 	int next_index, i;
148 
149 	/* Check if we have enough room for cnt descriptors */
150 	for (i = 0; i < cnt; i++) {
151 		next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT);
152 		if (next_index == intf->tx_spb_clean_index)
153 			return 1;
154 	}
155 
156 	return 0;
157 }
158 
159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev,
160 					   struct sk_buff *skb,
161 					   bool *csum_hw)
162 {
163 	struct bcmasp_intf *intf = netdev_priv(dev);
164 	u32 header = 0, header2 = 0, epkt = 0;
165 	struct bcmasp_pkt_offload *offload;
166 	unsigned int header_cnt = 0;
167 	u8 ip_proto;
168 	int ret;
169 
170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
171 		return skb;
172 
173 	ret = skb_cow_head(skb, sizeof(*offload));
174 	if (ret < 0) {
175 		intf->mib.tx_realloc_offload_failed++;
176 		goto help;
177 	}
178 
179 	switch (skb->protocol) {
180 	case htons(ETH_P_IP):
181 		header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf);
182 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff);
183 		epkt |= PKT_OFFLOAD_EPKT_IP(0) | PKT_OFFLOAD_EPKT_CSUM_L2;
184 		ip_proto = ip_hdr(skb)->protocol;
185 		header_cnt += 2;
186 		break;
187 	case htons(ETH_P_IPV6):
188 		header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf);
189 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff);
190 		epkt |= PKT_OFFLOAD_EPKT_IP(1) | PKT_OFFLOAD_EPKT_CSUM_L2;
191 		ip_proto = ipv6_hdr(skb)->nexthdr;
192 		header_cnt += 2;
193 		break;
194 	default:
195 		goto help;
196 	}
197 
198 	switch (ip_proto) {
199 	case IPPROTO_TCP:
200 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb));
201 		epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L3;
202 		header_cnt++;
203 		break;
204 	case IPPROTO_UDP:
205 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN);
206 		epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L3;
207 		header_cnt++;
208 		break;
209 	default:
210 		goto help;
211 	}
212 
213 	offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload));
214 
215 	header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) |
216 		  PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN);
217 	epkt |= PKT_OFFLOAD_EPKT_OP;
218 
219 	offload->nop = htonl(PKT_OFFLOAD_NOP);
220 	offload->header = htonl(header);
221 	offload->header2 = htonl(header2);
222 	offload->epkt = htonl(epkt);
223 	offload->end = htonl(PKT_OFFLOAD_END_OP);
224 	*csum_hw = true;
225 
226 	return skb;
227 
228 help:
229 	skb_checksum_help(skb);
230 
231 	return skb;
232 }
233 
234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf)
235 {
236 	return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID);
237 }
238 
239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr)
240 {
241 	rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ);
242 }
243 
244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
245 {
246 	rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ);
247 }
248 
249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf)
250 {
251 	return tx_spb_dma_rq(intf, TX_SPB_DMA_READ);
252 }
253 
254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
255 {
256 	tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID);
257 }
258 
259 static const struct bcmasp_intf_ops bcmasp_intf_ops = {
260 	.rx_desc_read = bcmasp_rx_edpkt_dma_rq,
261 	.rx_buffer_write = bcmasp_rx_edpkt_cfg_wq,
262 	.rx_desc_write = bcmasp_rx_edpkt_dma_wq,
263 	.tx_read = bcmasp_tx_spb_dma_rq,
264 	.tx_write = bcmasp_tx_spb_dma_wq,
265 };
266 
267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269 	struct bcmasp_intf *intf = netdev_priv(dev);
270 	unsigned int total_bytes, size;
271 	int spb_index, nr_frags, i, j;
272 	struct bcmasp_tx_cb *txcb;
273 	dma_addr_t mapping, valid;
274 	struct bcmasp_desc *desc;
275 	bool csum_hw = false;
276 	struct device *kdev;
277 	skb_frag_t *frag;
278 
279 	kdev = &intf->parent->pdev->dev;
280 
281 	nr_frags = skb_shinfo(skb)->nr_frags;
282 
283 	if (tx_spb_ring_full(intf, nr_frags + 1)) {
284 		netif_stop_queue(dev);
285 		if (net_ratelimit())
286 			netdev_err(dev, "Tx Ring Full!\n");
287 		return NETDEV_TX_BUSY;
288 	}
289 
290 	/* Save skb len before adding csum offload header */
291 	total_bytes = skb->len;
292 	skb = bcmasp_csum_offload(dev, skb, &csum_hw);
293 	if (!skb)
294 		return NETDEV_TX_OK;
295 
296 	spb_index = intf->tx_spb_index;
297 	valid = intf->tx_spb_dma_valid;
298 	for (i = 0; i <= nr_frags; i++) {
299 		if (!i) {
300 			size = skb_headlen(skb);
301 			if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) {
302 				if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN))
303 					return NETDEV_TX_OK;
304 				size = skb->len;
305 			}
306 			mapping = dma_map_single(kdev, skb->data, size,
307 						 DMA_TO_DEVICE);
308 		} else {
309 			frag = &skb_shinfo(skb)->frags[i - 1];
310 			size = skb_frag_size(frag);
311 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
312 						   DMA_TO_DEVICE);
313 		}
314 
315 		if (dma_mapping_error(kdev, mapping)) {
316 			intf->mib.tx_dma_failed++;
317 			spb_index = intf->tx_spb_index;
318 			for (j = 0; j < i; j++) {
319 				bcmasp_clean_txcb(intf, spb_index);
320 				spb_index = incr_ring(spb_index,
321 						      DESC_RING_COUNT);
322 			}
323 			/* Rewind so we do not have a hole */
324 			spb_index = intf->tx_spb_index;
325 			return NETDEV_TX_OK;
326 		}
327 
328 		txcb = &intf->tx_cbs[spb_index];
329 		desc = &intf->tx_spb_cpu[spb_index];
330 		memset(desc, 0, sizeof(*desc));
331 		txcb->skb = skb;
332 		txcb->bytes_sent = total_bytes;
333 		dma_unmap_addr_set(txcb, dma_addr, mapping);
334 		dma_unmap_len_set(txcb, dma_len, size);
335 		if (!i) {
336 			desc->flags |= DESC_SOF;
337 			if (csum_hw)
338 				desc->flags |= DESC_EPKT_CMD;
339 		}
340 
341 		if (i == nr_frags) {
342 			desc->flags |= DESC_EOF;
343 			txcb->last = true;
344 		}
345 
346 		desc->buf = mapping;
347 		desc->size = size;
348 		desc->flags |= DESC_INT_EN;
349 
350 		netif_dbg(intf, tx_queued, dev,
351 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n",
352 			  __func__, &mapping, desc->size, desc->flags,
353 			  spb_index);
354 
355 		spb_index = incr_ring(spb_index, DESC_RING_COUNT);
356 		valid = incr_last_byte(valid, intf->tx_spb_dma_addr,
357 				       DESC_RING_COUNT);
358 	}
359 
360 	/* Ensure all descriptors have been written to DRAM for the
361 	 * hardware to see up-to-date contents.
