xref: /linux/drivers/net/ethernet/atheros/atlx/atl2.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved.
3  * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com>
4  *
5  * Derived from Intel e1000 driver
6  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  */
22 
23 #include <linux/atomic.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/hardirq.h>
29 #include <linux/if_vlan.h>
30 #include <linux/in.h>
31 #include <linux/interrupt.h>
32 #include <linux/ip.h>
33 #include <linux/irqflags.h>
34 #include <linux/irqreturn.h>
35 #include <linux/mii.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/pm.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/tcp.h>
46 #include <linux/timer.h>
47 #include <linux/types.h>
48 #include <linux/workqueue.h>
49 
50 #include "atl2.h"
51 
52 #define ATL2_DRV_VERSION "2.2.3"
53 
54 static const char atl2_driver_name[] = "atl2";
55 static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver";
56 static const char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation.";
57 static const char atl2_driver_version[] = ATL2_DRV_VERSION;
58 static const struct ethtool_ops atl2_ethtool_ops;
59 
60 MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>");
61 MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(ATL2_DRV_VERSION);
64 
65 /*
66  * atl2_pci_tbl - PCI Device ID Table
67  */
68 static const struct pci_device_id atl2_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)},
70 	/* required last entry */
71 	{0,}
72 };
73 MODULE_DEVICE_TABLE(pci, atl2_pci_tbl);
74 
75 static void atl2_check_options(struct atl2_adapter *adapter);
76 
77 /**
78  * atl2_sw_init - Initialize general software structures (struct atl2_adapter)
79  * @adapter: board private structure to initialize
80  *
81  * atl2_sw_init initializes the Adapter private data structure.
82  * Fields are initialized based on PCI device information and
83  * OS network device settings (MTU size).
84  */
85 static int atl2_sw_init(struct atl2_adapter *adapter)
86 {
87 	struct atl2_hw *hw = &adapter->hw;
88 	struct pci_dev *pdev = adapter->pdev;
89 
90 	/* PCI config space info */
91 	hw->vendor_id = pdev->vendor;
92 	hw->device_id = pdev->device;
93 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
94 	hw->subsystem_id = pdev->subsystem_device;
95 	hw->revision_id  = pdev->revision;
96 
97 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
98 
99 	adapter->wol = 0;
100 	adapter->ict = 50000;  /* ~100ms */
101 	adapter->link_speed = SPEED_0;   /* hardware init */
102 	adapter->link_duplex = FULL_DUPLEX;
103 
104 	hw->phy_configured = false;
105 	hw->preamble_len = 7;
106 	hw->ipgt = 0x60;
107 	hw->min_ifg = 0x50;
108 	hw->ipgr1 = 0x40;
109 	hw->ipgr2 = 0x60;
110 	hw->retry_buf = 2;
111 	hw->max_retry = 0xf;
112 	hw->lcol = 0x37;
113 	hw->jam_ipg = 7;
114 	hw->fc_rxd_hi = 0;
115 	hw->fc_rxd_lo = 0;
116 	hw->max_frame_size = adapter->netdev->mtu;
117 
118 	spin_lock_init(&adapter->stats_lock);
119 
120 	set_bit(__ATL2_DOWN, &adapter->flags);
121 
122 	return 0;
123 }
124 
125 /**
126  * atl2_set_multi - Multicast and Promiscuous mode set
127  * @netdev: network interface device structure
128  *
129  * The set_multi entry point is called whenever the multicast address
130  * list or the network interface flags are updated.  This routine is
131  * responsible for configuring the hardware for proper multicast,
132  * promiscuous mode, and all-multi behavior.
133  */
134 static void atl2_set_multi(struct net_device *netdev)
135 {
136 	struct atl2_adapter *adapter = netdev_priv(netdev);
137 	struct atl2_hw *hw = &adapter->hw;
138 	struct netdev_hw_addr *ha;
139 	u32 rctl;
140 	u32 hash_value;
141 
142 	/* Check for Promiscuous and All Multicast modes */
143 	rctl = ATL2_READ_REG(hw, REG_MAC_CTRL);
144 
145 	if (netdev->flags & IFF_PROMISC) {
146 		rctl |= MAC_CTRL_PROMIS_EN;
147 	} else if (netdev->flags & IFF_ALLMULTI) {
148 		rctl |= MAC_CTRL_MC_ALL_EN;
149 		rctl &= ~MAC_CTRL_PROMIS_EN;
150 	} else
151 		rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
152 
153 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl);
154 
155 	/* clear the old settings from the multicast hash table */
156 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
157 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
158 
159 	/* comoute mc addresses' hash value ,and put it into hash table */
160 	netdev_for_each_mc_addr(ha, netdev) {
161 		hash_value = atl2_hash_mc_addr(hw, ha->addr);
162 		atl2_hash_set(hw, hash_value);
163 	}
164 }
165 
166 static void init_ring_ptrs(struct atl2_adapter *adapter)
167 {
168 	/* Read / Write Ptr Initialize: */
169 	adapter->txd_write_ptr = 0;
170 	atomic_set(&adapter->txd_read_ptr, 0);
171 
172 	adapter->rxd_read_ptr = 0;
173 	adapter->rxd_write_ptr = 0;
174 
175 	atomic_set(&adapter->txs_write_ptr, 0);
176 	adapter->txs_next_clear = 0;
177 }
178 
179 /**
180  * atl2_configure - Configure Transmit&Receive Unit after Reset
181  * @adapter: board private structure
182  *
183  * Configure the Tx /Rx unit of the MAC after a reset.
184  */
185 static int atl2_configure(struct atl2_adapter *adapter)
186 {
187 	struct atl2_hw *hw = &adapter->hw;
188 	u32 value;
189 
190 	/* clear interrupt status */
191 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff);
192 
193 	/* set MAC Address */
194 	value = (((u32)hw->mac_addr[2]) << 24) |
195 		(((u32)hw->mac_addr[3]) << 16) |
196 		(((u32)hw->mac_addr[4]) << 8) |
197 		(((u32)hw->mac_addr[5]));
198 	ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value);
199 	value = (((u32)hw->mac_addr[0]) << 8) |
200 		(((u32)hw->mac_addr[1]));
201 	ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value);
202 
203 	/* HI base address */
204 	ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
205 		(u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32));
206 
207 	/* LO base address */
208 	ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO,
209 		(u32)(adapter->txd_dma & 0x00000000ffffffffULL));
210 	ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO,
211 		(u32)(adapter->txs_dma & 0x00000000ffffffffULL));
212 	ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO,
213 		(u32)(adapter->rxd_dma & 0x00000000ffffffffULL));
214 
215 	/* element count */
216 	ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4));
217 	ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size);
218 	ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM,  (u16)adapter->rxd_ring_size);
219 
220 	/* config Internal SRAM */
221 /*
222     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end);
223     ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end);
224 */
225 
226 	/* config IPG/IFG */
227 	value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) <<
228 		MAC_IPG_IFG_IPGT_SHIFT) |
229 		(((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) <<
230 		MAC_IPG_IFG_MIFG_SHIFT) |
231 		(((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) <<
232 		MAC_IPG_IFG_IPGR1_SHIFT)|
233 		(((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) <<
234 		MAC_IPG_IFG_IPGR2_SHIFT);
235 	ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value);
236 
237 	/* config  Half-Duplex Control */
238 	value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
239 		(((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) <<
240 		MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
241 		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
242 		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
243 		(((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) <<
244 		MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
245 	ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value);
246 
247 	/* set Interrupt Moderator Timer */
248 	ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt);
249 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN);
250 
251 	/* set Interrupt Clear Timer */
252 	ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict);
253 
254 	/* set MTU */
255 	ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu +
256 		ENET_HEADER_SIZE + VLAN_SIZE + ETHERNET_FCS_SIZE);
257 
258 	/* 1590 */
259 	ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177);
260 
261 	/* flow control */
262 	ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi);
263 	ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo);
264 
265 	/* Init mailbox */
266 	ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr);
267 	ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr);
268 
269 	/* enable DMA read/write */
270 	ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN);
271 	ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN);
272 
273 	value = ATL2_READ_REG(&adapter->hw, REG_ISR);
274 	if ((value & ISR_PHY_LINKDOWN) != 0)
275 		value = 1; /* config failed */
276 	else
277 		value = 0;
278 
279 	/* clear all interrupt status */
280 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff);
281 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
282 	return value;
283 }
284 
285 /**
286  * atl2_setup_ring_resources - allocate Tx / RX descriptor resources
287  * @adapter: board private structure
288  *
289  * Return 0 on success, negative on failure
290  */
291 static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter)
292 {
293 	struct pci_dev *pdev = adapter->pdev;
294 	int size;
295 	u8 offset = 0;
296 
297 	/* real ring DMA buffer */
298 	adapter->ring_size = size =
299 		adapter->txd_ring_size * 1 + 7 +	/* dword align */
300 		adapter->txs_ring_size * 4 + 7 +	/* dword align */
301 		adapter->rxd_ring_size * 1536 + 127;	/* 128bytes align */
302 
303 	adapter->ring_vir_addr = pci_alloc_consistent(pdev, size,
304 		&adapter->ring_dma);
305 	if (!adapter->ring_vir_addr)
306 		return -ENOMEM;
307 	memset(adapter->ring_vir_addr, 0, adapter->ring_size);
308 
309 	/* Init TXD Ring */
310 	adapter->txd_dma = adapter->ring_dma ;
311 	offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0;
312 	adapter->txd_dma += offset;
313 	adapter->txd_ring = adapter->ring_vir_addr + offset;
314 
315 	/* Init TXS Ring */
316 	adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size;
317 	offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0;
318 	adapter->txs_dma += offset;
319 	adapter->txs_ring = (struct tx_pkt_status *)
320 		(((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset));
321 
322 	/* Init RXD Ring */
323 	adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4;
324 	offset = (adapter->rxd_dma & 127) ?
325 		(128 - (adapter->rxd_dma & 127)) : 0;
326 	if (offset > 7)
327 		offset -= 8;
328 	else
329 		offset += (128 - 8);
330 
331 	adapter->rxd_dma += offset;
332 	adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) +
333 		(adapter->txs_ring_size * 4 + offset));
334 
335 /*
336  * Read / Write Ptr Initialize:
337  *      init_ring_ptrs(adapter);
338  */
339 	return 0;
340 }
341 
342 /**
343  * atl2_irq_enable - Enable default interrupt generation settings
344  * @adapter: board private structure
345  */
346 static inline void atl2_irq_enable(struct atl2_adapter *adapter)
347 {
348 	ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
349 	ATL2_WRITE_FLUSH(&adapter->hw);
350 }
351 
352 /**
353  * atl2_irq_disable - Mask off interrupt generation on the NIC
354  * @adapter: board private structure
355  */
356 static inline void atl2_irq_disable(struct atl2_adapter *adapter)
357 {
358     ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0);
359     ATL2_WRITE_FLUSH(&adapter->hw);
360     synchronize_irq(adapter->pdev->irq);
361 }
362 
363 static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl)
364 {
365 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
366 		/* enable VLAN tag insert/strip */
367 		*ctrl |= MAC_CTRL_RMV_VLAN;
368 	} else {
369 		/* disable VLAN tag insert/strip */
370 		*ctrl &= ~MAC_CTRL_RMV_VLAN;
371 	}
372 }
373 
374 static void atl2_vlan_mode(struct net_device *netdev,
375 	netdev_features_t features)
376 {
377 	struct atl2_adapter *adapter = netdev_priv(netdev);
378 	u32 ctrl;
379 
380 	atl2_irq_disable(adapter);
381 
382 	ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL);
383 	__atl2_vlan_mode(features, &ctrl);
384 	ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl);
385 
386 	atl2_irq_enable(adapter);
387 }
388 
389 static void atl2_restore_vlan(struct atl2_adapter *adapter)
390 {
391 	atl2_vlan_mode(adapter->netdev, adapter->netdev->features);
392 }
393 
394 static netdev_features_t atl2_fix_features(struct net_device *netdev,
395 	netdev_features_t features)
396 {
397 	/*
398 	 * Since there is no support for separate rx/tx vlan accel
399 	 * enable/disable make sure tx flag is always in same state as rx.
400 	 */
401 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
402 		features |= NETIF_F_HW_VLAN_CTAG_TX;
403 	else
404 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
405 
406 	return features;
407 }
408 
409 static int atl2_set_features(struct net_device *netdev,
410 	netdev_features_t features)
411 {
412 	netdev_features_t changed = netdev->features ^ features;
413 
414 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
415 		atl2_vlan_mode(netdev, features);
416 
417 	return 0;
418 }
419 
420 static void atl2_intr_rx(struct atl2_adapter *adapter)
421 {
422 	struct net_device *netdev = adapter->netdev;
423 	struct rx_desc *rxd;
424 	struct sk_buff *skb;
425 
426 	do {
427 		rxd = adapter->rxd_ring+adapter->rxd_write_ptr;
428 		if (!rxd->status.update)
429 			break; /* end of tx */
430 
431 		/* clear this flag at once */
432 		rxd->status.update = 0;
433 
434 		if (rxd->status.ok && rxd->status.pkt_size >= 60) {
435 			int rx_size = (int)(rxd->status.pkt_size - 4);
436 			/* alloc new buffer */
437 			skb = netdev_alloc_skb_ip_align(netdev, rx_size);
438 			if (NULL == skb) {
439 				/*
440 				 * Check that some rx space is free. If not,
441 				 * free one and mark stats->rx_dropped++.
