xref: /linux/drivers/net/ethernet/broadcom/asp2/bcmasp_intf.c (revision 222408cde4d0ab17e54d4db26751c2b5cab9ac2b)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt)			"bcmasp_intf: " fmt
3 
4 #include <asm/byteorder.h>
5 #include <linux/brcmphy.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/etherdevice.h>
9 #include <linux/netdevice.h>
10 #include <linux/of_net.h>
11 #include <linux/of_mdio.h>
12 #include <linux/phy.h>
13 #include <linux/phy_fixed.h>
14 #include <linux/ptp_classify.h>
15 #include <linux/platform_device.h>
16 #include <net/ip.h>
17 #include <net/ipv6.h>
18 
19 #include "bcmasp.h"
20 #include "bcmasp_intf_defs.h"
21 
22 static int incr_ring(int index, int ring_count)
23 {
24 	index++;
25 	if (index == ring_count)
26 		return 0;
27 
28 	return index;
29 }
30 
31 /* Points to last byte of descriptor */
32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg,
33 				 int ring_count)
34 {
35 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
36 
37 	addr += DESC_SIZE;
38 	if (addr > end)
39 		return beg + DESC_SIZE - 1;
40 
41 	return addr;
42 }
43 
44 /* Points to first byte of descriptor */
45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg,
46 				  int ring_count)
47 {
48 	dma_addr_t end = beg + (ring_count * DESC_SIZE);
49 
50 	addr += DESC_SIZE;
51 	if (addr >= end)
52 		return beg;
53 
54 	return addr;
55 }
56 
57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en)
58 {
59 	if (en) {
60 		tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE);
61 		tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN |
62 				TX_EPKT_C_CFG_MISC_PT |
63 				(intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)),
64 				TX_EPKT_C_CFG_MISC);
65 	} else {
66 		tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
67 		tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
68 	}
69 }
70 
71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en)
72 {
73 	if (en)
74 		rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN,
75 				RX_EDPKT_CFG_ENABLE);
76 	else
77 		rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
78 }
79 
80 static void bcmasp_set_rx_mode(struct net_device *dev)
81 {
82 	unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
83 	struct bcmasp_intf *intf = netdev_priv(dev);
84 	struct netdev_hw_addr *ha;
85 	int ret;
86 
87 	spin_lock_bh(&intf->parent->mda_lock);
88 
89 	bcmasp_disable_all_filters(intf);
90 
91 	if (dev->flags & IFF_PROMISC)
92 		goto set_promisc;
93 
94 	bcmasp_set_promisc(intf, 0);
95 
96 	bcmasp_set_broad(intf, 1);
97 
98 	bcmasp_set_oaddr(intf, dev->dev_addr, 1);
99 
100 	if (dev->flags & IFF_ALLMULTI) {
101 		bcmasp_set_allmulti(intf, 1);
102 	} else {
103 		bcmasp_set_allmulti(intf, 0);
104 
105 		netdev_for_each_mc_addr(ha, dev) {
106 			ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
107 			if (ret) {
108 				intf->mib.mc_filters_full_cnt++;
109 				goto set_promisc;
110 			}
111 		}
112 	}
113 
114 	netdev_for_each_uc_addr(ha, dev) {
115 		ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask);
116 		if (ret) {
117 			intf->mib.uc_filters_full_cnt++;
118 			goto set_promisc;
119 		}
120 	}
121 
122 	spin_unlock_bh(&intf->parent->mda_lock);
123 	return;
124 
125 set_promisc:
126 	bcmasp_set_promisc(intf, 1);
127 	intf->mib.promisc_filters_cnt++;
128 
129 	/* disable all filters used by this port */
130 	bcmasp_disable_all_filters(intf);
131 
132 	spin_unlock_bh(&intf->parent->mda_lock);
133 }
134 
135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index)
136 {
137 	struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index];
138 
139 	txcb->skb = NULL;
140 	dma_unmap_addr_set(txcb, dma_addr, 0);
141 	dma_unmap_len_set(txcb, dma_len, 0);
142 	txcb->last = false;
143 }
144 
145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt)
146 {
147 	int next_index, i;
148 
149 	/* Check if we have enough room for cnt descriptors */
150 	for (i = 0; i < cnt; i++) {
151 		next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT);
152 		if (next_index == intf->tx_spb_clean_index)
153 			return 1;
154 	}
155 
156 	return 0;
157 }
158 
159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev,
160 					   struct sk_buff *skb,
161 					   bool *csum_hw)
162 {
163 	struct bcmasp_intf *intf = netdev_priv(dev);
164 	u32 header = 0, header2 = 0, epkt = 0;
165 	struct bcmasp_pkt_offload *offload;
166 	unsigned int header_cnt = 0;
167 	u8 ip_proto;
168 	int ret;
169 
170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
171 		return skb;
172 
173 	ret = skb_cow_head(skb, sizeof(*offload));
174 	if (ret < 0) {
175 		intf->mib.tx_realloc_offload_failed++;
176 		goto help;
177 	}
178 
179 	switch (skb->protocol) {
180 	case htons(ETH_P_IP):
181 		header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf);
182 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff);
183 		epkt |= PKT_OFFLOAD_EPKT_IP(0) | PKT_OFFLOAD_EPKT_CSUM_L2;
184 		ip_proto = ip_hdr(skb)->protocol;
185 		header_cnt += 2;
186 		break;
187 	case htons(ETH_P_IPV6):
188 		header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf);
189 		header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff);
190 		epkt |= PKT_OFFLOAD_EPKT_IP(1) | PKT_OFFLOAD_EPKT_CSUM_L2;
191 		ip_proto = ipv6_hdr(skb)->nexthdr;
192 		header_cnt += 2;
193 		break;
194 	default:
195 		goto help;
196 	}
197 
198 	switch (ip_proto) {
199 	case IPPROTO_TCP:
200 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb));
201 		epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L3;
202 		header_cnt++;
203 		break;
204 	case IPPROTO_UDP:
205 		header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN);
206 		epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L3;
207 		header_cnt++;
208 		break;
209 	default:
210 		goto help;
211 	}
212 
213 	offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload));
214 
215 	header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) |
216 		  PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN);
217 	epkt |= PKT_OFFLOAD_EPKT_OP;
218 
219 	offload->nop = htonl(PKT_OFFLOAD_NOP);
220 	offload->header = htonl(header);
221 	offload->header2 = htonl(header2);
222 	offload->epkt = htonl(epkt);
223 	offload->end = htonl(PKT_OFFLOAD_END_OP);
224 	*csum_hw = true;
225 
226 	return skb;
227 
228 help:
229 	skb_checksum_help(skb);
230 
231 	return skb;
232 }
233 
234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf)
235 {
236 	return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID);
237 }
238 
239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr)
240 {
241 	rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ);
242 }
243 
244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
245 {
246 	rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ);
247 }
248 
249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf)
250 {
251 	return tx_spb_dma_rq(intf, TX_SPB_DMA_READ);
252 }
253 
254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr)
255 {
256 	tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID);
257 }
258 
259 static const struct bcmasp_intf_ops bcmasp_intf_ops = {
260 	.rx_desc_read = bcmasp_rx_edpkt_dma_rq,
261 	.rx_buffer_write = bcmasp_rx_edpkt_cfg_wq,
262 	.rx_desc_write = bcmasp_rx_edpkt_dma_wq,
263 	.tx_read = bcmasp_tx_spb_dma_rq,
264 	.tx_write = bcmasp_tx_spb_dma_wq,
265 };
266 
267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev)
268 {
269 	struct bcmasp_intf *intf = netdev_priv(dev);
270 	unsigned int total_bytes, size;
271 	int spb_index, nr_frags, i, j;
272 	struct bcmasp_tx_cb *txcb;
273 	dma_addr_t mapping, valid;
274 	struct bcmasp_desc *desc;
275 	bool csum_hw = false;
276 	struct device *kdev;
277 	skb_frag_t *frag;
278 
279 	kdev = &intf->parent->pdev->dev;
280 
281 	nr_frags = skb_shinfo(skb)->nr_frags;
282 
283 	if (tx_spb_ring_full(intf, nr_frags + 1)) {
284 		netif_stop_queue(dev);
285 		if (net_ratelimit())
286 			netdev_err(dev, "Tx Ring Full!\n");
287 		return NETDEV_TX_BUSY;
288 	}
289 
290 	/* Save skb len before adding csum offload header */
291 	total_bytes = skb->len;
292 	skb = bcmasp_csum_offload(dev, skb, &csum_hw);
293 	if (!skb)
294 		return NETDEV_TX_OK;
295 
296 	spb_index = intf->tx_spb_index;
297 	valid = intf->tx_spb_dma_valid;
298 	for (i = 0; i <= nr_frags; i++) {
299 		if (!i) {
300 			size = skb_headlen(skb);
301 			if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) {
302 				if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN))
303 					return NETDEV_TX_OK;
304 				size = skb->len;
305 			}
306 			mapping = dma_map_single(kdev, skb->data, size,
307 						 DMA_TO_DEVICE);
308 		} else {
309 			frag = &skb_shinfo(skb)->frags[i - 1];
310 			size = skb_frag_size(frag);
311 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
312 						   DMA_TO_DEVICE);
313 		}
314 
315 		if (dma_mapping_error(kdev, mapping)) {
316 			intf->mib.tx_dma_failed++;
317 			spb_index = intf->tx_spb_index;
318 			for (j = 0; j < i; j++) {
319 				bcmasp_clean_txcb(intf, spb_index);
320 				spb_index = incr_ring(spb_index,
321 						      DESC_RING_COUNT);
322 			}
323 			/* Rewind so we do not have a hole */
324 			spb_index = intf->tx_spb_index;
325 			return NETDEV_TX_OK;
326 		}
327 
328 		txcb = &intf->tx_cbs[spb_index];
329 		desc = &intf->tx_spb_cpu[spb_index];
330 		memset(desc, 0, sizeof(*desc));
331 		txcb->skb = skb;
332 		txcb->bytes_sent = total_bytes;
333 		dma_unmap_addr_set(txcb, dma_addr, mapping);
334 		dma_unmap_len_set(txcb, dma_len, size);
335 		if (!i) {
336 			desc->flags |= DESC_SOF;
337 			if (csum_hw)
338 				desc->flags |= DESC_EPKT_CMD;
339 		}
340 
341 		if (i == nr_frags) {
342 			desc->flags |= DESC_EOF;
343 			txcb->last = true;
344 		}
345 
346 		desc->buf = mapping;
347 		desc->size = size;
348 		desc->flags |= DESC_INT_EN;
349 
350 		netif_dbg(intf, tx_queued, dev,
351 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n",
352 			  __func__, &mapping, desc->size, desc->flags,
353 			  spb_index);
354 
355 		spb_index = incr_ring(spb_index, DESC_RING_COUNT);
356 		valid = incr_last_byte(valid, intf->tx_spb_dma_addr,
357 				       DESC_RING_COUNT);
358 	}
359 
360 	/* Ensure all descriptors have been written to DRAM for the
361 	 * hardware to see up-to-date contents.
362 	 */
363 	wmb();
364 
365 	intf->tx_spb_index = spb_index;
366 	intf->tx_spb_dma_valid = valid;
367 	bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid);
368 
369 	if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1))
370 		netif_stop_queue(dev);
371 
372 	return NETDEV_TX_OK;
373 }
374 
375 static void bcmasp_netif_start(struct net_device *dev)
376 {
377 	struct bcmasp_intf *intf = netdev_priv(dev);
378 
379 	bcmasp_set_rx_mode(dev);
380 	napi_enable(&intf->tx_napi);
381 	napi_enable(&intf->rx_napi);
382 
383 	bcmasp_enable_rx_irq(intf, 1);
384 	bcmasp_enable_tx_irq(intf, 1);
385 	bcmasp_enable_phy_irq(intf, 1);
386 
387 	phy_start(dev->phydev);
388 }
389 
390 static void umac_reset(struct bcmasp_intf *intf)
391 {
392 	umac_wl(intf, 0x0, UMC_CMD);
393 	umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD);
394 	usleep_range(10, 100);
395 	/* We hold the umac in reset and bring it out of
396 	 * reset when phy link is up.
