1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) "bcmasp_intf: " fmt 3 4 #include <asm/byteorder.h> 5 #include <linux/brcmphy.h> 6 #include <linux/clk.h> 7 #include <linux/delay.h> 8 #include <linux/etherdevice.h> 9 #include <linux/netdevice.h> 10 #include <linux/of_net.h> 11 #include <linux/of_mdio.h> 12 #include <linux/phy.h> 13 #include <linux/phy_fixed.h> 14 #include <linux/ptp_classify.h> 15 #include <linux/platform_device.h> 16 #include <net/ip.h> 17 #include <net/ipv6.h> 18 19 #include "bcmasp.h" 20 #include "bcmasp_intf_defs.h" 21 22 static int incr_ring(int index, int ring_count) 23 { 24 index++; 25 if (index == ring_count) 26 return 0; 27 28 return index; 29 } 30 31 /* Points to last byte of descriptor */ 32 static dma_addr_t incr_last_byte(dma_addr_t addr, dma_addr_t beg, 33 int ring_count) 34 { 35 dma_addr_t end = beg + (ring_count * DESC_SIZE); 36 37 addr += DESC_SIZE; 38 if (addr > end) 39 return beg + DESC_SIZE - 1; 40 41 return addr; 42 } 43 44 /* Points to first byte of descriptor */ 45 static dma_addr_t incr_first_byte(dma_addr_t addr, dma_addr_t beg, 46 int ring_count) 47 { 48 dma_addr_t end = beg + (ring_count * DESC_SIZE); 49 50 addr += DESC_SIZE; 51 if (addr >= end) 52 return beg; 53 54 return addr; 55 } 56 57 static void bcmasp_enable_tx(struct bcmasp_intf *intf, int en) 58 { 59 if (en) { 60 tx_spb_ctrl_wl(intf, TX_SPB_CTRL_ENABLE_EN, TX_SPB_CTRL_ENABLE); 61 tx_epkt_core_wl(intf, (TX_EPKT_C_CFG_MISC_EN | 62 TX_EPKT_C_CFG_MISC_PT | 63 (intf->port << TX_EPKT_C_CFG_MISC_PS_SHIFT)), 64 TX_EPKT_C_CFG_MISC); 65 } else { 66 tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE); 67 tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC); 68 } 69 } 70 71 static void bcmasp_enable_rx(struct bcmasp_intf *intf, int en) 72 { 73 if (en) 74 rx_edpkt_cfg_wl(intf, RX_EDPKT_CFG_ENABLE_EN, 75 RX_EDPKT_CFG_ENABLE); 76 else 77 rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE); 78 } 79 80 static void bcmasp_set_rx_mode(struct net_device *dev) 81 { 82 unsigned char mask[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 83 struct bcmasp_intf *intf = netdev_priv(dev); 84 struct netdev_hw_addr *ha; 85 int ret; 86 87 spin_lock_bh(&intf->parent->mda_lock); 88 89 bcmasp_disable_all_filters(intf); 90 91 if (dev->flags & IFF_PROMISC) 92 goto set_promisc; 93 94 bcmasp_set_promisc(intf, 0); 95 96 bcmasp_set_broad(intf, 1); 97 98 bcmasp_set_oaddr(intf, dev->dev_addr, 1); 99 100 if (dev->flags & IFF_ALLMULTI) { 101 bcmasp_set_allmulti(intf, 1); 102 } else { 103 bcmasp_set_allmulti(intf, 0); 104 105 netdev_for_each_mc_addr(ha, dev) { 106 ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask); 107 if (ret) { 108 intf->mib.mc_filters_full_cnt++; 109 goto set_promisc; 110 } 111 } 112 } 113 114 netdev_for_each_uc_addr(ha, dev) { 115 ret = bcmasp_set_en_mda_filter(intf, ha->addr, mask); 116 if (ret) { 117 intf->mib.uc_filters_full_cnt++; 118 goto set_promisc; 119 } 120 } 121 122 spin_unlock_bh(&intf->parent->mda_lock); 123 return; 124 125 set_promisc: 126 bcmasp_set_promisc(intf, 1); 127 intf->mib.promisc_filters_cnt++; 128 129 /* disable all filters used by this port */ 130 bcmasp_disable_all_filters(intf); 131 132 spin_unlock_bh(&intf->parent->mda_lock); 133 } 134 135 static void bcmasp_clean_txcb(struct bcmasp_intf *intf, int index) 136 { 137 struct bcmasp_tx_cb *txcb = &intf->tx_cbs[index]; 138 139 txcb->skb = NULL; 140 dma_unmap_addr_set(txcb, dma_addr, 0); 141 dma_unmap_len_set(txcb, dma_len, 0); 142 txcb->last = false; 143 } 144 145 static int tx_spb_ring_full(struct bcmasp_intf *intf, int cnt) 146 { 147 int next_index, i; 148 149 /* Check if we have enough room for cnt descriptors */ 150 for (i = 0; i < cnt; i++) { 151 next_index = incr_ring(intf->tx_spb_index, DESC_RING_COUNT); 152 if (next_index == intf->tx_spb_clean_index) 153 return 1; 154 } 155 156 return 0; 157 } 158 159 static struct sk_buff *bcmasp_csum_offload(struct net_device *dev, 160 struct sk_buff *skb, 161 bool *csum_hw) 162 { 163 struct bcmasp_intf *intf = netdev_priv(dev); 164 u32 header = 0, header2 = 0, epkt = 0; 165 struct bcmasp_pkt_offload *offload; 166 unsigned int header_cnt = 0; 167 u8 ip_proto; 168 int ret; 169 170 if (skb->ip_summed != CHECKSUM_PARTIAL) 171 return skb; 172 173 ret = skb_cow_head(skb, sizeof(*offload)); 174 if (ret < 0) { 175 intf->mib.tx_realloc_offload_failed++; 176 goto help; 177 } 178 179 switch (skb->protocol) { 180 case htons(ETH_P_IP): 181 header |= PKT_OFFLOAD_HDR_SIZE_2((ip_hdrlen(skb) >> 8) & 0xf); 182 header2 |= PKT_OFFLOAD_HDR2_SIZE_2(ip_hdrlen(skb) & 0xff); 183 epkt |= PKT_OFFLOAD_EPKT_IP(0) | PKT_OFFLOAD_EPKT_CSUM_L2; 184 ip_proto = ip_hdr(skb)->protocol; 185 header_cnt += 2; 186 break; 187 case htons(ETH_P_IPV6): 188 header |= PKT_OFFLOAD_HDR_SIZE_2((IP6_HLEN >> 8) & 0xf); 189 header2 |= PKT_OFFLOAD_HDR2_SIZE_2(IP6_HLEN & 0xff); 190 epkt |= PKT_OFFLOAD_EPKT_IP(1) | PKT_OFFLOAD_EPKT_CSUM_L2; 191 ip_proto = ipv6_hdr(skb)->nexthdr; 192 header_cnt += 2; 193 