442 				 */
443 				netdev->stats.rx_dropped++;
444 				break;
445 			}
446 			memcpy(skb->data, rxd->packet, rx_size);
447 			skb_put(skb, rx_size);
448 			skb->protocol = eth_type_trans(skb, netdev);
449 			if (rxd->status.vlan) {
450 				u16 vlan_tag = (rxd->status.vtag>>4) |
451 					((rxd->status.vtag&7) << 13) |
452 					((rxd->status.vtag&8) << 9);
453 
454 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
455 			}
456 			netif_rx(skb);
457 			netdev->stats.rx_bytes += rx_size;
458 			netdev->stats.rx_packets++;
459 		} else {
460 			netdev->stats.rx_errors++;
461 
462 			if (rxd->status.ok && rxd->status.pkt_size <= 60)
463 				netdev->stats.rx_length_errors++;
464 			if (rxd->status.mcast)
465 				netdev->stats.multicast++;
466 			if (rxd->status.crc)
467 				netdev->stats.rx_crc_errors++;
468 			if (rxd->status.align)
469 				netdev->stats.rx_frame_errors++;
470 		}
471 
472 		/* advance write ptr */
473 		if (++adapter->rxd_write_ptr == adapter->rxd_ring_size)
474 			adapter->rxd_write_ptr = 0;
475 	} while (1);
476 
477 	/* update mailbox? */
478 	adapter->rxd_read_ptr = adapter->rxd_write_ptr;
479 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr);
480 }
481 
482 static void atl2_intr_tx(struct atl2_adapter *adapter)
483 {
484 	struct net_device *netdev = adapter->netdev;
485 	u32 txd_read_ptr;
486 	u32 txs_write_ptr;
487 	struct tx_pkt_status *txs;
488 	struct tx_pkt_header *txph;
489 	int free_hole = 0;
490 
491 	do {
492 		txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
493 		txs = adapter->txs_ring + txs_write_ptr;
494 		if (!txs->update)
495 			break; /* tx stop here */
496 
497 		free_hole = 1;
498 		txs->update = 0;
499 
500 		if (++txs_write_ptr == adapter->txs_ring_size)
501 			txs_write_ptr = 0;
502 		atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr);
503 
504 		txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr);
505 		txph = (struct tx_pkt_header *)
506 			(((u8 *)adapter->txd_ring) + txd_read_ptr);
507 
508 		if (txph->pkt_size != txs->pkt_size) {
509 			struct tx_pkt_status *old_txs = txs;
510 			printk(KERN_WARNING
511 				"%s: txs packet size not consistent with txd"
512 				" txd_:0x%08x, txs_:0x%08x!\n",
513 				adapter->netdev->name,
514 				*(u32 *)txph, *(u32 *)txs);
515 			printk(KERN_WARNING
516 				"txd read ptr: 0x%x\n",
517 				txd_read_ptr);
518 			txs = adapter->txs_ring + txs_write_ptr;
519 			printk(KERN_WARNING
520 				"txs-behind:0x%08x\n",
521 				*(u32 *)txs);
522 			if (txs_write_ptr < 2) {
523 				txs = adapter->txs_ring +
524 					(adapter->txs_ring_size +
525 					txs_write_ptr - 2);
526 			} else {
527 				txs = adapter->txs_ring + (txs_write_ptr - 2);
528 			}
529 			printk(KERN_WARNING
530 				"txs-before:0x%08x\n",
531 				*(u32 *)txs);
532 			txs = old_txs;
533 		}
534 
535 		 /* 4for TPH */
536 		txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3);
537 		if (txd_read_ptr >= adapter->txd_ring_size)
538 			txd_read_ptr -= adapter->txd_ring_size;
539 
540 		atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr);
541 
542 		/* tx statistics: */
543 		if (txs->ok) {
544 			netdev->stats.tx_bytes += txs->pkt_size;
545 			netdev->stats.tx_packets++;
546 		}
547 		else
548 			netdev->stats.tx_errors++;
549 
550 		if (txs->defer)
551 			netdev->stats.collisions++;
552 		if (txs->abort_col)
553 			netdev->stats.tx_aborted_errors++;
554 		if (txs->late_col)
555 			netdev->stats.tx_window_errors++;
556 		if (txs->underun)
557 			netdev->stats.tx_fifo_errors++;
558 	} while (1);
559 
560 	if (free_hole) {
561 		if (netif_queue_stopped(adapter->netdev) &&
562 			netif_carrier_ok(adapter->netdev))
563 			netif_wake_queue(adapter->netdev);
564 	}
565 }
566 
567 static void atl2_check_for_link(struct atl2_adapter *adapter)
568 {
569 	struct net_device *netdev = adapter->netdev;
570 	u16 phy_data = 0;
571 
572 	spin_lock(&adapter->stats_lock);
573 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
574 	atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
575 	spin_unlock(&adapter->stats_lock);
576 
577 	/* notify upper layer link down ASAP */
578 	if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */
579 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
580 		printk(KERN_INFO "%s: %s NIC Link is Down\n",
581 			atl2_driver_name, netdev->name);
582 		adapter->link_speed = SPEED_0;
583 		netif_carrier_off(netdev);
584 		netif_stop_queue(netdev);
585 		}
586 	}
587 	schedule_work(&adapter->link_chg_task);
588 }
589 
590 static inline void atl2_clear_phy_int(struct atl2_adapter *adapter)
591 {
592 	u16 phy_data;
593 	spin_lock(&adapter->stats_lock);
594 	atl2_read_phy_reg(&adapter->hw, 19, &phy_data);
595 	spin_unlock(&adapter->stats_lock);
596 }
597 
598 /**
599  * atl2_intr - Interrupt Handler
600  * @irq: interrupt number
601  * @data: pointer to a network interface device structure
602  */
603 static irqreturn_t atl2_intr(int irq, void *data)
604 {
605 	struct atl2_adapter *adapter = netdev_priv(data);
606 	struct atl2_hw *hw = &adapter->hw;
607 	u32 status;
608 
609 	status = ATL2_READ_REG(hw, REG_ISR);
610 	if (0 == status)
611 		return IRQ_NONE;
612 
613 	/* link event */
614 	if (status & ISR_PHY)
615 		atl2_clear_phy_int(adapter);
616 
617 	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
618 	ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
619 
620 	/* check if PCIE PHY Link down */
621 	if (status & ISR_PHY_LINKDOWN) {
622 		if (netif_running(adapter->netdev)) { /* reset MAC */
623 			ATL2_WRITE_REG(hw, REG_ISR, 0);
624 			ATL2_WRITE_REG(hw, REG_IMR, 0);
625 			ATL2_WRITE_FLUSH(hw);
626 			schedule_work(&adapter->reset_task);
627 			return IRQ_HANDLED;
628 		}
629 	}
630 
631 	/* check if DMA read/write error? */
632 	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
633 		ATL2_WRITE_REG(hw, REG_ISR, 0);
634 		ATL2_WRITE_REG(hw, REG_IMR, 0);
635 		ATL2_WRITE_FLUSH(hw);
636 		schedule_work(&adapter->reset_task);
637 		return IRQ_HANDLED;
638 	}
639 
640 	/* link event */
641 	if (status & (ISR_PHY | ISR_MANUAL)) {
642 		adapter->netdev->stats.tx_carrier_errors++;
643 		atl2_check_for_link(adapter);
644 	}
645 
646 	/* transmit event */
647 	if (status & ISR_TX_EVENT)
648 		atl2_intr_tx(adapter);
649 
650 	/* rx exception */
651 	if (status & ISR_RX_EVENT)
652 		atl2_intr_rx(adapter);
653 
654 	/* re-enable Interrupt */
655 	ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0);
656 	return IRQ_HANDLED;
657 }
658 
659 static int atl2_request_irq(struct atl2_adapter *adapter)
660 {
661 	struct net_device *netdev = adapter->netdev;
662 	int flags, err = 0;
663 
664 	flags = IRQF_SHARED;
665 	adapter->have_msi = true;
666 	err = pci_enable_msi(adapter->pdev);
667 	if (err)
668 		adapter->have_msi = false;
669 
670 	if (adapter->have_msi)
671 		flags &= ~IRQF_SHARED;
672 
673 	return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name,
674 		netdev);
675 }
676 
677 /**
678  * atl2_free_ring_resources - Free Tx / RX descriptor Resources
679  * @adapter: board private structure
680  *
681  * Free all transmit software resources
682  */
683 static void atl2_free_ring_resources(struct atl2_adapter *adapter)
684 {
685 	struct pci_dev *pdev = adapter->pdev;
686 	pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr,
687 		adapter->ring_dma);
688 }
689 
690 /**
691  * atl2_open - Called when a network interface is made active
692  * @netdev: network interface device structure
693  *
694  * Returns 0 on success, negative value on failure
695  *
696  * The open entry point is called when a network interface is made
697  * active by the system (IFF_UP).  At this point all resources needed
698  * for transmit and receive operations are allocated, the interrupt
699  * handler is registered with the OS, the watchdog timer is started,
700  * and the stack is notified that the interface is ready.
701  */
702 static int atl2_open(struct net_device *netdev)
703 {
704 	struct atl2_adapter *adapter = netdev_priv(netdev);
705 	int err;
706 	u32 val;
707 
708 	/* disallow open during test */
709 	if (test_bit(__ATL2_TESTING, &adapter->flags))
710 		return -EBUSY;
711 
712 	/* allocate transmit descriptors */
713 	err = atl2_setup_ring_resources(adapter);
714 	if (err)
715 		return err;
716 
717 	err = atl2_init_hw(&adapter->hw);
718 	if (err) {
719 		err = -EIO;
720 		goto err_init_hw;
721 	}
722 
723 	/* hardware has been reset, we need to reload some things */
724 	atl2_set_multi(netdev);
725 	init_ring_ptrs(adapter);
726 
727 	atl2_restore_vlan(adapter);
728 
729 	if (atl2_configure(adapter)) {
730 		err = -EIO;
731 		goto err_config;
732 	}
733 
734 	err = atl2_request_irq(adapter);
735 	if (err)
736 		goto err_req_irq;
737 
738 	clear_bit(__ATL2_DOWN, &adapter->flags);
739 
740 	mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ));
741 
742 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
743 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
744 		val | MASTER_CTRL_MANUAL_INT);
745 
746 	atl2_irq_enable(adapter);
747 
748 	return 0;
749 
750 err_init_hw:
751 err_req_irq:
752 err_config:
753 	atl2_free_ring_resources(adapter);
754 	atl2_reset_hw(&adapter->hw);
755 
756 	return err;
757 }
758 
759 static void atl2_down(struct atl2_adapter *adapter)
760 {
761 	struct net_device *netdev = adapter->netdev;
762 
763 	/* signal that we're down so the interrupt handler does not
764 	 * reschedule our watchdog timer */
765 	set_bit(__ATL2_DOWN, &adapter->flags);
766 
767 	netif_tx_disable(netdev);
768 
769 	/* reset MAC to disable all RX/TX */
770 	atl2_reset_hw(&adapter->hw);
771 	msleep(1);
772 
773 	atl2_irq_disable(adapter);
774 
775 	del_timer_sync(&adapter->watchdog_timer);
776 	del_timer_sync(&adapter->phy_config_timer);
777 	clear_bit(0, &adapter->cfg_phy);
778 
779 	netif_carrier_off(netdev);
780 	adapter->link_speed = SPEED_0;
781 	adapter->link_duplex = -1;
782 }
783 
784 static void atl2_free_irq(struct atl2_adapter *adapter)
785 {
786 	struct net_device *netdev = adapter->netdev;
787 
788 	free_irq(adapter->pdev->irq, netdev);
789 
790 #ifdef CONFIG_PCI_MSI
791 	if (adapter->have_msi)
792 		pci_disable_msi(adapter->pdev);
793 #endif
794 }
795 
796 /**
797  * atl2_close - Disables a network interface
798  * @netdev: network interface device structure
799  *
800  * Returns 0, this is not allowed to fail
801  *
802  * The close entry point is called when an interface is de-activated
803  * by the OS.  The hardware is still under the drivers control, but
804  * needs to be disabled.  A global MAC reset is issued to stop the
805  * hardware, and all transmit and receive resources are freed.
806  */
807 static int atl2_close(struct net_device *netdev)
808 {
809 	struct atl2_adapter *adapter = netdev_priv(netdev);
810 
811 	WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
812 
813 	atl2_down(adapter);
814 	atl2_free_irq(adapter);
815 	atl2_free_ring_resources(adapter);
816 
817 	return 0;
818 }
819 
820 static inline int TxsFreeUnit(struct atl2_adapter *adapter)
821 {
822 	u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr);
823 
824 	return (adapter->txs_next_clear >= txs_write_ptr) ?
