1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "bcmasp_intf: " fmt 3 4 #include <asm/byteorder.h> 5 #include <linux/brcmphy.h> 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/etherdevice.h> 9 #include <linux/netdevice.h> 10 #include <linux/of_net.h> 11 #include <linux/of_mdio.h> 12 #include <linux/phy.h> 13 #include <linux/phy_fixed.h> 14 #include <linux/ptp_classify.h> 15 #include <linux/platform_device.h> 16 #include <net/ip.h> 17 #include <net/ipv6.h> 18 19 #include "bcmasp.h" 20 #include "bcmasp_intf_defs.h" 21 22 static int incr_ring(int index, int ring_count) 23 { 24 index++; 25 if (index == ring_count) 26 return 0; 27 28 return index; 29 } 30 31 /* Points to last byte of descriptor */ 32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg, 33 int ring_count) 34 { 35 dma_addr_t end = beg + (ring_count * DESC_SIZE); 36 37 addr += DESC_SIZE; 38 if (addr > end) 39 return beg + DESC_SIZE - 1; 40 41 return addr; 42 } 43 44 /* Points to first byte of descriptor */ 45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg, 46 int ring_count) 47 { 48 dma_addr_t end = beg + (ring_count * DESC_SIZE); 49 50 addr += DESC_SIZE; 51 if (addr >= end) 52 return beg; 53 54 return addr; 55 } 56 57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en) 58 { 59 if (en) { 60 tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE); 61 tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN | 62 TX_EPKT_C_CFG_MISC_PT | 63 (intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)), 64 TX_EPKT_C_CFG_MISC); 65 } else { 66 tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE); 67 tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC); 68 } 69 } 70 71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en) 72 { 73 if (en) 74 rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN, 75 RX_EDPKT_CFG_ENABLE); 76 else 77 rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE); 78 } 79 80 static void bcmasp_set_rx_mode(struct net_device *dev) 81 { 82 unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 83 struct bcmasp_intf *intf = netdev_priv(dev); 84 struct netdev_hw_addr *ha; 85 int ret; 86 87 spin_lock_bh(&intf->parent->mda_lock); 88 89 bcmasp_disable_all_filters(intf); 90 91 if (dev->flags & IFF_PROMISC) 92 goto set_promisc; 93 94 bcmasp_set_promisc(intf, 0); 95 96 bcmasp_set_broad(intf, 1); 97 98 bcmasp_set_oaddr(intf, dev->dev_addr, 1); 99 100 if (dev->flags & IFF_ALLMULTI) { 101 bcmasp_set_allmulti(intf, 1); 102 } else { 103 bcmasp_set_allmulti(intf, 0); 104 105 netdev_for_each_mc_addr(ha, dev) { 106 ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask); 107 if (ret) { 108 intf->mib.mc_filters_full_cnt++; 109 goto set_promisc; 110 } 111 } 112 } 113 114 netdev_for_each_uc_addr(ha, dev) { 115 ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask); 116 if (ret) { 117 intf->mib.uc_filters_full_cnt++; 118 goto set_promisc; 119 } 120 } 121 122 spin_unlock_bh(&intf->parent->mda_lock); 123 return; 124 125 set_promisc: 126 bcmasp_set_promisc(intf, 1); 127 intf->mib.promisc_filters_cnt++; 128 129 /* disable all filters used by this port */ 130 bcmasp_disable_all_filters(intf); 131 132 spin_unlock_bh(&intf->parent->mda_lock); 133 } 134 135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index) 136 { 137 struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index]; 138 139 txcb->skb = NULL; 140 dma_unmap_addr_set(txcb, dma_addr, 0); 141 dma_unmap_len_set(txcb, dma_len, 0); 142 txcb->last = false; 143 } 144 145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt) 146 { 147 int next_index, i; 148 149 /* Check if we have enough room for cnt descriptors */ 150 for (i = 0; i < cnt; i++) { 151 next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT); 152 if (next_index == intf->tx_spb_clean_index) 153 return 1; 154 } 155 156 return 0; 157 } 158 159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev, 160 struct sk_buff *skb, 161 bool *csum_hw) 162 { 163 struct bcmasp_intf *intf = netdev_priv(dev); 164 u32 header = 0, header2 = 0, epkt = 0; 165 struct bcmasp_pkt_offload *offload; 166 unsigned int header_cnt = 0; 167 u8 ip_proto; 168 int ret; 169 170 if (skb->ip_summed != CHECKSUM_PARTIAL) 171 return skb; 172 173 ret = skb_cow_head(skb, sizeof(*offload)); 174 if (ret < 0) { 175 intf->mib.tx_realloc_offload_failed++; 176 goto help; 177 } 178 179 switch (skb->protocol) { 180 case htons(ETH_P_IP): 181 header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf); 182 header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff); 183 epkt |= PKT_OFFLOAD_EPKT_IP(0) | PKT_OFFLOAD_EPKT_CSUM_L2; 184 ip_proto = ip_hdr(skb)->protocol; 185 header_cnt += 2; 186 break; 187 case htons(ETH_P_IPV6): 188 header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf); 189 header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff); 190 epkt |= PKT_OFFLOAD_EPKT_IP(1) | PKT_OFFLOAD_EPKT_CSUM_L2; 191 ip_proto = ipv6_hdr(skb)->nexthdr; 192 header_cnt += 2; 193 break; 194 default: 195 goto help; 196 } 197 198 switch (ip_proto) { 199 case IPPROTO_TCP: 200 header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb)); 201 epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L3; 202 header_cnt++; 203 break; 204 case IPPROTO_UDP: 205 header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN); 206 epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L3; 207 header_cnt++; 208 break; 209 default: 210 goto help; 211 } 212 213 offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload)); 214 215 header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) | 216 PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN); 217 epkt |= PKT_OFFLOAD_EPKT_OP; 218 219 offload->nop = htonl(PKT_OFFLOAD_NOP); 220 offload->header = htonl(header); 221 offload->header2 = htonl(header2); 222 offload->epkt = htonl(epkt); 223 offload->end = htonl(PKT_OFFLOAD_END_OP); 224 *csum_hw = true; 225 226 return skb; 227 228 help: 229 skb_checksum_help(skb); 230 231 return skb; 232 } 233 234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf) 235 { 236 return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID); 237 } 238 239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr) 240 { 241 rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ); 242 } 243 244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr) 245 { 246 rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ); 247 } 248 249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf) 250 { 251 return tx_spb_dma_rq(intf, TX_SPB_DMA_READ); 252 } 253 254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr) 255 { 256 tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID); 257 } 258 259 static const struct bcmasp_intf_ops bcmasp_intf_ops = { 260 .rx_desc_read = bcmasp_rx_edpkt_dma_rq, 261 .rx_buffer_write = bcmasp_rx_edpkt_cfg_wq, 262 .rx_desc_write = bcmasp_rx_edpkt_dma_wq, 263 .tx_read = bcmasp_tx_spb_dma_rq, 264 .tx_write = bcmasp_tx_spb_dma_wq, 265 }; 266 267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev) 268 { 269 struct bcmasp_intf *intf = netdev_priv(dev); 270 unsigned int total_bytes, size; 271 int spb_index, nr_frags, i, j; 272 struct bcmasp_tx_cb *txcb; 273 dma_addr_t mapping, valid; 274 struct bcmasp_desc *desc; 275 bool csum_hw = false; 276 struct device *kdev; 277 skb_frag_t *frag; 278 279 kdev = &intf->parent->pdev->dev; 280 281 nr_frags = skb_shinfo(skb)->nr_frags; 282 283 if (tx_spb_ring_full(intf, nr_frags + 1)) { 284 netif_stop_queue(dev); 285 if (net_ratelimit()) 286 netdev_err(dev, "Tx Ring Full!\n"); 287 return NETDEV_TX_BUSY; 288 } 289 290 /* Save skb len before adding csum offload header */ 291 total_bytes = skb->len; 292 skb = bcmasp_csum_offload(dev, skb, &csum_hw); 293 if (!skb) 294 return NETDEV_TX_OK; 295 296 spb_index = intf->tx_spb_index; 297 valid = intf->tx_spb_dma_valid; 298 for (i = 0; i <= nr_frags; i++) { 299 if (!i) { 300 size = skb_headlen(skb); 301 if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) { 302 if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN)) 303 return NETDEV_TX_OK; 304 size = skb->len; 305 } 306 mapping = dma_map_single(kdev, skb->data, size, 307 DMA_TO_DEVICE); 308 } else { 309 frag = &skb_shinfo(skb)->frags[i - 1]; 310 size = skb_frag_size(frag); 311 mapping = skb_frag_dma_map(kdev, frag, 0, size, 312 DMA_TO_DEVICE); 313 } 314 315 if (dma_mapping_error(kdev, mapping)) { 316 intf->mib.tx_dma_failed++; 317 spb_index = intf->tx_spb_index; 318 for (j = 0; j < i; j++) { 319 bcmasp_clean_txcb(intf, spb_index); 320 spb_index = incr_ring(spb_index, 321 DESC_RING_COUNT); 322 } 323 /* Rewind so we do not have a hole */ 324 spb_index = intf->tx_spb_index; 325 return NETDEV_TX_OK; 326 } 327 328 txcb = &intf->tx_cbs[spb_index]; 329 desc = &intf->tx_spb_cpu[spb_index]; 330 memset(desc, 0, sizeof(*desc)); 331 txcb->skb = skb; 332 txcb->bytes_sent = total_bytes; 333 dma_unmap_addr_set(txcb, dma_addr, mapping); 334 dma_unmap_len_set(txcb, dma_len, size); 335 if (!i) { 336 desc->flags |= DESC_SOF; 337 if (csum_hw) 338 desc->flags |= DESC_EPKT_CMD; 339 } 340 341 if (i == nr_frags) { 342 desc->flags |= DESC_EOF; 343 txcb->last = true; 344 } 345 346 desc->buf = mapping; 347 desc->size = size; 348 desc->flags |= DESC_INT_EN; 349 350 netif_dbg(intf, tx_queued, dev, 351 "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n", 352 __func__, &mapping, desc->size, desc->flags, 353 spb_index); 354 355 spb_index = incr_ring(spb_index, DESC_RING_COUNT); 356 valid = incr_last_byte(valid, intf->tx_spb_dma_addr, 357 DESC_RING_COUNT); 358 } 359 360 /* Ensure all descriptors have been written to DRAM for the 361 * hardware to see up-to-date contents. 