362 	 */
363 	wmb();
364 
365 	intf->tx_spb_index = spb_index;
366 	intf->tx_spb_dma_valid = valid;
367 	bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid);
368 
369 	if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1))
370 		netif_stop_queue(dev);
371 
372 	return NETDEV_TX_OK;
373 }
374 
375 static void bcmasp_netif_start(struct net_device *dev)
376 {
377 	struct bcmasp_intf *intf = netdev_priv(dev);
378 
379 	bcmasp_set_rx_mode(dev);
380 	napi_enable(&intf->tx_napi);
381 	napi_enable(&intf->rx_napi);
382 
383 	bcmasp_enable_rx_irq(intf, 1);
384 	bcmasp_enable_tx_irq(intf, 1);
385 	bcmasp_enable_phy_irq(intf, 1);
386 
387 	phy_start(dev->phydev);
388 }
389 
390 static void umac_reset(struct bcmasp_intf *intf)
391 {
392 	umac_wl(intf, 0x0, UMC_CMD);
393 	umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD);
394 	usleep_range(10, 100);
395 	umac_wl(intf, 0x0, UMC_CMD);
396 }
397 
398 static void umac_set_hw_addr(struct bcmasp_intf *intf,
399 			     const unsigned char *addr)
400 {
401 	u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
402 		    addr[3];
403 	u32 mac1 = (addr[4] << 8) | addr[5];
404 
405 	umac_wl(intf, mac0, UMC_MAC0);
406 	umac_wl(intf, mac1, UMC_MAC1);
407 }
408 
409 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask,
410 			    unsigned int enable)
411 {
412 	u32 reg;
413 
414 	reg = umac_rl(intf, UMC_CMD);
415 	if (enable)
416 		reg |= mask;
417 	else
418 		reg &= ~mask;
419 	umac_wl(intf, reg, UMC_CMD);
420 
421 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
422 	 * to be processed (1 msec).
423 	 */
424 	if (enable == 0)
425 		usleep_range(1000, 2000);
426 }
427 
428 static void umac_init(struct bcmasp_intf *intf)
429 {
430 	umac_wl(intf, 0x800, UMC_FRM_LEN);
431 	umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL);
432 	umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ);
433 	umac_enable_set(intf, UMC_CMD_PROMISC, 1);
434 }
435 
436 static int bcmasp_tx_poll(struct napi_struct *napi, int budget)
437 {
438 	struct bcmasp_intf *intf =
439 		container_of(napi, struct bcmasp_intf, tx_napi);
440 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
441 	struct device *kdev = &intf->parent->pdev->dev;
442 	unsigned long read, released = 0;
443 	struct bcmasp_tx_cb *txcb;
444 	struct bcmasp_desc *desc;
445 	dma_addr_t mapping;
446 
447 	read = bcmasp_intf_tx_read(intf);
448 	while (intf->tx_spb_dma_read != read) {
449 		txcb = &intf->tx_cbs[intf->tx_spb_clean_index];
450 		mapping = dma_unmap_addr(txcb, dma_addr);
451 
452 		dma_unmap_single(kdev, mapping,
453 				 dma_unmap_len(txcb, dma_len),
454 				 DMA_TO_DEVICE);
455 
456 		if (txcb->last) {
457 			dev_consume_skb_any(txcb->skb);
458 
459 			u64_stats_update_begin(&stats->syncp);
460 			u64_stats_inc(&stats->tx_packets);
461 			u64_stats_add(&stats->tx_bytes, txcb->bytes_sent);
462 			u64_stats_update_end(&stats->syncp);
463 		}
464 
465 		desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index];
466 
467 		netif_dbg(intf, tx_done, intf->ndev,
468 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n",
469 			  __func__, &mapping, desc->size, desc->flags,
470 			  intf->tx_spb_clean_index);
471 
472 		bcmasp_clean_txcb(intf, intf->tx_spb_clean_index);
473 		released++;
474 
475 		intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index,
476 						     DESC_RING_COUNT);
477 		intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read,
478 							intf->tx_spb_dma_addr,
479 							DESC_RING_COUNT);
480 	}
481 
482 	/* Ensure all descriptors have been written to DRAM for the hardware
483 	 * to see updated contents.
