1 /* 2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved. 3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com> 4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com> 5 * 6 * Derived from Intel e1000 driver 7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the Free 11 * Software Foundation; either version 2 of the License, or (at your option) 12 * any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 * 19 * You should have received a copy of the GNU General Public License along with 20 * this program; if not, write to the Free Software Foundation, Inc., 59 21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 22 * 23 * The full GNU General Public License is included in this distribution in the 24 * file called COPYING. 25 * 26 * Contact Information: 27 * Xiong Huang <xiong.huang@atheros.com> 28 * Jie Yang <jie.yang@atheros.com> 29 * Chris Snook <csnook@redhat.com> 30 * Jay Cliburn <jcliburn@gmail.com> 31 * 32 * This version is adapted from the Attansic reference driver. 33 * 34 * TODO: 35 * Add more ethtool functions. 36 * Fix abstruse irq enable/disable condition described here: 37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2 38 * 39 * NEEDS TESTING: 40 * VLAN 41 * multicast 42 * promiscuous mode 43 * interrupt coalescing 44 * SMP torture testing 45 */ 46 47 #include <linux/atomic.h> 48 #include <asm/byteorder.h> 49 50 #include <linux/compiler.h> 51 #include <linux/crc32.h> 52 #include <linux/delay.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/etherdevice.h> 55 #include <linux/hardirq.h> 56 #include <linux/if_ether.h> 57 #include <linux/if_vlan.h> 58 #include <linux/in.h> 59 #include <linux/interrupt.h> 60 #include <linux/ip.h> 61 #include <linux/irqflags.h> 62 #include <linux/irqreturn.h> 63 #include <linux/jiffies.h> 64 #include <linux/mii.h> 65 #include <linux/module.h> 66 #include <linux/moduleparam.h> 67 #include <linux/net.h> 68 #include <linux/netdevice.h> 69 #include <linux/pci.h> 70 #include <linux/pci_ids.h> 71 #include <linux/pm.h> 72 #include <linux/skbuff.h> 73 #include <linux/slab.h> 74 #include <linux/spinlock.h> 75 #include <linux/string.h> 76 #include <linux/tcp.h> 77 #include <linux/timer.h> 78 #include <linux/types.h> 79 #include <linux/workqueue.h> 80 81 #include <net/checksum.h> 82 83 #include "atl1.h" 84 85 #define ATLX_DRIVER_VERSION "2.1.3" 86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, " 87 "Chris Snook <csnook@redhat.com>, " 88 "Jay Cliburn <jcliburn@gmail.com>"); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(ATLX_DRIVER_VERSION); 91 92 /* Temporary hack for merging atl1 and atl2 */ 93 #include "atlx.c" 94 95 static const struct ethtool_ops atl1_ethtool_ops; 96 97 /* 98 * This is the only thing that needs to be changed to adjust the 99 * maximum number of ports that the driver can manage. 100 */ 101 #define ATL1_MAX_NIC 4 102 103 #define OPTION_UNSET -1 104 #define OPTION_DISABLED 0 105 #define OPTION_ENABLED 1 106 107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET } 108 109 /* 110 * Interrupt Moderate Timer in units of 2 us 111 * 112 * Valid Range: 10-65535 113 * 114 * Default Value: 100 (200us) 115 */ 116 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT; 117 static unsigned int num_int_mod_timer; 118 module_param_array_named(int_mod_timer, int_mod_timer, int, 119 &num_int_mod_timer, 0); 120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer"); 121 122 #define DEFAULT_INT_MOD_CNT 100 /* 200us */ 123 #define MAX_INT_MOD_CNT 65000 124 #define MIN_INT_MOD_CNT 50 125 126 struct atl1_option { 127 enum { enable_option, range_option, list_option } type; 128 char *name; 129 char *err; 130 int def; 131 union { 132 struct { /* range_option info */ 133 int min; 134 int max; 135 } r; 136 struct { /* list_option info */ 137 int nr; 138 struct atl1_opt_list { 139 int i; 140 char *str; 141 } *p; 142 } l; 143 } arg; 144 }; 145 146 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt, 147 struct pci_dev *pdev) 148 { 149 if (*value == OPTION_UNSET) { 150 *value = opt->def; 151 return 0; 152 } 153 154 switch (opt->type) { 155 case enable_option: 156 switch (*value) { 157 case OPTION_ENABLED: 158 dev_info(&pdev->dev, "%s enabled\n", opt->name); 159 return 0; 160 case OPTION_DISABLED: 161 dev_info(&pdev->dev, "%s disabled\n", opt->name); 162 return 0; 163 } 164 break; 165 case range_option: 166 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { 167 dev_info(&pdev->dev, "%s set to %i\n", opt->name, 168 *value); 169 return 0; 170 } 171 break; 172 case list_option:{ 173 int i; 174 struct atl1_opt_list *ent; 175 176 for (i = 0; i < opt->arg.l.nr; i++) { 177 ent = &opt->arg.l.p[i]; 178 if (*value == ent->i) { 179 if (ent->str[0] != '\0') 180 dev_info(&pdev->dev, "%s\n", 181 ent->str); 182 return 0; 183 } 184 } 185 } 186 break; 187 188 default: 189 break; 190 } 191 192 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n", 193 opt->name, *value, opt->err); 194 *value = opt->def; 195 return -1; 196 } 197 198 /* 199 * atl1_check_options - Range Checking for Command Line Parameters 200 * @adapter: board private structure 201 * 202 * This routine checks all command line parameters for valid user 203 * input. If an invalid value is given, or if no user specified 204 * value exists, a default value is used. The final value is stored 205 * in a variable in the adapter structure. 206 */ 207 static void __devinit atl1_check_options(struct atl1_adapter *adapter) 208 { 209 struct pci_dev *pdev = adapter->pdev; 210 int bd = adapter->bd_number; 211 if (bd >= ATL1_MAX_NIC) { 212 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd); 213 dev_notice(&pdev->dev, "using defaults for all values\n"); 214 } 215 { /* Interrupt Moderate Timer */ 216 struct atl1_option opt = { 217 .type = range_option, 218 .name = "Interrupt Moderator Timer", 219 .err = "using default of " 220 __MODULE_STRING(DEFAULT_INT_MOD_CNT), 221 .def = DEFAULT_INT_MOD_CNT, 222 .arg = {.r = {.min = MIN_INT_MOD_CNT, 223 .max = MAX_INT_MOD_CNT} } 224 }; 225 int val; 226 if (num_int_mod_timer > bd) { 227 val = int_mod_timer[bd]; 228 atl1_validate_option(&val, &opt, pdev); 229 adapter->imt = (u16) val; 230 } else 231 adapter->imt = (u16) (opt.def); 232 } 233 } 234 235 /* 236 * atl1_pci_tbl - PCI Device ID Table 237 */ 238 static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = { 239 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)}, 240 /* required last entry */ 241 {0,} 242 }; 243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl); 244 245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 246 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP; 247 248 static int debug = -1; 249 module_param(debug, int, 0); 250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)"); 251 252 /* 253 * Reset the transmit and receive units; mask and clear all interrupts. 