397 	 */
398 }
399 
400 static void umac_set_hw_addr(struct bcmasp_intf *intf,
401 			     const unsigned char *addr)
402 {
403 	u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
404 		    addr[3];
405 	u32 mac1 = (addr[4] << 8) | addr[5];
406 
407 	umac_wl(intf, mac0, UMC_MAC0);
408 	umac_wl(intf, mac1, UMC_MAC1);
409 }
410 
411 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask,
412 			    unsigned int enable)
413 {
414 	u32 reg;
415 
416 	reg = umac_rl(intf, UMC_CMD);
417 	if (reg & UMC_CMD_SW_RESET)
418 		return;
419 	if (enable)
420 		reg |= mask;
421 	else
422 		reg &= ~mask;
423 	umac_wl(intf, reg, UMC_CMD);
424 
425 	/* UniMAC stops on a packet boundary, wait for a full-sized packet
426 	 * to be processed (1 msec).
427 	 */
428 	if (enable == 0)
429 		usleep_range(1000, 2000);
430 }
431 
432 static void umac_init(struct bcmasp_intf *intf)
433 {
434 	umac_wl(intf, 0x800, UMC_FRM_LEN);
435 	umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL);
436 	umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ);
437 }
438 
439 static int bcmasp_tx_poll(struct napi_struct *napi, int budget)
440 {
441 	struct bcmasp_intf *intf =
442 		container_of(napi, struct bcmasp_intf, tx_napi);
443 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
444 	struct device *kdev = &intf->parent->pdev->dev;
445 	unsigned long read, released = 0;
446 	struct bcmasp_tx_cb *txcb;
447 	struct bcmasp_desc *desc;
448 	dma_addr_t mapping;
449 
450 	read = bcmasp_intf_tx_read(intf);
451 	while (intf->tx_spb_dma_read != read) {
452 		txcb = &intf->tx_cbs[intf->tx_spb_clean_index];
453 		mapping = dma_unmap_addr(txcb, dma_addr);
454 
455 		dma_unmap_single(kdev, mapping,
456 				 dma_unmap_len(txcb, dma_len),
457 				 DMA_TO_DEVICE);
458 
459 		if (txcb->last) {
460 			dev_consume_skb_any(txcb->skb);
461 
462 			u64_stats_update_begin(&stats->syncp);
463 			u64_stats_inc(&stats->tx_packets);
464 			u64_stats_add(&stats->tx_bytes, txcb->bytes_sent);
465 			u64_stats_update_end(&stats->syncp);
466 		}
467 
468 		desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index];
469 
470 		netif_dbg(intf, tx_done, intf->ndev,
471 			  "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n",
472 			  __func__, &mapping, desc->size, desc->flags,
473 			  intf->tx_spb_clean_index);
474 
475 		bcmasp_clean_txcb(intf, intf->tx_spb_clean_index);
476 		released++;
477 
478 		intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index,
479 						     DESC_RING_COUNT);
480 		intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read,
481 							intf->tx_spb_dma_addr,
482 							DESC_RING_COUNT);
483 	}
484 
485 	/* Ensure all descriptors have been written to DRAM for the hardware
486 	 * to see updated contents.
487 	 */
488 	wmb();
489 
490 	napi_complete(&intf->tx_napi);
491 
492 	bcmasp_enable_tx_irq(intf, 1);
493 
494 	if (released)
495 		netif_wake_queue(intf->ndev);
496 
497 	return 0;
498 }
499 
500 static int bcmasp_rx_poll(struct napi_struct *napi, int budget)
501 {
502 	struct bcmasp_intf *intf =
503 		container_of(napi, struct bcmasp_intf, rx_napi);
504 	struct bcmasp_intf_stats64 *stats = &intf->stats64;
505 	struct device *kdev = &intf->parent->pdev->dev;
506 	unsigned long processed = 0;
507 	struct bcmasp_desc *desc;
508 	struct sk_buff *skb;
509 	dma_addr_t valid;
510 	void *data;
511 	u64 flags;
512 	u32 len;
513 
514 	valid = bcmasp_intf_rx_desc_read(intf) + 1;
515 	if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE)
516 		valid = intf->rx_edpkt_dma_addr;
517 
518 	while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) {
519 		desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index];
520 
521 		/* Ensure that descriptor has been fully written to DRAM by
522 		 * hardware before reading by the CPU
523 		 */
524 		rmb();
525 
526 		/* Calculate virt addr by offsetting from physical addr */
527 		data = intf->rx_ring_cpu +
528 			(DESC_ADDR(desc->buf) - intf->rx_ring_dma);
529 
530 		flags = DESC_FLAGS(desc->buf);
531 		if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) {
532 			if (net_ratelimit()) {
533 				netif_err(intf, rx_status, intf->ndev,
534 					  "flags=0x%llx\n", flags);
535 			}
536 
537 			u64_stats_update_begin(&stats->syncp);
538 			if (flags & DESC_CRC_ERR)
539 				u64_stats_inc(&stats->rx_crc_errs);
540 			if (flags & DESC_RX_SYM_ERR)
541 				u64_stats_inc(&stats->rx_sym_errs);
542 			u64_stats_update_end(&stats->syncp);
543 
544 			goto next;
545 		}
546 
547 		dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size,
548 					DMA_FROM_DEVICE);
549 
550 		len = desc->size;
551 
552 		skb = napi_alloc_skb(napi, len);
553 		if (!skb) {
554 			u64_stats_update_begin(&stats->syncp);
555 			u64_stats_inc(&stats->rx_dropped);
556 			u64_stats_update_end(&stats->syncp);
557 			intf->mib.alloc_rx_skb_failed++;
558 
559 			goto next;
560 		}
561 
562 		skb_put(skb, len);
563 		memcpy(skb->data, data, len);
564 
565 		skb_pull(skb, 2);
566 		len -= 2;
567 		if (likely(intf->crc_fwd)) {
568 			skb_trim(skb, len - ETH_FCS_LEN);
569 			len -= ETH_FCS_LEN;
570 		}
571 
572 		if ((intf->ndev->features & NETIF_F_RXCSUM) &&
573 		    (desc->buf & DESC_CHKSUM))
574 			skb->ip_summed = CHECKSUM_UNNECESSARY;
575 
576 		skb->protocol = eth_type_trans(skb, intf->ndev);
577 
578 		napi_gro_receive(napi, skb);
579 
580 		u64_stats_update_begin(&stats->syncp);
581 		u64_stats_inc(&stats->rx_packets);
582 		u64_stats_add(&stats->rx_bytes, len);
583 		u64_stats_update_end(&stats->syncp);
584 
585 next:
586 		bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) +
587 					    desc->size));