825 		(int) (adapter->txs_ring_size - adapter->txs_next_clear +
826 		txs_write_ptr - 1) :
827 		(int) (txs_write_ptr - adapter->txs_next_clear - 1);
828 }
829 
830 static inline int TxdFreeBytes(struct atl2_adapter *adapter)
831 {
832 	u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr);
833 
834 	return (adapter->txd_write_ptr >= txd_read_ptr) ?
835 		(int) (adapter->txd_ring_size - adapter->txd_write_ptr +
836 		txd_read_ptr - 1) :
837 		(int) (txd_read_ptr - adapter->txd_write_ptr - 1);
838 }
839 
840 static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb,
841 					 struct net_device *netdev)
842 {
843 	struct atl2_adapter *adapter = netdev_priv(netdev);
844 	struct tx_pkt_header *txph;
845 	u32 offset, copy_len;
846 	int txs_unused;
847 	int txbuf_unused;
848 
849 	if (test_bit(__ATL2_DOWN, &adapter->flags)) {
850 		dev_kfree_skb_any(skb);
851 		return NETDEV_TX_OK;
852 	}
853 
854 	if (unlikely(skb->len <= 0)) {
855 		dev_kfree_skb_any(skb);
856 		return NETDEV_TX_OK;
857 	}
858 
859 	txs_unused = TxsFreeUnit(adapter);
860 	txbuf_unused = TxdFreeBytes(adapter);
861 
862 	if (skb->len + sizeof(struct tx_pkt_header) + 4  > txbuf_unused ||
863 		txs_unused < 1) {
864 		/* not enough resources */
865 		netif_stop_queue(netdev);
866 		return NETDEV_TX_BUSY;
867 	}
868 
869 	offset = adapter->txd_write_ptr;
870 
871 	txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset);
872 
873 	*(u32 *)txph = 0;
874 	txph->pkt_size = skb->len;
875 
876 	offset += 4;
877 	if (offset >= adapter->txd_ring_size)
878 		offset -= adapter->txd_ring_size;
879 	copy_len = adapter->txd_ring_size - offset;
880 	if (copy_len >= skb->len) {
881 		memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len);
882 		offset += ((u32)(skb->len + 3) & ~3);
883 	} else {
884 		memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len);
885 		memcpy((u8 *)adapter->txd_ring, skb->data+copy_len,
886 			skb->len-copy_len);
887 		offset = ((u32)(skb->len-copy_len + 3) & ~3);
888 	}
889 #ifdef NETIF_F_HW_VLAN_CTAG_TX
890 	if (skb_vlan_tag_present(skb)) {
891 		u16 vlan_tag = skb_vlan_tag_get(skb);
892 		vlan_tag = (vlan_tag << 4) |
893 			(vlan_tag >> 13) |
894 			((vlan_tag >> 9) & 0x8);
895 		txph->ins_vlan = 1;
896 		txph->vlan = vlan_tag;
897 	}
898 #endif
899 	if (offset >= adapter->txd_ring_size)
900 		offset -= adapter->txd_ring_size;
901 	adapter->txd_write_ptr = offset;
902 
903 	/* clear txs before send */
904 	adapter->txs_ring[adapter->txs_next_clear].update = 0;
905 	if (++adapter->txs_next_clear == adapter->txs_ring_size)
906 		adapter->txs_next_clear = 0;
907 
908 	ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX,
909 		(adapter->txd_write_ptr >> 2));
910 
911 	mmiowb();
912 	dev_kfree_skb_any(skb);
913 	return NETDEV_TX_OK;
914 }
915 
916 /**
917  * atl2_change_mtu - Change the Maximum Transfer Unit
918  * @netdev: network interface device structure
919  * @new_mtu: new value for maximum frame size
920  *
921  * Returns 0 on success, negative on failure
922  */
923 static int atl2_change_mtu(struct net_device *netdev, int new_mtu)
924 {
925 	struct atl2_adapter *adapter = netdev_priv(netdev);
926 	struct atl2_hw *hw = &adapter->hw;
927 
928 	if ((new_mtu < 40) || (new_mtu > (ETH_DATA_LEN + VLAN_SIZE)))
929 		return -EINVAL;
930 
931 	/* set MTU */
932 	if (hw->max_frame_size != new_mtu) {
933 		netdev->mtu = new_mtu;
934 		ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ENET_HEADER_SIZE +
935 			VLAN_SIZE + ETHERNET_FCS_SIZE);
936 	}
937 
938 	return 0;
939 }
940 
941 /**
942  * atl2_set_mac - Change the Ethernet Address of the NIC
943  * @netdev: network interface device structure
944  * @p: pointer to an address structure
945  *
946  * Returns 0 on success, negative on failure
947  */
948 static int atl2_set_mac(struct net_device *netdev, void *p)
949 {
950 	struct atl2_adapter *adapter = netdev_priv(netdev);
951 	struct sockaddr *addr = p;
952 
953 	if (!is_valid_ether_addr(addr->sa_data))
954 		return -EADDRNOTAVAIL;
955 
956 	if (netif_running(netdev))
957 		return -EBUSY;
958 
959 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
960 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
961 
962 	atl2_set_mac_addr(&adapter->hw);
963 
964 	return 0;
965 }
966 
967 static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
968 {
969 	struct atl2_adapter *adapter = netdev_priv(netdev);
970 	struct mii_ioctl_data *data = if_mii(ifr);
971 	unsigned long flags;
972 
973 	switch (cmd) {
974 	case SIOCGMIIPHY:
975 		data->phy_id = 0;
976 		break;
977 	case SIOCGMIIREG:
978 		spin_lock_irqsave(&adapter->stats_lock, flags);
979 		if (atl2_read_phy_reg(&adapter->hw,
980 			data->reg_num & 0x1F, &data->val_out)) {
981 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
982 			return -EIO;
983 		}
984 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
985 		break;
986 	case SIOCSMIIREG:
987 		if (data->reg_num & ~(0x1F))
988 			return -EFAULT;
989 		spin_lock_irqsave(&adapter->stats_lock, flags);
990 		if (atl2_write_phy_reg(&adapter->hw, data->reg_num,
991 			data->val_in)) {
992 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
993 			return -EIO;
994 		}
995 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
996 		break;
997 	default:
998 		return -EOPNOTSUPP;
999 	}
1000 	return 0;
1001 }
1002 
1003 static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1004 {
1005 	switch (cmd) {
1006 	case SIOCGMIIPHY:
1007 	case SIOCGMIIREG:
1008 	case SIOCSMIIREG:
1009 		return atl2_mii_ioctl(netdev, ifr, cmd);
1010 #ifdef ETHTOOL_OPS_COMPAT
1011 	case SIOCETHTOOL:
1012 		return ethtool_ioctl(ifr);
1013 #endif
1014 	default:
1015 		return -EOPNOTSUPP;
1016 	}
1017 }
1018 
1019 /**
1020  * atl2_tx_timeout - Respond to a Tx Hang
1021  * @netdev: network interface device structure
1022  */
1023 static void atl2_tx_timeout(struct net_device *netdev)
1024 {
1025 	struct atl2_adapter *adapter = netdev_priv(netdev);
1026 
1027 	/* Do the reset outside of interrupt context */
1028 	schedule_work(&adapter->reset_task);
1029 }
1030 
1031 /**
1032  * atl2_watchdog - Timer Call-back
1033  * @data: pointer to netdev cast into an unsigned long
1034  */
1035 static void atl2_watchdog(unsigned long data)
1036 {
1037 	struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1038 
1039 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1040 		u32 drop_rxd, drop_rxs;
1041 		unsigned long flags;
1042 
1043 		spin_lock_irqsave(&adapter->stats_lock, flags);
1044 		drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV);
1045 		drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV);
1046 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
1047 
1048 		adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs;
1049 
1050 		/* Reset the timer */
1051 		mod_timer(&adapter->watchdog_timer,
1052 			  round_jiffies(jiffies + 4 * HZ));
1053 	}
1054 }
1055 
1056 /**
1057  * atl2_phy_config - Timer Call-back
1058  * @data: pointer to netdev cast into an unsigned long
1059  */
1060 static void atl2_phy_config(unsigned long data)
1061 {
1062 	struct atl2_adapter *adapter = (struct atl2_adapter *) data;
1063 	struct atl2_hw *hw = &adapter->hw;
1064 	unsigned long flags;
1065 
1066 	spin_lock_irqsave(&adapter->stats_lock, flags);
1067 	atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
1068 	atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN |
1069 		MII_CR_RESTART_AUTO_NEG);
1070 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1071 	clear_bit(0, &adapter->cfg_phy);
1072 }
1073 
1074 static int atl2_up(struct atl2_adapter *adapter)
1075 {
1076 	struct net_device *netdev = adapter->netdev;
1077 	int err = 0;
1078 	u32 val;
1079 
1080 	/* hardware has been reset, we need to reload some things */
1081 
1082 	err = atl2_init_hw(&adapter->hw);
1083 	if (err) {
1084 		err = -EIO;
1085 		return err;
1086 	}
1087 
1088 	atl2_set_multi(netdev);
1089 	init_ring_ptrs(adapter);
1090 
1091 	atl2_restore_vlan(adapter);
1092 
1093 	if (atl2_configure(adapter)) {
1094 		err = -EIO;
1095 		goto err_up;
1096 	}
1097 
1098 	clear_bit(__ATL2_DOWN, &adapter->flags);
1099 
1100 	val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1101 	ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val |
1102 		MASTER_CTRL_MANUAL_INT);
1103 
1104 	atl2_irq_enable(adapter);
1105 
1106 err_up:
1107 	return err;
1108 }
1109 
1110 static void atl2_reinit_locked(struct atl2_adapter *adapter)
1111 {
1112 	WARN_ON(in_interrupt());
1113 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1114 		msleep(1);
1115 	atl2_down(adapter);
1116 	atl2_up(adapter);
1117 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1118 }
1119 
1120 static void atl2_reset_task(struct work_struct *work)
1121 {
1122 	struct atl2_adapter *adapter;
1123 	adapter = container_of(work, struct atl2_adapter, reset_task);
1124 
1125 	atl2_reinit_locked(adapter);
1126 }
1127 
1128 static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter)
1129 {
1130 	u32 value;
1131 	struct atl2_hw *hw = &adapter->hw;
1132 	struct net_device *netdev = adapter->netdev;
1133 
1134 	/* Config MAC CTRL Register */
1135 	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1136 
1137 	/* duplex */
1138 	if (FULL_DUPLEX == adapter->link_duplex)
1139 		value |= MAC_CTRL_DUPLX;
1140 
1141 	/* flow control */
1142 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1143 
1144 	/* PAD & CRC */
1145 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1146 
1147 	/* preamble length */
1148 	value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) <<
1149 		MAC_CTRL_PRMLEN_SHIFT);
1150 
1151 	/* vlan */
1152 	__atl2_vlan_mode(netdev->features, &value);
1153 
1154 	/* filter mode */
1155 	value |= MAC_CTRL_BC_EN;
1156 	if (netdev->flags & IFF_PROMISC)
1157 		value |= MAC_CTRL_PROMIS_EN;
1158 	else if (netdev->flags & IFF_ALLMULTI)
1159 		value |= MAC_CTRL_MC_ALL_EN;
1160 
1161 	/* half retry buffer */
1162 	value |= (((u32)(adapter->hw.retry_buf &
1163 		MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1164 
1165 	ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1166 }
1167 
1168 static int atl2_check_link(struct atl2_adapter *adapter)
1169 {
1170 	struct atl2_hw *hw = &adapter->hw;
1171 	struct net_device *netdev = adapter->netdev;
1172 	int ret_val;
1173 	u16 speed, duplex, phy_data;
1174 	int reconfig = 0;
1175 
1176 	/* MII_BMSR must read twise */
1177 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1178 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1179 	if (!(phy_data&BMSR_LSTATUS)) { /* link down */
1180 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
1181 			u32 value;
1182 			/* disable rx */
1183 			value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1184 			value &= ~MAC_CTRL_RX_EN;
1185 			ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1186 			adapter->link_speed = SPEED_0;
1187 			netif_carrier_off(netdev);
1188 			netif_stop_queue(netdev);
1189 		}
1190 		return 0;
1191 	}
1192 
1193 	/* Link Up */
1194 	ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1195 	if (ret_val)
1196 		return ret_val;
1197 	switch (hw->MediaType) {
1198 	case MEDIA_TYPE_100M_FULL:
1199 		if (speed  != SPEED_100 || duplex != FULL_DUPLEX)
1200 			reconfig = 1;
1201 		break;
1202 	case MEDIA_TYPE_100M_HALF:
1203 		if (speed  != SPEED_100 || duplex != HALF_DUPLEX)
1204 			reconfig = 1;
1205 		break;
1206 	case MEDIA_TYPE_10M_FULL:
1207 		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1208 			reconfig = 1;
1209 		break;
1210 	case MEDIA_TYPE_10M_HALF:
1211 		if (speed  != SPEED_10 || duplex != HALF_DUPLEX)
1212 			reconfig = 1;
1213 		break;
1214 	}
1215 	/* link result is our setting */
1216 	if (reconfig == 0) {
1217 		if (adapter->link_speed != speed ||
1218 			adapter->link_duplex != duplex) {
1219 			adapter->link_speed = speed;
1220 			adapter->link_duplex = duplex;
1221 			atl2_setup_mac_ctrl(adapter);
1222 			printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n",
1223 				atl2_driver_name, netdev->name,
1224 				adapter->link_speed,
1225 				adapter->link_duplex == FULL_DUPLEX ?
