xref: /linux/drivers/net/ethernet/broadcom/asp2/bcmasp_intf.c (revision 2b0cfa6e49566c8fa6759734cf821aa6e8271a9e)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)			"bcmasp_intf: " fmt
3 
4 #include <asm/byteorder.h>
5 #include <linux/brcmphy.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/etherdevice.h>
9 #include <linux/netdevice.h>
10 #include <linux/of_net.h>
11 #include <linux/of_mdio.h>
12 #include <linux/phy.h>
13 #include <linux/phy_fixed.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/platform_device.h>
16 #include <net/ip.h>
17 #include <net/ipv6.h>
18 
19 #include "bcmasp.h"
20 #include "bcmasp_intf_defs.h"
21 
22 static int incr_ring(int index, int ring_count)
23 {
24 	index++;
25 	if (index == ring_count)
26 		return 0;
27 
28 	return index;
29 }
30 
31 /* Points to last byte of descriptor */
32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg,
33 				 int ring_count)
34 {
35 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
36 
37 	addr += DESC_SIZE;
38 	if (addr > end)
39 		return beg + DESC_SIZE - 1;
40 
41 	return addr;
42 }
43 
44 /* Points to first byte of descriptor */
45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg,
46 				  int ring_count)
47 {
48 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
49 
50 	addr += DESC_SIZE;
51 	if (addr >= end)
52 		return beg;
53 
54 	return addr;
55 }
56 
57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en)
58 {
59 	if (en) {
60 		tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE);
61 		tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN |
62 				TX_EPKT_C_CFG_MISC_PT |
63 				(intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)),
64 				TX_EPKT_C_CFG_MISC);
65 	} else {
66 		tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
67 		tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
68 	}
69 }
70 
71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en)
72 {
73 	if (en)
74 		rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN,
75 				RX_EDPKT_CFG_ENABLE);
76 	else
77 		rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
78 }
79 
80 static void bcmasp_set_rx_mode(struct net_device *dev)
81 {
82 	unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
83 	struct bcmasp_intf *intf = netdev_priv(dev);
84 	struct netdev_hw_addr *ha;
85 	int ret;
86 
87 	spin_lock_bh(&intf->parent->mda_lock);
88 
89 	bcmasp_disable_all_filters(intf);
90 
91 	if (dev->flags & IFF_PROMISC)
92 		goto set_promisc;
93 
94 	bcmasp_set_promisc(intf, 0);
95 
96 	bcmasp_set_broad(intf, 1);
97 
98 	bcmasp_set_oaddr(intf, dev->dev_addr, 1);
99 
100 	if (dev->flags & IFF_ALLMULTI) {
101 		bcmasp_set_allmulti(intf, 1);
102 	} else {
103 		bcmasp_set_allmulti(intf, 0);
104 
105 		netdev_for_each_mc_addr(ha, dev) {
106 			ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
107 			if (ret) {
108 				intf->mib.mc_filters_full_cnt++;
109 				goto set_promisc;
110 			}
111 		}
112 	}
113 
114 	netdev_for_each_uc_addr(ha, dev) {
115 		ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
116 		if (ret) {
117 			intf->mib.uc_filters_full_cnt++;
118 			goto set_promisc;
119 		}
120 	}
121 
122 	spin_unlock_bh(&intf->parent->mda_lock);
123 	return;
124 
125 set_promisc:
126 	bcmasp_set_promisc(intf, 1);
127 	intf->mib.promisc_filters_cnt++;
128 
129 	/* disable all filters used by this port */
130 	bcmasp_disable_all_filters(intf);
131 
132 	spin_unlock_bh(&intf->parent->mda_lock);
133 }
134 
135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index)
136 {
137 	struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index];
138 
139 	txcb->skb = NULL;
140 	dma_unmap_addr_set(txcb, dma_addr, 0);
141 	dma_unmap_len_set(txcb, dma_len, 0);
142 	txcb->last = false;
143 }
144 
145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt)
146 {
147 	int next_index, i;
148 
149 	/* Check if we have enough room for cnt descriptors */
150 	for (i = 0; i < cnt; i++) {
151 		next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT);
152 		if (next_index == intf->tx_spb_clean_index)
153 			return 1;
154 	}
155 
156 	return 0;
157 }
158 
159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev,
160 					   struct sk_buff *skb,
161 					   bool *csum_hw)
162 {
163 	struct bcmasp_intf *intf = netdev_priv(dev);
164 	u32 header = 0, header2 = 0, epkt = 0;
165 	struct bcmasp_pkt_offload *offload;
166 	unsigned int header_cnt = 0;
167 	u8 ip_proto;
168 	int ret;
169 
170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
171 		return skb;
172 
173 	ret = skb_cow_head(skb, sizeof(*offload));
174 	if (ret < 0) {
175 		intf->mib.tx_realloc_offload_failed++;
176 		goto help;
177 	}
178 
179 	switch (skb->protocol) {
180 	case htons(ETH_P_IP):
181 		header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf);
182 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff);
183 		epkt |= PKT_OFFLOAD_EPKT_IP(0) | PKT_OFFLOAD_EPKT_CSUM_L2;
184 		ip_proto = ip_hdr(skb)->protocol;
185 		header_cnt += 2;
186 		break;
187 	case htons(ETH_P_IPV6):
188 		header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf);