484 	 */
485 	wmb();
486 
487 	napi_complete(&intf->tx_napi);
488 
489 	bcmasp_enable_tx_irq(intf, 1);
490 
491 	if (released)
492 		netif_wake_queue(intf->ndev);
493 
494 	return 0;
495 }
496 
497 static int bcmasp_rx_poll(struct napi_struct *napi, int budget)
498 {
499 	struct bcmasp_intf *intf =
500 		container_of(napi, struct bcmasp_intf, rx_napi);
501 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
502 	struct device *kdev = &intf->parent->pdev->dev;
503 	unsigned long processed = 0;
504 	struct bcmasp_desc *desc;
505 	struct sk_buff *skb;
506 	dma_addr_t valid;
507 	void *data;
508 	u64 flags;
509 	u32 len;
510 
511 	valid = bcmasp_intf_rx_desc_read(intf) + 1;
512 	if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE)
513 		valid = intf->rx_edpkt_dma_addr;
514 
515 	while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) {
516 		desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index];
517 
518 		/* Ensure that descriptor has been fully written to DRAM by
519 		 * hardware before reading by the CPU
520 		 */
521 		rmb();
522 
523 		/* Calculate virt addr by offsetting from physical addr */
524 		data = intf->rx_ring_cpu +
525 			(DESC_ADDR(desc->buf) - intf->rx_ring_dma);
526 
527 		flags = DESC_FLAGS(desc->buf);
528 		if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) {
529 			if (net_ratelimit()) {
530 				netif_err(intf, rx_status, intf->ndev,
531 					  "flags=0x%llx\n", flags);
532 			}
533 
534 			u64_stats_update_begin(&stats->syncp);
535 			if (flags & DESC_CRC_ERR)
536 				u64_stats_inc(&stats->rx_crc_errs);
537 			if (flags & DESC_RX_SYM_ERR)
538 				u64_stats_inc(&stats->rx_sym_errs);
539 			u64_stats_update_end(&stats->syncp);
540 
541 			goto next;
542 		}
543 
544 		dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size,
545 					DMA_FROM_DEVICE);
546 
547 		len = desc->size;
548 
549 		skb = napi_alloc_skb(napi, len);
550 		if (!skb) {
551 			u64_stats_update_begin(&stats->syncp);
552 			u64_stats_inc(&stats->rx_dropped);
553 			u64_stats_update_end(&stats->syncp);
554 			intf->mib.alloc_rx_skb_failed++;
555 
556 			goto next;
557 		}
558 
559 		skb_put(skb, len);
560 		memcpy(skb->data, data, len);
561 
562 		skb_pull(skb, 2);
563 		len -= 2;
564 		if (likely(intf->crc_fwd)) {
565 			skb_trim(skb, len - ETH_FCS_LEN);
566 			len -= ETH_FCS_LEN;
567 		}
568 
569 		if ((intf->ndev->features & NETIF_F_RXCSUM) &&
570 		    (desc->buf & DESC_CHKSUM))
571 			skb->ip_summed = CHECKSUM_UNNECESSARY;
572 
573 		skb->protocol = eth_type_trans(skb, intf->ndev);
574 
575 		napi_gro_receive(napi, skb);
576 
577 		u64_stats_update_begin(&stats->syncp);
578 		u64_stats_inc(&stats->rx_packets);
579 		u64_stats_add(&stats->rx_bytes, len);
580 		u64_stats_update_end(&stats->syncp);
581 
582 next:
583 		bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) +
584 					    desc->size));
585 
586 		processed++;
587 		intf->rx_edpkt_dma_read =
588 			incr_first_byte(intf->rx_edpkt_dma_read,
589 					intf->rx_edpkt_dma_addr,
590 					DESC_RING_COUNT);
591 		intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index,
592 						 DESC_RING_COUNT);
593 	}
594 
595 	bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read);
596 
597 	if (processed < budget) {
598 		napi_complete_done(&intf->rx_napi, processed);
599 		bcmasp_enable_rx_irq(intf, 1);
600 	}
601 
602 	return processed;
603 }
604 
605 static void bcmasp_adj_link(struct net_device *dev)
606 {
607 	struct bcmasp_intf *intf = netdev_priv(dev);
608 	struct phy_device *phydev = dev->phydev;
609 	u32 cmd_bits = 0, reg;
610 	int changed = 0;
611 	bool active;
612 
613 	if (intf->old_link != phydev->link) {
614 		changed = 1;
615 		intf->old_link = phydev->link;
616 	}
617 
618 	if (intf->old_duplex != phydev->duplex) {
619 		changed = 1;
620 		intf->old_duplex = phydev->duplex;
621 	}
622 
623 	switch (phydev->speed) {
624 	case SPEED_2500:
625 		cmd_bits = UMC_CMD_SPEED_2500;
626 		break;
627 	case SPEED_1000:
628 		cmd_bits = UMC_CMD_SPEED_1000;
629 		break;
630 	case SPEED_100:
631 		cmd_bits = UMC_CMD_SPEED_100;
632 		break;
633 	case SPEED_10:
634 		cmd_bits = UMC_CMD_SPEED_10;
635 		break;
636 	default:
637 		break;
638 	}
639 	cmd_bits <<= UMC_CMD_SPEED_SHIFT;
640 
641 	if (phydev->duplex == DUPLEX_HALF)
642 		cmd_bits |= UMC_CMD_HD_EN;
643 
644 	if (intf->old_pause != phydev->pause) {
645 		changed = 1;
646 		intf->old_pause = phydev->pause;
647 	}
648 
649 	if (!phydev->pause)
650 		cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE;
651 
652 	if (!changed)
653 		return;
654 
655 	if (phydev->link) {
656 		reg = umac_rl(intf, UMC_CMD);
657 		reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) |
658 			UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE |
659 			UMC_CMD_TX_PAUSE_IGNORE);
660 		reg |= cmd_bits;
661 		umac_wl(intf, reg, UMC_CMD);
662 
663 		active = phy_init_eee(phydev, 0) >= 0;
664 		bcmasp_eee_enable_set(intf, active);
665 	}
666 
667 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
668 	if (phydev->link)
669 		reg |= RGMII_LINK;
670 	else
671 		reg &= ~RGMII_LINK;
672 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
673 
674 	if (changed)
675 		phy_print_status(phydev);
676 }
677 
678 static int bcmasp_alloc_buffers(struct bcmasp_intf *intf)
679 {
680 	struct device *kdev = &intf->parent->pdev->dev;
681 	struct page *buffer_pg;
682 
683 	/* Alloc RX */
684 	intf->rx_buf_order = get_order(RING_BUFFER_SIZE);