362 */ 363 wmb(); 364 365 intf->tx_spb_index = spb_index; 366 intf->tx_spb_dma_valid = valid; 367 bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid); 368 369 if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1)) 370 netif_stop_queue(dev); 371 372 return NETDEV_TX_OK; 373 } 374 375 static void bcmasp_netif_start(struct net_device *dev) 376 { 377 struct bcmasp_intf *intf = netdev_priv(dev); 378 379 bcmasp_set_rx_mode(dev); 380 napi_enable(&intf->tx_napi); 381 napi_enable(&intf->rx_napi); 382 383 bcmasp_enable_rx_irq(intf, 1); 384 bcmasp_enable_tx_irq(intf, 1); 385 386 phy_start(dev->phydev); 387 } 388 389 static void umac_reset(struct bcmasp_intf *intf) 390 { 391 umac_wl(intf, 0x0, UMC_CMD); 392 umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD); 393 usleep_range(10, 100); 394 umac_wl(intf, 0x0, UMC_CMD); 395 } 396 397 static void umac_set_hw_addr(struct bcmasp_intf *intf, 398 const unsigned char *addr) 399 { 400 u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | 401 addr[3]; 402 u32 mac1 = (addr[4] << 8) | addr[5]; 403 404 umac_wl(intf, mac0, UMC_MAC0); 405 umac_wl(intf, mac1, UMC_MAC1); 406 } 407 408 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask, 409 unsigned int enable) 410 { 411 u32 reg; 412 413 reg = umac_rl(intf, UMC_CMD); 414 if (enable) 415 reg |= mask; 416 else 417 reg &= ~mask; 418 umac_wl(intf, reg, UMC_CMD); 419 420 /* UniMAC stops on a packet boundary, wait for a full-sized packet 421 * to be processed (1 msec). 422 */ 423 if (enable == 0) 424 usleep_range(1000, 2000); 425 } 426 427 static void umac_init(struct bcmasp_intf *intf) 428 { 429 umac_wl(intf, 0x800, UMC_FRM_LEN); 430 umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL); 431 umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ); 432 umac_enable_set(intf, UMC_CMD_PROMISC, 1); 433 } 434 435 static int bcmasp_tx_poll(struct napi_struct *napi, int budget) 436 { 437 struct bcmasp_intf *intf = 438 container_of(napi, struct bcmasp_intf, tx_napi); 439 struct bcmasp_intf_stats64 *stats = &intf->stats64; 440 struct device *kdev = &intf->parent->pdev->dev; 441 unsigned long read, released = 0; 442 struct bcmasp_tx_cb *txcb; 443 struct bcmasp_desc *desc; 444 dma_addr_t mapping; 445 446 read = bcmasp_intf_tx_read(intf); 447 while (intf->tx_spb_dma_read != read) { 448 txcb = &intf->tx_cbs[intf->tx_spb_clean_index]; 449 mapping = dma_unmap_addr(txcb, dma_addr); 450 451 dma_unmap_single(kdev, mapping, 452 dma_unmap_len(txcb, dma_len), 453 DMA_TO_DEVICE); 454 455 if (txcb->last) { 456 dev_consume_skb_any(txcb->skb); 457 458 u64_stats_update_begin(&stats->syncp); 459 u64_stats_inc(&stats->tx_packets); 460 u64_stats_add(&stats->tx_bytes, txcb->bytes_sent); 461 u64_stats_update_end(&stats->syncp); 462 } 463 464 desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index]; 465 466 netif_dbg(intf, tx_done, intf->ndev, 467 "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n", 468 __func__, &mapping, desc->size, desc->flags, 469 intf->tx_spb_clean_index); 470 471 bcmasp_clean_txcb(intf, intf->tx_spb_clean_index); 472 released++; 473 474 intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index, 475 DESC_RING_COUNT); 476 intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read, 477 intf->tx_spb_dma_addr, 478 DESC_RING_COUNT); 479 } 480 481 /* Ensure all descriptors have been written to DRAM for the hardware 482 * to see updated contents. 483 */ 484 wmb(); 485 486 napi_complete(&intf->tx_napi); 487 488 bcmasp_enable_tx_irq(intf, 1); 489 490 if (released) 491 netif_wake_queue(intf->ndev); 492 493 return 0; 494 } 495 496 static int bcmasp_rx_poll(struct napi_struct *napi, int budget) 497 { 498 struct bcmasp_intf *intf = 499 container_of(napi, struct bcmasp_intf, rx_napi); 500 struct bcmasp_intf_stats64 *stats = &intf->stats64; 501 struct device *kdev = &intf->parent->pdev->dev; 502 unsigned long processed = 0; 503 struct bcmasp_desc *desc; 504 struct sk_buff *skb; 505 dma_addr_t valid; 506 void *data; 507 u64 flags; 508 u32 len; 509 510 valid = bcmasp_intf_rx_desc_read(intf) + 1; 511 if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE) 512 valid = intf->rx_edpkt_dma_addr; 513 514 while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) { 515 desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index]; 516 517 /* Ensure that descriptor has been fully written to DRAM by 518 * hardware before reading by the CPU 519 */ 520 rmb(); 521 522 /* Calculate virt addr by offsetting from physical addr */ 523 data = intf->rx_ring_cpu + 524 (DESC_ADDR(desc->buf) - intf->rx_ring_dma); 525 526 flags = DESC_FLAGS(desc->buf); 527 if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) { 528 if (net_ratelimit()) { 529 netif_err(intf, rx_status, intf->ndev, 530 "flags=0x%llx\n", flags); 531 } 532 533 u64_stats_update_begin(&stats->syncp); 534 if (flags & DESC_CRC_ERR) 535 u64_stats_inc(&stats->rx_crc_errs); 536 if (flags & DESC_RX_SYM_ERR) 537 u64_stats_inc(&stats->rx_sym_errs); 538 u64_stats_update_end(&stats->syncp); 539 540 goto next; 541 } 542 543 dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size, 544 DMA_FROM_DEVICE); 545 546 len = desc->size; 547 548 skb = napi_alloc_skb(napi, len); 