588 
589 		processed++;
590 		intf->rx_edpkt_dma_read =
591 			incr_first_byte(intf->rx_edpkt_dma_read,
592 					intf->rx_edpkt_dma_addr,
593 					DESC_RING_COUNT);
594 		intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index,
595 						 DESC_RING_COUNT);
596 	}
597 
598 	bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read);
599 
600 	if (processed < budget) {
601 		napi_complete_done(&intf->rx_napi, processed);
602 		bcmasp_enable_rx_irq(intf, 1);
603 	}
604 
605 	return processed;
606 }
607 
608 static void bcmasp_adj_link(struct net_device *dev)
609 {
610 	struct bcmasp_intf *intf = netdev_priv(dev);
611 	struct phy_device *phydev = dev->phydev;
612 	u32 cmd_bits = 0, reg;
613 	int changed = 0;
614 	bool active;
615 
616 	if (intf->old_link != phydev->link) {
617 		changed = 1;
618 		intf->old_link = phydev->link;
619 	}
620 
621 	if (intf->old_duplex != phydev->duplex) {
622 		changed = 1;
623 		intf->old_duplex = phydev->duplex;
624 	}
625 
626 	switch (phydev->speed) {
627 	case SPEED_2500:
628 		cmd_bits = UMC_CMD_SPEED_2500;
629 		break;
630 	case SPEED_1000:
631 		cmd_bits = UMC_CMD_SPEED_1000;
632 		break;
633 	case SPEED_100:
634 		cmd_bits = UMC_CMD_SPEED_100;
635 		break;
636 	case SPEED_10:
637 		cmd_bits = UMC_CMD_SPEED_10;
638 		break;
639 	default:
640 		break;
641 	}
642 	cmd_bits <<= UMC_CMD_SPEED_SHIFT;
643 
644 	if (phydev->duplex == DUPLEX_HALF)
645 		cmd_bits |= UMC_CMD_HD_EN;
646 
647 	if (intf->old_pause != phydev->pause) {
648 		changed = 1;
649 		intf->old_pause = phydev->pause;
650 	}
651 
652 	if (!phydev->pause)
653 		cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE;
654 
655 	if (!changed)
656 		return;
657 
658 	if (phydev->link) {
659 		reg = umac_rl(intf, UMC_CMD);
660 		reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) |
661 			UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE |
662 			UMC_CMD_TX_PAUSE_IGNORE);
663 		reg |= cmd_bits;
664 		if (reg & UMC_CMD_SW_RESET) {
665 			reg &= ~UMC_CMD_SW_RESET;
666 			umac_wl(intf, reg, UMC_CMD);
667 			udelay(2);
668 			reg |= UMC_CMD_TX_EN | UMC_CMD_RX_EN | UMC_CMD_PROMISC;
669 		}
670 		umac_wl(intf, reg, UMC_CMD);
671 
672 		active = phy_init_eee(phydev, 0) >= 0;
673 		bcmasp_eee_enable_set(intf, active);
674 	}
675 
676 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
677 	if (phydev->link)
678 		reg |= RGMII_LINK;
679 	else
680 		reg &= ~RGMII_LINK;
681 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
682 
683 	if (changed)
684 		phy_print_status(phydev);
685 }
686 
687 static int bcmasp_alloc_buffers(struct bcmasp_intf *intf)
688 {
689 	struct device *kdev = &intf->parent->pdev->dev;
690 	struct page *buffer_pg;
691 
692 	/* Alloc RX */
693 	intf->rx_buf_order = get_order(RING_BUFFER_SIZE);
694 	buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order);
695 	if (!buffer_pg)
696 		return -ENOMEM;
697 
698 	intf->rx_ring_cpu = page_to_virt(buffer_pg);
699 	intf->rx_ring_dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE,
700 					 DMA_FROM_DEVICE);
701 	if (dma_mapping_error(kdev, intf->rx_ring_dma))
702 		goto free_rx_buffer;
703 
704 	intf->rx_edpkt_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
705 						&intf->rx_edpkt_dma_addr, GFP_KERNEL);
706 	if (!intf->rx_edpkt_cpu)
707 		goto free_rx_buffer_dma;
708 
709 	/* Alloc TX */
710 	intf->tx_spb_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE,
711 					      &intf->tx_spb_dma_addr, GFP_KERNEL);
712 	if (!intf->tx_spb_cpu)
713 		goto free_rx_edpkt_dma;
714 
715 	intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb),
716 			       GFP_KERNEL);
717 	if (!intf->tx_cbs)
718 		goto free_tx_spb_dma;
719 
720 	return 0;
721 
722 free_tx_spb_dma:
723 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
724 			  intf->tx_spb_dma_addr);
725 free_rx_edpkt_dma:
726 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
727 			  intf->rx_edpkt_dma_addr);
728 free_rx_buffer_dma:
729 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
730 		       DMA_FROM_DEVICE);
731 free_rx_buffer:
732 	__free_pages(buffer_pg, intf->rx_buf_order);
733 
734 	return -ENOMEM;
735 }
736 
737 static void bcmasp_reclaim_free_buffers(struct bcmasp_intf *intf)
738 {
739 	struct device *kdev = &intf->parent->pdev->dev;
740 
741 	/* RX buffers */
742 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu,
743 			  intf->rx_edpkt_dma_addr);
744 	dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE,
745 		       DMA_FROM_DEVICE);
746 	__free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order);
747 
748 	/* TX buffers */
749 	dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu,
750 			  intf->tx_spb_dma_addr);
751 	kfree(intf->tx_cbs);
752 }
753 
754 static void bcmasp_init_rx(struct bcmasp_intf *intf)
755 {
756 	/* Restart from index 0 */
757 	intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1;
758 	intf->rx_edpkt_dma_valid = intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1);
759 	intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr;
760 	intf->rx_edpkt_index = 0;
761 
762 	/* Make sure channels are disabled */
763 	rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE);
764 
765 	/* Rx SPB */
766 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ);
767 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE);
768 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE);
769 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
770 			RX_EDPKT_RING_BUFFER_END);
771 	rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid,
772 			RX_EDPKT_RING_BUFFER_VALID);
773 
774 	/* EDPKT */