189 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff);
190 		epkt |= PKT_OFFLOAD_EPKT_IP(1) | PKT_OFFLOAD_EPKT_CSUM_L2;
191 		ip_proto = ipv6_hdr(skb)->nexthdr;
192 		header_cnt += 2;
193 		break;
194 	default:
195 		goto help;
196 	}
197 
198 	switch (ip_proto) {
199 	case IPPROTO_TCP:
200 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb));
201 		epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L3;
202 		header_cnt++;
203 		break;
204 	case IPPROTO_UDP:
205 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN);
206 		epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L3;
207 		header_cnt++;
208 		break;
209 	default:
210 		goto help;
211 	}
212 
213 	offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload));
214 
215 	header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) |
216 		  PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN);
217 	epkt |= PKT_OFFLOAD_EPKT_OP;
218 
219 	offload->nop = htonl(PKT_OFFLOAD_NOP);
220 	offload->header = htonl(header);
221 	offload->header2 = htonl(header2);
222 	offload->epkt = htonl(epkt);
223 	offload->end = htonl(PKT_OFFLOAD_END_OP);
224 	*csum_hw = true;
225 
226 	return skb;
227 
228 help:
229 	skb_checksum_help(skb);
230 
231 	return skb;
232 }
233 
234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf)
235 {
236 	return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID);
237 }
238 
239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr)
240 {
241 	rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ);
242 }
243 
244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
245 {
246 	rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ);
247 }
248 
249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf)
250 {
251 	return tx_spb_dma_rq(intf, TX_SPB_DMA_READ);
252 }
253 
254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
255 {
256 	tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID);
257 }
258 
259 static const struct bcmasp_intf_ops bcmasp_intf_ops = {
260 	.rx_desc_read = bcmasp_rx_edpkt_dma_rq,
261 	.rx_buffer_write = bcmasp_rx_edpkt_cfg_wq,
262 	.rx_desc_write = bcmasp_rx_edpkt_dma_wq,
263 	.tx_read = bcmasp_tx_spb_dma_rq,
264 	.tx_write = bcmasp_tx_spb_dma_wq,
265 };
266 
267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269 	struct bcmasp_intf *intf = netdev_priv(dev);
270 	unsigned int total_bytes, size;
271 	int spb_index, nr_frags, i, j;
272 	struct bcmasp_tx_cb *txcb;
273 	dma_addr_t mapping, valid;
274 	struct bcmasp_desc *desc;
275 	bool csum_hw = false;
276 	struct device *kdev;
277 	skb_frag_t *frag;
278 
279 	kdev = &intf->parent->pdev->dev;
280 
281 	nr_frags = skb_shinfo(skb)->nr_frags;
282 
283 	if (tx_spb_ring_full(intf, nr_frags + 1)) {
284 		netif_stop_queue(dev);
285 		if (net_ratelimit())
286 			netdev_err(dev, "Tx Ring Full!\n");
287 		return NETDEV_TX_BUSY;
288 	}
289 
290 	/* Save skb len before adding csum offload header */
291 	total_bytes = skb->len;
292 	skb = bcmasp_csum_offload(dev, skb, &csum_hw);
293 	if (!skb)
294 		return NETDEV_TX_OK;
295 
296 	spb_index = intf->tx_spb_index;
297 	valid = intf->tx_spb_dma_valid;
298 	for (i = 0; i <= nr_frags; i++) {
299 		if (!i) {
300 			size = skb_headlen(skb);
301 			if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) {
302 				if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN))
303 					return NETDEV_TX_OK;
304 				size = skb->len;
305 			}
306 			mapping = dma_map_single(kdev, skb->data, size,
307 						 DMA_TO_DEVICE);
308 		} else {
309 			frag = &skb_shinfo(skb)->frags[i - 1];
310 			size = skb_frag_size(frag);
311 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
312 						   DMA_TO_DEVICE);
313 		}
314 
315 		if (dma_mapping_error(kdev, mapping)) {
316 			intf->mib.tx_dma_failed++;
317 			spb_index = intf->tx_spb_index;
318 			for (j = 0; j < i; j++) {
319 				bcmasp_clean_txcb(intf, spb_index);
320 				spb_index = incr_ring(spb_index,
321 						      DESC_RING_COUNT);
322 			}
323 			/* Rewind so we do not have a hole */
324 			spb_index = intf->tx_spb_index;
325 			return NETDEV_TX_OK;
326 		}
327 
328 		txcb = &intf->tx_cbs[spb_index];
329 		desc = &intf->tx_spb_cpu[spb_index];
330 		memset(desc, 0, sizeof(*desc));
331 		txcb->skb = skb;
332 		txcb->bytes_sent = total_bytes;
333 		dma_unmap_addr_set(txcb, dma_addr, mapping);
334 		dma_unmap_len_set(txcb, dma_len, size);
335 		if (!i) {
336 			desc->flags |= DESC_SOF;
337 			if (csum_hw)
338 				desc->flags |= DESC_EPKT_CMD;
339 		}
340 
341 		if (i == nr_frags) {
342 			desc->flags |= DESC_EOF;
343 			txcb->last = true;
344 		}
345 
346 		desc->buf = mapping;
347 		desc->size = size;
348 		desc->flags |= DESC_INT_EN;
349 
350 		netif_dbg(intf, tx_queued, dev,
351 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n",
352 			  __func__, &mapping, desc->size, desc->flags,
353 			  spb_index);
354 
355 		spb_index = incr_ring(spb_index, DESC_RING_COUNT);
356 		valid = incr_last_byte(valid, intf->tx_spb_dma_addr,
357 				       DESC_RING_COUNT);
358 	}
359 
360 	/* Ensure all descriptors have been written to DRAM for the
361 	 * hardware to see up-to-date contents.