break; 194 default: 195 goto help; 196 } 197 198 switch (ip_proto) { 199 case IPPROTO_TCP: 200 header2 |= PKT_OFFLOAD_HDR2_SIZE_3(tcp_hdrlen(skb)); 201 epkt |= PKT_OFFLOAD_EPKT_TP(0) | PKT_OFFLOAD_EPKT_CSUM_L3; 202 header_cnt++; 203 break; 204 case IPPROTO_UDP: 205 header2 |= PKT_OFFLOAD_HDR2_SIZE_3(UDP_HLEN); 206 epkt |= PKT_OFFLOAD_EPKT_TP(1) | PKT_OFFLOAD_EPKT_CSUM_L3; 207 header_cnt++; 208 break; 209 default: 210 goto help; 211 } 212 213 offload = (struct bcmasp_pkt_offload *)skb_push(skb, sizeof(*offload)); 214 215 header |= PKT_OFFLOAD_HDR_OP | PKT_OFFLOAD_HDR_COUNT(header_cnt) | 216 PKT_OFFLOAD_HDR_SIZE_1(ETH_HLEN); 217 epkt |= PKT_OFFLOAD_EPKT_OP; 218 219 offload->nop = htonl(PKT_OFFLOAD_NOP); 220 offload->header = htonl(header); 221 offload->header2 = htonl(header2); 222 offload->epkt = htonl(epkt); 223 offload->end = htonl(PKT_OFFLOAD_END_OP); 224 *csum_hw = true; 225 226 return skb; 227 228 help: 229 skb_checksum_help(skb); 230 231 return skb; 232 } 233 234 static unsigned long bcmasp_rx_edpkt_dma_rq(struct bcmasp_intf *intf) 235 { 236 return rx_edpkt_dma_rq(intf, RX_EDPKT_DMA_VALID); 237 } 238 239 static void bcmasp_rx_edpkt_cfg_wq(struct bcmasp_intf *intf, dma_addr_t addr) 240 { 241 rx_edpkt_cfg_wq(intf, addr, RX_EDPKT_RING_BUFFER_READ); 242 } 243 244 static void bcmasp_rx_edpkt_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr) 245 { 246 rx_edpkt_dma_wq(intf, addr, RX_EDPKT_DMA_READ); 247 } 248 249 static unsigned long bcmasp_tx_spb_dma_rq(struct bcmasp_intf *intf) 250 { 251 return tx_spb_dma_rq(intf, TX_SPB_DMA_READ); 252 } 253 254 static void bcmasp_tx_spb_dma_wq(struct bcmasp_intf *intf, dma_addr_t addr) 255 { 256 tx_spb_dma_wq(intf, addr, TX_SPB_DMA_VALID); 257 } 258 259 static const struct bcmasp_intf_ops bcmasp_intf_ops = { 260 .rx_desc_read = bcmasp_rx_edpkt_dma_rq, 261 .rx_buffer_write = bcmasp_rx_edpkt_cfg_wq, 262 .rx_desc_write = bcmasp_rx_edpkt_dma_wq, 263 .tx_read = bcmasp_tx_spb_dma_rq, 264 .tx_write = bcmasp_tx_spb_dma_wq, 265 }; 266 267 static netdev_tx_t bcmasp_xmit(struct sk_buff *skb, struct net_device *dev) 268 { 269 struct bcmasp_intf *intf = netdev_priv(dev); 270 unsigned int total_bytes, size; 271 int spb_index, nr_frags, i, j; 272 struct bcmasp_tx_cb *txcb; 273 dma_addr_t mapping, valid; 274 struct bcmasp_desc *desc; 275 bool csum_hw = false; 276 struct device *kdev; 277 skb_frag_t *frag; 278 279 kdev = &intf->parent->pdev->dev; 280 281 nr_frags = skb_shinfo(skb)->nr_frags; 282 283 if (tx_spb_ring_full(intf, nr_frags + 1)) { 284 netif_stop_queue(dev); 285 if (net_ratelimit()) 286 netdev_err(dev, "Tx Ring Full!\n"); 287 return NETDEV_TX_BUSY; 288 } 289 290 /* Save skb len before adding csum offload header */ 291 total_bytes = skb->len; 292 skb = bcmasp_csum_offload(dev, skb, &csum_hw); 293 if (!skb) 294 return NETDEV_TX_OK; 295 296 spb_index = intf->tx_spb_index; 297 valid = intf->tx_spb_dma_valid; 298 for (i = 0; i <= nr_frags; i++) { 299 if (!i) { 300 size = skb_headlen(skb); 301 if (!nr_frags && size < (ETH_ZLEN + ETH_FCS_LEN)) { 302 if (skb_put_padto(skb, ETH_ZLEN + ETH_FCS_LEN)) 303 return NETDEV_TX_OK; 304 size = skb->len; 305 } 306 mapping = dma_map_single(kdev, skb->data, size, 307 DMA_TO_DEVICE); 308 } else { 309 frag = &skb_shinfo(skb)->frags[i - 1]; 310 size = skb_frag_size(frag); 311 mapping = skb_frag_dma_map(kdev, frag, 0, size, 312 DMA_TO_DEVICE); 313 } 314 315 if (dma_mapping_error(kdev, mapping)) { 316 intf->mib.tx_dma_failed++; 317 spb_index = intf->tx_spb_index; 318 for (j = 0; j < i; j++) { 319 bcmasp_clean_txcb(intf, spb_index); 320 spb_index = incr_ring(spb_index, 321 DESC_RING_COUNT); 322 } 323 /* Rewind so we do not have a hole */ 324 spb_index = intf->tx_spb_index; 325 return NETDEV_TX_OK; 326 } 327 328 txcb = &intf->tx_cbs[spb_index]; 329 desc = &intf->tx_spb_cpu[spb_index]; 330 memset(desc, 0, sizeof(*desc)); 331 txcb->skb = skb; 332 txcb->bytes_sent = total_bytes; 333 dma_unmap_addr_set(txcb, dma_addr, mapping); 334 dma_unmap_len_set(txcb, dma_len, size); 335 if (!i) { 336 desc->flags |= DESC_SOF; 337 if (csum_hw) 338 desc->flags |= DESC_EPKT_CMD; 339 } 340 341 if (i == nr_frags) { 342 desc->flags |= DESC_EOF; 343 txcb->last = true; 344 } 345 346 desc->buf = mapping; 347 desc->size = size; 348 desc->flags |= DESC_INT_EN; 349 350 netif_dbg(intf, tx_queued, dev, 351 "%s dma_buf=%pad dma_len=0x%x flags=0x%x index=0x%x\n", 352 __func__, &mapping, desc->size, desc->flags, 353 spb_index); 354 355 spb_index = incr_ring(spb_index, DESC_RING_COUNT); 356 valid = incr_last_byte(valid, intf->tx_spb_dma_addr, 357 DESC_RING_COUNT); 358 } 359 360 /* Ensure all descriptors have been written to DRAM for the 361 * hardware to see up-to-date contents. 