254 * hw - Struct containing variables accessed by shared code 255 * return : 0 or idle status (if error) 256 */ 257 static s32 atl1_reset_hw(struct atl1_hw *hw) 258 { 259 struct pci_dev *pdev = hw->back->pdev; 260 struct atl1_adapter *adapter = hw->back; 261 u32 icr; 262 int i; 263 264 /* 265 * Clear Interrupt mask to stop board from generating 266 * interrupts & Clear any pending interrupt events 267 */ 268 /* 269 * iowrite32(0, hw->hw_addr + REG_IMR); 270 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR); 271 */ 272 273 /* 274 * Issue Soft Reset to the MAC. This will reset the chip's 275 * transmit, receive, DMA. It will not effect 276 * the current PCI configuration. The global reset bit is self- 277 * clearing, and should clear within a microsecond. 278 */ 279 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL); 280 ioread32(hw->hw_addr + REG_MASTER_CTRL); 281 282 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE); 283 ioread16(hw->hw_addr + REG_PHY_ENABLE); 284 285 /* delay about 1ms */ 286 msleep(1); 287 288 /* Wait at least 10ms for All module to be Idle */ 289 for (i = 0; i < 10; i++) { 290 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS); 291 if (!icr) 292 break; 293 /* delay 1 ms */ 294 msleep(1); 295 /* FIXME: still the right way to do this? */ 296 cpu_relax(); 297 } 298 299 if (icr) { 300 if (netif_msg_hw(adapter)) 301 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr); 302 return icr; 303 } 304 305 return 0; 306 } 307 308 /* function about EEPROM 309 * 310 * check_eeprom_exist 311 * return 0 if eeprom exist 312 */ 313 static int atl1_check_eeprom_exist(struct atl1_hw *hw) 314 { 315 u32 value; 316 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 317 if (value & SPI_FLASH_CTRL_EN_VPD) { 318 value &= ~SPI_FLASH_CTRL_EN_VPD; 319 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 320 } 321 322 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST); 323 return ((value & 0xFF00) == 0x6C00) ? 0 : 1; 324 } 325 326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value) 327 { 328 int i; 329 u32 control; 330 331 if (offset & 3) 332 /* address do not align */ 333 return false; 334 335 iowrite32(0, hw->hw_addr + REG_VPD_DATA); 336 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; 337 iowrite32(control, hw->hw_addr + REG_VPD_CAP); 338 ioread32(hw->hw_addr + REG_VPD_CAP); 339 340 for (i = 0; i < 10; i++) { 341 msleep(2); 342 control = ioread32(hw->hw_addr + REG_VPD_CAP); 343 if (control & VPD_CAP_VPD_FLAG) 344 break; 345 } 346 if (control & VPD_CAP_VPD_FLAG) { 347 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA); 348 return true; 349 } 350 /* timeout */ 351 return false; 352 } 353 354 /* 355 * Reads the value from a PHY register 356 * hw - Struct containing variables accessed by shared code 357 * reg_addr - address of the PHY register to read 358 */ 359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data) 360 { 361 u32 val; 362 int i; 363 364 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | 365 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << 366 MDIO_CLK_SEL_SHIFT; 367 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); 368 ioread32(hw->hw_addr + REG_MDIO_CTRL); 369 370 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 371 udelay(2); 372 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 373 if (!(val & (MDIO_START | MDIO_BUSY))) 374 break; 375 } 376 if (!(val & (MDIO_START | MDIO_BUSY))) { 377 *phy_data = (u16) val; 378 return 0; 379 } 380 return ATLX_ERR_PHY; 381 } 382 383 #define CUSTOM_SPI_CS_SETUP 2 384 #define CUSTOM_SPI_CLK_HI 2 385 #define CUSTOM_SPI_CLK_LO 2 386 #define CUSTOM_SPI_CS_HOLD 2 387 #define CUSTOM_SPI_CS_HI 3 388 389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf) 390 { 391 int i; 392 u32 value; 393 394 iowrite32(0, hw->hw_addr + REG_SPI_DATA); 395 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR); 396 397 value = SPI_FLASH_CTRL_WAIT_READY | 398 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) << 399 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI & 400 SPI_FLASH_CTRL_CLK_HI_MASK) << 401 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO & 402 SPI_FLASH_CTRL_CLK_LO_MASK) << 403 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD & 404 SPI_FLASH_CTRL_CS_HOLD_MASK) << 405 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI & 406 SPI_FLASH_CTRL_CS_HI_MASK) << 407 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) << 408 SPI_FLASH_CTRL_INS_SHIFT; 409 410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 411 412 value |= SPI_FLASH_CTRL_START; 413 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); 414 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 415 416 for (i = 0; i < 10; i++) { 417 msleep(1); 418 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); 419 if (!(value & SPI_FLASH_CTRL_START)) 420 break; 421 } 422 423 if (value & SPI_FLASH_CTRL_START) 424 return false; 425 426 *buf = ioread32(hw->hw_addr + REG_SPI_DATA); 427 428 return true; 429 } 430 431 /* 432 * get_permanent_address 433 * return 0 if get valid mac address, 434 */ 435 static int atl1_get_permanent_address(struct atl1_hw *hw) 436 { 437 u32 addr[2]; 438 u32 i, control; 439 u16 reg; 440 u8 eth_addr[ETH_ALEN]; 441 bool key_valid; 442 443 if (is_valid_ether_addr(hw->perm_mac_addr)) 444 return 0; 445 446 /* init */ 447 addr[0] = addr[1] = 0; 448 449 if (!atl1_check_eeprom_exist(hw)) { 450 reg = 0; 451 key_valid = false; 452 /* Read out all EEPROM content */ 453 i = 0; 454 while (1) { 455 if (atl1_read_eeprom(hw, i + 0x100, &control)) { 456 if (key_valid) { 457 if (reg == REG_MAC_STA_ADDR) 458 addr[0] = control; 459 else if (reg == (REG_MAC_STA_ADDR + 4)) 460 addr[1] = control; 461 key_valid = false; 462 } else if ((control & 0xff) == 0x5A) { 463 key_valid = true; 464 reg = (u16) (control >> 16); 465 } else 466 break; 467 } else 468 /* read error */ 469 break; 470 i += 4; 471 } 472 473 *(u32 *) ð_addr[2] = swab32(addr[0]); 474 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 475 if (is_valid_ether_addr(eth_addr)) { 476 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 477 return 0; 478 } 479 } 480 481 /* see if SPI FLAGS exist ? */ 482 addr[0] = addr[1] = 0; 483 reg = 0; 484 key_valid = false; 485 i = 0; 486 while (1) { 487 if (atl1_spi_read(hw, i + 0x1f000, &control)) { 488 if (key_valid) { 489 if (reg == REG_MAC_STA_ADDR) 490 addr[0] = control; 491 else if (reg == (REG_MAC_STA_ADDR + 4)) 492 addr[1] = control; 493 key_valid = false; 494 } else if ((control & 0xff) == 0x5A) { 495 key_valid = true; 496 reg = (u16) (control >> 16); 497 } else 498 /* data end */ 499 break; 500 } else 501 /* read error */ 502 break; 503 i += 4; 504 } 505 506 *(u32 *) ð_addr[2] = swab32(addr[0]); 507 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 508 if (is_valid_ether_addr(eth_addr)) { 509 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 510 return 0; 511 } 512 513 /* 514 * On some motherboards, the MAC address is written by the 515 * BIOS directly to the MAC register during POST, and is 516 * not stored in eeprom. If all else thus far has failed 517 * to fetch the permanent MAC address, try reading it directly. 