685 	buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order);
686 	if (!buffer_pg)
687 		return -ENOMEM;
688 
689 	intf->rx_ring_cpu = page_to_virt(buffer_pg);
690 	intf->rx_ring_dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE,
691 					 DMA_FROM_DEVICE);
692 	if (dma_mapping_error(kdev, intf->rx_ring_dma))
693 		goto free_rx_buffer;
694 
695 	intf->rx_edpkt_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
696 						&intf->rx_edpkt_dma_addr, GFP_KERNEL);
697 	if (!intf->rx_edpkt_cpu)
698 		goto free_rx_buffer_dma;
699 
700 	/* Alloc TX */
701 	intf->tx_spb_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
702 					      &intf->tx_spb_dma_addr, GFP_KERNEL);
703 	if (!intf->tx_spb_cpu)
704 		goto free_rx_edpkt_dma;
705 
706 	intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb),
707 			       GFP_KERNEL);
708 	if (!intf->tx_cbs)
709 		goto free_tx_spb_dma;
710 
711 	return 0;
712 
713 free_tx_spb_dma:
714 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
715 			  intf->tx_spb_dma_addr);
716 free_rx_edpkt_dma:
717 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
718 			  intf->rx_edpkt_dma_addr);
719 free_rx_buffer_dma:
720 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
721 		       DMA_FROM_DEVICE);
722 free_rx_buffer:
723 	__free_pages(buffer_pg, intf->rx_buf_order);
724 
725 	return -ENOMEM;
726 }
727 
728 static void bcmasp_reclaim_free_buffers(struct bcmasp_intf *intf)
729 {
730 	struct device *kdev = &intf->parent->pdev->dev;
731 
732 	/* RX buffers */
733 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
734 			  intf->rx_edpkt_dma_addr);
735 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
736 		       DMA_FROM_DEVICE);
737 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
738 
739 	/* TX buffers */
740 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
741 			  intf->tx_spb_dma_addr);
742 	kfree(intf->tx_cbs);
743 }
744 
745 static void bcmasp_init_rx(struct bcmasp_intf *intf)
746 {
747 	/* Restart from index 0 */
748 	intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1;
749 	intf->rx_edpkt_dma_valid = intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1);
750 	intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr;
751 	intf->rx_edpkt_index = 0;
752 
753 	/* Make sure channels are disabled */
754 	rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
755 
756 	/* Rx SPB */
757 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ);
758 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE);
759 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE);
760 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
761 			RX_EDPKT_RING_BUFFER_END);
762 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
763 			RX_EDPKT_RING_BUFFER_VALID);
764 
765 	/* EDPKT */
766 	rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K <<
767 			RX_EDPKT_CFG_CFG0_DBUF_SHIFT) |
768 		       (RX_EDPKT_CFG_CFG0_64_ALN <<
769 			RX_EDPKT_CFG_CFG0_BALN_SHIFT) |
770 		       (RX_EDPKT_CFG_CFG0_EFRM_STUF),
771 			RX_EDPKT_CFG_CFG0);
772 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE);
773 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ);
774 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE);
775 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_END);
776 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_VALID);
777 
778 	umac2fb_wl(intf, UMAC2FB_CFG_DEFAULT_EN | ((intf->channel + 11) <<
779 		   UMAC2FB_CFG_CHID_SHIFT) | (0xd << UMAC2FB_CFG_OK_SEND_SHIFT),
780 		   UMAC2FB_CFG);
781 }
782 
783 
784 static void bcmasp_init_tx(struct bcmasp_intf *intf)
785 {
786 	/* Restart from index 0 */
787 	intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1;
788 	intf->tx_spb_dma_read = intf->tx_spb_dma_addr;
789 	intf->tx_spb_index = 0;
790 	intf->tx_spb_clean_index = 0;
791 
792 	/* Make sure channels are disabled */
793 	tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
794 	tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
795 
796 	/* Tx SPB */
797 	tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT),
798 		       TX_SPB_CTRL_XF_CTRL2);
799 	tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR);
800 	tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT);
801 	tx_spb_top_wl(intf, 0x0, TX_SPB_TOP_SPRE_BW_CTRL);
802 
803 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ);
804 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE);
805 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END);
806 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID);
807 }
808 
809 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable)
810 {
811 	u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN |
812 		   RGMII_EPHY_CFG_IDDQ_GLOBAL;
813 	u32 reg;
814 
815 	reg = rgmii_rl(intf, RGMII_EPHY_CNTRL);
816 	if (enable) {
817 		reg &= ~RGMII_EPHY_CK25_DIS;
818 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
819 		mdelay(1);
820 
821 		reg &= ~mask;
822 		reg |= RGMII_EPHY_RESET;
823 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
824 		mdelay(1);
825 
826 		reg &= ~RGMII_EPHY_RESET;
827 	} else {
828 		reg |= mask | RGMII_EPHY_RESET;
829 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
830 		mdelay(1);
831 		reg |= RGMII_EPHY_CK25_DIS;
832 	}
833 	rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
834 	mdelay(1);
835 
836 	/* Set or clear the LED control override to avoid lighting up LEDs
837 	 * while the EPHY is powered off and drawing unnecessary current.