362 */ 363 wmb(); 364 365 intf->tx_spb_index = spb_index; 366 intf->tx_spb_dma_valid = valid; 367 bcmasp_intf_tx_write(intf, intf->tx_spb_dma_valid); 368 369 if (tx_spb_ring_full(intf, MAX_SKB_FRAGS + 1)) 370 netif_stop_queue(dev); 371 372 return NETDEV_TX_OK; 373 } 374 375 static void bcmasp_netif_start(struct net_device *dev) 376 { 377 struct bcmasp_intf *intf = netdev_priv(dev); 378 379 bcmasp_set_rx_mode(dev); 380 napi_enable(&intf->tx_napi); 381 napi_enable(&intf->rx_napi); 382 383 bcmasp_enable_rx_irq(intf, 1); 384 bcmasp_enable_tx_irq(intf, 1); 385 bcmasp_enable_phy_irq(intf, 1); 386 387 phy_start(dev->phydev); 388 } 389 390 static void umac_reset(struct bcmasp_intf *intf) 391 { 392 umac_wl(intf, 0x0, UMC_CMD); 393 umac_wl(intf, UMC_CMD_SW_RESET, UMC_CMD); 394 usleep_range(10, 100); 395 /* We hold the umac in reset and bring it out of 396 * reset when phy link is up. 397 */ 398 } 399 400 static void umac_set_hw_addr(struct bcmasp_intf *intf, 401 const unsigned char *addr) 402 { 403 u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | 404 addr[3]; 405 u32 mac1 = (addr[4] << 8) | addr[5]; 406 407 umac_wl(intf, mac0, UMC_MAC0); 408 umac_wl(intf, mac1, UMC_MAC1); 409 } 410 411 static void umac_enable_set(struct bcmasp_intf *intf, u32 mask, 412 unsigned int enable) 413 { 414 u32 reg; 415 416 reg = umac_rl(intf, UMC_CMD); 417 if (reg & UMC_CMD_SW_RESET) 418 return; 419 if (enable) 420 reg |= mask; 421 else 422 reg &= ~mask; 423 umac_wl(intf, reg, UMC_CMD); 424 425 /* UniMAC stops on a packet boundary, wait for a full-sized packet 426 * to be processed (1 msec). 427 */ 428 if (enable == 0) 429 usleep_range(1000, 2000); 430 } 431 432 static void umac_init(struct bcmasp_intf *intf) 433 { 434 umac_wl(intf, 0x800, UMC_FRM_LEN); 435 umac_wl(intf, 0xffff, UMC_PAUSE_CNTRL); 436 umac_wl(intf, 0x800, UMC_RX_MAX_PKT_SZ); 437 } 438 439 static int bcmasp_tx_poll(struct napi_struct *napi, int budget) 440 { 441 struct bcmasp_intf *intf = 442 container_of(napi, struct bcmasp_intf, tx_napi); 443 struct bcmasp_intf_stats64 *stats = &intf->stats64; 444 struct device *kdev = &intf->parent->pdev->dev; 445 unsigned long read, released = 0; 446 struct bcmasp_tx_cb *txcb; 447 struct bcmasp_desc *desc; 448 dma_addr_t mapping; 449 450 read = bcmasp_intf_tx_read(intf); 451 while (intf->tx_spb_dma_read != read) { 452 txcb = &intf->tx_cbs[intf->tx_spb_clean_index]; 453 mapping = dma_unmap_addr(txcb, dma_addr); 454 455 dma_unmap_single(kdev, mapping, 456 dma_unmap_len(txcb, dma_len), 457 DMA_TO_DEVICE); 458 459 if (txcb->last) { 460 dev_consume_skb_any(txcb->skb); 461 462 u64_stats_update_begin(&stats->syncp); 463 u64_stats_inc(&stats->tx_packets); 464 u64_stats_add(&stats->tx_bytes, txcb->bytes_sent); 465 u64_stats_update_end(&stats->syncp); 466 } 467 468 desc = &intf->tx_spb_cpu[intf->tx_spb_clean_index]; 469 470 netif_dbg(intf, tx_done, intf->ndev, 471 "%s dma_buf=%pad dma_len=0x%x flags=0x%x c_index=0x%x\n", 472 __func__, &mapping, desc->size, desc->flags, 473 intf->tx_spb_clean_index); 474 475 bcmasp_clean_txcb(intf, intf->tx_spb_clean_index); 476 released++; 477 478 intf->tx_spb_clean_index = incr_ring(intf->tx_spb_clean_index, 479 DESC_RING_COUNT); 480 intf->tx_spb_dma_read = incr_first_byte(intf->tx_spb_dma_read, 481 intf->tx_spb_dma_addr, 482 DESC_RING_COUNT); 483 } 484 485 /* Ensure all descriptors have been written to DRAM for the hardware 486 * to see updated contents. 487 */ 488 wmb(); 489 490 napi_complete(&intf->tx_napi); 491 492 bcmasp_enable_tx_irq(intf, 1); 493 494 if (released) 495 netif_wake_queue(intf->ndev); 496 497 return 0; 498 } 499 500 static int bcmasp_rx_poll(struct napi_struct *napi, int budget) 501 { 502 struct bcmasp_intf *intf = 503 container_of(napi, struct bcmasp_intf, rx_napi); 504 struct bcmasp_intf_stats64 *stats = &intf->stats64; 505 struct device *kdev = &intf->parent->pdev->dev; 506 unsigned long processed = 0; 507 struct bcmasp_desc *desc; 508 struct sk_buff *skb; 509 dma_addr_t valid; 510 void *data; 511 u64 flags; 512 u32 len; 513 514 valid = bcmasp_intf_rx_desc_read(intf) + 1; 515 if (valid == intf->rx_edpkt_dma_addr + DESC_RING_SIZE) 516 valid = intf->rx_edpkt_dma_addr; 517 518 while ((processed < budget) && (valid != intf->rx_edpkt_dma_read)) { 519 desc = &intf->rx_edpkt_cpu[intf->rx_edpkt_index]; 520 521 /* Ensure that descriptor has been fully written to DRAM by 522 * hardware before reading by the CPU 523 */ 524 rmb(); 525 526 /* Calculate virt addr by offsetting from physical addr */ 527 data = intf->rx_ring_cpu + 528 (DESC_ADDR(desc->buf) - intf->rx_ring_dma); 529 530 flags = DESC_FLAGS(desc->buf); 531 if (unlikely(flags & (DESC_CRC_ERR | DESC_RX_SYM_ERR))) { 532 if (net_ratelimit()) { 533 netif_err(intf, rx_status, intf->ndev, 534 "flags=0x%llx\n", flags); 535 } 536 537 u64_stats_update_begin(&stats->syncp); 538 if (flags & DESC_CRC_ERR) 539 u64_stats_inc(&stats->rx_crc_errs); 540 if (flags & DESC_RX_SYM_ERR) 541 u64_stats_inc(&stats->rx_sym_errs); 542 u64_stats_update_end(&stats->syncp); 543 544 goto next; 545 } 546 547 dma_sync_single_for_cpu(kdev, DESC_ADDR(desc->buf), desc->size, 548 DMA_FROM_DEVICE); 549 550 len = desc->size; 551 552 skb = napi_alloc_skb(napi, len); 553 if (!skb) { 554 u64_stats_update_begin(&stats->syncp); 