549 if (!skb) { 550 u64_stats_update_begin(&stats->syncp); 551 u64_stats_inc(&stats->rx_dropped); 552 u64_stats_update_end(&stats->syncp); 553 intf->mib.alloc_rx_skb_failed++; 554 555 goto next; 556 } 557 558 skb_put(skb, len); 559 memcpy(skb->data, data, len); 560 561 skb_pull(skb, 2); 562 len -= 2; 563 if (likely(intf->crc_fwd)) { 564 skb_trim(skb, len - ETH_FCS_LEN); 565 len -= ETH_FCS_LEN; 566 } 567 568 if ((intf->ndev->features & NETIF_F_RXCSUM) && 569 (desc->buf & DESC_CHKSUM)) 570 skb->ip_summed = CHECKSUM_UNNECESSARY; 571 572 skb->protocol = eth_type_trans(skb, intf->ndev); 573 574 napi_gro_receive(napi, skb); 575 576 u64_stats_update_begin(&stats->syncp); 577 u64_stats_inc(&stats->rx_packets); 578 u64_stats_add(&stats->rx_bytes, len); 579 u64_stats_update_end(&stats->syncp); 580 581 next: 582 bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) + 583 desc->size)); 584 585 processed++; 586 intf->rx_edpkt_dma_read = 587 incr_first_byte(intf->rx_edpkt_dma_read, 588 intf->rx_edpkt_dma_addr, 589 DESC_RING_COUNT); 590 intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index, 591 DESC_RING_COUNT); 592 } 593 594 bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read); 595 596 if (processed < budget) { 597 napi_complete_done(&intf->rx_napi, processed); 598 bcmasp_enable_rx_irq(intf, 1); 599 } 600 601 return processed; 602 } 603 604 static void bcmasp_adj_link(struct net_device *dev) 605 { 606 struct bcmasp_intf *intf = netdev_priv(dev); 607 struct phy_device *phydev = dev->phydev; 608 u32 cmd_bits = 0, reg; 609 int changed = 0; 610 bool active; 611 612 if (intf->old_link != phydev->link) { 613 changed = 1; 614 intf->old_link = phydev->link; 615 } 616 617 if (intf->old_duplex != phydev->duplex) { 618 changed = 1; 619 intf->old_duplex = phydev->duplex; 620 } 621 622 switch (phydev->speed) { 623 case SPEED_2500: 624 cmd_bits = UMC_CMD_SPEED_2500; 625 break; 626 case SPEED_1000: 627 cmd_bits = UMC_CMD_SPEED_1000; 628 break; 629 case SPEED_100: 630 cmd_bits = UMC_CMD_SPEED_100; 631 break; 632 case SPEED_10: 633 cmd_bits = UMC_CMD_SPEED_10; 634 break; 635 default: 636 break; 637 } 638 cmd_bits <<= UMC_CMD_SPEED_SHIFT; 639 640 if (phydev->duplex == DUPLEX_HALF) 641 cmd_bits |= UMC_CMD_HD_EN; 642 643 if (intf->old_pause != phydev->pause) { 644 changed = 1; 645 intf->old_pause = phydev->pause; 646 } 647 648 if (!phydev->pause) 649 cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE; 650 651 if (!changed) 652 return; 653 654 if (phydev->link) { 655 reg = umac_rl(intf, UMC_CMD); 656 reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) | 657 UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE | 658 UMC_CMD_TX_PAUSE_IGNORE); 659 reg |= cmd_bits; 660 umac_wl(intf, reg, UMC_CMD); 661 662 active = phy_init_eee(phydev, 0) >= 0; 663 bcmasp_eee_enable_set(intf, active); 664 } 665 666 reg = rgmii_rl(intf, RGMII_OOB_CNTRL); 667 if (phydev->link) 668 reg |= RGMII_LINK; 669 else 670 reg &= ~RGMII_LINK; 671 rgmii_wl(intf, reg, RGMII_OOB_CNTRL); 672 673 if (changed) 674 phy_print_status(phydev); 675 } 676 677 static int bcmasp_init_rx(struct bcmasp_intf *intf) 678 { 679 struct device *kdev = &intf->parent->pdev->dev; 680 struct page *buffer_pg; 681 dma_addr_t dma; 682 void *p; 683 u32 reg; 684 int ret; 685 686 intf->rx_buf_order = get_order(RING_BUFFER_SIZE); 687 buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order); 688 689 dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE, 690 DMA_FROM_DEVICE); 691 if (dma_mapping_error(kdev, dma)) { 692 __free_pages(buffer_pg, intf->rx_buf_order); 693 return -ENOMEM; 694 } 695 intf->rx_ring_cpu = page_to_virt(buffer_pg); 696 intf->rx_ring_dma = dma; 697 intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1; 698 699 p = dma_alloc_coherent(kdev, DESC_RING_SIZE, &intf->rx_edpkt_dma_addr, 700 GFP_KERNEL); 701 if (!p) { 702 ret = -ENOMEM; 703 goto free_rx_ring; 704 } 705 intf->rx_edpkt_cpu = p; 706 707 netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll); 708 709 intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr; 710 intf->rx_edpkt_index = 0; 711 712 /* Make sure channels are disabled */ 713 rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE); 714 715 /* Rx SPB */ 716 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ); 717 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE); 718 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE); 719 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid, 720 RX_EDPKT_RING_BUFFER_END); 721 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid, 722 RX_EDPKT_RING_BUFFER_VALID); 723 724 /* EDPKT */ 725 rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K << 726 RX_EDPKT_CFG_CFG0_DBUF_SHIFT) | 727 (RX_EDPKT_CFG_CFG0_64_ALN << 728 RX_EDPKT_CFG_CFG0_BALN_SHIFT) | 729 (RX_EDPKT_CFG_CFG0_EFRM_STUF), 730 RX_EDPKT_CFG_CFG0); 731 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE); 732 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ); 