1226 					"Full Duplex" : "Half Duplex");
1227 		}
1228 
1229 		if (!netif_carrier_ok(netdev)) { /* Link down -> Up */
1230 			netif_carrier_on(netdev);
1231 			netif_wake_queue(netdev);
1232 		}
1233 		return 0;
1234 	}
1235 
1236 	/* change original link status */
1237 	if (netif_carrier_ok(netdev)) {
1238 		u32 value;
1239 		/* disable rx */
1240 		value = ATL2_READ_REG(hw, REG_MAC_CTRL);
1241 		value &= ~MAC_CTRL_RX_EN;
1242 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, value);
1243 
1244 		adapter->link_speed = SPEED_0;
1245 		netif_carrier_off(netdev);
1246 		netif_stop_queue(netdev);
1247 	}
1248 
1249 	/* auto-neg, insert timer to re-config phy
1250 	 * (if interval smaller than 5 seconds, something strange) */
1251 	if (!test_bit(__ATL2_DOWN, &adapter->flags)) {
1252 		if (!test_and_set_bit(0, &adapter->cfg_phy))
1253 			mod_timer(&adapter->phy_config_timer,
1254 				  round_jiffies(jiffies + 5 * HZ));
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 /**
1261  * atl2_link_chg_task - deal with link change event Out of interrupt context
1262  */
1263 static void atl2_link_chg_task(struct work_struct *work)
1264 {
1265 	struct atl2_adapter *adapter;
1266 	unsigned long flags;
1267 
1268 	adapter = container_of(work, struct atl2_adapter, link_chg_task);
1269 
1270 	spin_lock_irqsave(&adapter->stats_lock, flags);
1271 	atl2_check_link(adapter);
1272 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
1273 }
1274 
1275 static void atl2_setup_pcicmd(struct pci_dev *pdev)
1276 {
1277 	u16 cmd;
1278 
1279 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1280 
1281 	if (cmd & PCI_COMMAND_INTX_DISABLE)
1282 		cmd &= ~PCI_COMMAND_INTX_DISABLE;
1283 	if (cmd & PCI_COMMAND_IO)
1284 		cmd &= ~PCI_COMMAND_IO;
1285 	if (0 == (cmd & PCI_COMMAND_MEMORY))
1286 		cmd |= PCI_COMMAND_MEMORY;
1287 	if (0 == (cmd & PCI_COMMAND_MASTER))
1288 		cmd |= PCI_COMMAND_MASTER;
1289 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
1290 
1291 	/*
1292 	 * some motherboards BIOS(PXE/EFI) driver may set PME
1293 	 * while they transfer control to OS (Windows/Linux)
1294 	 * so we should clear this bit before NIC work normally
1295 	 */
1296 	pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
1297 }
1298 
1299 #ifdef CONFIG_NET_POLL_CONTROLLER
1300 static void atl2_poll_controller(struct net_device *netdev)
1301 {
1302 	disable_irq(netdev->irq);
1303 	atl2_intr(netdev->irq, netdev);
1304 	enable_irq(netdev->irq);
1305 }
1306 #endif
1307 
1308 
1309 static const struct net_device_ops atl2_netdev_ops = {
1310 	.ndo_open		= atl2_open,
1311 	.ndo_stop		= atl2_close,
1312 	.ndo_start_xmit		= atl2_xmit_frame,
1313 	.ndo_set_rx_mode	= atl2_set_multi,
1314 	.ndo_validate_addr	= eth_validate_addr,
1315 	.ndo_set_mac_address	= atl2_set_mac,
1316 	.ndo_change_mtu		= atl2_change_mtu,
1317 	.ndo_fix_features	= atl2_fix_features,
1318 	.ndo_set_features	= atl2_set_features,
1319 	.ndo_do_ioctl		= atl2_ioctl,
1320 	.ndo_tx_timeout		= atl2_tx_timeout,
1321 #ifdef CONFIG_NET_POLL_CONTROLLER
1322 	.ndo_poll_controller	= atl2_poll_controller,
1323 #endif
1324 };
1325 
1326 /**
1327  * atl2_probe - Device Initialization Routine
1328  * @pdev: PCI device information struct
1329  * @ent: entry in atl2_pci_tbl
1330  *
1331  * Returns 0 on success, negative on failure
1332  *
1333  * atl2_probe initializes an adapter identified by a pci_dev structure.
1334  * The OS initialization, configuring of the adapter private structure,
1335  * and a hardware reset occur.
1336  */
1337 static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1338 {
1339 	struct net_device *netdev;
1340 	struct atl2_adapter *adapter;
1341 	static int cards_found;
1342 	unsigned long mmio_start;
1343 	int mmio_len;
1344 	int err;
1345 
1346 	cards_found = 0;
1347 
1348 	err = pci_enable_device(pdev);
1349 	if (err)
1350 		return err;
1351 
1352 	/*
1353 	 * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA
1354 	 * until the kernel has the proper infrastructure to support 64-bit DMA
1355 	 * on these devices.
1356 	 */
1357 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) &&
1358 		pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1359 		printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n");
1360 		goto err_dma;
1361 	}
1362 
1363 	/* Mark all PCI regions associated with PCI device
1364 	 * pdev as being reserved by owner atl2_driver_name */
1365 	err = pci_request_regions(pdev, atl2_driver_name);
1366 	if (err)
1367 		goto err_pci_reg;
1368 
1369 	/* Enables bus-mastering on the device and calls
1370 	 * pcibios_set_master to do the needed arch specific settings */
1371 	pci_set_master(pdev);
1372 
1373 	err = -ENOMEM;
1374 	netdev = alloc_etherdev(sizeof(struct atl2_adapter));
1375 	if (!netdev)
1376 		goto err_alloc_etherdev;
1377 
1378 	SET_NETDEV_DEV(netdev, &pdev->dev);
1379 
1380 	pci_set_drvdata(pdev, netdev);
1381 	adapter = netdev_priv(netdev);
1382 	adapter->netdev = netdev;
1383 	adapter->pdev = pdev;
1384 	adapter->hw.back = adapter;
1385 
1386 	mmio_start = pci_resource_start(pdev, 0x0);
1387 	mmio_len = pci_resource_len(pdev, 0x0);
1388 
1389 	adapter->hw.mem_rang = (u32)mmio_len;
1390 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1391 	if (!adapter->hw.hw_addr) {
1392 		err = -EIO;
1393 		goto err_ioremap;
1394 	}
1395 
1396 	atl2_setup_pcicmd(pdev);
1397 
1398 	netdev->netdev_ops = &atl2_netdev_ops;
1399 	netdev->ethtool_ops = &atl2_ethtool_ops;
1400 	netdev->watchdog_timeo = 5 * HZ;
1401 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1402 
1403 	netdev->mem_start = mmio_start;
1404 	netdev->mem_end = mmio_start + mmio_len;
1405 	adapter->bd_number = cards_found;
1406 	adapter->pci_using_64 = false;
1407 
1408 	/* setup the private structure */
1409 	err = atl2_sw_init(adapter);
1410 	if (err)
1411 		goto err_sw_init;
1412 
1413 	err = -EIO;
1414 
1415 	netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX;
1416 	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
1417 
1418 	/* Init PHY as early as possible due to power saving issue  */
1419 	atl2_phy_init(&adapter->hw);
1420 
1421 	/* reset the controller to
1422 	 * put the device in a known good starting state */
1423 
1424 	if (atl2_reset_hw(&adapter->hw)) {
1425 		err = -EIO;
1426 		goto err_reset;
1427 	}
1428 
1429 	/* copy the MAC address out of the EEPROM */
1430 	atl2_read_mac_addr(&adapter->hw);
1431 	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1432 	if (!is_valid_ether_addr(netdev->dev_addr)) {
1433 		err = -EIO;
1434 		goto err_eeprom;
1435 	}
1436 
1437 	atl2_check_options(adapter);
1438 
1439 	setup_timer(&adapter->watchdog_timer, atl2_watchdog,
1440 		    (unsigned long)adapter);
1441 
1442 	setup_timer(&adapter->phy_config_timer, atl2_phy_config,
1443 		    (unsigned long)adapter);
1444 
1445 	INIT_WORK(&adapter->reset_task, atl2_reset_task);
1446 	INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task);
1447 
1448 	strcpy(netdev->name, "eth%d"); /* ?? */
1449 	err = register_netdev(netdev);
1450 	if (err)
1451 		goto err_register;
1452 
1453 	/* assume we have no link for now */
1454 	netif_carrier_off(netdev);
1455 	netif_stop_queue(netdev);
1456 
1457 	cards_found++;
1458 
1459 	return 0;
1460 
1461 err_reset:
1462 err_register:
1463 err_sw_init:
1464 err_eeprom:
1465 	iounmap(adapter->hw.hw_addr);
1466 err_ioremap:
1467 	free_netdev(netdev);
1468 err_alloc_etherdev:
1469 	pci_release_regions(pdev);
1470 err_pci_reg:
1471 err_dma:
1472 	pci_disable_device(pdev);
1473 	return err;
1474 }
1475 
1476 /**
1477  * atl2_remove - Device Removal Routine
1478  * @pdev: PCI device information struct
1479  *
1480  * atl2_remove is called by the PCI subsystem to alert the driver
1481  * that it should release a PCI device.  The could be caused by a
1482  * Hot-Plug event, or because the driver is going to be removed from
1483  * memory.