518 */ 519 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR); 520 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4)); 521 *(u32 *) ð_addr[2] = swab32(addr[0]); 522 *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); 523 if (is_valid_ether_addr(eth_addr)) { 524 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); 525 return 0; 526 } 527 528 return 1; 529 } 530 531 /* 532 * Reads the adapter's MAC address from the EEPROM 533 * hw - Struct containing variables accessed by shared code 534 */ 535 static s32 atl1_read_mac_addr(struct atl1_hw *hw) 536 { 537 u16 i; 538 539 if (atl1_get_permanent_address(hw)) 540 random_ether_addr(hw->perm_mac_addr); 541 542 for (i = 0; i < ETH_ALEN; i++) 543 hw->mac_addr[i] = hw->perm_mac_addr[i]; 544 return 0; 545 } 546 547 /* 548 * Hashes an address to determine its location in the multicast table 549 * hw - Struct containing variables accessed by shared code 550 * mc_addr - the multicast address to hash 551 * 552 * atl1_hash_mc_addr 553 * purpose 554 * set hash value for a multicast address 555 * hash calcu processing : 556 * 1. calcu 32bit CRC for multicast address 557 * 2. reverse crc with MSB to LSB 558 */ 559 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr) 560 { 561 u32 crc32, value = 0; 562 int i; 563 564 crc32 = ether_crc_le(6, mc_addr); 565 for (i = 0; i < 32; i++) 566 value |= (((crc32 >> i) & 1) << (31 - i)); 567 568 return value; 569 } 570 571 /* 572 * Sets the bit in the multicast table corresponding to the hash value. 573 * hw - Struct containing variables accessed by shared code 574 * hash_value - Multicast address hash value 575 */ 576 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value) 577 { 578 u32 hash_bit, hash_reg; 579 u32 mta; 580 581 /* 582 * The HASH Table is a register array of 2 32-bit registers. 583 * It is treated like an array of 64 bits. We want to set 584 * bit BitArray[hash_value]. So we figure out what register 585 * the bit is in, read it, OR in the new bit, then write 586 * back the new value. The register is determined by the 587 * upper 7 bits of the hash value and the bit within that 588 * register are determined by the lower 5 bits of the value. 589 */ 590 hash_reg = (hash_value >> 31) & 0x1; 591 hash_bit = (hash_value >> 26) & 0x1F; 592 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); 593 mta |= (1 << hash_bit); 594 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); 595 } 596 597 /* 598 * Writes a value to a PHY register 599 * hw - Struct containing variables accessed by shared code 600 * reg_addr - address of the PHY register to write 601 * data - data to write to the PHY 602 */ 603 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data) 604 { 605 int i; 606 u32 val; 607 608 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | 609 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | 610 MDIO_SUP_PREAMBLE | 611 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; 612 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); 613 ioread32(hw->hw_addr + REG_MDIO_CTRL); 614 615 for (i = 0; i < MDIO_WAIT_TIMES; i++) { 616 udelay(2); 617 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 618 if (!(val & (MDIO_START | MDIO_BUSY))) 619 break; 620 } 621 622 if (!(val & (MDIO_START | MDIO_BUSY))) 623 return 0; 624 625 return ATLX_ERR_PHY; 626 } 627 628 /* 629 * Make L001's PHY out of Power Saving State (bug) 630 * hw - Struct containing variables accessed by shared code 631 * when power on, L001's PHY always on Power saving State 632 * (Gigabit Link forbidden) 633 */ 634 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw) 635 { 636 s32 ret; 637 ret = atl1_write_phy_reg(hw, 29, 0x0029); 638 if (ret) 639 return ret; 640 return atl1_write_phy_reg(hw, 30, 0); 641 } 642 643 /* 644 * Resets the PHY and make all config validate 645 * hw - Struct containing variables accessed by shared code 646 * 647 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug) 648 */ 649 static s32 atl1_phy_reset(struct atl1_hw *hw) 650 { 651 struct pci_dev *pdev = hw->back->pdev; 652 struct atl1_adapter *adapter = hw->back; 653 s32 ret_val; 654 u16 phy_data; 655 656 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 657 hw->media_type == MEDIA_TYPE_1000M_FULL) 658 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 659 else { 660 switch (hw->media_type) { 661 case MEDIA_TYPE_100M_FULL: 662 phy_data = 663 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 664 MII_CR_RESET; 665 break; 666 case MEDIA_TYPE_100M_HALF: 667 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 668 break; 669 case MEDIA_TYPE_10M_FULL: 670 phy_data = 671 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 672 break; 673 default: 674 /* MEDIA_TYPE_10M_HALF: */ 675 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 676 break; 677 } 678 } 679 680 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data); 681 if (ret_val) { 682 u32 val; 683 int i; 684 /* pcie serdes link may be down! */ 685 if (netif_msg_hw(adapter)) 686 dev_dbg(&pdev->dev, "pcie phy link down\n"); 687 688 for (i = 0; i < 25; i++) { 689 msleep(1); 690 val = ioread32(hw->hw_addr + REG_MDIO_CTRL); 691 if (!(val & (MDIO_START | MDIO_BUSY))) 692 break; 693 } 694 695 if ((val & (MDIO_START | MDIO_BUSY)) != 0) { 696 if (netif_msg_hw(adapter)) 697 dev_warn(&pdev->dev, 698 "pcie link down at least 25ms\n"); 699 return ret_val; 700 } 701 } 702 return 0; 703 } 704 705 /* 706 * Configures PHY autoneg and flow control advertisement settings 707 * hw - Struct containing variables accessed by shared code 708 */ 709 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw) 710 { 711 s32 ret_val; 712 s16 mii_autoneg_adv_reg; 713 s16 mii_1000t_ctrl_reg; 714 715 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 716 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; 717 718 /* Read the MII 1000Base-T Control Register (Address 9). */ 719 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK; 720 721 /* 722 * First we clear all the 10/100 mb speed bits in the Auto-Neg 723 * Advertisement Register (Address 4) and the 1000 mb speed bits in 724 * the 1000Base-T Control Register (Address 9). 725 */ 726 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; 727 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK; 728 729 /* 730 * Need to parse media_type and set up 731 * the appropriate PHY registers. 732 */ 733 switch (hw->media_type) { 734 case MEDIA_TYPE_AUTO_SENSOR: 735 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS | 736 MII_AR_10T_FD_CAPS | 737 MII_AR_100TX_HD_CAPS | 738 MII_AR_100TX_FD_CAPS); 739 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; 740 break; 741 742 case MEDIA_TYPE_1000M_FULL: 743 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; 744 break; 745 746 case MEDIA_TYPE_100M_FULL: 747 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; 748 break; 749 750 case MEDIA_TYPE_100M_HALF: 751 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; 752 break; 753 754 case MEDIA_TYPE_10M_FULL: 755 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; 756 break; 757 758 default: 759 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; 760 break; 761 } 762 763 /* flow control fixed to enable all */ 764 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); 765 766 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; 767 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; 768 769 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); 770 if (ret_val) 771 return ret_val; 772 773 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg); 774 if (ret_val) 775 return ret_val; 776 777 return 0; 778 } 779 780 /* 781 * Configures link settings. 