362 	 */
363 	wmb();
364 
365 	intf->tx_spb_index = spb_index;
366 	intf->tx_spb_dma_valid = valid;
367 	bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid);
368 
369 	if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1))
370 		netif_stop_queue(dev);
371 
372 	return NETDEV_TX_OK;
373 }
374 
375 static void bcmasp_netif_start(struct net_device *dev)
376 {
377 	struct bcmasp_intf *intf = netdev_priv(dev);
378 
379 	bcmasp_set_rx_mode(dev);
380 	napi_enable(&intf->tx_napi);
381 	napi_enable(&intf->rx_napi);
382 
383 	bcmasp_enable_rx_irq(intf, 1);
384 	bcmasp_enable_tx_irq(intf, 1);
385 
386 	phy_start(dev->phydev);
387 }
388 
389 static void umac_reset(struct bcmasp_intf *intf)
390 {
391 	umac_wl(intf, 0x0, UMC_CMD);
392 	umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD);
393 	usleep_range(10, 100);
394 	umac_wl(intf, 0x0, UMC_CMD);
395 }
396 
397 static void umac_set_hw_addr(struct bcmasp_intf *intf,
398 			     const unsigned char *addr)
399 {
400 	u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
401 		    addr[3];
402 	u32 mac1 = (addr[4] << 8) | addr[5];
403 
404 	umac_wl(intf, mac0, UMC_MAC0);
405 	umac_wl(intf, mac1, UMC_MAC1);
406 }
407 
408 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask,
409 			    unsigned int enable)
410 {
411 	u32 reg;
412 
413 	reg = umac_rl(intf, UMC_CMD);
414 	if (enable)
415 		reg |= mask;
416 	else
417 		reg &= ~mask;
418 	umac_wl(intf, reg, UMC_CMD);
419 
420 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
421 	 * to be processed (1 msec).
422 	 */
423 	if (enable == 0)
424 		usleep_range(1000, 2000);
425 }
426 
427 static void umac_init(struct bcmasp_intf *intf)
428 {
429 	umac_wl(intf, 0x800, UMC_FRM_LEN);
430 	umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL);
431 	umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ);
432 	umac_enable_set(intf, UMC_CMD_PROMISC, 1);
433 }
434 
435 static int bcmasp_tx_poll(struct napi_struct *napi, int budget)
436 {
437 	struct bcmasp_intf *intf =
438 		container_of(napi, struct bcmasp_intf, tx_napi);
439 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
440 	struct device *kdev = &intf->parent->pdev->dev;
441 	unsigned long read, released = 0;
442 	struct bcmasp_tx_cb *txcb;
443 	struct bcmasp_desc *desc;
444 	dma_addr_t mapping;
445 
446 	read = bcmasp_intf_tx_read(intf);
447 	while (intf->tx_spb_dma_read != read) {
448 		txcb = &intf->tx_cbs[intf->tx_spb_clean_index];
449 		mapping = dma_unmap_addr(txcb, dma_addr);
450 
451 		dma_unmap_single(kdev, mapping,
452 				 dma_unmap_len(txcb, dma_len),
453 				 DMA_TO_DEVICE);
454 
455 		if (txcb->last) {
456 			dev_consume_skb_any(txcb->skb);
457 
458 			u64_stats_update_begin(&stats->syncp);
459 			u64_stats_inc(&stats->tx_packets);
460 			u64_stats_add(&stats->tx_bytes, txcb->bytes_sent);
461 			u64_stats_update_end(&stats->syncp);
462 		}
463 
464 		desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index];
465 
466 		netif_dbg(intf, tx_done, intf->ndev,
467 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n",
468 			  __func__, &mapping, desc->size, desc->flags,
469 			  intf->tx_spb_clean_index);
470 
471 		bcmasp_clean_txcb(intf, intf->tx_spb_clean_index);
472 		released++;
473 
474 		intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index,
475 						     DESC_RING_COUNT);
476 		intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read,
477 							intf->tx_spb_dma_addr,
478 							DESC_RING_COUNT);
479 	}
480 
481 	/* Ensure all descriptors have been written to DRAM for the hardware
482 	 * to see updated contents.
483 	 */
484 	wmb();
485 
486 	napi_complete(&intf->tx_napi);
487 
488 	bcmasp_enable_tx_irq(intf, 1);
489 
490 	if (released)
491 		netif_wake_queue(intf->ndev);
492 
493 	return 0;
494 }
495 
496 static int bcmasp_rx_poll(struct napi_struct *napi, int budget)
497 {
498 	struct bcmasp_intf *intf =
499 		container_of(napi, struct bcmasp_intf, rx_napi);
500 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
501 	struct device *kdev = &intf->parent->pdev->dev;
502 	unsigned long processed = 0;
503 	struct bcmasp_desc *desc;
504 	struct sk_buff *skb;
505 	dma_addr_t valid;
506 	void *data;
507 	u64 flags;
508 	u32 len;
509 
510 	valid = bcmasp_intf_rx_desc_read(intf) + 1;
511 	if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE)
512 		valid = intf->rx_edpkt_dma_addr;
513 
514 	while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) {
515 		desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index];
516 
517 		/* Ensure that descriptor has been fully written to DRAM by
518 		 * hardware before reading by the CPU
519 		 */
520 		rmb();
521 
522 		/* Calculate virt addr by offsetting from physical addr */
523 		data = intf->rx_ring_cpu +
524 			(DESC_ADDR(desc->buf) - intf->rx_ring_dma);
525 
526 		flags = DESC_FLAGS(desc->buf);
527 		if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) {
528 			if (net_ratelimit()) {
529 				netif_err(intf, rx_status, intf->ndev,
530 					  "flags=0x%llx\n", flags);
531 			}
532 
533 			u64_stats_update_begin(&stats->syncp);
534 			if (flags & DESC_CRC_ERR)
535 				u64_stats_inc(&stats->rx_crc_errs);
536 			if (flags & DESC_RX_SYM_ERR)
537 				u64_stats_inc(&stats->rx_sym_errs);
538 			u64_stats_update_end(&stats->syncp);
539 
540 			goto next;
541 		}
542 
543 		dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size,
544 					DMA_FROM_DEVICE);
545 
546 		len = desc->size;
547 
548 		skb = napi_alloc_skb(napi, len);
549 		if (!skb) {
550 			u64_stats_update_begin(&stats->syncp);
551 			u64_stats_inc(&stats->rx_dropped);
552 			u64_stats_update_end(&stats->syncp);
553 			intf->mib.alloc_rx_skb_failed++;
554 
555 			goto next;
556 		}
557 
558 		skb_put(skb, len);
559 		memcpy(skb->data, data, len);
560 
561 		skb_pull(skb, 2);
562 		len -= 2;
563 		if (likely(intf->crc_fwd)) {
564 			skb_trim(skb, len - ETH_FCS_LEN);