775 	rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K <<
776 			RX_EDPKT_CFG_CFG0_DBUF_SHIFT) |
777 		       (RX_EDPKT_CFG_CFG0_64_ALN <<
778 			RX_EDPKT_CFG_CFG0_BALN_SHIFT) |
779 		       (RX_EDPKT_CFG_CFG0_EFRM_STUF),
780 			RX_EDPKT_CFG_CFG0);
781 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE);
782 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ);
783 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE);
784 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_END);
785 	rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_VALID);
786 
787 	umac2fb_wl(intf, UMAC2FB_CFG_DEFAULT_EN | ((intf->channel + 11) <<
788 		   UMAC2FB_CFG_CHID_SHIFT) | (0xd << UMAC2FB_CFG_OK_SEND_SHIFT),
789 		   UMAC2FB_CFG);
790 }
791 
792 
793 static void bcmasp_init_tx(struct bcmasp_intf *intf)
794 {
795 	/* Restart from index 0 */
796 	intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1;
797 	intf->tx_spb_dma_read = intf->tx_spb_dma_addr;
798 	intf->tx_spb_index = 0;
799 	intf->tx_spb_clean_index = 0;
800 
801 	/* Make sure channels are disabled */
802 	tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE);
803 	tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC);
804 
805 	/* Tx SPB */
806 	tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT),
807 		       TX_SPB_CTRL_XF_CTRL2);
808 	tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR);
809 	tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT);
810 	tx_spb_top_wl(intf, 0x0, TX_SPB_TOP_SPRE_BW_CTRL);
811 
812 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ);
813 	tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE);
814 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END);
815 	tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID);
816 }
817 
818 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable)
819 {
820 	u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN |
821 		   RGMII_EPHY_CFG_IDDQ_GLOBAL;
822 	u32 reg;
823 
824 	reg = rgmii_rl(intf, RGMII_EPHY_CNTRL);
825 	if (enable) {
826 		reg &= ~RGMII_EPHY_CK25_DIS;
827 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
828 		mdelay(1);
829 
830 		reg &= ~mask;
831 		reg |= RGMII_EPHY_RESET;
832 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
833 		mdelay(1);
834 
835 		reg &= ~RGMII_EPHY_RESET;
836 	} else {
837 		reg |= mask | RGMII_EPHY_RESET;
838 		rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
839 		mdelay(1);
840 		reg |= RGMII_EPHY_CK25_DIS;
841 	}
842 	rgmii_wl(intf, reg, RGMII_EPHY_CNTRL);
843 	mdelay(1);
844 
845 	/* Set or clear the LED control override to avoid lighting up LEDs
846 	 * while the EPHY is powered off and drawing unnecessary current.
847 	 */
848 	reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL);
849 	if (enable)
850 		reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD;
851 	else
852 		reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD;
853 	rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL);
854 }
855 
856 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable)
857 {
858 	u32 reg;
859 
860 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
861 	reg &= ~RGMII_OOB_DIS;
862 	if (enable)
863 		reg |= RGMII_MODE_EN;
864 	else
865 		reg &= ~RGMII_MODE_EN;
866 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
867 }
868 
869 static void bcmasp_netif_deinit(struct net_device *dev)
870 {
871 	struct bcmasp_intf *intf = netdev_priv(dev);
872 	u32 reg, timeout = 1000;
873 
874 	napi_disable(&intf->tx_napi);
875 
876 	bcmasp_enable_tx(intf, 0);
877 
878 	/* Flush any TX packets in the pipe */
879 	tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL);
880 	do {
881 		reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS);
882 		if (!(reg & TX_SPB_DMA_FIFO_FLUSH))
883 			break;
884 		usleep_range(1000, 2000);
885 	} while (timeout-- > 0);
886 	tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL);
887 
888 	umac_enable_set(intf, UMC_CMD_TX_EN, 0);
889 
890 	phy_stop(dev->phydev);
891 
892 	umac_enable_set(intf, UMC_CMD_RX_EN, 0);
893 
894 	bcmasp_flush_rx_port(intf);
895 	usleep_range(1000, 2000);
896 	bcmasp_enable_rx(intf, 0);
897 
898 	napi_disable(&intf->rx_napi);
899 
900 	/* Disable interrupts */
901 	bcmasp_enable_tx_irq(intf, 0);
902 	bcmasp_enable_rx_irq(intf, 0);
903 	bcmasp_enable_phy_irq(intf, 0);
904 
905 	netif_napi_del(&intf->tx_napi);
906 	netif_napi_del(&intf->rx_napi);
907 }
908 
909 static int bcmasp_stop(struct net_device *dev)
910 {
911 	struct bcmasp_intf *intf = netdev_priv(dev);
912 
913 	netif_dbg(intf, ifdown, dev, "bcmasp stop\n");
914 
915 	/* Stop tx from updating HW */
916 	netif_tx_disable(dev);
917 
918 	bcmasp_netif_deinit(dev);
919 
920 	bcmasp_reclaim_free_buffers(intf);
921 
922 	phy_disconnect(dev->phydev);
923 
924 	/* Disable internal EPHY or external PHY */
925 	if (intf->internal_phy)
926 		bcmasp_ephy_enable_set(intf, false);
927 	else
928 		bcmasp_rgmii_mode_en_set(intf, false);
929 
930 	/* Disable the interface clocks */
931 	bcmasp_core_clock_set_intf(intf, false);
932 
933 	clk_disable_unprepare(intf->parent->clk);
934 
935 	return 0;
936 }
937 
938 static void bcmasp_configure_port(struct bcmasp_intf *intf)
939 {
940 	u32 reg, id_mode_dis = 0;
941 
942 	reg = rgmii_rl(intf, RGMII_PORT_CNTRL);
943 	reg &= ~RGMII_PORT_MODE_MASK;
944 
945 	switch (intf->phy_interface) {
946 	case PHY_INTERFACE_MODE_RGMII:
947 		/* RGMII_NO_ID: TXC transitions at the same time as TXD
948 		 *		(requires PCB or receiver-side delay)
949 		 * RGMII:	Add 2ns delay on TXC (90 degree shift)
950 		 *
951 		 * ID is implicitly disabled for 100Mbps (RG)MII operation.