838 	 */
839 	reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL);
840 	if (enable)
841 		reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD;
842 	else
843 		reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD;
844 	rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL);
845 }
846 
847 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable)
848 {
849 	u32 reg;
850 
851 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
852 	reg &= ~RGMII_OOB_DIS;
853 	if (enable)
854 		reg |= RGMII_MODE_EN;
855 	else
856 		reg &= ~RGMII_MODE_EN;
857 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
858 }
859 
860 static void bcmasp_netif_deinit(struct net_device *dev)
861 {
862 	struct bcmasp_intf *intf = netdev_priv(dev);
863 	u32 reg, timeout = 1000;
864 
865 	napi_disable(&intf->tx_napi);
866 
867 	bcmasp_enable_tx(intf, 0);
868 
869 	/* Flush any TX packets in the pipe */
870 	tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL);
871 	do {
872 		reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS);
873 		if (!(reg & TX_SPB_DMA_FIFO_FLUSH))
874 			break;
875 		usleep_range(1000, 2000);
876 	} while (timeout-- > 0);
877 	tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL);
878 
879 	umac_enable_set(intf, UMC_CMD_TX_EN, 0);
880 
881 	phy_stop(dev->phydev);
882 
883 	umac_enable_set(intf, UMC_CMD_RX_EN, 0);
884 
885 	bcmasp_flush_rx_port(intf);
886 	usleep_range(1000, 2000);
887 	bcmasp_enable_rx(intf, 0);
888 
889 	napi_disable(&intf->rx_napi);
890 
891 	/* Disable interrupts */
892 	bcmasp_enable_tx_irq(intf, 0);
893 	bcmasp_enable_rx_irq(intf, 0);
894 	bcmasp_enable_phy_irq(intf, 0);
895 
896 	netif_napi_del(&intf->tx_napi);
897 	netif_napi_del(&intf->rx_napi);
898 }
899 
900 static int bcmasp_stop(struct net_device *dev)
901 {
902 	struct bcmasp_intf *intf = netdev_priv(dev);
903 
904 	netif_dbg(intf, ifdown, dev, "bcmasp stop\n");
905 
906 	/* Stop tx from updating HW */
907 	netif_tx_disable(dev);
908 
909 	bcmasp_netif_deinit(dev);
910 
911 	bcmasp_reclaim_free_buffers(intf);
912 
913 	phy_disconnect(dev->phydev);
914 
915 	/* Disable internal EPHY or external PHY */
916 	if (intf->internal_phy)
917 		bcmasp_ephy_enable_set(intf, false);
918 	else
919 		bcmasp_rgmii_mode_en_set(intf, false);
920 
921 	/* Disable the interface clocks */
922 	bcmasp_core_clock_set_intf(intf, false);
923 
924 	clk_disable_unprepare(intf->parent->clk);
925 
926 	return 0;
927 }
928 
929 static void bcmasp_configure_port(struct bcmasp_intf *intf)
930 {
931 	u32 reg, id_mode_dis = 0;
932 
933 	reg = rgmii_rl(intf, RGMII_PORT_CNTRL);
934 	reg &= ~RGMII_PORT_MODE_MASK;
935 
936 	switch (intf->phy_interface) {
937 	case PHY_INTERFACE_MODE_RGMII:
938 		/* RGMII_NO_ID: TXC transitions at the same time as TXD
939 		 *		(requires PCB or receiver-side delay)
940 		 * RGMII:	Add 2ns delay on TXC (90 degree shift)
941 		 *
942 		 * ID is implicitly disabled for 100Mbps (RG)MII operation.