565 			len -= ETH_FCS_LEN;
566 		}
567 
568 		if ((intf->ndev->features & NETIF_F_RXCSUM) &&
569 		    (desc->buf & DESC_CHKSUM))
570 			skb->ip_summed = CHECKSUM_UNNECESSARY;
571 
572 		skb->protocol = eth_type_trans(skb, intf->ndev);
573 
574 		napi_gro_receive(napi, skb);
575 
576 		u64_stats_update_begin(&stats->syncp);
577 		u64_stats_inc(&stats->rx_packets);
578 		u64_stats_add(&stats->rx_bytes, len);
579 		u64_stats_update_end(&stats->syncp);
580 
581 next:
582 		bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) +
583 					    desc->size));
584 
585 		processed++;
586 		intf->rx_edpkt_dma_read =
587 			incr_first_byte(intf->rx_edpkt_dma_read,
588 					intf->rx_edpkt_dma_addr,
589 					DESC_RING_COUNT);
590 		intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index,
591 						 DESC_RING_COUNT);
592 	}
593 
594 	bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read);
595 
596 	if (processed < budget) {
597 		napi_complete_done(&intf->rx_napi, processed);
598 		bcmasp_enable_rx_irq(intf, 1);
599 	}
600 
601 	return processed;
602 }
603 
604 static void bcmasp_adj_link(struct net_device *dev)
605 {
606 	struct bcmasp_intf *intf = netdev_priv(dev);
607 	struct phy_device *phydev = dev->phydev;
608 	u32 cmd_bits = 0, reg;
609 	int changed = 0;
610 	bool active;
611 
612 	if (intf->old_link != phydev->link) {
613 		changed = 1;
614 		intf->old_link = phydev->link;
615 	}
616 
617 	if (intf->old_duplex != phydev->duplex) {
618 		changed = 1;
619 		intf->old_duplex = phydev->duplex;
620 	}
621 
622 	switch (phydev->speed) {
623 	case SPEED_2500:
624 		cmd_bits = UMC_CMD_SPEED_2500;
625 		break;
626 	case SPEED_1000:
627 		cmd_bits = UMC_CMD_SPEED_1000;
628 		break;
629 	case SPEED_100:
630 		cmd_bits = UMC_CMD_SPEED_100;
631 		break;
632 	case SPEED_10:
633 		cmd_bits = UMC_CMD_SPEED_10;
634 		break;
635 	default:
636 		break;
637 	}
638 	cmd_bits <<= UMC_CMD_SPEED_SHIFT;
639 
640 	if (phydev->duplex == DUPLEX_HALF)
641 		cmd_bits |= UMC_CMD_HD_EN;
642 
643 	if (intf->old_pause != phydev->pause) {
644 		changed = 1;
645 		intf->old_pause = phydev->pause;
646 	}
647 
648 	if (!phydev->pause)
649 		cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE;
650 
651 	if (!changed)
652 		return;
653 
654 	if (phydev->link) {
655 		reg = umac_rl(intf, UMC_CMD);
656 		reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) |
657 			UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE |
658 			UMC_CMD_TX_PAUSE_IGNORE);
659 		reg |= cmd_bits;
660 		umac_wl(intf, reg, UMC_CMD);
661 
662 		active = phy_init_eee(phydev, 0) >= 0;
663 		bcmasp_eee_enable_set(intf, active);
664 	}
665 
666 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
667 	if (phydev->link)
668 		reg |= RGMII_LINK;
669 	else
670 		reg &= ~RGMII_LINK;
671 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
672 
673 	if (changed)
674 		phy_print_status(phydev);
675 }
676 
677 static int bcmasp_init_rx(struct bcmasp_intf *intf)
678 {
679 	struct device *kdev = &intf->parent->pdev->dev;
680 	struct page *buffer_pg;
681 	dma_addr_t dma;
682 	void *p;
683 	u32 reg;
684 	int ret;
685 
686 	intf->rx_buf_order = get_order(RING_BUFFER_SIZE);
687 	buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order);
688 
689 	dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE,
690 			   DMA_FROM_DEVICE);
691 	if (dma_mapping_error(kdev, dma)) {
692 		__free_pages(buffer_pg, intf->rx_buf_order);
693 		return -ENOMEM;
694 	}
695 	intf->rx_ring_cpu = page_to_virt(buffer_pg);
696 	intf->rx_ring_dma = dma;
697 	intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1;
698 
699 	p = dma_alloc_coherent(kdev, DESC_RING_SIZE, &intf->rx_edpkt_dma_addr,
700 			       GFP_KERNEL);
701 	if (!p) {
702 		ret = -ENOMEM;
703 		goto free_rx_ring;
704 	}
705 	intf->rx_edpkt_cpu = p;
706 
707 	netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll);
708 
709 	intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr;
710 	intf->rx_edpkt_index = 0;
711 
712 	/* Make sure channels are disabled */
713 	rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
714 
715 	/* Rx SPB */
716 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ);
717 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE);
718 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE);
719 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
720 			RX_EDPKT_RING_BUFFER_END);
721 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
722 			RX_EDPKT_RING_BUFFER_VALID);
723 
724 	/* EDPKT */
725 	rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K <<
726 			RX_EDPKT_CFG_CFG0_DBUF_SHIFT) |
727 		       (RX_EDPKT_CFG_CFG0_64_ALN <<
728 			RX_EDPKT_CFG_CFG0_BALN_SHIFT) |
729 		       (RX_EDPKT_CFG_CFG0_EFRM_STUF),
730 			RX_EDPKT_CFG_CFG0);
731 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE);
732 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ);
733 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE);
734 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1),
735 			RX_EDPKT_DMA_END);
736 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1),
737 			RX_EDPKT_DMA_VALID);
738 
739 	reg = UMAC2FB_CFG_DEFAULT_EN |
740 	      ((intf->channel + 11) << UMAC2FB_CFG_CHID_SHIFT);
741 	reg |= (0xd << UMAC2FB_CFG_OK_SEND_SHIFT);
742 	umac2fb_wl(intf, reg, UMAC2FB_CFG);
743 
744 	return 0;
745 
746 free_rx_ring:
747 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
748 		       DMA_FROM_DEVICE);
749 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
750 
751 	return ret;
752 }
753 
754 static void bcmasp_reclaim_free_all_rx(struct bcmasp_intf *intf)
755 {
756 	struct device *kdev = &intf->parent->pdev->dev;
757 
758 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
759 			  intf->rx_edpkt_dma_addr);
760 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
761 		       DMA_FROM_DEVICE);