733 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE); 734 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1), 735 RX_EDPKT_DMA_END); 736 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1), 737 RX_EDPKT_DMA_VALID); 738 739 reg = UMAC2FB_CFG_DEFAULT_EN | 740 ((intf->channel + 11) << UMAC2FB_CFG_CHID_SHIFT); 741 reg |= (0xd << UMAC2FB_CFG_OK_SEND_SHIFT); 742 umac2fb_wl(intf, reg, UMAC2FB_CFG); 743 744 return 0; 745 746 free_rx_ring: 747 dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE, 748 DMA_FROM_DEVICE); 749 __free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order); 750 751 return ret; 752 } 753 754 static void bcmasp_reclaim_free_all_rx(struct bcmasp_intf *intf) 755 { 756 struct device *kdev = &intf->parent->pdev->dev; 757 758 dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu, 759 intf->rx_edpkt_dma_addr); 760 dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE, 761 DMA_FROM_DEVICE); 762 __free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order); 763 } 764 765 static int bcmasp_init_tx(struct bcmasp_intf *intf) 766 { 767 struct device *kdev = &intf->parent->pdev->dev; 768 void *p; 769 int ret; 770 771 p = dma_alloc_coherent(kdev, DESC_RING_SIZE, &intf->tx_spb_dma_addr, 772 GFP_KERNEL); 773 if (!p) 774 return -ENOMEM; 775 776 intf->tx_spb_cpu = p; 777 intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1; 778 intf->tx_spb_dma_read = intf->tx_spb_dma_addr; 779 780 intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb), 781 GFP_KERNEL); 782 if (!intf->tx_cbs) { 783 ret = -ENOMEM; 784 goto free_tx_spb; 785 } 786 787 intf->tx_spb_index = 0; 788 intf->tx_spb_clean_index = 0; 789 790 netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll); 791 792 /* Make sure channels are disabled */ 793 tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE); 794 tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC); 795 796 /* Tx SPB */ 797 tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT), 798 TX_SPB_CTRL_XF_CTRL2); 799 tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR); 800 tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT); 801 tx_spb_top_wl(intf, 0x0, TX_SPB_TOP_SPRE_BW_CTRL); 802 803 tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ); 804 tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE); 805 tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END); 806 tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID); 807 808 return 0; 809 810 free_tx_spb: 811 dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu, 812 intf->tx_spb_dma_addr); 813 814 return ret; 815 } 816 817 static void bcmasp_reclaim_free_all_tx(struct bcmasp_intf *intf) 818 { 819 struct device *kdev = &intf->parent->pdev->dev; 820 821 /* Free descriptors */ 822 dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu, 823 intf->tx_spb_dma_addr); 824 825 /* Free cbs */ 826 kfree(intf->tx_cbs); 827 } 828 829 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable) 830 { 831 u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN | 832 RGMII_EPHY_CFG_IDDQ_GLOBAL; 833 u32 reg; 834 835 reg = rgmii_rl(intf, RGMII_EPHY_CNTRL); 836 if (enable) { 837 reg &= ~RGMII_EPHY_CK25_DIS; 838 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 839 mdelay(1); 840 841 reg &= ~mask; 842 reg |= RGMII_EPHY_RESET; 843 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 844 mdelay(1); 845 846 reg &= ~RGMII_EPHY_RESET; 847 } else { 848 reg |= mask | RGMII_EPHY_RESET; 849 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 850 mdelay(1); 851 reg |= RGMII_EPHY_CK25_DIS; 852 } 853 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 854 mdelay(1); 855 856 /* Set or clear the LED control override to avoid lighting up LEDs 857 * while the EPHY is powered off and drawing unnecessary current. 858 */ 859 reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL); 860 if (enable) 861 reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD; 862 else 863 reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD; 864 rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL); 865 } 866 867 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable) 868 { 869 u32 reg; 870 871 reg = rgmii_rl(intf, RGMII_OOB_CNTRL); 872 reg &= ~RGMII_OOB_DIS; 873 if (enable) 874 reg |= RGMII_MODE_EN; 875 else 876 reg &= ~RGMII_MODE_EN; 877 rgmii_wl(intf, reg, RGMII_OOB_CNTRL); 878 } 879 880 static void bcmasp_netif_deinit(struct net_device *dev) 881 { 882 struct bcmasp_intf *intf = netdev_priv(dev); 883 u32 reg, timeout = 1000; 884 885 napi_disable(&intf->tx_napi); 886 887 bcmasp_enable_tx(intf, 0); 888 889 /* Flush any TX packets in the pipe */ 890 tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL); 891 do { 892 reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS); 893 if (!