952 		 */
953 		id_mode_dis = RGMII_ID_MODE_DIS;
954 		fallthrough;
955 	case PHY_INTERFACE_MODE_RGMII_TXID:
956 		reg |= RGMII_PORT_MODE_EXT_GPHY;
957 		break;
958 	case PHY_INTERFACE_MODE_MII:
959 		reg |= RGMII_PORT_MODE_EXT_EPHY;
960 		break;
961 	default:
962 		break;
963 	}
964 
965 	if (intf->internal_phy)
966 		reg |= RGMII_PORT_MODE_EPHY;
967 
968 	rgmii_wl(intf, reg, RGMII_PORT_CNTRL);
969 
970 	reg = rgmii_rl(intf, RGMII_OOB_CNTRL);
971 	reg &= ~RGMII_ID_MODE_DIS;
972 	reg |= id_mode_dis;
973 	rgmii_wl(intf, reg, RGMII_OOB_CNTRL);
974 }
975 
976 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect)
977 {
978 	struct bcmasp_intf *intf = netdev_priv(dev);
979 	phy_interface_t phy_iface = intf->phy_interface;
980 	u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE |
981 			PHY_BRCM_DIS_TXCRXC_NOENRGY |
982 			PHY_BRCM_IDDQ_SUSPEND;
983 	struct phy_device *phydev = NULL;
984 	int ret;
985 
986 	/* Always enable interface clocks */
987 	bcmasp_core_clock_set_intf(intf, true);
988 
989 	/* Enable internal PHY or external PHY before any MAC activity */
990 	if (intf->internal_phy)
991 		bcmasp_ephy_enable_set(intf, true);
992 	else
993 		bcmasp_rgmii_mode_en_set(intf, true);
994 	bcmasp_configure_port(intf);
995 
996 	/* This is an ugly quirk but we have not been correctly
997 	 * interpreting the phy_interface values and we have done that
998 	 * across different drivers, so at least we are consistent in
999 	 * our mistakes.
1000 	 *
1001 	 * When the Generic PHY driver is in use either the PHY has
1002 	 * been strapped or programmed correctly by the boot loader so
1003 	 * we should stick to our incorrect interpretation since we
1004 	 * have validated it.
1005 	 *
1006 	 * Now when a dedicated PHY driver is in use, we need to
1007 	 * reverse the meaning of the phy_interface_mode values to
1008 	 * something that the PHY driver will interpret and act on such
1009 	 * that we have two mistakes canceling themselves so to speak.
1010 	 * We only do this for the two modes that GENET driver
1011 	 * officially supports on Broadcom STB chips:
1012 	 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID.
1013 	 * Other modes are not *officially* supported with the boot
1014 	 * loader and the scripted environment generating Device Tree
1015 	 * blobs for those platforms.
1016 	 *
1017 	 * Note that internal PHY and fixed-link configurations are not
1018 	 * affected because they use different phy_interface_t values
1019 	 * or the Generic PHY driver.
1020 	 */
1021 	switch (phy_iface) {
1022 	case PHY_INTERFACE_MODE_RGMII:
1023 		phy_iface = PHY_INTERFACE_MODE_RGMII_ID;
1024 		break;
1025 	case PHY_INTERFACE_MODE_RGMII_TXID:
1026 		phy_iface = PHY_INTERFACE_MODE_RGMII_RXID;
1027 		break;
1028 	default:
1029 		break;
1030 	}
1031 
1032 	if (phy_connect) {
1033 		phydev = of_phy_connect(dev, intf->phy_dn,
1034 					bcmasp_adj_link, phy_flags,
1035 					phy_iface);
1036 		if (!phydev) {
1037 			ret = -ENODEV;
1038 			netdev_err(dev, "could not attach to PHY\n");
1039 			goto err_phy_disable;
1040 		}
1041 
1042 		if (intf->internal_phy)
1043 			dev->phydev->irq = PHY_MAC_INTERRUPT;
1044 
1045 		/* Indicate that the MAC is responsible for PHY PM */
1046 		phydev->mac_managed_pm = true;
1047 	}
1048 
1049 	umac_reset(intf);
1050 
1051 	umac_init(intf);
1052 
1053 	umac_set_hw_addr(intf, dev->dev_addr);
1054 
1055 	intf->old_duplex = -1;
1056 	intf->old_link = -1;
1057 	intf->old_pause = -1;
1058 
1059 	bcmasp_init_tx(intf);
1060 	netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll);
1061 	bcmasp_enable_tx(intf, 1);
1062 
1063 	bcmasp_init_rx(intf);
1064 	netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll);
1065 	bcmasp_enable_rx(intf, 1);
1066 
1067 	intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD);
1068 
1069 	bcmasp_netif_start(dev);
1070 
1071 	netif_start_queue(dev);
1072 
1073 	return 0;
1074 
1075 err_phy_disable:
1076 	if (intf->internal_phy)
1077 		bcmasp_ephy_enable_set(intf, false);
1078 	else
1079 		bcmasp_rgmii_mode_en_set(intf, false);
1080 	return ret;
1081 }
1082 
1083 static int bcmasp_open(struct net_device *dev)
1084 {
1085 	struct bcmasp_intf *intf = netdev_priv(dev);
1086 	int ret;
1087 
1088 	netif_dbg(intf, ifup, dev, "bcmasp open\n");
1089 
1090 	ret = bcmasp_alloc_buffers(intf);
1091 	if (ret)
1092 		return ret;
1093 
1094 	ret = clk_prepare_enable(intf->parent->clk);
1095 	if (ret)
1096 		goto err_free_mem;
1097 
1098 	ret = bcmasp_netif_init(dev, true);
1099 	if (ret) {
1100 		clk_disable_unprepare(intf->parent->clk);
1101 		goto err_free_mem;
1102 	}
1103 
1104 	return ret;
1105 
1106 err_free_mem:
1107 	bcmasp_reclaim_free_buffers(intf);
1108 
1109 	return ret;
1110 }
1111 
1112 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue)
1113 {
1114 	struct bcmasp_intf *intf = netdev_priv(dev);
1115 
1116 	netif_dbg(intf, tx_err, dev, "transmit timeout!\n");
1117 	intf->mib.tx_timeout_cnt++;
1118 }
1119 
1120 static int bcmasp_get_phys_port_name(struct net_device *dev,
1121 				     char *name, size_t len)
1122 {
1123 	struct bcmasp_intf *intf = netdev_priv(dev);
1124 
1125 	if (snprintf(name, len, "p%d", intf->port) >= len)
1126 		return -EINVAL;
1127 
1128 	return 0;
1129 }
1130 
1131 static void bcmasp_get_stats64(struct net_device *dev,
1132 			       struct rtnl_link_stats64 *stats)
1133 {
1134 	struct bcmasp_intf *intf = netdev_priv(dev);
1135 	struct bcmasp_intf_stats64 *lstats;
1136 	unsigned int start;
1137 
1138 	lstats = &intf->stats64;
1139 
1140 	do {
1141 		start = u64_stats_fetch_begin(&lstats->syncp);
1142 		stats->rx_packets = u64_stats_read(&lstats->rx_packets);
1143 		stats->rx_bytes = u64_stats_read(&lstats->rx_bytes);
1144 		stats->rx_dropped = u64_stats_read(&lstats->rx_dropped);
1145 		stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs);
1146 		stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs);
1147 		stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors;
1148 
1149 		stats->tx_packets = u64_stats_read(&lstats->tx_packets);
1150 		stats->tx_bytes = u64_stats_read(&lstats->tx_bytes);
1151 	} while (u64_stats_fetch_retry(&lstats->syncp, start));
1152 }
1153 
1154 static const struct net_device_ops bcmasp_netdev_ops = {
1155 	.ndo_open		= bcmasp_open,
1156 	.ndo_stop		= bcmasp_stop,
1157 	.ndo_start_xmit		= bcmasp_xmit,
1158 	.ndo_tx_timeout		= bcmasp_tx_timeout,
1159 	.ndo_set_rx_mode	= bcmasp_set_rx_mode,
1160 	.ndo_get_phys_port_name	= bcmasp_get_phys_port_name,
1161 	.ndo_eth_ioctl		= phy_do_ioctl_running,
1162 	.ndo_set_mac_address	= eth_mac_addr,
1163 	.ndo_get_stats64	= bcmasp_get_stats64,
1164 };
1165 
1166 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf)
1167 {
1168 	/* Per port */
1169 	intf->res.umac = priv->base + UMC_OFFSET(intf);
1170 	intf->res.umac2fb = priv->base + (priv->hw_info->umac2fb +
1171 					  (intf->port * 0x4));
1172 	intf->res.rgmii = priv->base + RGMII_OFFSET(intf);
1173 
1174 	/* Per ch */
1175 	intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf);
1176 	intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf);
1177 	intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf);
1178 	intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf);
1179 	intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf);
1180 
1181 	intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf);
1182 	intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf);
1183 }
1184 
1185 #define MAX_IRQ_STR_LEN		64
1186 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv,
1187 					    struct device_node *ndev_dn, int i)
1188 {
1189 	struct device *dev = &priv->pdev->dev;
1190 	struct bcmasp_intf *intf;
1191 	struct net_device *ndev;
1192 	int ch, port, ret;
1193 
1194 	if (of_property_read_u32(ndev_dn, "reg", &port)) {
1195 		dev_warn(dev, "%s: invalid port number\n", ndev_dn->name);
1196 		goto err;
1197 	}
1198 
1199 	if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) {
1200 		dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name);
1201 		goto err;
1202 	}
1203 
1204 	ndev = alloc_etherdev(sizeof(struct bcmasp_intf));
1205 	if (!ndev) {
1206 		dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name);
1207 		goto err;
1208 	}
1209 	intf = netdev_priv(ndev);
1210 
1211 	intf->parent = priv;
1212 	intf->ndev = ndev;
1213 	intf->channel = ch;
1214 	intf->port = port;
1215 	intf->ndev_dn = ndev_dn;
1216 	intf->index = i;
1217 
1218 	ret = of_get_phy_mode(ndev_dn, &intf->phy_interface);
1219 	if (ret < 0) {
1220 		dev_err(dev, "invalid PHY mode property\n");
1221 		goto err_free_netdev;
1222 	}
1223 
1224 	if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL)
1225 		intf->internal_phy = true;
1226 
1227 	intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0);
1228 	if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) {
1229 		ret = of_phy_register_fixed_link(ndev_dn);
1230 		if (ret) {
1231 			dev_warn(dev, "%s: failed to register fixed PHY\n",
1232 				 ndev_dn->name);
1233 			goto err_free_netdev;
1234 		}
1235 		intf->phy_dn = ndev_dn;
1236 	}
1237 
1238 	/* Map resource */
1239 	bcmasp_map_res(priv, intf);
1240 
1241 	if ((!phy_interface_mode_is_rgmii(intf->phy_interface) &&
1242 	     intf->phy_interface != PHY_INTERFACE_MODE_MII &&
1243 	     intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) ||