762 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
763 }
764 
765 static int bcmasp_init_tx(struct bcmasp_intf *intf)
766 {
767 	struct device *kdev = &intf->parent->pdev->dev;
768 	void *p;
769 	int ret;
770 
771 	p = dma_alloc_coherent(kdev, DESC_RING_SIZE, &intf->tx_spb_dma_addr,
772 			       GFP_KERNEL);
773 	if (!p)
774 		return -ENOMEM;
775 
776 	intf->tx_spb_cpu = p;
777 	intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1;
778 	intf->tx_spb_dma_read = intf->tx_spb_dma_addr;
779 
780 	intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb),
781 			       GFP_KERNEL);
782 	if (!intf->tx_cbs) {
783 		ret = -ENOMEM;
784 		goto free_tx_spb;
785 	}
786 
787 	intf->tx_spb_index = 0;
788 	intf->tx_spb_clean_index = 0;
789 
790 	netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll);
791 
792 	/* Make sure channels are disabled */
793 	tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
794 	tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
795 
796 	/* Tx SPB */
797 	tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT),
798 		       TX_SPB_CTRL_XF_CTRL2);
799 	tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR);
800 	tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT);
801 	tx_spb_top_wl(intf, 0x0, TX_SPB_TOP_SPRE_BW_CTRL);
802 
803 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ);
804 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE);
805 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END);
806 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID);
807 
808 	return 0;
809 
810 free_tx_spb:
811 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
812 			  intf->tx_spb_dma_addr);
813 
814 	return ret;
815 }
816 
817 static void bcmasp_reclaim_free_all_tx(struct bcmasp_intf *intf)
818 {
819 	struct device *kdev = &intf->parent->pdev->dev;
820 
821 	/* Free descriptors */
822 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
823 			  intf->tx_spb_dma_addr);
824 
825 	/* Free cbs */
826 	kfree(intf->tx_cbs);
827 }
828 
829 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable)
830 {
831 	u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN |
832 		   RGMII_EPHY_CFG_IDDQ_GLOBAL;
833 	u32 reg;
834 
835 	reg = rgmii_rl(intf, RGMII_EPHY_CNTRL);
836 	if (enable) {
837 		reg &= ~RGMII_EPHY_CK25_DIS;
838 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
839 		mdelay(1);
840 
841 		reg &= ~mask;
842 		reg |= RGMII_EPHY_RESET;
843 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
844 		mdelay(1);
845 
846 		reg &= ~RGMII_EPHY_RESET;
847 	} else {
848 		reg |= mask | RGMII_EPHY_RESET;
849 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
850 		mdelay(1);
851 		reg |= RGMII_EPHY_CK25_DIS;
852 	}
853 	rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
854 	mdelay(1);
855 
856 	/* Set or clear the LED control override to avoid lighting up LEDs
857 	 * while the EPHY is powered off and drawing unnecessary current.
858 	 */
859 	reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL);
860 	if (enable)
861 		reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD;
862 	else
863 		reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD;
864 	rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL);
865 }
866 
867 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable)
868 {
869 	u32 reg;
870 
871 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
872 	reg &= ~RGMII_OOB_DIS;
873 	if (enable)
874 		reg |= RGMII_MODE_EN;
875 	else
876 		reg &= ~RGMII_MODE_EN;
877 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
878 }
879 
880 static void bcmasp_netif_deinit(struct net_device *dev)
881 {
882 	struct bcmasp_intf *intf = netdev_priv(dev);
883 	u32 reg, timeout = 1000;
884 
885 	napi_disable(&intf->tx_napi);
886 
887 	bcmasp_enable_tx(intf, 0);
888 
889 	/* Flush any TX packets in the pipe */
890 	tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL);
891 	do {
892 		reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS);
893 		if (!(reg & TX_SPB_DMA_FIFO_FLUSH))
894 			break;
895 		usleep_range(1000, 2000);
896 	} while (timeout-- > 0);
897 	tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL);
898 
899 	umac_enable_set(intf, UMC_CMD_TX_EN, 0);
900 
901 	phy_stop(dev->phydev);
902 
903 	umac_enable_set(intf, UMC_CMD_RX_EN, 0);
904 
905 	bcmasp_flush_rx_port(intf);
906 	usleep_range(1000, 2000);
907 	bcmasp_enable_rx(intf, 0);
908 
909 	napi_disable(&intf->rx_napi);
910 
911 	/* Disable interrupts */
912 	bcmasp_enable_tx_irq(intf, 0);
913 	bcmasp_enable_rx_irq(intf, 0);
914 
915 	netif_napi_del(&intf->tx_napi);
916 	bcmasp_reclaim_free_all_tx(intf);
917 
918 	netif_napi_del(&intf->rx_napi);
919 	bcmasp_reclaim_free_all_rx(intf);
920 }
921 
922 static int bcmasp_stop(struct net_device *dev)
923 {
924 	struct bcmasp_intf *intf = netdev_priv(dev);
925 
926 	netif_dbg(intf, ifdown, dev, "bcmasp stop\n");
927 
928 	/* Stop tx from updating HW */
929 	netif_tx_disable(dev);
930 
931 	bcmasp_netif_deinit(dev);
932 
933 	phy_disconnect(dev->phydev);
934 
935 	/* Disable internal EPHY or external PHY */
936 	if (intf->internal_phy)
937 		bcmasp_ephy_enable_set(intf, false);
938 	else
939 		bcmasp_rgmii_mode_en_set(intf, false);
940 
941 	/* Disable the interface clocks */
942 	bcmasp_core_clock_set_intf(intf, false);
943 
944 	clk_disable_unprepare(intf->parent->clk);
945 
946 	return 0;
947 }
948 
949 static void bcmasp_configure_port(struct bcmasp_intf *intf)
950 {
951 	u32 reg, id_mode_dis = 0;
952 
953 	reg = rgmii_rl(intf, RGMII_PORT_CNTRL);
954 	reg &= ~RGMII_PORT_MODE_MASK;
955 
956 	switch (intf->phy_interface) {
957 	case PHY_INTERFACE_MODE_RGMII:
958 		/* RGMII_NO_ID: TXC transitions at the same time as TXD
959 		 *		(requires PCB or receiver-side delay)
960 		 * RGMII:	Add 2ns delay on TXC (90 degree shift)
961 		 *
962 		 * ID is implicitly disabled for 100Mbps (RG)MII operation.