(reg & TX_SPB_DMA_FIFO_FLUSH)) 894 break; 895 usleep_range(1000, 2000); 896 } while (timeout-- > 0); 897 tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL); 898 899 umac_enable_set(intf, UMC_CMD_TX_EN, 0); 900 901 phy_stop(dev->phydev); 902 903 umac_enable_set(intf, UMC_CMD_RX_EN, 0); 904 905 bcmasp_flush_rx_port(intf); 906 usleep_range(1000, 2000); 907 bcmasp_enable_rx(intf, 0); 908 909 napi_disable(&intf->rx_napi); 910 911 /* Disable interrupts */ 912 bcmasp_enable_tx_irq(intf, 0); 913 bcmasp_enable_rx_irq(intf, 0); 914 915 netif_napi_del(&intf->tx_napi); 916 bcmasp_reclaim_free_all_tx(intf); 917 918 netif_napi_del(&intf->rx_napi); 919 bcmasp_reclaim_free_all_rx(intf); 920 } 921 922 static int bcmasp_stop(struct net_device *dev) 923 { 924 struct bcmasp_intf *intf = netdev_priv(dev); 925 926 netif_dbg(intf, ifdown, dev, "bcmasp stop\n"); 927 928 /* Stop tx from updating HW */ 929 netif_tx_disable(dev); 930 931 bcmasp_netif_deinit(dev); 932 933 phy_disconnect(dev->phydev); 934 935 /* Disable internal EPHY or external PHY */ 936 if (intf->internal_phy) 937 bcmasp_ephy_enable_set(intf, false); 938 else 939 bcmasp_rgmii_mode_en_set(intf, false); 940 941 /* Disable the interface clocks */ 942 bcmasp_core_clock_set_intf(intf, false); 943 944 clk_disable_unprepare(intf->parent->clk); 945 946 return 0; 947 } 948 949 static void bcmasp_configure_port(struct bcmasp_intf *intf) 950 { 951 u32 reg, id_mode_dis = 0; 952 953 reg = rgmii_rl(intf, RGMII_PORT_CNTRL); 954 reg &= ~RGMII_PORT_MODE_MASK; 955 956 switch (intf->phy_interface) { 957 case PHY_INTERFACE_MODE_RGMII: 958 /* RGMII_NO_ID: TXC transitions at the same time as TXD 959 * (requires PCB or receiver-side delay) 960 * RGMII: Add 2ns delay on TXC (90 degree shift) 961 * 962 * ID is implicitly disabled for 100Mbps (RG)MII operation. 963 */ 964 id_mode_dis = RGMII_ID_MODE_DIS; 965 fallthrough; 966 case PHY_INTERFACE_MODE_RGMII_TXID: 967 reg |= RGMII_PORT_MODE_EXT_GPHY; 968 break; 969 case PHY_INTERFACE_MODE_MII: 970 reg |= RGMII_PORT_MODE_EXT_EPHY; 971 break; 972 default: 973 break; 974 } 975 976 if (intf->internal_phy) 977 reg |= RGMII_PORT_MODE_EPHY; 978 979 rgmii_wl(intf, reg, RGMII_PORT_CNTRL); 980 981 reg = rgmii_rl(intf, RGMII_OOB_CNTRL); 982 reg &= ~RGMII_ID_MODE_DIS; 983 reg |= id_mode_dis; 984 rgmii_wl(intf, reg, RGMII_OOB_CNTRL); 985 } 986 987 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect) 988 { 989 struct bcmasp_intf *intf = netdev_priv(dev); 990 phy_interface_t phy_iface = intf->phy_interface; 991 u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE | 992 PHY_BRCM_DIS_TXCRXC_NOENRGY | 993 PHY_BRCM_IDDQ_SUSPEND; 994 struct phy_device *phydev = NULL; 995 int ret; 996 997 /* Always enable interface clocks */ 998 bcmasp_core_clock_set_intf(intf, true); 999 1000 /* Enable internal PHY or external PHY before any MAC activity */ 1001 if (intf->internal_phy) 1002 bcmasp_ephy_enable_set(intf, true); 1003 else 1004 bcmasp_rgmii_mode_en_set(intf, true); 1005 bcmasp_configure_port(intf); 1006 1007 /* This is an ugly quirk but we have not been correctly 1008 * interpreting the phy_interface values and we have done that 1009 * across different drivers, so at least we are consistent in 1010 * our mistakes. 1011 * 1012 * When the Generic PHY driver is in use either the PHY has 1013 * been strapped or programmed correctly by the boot loader so 1014 * we should stick to our incorrect interpretation since we 1015 * have validated it. 1016 * 1017 * Now when a dedicated PHY driver is in use, we need to 1018 * reverse the meaning of the phy_interface_mode values to 1019 * something that the PHY driver will interpret and act on such 1020 * that we have two mistakes canceling themselves so to speak. 1021 * We only do this for the two modes that GENET driver 1022 * officially supports on Broadcom STB chips: 1023 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID. 1024 * Other modes are not *officially* supported with the boot 1025 * loader and the scripted environment generating Device Tree 1026 * blobs for those platforms. 1027 * 1028 * Note that internal PHY and fixed-link configurations are not 1029 * affected because they use different phy_interface_t values 1030 * or the Generic PHY driver. 1031 */ 1032 switch (phy_iface) { 1033 case PHY_INTERFACE_MODE_RGMII: 1034 phy_iface = PHY_INTERFACE_MODE_RGMII_ID; 1035 break; 1036 case PHY_INTERFACE_MODE_RGMII_TXID: 1037 phy_iface = PHY_INTERFACE_MODE_RGMII_RXID; 1038 break; 1039 default: 1040 break; 1041 } 1042 1043 if (phy_connect) { 1044 phydev = of_phy_connect(dev, intf->phy_dn, 1045 bcmasp_adj_link, phy_flags, 1046 phy_iface); 1047 if (!phydev) { 1048 ret = -ENODEV; 1049 netdev_err(dev, "could not attach to PHY\n"); 1050 goto err_phy_disable; 1051 } 1052 } else if (!intf->wolopts) { 1053 ret = phy_resume(dev->phydev); 1054 if (ret) 1055 goto err_phy_disable; 1056 } 1057 1058 umac_reset(intf); 1059 1060 umac_init(intf); 1061 1062 /* Disable the UniMAC RX/TX */ 1063 umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 0); 1064 1065 umac_set_hw_addr(intf, dev->dev_addr); 