1244 	    (intf->port != 1 && intf->internal_phy)) {
1245 		netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n",
1246 			   phy_modes(intf->phy_interface), intf->port);
1247 		ret = -EINVAL;
1248 		goto err_free_netdev;
1249 	}
1250 
1251 	ret = of_get_ethdev_address(ndev_dn, ndev);
1252 	if (ret) {
1253 		netdev_warn(ndev, "using random Ethernet MAC\n");
1254 		eth_hw_addr_random(ndev);
1255 	}
1256 
1257 	SET_NETDEV_DEV(ndev, dev);
1258 	intf->ops = &bcmasp_intf_ops;
1259 	ndev->netdev_ops = &bcmasp_netdev_ops;
1260 	ndev->ethtool_ops = &bcmasp_ethtool_ops;
1261 	intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV |
1262 					  NETIF_MSG_PROBE |
1263 					  NETIF_MSG_LINK);
1264 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
1265 			  NETIF_F_RXCSUM;
1266 	ndev->hw_features |= ndev->features;
1267 	ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload);
1268 
1269 	return intf;
1270 
1271 err_free_netdev:
1272 	free_netdev(ndev);
1273 err:
1274 	return NULL;
1275 }
1276 
1277 void bcmasp_interface_destroy(struct bcmasp_intf *intf)
1278 {
1279 	if (intf->ndev->reg_state == NETREG_REGISTERED)
1280 		unregister_netdev(intf->ndev);
1281 	if (of_phy_is_fixed_link(intf->ndev_dn))
1282 		of_phy_deregister_fixed_link(intf->ndev_dn);
1283 	free_netdev(intf->ndev);
1284 }
1285 
1286 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf)
1287 {
1288 	struct net_device *ndev = intf->ndev;
1289 	u32 reg;
1290 
1291 	reg = umac_rl(intf, UMC_MPD_CTRL);
1292 	if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
1293 		reg |= UMC_MPD_CTRL_MPD_EN;
1294 	reg &= ~UMC_MPD_CTRL_PSW_EN;
1295 	if (intf->wolopts & WAKE_MAGICSECURE) {
1296 		/* Program the SecureOn password */
1297 		umac_wl(intf, get_unaligned_be16(&intf->sopass[0]),
1298 			UMC_PSW_MS);
1299 		umac_wl(intf, get_unaligned_be32(&intf->sopass[2]),
1300 			UMC_PSW_LS);
1301 		reg |= UMC_MPD_CTRL_PSW_EN;
1302 	}
1303 	umac_wl(intf, reg, UMC_MPD_CTRL);
1304 
1305 	if (intf->wolopts & WAKE_FILTER)
1306 		bcmasp_netfilt_suspend(intf);
1307 
1308 	/* Bring UniMAC out of reset if needed and enable RX */
1309 	reg = umac_rl(intf, UMC_CMD);
1310 	if (reg & UMC_CMD_SW_RESET)
1311 		reg &= ~UMC_CMD_SW_RESET;
1312 
1313 	reg |= UMC_CMD_RX_EN | UMC_CMD_PROMISC;
1314 	umac_wl(intf, reg, UMC_CMD);
1315 
1316 	umac_enable_set(intf, UMC_CMD_RX_EN, 1);
1317 
1318 	if (intf->parent->wol_irq > 0) {
1319 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1320 				     ASP_WAKEUP_INTR2_MASK_CLEAR);
1321 	}
1322 
1323 	if (intf->eee.eee_enabled && intf->parent->eee_fixup)
1324 		intf->parent->eee_fixup(intf, true);
1325 
1326 	netif_dbg(intf, wol, ndev, "entered WOL mode\n");
1327 }
1328 
1329 int bcmasp_interface_suspend(struct bcmasp_intf *intf)
1330 {
1331 	struct device *kdev = &intf->parent->pdev->dev;
1332 	struct net_device *dev = intf->ndev;
1333 
1334 	if (!netif_running(dev))
1335 		return 0;
1336 
1337 	netif_device_detach(dev);
1338 
1339 	bcmasp_netif_deinit(dev);
1340 
1341 	if (!intf->wolopts) {
1342 		if (intf->internal_phy)
1343 			bcmasp_ephy_enable_set(intf, false);
1344 		else
1345 			bcmasp_rgmii_mode_en_set(intf, false);
1346 
1347 		/* If Wake-on-LAN is disabled, we can safely
1348 		 * disable the network interface clocks.
1349 		 */
1350 		bcmasp_core_clock_set_intf(intf, false);
1351 	}
1352 
1353 	if (device_may_wakeup(kdev) && intf->wolopts)
1354 		bcmasp_suspend_to_wol(intf);
1355 
1356 	clk_disable_unprepare(intf->parent->clk);
1357 
1358 	return 0;
1359 }
1360 
1361 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf)
1362 {
1363 	u32 reg;
1364 
1365 	if (intf->eee.eee_enabled && intf->parent->eee_fixup)
1366 		intf->parent->eee_fixup(intf, false);
1367 
1368 	reg = umac_rl(intf, UMC_MPD_CTRL);
1369 	reg &= ~UMC_MPD_CTRL_MPD_EN;
1370 	umac_wl(intf, reg, UMC_MPD_CTRL);
1371 
1372 	if (intf->parent->wol_irq > 0) {
1373 		wakeup_intr2_core_wl(intf->parent, 0xffffffff,
1374 				     ASP_WAKEUP_INTR2_MASK_SET);
1375 	}
1376 }
1377 
1378 int bcmasp_interface_resume(struct bcmasp_intf *intf)
1379 {
1380 	struct net_device *dev = intf->ndev;
1381 	int ret;
1382 
1383 	if (!netif_running(dev))
1384 		return 0;
1385 
1386 	ret = clk_prepare_enable(intf->parent->clk);
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = bcmasp_netif_init(dev, false);
1391 	if (ret)
1392 		goto out;
1393 
1394 	bcmasp_resume_from_wol(intf);
1395 
1396 	if (intf->eee.eee_enabled)
1397 		bcmasp_eee_enable_set(intf, true);
1398 
1399 	netif_device_attach(dev);
1400 
1401 	return 0;
1402 
1403 out:
1404 	clk_disable_unprepare(intf->parent->clk);
1405 	return ret;
1406 }
1407