782 * hw - Struct containing variables accessed by shared code 783 * Assumes the hardware has previously been reset and the 784 * transmitter and receiver are not enabled. 785 */ 786 static s32 atl1_setup_link(struct atl1_hw *hw) 787 { 788 struct pci_dev *pdev = hw->back->pdev; 789 struct atl1_adapter *adapter = hw->back; 790 s32 ret_val; 791 792 /* 793 * Options: 794 * PHY will advertise value(s) parsed from 795 * autoneg_advertised and fc 796 * no matter what autoneg is , We will not wait link result. 797 */ 798 ret_val = atl1_phy_setup_autoneg_adv(hw); 799 if (ret_val) { 800 if (netif_msg_link(adapter)) 801 dev_dbg(&pdev->dev, 802 "error setting up autonegotiation\n"); 803 return ret_val; 804 } 805 /* SW.Reset , En-Auto-Neg if needed */ 806 ret_val = atl1_phy_reset(hw); 807 if (ret_val) { 808 if (netif_msg_link(adapter)) 809 dev_dbg(&pdev->dev, "error resetting phy\n"); 810 return ret_val; 811 } 812 hw->phy_configured = true; 813 return ret_val; 814 } 815 816 static void atl1_init_flash_opcode(struct atl1_hw *hw) 817 { 818 if (hw->flash_vendor >= ARRAY_SIZE(flash_table)) 819 /* Atmel */ 820 hw->flash_vendor = 0; 821 822 /* Init OP table */ 823 iowrite8(flash_table[hw->flash_vendor].cmd_program, 824 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM); 825 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase, 826 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE); 827 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase, 828 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE); 829 iowrite8(flash_table[hw->flash_vendor].cmd_rdid, 830 hw->hw_addr + REG_SPI_FLASH_OP_RDID); 831 iowrite8(flash_table[hw->flash_vendor].cmd_wren, 832 hw->hw_addr + REG_SPI_FLASH_OP_WREN); 833 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr, 834 hw->hw_addr + REG_SPI_FLASH_OP_RDSR); 835 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr, 836 hw->hw_addr + REG_SPI_FLASH_OP_WRSR); 837 iowrite8(flash_table[hw->flash_vendor].cmd_read, 838 hw->hw_addr + REG_SPI_FLASH_OP_READ); 839 } 840 841 /* 842 * Performs basic configuration of the adapter. 843 * hw - Struct containing variables accessed by shared code 844 * Assumes that the controller has previously been reset and is in a 845 * post-reset uninitialized state. Initializes multicast table, 846 * and Calls routines to setup link 847 * Leaves the transmit and receive units disabled and uninitialized. 848 */ 849 static s32 atl1_init_hw(struct atl1_hw *hw) 850 { 851 u32 ret_val = 0; 852 853 /* Zero out the Multicast HASH table */ 854 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE); 855 /* clear the old settings from the multicast hash table */ 856 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2)); 857 858 atl1_init_flash_opcode(hw); 859 860 if (!hw->phy_configured) { 861 /* enable GPHY LinkChange Interrupt */ 862 ret_val = atl1_write_phy_reg(hw, 18, 0xC00); 863 if (ret_val) 864 return ret_val; 865 /* make PHY out of power-saving state */ 866 ret_val = atl1_phy_leave_power_saving(hw); 867 if (ret_val) 868 return ret_val; 869 /* Call a subroutine to configure the link */ 870 ret_val = atl1_setup_link(hw); 871 } 872 return ret_val; 873 } 874 875 /* 876 * Detects the current speed and duplex settings of the hardware. 877 * hw - Struct containing variables accessed by shared code 878 * speed - Speed of the connection 879 * duplex - Duplex setting of the connection 880 */ 881 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex) 882 { 883 struct pci_dev *pdev = hw->back->pdev; 884 struct atl1_adapter *adapter = hw->back; 885 s32 ret_val; 886 u16 phy_data; 887 888 /* ; --- Read PHY Specific Status Register (17) */ 889 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data); 890 if (ret_val) 891 return ret_val; 892 893 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED)) 894 return ATLX_ERR_PHY_RES; 895 896 switch (phy_data & MII_ATLX_PSSR_SPEED) { 897 case MII_ATLX_PSSR_1000MBS: 898 *speed = SPEED_1000; 899 break; 900 case MII_ATLX_PSSR_100MBS: 901 *speed = SPEED_100; 902 break; 903 case MII_ATLX_PSSR_10MBS: 904 *speed = SPEED_10; 905 break; 906 default: 907 if (netif_msg_hw(adapter)) 908 dev_dbg(&pdev->dev, "error getting speed\n"); 909 return ATLX_ERR_PHY_SPEED; 910 break; 911 } 912 if (phy_data & MII_ATLX_PSSR_DPLX) 913 *duplex = FULL_DUPLEX; 914 else 915 *duplex = HALF_DUPLEX; 916 917 return 0; 918 } 919 920 static void atl1_set_mac_addr(struct atl1_hw *hw) 921 { 922 u32 value; 923 /* 924 * 00-0B-6A-F6-00-DC 925 * 0: 6AF600DC 1: 000B 926 * low dword 927 */ 928 value = (((u32) hw->mac_addr[2]) << 24) | 929 (((u32) hw->mac_addr[3]) << 16) | 930 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5])); 931 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); 932 /* high dword */ 933 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); 934 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2)); 935 } 936 937 /* 938 * atl1_sw_init - Initialize general software structures (struct atl1_adapter) 939 * @adapter: board private structure to initialize 940 * 941 * atl1_sw_init initializes the Adapter private data structure. 942 * Fields are initialized based on PCI device information and 943 * OS network device settings (MTU size). 944 */ 945 static int __devinit atl1_sw_init(struct atl1_adapter *adapter) 946 { 947 struct atl1_hw *hw = &adapter->hw; 948 struct net_device *netdev = adapter->netdev; 949 950 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 951 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 952 953 adapter->wol = 0; 954 device_set_wakeup_enable(&adapter->pdev->dev, false); 955 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7; 956 adapter->ict = 50000; /* 100ms */ 957 adapter->link_speed = SPEED_0; /* hardware init */ 958 adapter->link_duplex = FULL_DUPLEX; 959 960 hw->phy_configured = false; 961 hw->preamble_len = 7; 962 hw->ipgt = 0x60; 963 hw->min_ifg = 0x50; 964 hw->ipgr1 = 0x40; 965 hw->ipgr2 = 0x60; 966 hw->max_retry = 0xf; 967 hw->lcol = 0x37; 968 hw->jam_ipg = 7; 969 hw->rfd_burst = 8; 970 hw->rrd_burst = 8; 971 hw->rfd_fetch_gap = 1; 972 hw->rx_jumbo_th = adapter->rx_buffer_len / 8; 973 hw->rx_jumbo_lkah = 1; 974 hw->rrd_ret_timer = 16; 975 hw->tpd_burst = 4; 976 hw->tpd_fetch_th = 16; 977 hw->txf_burst = 0x100; 978 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3; 979 hw->tpd_fetch_gap = 1; 980 hw->rcb_value = atl1_rcb_64; 981 hw->dma_ord = atl1_dma_ord_enh; 982 hw->dmar_block = atl1_dma_req_256; 983 hw->dmaw_block = atl1_dma_req_256; 984 hw->cmb_rrd = 4; 985 hw->cmb_tpd = 4; 986 hw->cmb_rx_timer = 1; /* about 2us */ 987 hw->cmb_tx_timer = 1; /* about 2us */ 988 hw->smb_timer = 100000; /* about 200ms */ 989 990 spin_lock_init(&adapter->lock); 991 spin_lock_init(&adapter->mb_lock); 992 993 return 0; 994 } 995 996 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num) 997 { 998 struct atl1_adapter *adapter = netdev_priv(netdev); 999 u16 result; 1000 1001 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result); 1002 1003 return result; 1004 } 1005 1006 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num, 1007 int val) 1008 { 1009 struct atl1_adapter *adapter = netdev_priv(netdev); 1010 1011 atl1_write_phy_reg(&adapter->hw, reg_num, val); 1012 } 1013 1014 /* 1015 * atl1_mii_ioctl - 1016 * @netdev: 1017 * @ifreq: 1018 * @cmd: 1019 */ 1020 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1021 { 1022 struct atl1_adapter *adapter = netdev_priv(netdev); 1023 unsigned long flags; 1024 int retval; 1025 1026 if (!netif_running(netdev)) 1027 return -EINVAL; 1028 1029 spin_lock_irqsave(&adapter->lock, flags); 1030 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL); 1031 spin_unlock_irqrestore(&adapter->lock, flags); 1032 1033 return retval; 1034 } 1035 1036 /* 1037 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources 1038 * @adapter: board private structure 1039 * 1040 * Return 0 on success, negative on failure 1041 */ 1042 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter) 1043 { 1044 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1045 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1046 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1047 struct atl1_ring_header *ring_header = &adapter->ring_header; 1048 struct pci_dev *pdev = adapter->pdev; 1049 int size; 1050 u8 offset = 0; 1051 1052 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count); 1053 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL); 1054 if (unlikely(!tpd_ring->buffer_info)) { 1055 if (netif_msg_drv(adapter)) 1056 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n", 1057 size); 1058 goto err_nomem; 1059 } 1060 rfd_ring->buffer_info = 1061 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count); 1062 1063 /* 1064 * real ring DMA buffer 1065 * each ring/block may need up to 8 bytes for alignment, hence the 1066 * additional 40 bytes tacked onto the end. 1067 */ 1068 ring_header->size = size = 1069 sizeof(struct tx_packet_desc) * tpd_ring->count 1070 + sizeof(struct rx_free_desc) * rfd_ring->count 1071 + sizeof(struct rx_return_desc) * rrd_ring->count 1072 + sizeof(struct coals_msg_block) 1073 + sizeof(struct stats_msg_block) 1074 + 40; 1075 1076 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size, 1077 &ring_header->dma); 1078 if (unlikely(!ring_header->desc)) { 1079 if (netif_msg_drv(adapter)) 1080 dev_err(&pdev->dev, "pci_alloc_consistent failed\n"); 1081 goto err_nomem; 1082 } 1083 1084 memset(ring_header->desc, 0, ring_header->size); 1085 1086 /* init TPD ring */ 1087 tpd_ring->dma = ring_header->dma; 1088 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0; 1089 tpd_ring->dma += offset; 1090 tpd_ring->desc = (u8 *) ring_header->desc + offset; 1091 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count; 1092 1093 /* init RFD ring */ 1094 rfd_ring->dma = tpd_ring->dma + tpd_ring->size; 1095 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0; 1096 rfd_ring->dma += offset; 1097 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset); 1098 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count; 1099 1100 1101 /* init RRD ring */ 1102 rrd_ring->dma = rfd_ring->dma + rfd_ring->size; 1103 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0; 1104 rrd_ring->dma += offset; 1105 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset); 1106 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count; 1107 1108 1109 /* init CMB */ 1110 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size; 1111 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0; 1112 adapter->cmb.dma += offset; 1113 adapter->cmb.cmb = (struct coals_msg_block *) 1114 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset)); 1115 1116 /* init SMB */ 1117 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block); 1118 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0; 1119 adapter->smb.dma += offset; 1120 adapter->smb.smb = (struct stats_msg_block *) 1121 ((u8 *) adapter->cmb.cmb + 1122 (sizeof(struct coals_msg_block) + offset)); 1123 1124 return 0; 1125 1126 err_nomem: 1127 kfree(tpd_ring->buffer_info); 1128 return -ENOMEM; 1129 } 1130 1131 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter) 1132 { 1133 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1134 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1135 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1136 1137 atomic_set(&tpd_ring->next_to_use, 0); 1138 atomic_set(&tpd_ring->next_to_clean, 0); 1139 1140 rfd_ring->next_to_clean = 0; 1141 atomic_set(&rfd_ring->next_to_use, 0); 1142 1143 rrd_ring->next_to_use = 0; 1144 atomic_set(&rrd_ring->next_to_clean, 0); 1145 } 1146 1147 /* 1148 * atl1_clean_rx_ring - Free RFD Buffers 1149 * @adapter: board private structure 1150 */ 1151 static void atl1_clean_rx_ring(struct atl1_adapter *adapter) 1152 { 1153 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1154 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1155 struct atl1_buffer *buffer_info; 1156 struct pci_dev *pdev = adapter->pdev; 1157 unsigned long size; 1158 unsigned int i; 1159 1160 /* Free all the Rx ring sk_buffs */ 1161 for (i = 0; i < rfd_ring->count; i++) { 1162 buffer_info = &rfd_ring->buffer_info[i]; 1163 if (buffer_info->dma) { 1164 pci_unmap_page(pdev, buffer_info->dma, 1165 buffer_info->length, PCI_DMA_FROMDEVICE); 1166 buffer_info->dma = 0; 1167 } 1168 if (buffer_info->skb) { 1169 dev_kfree_skb(buffer_info->skb); 1170 buffer_info->skb = NULL; 1171 } 1172 } 1173 1174 size = sizeof(struct atl1_buffer) * rfd_ring->count; 1175 memset(rfd_ring->buffer_info, 0, size); 1176 1177 /* Zero out the descriptor ring */ 1178 memset(rfd_ring->desc, 0, rfd_ring->size); 1179 1180 rfd_ring->next_to_clean = 0; 1181 atomic_set(&rfd_ring->next_to_use, 0); 1182 1183 rrd_ring->next_to_use = 0; 1184 atomic_set(&rrd_ring->next_to_clean, 0); 1185 } 1186 1187 /* 1188 * atl1_clean_tx_ring - Free Tx Buffers 1189 * @adapter: board private structure 1190 */ 1191 static void atl1_clean_tx_ring(struct atl1_adapter *adapter) 1192 { 1193 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1194 struct atl1_buffer *buffer_info; 1195 struct pci_dev *pdev = adapter->pdev; 1196 unsigned long size; 1197 unsigned int i; 1198 1199 /* Free all the Tx ring sk_buffs */ 1200 for (i = 0; i < tpd_ring->count; i++) { 1201 buffer_info = &tpd_ring->buffer_info[i]; 1202 if (buffer_info->dma) { 1203 pci_unmap_page(pdev, buffer_info->dma, 1204 buffer_info->length, PCI_DMA_TODEVICE); 1205 buffer_info->dma = 0; 1206 } 1207 } 1208 1209 for (i = 0; i < tpd_ring->count; i++) { 1210 buffer_info = &tpd_ring->buffer_info[i]; 1211 if (buffer_info->skb) { 1212 dev_kfree_skb_any(buffer_info->skb); 1213 buffer_info->skb = NULL; 1214 } 1215 } 1216 1217 size = sizeof(struct atl1_buffer) * tpd_ring->count; 1218 memset(tpd_ring->buffer_info, 0, size); 1219 1220 /* Zero out the descriptor ring */ 1221 memset(tpd_ring->desc, 0, tpd_ring->size); 1222 1223 atomic_set(&tpd_ring->next_to_use, 0); 1224 atomic_set(&tpd_ring->next_to_clean, 0); 1225 } 1226 1227 /* 1228 * atl1_free_ring_resources - Free Tx / RX descriptor Resources 1229 * @adapter: board private structure 1230 * 1231 * Free all transmit software resources 1232 */ 1233 static void atl1_free_ring_resources(struct atl1_adapter *adapter) 1234 { 1235 struct pci_dev *pdev = adapter->pdev; 1236 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 1237 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1238 