943 		 */
944 		id_mode_dis = RGMII_ID_MODE_DIS;
945 		fallthrough;
946 	case PHY_INTERFACE_MODE_RGMII_TXID:
947 		reg |= RGMII_PORT_MODE_EXT_GPHY;
948 		break;
949 	case PHY_INTERFACE_MODE_MII:
950 		reg |= RGMII_PORT_MODE_EXT_EPHY;
951 		break;
952 	default:
953 		break;
954 	}
955 
956 	if (intf->internal_phy)
957 		reg |= RGMII_PORT_MODE_EPHY;
958 
959 	rgmii_wl(intf, reg, RGMII_PORT_CNTRL);
960 
961 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
962 	reg &= ~RGMII_ID_MODE_DIS;
963 	reg |= id_mode_dis;
964 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
965 }
966 
967 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect)
968 {
969 	struct bcmasp_intf *intf = netdev_priv(dev);
970 	phy_interface_t phy_iface = intf->phy_interface;
971 	u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE |
972 			PHY_BRCM_DIS_TXCRXC_NOENRGY |
973 			PHY_BRCM_IDDQ_SUSPEND;
974 	struct phy_device *phydev = NULL;
975 	int ret;
976 
977 	/* Always enable interface clocks */
978 	bcmasp_core_clock_set_intf(intf, true);
979 
980 	/* Enable internal PHY or external PHY before any MAC activity */
981 	if (intf->internal_phy)
982 		bcmasp_ephy_enable_set(intf, true);
983 	else
984 		bcmasp_rgmii_mode_en_set(intf, true);
985 	bcmasp_configure_port(intf);
986 
987 	/* This is an ugly quirk but we have not been correctly
988 	 * interpreting the phy_interface values and we have done that
989 	 * across different drivers, so at least we are consistent in
990 	 * our mistakes.
991 	 *
992 	 * When the Generic PHY driver is in use either the PHY has
993 	 * been strapped or programmed correctly by the boot loader so
994 	 * we should stick to our incorrect interpretation since we
995 	 * have validated it.
996 	 *
997 	 * Now when a dedicated PHY driver is in use, we need to
998 	 * reverse the meaning of the phy_interface_mode values to
999 	 * something that the PHY driver will interpret and act on such
1000 	 * that we have two mistakes canceling themselves so to speak.
1001 	 * We only do this for the two modes that GENET driver
1002 	 * officially supports on Broadcom STB chips:
1003 	 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID.
1004 	 * Other modes are not *officially* supported with the boot
1005 	 * loader and the scripted environment generating Device Tree
1006 	 * blobs for those platforms.
1007 	 *
1008 	 * Note that internal PHY and fixed-link configurations are not
1009 	 * affected because they use different phy_interface_t values
1010 	 * or the Generic PHY driver.
1011 	 */
1012 	switch (phy_iface) {
1013 	case PHY_INTERFACE_MODE_RGMII:
1014 		phy_iface = PHY_INTERFACE_MODE_RGMII_ID;
1015 		break;
1016 	case PHY_INTERFACE_MODE_RGMII_TXID:
1017 		phy_iface = PHY_INTERFACE_MODE_RGMII_RXID;
1018 		break;
1019 	default:
1020 		break;
1021 	}
1022 
1023 	if (phy_connect) {
1024 		phydev = of_phy_connect(dev, intf->phy_dn,
1025 					bcmasp_adj_link, phy_flags,
1026 					phy_iface);
1027 		if (!phydev) {
1028 			ret = -ENODEV;
1029 			netdev_err(dev, "could not attach to PHY\n");
1030 			goto err_phy_disable;
1031 		}
1032 
1033 		if (intf->internal_phy)
1034 			dev->phydev->irq = PHY_MAC_INTERRUPT;
1035 
1036 		/* Indicate that the MAC is responsible for PHY PM */
1037 		phydev->mac_managed_pm = true;
1038 	} else if (!intf->wolopts) {
1039 		ret = phy_resume(dev->phydev);
1040 		if (ret)
1041 			goto err_phy_disable;
1042 	}
1043 
1044 	umac_reset(intf);
1045 
1046 	umac_init(intf);
1047 
1048 	/* Disable the UniMAC RX/TX */
1049 	umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 0);
1050 
1051 	umac_set_hw_addr(intf, dev->dev_addr);
1052 
1053 	intf->old_duplex = -1;
1054 	intf->old_link = -1;
1055 	intf->old_pause = -1;
1056 
1057 	bcmasp_init_tx(intf);
1058 	netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll);
1059 	bcmasp_enable_tx(intf, 1);
1060 
1061 	bcmasp_init_rx(intf);
1062 	netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll);
1063 	bcmasp_enable_rx(intf, 1);
1064 
1065 	/* Turn on UniMAC TX/RX */
1066 	umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 1);
1067 
1068 	intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD);
1069 
1070 	bcmasp_netif_start(dev);
1071 
1072 	netif_start_queue(dev);
1073 
1074 	return 0;
1075 
1076 err_phy_disable:
1077 	if (intf->internal_phy)
1078 		bcmasp_ephy_enable_set(intf, false);
1079 	else
1080 		bcmasp_rgmii_mode_en_set(intf, false);
1081 	return ret;
1082 }
1083 
1084 static int bcmasp_open(struct net_device *dev)
1085 {
1086 	struct bcmasp_intf *intf = netdev_priv(dev);
1087 	int ret;
1088 
1089 	netif_dbg(intf, ifup, dev, "bcmasp open\n");
1090 
1091 	ret = bcmasp_alloc_buffers(intf);
1092 	if (ret)
1093 		return ret;
1094 
1095 	ret = clk_prepare_enable(intf->parent->clk);