555 u64_stats_inc(&stats->rx_dropped); 556 u64_stats_update_end(&stats->syncp); 557 intf->mib.alloc_rx_skb_failed++; 558 559 goto next; 560 } 561 562 skb_put(skb, len); 563 memcpy(skb->data, data, len); 564 565 skb_pull(skb, 2); 566 len -= 2; 567 if (likely(intf->crc_fwd)) { 568 skb_trim(skb, len - ETH_FCS_LEN); 569 len -= ETH_FCS_LEN; 570 } 571 572 if ((intf->ndev->features & NETIF_F_RXCSUM) && 573 (desc->buf & DESC_CHKSUM)) 574 skb->ip_summed = CHECKSUM_UNNECESSARY; 575 576 skb->protocol = eth_type_trans(skb, intf->ndev); 577 578 napi_gro_receive(napi, skb); 579 580 u64_stats_update_begin(&stats->syncp); 581 u64_stats_inc(&stats->rx_packets); 582 u64_stats_add(&stats->rx_bytes, len); 583 u64_stats_update_end(&stats->syncp); 584 585 next: 586 bcmasp_intf_rx_buffer_write(intf, (DESC_ADDR(desc->buf) + 587 desc->size)); 588 589 processed++; 590 intf->rx_edpkt_dma_read = 591 incr_first_byte(intf->rx_edpkt_dma_read, 592 intf->rx_edpkt_dma_addr, 593 DESC_RING_COUNT); 594 intf->rx_edpkt_index = incr_ring(intf->rx_edpkt_index, 595 DESC_RING_COUNT); 596 } 597 598 bcmasp_intf_rx_desc_write(intf, intf->rx_edpkt_dma_read); 599 600 if (processed < budget) { 601 napi_complete_done(&intf->rx_napi, processed); 602 bcmasp_enable_rx_irq(intf, 1); 603 } 604 605 return processed; 606 } 607 608 static void bcmasp_adj_link(struct net_device *dev) 609 { 610 struct bcmasp_intf *intf = netdev_priv(dev); 611 struct phy_device *phydev = dev->phydev; 612 u32 cmd_bits = 0, reg; 613 int changed = 0; 614 bool active; 615 616 if (intf->old_link != phydev->link) { 617 changed = 1; 618 intf->old_link = phydev->link; 619 } 620 621 if (intf->old_duplex != phydev->duplex) { 622 changed = 1; 623 intf->old_duplex = phydev->duplex; 624 } 625 626 switch (phydev->speed) { 627 case SPEED_2500: 628 cmd_bits = UMC_CMD_SPEED_2500; 629 break; 630 case SPEED_1000: 631 cmd_bits = UMC_CMD_SPEED_1000; 632 break; 633 case SPEED_100: 634 cmd_bits = UMC_CMD_SPEED_100; 635 break; 636 case SPEED_10: 637 cmd_bits = UMC_CMD_SPEED_10; 638 break; 639 default: 640 break; 641 } 642 cmd_bits <<= UMC_CMD_SPEED_SHIFT; 643 644 if (phydev->duplex == DUPLEX_HALF) 645 cmd_bits |= UMC_CMD_HD_EN; 646 647 if (intf->old_pause != phydev->pause) { 648 changed = 1; 649 intf->old_pause = phydev->pause; 650 } 651 652 if (!phydev->pause) 653 cmd_bits |= UMC_CMD_RX_PAUSE_IGNORE | UMC_CMD_TX_PAUSE_IGNORE; 654 655 if (!changed) 656 return; 657 658 if (phydev->link) { 659 reg = umac_rl(intf, UMC_CMD); 660 reg &= ~((UMC_CMD_SPEED_MASK << UMC_CMD_SPEED_SHIFT) | 661 UMC_CMD_HD_EN | UMC_CMD_RX_PAUSE_IGNORE | 662 UMC_CMD_TX_PAUSE_IGNORE); 663 reg |= cmd_bits; 664 if (reg & UMC_CMD_SW_RESET) { 665 reg &= ~UMC_CMD_SW_RESET; 666 umac_wl(intf, reg, UMC_CMD); 667 udelay(2); 668 reg |= UMC_CMD_TX_EN | UMC_CMD_RX_EN | UMC_CMD_PROMISC; 669 } 670 umac_wl(intf, reg, UMC_CMD); 671 672 active = phy_init_eee(phydev, 0) >= 0; 673 bcmasp_eee_enable_set(intf, active); 674 } 675 676 reg = rgmii_rl(intf, RGMII_OOB_CNTRL); 677 if (phydev->link) 678 reg |= RGMII_LINK; 679 else 680 reg &= ~RGMII_LINK; 681 rgmii_wl(intf, reg, RGMII_OOB_CNTRL); 682 683 if (changed) 684 phy_print_status(phydev); 685 } 686 687 static int bcmasp_alloc_buffers(struct bcmasp_intf *intf) 688 { 689 struct device *kdev = &intf->parent->pdev->dev; 690 struct page *buffer_pg; 691 692 /* Alloc RX */ 693 intf->rx_buf_order = get_order(RING_BUFFER_SIZE); 694 buffer_pg = alloc_pages(GFP_KERNEL, intf->rx_buf_order); 695 if (!buffer_pg) 696 return -ENOMEM; 697 698 intf->rx_ring_cpu = page_to_virt(buffer_pg); 699 intf->rx_ring_dma = dma_map_page(kdev, buffer_pg, 0, RING_BUFFER_SIZE, 700 DMA_FROM_DEVICE); 701 if (dma_mapping_error(kdev, intf->rx_ring_dma)) 702 goto free_rx_buffer; 703 704 intf->rx_edpkt_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE, 705 &intf->rx_edpkt_dma_addr, GFP_KERNEL); 706 if (!intf->rx_edpkt_cpu) 707 goto free_rx_buffer_dma; 708 709 /* Alloc TX */ 710 intf->tx_spb_cpu = dma_alloc_coherent(kdev, DESC_RING_SIZE, 711 &intf->tx_spb_dma_addr, GFP_KERNEL); 712 if (!intf->tx_spb_cpu) 713 goto free_rx_edpkt_dma; 714 715 intf->tx_cbs = kcalloc(DESC_RING_COUNT, sizeof(struct bcmasp_tx_cb), 716 GFP_KERNEL); 717 if (!intf->tx_cbs) 718 goto free_tx_spb_dma; 719 720 return 0; 721 722 free_tx_spb_dma: 723 dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu, 724 intf->tx_spb_dma_addr); 725 free_rx_edpkt_dma: 726 dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu, 727 intf->rx_edpkt_dma_addr); 728 free_rx_buffer_dma: 729 dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE, 730 DMA_FROM_DEVICE); 731 free_rx_buffer: 732 __free_pages(buffer_pg, intf->rx_buf_order); 733 734 return -ENOMEM; 735 } 736 737 static void bcmasp_reclaim_free_buffers(struct bcmasp_intf *intf) 738 { 739 struct device *kdev = &intf->parent->pdev->dev; 740 741 /* RX buffers */ 742 dma_free_coherent(kdev, DESC_RING_SIZE, intf->rx_edpkt_cpu, 743 intf->rx_edpkt_dma_addr); 744 dma_unmap_page(kdev, intf->rx_ring_dma, RING_BUFFER_SIZE, 