1066 1067 intf->old_duplex = -1; 1068 intf->old_link = -1; 1069 intf->old_pause = -1; 1070 1071 ret = bcmasp_init_tx(intf); 1072 if (ret) 1073 goto err_phy_disconnect; 1074 1075 /* Turn on asp */ 1076 bcmasp_enable_tx(intf, 1); 1077 1078 ret = bcmasp_init_rx(intf); 1079 if (ret) 1080 goto err_reclaim_tx; 1081 1082 bcmasp_enable_rx(intf, 1); 1083 1084 /* Turn on UniMAC TX/RX */ 1085 umac_enable_set(intf, (UMC_CMD_RX_EN | UMC_CMD_TX_EN), 1); 1086 1087 intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD); 1088 1089 bcmasp_netif_start(dev); 1090 1091 netif_start_queue(dev); 1092 1093 return 0; 1094 1095 err_reclaim_tx: 1096 bcmasp_reclaim_free_all_tx(intf); 1097 err_phy_disconnect: 1098 if (phydev) 1099 phy_disconnect(phydev); 1100 err_phy_disable: 1101 if (intf->internal_phy) 1102 bcmasp_ephy_enable_set(intf, false); 1103 else 1104 bcmasp_rgmii_mode_en_set(intf, false); 1105 return ret; 1106 } 1107 1108 static int bcmasp_open(struct net_device *dev) 1109 { 1110 struct bcmasp_intf *intf = netdev_priv(dev); 1111 int ret; 1112 1113 netif_dbg(intf, ifup, dev, "bcmasp open\n"); 1114 1115 ret = clk_prepare_enable(intf->parent->clk); 1116 if (ret) 1117 return ret; 1118 1119 ret = bcmasp_netif_init(dev, true); 1120 if (ret) 1121 clk_disable_unprepare(intf->parent->clk); 1122 1123 return ret; 1124 } 1125 1126 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue) 1127 { 1128 struct bcmasp_intf *intf = netdev_priv(dev); 1129 1130 netif_dbg(intf, tx_err, dev, "transmit timeout!\n"); 1131 intf->mib.tx_timeout_cnt++; 1132 } 1133 1134 static int bcmasp_get_phys_port_name(struct net_device *dev, 1135 char *name, size_t len) 1136 { 1137 struct bcmasp_intf *intf = netdev_priv(dev); 1138 1139 if (snprintf(name, len, "p%d", intf->port) >= len) 1140 return -EINVAL; 1141 1142 return 0; 1143 } 1144 1145 static void bcmasp_get_stats64(struct net_device *dev, 1146 struct rtnl_link_stats64 *stats) 1147 { 1148 struct bcmasp_intf *intf = netdev_priv(dev); 1149 struct bcmasp_intf_stats64 *lstats; 1150 unsigned int start; 1151 1152 lstats = &intf->stats64; 1153 1154 do { 1155 start = u64_stats_fetch_begin(&lstats->syncp); 1156 stats->rx_packets = u64_stats_read(&lstats->rx_packets); 1157 stats->rx_bytes = u64_stats_read(&lstats->rx_bytes); 1158 stats->rx_dropped = u64_stats_read(&lstats->rx_dropped); 1159 stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs); 1160 stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs); 1161 stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors; 1162 1163 stats->tx_packets = u64_stats_read(&lstats->tx_packets); 1164 stats->tx_bytes = u64_stats_read(&lstats->tx_bytes); 1165 } while (u64_stats_fetch_retry(&lstats->syncp, start)); 1166 } 1167 1168 static const struct net_device_ops bcmasp_netdev_ops = { 1169 .ndo_open = bcmasp_open, 1170 .ndo_stop = bcmasp_stop, 1171 .ndo_start_xmit = bcmasp_xmit, 1172 .ndo_tx_timeout = bcmasp_tx_timeout, 1173 .ndo_set_rx_mode = bcmasp_set_rx_mode, 1174 .ndo_get_phys_port_name = bcmasp_get_phys_port_name, 1175 .ndo_eth_ioctl = phy_do_ioctl_running, 1176 .ndo_set_mac_address = eth_mac_addr, 1177 .ndo_get_stats64 = bcmasp_get_stats64, 1178 }; 1179 1180 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf) 1181 { 1182 /* Per port */ 1183 intf->res.umac = priv->base + UMC_OFFSET(intf); 1184 intf->res.umac2fb = priv->base + (priv->hw_info->umac2fb + 1185 (intf->port * 0x4)); 1186 intf->res.rgmii = priv->base + RGMII_OFFSET(intf); 1187 1188 /* Per ch */ 1189 intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf); 1190 intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf); 1191 intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf); 1192 intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf); 1193 intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf); 1194 1195 intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf); 1196 intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf); 1197 } 1198 1199 #define MAX_IRQ_STR_LEN 64 1200 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv, 1201 struct device_node *ndev_dn, int i) 1202 { 1203 struct device *dev = &priv->pdev->dev; 1204 struct bcmasp_intf *intf; 1205 struct net_device *ndev; 1206 int ch, port, ret; 1207 1208 if (of_property_read_u32(ndev_dn, "reg", &port)) { 1209 dev_warn(dev, "%s: invalid port number\n", ndev_dn->name); 1210 goto err; 1211 } 1212 1213 if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) { 1214 dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name); 1215 goto err; 1216 } 1217 1218 ndev = alloc_etherdev(sizeof(struct bcmasp_intf)); 1219 if (!ndev) { 1220 dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name); 1221 goto err; 1222 } 1223 intf = netdev_priv(ndev); 1224 1225 intf->parent = priv; 1226 intf->ndev = ndev; 1227 intf->channel = ch; 1228 intf->port = port; 1229 intf->ndev_dn = ndev_dn; 1230 intf->index = i; 1231 1232 ret = of_get_phy_mode(ndev_dn, &intf->phy_interface); 