963 		 */
964 		id_mode_dis = RGMII_ID_MODE_DIS;
965 		fallthrough;
966 	case PHY_INTERFACE_MODE_RGMII_TXID:
967 		reg |= RGMII_PORT_MODE_EXT_GPHY;
968 		break;
969 	case PHY_INTERFACE_MODE_MII:
970 		reg |= RGMII_PORT_MODE_EXT_EPHY;
971 		break;
972 	default:
973 		break;
974 	}
975 
976 	if (intf->internal_phy)
977 		reg |= RGMII_PORT_MODE_EPHY;
978 
979 	rgmii_wl(intf, reg, RGMII_PORT_CNTRL);
980 
981 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
982 	reg &= ~RGMII_ID_MODE_DIS;
983 	reg |= id_mode_dis;
984 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
985 }
986 
987 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect)
988 {
989 	struct bcmasp_intf *intf = netdev_priv(dev);
990 	phy_interface_t phy_iface = intf->phy_interface;
991 	u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE |
992 			PHY_BRCM_DIS_TXCRXC_NOENRGY |
993 			PHY_BRCM_IDDQ_SUSPEND;
994 	struct phy_device *phydev = NULL;
995 	int ret;
996 
997 	/* Always enable interface clocks */
998 	bcmasp_core_clock_set_intf(intf, true);
999 
1000 	/* Enable internal PHY or external PHY before any MAC activity */
1001 	if (intf->internal_phy)
1002 		bcmasp_ephy_enable_set(intf, true);
1003 	else
1004 		bcmasp_rgmii_mode_en_set(intf, true);
1005 	bcmasp_configure_port(intf);
1006 
1007 	/* This is an ugly quirk but we have not been correctly
1008 	 * interpreting the phy_interface values and we have done that
1009 	 * across different drivers, so at least we are consistent in
1010 	 * our mistakes.
1011 	 *
1012 	 * When the Generic PHY driver is in use either the PHY has
1013 	 * been strapped or programmed correctly by the boot loader so
1014 	 * we should stick to our incorrect interpretation since we
1015 	 * have validated it.
1016 	 *
1017 	 * Now when a dedicated PHY driver is in use, we need to
1018 	 * reverse the meaning of the phy_interface_mode values to
1019 	 * something that the PHY driver will interpret and act on such
1020 	 * that we have two mistakes canceling themselves so to speak.
1021 	 * We only do this for the two modes that GENET driver
1022 	 * officially supports on Broadcom STB chips:
1023 	 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID.
1024 	 * Other modes are not *officially* supported with the boot
1025 	 * loader and the scripted environment generating Device Tree
1026 	 * blobs for those platforms.
1027 	 *
1028 	 * Note that internal PHY and fixed-link configurations are not
1029 	 * affected because they use different phy_interface_t values
1030 	 * or the Generic PHY driver.
1031 	 */
1032 	switch (phy_iface) {
1033 	case PHY_INTERFACE_MODE_RGMII:
1034 		phy_iface = PHY_INTERFACE_MODE_RGMII_ID;
1035 		break;
1036 	case PHY_INTERFACE_MODE_RGMII_TXID:
1037 		phy_iface = PHY_INTERFACE_MODE_RGMII_RXID;
1038 		break;
1039 	default:
1040 		break;
1041 	}
1042 
1043 	if (phy_connect) {
1044 		phydev = of_phy_connect(dev, intf->phy_dn,
1045 					bcmasp_adj_link, phy_flags,
1046 					phy_iface);
1047 		if (!phydev) {
1048 			ret = -ENODEV;
1049 			netdev_err(dev, "could not attach to PHY\n");
1050 			goto err_phy_disable;
1051 		}
1052 	} else if (!intf->wolopts) {
1053 		ret = phy_resume(dev->phydev);
1054 		if (ret)
1055 			goto err_phy_disable;
1056 	}
1057 
1058 	umac_reset(intf);
1059 
1060 	umac_init(intf);
1061 
1062 	/* Disable the UniMAC RX/TX */
1063 	umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 0);
1064 
1065 	umac_set_hw_addr(intf, dev->dev_addr);
1066 
1067 	intf->old_duplex = -1;
1068 	intf->old_link = -1;
1069 	intf->old_pause = -1;
1070 
1071 	ret = bcmasp_init_tx(intf);
1072 	if (ret)
1073 		goto err_phy_disconnect;
1074 
1075 	/* Turn on asp */
1076 	bcmasp_enable_tx(intf, 1);
1077 
1078 	ret = bcmasp_init_rx(intf);
1079 	if (ret)
1080 		goto err_reclaim_tx;
1081 
1082 	bcmasp_enable_rx(intf, 1);
1083 
1084 	/* Turn on UniMAC TX/RX */
1085 	umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 1);
1086 
1087 	intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD);
1088 
1089 	bcmasp_netif_start(dev);
1090 
1091 	netif_start_queue(dev);
1092 
1093 	return 0;
1094 
1095 err_reclaim_tx:
1096 	bcmasp_reclaim_free_all_tx(intf);
1097 err_phy_disconnect:
1098 	if (phydev)
1099 		phy_disconnect(phydev);
1100 err_phy_disable:
1101 	if (intf->internal_phy)
1102 		bcmasp_ephy_enable_set(intf, false);
1103 	else
1104 		bcmasp_rgmii_mode_en_set(intf, false);
1105 	return ret;
1106 }
1107 
1108 static int bcmasp_open(struct net_device *dev)
1109 {
1110 	struct bcmasp_intf *intf = netdev_priv(dev);
1111 	int ret;
1112 
1113 	netif_dbg(intf, ifup, dev, "bcmasp open\n");