745 DMA_FROM_DEVICE); 746 __free_pages(virt_to_page(intf->rx_ring_cpu), intf->rx_buf_order); 747 748 /* TX buffers */ 749 dma_free_coherent(kdev, DESC_RING_SIZE, intf->tx_spb_cpu, 750 intf->tx_spb_dma_addr); 751 kfree(intf->tx_cbs); 752 } 753 754 static void bcmasp_init_rx(struct bcmasp_intf *intf) 755 { 756 /* Restart from index 0 */ 757 intf->rx_ring_dma_valid = intf->rx_ring_dma + RING_BUFFER_SIZE - 1; 758 intf->rx_edpkt_dma_valid = intf->rx_edpkt_dma_addr + (DESC_RING_SIZE - 1); 759 intf->rx_edpkt_dma_read = intf->rx_edpkt_dma_addr; 760 intf->rx_edpkt_index = 0; 761 762 /* Make sure channels are disabled */ 763 rx_edpkt_cfg_wl(intf, 0x0, RX_EDPKT_CFG_ENABLE); 764 765 /* Rx SPB */ 766 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_READ); 767 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_WRITE); 768 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma, RX_EDPKT_RING_BUFFER_BASE); 769 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid, 770 RX_EDPKT_RING_BUFFER_END); 771 rx_edpkt_cfg_wq(intf, intf->rx_ring_dma_valid, 772 RX_EDPKT_RING_BUFFER_VALID); 773 774 /* EDPKT */ 775 rx_edpkt_cfg_wl(intf, (RX_EDPKT_CFG_CFG0_RBUF_4K << 776 RX_EDPKT_CFG_CFG0_DBUF_SHIFT) | 777 (RX_EDPKT_CFG_CFG0_64_ALN << 778 RX_EDPKT_CFG_CFG0_BALN_SHIFT) | 779 (RX_EDPKT_CFG_CFG0_EFRM_STUF), 780 RX_EDPKT_CFG_CFG0); 781 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_WRITE); 782 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_READ); 783 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_addr, RX_EDPKT_DMA_BASE); 784 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_END); 785 rx_edpkt_dma_wq(intf, intf->rx_edpkt_dma_valid, RX_EDPKT_DMA_VALID); 786 787 umac2fb_wl(intf, UMAC2FB_CFG_DEFAULT_EN | ((intf->channel + 11) << 788 UMAC2FB_CFG_CHID_SHIFT) | (0xd << UMAC2FB_CFG_OK_SEND_SHIFT), 789 UMAC2FB_CFG); 790 } 791 792 793 static void bcmasp_init_tx(struct bcmasp_intf *intf) 794 { 795 /* Restart from index 0 */ 796 intf->tx_spb_dma_valid = intf->tx_spb_dma_addr + DESC_RING_SIZE - 1; 797 intf->tx_spb_dma_read = intf->tx_spb_dma_addr; 798 intf->tx_spb_index = 0; 799 intf->tx_spb_clean_index = 0; 800 801 /* Make sure channels are disabled */ 802 tx_spb_ctrl_wl(intf, 0x0, TX_SPB_CTRL_ENABLE); 803 tx_epkt_core_wl(intf, 0x0, TX_EPKT_C_CFG_MISC); 804 805 /* Tx SPB */ 806 tx_spb_ctrl_wl(intf, ((intf->channel + 8) << TX_SPB_CTRL_XF_BID_SHIFT), 807 TX_SPB_CTRL_XF_CTRL2); 808 tx_pause_ctrl_wl(intf, (1 << (intf->channel + 8)), TX_PAUSE_MAP_VECTOR); 809 tx_spb_top_wl(intf, 0x1e, TX_SPB_TOP_BLKOUT); 810 tx_spb_top_wl(intf, 0x0, TX_SPB_TOP_SPRE_BW_CTRL); 811 812 tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_READ); 813 tx_spb_dma_wq(intf, intf->tx_spb_dma_addr, TX_SPB_DMA_BASE); 814 tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_END); 815 tx_spb_dma_wq(intf, intf->tx_spb_dma_valid, TX_SPB_DMA_VALID); 816 } 817 818 static void bcmasp_ephy_enable_set(struct bcmasp_intf *intf, bool enable) 819 { 820 u32 mask = RGMII_EPHY_CFG_IDDQ_BIAS | RGMII_EPHY_CFG_EXT_PWRDOWN | 821 RGMII_EPHY_CFG_IDDQ_GLOBAL; 822 u32 reg; 823 824 reg = rgmii_rl(intf, RGMII_EPHY_CNTRL); 825 if (enable) { 826 reg &= ~RGMII_EPHY_CK25_DIS; 827 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 828 mdelay(1); 829 830 reg &= ~mask; 831 reg |= RGMII_EPHY_RESET; 832 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 833 mdelay(1); 834 835 reg &= ~RGMII_EPHY_RESET; 836 } else { 837 reg |= mask | RGMII_EPHY_RESET; 838 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 839 mdelay(1); 840 reg |= RGMII_EPHY_CK25_DIS; 841 } 842 rgmii_wl(intf, reg, RGMII_EPHY_CNTRL); 843 mdelay(1); 844 845 /* Set or clear the LED control override to avoid lighting up LEDs 846 * while the EPHY is powered off and drawing unnecessary current. 847 */ 848 reg = rgmii_rl(intf, RGMII_SYS_LED_CNTRL); 849 if (enable) 850 reg &= ~RGMII_SYS_LED_CNTRL_LINK_OVRD; 851 else 852 reg |= RGMII_SYS_LED_CNTRL_LINK_OVRD; 853 rgmii_wl(intf, reg, RGMII_SYS_LED_CNTRL); 854 } 855 856 static void bcmasp_rgmii_mode_en_set(struct bcmasp_intf *intf, bool enable) 857 { 858 u32 reg; 859 860 reg = rgmii_rl(intf, RGMII_OOB_CNTRL); 861 reg &= ~RGMII_OOB_DIS; 862 if (enable) 863 reg |= RGMII_MODE_EN; 864 else 865 reg &= ~RGMII_MODE_EN; 866 rgmii_wl(intf, reg, RGMII_OOB_CNTRL); 867 } 868 869 static void bcmasp_netif_deinit(struct net_device *dev) 870 { 871 struct bcmasp_intf *intf = netdev_priv(dev); 872 u32 reg, timeout = 1000; 873 874 napi_disable(&intf->tx_napi); 875 876 bcmasp_enable_tx(intf, 0); 877 878 /* Flush any TX packets in the pipe */ 879 tx_spb_dma_wl(intf, TX_SPB_DMA_FIFO_FLUSH, TX_SPB_DMA_FIFO_CTRL); 880 do { 881 reg = tx_spb_dma_rl(intf, TX_SPB_DMA_FIFO_STATUS); 882 if (!