1484  */
1485 /* FIXME: write the original MAC address back in case it was changed from a
1486  * BIOS-set value, as in atl1 -- CHS */
1487 static void atl2_remove(struct pci_dev *pdev)
1488 {
1489 	struct net_device *netdev = pci_get_drvdata(pdev);
1490 	struct atl2_adapter *adapter = netdev_priv(netdev);
1491 
1492 	/* flush_scheduled work may reschedule our watchdog task, so
1493 	 * explicitly disable watchdog tasks from being rescheduled  */
1494 	set_bit(__ATL2_DOWN, &adapter->flags);
1495 
1496 	del_timer_sync(&adapter->watchdog_timer);
1497 	del_timer_sync(&adapter->phy_config_timer);
1498 	cancel_work_sync(&adapter->reset_task);
1499 	cancel_work_sync(&adapter->link_chg_task);
1500 
1501 	unregister_netdev(netdev);
1502 
1503 	atl2_force_ps(&adapter->hw);
1504 
1505 	iounmap(adapter->hw.hw_addr);
1506 	pci_release_regions(pdev);
1507 
1508 	free_netdev(netdev);
1509 
1510 	pci_disable_device(pdev);
1511 }
1512 
1513 static int atl2_suspend(struct pci_dev *pdev, pm_message_t state)
1514 {
1515 	struct net_device *netdev = pci_get_drvdata(pdev);
1516 	struct atl2_adapter *adapter = netdev_priv(netdev);
1517 	struct atl2_hw *hw = &adapter->hw;
1518 	u16 speed, duplex;
1519 	u32 ctrl = 0;
1520 	u32 wufc = adapter->wol;
1521 
1522 #ifdef CONFIG_PM
1523 	int retval = 0;
1524 #endif
1525 
1526 	netif_device_detach(netdev);
1527 
1528 	if (netif_running(netdev)) {
1529 		WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags));
1530 		atl2_down(adapter);
1531 	}
1532 
1533 #ifdef CONFIG_PM
1534 	retval = pci_save_state(pdev);
1535 	if (retval)
1536 		return retval;
1537 #endif
1538 
1539 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1540 	atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl);
1541 	if (ctrl & BMSR_LSTATUS)
1542 		wufc &= ~ATLX_WUFC_LNKC;
1543 
1544 	if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) {
1545 		u32 ret_val;
1546 		/* get current link speed & duplex */
1547 		ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex);
1548 		if (ret_val) {
1549 			printk(KERN_DEBUG
1550 				"%s: get speed&duplex error while suspend\n",
1551 				atl2_driver_name);
1552 			goto wol_dis;
1553 		}
1554 
1555 		ctrl = 0;
1556 
1557 		/* turn on magic packet wol */
1558 		if (wufc & ATLX_WUFC_MAG)
1559 			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
1560 
1561 		/* ignore Link Chg event when Link is up */
1562 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1563 
1564 		/* Config MAC CTRL Register */
1565 		ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY;
1566 		if (FULL_DUPLEX == adapter->link_duplex)
1567 			ctrl |= MAC_CTRL_DUPLX;
1568 		ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1569 		ctrl |= (((u32)adapter->hw.preamble_len &
1570 			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1571 		ctrl |= (((u32)(adapter->hw.retry_buf &
1572 			MAC_CTRL_HALF_LEFT_BUF_MASK)) <<
1573 			MAC_CTRL_HALF_LEFT_BUF_SHIFT);
1574 		if (wufc & ATLX_WUFC_MAG) {
1575 			/* magic packet maybe Broadcast&multicast&Unicast */
1576 			ctrl |= MAC_CTRL_BC_EN;
1577 		}
1578 
1579 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl);
1580 
1581 		/* pcie patch */
1582 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1583 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1584 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1585 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1586 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1587 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1588 
1589 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1590 		goto suspend_exit;
1591 	}
1592 
1593 	if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) {
1594 		/* link is down, so only LINK CHG WOL event enable */
1595 		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
1596 		ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl);
1597 		ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0);
1598 
1599 		/* pcie patch */
1600 		ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1601 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1602 		ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1603 		ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1604 		ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1605 		ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1606 
1607 		hw->phy_configured = false; /* re-init PHY when resume */
1608 
1609 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
1610 
1611 		goto suspend_exit;
1612 	}
1613 
1614 wol_dis:
1615 	/* WOL disabled */
1616 	ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0);
1617 
1618 	/* pcie patch */
1619 	ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC);
1620 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
1621 	ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
1622 	ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1);
1623 	ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK;
1624 	ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl);
1625 
1626 	atl2_force_ps(hw);
1627 	hw->phy_configured = false; /* re-init PHY when resume */
1628 
1629 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
1630 
1631 suspend_exit:
1632 	if (netif_running(netdev))
1633 		atl2_free_irq(adapter);
1634 
1635 	pci_disable_device(pdev);
1636 
1637 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1638 
1639 	return 0;
1640 }
1641 
1642 #ifdef CONFIG_PM
1643 static int atl2_resume(struct pci_dev *pdev)
1644 {
1645 	struct net_device *netdev = pci_get_drvdata(pdev);
1646 	struct atl2_adapter *adapter = netdev_priv(netdev);
1647 	u32 err;
1648 
1649 	pci_set_power_state(pdev, PCI_D0);
1650 	pci_restore_state(pdev);
1651 
1652 	err = pci_enable_device(pdev);
1653 	if (err) {
1654 		printk(KERN_ERR
1655 			"atl2: Cannot enable PCI device from suspend\n");
1656 		return err;
1657 	}
1658 
1659 	pci_set_master(pdev);
1660 
1661 	ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
1662 
1663 	pci_enable_wake(pdev, PCI_D3hot, 0);
1664 	pci_enable_wake(pdev, PCI_D3cold, 0);
1665 
1666 	ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
1667 
1668 	if (netif_running(netdev)) {
1669 		err = atl2_request_irq(adapter);
1670 		if (err)
1671 			return err;
1672 	}
1673 
1674 	atl2_reset_hw(&adapter->hw);
1675 
1676 	if (netif_running(netdev))
1677 		atl2_up(adapter);
1678 
1679 	netif_device_attach(netdev);
1680 
1681 	return 0;
1682 }
1683 #endif
1684 
1685 static void atl2_shutdown(struct pci_dev *pdev)
1686 {
1687 	atl2_suspend(pdev, PMSG_SUSPEND);
1688 }
1689 
1690 static struct pci_driver atl2_driver = {
1691 	.name     = atl2_driver_name,
1692 	.id_table = atl2_pci_tbl,
1693 	.probe    = atl2_probe,
1694 	.remove   = atl2_remove,
1695 	/* Power Management Hooks */
1696 	.suspend  = atl2_suspend,
1697 #ifdef CONFIG_PM
1698 	.resume   = atl2_resume,
1699 #endif
1700 	.shutdown = atl2_shutdown,
1701 };
1702 
1703 /**
1704  * atl2_init_module - Driver Registration Routine
1705  *
1706  * atl2_init_module is the first routine called when the driver is
1707  * loaded. All it does is register with the PCI subsystem.
1708  */
1709 static int __init atl2_init_module(void)
1710 {
1711 	printk(KERN_INFO "%s - version %s\n", atl2_driver_string,
1712 		atl2_driver_version);
1713 	printk(KERN_INFO "%s\n", atl2_copyright);
1714 	return pci_register_driver(&atl2_driver);
1715 }
1716 module_init(atl2_init_module);
1717 
1718 /**
1719  * atl2_exit_module - Driver Exit Cleanup Routine
1720  *
1721  * atl2_exit_module is called just before the driver is removed
1722  * from memory.
1723  */
1724 static void __exit atl2_exit_module(void)
1725 {
1726 	pci_unregister_driver(&atl2_driver);
1727 }
1728 module_exit(atl2_exit_module);
1729 
1730 static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1731 {
1732 	struct atl2_adapter *adapter = hw->back;
1733 	pci_read_config_word(adapter->pdev, reg, value);
1734 }
1735 
1736 static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value)
1737 {
1738 	struct atl2_adapter *adapter = hw->back;
1739 	pci_write_config_word(adapter->pdev, reg, *value);
1740 }
1741 
1742 static int atl2_get_settings(struct net_device *netdev,
1743 	struct ethtool_cmd *ecmd)
1744 {
1745 	struct atl2_adapter *adapter = netdev_priv(netdev);
1746 	struct atl2_hw *hw = &adapter->hw;
1747 
1748 	ecmd->supported = (SUPPORTED_10baseT_Half |
1749 		SUPPORTED_10baseT_Full |
1750 		SUPPORTED_100baseT_Half |
1751 		SUPPORTED_100baseT_Full |
1752 		SUPPORTED_Autoneg |
1753 		SUPPORTED_TP);
1754 	ecmd->advertising = ADVERTISED_TP;
1755 
1756 	ecmd->advertising |= ADVERTISED_Autoneg;
1757 	ecmd->advertising |= hw->autoneg_advertised;
1758 
1759 	ecmd->port = PORT_TP;
1760 	ecmd->phy_address = 0;
1761 	ecmd->transceiver = XCVR_INTERNAL;
1762 
1763 	if (adapter->link_speed != SPEED_0) {
1764 		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
1765 		if (adapter->link_duplex == FULL_DUPLEX)
1766 			ecmd->duplex = DUPLEX_FULL;
1767 		else
1768 			ecmd->duplex = DUPLEX_HALF;
1769 	} else {
1770 		ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
1771 		ecmd->duplex = DUPLEX_UNKNOWN;
1772 	}
1773 
1774 	ecmd->autoneg = AUTONEG_ENABLE;
1775 	return 0;
1776 }
1777 
1778 static int atl2_set_settings(struct net_device *netdev,
1779 	struct ethtool_cmd *ecmd)
1780 {
1781 	struct atl2_adapter *adapter = netdev_priv(netdev);
1782 	struct atl2_hw *hw = &adapter->hw;
1783 
1784 	while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags))
1785 		msleep(1);
1786 
1787 	if (ecmd->autoneg == AUTONEG_ENABLE) {
1788 #define MY_ADV_MASK	(ADVERTISE_10_HALF | \
1789 			 ADVERTISE_10_FULL | \
1790 			 ADVERTISE_100_HALF| \
1791 			 ADVERTISE_100_FULL)
1792 
1793 		if ((ecmd->advertising & MY_ADV_MASK) == MY_ADV_MASK) {
1794 			hw->MediaType = MEDIA_TYPE_AUTO_SENSOR;
1795 			hw->autoneg_advertised =  MY_ADV_MASK;
1796 		} else if ((ecmd->advertising & MY_ADV_MASK) ==
1797 				ADVERTISE_100_FULL) {
1798 			hw->MediaType = MEDIA_TYPE_100M_FULL;
1799 			hw->autoneg_advertised = ADVERTISE_100_FULL;
1800 		} else if ((ecmd->advertising & MY_ADV_MASK) ==
1801 				ADVERTISE_100_HALF) {
1802 			hw->MediaType = MEDIA_TYPE_100M_HALF;
1803 			hw->autoneg_advertised = ADVERTISE_100_HALF;
1804 		} else if ((ecmd->advertising & MY_ADV_MASK) ==
1805 				ADVERTISE_10_FULL) {
1806 			hw->MediaType = MEDIA_TYPE_10M_FULL;
1807 			hw->autoneg_advertised = ADVERTISE_10_FULL;
1808 		}  else if ((ecmd->advertising & MY_ADV_MASK) ==
1809 				ADVERTISE_10_HALF) {
1810 			hw->MediaType = MEDIA_TYPE_10M_HALF;
1811 			hw->autoneg_advertised = ADVERTISE_10_HALF;
1812 		} else {
1813 			clear_bit(__ATL2_RESETTING, &adapter->flags);
1814 			return -EINVAL;
1815 		}
1816 		ecmd->advertising = hw->autoneg_advertised |
1817 			ADVERTISED_TP | ADVERTISED_Autoneg;
1818 	} else {
1819 		clear_bit(__ATL2_RESETTING, &adapter->flags);
1820 		return -EINVAL;
1821 	}
1822 
1823 	/* reset the link */
1824 	if (netif_running(adapter->netdev)) {
1825 		atl2_down(adapter);
1826 		atl2_up(adapter);
1827 	} else
1828 		atl2_reset_hw(&adapter->hw);
1829 
1830 	clear_bit(__ATL2_RESETTING, &adapter->flags);
1831 	return 0;
1832 }
1833 
1834 static u32 atl2_get_msglevel(struct net_device *netdev)
1835 {
1836 	return 0;
1837 }
1838 
1839 /*
1840  * It's sane for this to be empty, but we might want to take advantage of this.