1096 	if (ret)
1097 		goto err_free_mem;
1098 
1099 	ret = bcmasp_netif_init(dev, true);
1100 	if (ret) {
1101 		clk_disable_unprepare(intf->parent->clk);
1102 		goto err_free_mem;
1103 	}
1104 
1105 	return ret;
1106 
1107 err_free_mem:
1108 	bcmasp_reclaim_free_buffers(intf);
1109 
1110 	return ret;
1111 }
1112 
1113 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1114 {
1115 	struct bcmasp_intf *intf = netdev_priv(dev);
1116 
1117 	netif_dbg(intf, tx_err, dev, "transmit timeout!\n");
1118 	intf->mib.tx_timeout_cnt++;
1119 }
1120 
1121 static int bcmasp_get_phys_port_name(struct net_device *dev,
1122 				     char *name, size_t len)
1123 {
1124 	struct bcmasp_intf *intf = netdev_priv(dev);
1125 
1126 	if (snprintf(name, len, "p%d", intf->port) >= len)
1127 		return -EINVAL;
1128 
1129 	return 0;
1130 }
1131 
1132 static void bcmasp_get_stats64(struct net_device *dev,
1133 			       struct rtnl_link_stats64 *stats)
1134 {
1135 	struct bcmasp_intf *intf = netdev_priv(dev);
1136 	struct bcmasp_intf_stats64 *lstats;
1137 	unsigned int start;
1138 
1139 	lstats = &intf->stats64;
1140 
1141 	do {
1142 		start = u64_stats_fetch_begin(&lstats->syncp);
1143 		stats->rx_packets = u64_stats_read(&lstats->rx_packets);
1144 		stats->rx_bytes = u64_stats_read(&lstats->rx_bytes);
1145 		stats->rx_dropped = u64_stats_read(&lstats->rx_dropped);
1146 		stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs);
1147 		stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs);
1148 		stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors;
1149 
1150 		stats->tx_packets = u64_stats_read(&lstats->tx_packets);
1151 		stats->tx_bytes = u64_stats_read(&lstats->tx_bytes);
1152 	} while (u64_stats_fetch_retry(&lstats->syncp, start));
1153 }
1154 
1155 static const struct net_device_ops bcmasp_netdev_ops = {
1156 	.ndo_open		= bcmasp_open,
1157 	.ndo_stop		= bcmasp_stop,
1158 	.ndo_start_xmit		= bcmasp_xmit,
1159 	.ndo_tx_timeout		= bcmasp_tx_timeout,
1160 	.ndo_set_rx_mode	= bcmasp_set_rx_mode,
1161 	.ndo_get_phys_port_name	= bcmasp_get_phys_port_name,
1162 	.ndo_eth_ioctl		= phy_do_ioctl_running,
1163 	.ndo_set_mac_address	= eth_mac_addr,
1164 	.ndo_get_stats64	= bcmasp_get_stats64,
1165 };
1166 
1167 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf)
1168 {
1169 	/* Per port */
1170 	intf->res.umac = priv->base + UMC_OFFSET(intf);
1171 	intf->res.umac2fb = priv->base + (priv->hw_info->umac2fb +
1172 					  (intf->port * 0x4));
1173 	intf->res.rgmii = priv->base + RGMII_OFFSET(intf);
1174 
1175 	/* Per ch */
1176 	intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf);
1177 	intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf);
1178 	intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf);
1179 	intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf);
1180 	intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf);
1181 
1182 	intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf);
1183 	intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf);
1184 }
1185 
1186 #define MAX_IRQ_STR_LEN		64
1187 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv,
1188 					    struct device_node *ndev_dn, int i)
1189 {
1190 	struct device *dev = &priv->pdev->dev;
1191 	struct bcmasp_intf *intf;
1192 	struct net_device *ndev;
1193 	int ch, port, ret;
1194 
1195 	if (of_property_read_u32(ndev_dn, "reg", &port)) {
1196 		dev_warn(dev, "%s: invalid port number\n", ndev_dn->name);
1197 		goto err;
1198 	}
1199 
1200 	if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) {
1201 		dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name);
1202 		goto err;
1203 	}
1204 
1205 	ndev = alloc_etherdev(sizeof(struct bcmasp_intf));
1206 	if (!ndev) {
1207 		dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name);
1208 		goto err;
1209 	}
1210 	intf = netdev_priv(ndev);
1211 
1212 	intf->parent = priv;
1213 	intf->ndev = ndev;
1214 	intf->channel = ch;
1215 	intf->port = port;
1216 	intf->ndev_dn = ndev_dn;
1217 	intf->index = i;
1218 
1219 	ret = of_get_phy_mode(ndev_dn, &intf->phy_interface);
1220 	if (ret < 0) {
1221 		dev_err(dev, "invalid PHY mode property\n");
1222 		goto err_free_netdev;
1223 	}
1224 
1225 	if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL)
1226 		intf->internal_phy = true;
1227 
1228 	intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0);
1229 	if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) {
1230 		ret = of_phy_register_fixed_link(ndev_dn);
1231 		if (ret) {
1232 			dev_warn(dev, "%s: failed to register fixed PHY\n",
1233 				 ndev_dn->name);
1234 			goto err_free_netdev;
1235 		}
1236 		intf->phy_dn = ndev_dn;
1237 	}
1238 
1239 	/* Map resource */
1240 	bcmasp_map_res(priv, intf);
1241 