1114 
1115 	ret = clk_prepare_enable(intf->parent->clk);
1116 	if (ret)
1117 		return ret;
1118 
1119 	ret = bcmasp_netif_init(dev, true);
1120 	if (ret)
1121 		clk_disable_unprepare(intf->parent->clk);
1122 
1123 	return ret;
1124 }
1125 
1126 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1127 {
1128 	struct bcmasp_intf *intf = netdev_priv(dev);
1129 
1130 	netif_dbg(intf, tx_err, dev, "transmit timeout!\n");
1131 	intf->mib.tx_timeout_cnt++;
1132 }
1133 
1134 static int bcmasp_get_phys_port_name(struct net_device *dev,
1135 				     char *name, size_t len)
1136 {
1137 	struct bcmasp_intf *intf = netdev_priv(dev);
1138 
1139 	if (snprintf(name, len, "p%d", intf->port) >= len)
1140 		return -EINVAL;
1141 
1142 	return 0;
1143 }
1144 
1145 static void bcmasp_get_stats64(struct net_device *dev,
1146 			       struct rtnl_link_stats64 *stats)
1147 {
1148 	struct bcmasp_intf *intf = netdev_priv(dev);
1149 	struct bcmasp_intf_stats64 *lstats;
1150 	unsigned int start;
1151 
1152 	lstats = &intf->stats64;
1153 
1154 	do {
1155 		start = u64_stats_fetch_begin(&lstats->syncp);
1156 		stats->rx_packets = u64_stats_read(&lstats->rx_packets);
1157 		stats->rx_bytes = u64_stats_read(&lstats->rx_bytes);
1158 		stats->rx_dropped = u64_stats_read(&lstats->rx_dropped);
1159 		stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs);
1160 		stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs);
1161 		stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors;
1162 
1163 		stats->tx_packets = u64_stats_read(&lstats->tx_packets);
1164 		stats->tx_bytes = u64_stats_read(&lstats->tx_bytes);
1165 	} while (u64_stats_fetch_retry(&lstats->syncp, start));
1166 }
1167 
1168 static const struct net_device_ops bcmasp_netdev_ops = {
1169 	.ndo_open		= bcmasp_open,
1170 	.ndo_stop		= bcmasp_stop,
1171 	.ndo_start_xmit		= bcmasp_xmit,
1172 	.ndo_tx_timeout		= bcmasp_tx_timeout,
1173 	.ndo_set_rx_mode	= bcmasp_set_rx_mode,
1174 	.ndo_get_phys_port_name	= bcmasp_get_phys_port_name,
1175 	.ndo_eth_ioctl		= phy_do_ioctl_running,
1176 	.ndo_set_mac_address	= eth_mac_addr,
1177 	.ndo_get_stats64	= bcmasp_get_stats64,
1178 };
1179 
1180 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf)
1181 {
1182 	/* Per port */
1183 	intf->res.umac = priv->base + UMC_OFFSET(intf);
1184 	intf->res.umac2fb = priv->base + (priv->hw_info->umac2fb +
1185 					  (intf->port * 0x4));
1186 	intf->res.rgmii = priv->base + RGMII_OFFSET(intf);
1187 
1188 	/* Per ch */
1189 	intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf);
1190 	intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf);
1191 	intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf);
1192 	intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf);
1193 	intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf);
1194 
1195 	intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf);
1196 	intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf);
1197 }
1198 
1199 #define MAX_IRQ_STR_LEN		64
1200 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv,
1201 					    struct device_node *ndev_dn, int i)
1202 {
1203 	struct device *dev = &priv->pdev->dev;
1204 	struct bcmasp_intf *intf;
1205 	struct net_device *ndev;
1206 	int ch, port, ret;
1207 
1208 	if (of_property_read_u32(ndev_dn, "reg", &port)) {
1209 		dev_warn(dev, "%s: invalid port number\n", ndev_dn->name);
1210 		goto err;
1211 	}
1212 
1213 	if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) {
1214 		dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name);
1215 		goto err;
1216 	}
1217 
1218 	ndev = alloc_etherdev(sizeof(struct bcmasp_intf));
1219 	if (!ndev) {
1220 		dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name);
1221 		goto err;
1222 	}
1223 	intf = netdev_priv(ndev);
1224 
1225 	intf->parent = priv;
1226 	intf->ndev = ndev;
1227 	intf->channel = ch;
1228 	intf->port = port;
1229 	intf->ndev_dn = ndev_dn;
1230 	intf->index = i;
1231 
1232 	ret = of_get_phy_mode(ndev_dn, &intf->phy_interface);
1233 	if (ret < 0) {
1234 		dev_err(dev, "invalid PHY mode property\n");
1235 		goto err_free_netdev;
1236 	}
1237 
1238 	if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL)
1239 		intf->internal_phy = true;
1240 
1241 	intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0);
1242 	if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) {
1243 		ret = of_phy_register_fixed_link(ndev_dn);
1244 		if (ret) {
1245 			dev_warn(dev, "%s: failed to register fixed PHY\n",
1246 				 ndev_dn->name);
1247 			goto err_free_netdev;
1248 		}
1249 		intf->phy_dn = ndev_dn;
1250 	}
1251 
1252 	/* Map resource */