(reg & TX_SPB_DMA_FIFO_FLUSH)) 883 break; 884 usleep_range(1000, 2000); 885 } while (timeout-- > 0); 886 tx_spb_dma_wl(intf, 0x0, TX_SPB_DMA_FIFO_CTRL); 887 888 umac_enable_set(intf, UMC_CMD_TX_EN, 0); 889 890 phy_stop(dev->phydev); 891 892 umac_enable_set(intf, UMC_CMD_RX_EN, 0); 893 894 bcmasp_flush_rx_port(intf); 895 usleep_range(1000, 2000); 896 bcmasp_enable_rx(intf, 0); 897 898 napi_disable(&intf->rx_napi); 899 900 /* Disable interrupts */ 901 bcmasp_enable_tx_irq(intf, 0); 902 bcmasp_enable_rx_irq(intf, 0); 903 bcmasp_enable_phy_irq(intf, 0); 904 905 netif_napi_del(&intf->tx_napi); 906 netif_napi_del(&intf->rx_napi); 907 } 908 909 static int bcmasp_stop(struct net_device *dev) 910 { 911 struct bcmasp_intf *intf = netdev_priv(dev); 912 913 netif_dbg(intf, ifdown, dev, "bcmasp stop\n"); 914 915 /* Stop tx from updating HW */ 916 netif_tx_disable(dev); 917 918 bcmasp_netif_deinit(dev); 919 920 bcmasp_reclaim_free_buffers(intf); 921 922 phy_disconnect(dev->phydev); 923 924 /* Disable internal EPHY or external PHY */ 925 if (intf->internal_phy) 926 bcmasp_ephy_enable_set(intf, false); 927 else 928 bcmasp_rgmii_mode_en_set(intf, false); 929 930 /* Disable the interface clocks */ 931 bcmasp_core_clock_set_intf(intf, false); 932 933 clk_disable_unprepare(intf->parent->clk); 934 935 return 0; 936 } 937 938 static void bcmasp_configure_port(struct bcmasp_intf *intf) 939 { 940 u32 reg, id_mode_dis = 0; 941 942 reg = rgmii_rl(intf, RGMII_PORT_CNTRL); 943 reg &= ~RGMII_PORT_MODE_MASK; 944 945 switch (intf->phy_interface) { 946 case PHY_INTERFACE_MODE_RGMII: 947 /* RGMII_NO_ID: TXC transitions at the same time as TXD 948 * (requires PCB or receiver-side delay) 949 * RGMII: Add 2ns delay on TXC (90 degree shift) 950 * 951 * ID is implicitly disabled for 100Mbps (RG)MII operation. 952 */ 953 id_mode_dis = RGMII_ID_MODE_DIS; 954 fallthrough; 955 case PHY_INTERFACE_MODE_RGMII_TXID: 956 reg |= RGMII_PORT_MODE_EXT_GPHY; 957 break; 958 case PHY_INTERFACE_MODE_MII: 959 reg |= RGMII_PORT_MODE_EXT_EPHY; 960 break; 961 default: 962 break; 963 } 964 965 if (intf->internal_phy) 966 reg |= RGMII_PORT_MODE_EPHY; 967 968 rgmii_wl(intf, reg, RGMII_PORT_CNTRL); 969 970 reg = rgmii_rl(intf, RGMII_OOB_CNTRL); 971 reg &= ~RGMII_ID_MODE_DIS; 972 reg |= id_mode_dis; 973 rgmii_wl(intf, reg, RGMII_OOB_CNTRL); 974 } 975 976 static int bcmasp_netif_init(struct net_device *dev, bool phy_connect) 977 { 978 struct bcmasp_intf *intf = netdev_priv(dev); 979 phy_interface_t phy_iface = intf->phy_interface; 980 u32 phy_flags = PHY_BRCM_AUTO_PWRDWN_ENABLE | 981 PHY_BRCM_DIS_TXCRXC_NOENRGY | 982 PHY_BRCM_IDDQ_SUSPEND; 983 struct phy_device *phydev = NULL; 984 int ret; 985 986 /* Always enable interface clocks */ 987 bcmasp_core_clock_set_intf(intf, true); 988 989 /* Enable internal PHY or external PHY before any MAC activity */ 990 if (intf->internal_phy) 991 bcmasp_ephy_enable_set(intf, true); 992 else 993 bcmasp_rgmii_mode_en_set(intf, true); 994 bcmasp_configure_port(intf); 995 996 /* This is an ugly quirk but we have not been correctly 997 * interpreting the phy_interface values and we have done that 998 * across different drivers, so at least we are consistent in 999 * our mistakes. 1000 * 1001 * When the Generic PHY driver is in use either the PHY has 1002 * been strapped or programmed correctly by the boot loader so 1003 * we should stick to our incorrect interpretation since we 1004 * have validated it. 1005 * 1006 * Now when a dedicated PHY driver is in use, we need to 1007 * reverse the meaning of the phy_interface_mode values to 1008 * something that the PHY driver will interpret and act on such 1009 * that we have two mistakes canceling themselves so to speak. 1010 * We only do this for the two modes that GENET driver 1011 * officially supports on Broadcom STB chips: 1012 * PHY_INTERFACE_MODE_RGMII and PHY_INTERFACE_MODE_RGMII_TXID. 1013 * Other modes are not *officially* supported with the boot 1014 * loader and the scripted environment generating Device Tree 1015 * blobs for those platforms. 1016 * 1017 * Note that internal PHY and fixed-link configurations are not 1018 * affected because they use different phy_interface_t values 1019 * or the Generic PHY driver. 1020 */ 1021 switch (phy_iface) { 1022 case PHY_INTERFACE_MODE_RGMII: 1023 phy_iface = PHY_INTERFACE_MODE_RGMII_ID; 1024 break; 1025 case PHY_INTERFACE_MODE_RGMII_TXID: 1026 phy_iface = PHY_INTERFACE_MODE_RGMII_RXID; 1027 break; 1028 default: 1029 break; 1030 } 1031 1032 if (phy_connect) { 1033 phydev = of_phy_connect(dev, intf->phy_dn, 1034 bcmasp_adj_link, phy_flags, 1035 phy_iface); 1036 if (!phydev) { 1037 ret = -ENODEV; 1038 netdev_err(dev, "could not attach to PHY\n"); 1039 goto err_phy_disable; 1040 } 1041 1042 if (intf->internal_phy) 1043 dev->phydev->irq = PHY_MAC_INTERRUPT; 1044 1045 /* Indicate that the MAC is responsible for PHY PM */ 1046 phydev->mac_managed_pm = true; 1047 } 1048 1049 umac_reset(intf); 1050 1051 umac_init(intf); 1052 1053 umac_set_hw_addr(intf, dev->dev_addr); 1054 1055 intf->old_duplex = -1; 1056 intf->old_link = -1; 1057 intf->old_pause = -1; 1058 1059 bcmasp_init_tx(intf); 1060 netif_napi_add_tx(intf->ndev, &intf->tx_napi, bcmasp_tx_poll); 1061 bcmasp_enable_tx(intf, 1); 1062 1063 bcmasp_init_rx(intf); 1064 netif_napi_add(intf->ndev, &intf->rx_napi, bcmasp_rx_poll); 1065 bcmasp_enable_rx(intf, 1); 1066 1067 intf->crc_fwd = !!