1242 	if ((!phy_interface_mode_is_rgmii(intf->phy_interface) &&
1243 	     intf->phy_interface != PHY_INTERFACE_MODE_MII &&
1244 	     intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) ||
1245 	    (intf->port != 1 && intf->internal_phy)) {
1246 		netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n",
1247 			   phy_modes(intf->phy_interface), intf->port);
1248 		ret = -EINVAL;
1249 		goto err_free_netdev;
1250 	}
1251 
1252 	ret = of_get_ethdev_address(ndev_dn, ndev);
1253 	if (ret) {
1254 		netdev_warn(ndev, "using random Ethernet MAC\n");
1255 		eth_hw_addr_random(ndev);
1256 	}
1257 
1258 	SET_NETDEV_DEV(ndev, dev);
1259 	intf->ops = &bcmasp_intf_ops;
1260 	ndev->netdev_ops = &bcmasp_netdev_ops;
1261 	ndev->ethtool_ops = &bcmasp_ethtool_ops;
1262 	intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV |
1263 					  NETIF_MSG_PROBE |
1264 					  NETIF_MSG_LINK);
1265 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
1266 			  NETIF_F_RXCSUM;
1267 	ndev->hw_features |= ndev->features;
1268 	ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload);
1269 
1270 	return intf;
1271 
1272 err_free_netdev:
1273 	free_netdev(ndev);
1274 err:
1275 	return NULL;
1276 }
1277 
1278 void bcmasp_interface_destroy(struct bcmasp_intf *intf)
1279 {
1280 	if (intf->ndev->reg_state == NETREG_REGISTERED)
1281 		unregister_netdev(intf->ndev);
1282 	if (of_phy_is_fixed_link(intf->ndev_dn))
1283 		of_phy_deregister_fixed_link(intf->ndev_dn);
1284 	free_netdev(intf->ndev);
1285 }
1286 
1287 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf)
1288 {
1289 	struct net_device *ndev = intf->ndev;
1290 	u32 reg;
1291 
1292 	reg = umac_rl(intf, UMC_MPD_CTRL);
1293 	if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
1294 		reg |= UMC_MPD_CTRL_MPD_EN;
1295 	reg &= ~UMC_MPD_CTRL_PSW_EN;
1296 	if (intf->wolopts & WAKE_MAGICSECURE) {
1297 		/* Program the SecureOn password */
1298 		umac_wl(intf, get_unaligned_be16(&intf->sopass[0]),
1299 			UMC_PSW_MS);
1300 		umac_wl(intf, get_unaligned_be32(&intf->sopass[2]),
1301 			UMC_PSW_LS);
1302 		reg |= UMC_MPD_CTRL_PSW_EN;
1303 	}
1304 	umac_wl(intf, reg, UMC_MPD_CTRL);
1305 
1306 	if (intf->wolopts & WAKE_FILTER)
1307 		bcmasp_netfilt_suspend(intf);
1308 
1309 	/* UniMAC receive needs to be turned on */
1310 	umac_enable_set(intf, UMC_CMD_RX_EN, 1);
1311 
1312 	if (intf->parent->wol_irq > 0) {
1313 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1314 				     ASP_WAKEUP_INTR2_MASK_CLEAR);
1315 	}
1316 
1317 	if (intf->eee.eee_enabled && intf->parent->eee_fixup)
1318 		intf->parent->eee_fixup(intf, true);
1319 
1320 	netif_dbg(intf, wol, ndev, "entered WOL mode\n");
1321 }
1322 
1323 int bcmasp_interface_suspend(struct bcmasp_intf *intf)
1324 {
1325 	struct device *kdev = &intf->parent->pdev->dev;
1326 	struct net_device *dev = intf->ndev;
1327 	int ret = 0;
1328 
1329 	if (!netif_running(dev))
1330 		return 0;
1331 
1332 	netif_device_detach(dev);
1333 
1334 	bcmasp_netif_deinit(dev);
1335 
1336 	if (!intf->wolopts) {
1337 		ret = phy_suspend(dev->phydev);
1338 		if (ret)
1339 			goto out;
1340 
1341 		if (intf->internal_phy)
1342 			bcmasp_ephy_enable_set(intf, false);
1343 		else
1344 			bcmasp_rgmii_mode_en_set(intf, false);
1345 
1346 		/* If Wake-on-LAN is disabled, we can safely
1347 		 * disable the network interface clocks.
1348 		 */
1349 		bcmasp_core_clock_set_intf(intf, false);
1350 	}
1351 
1352 	if (device_may_wakeup(kdev) && intf->wolopts)
1353 		bcmasp_suspend_to_wol(intf);
1354 
1355 	clk_disable_unprepare(intf->parent->clk);
1356 
1357 	return ret;
1358 
1359 out:
1360 	bcmasp_netif_init(dev, false);
1361 	return ret;
1362 }
1363 
1364 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf)
1365 {
1366 	u32 reg;
1367 
1368 	if (intf->eee.eee_enabled && intf->parent->eee_fixup)
1369 		intf->parent->eee_fixup(intf, false);
1370 
1371 	reg = umac_rl(intf, UMC_MPD_CTRL);
1372 	reg &= ~UMC_MPD_CTRL_MPD_EN;
1373 	umac_wl(intf, reg, UMC_MPD_CTRL);
1374 
1375 	if (intf->parent->wol_irq > 0) {
1376 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1377 				     ASP_WAKEUP_INTR2_MASK_SET);
1378 	}
1379 }
1380 
1381 int bcmasp_interface_resume(struct bcmasp_intf *intf)
1382 {
1383 	struct net_device *dev = intf->ndev;
1384 	int ret;
1385 
1386 	if (!netif_running(dev))
1387 		return 0;
1388 
1389 	ret = clk_prepare_enable(intf->parent->clk);
1390 	if (ret)
1391 		return ret;
1392 
1393 	ret = bcmasp_netif_init(dev, false);
1394 	if (ret)
1395 		goto out;
1396 
1397 	bcmasp_resume_from_wol(intf);
1398 
1399 	if (intf->eee.eee_enabled)
1400 		bcmasp_eee_enable_set(intf, true);
1401 
1402 	netif_device_attach(dev);
1403 
1404 	return 0;
1405 
1406 out:
1407 	clk_disable_unprepare(intf->parent->clk);
1408 	return ret;
1409 }
1410