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1239 struct atl1_ring_header *ring_header = &adapter->ring_header; 1240 1241 atl1_clean_tx_ring(adapter); 1242 atl1_clean_rx_ring(adapter); 1243 1244 kfree(tpd_ring->buffer_info); 1245 pci_free_consistent(pdev, ring_header->size, ring_header->desc, 1246 ring_header->dma); 1247 1248 tpd_ring->buffer_info = NULL; 1249 tpd_ring->desc = NULL; 1250 tpd_ring->dma = 0; 1251 1252 rfd_ring->buffer_info = NULL; 1253 rfd_ring->desc = NULL; 1254 rfd_ring->dma = 0; 1255 1256 rrd_ring->desc = NULL; 1257 rrd_ring->dma = 0; 1258 1259 adapter->cmb.dma = 0; 1260 adapter->cmb.cmb = NULL; 1261 1262 adapter->smb.dma = 0; 1263 adapter->smb.smb = NULL; 1264 } 1265 1266 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter) 1267 { 1268 u32 value; 1269 struct atl1_hw *hw = &adapter->hw; 1270 struct net_device *netdev = adapter->netdev; 1271 /* Config MAC CTRL Register */ 1272 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN; 1273 /* duplex */ 1274 if (FULL_DUPLEX == adapter->link_duplex) 1275 value |= MAC_CTRL_DUPLX; 1276 /* speed */ 1277 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ? 1278 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << 1279 MAC_CTRL_SPEED_SHIFT); 1280 /* flow control */ 1281 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); 1282 /* PAD & CRC */ 1283 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); 1284 /* preamble length */ 1285 value |= (((u32) adapter->hw.preamble_len 1286 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 1287 /* vlan */ 1288 __atlx_vlan_mode(netdev->features, &value); 1289 /* rx checksum 1290 if (adapter->rx_csum) 1291 value |= MAC_CTRL_RX_CHKSUM_EN; 1292 */ 1293 /* filter mode */ 1294 value |= MAC_CTRL_BC_EN; 1295 if (netdev->flags & IFF_PROMISC) 1296 value |= MAC_CTRL_PROMIS_EN; 1297 else if (netdev->flags & IFF_ALLMULTI) 1298 value |= MAC_CTRL_MC_ALL_EN; 1299 /* value |= MAC_CTRL_LOOPBACK; */ 1300 iowrite32(value, hw->hw_addr + REG_MAC_CTRL); 1301 } 1302 1303 static u32 atl1_check_link(struct atl1_adapter *adapter) 1304 { 1305 struct atl1_hw *hw = &adapter->hw; 1306 struct net_device *netdev = adapter->netdev; 1307 u32 ret_val; 1308 u16 speed, duplex, phy_data; 1309 int reconfig = 0; 1310 1311 /* MII_BMSR must read twice */ 1312 atl1_read_phy_reg(hw, MII_BMSR, &phy_data); 1313 atl1_read_phy_reg(hw, MII_BMSR, &phy_data); 1314 if (!(phy_data & BMSR_LSTATUS)) { 1315 /* link down */ 1316 if (netif_carrier_ok(netdev)) { 1317 /* old link state: Up */ 1318 if (netif_msg_link(adapter)) 1319 dev_info(&adapter->pdev->dev, "link is down\n"); 1320 adapter->link_speed = SPEED_0; 1321 netif_carrier_off(netdev); 1322 } 1323 return 0; 1324 } 1325 1326 /* Link Up */ 1327 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex); 1328 if (ret_val) 1329 return ret_val; 1330 1331 switch (hw->media_type) { 1332 case MEDIA_TYPE_1000M_FULL: 1333 if (speed != SPEED_1000 || duplex != FULL_DUPLEX) 1334 reconfig = 1; 1335 break; 1336 case MEDIA_TYPE_100M_FULL: 1337 if (speed != SPEED_100 || duplex != FULL_DUPLEX) 1338 reconfig = 1; 1339 break; 1340 case MEDIA_TYPE_100M_HALF: 1341 if (speed != SPEED_100 || duplex != HALF_DUPLEX) 1342 reconfig = 1; 1343 break; 1344 case MEDIA_TYPE_10M_FULL: 1345 if (speed != SPEED_10 || duplex != FULL_DUPLEX) 1346 reconfig = 1; 1347 break; 1348 case MEDIA_TYPE_10M_HALF: 1349 if (speed != SPEED_10 || duplex != HALF_DUPLEX) 1350 reconfig = 1; 1351 break; 1352 } 1353 1354 /* link result is our setting */ 1355 if (!reconfig) { 1356 if (adapter->link_speed != speed || 1357 adapter->link_duplex != duplex) { 1358 adapter->link_speed = speed; 1359 adapter->link_duplex = duplex; 1360 atl1_setup_mac_ctrl(adapter); 1361 if (netif_msg_link(adapter)) 1362 dev_info(&adapter->pdev->dev, 1363 "%s link is up %d Mbps %s\n", 1364 netdev->name, adapter->link_speed, 1365 adapter->link_duplex == FULL_DUPLEX ? 1366 "full duplex" : "half duplex"); 1367 } 1368 if (!netif_carrier_ok(netdev)) { 1369 /* Link down -> Up */ 1370 netif_carrier_on(netdev); 1371 } 1372 return 0; 1373 } 1374 1375 /* change original link status */ 1376 if (netif_carrier_ok(netdev)) { 1377 adapter->link_speed = SPEED_0; 1378 netif_carrier_off(netdev); 1379 netif_stop_queue(netdev); 1380 } 1381 1382 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR && 1383 hw->media_type != MEDIA_TYPE_1000M_FULL) { 1384 switch (hw->media_type) { 1385 case MEDIA_TYPE_100M_FULL: 1386 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 1387 MII_CR_RESET; 1388 break; 1389 case MEDIA_TYPE_100M_HALF: 1390 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 1391 break; 1392 case MEDIA_TYPE_10M_FULL: 1393 phy_data = 1394 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 1395 break; 1396 default: 1397 /* MEDIA_TYPE_10M_HALF: */ 1398 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 1399 break; 1400 } 1401 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 1402 return 0; 1403 } 1404 1405 /* auto-neg, insert timer to re-config phy */ 1406 if (!adapter->phy_timer_pending) { 1407 adapter->phy_timer_pending = true; 1408 mod_timer(&adapter->phy_config_timer, 1409 round_jiffies(jiffies + 3 * HZ)); 1410 } 1411 1412 return 0; 1413 } 1414 1415 static void set_flow_ctrl_old(struct atl1_adapter *adapter) 1416 { 1417 u32 hi, lo, value; 1418 1419 /* RFD Flow Control */ 1420 value = adapter->rfd_ring.count; 1421 hi = value / 16; 1422 if (hi < 2) 1423 hi = 2; 1424 lo = value * 7 / 8; 1425 1426 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | 1427 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); 1428 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH); 1429 1430 /* RRD Flow Control */ 1431 value = adapter->rrd_ring.count; 1432 lo = value / 16; 1433 hi = value * 7 / 8; 1434 if (lo < 2) 1435 lo = 2; 1436 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | 1437 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); 1438 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH); 1439 } 1440 1441 static void set_flow_ctrl_new(struct atl1_hw *hw) 1442 { 1443 u32 hi, lo, value; 1444 1445 /* RXF Flow Control */ 1446 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN); 1447 lo = value / 16; 1448 if (lo < 192) 1449 lo = 192; 1450 hi = value * 7 / 8; 1451 if (hi < lo) 1452 hi = lo + 16; 1453 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | 1454 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); 1455 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH); 1456 1457 /* RRD Flow Control */ 1458 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN); 1459 lo = value / 8; 1460 hi = value * 7 / 8; 1461 if (lo < 2) 1462 lo = 2; 1463 if (hi < lo) 1464 hi = lo + 3; 1465 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | 1466 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); 1467 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH); 1468 } 1469 1470 /* 1471 * atl1_configure - Configure Transmit&Receive Unit after Reset 1472 * @adapter: board private structure 1473 * 1474 * Configure the Tx /Rx unit of the MAC after a reset. 