(umac_rl(intf, UMC_CMD) & UMC_CMD_CRC_FWD); 1068 1069 bcmasp_netif_start(dev); 1070 1071 netif_start_queue(dev); 1072 1073 return 0; 1074 1075 err_phy_disable: 1076 if (intf->internal_phy) 1077 bcmasp_ephy_enable_set(intf, false); 1078 else 1079 bcmasp_rgmii_mode_en_set(intf, false); 1080 return ret; 1081 } 1082 1083 static int bcmasp_open(struct net_device *dev) 1084 { 1085 struct bcmasp_intf *intf = netdev_priv(dev); 1086 int ret; 1087 1088 netif_dbg(intf, ifup, dev, "bcmasp open\n"); 1089 1090 ret = bcmasp_alloc_buffers(intf); 1091 if (ret) 1092 return ret; 1093 1094 ret = clk_prepare_enable(intf->parent->clk); 1095 if (ret) 1096 goto err_free_mem; 1097 1098 ret = bcmasp_netif_init(dev, true); 1099 if (ret) { 1100 clk_disable_unprepare(intf->parent->clk); 1101 goto err_free_mem; 1102 } 1103 1104 return ret; 1105 1106 err_free_mem: 1107 bcmasp_reclaim_free_buffers(intf); 1108 1109 return ret; 1110 } 1111 1112 static void bcmasp_tx_timeout(struct net_device *dev, unsigned int txqueue) 1113 { 1114 struct bcmasp_intf *intf = netdev_priv(dev); 1115 1116 netif_dbg(intf, tx_err, dev, "transmit timeout!\n"); 1117 intf->mib.tx_timeout_cnt++; 1118 } 1119 1120 static int bcmasp_get_phys_port_name(struct net_device *dev, 1121 char *name, size_t len) 1122 { 1123 struct bcmasp_intf *intf = netdev_priv(dev); 1124 1125 if (snprintf(name, len, "p%d", intf->port) >= len) 1126 return -EINVAL; 1127 1128 return 0; 1129 } 1130 1131 static void bcmasp_get_stats64(struct net_device *dev, 1132 struct rtnl_link_stats64 *stats) 1133 { 1134 struct bcmasp_intf *intf = netdev_priv(dev); 1135 struct bcmasp_intf_stats64 *lstats; 1136 unsigned int start; 1137 1138 lstats = &intf->stats64; 1139 1140 do { 1141 start = u64_stats_fetch_begin(&lstats->syncp); 1142 stats->rx_packets = u64_stats_read(&lstats->rx_packets); 1143 stats->rx_bytes = u64_stats_read(&lstats->rx_bytes); 1144 stats->rx_dropped = u64_stats_read(&lstats->rx_dropped); 1145 stats->rx_crc_errors = u64_stats_read(&lstats->rx_crc_errs); 1146 stats->rx_frame_errors = u64_stats_read(&lstats->rx_sym_errs); 1147 stats->rx_errors = stats->rx_crc_errors + stats->rx_frame_errors; 1148 1149 stats->tx_packets = u64_stats_read(&lstats->tx_packets); 1150 stats->tx_bytes = u64_stats_read(&lstats->tx_bytes); 1151 } while (u64_stats_fetch_retry(&lstats->syncp, start)); 1152 } 1153 1154 static const struct net_device_ops bcmasp_netdev_ops = { 1155 .ndo_open = bcmasp_open, 1156 .ndo_stop = bcmasp_stop, 1157 .ndo_start_xmit = bcmasp_xmit, 1158 .ndo_tx_timeout = bcmasp_tx_timeout, 1159 .ndo_set_rx_mode = bcmasp_set_rx_mode, 1160 .ndo_get_phys_port_name = bcmasp_get_phys_port_name, 1161 .ndo_eth_ioctl = phy_do_ioctl_running, 1162 .ndo_set_mac_address = eth_mac_addr, 1163 .ndo_get_stats64 = bcmasp_get_stats64, 1164 }; 1165 1166 static void bcmasp_map_res(struct bcmasp_priv *priv, struct bcmasp_intf *intf) 1167 { 1168 /* Per port */ 1169 intf->res.umac = priv->base + UMC_OFFSET(intf); 1170 intf->res.umac2fb = priv->base + (priv->hw_info->umac2fb + 1171 (intf->port * 0x4)); 1172 intf->res.rgmii = priv->base + RGMII_OFFSET(intf); 1173 1174 /* Per ch */ 1175 intf->tx_spb_dma = priv->base + TX_SPB_DMA_OFFSET(intf); 1176 intf->res.tx_spb_ctrl = priv->base + TX_SPB_CTRL_OFFSET(intf); 1177 intf->res.tx_spb_top = priv->base + TX_SPB_TOP_OFFSET(intf); 1178 intf->res.tx_epkt_core = priv->base + TX_EPKT_C_OFFSET(intf); 1179 intf->res.tx_pause_ctrl = priv->base + TX_PAUSE_CTRL_OFFSET(intf); 1180 1181 intf->rx_edpkt_dma = priv->base + RX_EDPKT_DMA_OFFSET(intf); 1182 intf->rx_edpkt_cfg = priv->base + RX_EDPKT_CFG_OFFSET(intf); 1183 } 1184 1185 #define MAX_IRQ_STR_LEN 64 1186 struct bcmasp_intf *bcmasp_interface_create(struct bcmasp_priv *priv, 1187 struct device_node *ndev_dn, int i) 1188 { 1189 struct device *dev = &priv->pdev->dev; 1190 struct bcmasp_intf *intf; 1191 struct net_device *ndev; 1192 int ch, port, ret; 1193 1194 if (of_property_read_u32(ndev_dn, "reg", &port)) { 1195 dev_warn(dev, "%s: invalid port number\n", ndev_dn->name); 1196 goto err; 1197 } 1198 1199 if (of_property_read_u32(ndev_dn, "brcm,channel", &ch)) { 1200 dev_warn(dev, "%s: invalid ch number\n", ndev_dn->name); 1201 goto err; 1202 } 1203 1204 ndev = alloc_etherdev(sizeof(struct bcmasp_intf)); 1205 if (!ndev) { 1206 dev_warn(dev, "%s: unable to alloc ndev\n", ndev_dn->name); 1207 goto err; 1208 } 1209 intf = netdev_priv(ndev); 1210 1211 intf->parent = priv; 1212 intf->ndev = ndev; 1213 intf->channel = ch; 1214 intf->port = port; 1215 intf->ndev_dn = ndev_dn; 1216 intf->index = i; 1217 1218 ret = of_get_phy_mode(ndev_dn, &intf->phy_interface); 1219 if (ret < 0) { 1220 dev_err(dev, "invalid PHY mode property\n"); 1221 goto err_free_netdev; 1222 } 1223 1224 if (intf->phy_interface == PHY_INTERFACE_MODE_INTERNAL) 1225 intf->internal_phy = true; 1226 1227 