1841  */
1842 static void atl2_set_msglevel(struct net_device *netdev, u32 data)
1843 {
1844 }
1845 
1846 static int atl2_get_regs_len(struct net_device *netdev)
1847 {
1848 #define ATL2_REGS_LEN 42
1849 	return sizeof(u32) * ATL2_REGS_LEN;
1850 }
1851 
1852 static void atl2_get_regs(struct net_device *netdev,
1853 	struct ethtool_regs *regs, void *p)
1854 {
1855 	struct atl2_adapter *adapter = netdev_priv(netdev);
1856 	struct atl2_hw *hw = &adapter->hw;
1857 	u32 *regs_buff = p;
1858 	u16 phy_data;
1859 
1860 	memset(p, 0, sizeof(u32) * ATL2_REGS_LEN);
1861 
1862 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
1863 
1864 	regs_buff[0]  = ATL2_READ_REG(hw, REG_VPD_CAP);
1865 	regs_buff[1]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
1866 	regs_buff[2]  = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG);
1867 	regs_buff[3]  = ATL2_READ_REG(hw, REG_TWSI_CTRL);
1868 	regs_buff[4]  = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
1869 	regs_buff[5]  = ATL2_READ_REG(hw, REG_MASTER_CTRL);
1870 	regs_buff[6]  = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT);
1871 	regs_buff[7]  = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
1872 	regs_buff[8]  = ATL2_READ_REG(hw, REG_PHY_ENABLE);
1873 	regs_buff[9]  = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER);
1874 	regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS);
1875 	regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL);
1876 	regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK);
1877 	regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL);
1878 	regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG);
1879 	regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
1880 	regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4);
1881 	regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE);
1882 	regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4);
1883 	regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
1884 	regs_buff[20] = ATL2_READ_REG(hw, REG_MTU);
1885 	regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL);
1886 	regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END);
1887 	regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI);
1888 	regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO);
1889 	regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE);
1890 	regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO);
1891 	regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE);
1892 	regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO);
1893 	regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM);
1894 	regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR);
1895 	regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH);
1896 	regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW);
1897 	regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH);
1898 	regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH);
1899 	regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX);
1900 	regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX);
1901 	regs_buff[38] = ATL2_READ_REG(hw, REG_ISR);
1902 	regs_buff[39] = ATL2_READ_REG(hw, REG_IMR);
1903 
1904 	atl2_read_phy_reg(hw, MII_BMCR, &phy_data);
1905 	regs_buff[40] = (u32)phy_data;
1906 	atl2_read_phy_reg(hw, MII_BMSR, &phy_data);
1907 	regs_buff[41] = (u32)phy_data;
1908 }
1909 
1910 static int atl2_get_eeprom_len(struct net_device *netdev)
1911 {
1912 	struct atl2_adapter *adapter = netdev_priv(netdev);
1913 
1914 	if (!atl2_check_eeprom_exist(&adapter->hw))
1915 		return 512;
1916 	else
1917 		return 0;
1918 }
1919 
1920 static int atl2_get_eeprom(struct net_device *netdev,
1921 	struct ethtool_eeprom *eeprom, u8 *bytes)
1922 {
1923 	struct atl2_adapter *adapter = netdev_priv(netdev);
1924 	struct atl2_hw *hw = &adapter->hw;
1925 	u32 *eeprom_buff;
1926 	int first_dword, last_dword;
1927 	int ret_val = 0;
1928 	int i;
1929 
1930 	if (eeprom->len == 0)
1931 		return -EINVAL;
1932 
1933 	if (atl2_check_eeprom_exist(hw))
1934 		return -EINVAL;
1935 
1936 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
1937 
1938 	first_dword = eeprom->offset >> 2;
1939 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1940 
1941 	eeprom_buff = kmalloc(sizeof(u32) * (last_dword - first_dword + 1),
1942 		GFP_KERNEL);
1943 	if (!eeprom_buff)
1944 		return -ENOMEM;
1945 
1946 	for (i = first_dword; i < last_dword; i++) {
1947 		if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) {
1948 			ret_val = -EIO;
1949 			goto free;
1950 		}
1951 	}
1952 
1953 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
1954 		eeprom->len);
1955 free:
1956 	kfree(eeprom_buff);
1957 
1958 	return ret_val;
1959 }
1960 
1961 static int atl2_set_eeprom(struct net_device *netdev,
1962 	struct ethtool_eeprom *eeprom, u8 *bytes)
1963 {
1964 	struct atl2_adapter *adapter = netdev_priv(netdev);
1965 	struct atl2_hw *hw = &adapter->hw;
1966 	u32 *eeprom_buff;
1967 	u32 *ptr;
1968 	int max_len, first_dword, last_dword, ret_val = 0;
1969 	int i;
1970 
1971 	if (eeprom->len == 0)
1972 		return -EOPNOTSUPP;
1973 
1974 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
1975 		return -EFAULT;
1976 
1977 	max_len = 512;
1978 
1979 	first_dword = eeprom->offset >> 2;
1980 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
1981 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1982 	if (!eeprom_buff)
1983 		return -ENOMEM;
1984 
1985 	ptr = eeprom_buff;
1986 
1987 	if (eeprom->offset & 3) {
1988 		/* need read/modify/write of first changed EEPROM word */
1989 		/* only the second byte of the word is being modified */
1990 		if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) {
1991 			ret_val = -EIO;
1992 			goto out;
1993 		}
1994 		ptr++;
1995 	}
1996 	if (((eeprom->offset + eeprom->len) & 3)) {
1997 		/*
1998 		 * need read/modify/write of last changed EEPROM word
1999 		 * only the first byte of the word is being modified
2000 		 */
2001 		if (!atl2_read_eeprom(hw, last_dword * 4,
2002 					&(eeprom_buff[last_dword - first_dword]))) {
2003 			ret_val = -EIO;
2004 			goto out;
2005 		}
2006 	}
2007 
2008 	/* Device's eeprom is always little-endian, word addressable */
2009 	memcpy(ptr, bytes, eeprom->len);
2010 
2011 	for (i = 0; i < last_dword - first_dword + 1; i++) {
2012 		if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) {
2013 			ret_val = -EIO;
2014 			goto out;
2015 		}
2016 	}
2017  out:
2018 	kfree(eeprom_buff);
2019 	return ret_val;
2020 }
2021 
2022 static void atl2_get_drvinfo(struct net_device *netdev,
2023 	struct ethtool_drvinfo *drvinfo)
2024 {
2025 	struct atl2_adapter *adapter = netdev_priv(netdev);
2026 
2027 	strlcpy(drvinfo->driver,  atl2_driver_name, sizeof(drvinfo->driver));
2028 	strlcpy(drvinfo->version, atl2_driver_version,
2029 		sizeof(drvinfo->version));
2030 	strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version));
2031 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
2032 		sizeof(drvinfo->bus_info));
2033 }
2034 
2035 static void atl2_get_wol(struct net_device *netdev,
2036 	struct ethtool_wolinfo *wol)
2037 {
2038 	struct atl2_adapter *adapter = netdev_priv(netdev);
2039 
2040 	wol->supported = WAKE_MAGIC;
2041 	wol->wolopts = 0;
2042 
2043 	if (adapter->wol & ATLX_WUFC_EX)
2044 		wol->wolopts |= WAKE_UCAST;
2045 	if (adapter->wol & ATLX_WUFC_MC)
2046 		wol->wolopts |= WAKE_MCAST;
2047 	if (adapter->wol & ATLX_WUFC_BC)
2048 		wol->wolopts |= WAKE_BCAST;
2049 	if (adapter->wol & ATLX_WUFC_MAG)
2050 		wol->wolopts |= WAKE_MAGIC;
2051 	if (adapter->wol & ATLX_WUFC_LNKC)
2052 		wol->wolopts |= WAKE_PHY;
2053 }
2054 
2055 static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2056 {
2057 	struct atl2_adapter *adapter = netdev_priv(netdev);
2058 
2059 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2060 		return -EOPNOTSUPP;
2061 
2062 	if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST))
2063 		return -EOPNOTSUPP;
2064 
2065 	/* these settings will always override what we currently have */
2066 	adapter->wol = 0;
2067 
2068 	if (wol->wolopts & WAKE_MAGIC)
2069 		adapter->wol |= ATLX_WUFC_MAG;
2070 	if (wol->wolopts & WAKE_PHY)
2071 		adapter->wol |= ATLX_WUFC_LNKC;
2072 
2073 	return 0;
2074 }
2075 
2076 static int atl2_nway_reset(struct net_device *netdev)
2077 {
2078 	struct atl2_adapter *adapter = netdev_priv(netdev);
2079 	if (netif_running(netdev))
2080 		atl2_reinit_locked(adapter);
2081 	return 0;
2082 }
2083 
2084 static const struct ethtool_ops atl2_ethtool_ops = {
2085 	.get_settings		= atl2_get_settings,
2086 	.set_settings		= atl2_set_settings,
2087 	.get_drvinfo		= atl2_get_drvinfo,
2088 	.get_regs_len		= atl2_get_regs_len,
2089 	.get_regs		= atl2_get_regs,
2090 	.get_wol		= atl2_get_wol,
2091 	.set_wol		= atl2_set_wol,
2092 	.get_msglevel		= atl2_get_msglevel,
2093 	.set_msglevel		= atl2_set_msglevel,
2094 	.nway_reset		= atl2_nway_reset,
2095 	.get_link		= ethtool_op_get_link,
2096 	.get_eeprom_len		= atl2_get_eeprom_len,
2097 	.get_eeprom		= atl2_get_eeprom,
2098 	.set_eeprom		= atl2_set_eeprom,
2099 };
2100 
2101 #define LBYTESWAP(a)  ((((a) & 0x00ff00ff) << 8) | \
2102 	(((a) & 0xff00ff00) >> 8))
2103 #define LONGSWAP(a)   ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16))
2104 #define SHORTSWAP(a)  (((a) << 8) | ((a) >> 8))
2105 
2106 /*
2107  * Reset the transmit and receive units; mask and clear all interrupts.
2108  *
2109  * hw - Struct containing variables accessed by shared code
2110  * return : 0  or  idle status (if error)
2111  */
2112 static s32 atl2_reset_hw(struct atl2_hw *hw)
2113 {
2114 	u32 icr;
2115 	u16 pci_cfg_cmd_word;
2116 	int i;
2117 
2118 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
2119 	atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2120 	if ((pci_cfg_cmd_word &
2121 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) !=
2122 		(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
2123 		pci_cfg_cmd_word |=
2124 			(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
2125 		atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
2126 	}
2127 
2128 	/* Clear Interrupt mask to stop board from generating
2129 	 * interrupts & Clear any pending interrupt events
2130 	 */
2131 	/* FIXME */
2132 	/* ATL2_WRITE_REG(hw, REG_IMR, 0); */
2133 	/* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */
2134 
2135 	/* Issue Soft Reset to the MAC.  This will reset the chip's
2136 	 * transmit, receive, DMA.  It will not effect
2137 	 * the current PCI configuration.  The global reset bit is self-
2138 	 * clearing, and should clear within a microsecond.
2139 	 */
2140 	ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
2141 	wmb();
2142 	msleep(1); /* delay about 1ms */
2143 
2144 	/* Wait at least 10ms for All module to be Idle */
2145 	for (i = 0; i < 10; i++) {
2146 		icr = ATL2_READ_REG(hw, REG_IDLE_STATUS);
2147 		if (!icr)
2148 			break;
2149 		msleep(1); /* delay 1 ms */
2150 		cpu_relax();
2151 	}
2152 
2153 	if (icr)
2154 		return icr;
2155 
2156 	return 0;
2157 }
2158 
2159 #define CUSTOM_SPI_CS_SETUP        2
2160 #define CUSTOM_SPI_CLK_HI          2
2161 #define CUSTOM_SPI_CLK_LO          2
2162 #define CUSTOM_SPI_CS_HOLD         2
2163 #define CUSTOM_SPI_CS_HI           3
2164 
2165 static struct atl2_spi_flash_dev flash_table[] =
2166 {
2167 /* MFR    WRSR  READ  PROGRAM WREN  WRDI  RDSR  RDID  SECTOR_ERASE CHIP_ERASE */
2168 {"Atmel", 0x0,  0x03, 0x02,   0x06, 0x04, 0x05, 0x15, 0x52,        0x62 },
2169 {"SST",   0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0x90, 0x20,        0x60 },
2170 {"ST",    0x01, 0x03, 0x02,   0x06, 0x04, 0x05, 0xAB, 0xD8,        0xC7 },
2171 };
2172 
2173 static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf)
2174 {
2175 	int i;
2176 	u32 value;
2177 
2178 	ATL2_WRITE_REG(hw, REG_SPI_DATA, 0);
2179 	ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr);
2180 
2181 	value = SPI_FLASH_CTRL_WAIT_READY |
2182 		(CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
2183 			SPI_FLASH_CTRL_CS_SETUP_SHIFT |
2184 		(CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) <<
2185 			SPI_FLASH_CTRL_CLK_HI_SHIFT |
2186 		(CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) <<
2187 			SPI_FLASH_CTRL_CLK_LO_SHIFT |
2188 		(CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) <<
2189 			SPI_FLASH_CTRL_CS_HOLD_SHIFT |
2190 		(CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) <<
2191 			SPI_FLASH_CTRL_CS_HI_SHIFT |
2192 		(0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT;
2193 
2194 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2195 
2196 	value |= SPI_FLASH_CTRL_START;
2197 
2198 	ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2199 
2200 	for (i = 0; i < 10; i++) {
2201 		msleep(1);
2202 		value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2203 		if (!(value & SPI_FLASH_CTRL_START))
2204 			break;
2205 	}
2206 
2207 	if (value & SPI_FLASH_CTRL_START)
2208 		return false;
2209 
2210 	*buf = ATL2_READ_REG(hw, REG_SPI_DATA);
2211 
2212 	return true;
2213 }
2214 
2215 /*
2216  * get_permanent_address
2217  * return 0 if get valid mac address,
2218  */
2219 static int get_permanent_address(struct atl2_hw *hw)
2220 {
2221 	u32 Addr[2];
2222 	u32 i, Control;
2223 	u16 Register;
2224 	u8  EthAddr[ETH_ALEN];
2225 	bool KeyValid;
2226 
2227 	if (is_valid_ether_addr(hw->perm_mac_addr))
2228 		return 0;
2229 
2230 	Addr[0] = 0;
2231 	Addr[1] = 0;
2232 
2233 	if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */
2234 		Register = 0;
2235 		KeyValid = false;
2236 
2237 		/* Read out all EEPROM content */
2238 		i = 0;
2239 		while (1) {
2240 			if (atl2_read_eeprom(hw, i + 0x100, &Control)) {
2241 				if (KeyValid) {
2242 					if (Register == REG_MAC_STA_ADDR)
2243 						Addr[0] = Control;
2244 					else if (Register ==
2245 						(REG_MAC_STA_ADDR + 4))
2246 						Addr[1] = Control;
2247 					KeyValid = false;
2248 				} else if ((Control & 0xff) == 0x5A) {
2249 					KeyValid = true;
2250 					Register = (u16) (Control >> 16);
2251 				} else {
2252 			/* assume data end while encount an invalid KEYWORD */
2253 					break;
2254 				}
2255 			} else {
2256 				break; /* read error */
2257 			}
2258 			i += 4;
2259 		}
2260 
2261 		*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2262 		*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2263 
2264 		if (is_valid_ether_addr(EthAddr)) {
2265 			memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2266 			return 0;
2267 		}
2268 		return 1;
2269 	}
2270 
2271 	/* see if SPI flash exists? */
2272 	Addr[0] = 0;
2273 	Addr[1] = 0;
2274 	Register = 0;
2275 	KeyValid = false;
2276 	i = 0;
2277 	while (1) {
2278 		if (atl2_spi_read(hw, i + 0x1f000, &Control)) {
2279 			if (KeyValid) {
2280 				if (Register == REG_MAC_STA_ADDR)
2281 					Addr[0] = Control;
2282 				else if (Register == (REG_MAC_STA_ADDR + 4))
2283 					Addr[1] = Control;
2284 				KeyValid = false;
2285 			} else if ((Control & 0xff) == 0x5A) {
2286 				KeyValid = true;
2287 				Register = (u16) (Control >> 16);
2288 			} else {
2289 				break; /* data end */
2290 			}
2291 		} else {
2292 			break; /* read error */
2293 		}
2294 		i += 4;
2295 	}
2296 
2297 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2298 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]);
2299 	if (is_valid_ether_addr(EthAddr)) {
2300 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2301 		return 0;
2302 	}
2303 	/* maybe MAC-address is from BIOS */
2304 	Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR);
2305 	Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4);
2306 	*(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]);
2307 	*(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]);
2308 
2309 	if (is_valid_ether_addr(EthAddr)) {
2310 		memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN);
2311 		return 0;
2312 	}
2313 
2314 	return 1;
2315 }
2316 
2317 /*
2318  * Reads the adapter's MAC address from the EEPROM
2319  *
2320  * hw - Struct containing variables accessed by shared code
2321  */
2322 static s32 atl2_read_mac_addr(struct atl2_hw *hw)
2323 {
2324 	if (get_permanent_address(hw)) {
2325 		/* for test */
2326 		/* FIXME: shouldn't we use eth_random_addr() here? */
2327 		hw->perm_mac_addr[0] = 0x00;
2328 		hw->perm_mac_addr[1] = 0x13;
2329 		hw->perm_mac_addr[2] = 0x74;
2330 		hw->perm_mac_addr[3] = 0x00;
2331 		hw->perm_mac_addr[4] = 0x5c;
2332 		hw->perm_mac_addr[5] = 0x38;
2333 	}
2334 
2335 	memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN);
2336 
2337 	return 0;
2338 }
2339 
2340 /*
2341  * Hashes an address to determine its location in the multicast table
2342  *
2343  * hw - Struct containing variables accessed by shared code
2344  * mc_addr - the multicast address to hash
2345  *
2346  * atl2_hash_mc_addr
2347  *  purpose
2348  *      set hash value for a multicast address
2349  *      hash calcu processing :
2350  *          1. calcu 32bit CRC for multicast address
2351  *          2. reverse crc with MSB to LSB
2352  */
2353 static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr)
2354 {
2355 	u32 crc32, value;
2356 	int i;
2357 
2358 	value = 0;
2359 	crc32 = ether_crc_le(6, mc_addr);
2360 
2361 	for (i = 0; i < 32; i++)
2362 		value |= (((crc32 >> i) & 1) << (31 - i));
2363 
2364 	return value;
2365 }
2366 
2367 /*
2368  * Sets the bit in the multicast table corresponding to the hash value.