1475 */ 1476 static u32 atl1_configure(struct atl1_adapter *adapter) 1477 { 1478 struct atl1_hw *hw = &adapter->hw; 1479 u32 value; 1480 1481 /* clear interrupt status */ 1482 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR); 1483 1484 /* set MAC Address */ 1485 value = (((u32) hw->mac_addr[2]) << 24) | 1486 (((u32) hw->mac_addr[3]) << 16) | 1487 (((u32) hw->mac_addr[4]) << 8) | 1488 (((u32) hw->mac_addr[5])); 1489 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); 1490 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); 1491 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4)); 1492 1493 /* tx / rx ring */ 1494 1495 /* HI base address */ 1496 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32), 1497 hw->hw_addr + REG_DESC_BASE_ADDR_HI); 1498 /* LO base address */ 1499 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL), 1500 hw->hw_addr + REG_DESC_RFD_ADDR_LO); 1501 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL), 1502 hw->hw_addr + REG_DESC_RRD_ADDR_LO); 1503 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL), 1504 hw->hw_addr + REG_DESC_TPD_ADDR_LO); 1505 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL), 1506 hw->hw_addr + REG_DESC_CMB_ADDR_LO); 1507 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL), 1508 hw->hw_addr + REG_DESC_SMB_ADDR_LO); 1509 1510 /* element count */ 1511 value = adapter->rrd_ring.count; 1512 value <<= 16; 1513 value += adapter->rfd_ring.count; 1514 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE); 1515 iowrite32(adapter->tpd_ring.count, hw->hw_addr + 1516 REG_DESC_TPD_RING_SIZE); 1517 1518 /* Load Ptr */ 1519 iowrite32(1, hw->hw_addr + REG_LOAD_PTR); 1520 1521 /* config Mailbox */ 1522 value = ((atomic_read(&adapter->tpd_ring.next_to_use) 1523 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) | 1524 ((atomic_read(&adapter->rrd_ring.next_to_clean) 1525 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | 1526 ((atomic_read(&adapter->rfd_ring.next_to_use) 1527 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT); 1528 iowrite32(value, hw->hw_addr + REG_MAILBOX); 1529 1530 /* config IPG/IFG */ 1531 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK) 1532 << MAC_IPG_IFG_IPGT_SHIFT) | 1533 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) 1534 << MAC_IPG_IFG_MIFG_SHIFT) | 1535 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) 1536 << MAC_IPG_IFG_IPGR1_SHIFT) | 1537 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) 1538 << MAC_IPG_IFG_IPGR2_SHIFT); 1539 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG); 1540 1541 /* config Half-Duplex Control */ 1542 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | 1543 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) 1544 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | 1545 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | 1546 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | 1547 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) 1548 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); 1549 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL); 1550 1551 /* set Interrupt Moderator Timer */ 1552 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT); 1553 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL); 1554 1555 /* set Interrupt Clear Timer */ 1556 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER); 1557 1558 /* set max frame size hw will accept */ 1559 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU); 1560 1561 /* jumbo size & rrd retirement timer */ 1562 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) 1563 << RXQ_JMBOSZ_TH_SHIFT) | 1564 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK) 1565 << RXQ_JMBO_LKAH_SHIFT) | 1566 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK) 1567 << RXQ_RRD_TIMER_SHIFT); 1568 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM); 1569 1570 /* Flow Control */ 1571 switch (hw->dev_rev) { 1572 case 0x8001: 1573 case 0x9001: 1574 case 0x9002: 1575 case 0x9003: 1576 set_flow_ctrl_old(adapter); 1577 break; 1578 default: 1579 set_flow_ctrl_new(hw); 1580 break; 1581 } 1582 1583 /* config TXQ */ 1584 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK) 1585 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) | 1586 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK) 1587 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) | 1588 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK) 1589 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE | 1590 TXQ_CTRL_EN; 1591 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL); 1592 1593 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */ 1594 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK) 1595 << TX_JUMBO_TASK_TH_SHIFT) | 1596 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK) 1597 << TX_TPD_MIN_IPG_SHIFT); 1598 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG); 1599 1600 /* config RXQ */ 1601 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK) 1602 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) | 1603 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK) 1604 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) | 1605 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK) 1606 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN | 1607 RXQ_CTRL_EN; 1608 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL); 1609 1610 /* config DMA Engine */ 1611 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) 1612 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) | 1613 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) 1614 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN | 1615 DMA_CTRL_DMAW_EN; 1616 value |= (u32) hw->dma_ord; 1617 if (atl1_rcb_128 == hw->rcb_value) 1618 value |= DMA_CTRL_RCB_VALUE; 1619 iowrite32(value, hw->hw_addr + REG_DMA_CTRL); 1620 1621 /* config CMB / SMB */ 1622 value = (hw->cmb_tpd > adapter->tpd_ring.count) ? 1623 hw->cmb_tpd : adapter->tpd_ring.count; 1624 value <<= 16; 1625 value |= hw->cmb_rrd; 1626 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH); 1627 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16); 1628 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER); 1629 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER); 1630 1631 /* --- enable CMB / SMB */ 1632 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN; 1633 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL); 1634 1635 value = ioread32(adapter->hw.hw_addr + REG_ISR); 1636 if (unlikely((value & ISR_PHY_LINKDOWN) != 0)) 1637 value = 1; /* config failed */ 1638 else 1639 value = 0; 1640 1641 /* clear all interrupt status */ 1642 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR); 1643 iowrite32(0, adapter->hw.hw_addr + REG_ISR); 1644 return value; 1645 } 1646 1647 /* 1648 * atl1_pcie_patch - Patch for PCIE module 1649 */ 1650 static void atl1_pcie_patch(struct atl1_adapter *adapter) 1651 { 1652 u32 value; 1653 1654 /* much vendor magic here */ 1655 value = 0x6500; 1656 iowrite32(value, adapter->hw.hw_addr + 0x12FC); 1657 /* pcie flow control mode change */ 1658 value = ioread32(adapter->hw.hw_addr + 0x1008); 1659 value |= 0x8000; 1660 iowrite32(value, adapter->hw.hw_addr + 0x1008); 1661 } 1662 1663 /* 1664 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400 1665 * on PCI Command register is disable. 