1233 if (ret < 0) { 1234 dev_err(dev, "invalid PHY mode property\n"); 1235 goto err_free_netdev; 1236 } 1237 1238 if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL) 1239 intf->internal_phy = true; 1240 1241 intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0); 1242 if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) { 1243 ret = of_phy_register_fixed_link(ndev_dn); 1244 if (ret) { 1245 dev_warn(dev, "%s: failed to register fixed PHY\n", 1246 ndev_dn->name); 1247 goto err_free_netdev; 1248 } 1249 intf->phy_dn = ndev_dn; 1250 } 1251 1252 /* Map resource */ 1253 bcmasp_map_res(priv, intf); 1254 1255 if ((!phy_interface_mode_is_rgmii(intf->phy_interface) && 1256 intf->phy_interface != PHY_INTERFACE_MODE_MII && 1257 intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) || 1258 (intf->port != 1 && intf->internal_phy)) { 1259 netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n", 1260 phy_modes(intf->phy_interface), intf->port); 1261 ret = -EINVAL; 1262 goto err_free_netdev; 1263 } 1264 1265 ret = of_get_ethdev_address(ndev_dn, ndev); 1266 if (ret) { 1267 netdev_warn(ndev, "using random Ethernet MAC\n"); 1268 eth_hw_addr_random(ndev); 1269 } 1270 1271 SET_NETDEV_DEV(ndev, dev); 1272 intf->ops = &bcmasp_intf_ops; 1273 ndev->netdev_ops = &bcmasp_netdev_ops; 1274 ndev->ethtool_ops = &bcmasp_ethtool_ops; 1275 intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV | 1276 NETIF_MSG_PROBE | 1277 NETIF_MSG_LINK); 1278 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 1279 NETIF_F_RXCSUM; 1280 ndev->hw_features |= ndev->features; 1281 ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload); 1282 1283 return intf; 1284 1285 err_free_netdev: 1286 free_netdev(ndev); 1287 err: 1288 return NULL; 1289 } 1290 1291 void bcmasp_interface_destroy(struct bcmasp_intf *intf) 1292 { 1293 if (intf->ndev->reg_state == NETREG_REGISTERED) 1294 unregister_netdev(intf->ndev); 1295 if (of_phy_is_fixed_link(intf->ndev_dn)) 1296 of_phy_deregister_fixed_link(intf->ndev_dn); 1297 free_netdev(intf->ndev); 1298 } 1299 1300 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf) 1301 { 1302 struct net_device *ndev = intf->ndev; 1303 u32 reg; 1304 1305 reg = umac_rl(intf, UMC_MPD_CTRL); 1306 if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE)) 1307 reg |= UMC_MPD_CTRL_MPD_EN; 1308 reg &= ~UMC_MPD_CTRL_PSW_EN; 1309 if (intf->wolopts & WAKE_MAGICSECURE) { 1310 /* Program the SecureOn password */ 1311 umac_wl(intf, get_unaligned_be16(&intf->sopass[0]), 1312 UMC_PSW_MS); 1313 umac_wl(intf, get_unaligned_be32(&intf->sopass[2]), 1314 UMC_PSW_LS); 1315 reg |= UMC_MPD_CTRL_PSW_EN; 1316 } 1317 umac_wl(intf, reg, UMC_MPD_CTRL); 1318 1319 if (intf->wolopts & WAKE_FILTER) 1320 bcmasp_netfilt_suspend(intf); 1321 1322 /* UniMAC receive needs to be turned on */ 1323 umac_enable_set(intf, UMC_CMD_RX_EN, 1); 1324 1325 if (intf->parent->wol_irq > 0) { 1326 wakeup_intr2_core_wl(intf->parent, 0xffffffff, 1327 ASP_WAKEUP_INTR2_MASK_CLEAR); 1328 } 1329 1330 netif_dbg(intf, wol, ndev, "entered WOL mode\n"); 1331 } 1332 1333 int bcmasp_interface_suspend(struct bcmasp_intf *intf) 1334 { 1335 struct device *kdev = &intf->parent->pdev->dev; 1336 struct net_device *dev = intf->ndev; 1337 int ret = 0; 1338 1339 if (!netif_running(dev)) 1340 return 0; 1341 1342 netif_device_detach(dev); 1343 1344 bcmasp_netif_deinit(dev); 1345 1346 if (!intf->wolopts) { 1347 ret = phy_suspend(dev->phydev); 1348 if (ret) 1349 goto out; 1350 1351 if (intf->internal_phy) 1352 bcmasp_ephy_enable_set(intf, false); 1353 else 1354 bcmasp_rgmii_mode_en_set(intf, false); 1355 1356 /* If Wake-on-LAN is disabled, we can safely 1357 * disable the network interface clocks. 1358 */ 1359 bcmasp_core_clock_set_intf(intf, false); 1360 } 1361 1362 if (device_may_wakeup(kdev) && intf->wolopts) 1363 bcmasp_suspend_to_wol(intf); 1364 1365 clk_disable_unprepare(intf->parent->clk); 1366 1367 return ret; 1368 1369 out: 1370 bcmasp_netif_init(dev, false); 1371 return ret; 1372 } 1373 1374 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf) 1375 { 1376 u32 reg; 1377 1378 reg = umac_rl(intf, UMC_MPD_CTRL); 1379 reg &= ~UMC_MPD_CTRL_MPD_EN; 1380 umac_wl(intf, reg, UMC_MPD_CTRL); 1381 1382 if (intf->parent->wol_irq > 0) { 1383 wakeup_intr2_core_wl(intf->parent, 0xffffffff, 1384 ASP_WAKEUP_INTR2_MASK_SET); 1385 } 1386 } 1387 1388 int bcmasp_interface_resume(struct bcmasp_intf *intf) 1389 { 1390 struct net_device *dev = intf->ndev; 1391 int ret; 1392 1393 if (!netif_running(dev)) 1394 return 0; 1395 1396 ret = clk_prepare_enable(intf->parent->clk); 1397 if (ret) 1398 return ret; 1399 1400 ret = bcmasp_netif_init(dev, false); 1401 if (ret) 1402 goto out; 1403 1404 bcmasp_resume_from_wol(intf); 1405 1406 if (intf->eee.eee_enabled) 1407 bcmasp_eee_enable_set(intf, true); 1408 1409 netif_device_attach(dev); 1410 1411 return 0; 1412 1413 out: 1414 clk_disable_unprepare(intf->parent->clk); 1415 return ret; 1416 } 1417