2369  *
2370  * hw - Struct containing variables accessed by shared code
2371  * hash_value - Multicast address hash value
2372  */
2373 static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value)
2374 {
2375 	u32 hash_bit, hash_reg;
2376 	u32 mta;
2377 
2378 	/* The HASH Table  is a register array of 2 32-bit registers.
2379 	 * It is treated like an array of 64 bits.  We want to set
2380 	 * bit BitArray[hash_value]. So we figure out what register
2381 	 * the bit is in, read it, OR in the new bit, then write
2382 	 * back the new value.  The register is determined by the
2383 	 * upper 7 bits of the hash value and the bit within that
2384 	 * register are determined by the lower 5 bits of the value.
2385 	 */
2386 	hash_reg = (hash_value >> 31) & 0x1;
2387 	hash_bit = (hash_value >> 26) & 0x1F;
2388 
2389 	mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
2390 
2391 	mta |= (1 << hash_bit);
2392 
2393 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
2394 }
2395 
2396 /*
2397  * atl2_init_pcie - init PCIE module
2398  */
2399 static void atl2_init_pcie(struct atl2_hw *hw)
2400 {
2401     u32 value;
2402     value = LTSSM_TEST_MODE_DEF;
2403     ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
2404 
2405     value = PCIE_DLL_TX_CTRL1_DEF;
2406     ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value);
2407 }
2408 
2409 static void atl2_init_flash_opcode(struct atl2_hw *hw)
2410 {
2411 	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
2412 		hw->flash_vendor = 0; /* ATMEL */
2413 
2414 	/* Init OP table */
2415 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM,
2416 		flash_table[hw->flash_vendor].cmdPROGRAM);
2417 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE,
2418 		flash_table[hw->flash_vendor].cmdSECTOR_ERASE);
2419 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE,
2420 		flash_table[hw->flash_vendor].cmdCHIP_ERASE);
2421 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID,
2422 		flash_table[hw->flash_vendor].cmdRDID);
2423 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN,
2424 		flash_table[hw->flash_vendor].cmdWREN);
2425 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR,
2426 		flash_table[hw->flash_vendor].cmdRDSR);
2427 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR,
2428 		flash_table[hw->flash_vendor].cmdWRSR);
2429 	ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ,
2430 		flash_table[hw->flash_vendor].cmdREAD);
2431 }
2432 
2433 /********************************************************************
2434 * Performs basic configuration of the adapter.
2435 *
2436 * hw - Struct containing variables accessed by shared code
2437 * Assumes that the controller has previously been reset and is in a
2438 * post-reset uninitialized state. Initializes multicast table,
2439 * and  Calls routines to setup link
2440 * Leaves the transmit and receive units disabled and uninitialized.
2441 ********************************************************************/
2442 static s32 atl2_init_hw(struct atl2_hw *hw)
2443 {
2444 	u32 ret_val = 0;
2445 
2446 	atl2_init_pcie(hw);
2447 
2448 	/* Zero out the Multicast HASH table */
2449 	/* clear the old settings from the multicast hash table */
2450 	ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
2451 	ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
2452 
2453 	atl2_init_flash_opcode(hw);
2454 
2455 	ret_val = atl2_phy_init(hw);
2456 
2457 	return ret_val;
2458 }
2459 
2460 /*
2461  * Detects the current speed and duplex settings of the hardware.
2462  *
2463  * hw - Struct containing variables accessed by shared code
2464  * speed - Speed of the connection
2465  * duplex - Duplex setting of the connection
2466  */
2467 static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed,
2468 	u16 *duplex)
2469 {
2470 	s32 ret_val;
2471 	u16 phy_data;
2472 
2473 	/* Read PHY Specific Status Register (17) */
2474 	ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
2475 	if (ret_val)
2476 		return ret_val;
2477 
2478 	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
2479 		return ATLX_ERR_PHY_RES;
2480 
2481 	switch (phy_data & MII_ATLX_PSSR_SPEED) {
2482 	case MII_ATLX_PSSR_100MBS:
2483 		*speed = SPEED_100;
2484 		break;
2485 	case MII_ATLX_PSSR_10MBS:
2486 		*speed = SPEED_10;
2487 		break;
2488 	default:
2489 		return ATLX_ERR_PHY_SPEED;
2490 	}
2491 
2492 	if (phy_data & MII_ATLX_PSSR_DPLX)
2493 		*duplex = FULL_DUPLEX;
2494 	else
2495 		*duplex = HALF_DUPLEX;
2496 
2497 	return 0;
2498 }
2499 
2500 /*
2501  * Reads the value from a PHY register
2502  * hw - Struct containing variables accessed by shared code
2503  * reg_addr - address of the PHY register to read
2504  */
2505 static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data)
2506 {
2507 	u32 val;
2508 	int i;
2509 
2510 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
2511 		MDIO_START |
2512 		MDIO_SUP_PREAMBLE |
2513 		MDIO_RW |
2514 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2515 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2516 
2517 	wmb();
2518 
2519 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2520 		udelay(2);
2521 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2522 		if (!(val & (MDIO_START | MDIO_BUSY)))
2523 			break;
2524 		wmb();
2525 	}
2526 	if (!(val & (MDIO_START | MDIO_BUSY))) {
2527 		*phy_data = (u16)val;
2528 		return 0;
2529 	}
2530 
2531 	return ATLX_ERR_PHY;
2532 }
2533 
2534 /*
2535  * Writes a value to a PHY register
2536  * hw - Struct containing variables accessed by shared code
2537  * reg_addr - address of the PHY register to write
2538  * data - data to write to the PHY
2539  */
2540 static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data)
2541 {
2542 	int i;
2543 	u32 val;
2544 
2545 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
2546 		(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
2547 		MDIO_SUP_PREAMBLE |
2548 		MDIO_START |
2549 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
2550 	ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val);
2551 
2552 	wmb();
2553 
2554 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
2555 		udelay(2);
2556 		val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2557 		if (!(val & (MDIO_START | MDIO_BUSY)))
2558 			break;
2559 
2560 		wmb();
2561 	}
2562 
2563 	if (!(val & (MDIO_START | MDIO_BUSY)))
2564 		return 0;
2565 
2566 	return ATLX_ERR_PHY;
2567 }
2568 
2569 /*
2570  * Configures PHY autoneg and flow control advertisement settings
2571  *
2572  * hw - Struct containing variables accessed by shared code
2573  */
2574 static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw)
2575 {
2576 	s32 ret_val;
2577 	s16 mii_autoneg_adv_reg;
2578 
2579 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
2580 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
2581 
2582 	/* Need to parse autoneg_advertised  and set up
2583 	 * the appropriate PHY registers.  First we will parse for
2584 	 * autoneg_advertised software override.  Since we can advertise
2585 	 * a plethora of combinations, we need to check each bit
2586 	 * individually.
2587 	 */
2588 
2589 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
2590 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2591 	 * the  1000Base-T Control Register (Address 9). */
2592 	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
2593 
2594 	/* Need to parse MediaType and setup the
2595 	 * appropriate PHY registers. */
2596 	switch (hw->MediaType) {
2597 	case MEDIA_TYPE_AUTO_SENSOR:
2598 		mii_autoneg_adv_reg |=
2599 			(MII_AR_10T_HD_CAPS |
2600 			MII_AR_10T_FD_CAPS  |
2601 			MII_AR_100TX_HD_CAPS|
2602 			MII_AR_100TX_FD_CAPS);
2603 		hw->autoneg_advertised =
2604 			ADVERTISE_10_HALF |
2605 			ADVERTISE_10_FULL |
2606 			ADVERTISE_100_HALF|
2607 			ADVERTISE_100_FULL;
2608 		break;
2609 	case MEDIA_TYPE_100M_FULL:
2610 		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
2611 		hw->autoneg_advertised = ADVERTISE_100_FULL;
2612 		break;
2613 	case MEDIA_TYPE_100M_HALF:
2614 		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
2615 		hw->autoneg_advertised = ADVERTISE_100_HALF;
2616 		break;
2617 	case MEDIA_TYPE_10M_FULL:
2618 		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
2619 		hw->autoneg_advertised = ADVERTISE_10_FULL;
2620 		break;
2621 	default:
2622 		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
2623 		hw->autoneg_advertised = ADVERTISE_10_HALF;
2624 		break;
2625 	}
2626 
2627 	/* flow control fixed to enable all */
2628 	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
2629 
2630 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
2631 
2632 	ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
2633 
2634 	if (ret_val)
2635 		return ret_val;
2636 
2637 	return 0;
2638 }
2639 
2640 /*
2641  * Resets the PHY and make all config validate
2642  *
2643  * hw - Struct containing variables accessed by shared code
2644  *
2645  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
2646  */
2647 static s32 atl2_phy_commit(struct atl2_hw *hw)
2648 {
2649 	s32 ret_val;
2650 	u16 phy_data;
2651 
2652 	phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2653 	ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data);
2654 	if (ret_val) {
2655 		u32 val;
2656 		int i;
2657 		/* pcie serdes link may be down ! */
2658 		for (i = 0; i < 25; i++) {
2659 			msleep(1);
2660 			val = ATL2_READ_REG(hw, REG_MDIO_CTRL);
2661 			if (!(val & (MDIO_START | MDIO_BUSY)))
2662 				break;
2663 		}
2664 
2665 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
2666 			printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n");
2667 			return ret_val;
2668 		}
2669 	}
2670 	return 0;
2671 }
2672 
2673 static s32 atl2_phy_init(struct atl2_hw *hw)
2674 {
2675 	s32 ret_val;
2676 	u16 phy_val;
2677 
2678 	if (hw->phy_configured)
2679 		return 0;
2680 
2681 	/* Enable PHY */
2682 	ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1);
2683 	ATL2_WRITE_FLUSH(hw);
2684 	msleep(1);
2685 
2686 	/* check if the PHY is in powersaving mode */
2687 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2688 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2689 
2690 	/* 024E / 124E 0r 0274 / 1274 ? */
2691 	if (phy_val & 0x1000) {
2692 		phy_val &= ~0x1000;
2693 		atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val);
2694 	}
2695 
2696 	msleep(1);
2697 
2698 	/*Enable PHY LinkChange Interrupt */
2699 	ret_val = atl2_write_phy_reg(hw, 18, 0xC00);
2700 	if (ret_val)
2701 		return ret_val;
2702 
2703 	/* setup AutoNeg parameters */
2704 	ret_val = atl2_phy_setup_autoneg_adv(hw);
2705 	if (ret_val)
2706 		return ret_val;
2707 
2708 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg */
2709 	ret_val = atl2_phy_commit(hw);
2710 	if (ret_val)
2711 		return ret_val;
2712 
2713 	hw->phy_configured = true;
2714 
2715 	return ret_val;
2716 }
2717 
2718 static void atl2_set_mac_addr(struct atl2_hw *hw)
2719 {
2720 	u32 value;
2721 	/* 00-0B-6A-F6-00-DC
2722 	 * 0:  6AF600DC   1: 000B
2723 	 * low dword */
2724 	value = (((u32)hw->mac_addr[2]) << 24) |
2725 		(((u32)hw->mac_addr[3]) << 16) |
2726 		(((u32)hw->mac_addr[4]) << 8)  |
2727 		(((u32)hw->mac_addr[5]));
2728 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
2729 	/* hight dword */
2730 	value = (((u32)hw->mac_addr[0]) << 8) |
2731 		(((u32)hw->mac_addr[1]));
2732 	ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
2733 }
2734 
2735 /*
2736  * check_eeprom_exist
2737  * return 0 if eeprom exist
2738  */
2739 static int atl2_check_eeprom_exist(struct atl2_hw *hw)
2740 {
2741 	u32 value;
2742 
2743 	value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL);
2744 	if (value & SPI_FLASH_CTRL_EN_VPD) {
2745 		value &= ~SPI_FLASH_CTRL_EN_VPD;
2746 		ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
2747 	}
2748 	value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST);
2749 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
2750 }
2751 
2752 /* FIXME: This doesn't look right. -- CHS */
2753 static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value)
2754 {
2755 	return true;
2756 }
2757 
2758 static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue)
2759 {
2760 	int i;
2761 	u32    Control;
2762 
2763 	if (Offset & 0x3)
2764 		return false; /* address do not align */
2765 
2766 	ATL2_WRITE_REG(hw, REG_VPD_DATA, 0);
2767 	Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
2768 	ATL2_WRITE_REG(hw, REG_VPD_CAP, Control);
2769 
2770 	for (i = 0; i < 10; i++) {
2771 		msleep(2);
2772 		Control = ATL2_READ_REG(hw, REG_VPD_CAP);
2773 		if (Control & VPD_CAP_VPD_FLAG)
2774 			break;
2775 	}
2776 
2777 	if (Control & VPD_CAP_VPD_FLAG) {
2778 		*pValue = ATL2_READ_REG(hw, REG_VPD_DATA);
2779 		return true;
2780 	}
2781 	return false; /* timeout */
2782 }
2783 
2784 static void atl2_force_ps(struct atl2_hw *hw)
2785 {
2786 	u16 phy_val;
2787 
2788 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 0);
2789 	atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val);
2790 	atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000);
2791 
2792 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 2);
2793 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
2794 	atl2_write_phy_reg(hw, MII_DBG_ADDR, 3);
2795 	atl2_write_phy_reg(hw, MII_DBG_DATA, 0);
2796 }
2797 
2798 /* This is the only thing that needs to be changed to adjust the
2799  * maximum number of ports that the driver can manage.