1253 	bcmasp_map_res(priv, intf);
1254 
1255 	if ((!phy_interface_mode_is_rgmii(intf->phy_interface) &&
1256 	     intf->phy_interface != PHY_INTERFACE_MODE_MII &&
1257 	     intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) ||
1258 	    (intf->port != 1 && intf->internal_phy)) {
1259 		netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n",
1260 			   phy_modes(intf->phy_interface), intf->port);
1261 		ret = -EINVAL;
1262 		goto err_free_netdev;
1263 	}
1264 
1265 	ret = of_get_ethdev_address(ndev_dn, ndev);
1266 	if (ret) {
1267 		netdev_warn(ndev, "using random Ethernet MAC\n");
1268 		eth_hw_addr_random(ndev);
1269 	}
1270 
1271 	SET_NETDEV_DEV(ndev, dev);
1272 	intf->ops = &bcmasp_intf_ops;
1273 	ndev->netdev_ops = &bcmasp_netdev_ops;
1274 	ndev->ethtool_ops = &bcmasp_ethtool_ops;
1275 	intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV |
1276 					  NETIF_MSG_PROBE |
1277 					  NETIF_MSG_LINK);
1278 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
1279 			  NETIF_F_RXCSUM;
1280 	ndev->hw_features |= ndev->features;
1281 	ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload);
1282 
1283 	return intf;
1284 
1285 err_free_netdev:
1286 	free_netdev(ndev);
1287 err:
1288 	return NULL;
1289 }
1290 
1291 void bcmasp_interface_destroy(struct bcmasp_intf *intf)
1292 {
1293 	if (intf->ndev->reg_state == NETREG_REGISTERED)
1294 		unregister_netdev(intf->ndev);
1295 	if (of_phy_is_fixed_link(intf->ndev_dn))
1296 		of_phy_deregister_fixed_link(intf->ndev_dn);
1297 	free_netdev(intf->ndev);
1298 }
1299 
1300 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf)
1301 {
1302 	struct net_device *ndev = intf->ndev;
1303 	u32 reg;
1304 
1305 	reg = umac_rl(intf, UMC_MPD_CTRL);
1306 	if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
1307 		reg |= UMC_MPD_CTRL_MPD_EN;
1308 	reg &= ~UMC_MPD_CTRL_PSW_EN;
1309 	if (intf->wolopts & WAKE_MAGICSECURE) {
1310 		/* Program the SecureOn password */
1311 		umac_wl(intf, get_unaligned_be16(&intf->sopass[0]),
1312 			UMC_PSW_MS);
1313 		umac_wl(intf, get_unaligned_be32(&intf->sopass[2]),
1314 			UMC_PSW_LS);
1315 		reg |= UMC_MPD_CTRL_PSW_EN;
1316 	}
1317 	umac_wl(intf, reg, UMC_MPD_CTRL);
1318 
1319 	if (intf->wolopts & WAKE_FILTER)
1320 		bcmasp_netfilt_suspend(intf);
1321 
1322 	/* UniMAC receive needs to be turned on */
1323 	umac_enable_set(intf, UMC_CMD_RX_EN, 1);
1324 
1325 	if (intf->parent->wol_irq > 0) {
1326 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1327 				     ASP_WAKEUP_INTR2_MASK_CLEAR);
1328 	}
1329 
1330 	netif_dbg(intf, wol, ndev, "entered WOL mode\n");
1331 }
1332 
1333 int bcmasp_interface_suspend(struct bcmasp_intf *intf)
1334 {
1335 	struct device *kdev = &intf->parent->pdev->dev;
1336 	struct net_device *dev = intf->ndev;
1337 	int ret = 0;
1338 
1339 	if (!netif_running(dev))
1340 		return 0;
1341 
1342 	netif_device_detach(dev);
1343 
1344 	bcmasp_netif_deinit(dev);
1345 
1346 	if (!intf->wolopts) {
1347 		ret = phy_suspend(dev->phydev);
1348 		if (ret)
1349 			goto out;
1350 
1351 		if (intf->internal_phy)
1352 			bcmasp_ephy_enable_set(intf, false);
1353 		else
1354 			bcmasp_rgmii_mode_en_set(intf, false);
1355 
1356 		/* If Wake-on-LAN is disabled, we can safely
1357 		 * disable the network interface clocks.
1358 		 */
1359 		bcmasp_core_clock_set_intf(intf, false);
1360 	}
1361 
1362 	if (device_may_wakeup(kdev) && intf->wolopts)
1363 		bcmasp_suspend_to_wol(intf);
1364 
1365 	clk_disable_unprepare(intf->parent->clk);
1366 
1367 	return ret;
1368 
1369 out:
1370 	bcmasp_netif_init(dev, false);
1371 	return ret;
1372 }
1373 
1374 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf)
1375 {
1376 	u32 reg;
1377 
1378 	reg = umac_rl(intf, UMC_MPD_CTRL);
1379 	reg &= ~UMC_MPD_CTRL_MPD_EN;
1380 	umac_wl(intf, reg, UMC_MPD_CTRL);
1381 
1382 	if (intf->parent->wol_irq > 0) {
1383 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1384 				     ASP_WAKEUP_INTR2_MASK_SET);
1385 	}
1386 }
1387 
1388 int bcmasp_interface_resume(struct bcmasp_intf *intf)
1389 {
1390 	struct net_device *dev = intf->ndev;
1391 	int ret;
1392 
1393 	if (!netif_running(dev))
1394 		return 0;
1395 
1396 	ret = clk_prepare_enable(intf->parent->clk);
1397 	if (ret)
1398 		return ret;
1399 
1400 	ret = bcmasp_netif_init(dev, false);
1401 	if (ret)
1402 		goto out;
1403 
1404 	bcmasp_resume_from_wol(intf);
1405 
1406 	if (intf->eee.eee_enabled)
1407 		bcmasp_eee_enable_set(intf, true);
1408 
1409 	netif_device_attach(dev);
1410 
1411 	return 0;
1412 
1413 out:
1414 	clk_disable_unprepare(intf->parent->clk);
1415 	return ret;
1416 }
1417