intf->phy_dn = of_parse_phandle(ndev_dn, "phy-handle", 0); 1228 if (!intf->phy_dn && of_phy_is_fixed_link(ndev_dn)) { 1229 ret = of_phy_register_fixed_link(ndev_dn); 1230 if (ret) { 1231 dev_warn(dev, "%s: failed to register fixed PHY\n", 1232 ndev_dn->name); 1233 goto err_free_netdev; 1234 } 1235 intf->phy_dn = ndev_dn; 1236 } 1237 1238 /* Map resource */ 1239 bcmasp_map_res(priv, intf); 1240 1241 if ((!phy_interface_mode_is_rgmii(intf->phy_interface) && 1242 intf->phy_interface != PHY_INTERFACE_MODE_MII && 1243 intf->phy_interface != PHY_INTERFACE_MODE_INTERNAL) || 1244 (intf->port != 1 && intf->internal_phy)) { 1245 netdev_err(intf->ndev, "invalid PHY mode: %s for port %d\n", 1246 phy_modes(intf->phy_interface), intf->port); 1247 ret = -EINVAL; 1248 goto err_free_netdev; 1249 } 1250 1251 ret = of_get_ethdev_address(ndev_dn, ndev); 1252 if (ret) { 1253 netdev_warn(ndev, "using random Ethernet MAC\n"); 1254 eth_hw_addr_random(ndev); 1255 } 1256 1257 SET_NETDEV_DEV(ndev, dev); 1258 intf->ops = &bcmasp_intf_ops; 1259 ndev->netdev_ops = &bcmasp_netdev_ops; 1260 ndev->ethtool_ops = &bcmasp_ethtool_ops; 1261 intf->msg_enable = netif_msg_init(-1, NETIF_MSG_DRV | 1262 NETIF_MSG_PROBE | 1263 NETIF_MSG_LINK); 1264 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 1265 NETIF_F_RXCSUM; 1266 ndev->hw_features |= ndev->features; 1267 ndev->needed_headroom += sizeof(struct bcmasp_pkt_offload); 1268 1269 return intf; 1270 1271 err_free_netdev: 1272 free_netdev(ndev); 1273 err: 1274 return NULL; 1275 } 1276 1277 void bcmasp_interface_destroy(struct bcmasp_intf *intf) 1278 { 1279 if (intf->ndev->reg_state == NETREG_REGISTERED) 1280 unregister_netdev(intf->ndev); 1281 if (of_phy_is_fixed_link(intf->ndev_dn)) 1282 of_phy_deregister_fixed_link(intf->ndev_dn); 1283 free_netdev(intf->ndev); 1284 } 1285 1286 static void bcmasp_suspend_to_wol(struct bcmasp_intf *intf) 1287 { 1288 struct net_device *ndev = intf->ndev; 1289 u32 reg; 1290 1291 reg = umac_rl(intf, UMC_MPD_CTRL); 1292 if (intf->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE)) 1293 reg |= UMC_MPD_CTRL_MPD_EN; 1294 reg &= ~UMC_MPD_CTRL_PSW_EN; 1295 if (intf->wolopts & WAKE_MAGICSECURE) { 1296 /* Program the SecureOn password */ 1297 umac_wl(intf, get_unaligned_be16(&intf->sopass[0]), 1298 UMC_PSW_MS); 1299 umac_wl(intf, get_unaligned_be32(&intf->sopass[2]), 1300 UMC_PSW_LS); 1301 reg |= UMC_MPD_CTRL_PSW_EN; 1302 } 1303 umac_wl(intf, reg, UMC_MPD_CTRL); 1304 1305 if (intf->wolopts & WAKE_FILTER) 1306 bcmasp_netfilt_suspend(intf); 1307 1308 /* Bring UniMAC out of reset if needed and enable RX */ 1309 reg = umac_rl(intf, UMC_CMD); 1310 if (reg & UMC_CMD_SW_RESET) 1311 reg &= ~UMC_CMD_SW_RESET; 1312 1313 reg |= UMC_CMD_RX_EN | UMC_CMD_PROMISC; 1314 umac_wl(intf, reg, UMC_CMD); 1315 1316 umac_enable_set(intf, UMC_CMD_RX_EN, 1); 1317 1318 if (intf->parent->wol_irq > 0) { 1319 wakeup_intr2_core_wl(intf->parent, 0xffffffff, 1320 ASP_WAKEUP_INTR2_MASK_CLEAR); 1321 } 1322 1323 if (intf->eee.eee_enabled && intf->parent->eee_fixup) 1324 intf->parent->eee_fixup(intf, true); 1325 1326 netif_dbg(intf, wol, ndev, "entered WOL mode\n"); 1327 } 1328 1329 int bcmasp_interface_suspend(struct bcmasp_intf *intf) 1330 { 1331 struct device *kdev = &intf->parent->pdev->dev; 1332 struct net_device *dev = intf->ndev; 1333 1334 if (!netif_running(dev)) 1335 return 0; 1336 1337 netif_device_detach(dev); 1338 1339 bcmasp_netif_deinit(dev); 1340 1341 if (!intf->wolopts) { 1342 if (intf->internal_phy) 1343 bcmasp_ephy_enable_set(intf, false); 1344 else 1345 bcmasp_rgmii_mode_en_set(intf, false); 1346 1347 /* If Wake-on-LAN is disabled, we can safely 1348 * disable the network interface clocks. 1349 */ 1350 bcmasp_core_clock_set_intf(intf, false); 1351 } 1352 1353 if (device_may_wakeup(kdev) && intf->wolopts) 1354 bcmasp_suspend_to_wol(intf); 1355 1356 clk_disable_unprepare(intf->parent->clk); 1357 1358 return 0; 1359 } 1360 1361 static void bcmasp_resume_from_wol(struct bcmasp_intf *intf) 1362 { 1363 u32 reg; 1364 1365 if (intf->eee.eee_enabled && intf->parent->eee_fixup) 1366 intf->parent->eee_fixup(intf, false); 1367 1368 reg = umac_rl(intf, UMC_MPD_CTRL); 1369 reg &= ~UMC_MPD_CTRL_MPD_EN; 1370 umac_wl(intf, reg, UMC_MPD_CTRL); 1371 1372 if (intf->parent->wol_irq > 0) { 1373 wakeup_intr2_core_wl(intf->parent, 0xffffffff, 1374 ASP_WAKEUP_INTR2_MASK_SET); 1375 } 1376 } 1377 1378 int bcmasp_interface_resume(struct bcmasp_intf *intf) 1379 { 1380 struct net_device *dev = intf->ndev; 1381 int ret; 1382 1383 if (!netif_running(dev)) 1384 return 0; 1385 1386 ret = clk_prepare_enable(intf->parent->clk); 1387 if (ret) 1388 return ret; 1389 1390 ret = bcmasp_netif_init(dev, false); 1391 if (ret) 1392 goto out; 1393 1394 bcmasp_resume_from_wol(intf); 1395 1396 if (intf->eee.eee_enabled) 1397 bcmasp_eee_enable_set(intf, true); 1398 1399 netif_device_attach(dev); 1400 1401 return 0; 1402 1403 out: 1404 clk_disable_unprepare(intf->parent->clk); 1405 return ret; 1406 } 1407