2800  */
2801 #define ATL2_MAX_NIC 4
2802 
2803 #define OPTION_UNSET    -1
2804 #define OPTION_DISABLED 0
2805 #define OPTION_ENABLED  1
2806 
2807 /* All parameters are treated the same, as an integer array of values.
2808  * This macro just reduces the need to repeat the same declaration code
2809  * over and over (plus this helps to avoid typo bugs).
2810  */
2811 #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET}
2812 #ifndef module_param_array
2813 /* Module Parameters are always initialized to -1, so that the driver
2814  * can tell the difference between no user specified value or the
2815  * user asking for the default value.
2816  * The true default values are loaded in when atl2_check_options is called.
2817  *
2818  * This is a GCC extension to ANSI C.
2819  * See the item "Labeled Elements in Initializers" in the section
2820  * "Extensions to the C Language Family" of the GCC documentation.
2821  */
2822 
2823 #define ATL2_PARAM(X, desc) \
2824     static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \
2825     MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \
2826     MODULE_PARM_DESC(X, desc);
2827 #else
2828 #define ATL2_PARAM(X, desc) \
2829     static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \
2830     static unsigned int num_##X; \
2831     module_param_array_named(X, X, int, &num_##X, 0); \
2832     MODULE_PARM_DESC(X, desc);
2833 #endif
2834 
2835 /*
2836  * Transmit Memory Size
2837  * Valid Range: 64-2048
2838  * Default Value: 128
2839  */
2840 #define ATL2_MIN_TX_MEMSIZE		4	/* 4KB */
2841 #define ATL2_MAX_TX_MEMSIZE		64	/* 64KB */
2842 #define ATL2_DEFAULT_TX_MEMSIZE		8	/* 8KB */
2843 ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory");
2844 
2845 /*
2846  * Receive Memory Block Count
2847  * Valid Range: 16-512
2848  * Default Value: 128
2849  */
2850 #define ATL2_MIN_RXD_COUNT		16
2851 #define ATL2_MAX_RXD_COUNT		512
2852 #define ATL2_DEFAULT_RXD_COUNT		64
2853 ATL2_PARAM(RxMemBlock, "Number of receive memory block");
2854 
2855 /*
2856  * User Specified MediaType Override
2857  *
2858  * Valid Range: 0-5
2859  *  - 0    - auto-negotiate at all supported speeds
2860  *  - 1    - only link at 1000Mbps Full Duplex
2861  *  - 2    - only link at 100Mbps Full Duplex
2862  *  - 3    - only link at 100Mbps Half Duplex
2863  *  - 4    - only link at 10Mbps Full Duplex
2864  *  - 5    - only link at 10Mbps Half Duplex
2865  * Default Value: 0
2866  */
2867 ATL2_PARAM(MediaType, "MediaType Select");
2868 
2869 /*
2870  * Interrupt Moderate Timer in units of 2048 ns (~2 us)
2871  * Valid Range: 10-65535
2872  * Default Value: 45000(90ms)
2873  */
2874 #define INT_MOD_DEFAULT_CNT	100 /* 200us */
2875 #define INT_MOD_MAX_CNT		65000
2876 #define INT_MOD_MIN_CNT		50
2877 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer");
2878 
2879 /*
2880  * FlashVendor
2881  * Valid Range: 0-2
2882  * 0 - Atmel
2883  * 1 - SST
2884  * 2 - ST
2885  */
2886 ATL2_PARAM(FlashVendor, "SPI Flash Vendor");
2887 
2888 #define AUTONEG_ADV_DEFAULT	0x2F
2889 #define AUTONEG_ADV_MASK	0x2F
2890 #define FLOW_CONTROL_DEFAULT	FLOW_CONTROL_FULL
2891 
2892 #define FLASH_VENDOR_DEFAULT	0
2893 #define FLASH_VENDOR_MIN	0
2894 #define FLASH_VENDOR_MAX	2
2895 
2896 struct atl2_option {
2897 	enum { enable_option, range_option, list_option } type;
2898 	char *name;
2899 	char *err;
2900 	int  def;
2901 	union {
2902 		struct { /* range_option info */
2903 			int min;
2904 			int max;
2905 		} r;
2906 		struct { /* list_option info */
2907 			int nr;
2908 			struct atl2_opt_list { int i; char *str; } *p;
2909 		} l;
2910 	} arg;
2911 };
2912 
2913 static int atl2_validate_option(int *value, struct atl2_option *opt)
2914 {
2915 	int i;
2916 	struct atl2_opt_list *ent;
2917 
2918 	if (*value == OPTION_UNSET) {
2919 		*value = opt->def;
2920 		return 0;
2921 	}
2922 
2923 	switch (opt->type) {
2924 	case enable_option:
2925 		switch (*value) {
2926 		case OPTION_ENABLED:
2927 			printk(KERN_INFO "%s Enabled\n", opt->name);
2928 			return 0;
2929 		case OPTION_DISABLED:
2930 			printk(KERN_INFO "%s Disabled\n", opt->name);
2931 			return 0;
2932 		}
2933 		break;
2934 	case range_option:
2935 		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
2936 			printk(KERN_INFO "%s set to %i\n", opt->name, *value);
2937 			return 0;
2938 		}
2939 		break;
2940 	case list_option:
2941 		for (i = 0; i < opt->arg.l.nr; i++) {
2942 			ent = &opt->arg.l.p[i];
2943 			if (*value == ent->i) {
2944 				if (ent->str[0] != '\0')
2945 					printk(KERN_INFO "%s\n", ent->str);
2946 			return 0;
2947 			}
2948 		}
2949 		break;
2950 	default:
2951 		BUG();
2952 	}
2953 
2954 	printk(KERN_INFO "Invalid %s specified (%i) %s\n",
2955 		opt->name, *value, opt->err);
2956 	*value = opt->def;
2957 	return -1;
2958 }
2959 
2960 /**
2961  * atl2_check_options - Range Checking for Command Line Parameters
2962  * @adapter: board private structure
2963  *
2964  * This routine checks all command line parameters for valid user
2965  * input.  If an invalid value is given, or if no user specified
2966  * value exists, a default value is used.  The final value is stored
2967  * in a variable in the adapter structure.
2968  */
2969 static void atl2_check_options(struct atl2_adapter *adapter)
2970 {
2971 	int val;
2972 	struct atl2_option opt;
2973 	int bd = adapter->bd_number;
2974 	if (bd >= ATL2_MAX_NIC) {
2975 		printk(KERN_NOTICE "Warning: no configuration for board #%i\n",
2976 			bd);
2977 		printk(KERN_NOTICE "Using defaults for all values\n");
2978 #ifndef module_param_array
2979 		bd = ATL2_MAX_NIC;
2980 #endif
2981 	}
2982 
2983 	/* Bytes of Transmit Memory */
2984 	opt.type = range_option;
2985 	opt.name = "Bytes of Transmit Memory";
2986 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE);
2987 	opt.def = ATL2_DEFAULT_TX_MEMSIZE;
2988 	opt.arg.r.min = ATL2_MIN_TX_MEMSIZE;
2989 	opt.arg.r.max = ATL2_MAX_TX_MEMSIZE;
2990 #ifdef module_param_array
2991 	if (num_TxMemSize > bd) {
2992 #endif
2993 		val = TxMemSize[bd];
2994 		atl2_validate_option(&val, &opt);
2995 		adapter->txd_ring_size = ((u32) val) * 1024;
2996 #ifdef module_param_array
2997 	} else
2998 		adapter->txd_ring_size = ((u32)opt.def) * 1024;
2999 #endif
3000 	/* txs ring size: */
3001 	adapter->txs_ring_size = adapter->txd_ring_size / 128;
3002 	if (adapter->txs_ring_size > 160)
3003 		adapter->txs_ring_size = 160;
3004 
3005 	/* Receive Memory Block Count */
3006 	opt.type = range_option;
3007 	opt.name = "Number of receive memory block";
3008 	opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT);
3009 	opt.def = ATL2_DEFAULT_RXD_COUNT;
3010 	opt.arg.r.min = ATL2_MIN_RXD_COUNT;
3011 	opt.arg.r.max = ATL2_MAX_RXD_COUNT;
3012 #ifdef module_param_array
3013 	if (num_RxMemBlock > bd) {
3014 #endif
3015 		val = RxMemBlock[bd];
3016 		atl2_validate_option(&val, &opt);
3017 		adapter->rxd_ring_size = (u32)val;
3018 		/* FIXME */
3019 		/* ((u16)val)&~1; */	/* even number */
3020 #ifdef module_param_array
3021 	} else
3022 		adapter->rxd_ring_size = (u32)opt.def;
3023 #endif
3024 	/* init RXD Flow control value */
3025 	adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7;
3026 	adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) >
3027 		(adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) :
3028 		(adapter->rxd_ring_size / 12);
3029 
3030 	/* Interrupt Moderate Timer */
3031 	opt.type = range_option;
3032 	opt.name = "Interrupt Moderate Timer";
3033 	opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT);
3034 	opt.def = INT_MOD_DEFAULT_CNT;
3035 	opt.arg.r.min = INT_MOD_MIN_CNT;
3036 	opt.arg.r.max = INT_MOD_MAX_CNT;
3037 #ifdef module_param_array
3038 	if (num_IntModTimer > bd) {
3039 #endif
3040 		val = IntModTimer[bd];
3041 		atl2_validate_option(&val, &opt);
3042 		adapter->imt = (u16) val;
3043 #ifdef module_param_array
3044 	} else
3045 		adapter->imt = (u16)(opt.def);
3046 #endif
3047 	/* Flash Vendor */
3048 	opt.type = range_option;
3049 	opt.name = "SPI Flash Vendor";
3050 	opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT);
3051 	opt.def = FLASH_VENDOR_DEFAULT;
3052 	opt.arg.r.min = FLASH_VENDOR_MIN;
3053 	opt.arg.r.max = FLASH_VENDOR_MAX;
3054 #ifdef module_param_array
3055 	if (num_FlashVendor > bd) {
3056 #endif
3057 		val = FlashVendor[bd];
3058 		atl2_validate_option(&val, &opt);
3059 		adapter->hw.flash_vendor = (u8) val;
3060 #ifdef module_param_array
3061 	} else
3062 		adapter->hw.flash_vendor = (u8)(opt.def);
3063 #endif
3064 	/* MediaType */
3065 	opt.type = range_option;
3066 	opt.name = "Speed/Duplex Selection";
3067 	opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR);
3068 	opt.def = MEDIA_TYPE_AUTO_SENSOR;
3069 	opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR;
3070 	opt.arg.r.max = MEDIA_TYPE_10M_HALF;
3071 #ifdef module_param_array
3072 	if (num_MediaType > bd) {
3073 #endif
3074 		val = MediaType[bd];
3075 		atl2_validate_option(&val, &opt);
3076 		adapter->hw.MediaType = (u16) val;
3077 #ifdef module_param_array
3078 	} else
3079 		adapter->hw.MediaType = (u16)(opt.def);
3080 #endif
3081 }
3082