1666 * The function enable this bit. 1667 * Brackett, 2006/03/15 1668 */ 1669 static void atl1_via_workaround(struct atl1_adapter *adapter) 1670 { 1671 unsigned long value; 1672 1673 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND); 1674 if (value & PCI_COMMAND_INTX_DISABLE) 1675 value &= ~PCI_COMMAND_INTX_DISABLE; 1676 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND); 1677 } 1678 1679 static void atl1_inc_smb(struct atl1_adapter *adapter) 1680 { 1681 struct net_device *netdev = adapter->netdev; 1682 struct stats_msg_block *smb = adapter->smb.smb; 1683 1684 /* Fill out the OS statistics structure */ 1685 adapter->soft_stats.rx_packets += smb->rx_ok; 1686 adapter->soft_stats.tx_packets += smb->tx_ok; 1687 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt; 1688 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt; 1689 adapter->soft_stats.multicast += smb->rx_mcast; 1690 adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 + 1691 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry); 1692 1693 /* Rx Errors */ 1694 adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err + 1695 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov + 1696 smb->rx_rrd_ov + smb->rx_align_err); 1697 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov; 1698 adapter->soft_stats.rx_length_errors += smb->rx_len_err; 1699 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err; 1700 adapter->soft_stats.rx_frame_errors += smb->rx_align_err; 1701 adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov + 1702 smb->rx_rxf_ov); 1703 1704 adapter->soft_stats.rx_pause += smb->rx_pause; 1705 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov; 1706 adapter->soft_stats.rx_trunc += smb->rx_sz_ov; 1707 1708 /* Tx Errors */ 1709 adapter->soft_stats.tx_errors += (smb->tx_late_col + 1710 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc); 1711 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun; 1712 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col; 1713 adapter->soft_stats.tx_window_errors += smb->tx_late_col; 1714 1715 adapter->soft_stats.excecol += smb->tx_abort_col; 1716 adapter->soft_stats.deffer += smb->tx_defer; 1717 adapter->soft_stats.scc += smb->tx_1_col; 1718 adapter->soft_stats.mcc += smb->tx_2_col; 1719 adapter->soft_stats.latecol += smb->tx_late_col; 1720 adapter->soft_stats.tx_underun += smb->tx_underrun; 1721 adapter->soft_stats.tx_trunc += smb->tx_trunc; 1722 adapter->soft_stats.tx_pause += smb->tx_pause; 1723 1724 netdev->stats.rx_packets = adapter->soft_stats.rx_packets; 1725 netdev->stats.tx_packets = adapter->soft_stats.tx_packets; 1726 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes; 1727 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes; 1728 netdev->stats.multicast = adapter->soft_stats.multicast; 1729 netdev->stats.collisions = adapter->soft_stats.collisions; 1730 netdev->stats.rx_errors = adapter->soft_stats.rx_errors; 1731 netdev->stats.rx_over_errors = 1732 adapter->soft_stats.rx_missed_errors; 1733 netdev->stats.rx_length_errors = 1734 adapter->soft_stats.rx_length_errors; 1735 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors; 1736 netdev->stats.rx_frame_errors = 1737 adapter->soft_stats.rx_frame_errors; 1738 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors; 1739 netdev->stats.rx_missed_errors = 1740 adapter->soft_stats.rx_missed_errors; 1741 netdev->stats.tx_errors = adapter->soft_stats.tx_errors; 1742 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors; 1743 netdev->stats.tx_aborted_errors = 1744 adapter->soft_stats.tx_aborted_errors; 1745 netdev->stats.tx_window_errors = 1746 adapter->soft_stats.tx_window_errors; 1747 netdev->stats.tx_carrier_errors = 1748 adapter->soft_stats.tx_carrier_errors; 1749 } 1750 1751 static void atl1_update_mailbox(struct atl1_adapter *adapter) 1752 { 1753 unsigned long flags; 1754 u32 tpd_next_to_use; 1755 u32 rfd_next_to_use; 1756 u32 rrd_next_to_clean; 1757 u32 value; 1758 1759 spin_lock_irqsave(&adapter->mb_lock, flags); 1760 1761 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); 1762 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use); 1763 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean); 1764 1765 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << 1766 MB_RFD_PROD_INDX_SHIFT) | 1767 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << 1768 MB_RRD_CONS_INDX_SHIFT) | 1769 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << 1770 MB_TPD_PROD_INDX_SHIFT); 1771 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); 1772 1773 spin_unlock_irqrestore(&adapter->mb_lock, flags); 1774 } 1775 1776 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter, 1777 struct rx_return_desc *rrd, u16 offset) 1778 { 1779 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1780 1781 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) { 1782 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0; 1783 if (++rfd_ring->next_to_clean == rfd_ring->count) { 1784 rfd_ring->next_to_clean = 0; 1785 } 1786 } 1787 } 1788 1789 static void atl1_update_rfd_index(struct atl1_adapter *adapter, 1790 struct rx_return_desc *rrd) 1791 { 1792 u16 num_buf; 1793 1794 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) / 1795 adapter->rx_buffer_len; 1796 if (rrd->num_buf == num_buf) 1797 /* clean alloc flag for bad rrd */ 1798 atl1_clean_alloc_flag(adapter, rrd, num_buf); 1799 } 1800 1801 static void atl1_rx_checksum(struct atl1_adapter *adapter, 1802 struct rx_return_desc *rrd, struct sk_buff *skb) 1803 { 1804 struct pci_dev *pdev = adapter->pdev; 1805 1806 /* 1807 * The L1 hardware contains a bug that erroneously sets the 1808 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a 1809 * fragmented IP packet is received, even though the packet 1810 * is perfectly valid and its checksum is correct. There's 1811 * no way to distinguish between one of these good packets 1812 * and a packet that actually contains a TCP/UDP checksum 1813 * error, so all we can do is allow it to be handed up to 1814 * the higher layers and let it be sorted out there. 1815 */ 1816 1817 skb_checksum_none_assert(skb); 1818 1819 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { 1820 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC | 1821 ERR_FLAG_CODE | ERR_FLAG_OV)) { 1822 adapter->hw_csum_err++; 1823 if (netif_msg_rx_err(adapter)) 1824 dev_printk(KERN_DEBUG, &pdev->dev, 1825 "rx checksum error\n"); 1826 return; 1827 } 1828 } 1829 1830 /* not IPv4 */ 1831 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4)) 1832 /* checksum is invalid, but it's not an IPv4 pkt, so ok */ 1833 return; 1834 1835 /* IPv4 packet */ 1836 if (likely(!(rrd->err_flg & 1837 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) { 1838 skb->ip_summed = CHECKSUM_UNNECESSARY; 1839 adapter->hw_csum_good++; 1840 return; 1841 } 1842 } 1843 1844 /* 1845 * atl1_alloc_rx_buffers - Replace used receive buffers 1846 * @adapter: address of board private structure 1847 */ 1848 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter) 1849 { 1850 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1851 struct pci_dev *pdev = adapter->pdev; 1852 struct page *page; 1853 unsigned long offset; 1854 struct atl1_buffer *buffer_info, *next_info; 1855 struct sk_buff *skb; 1856 u16 num_alloc = 0; 1857 u16 rfd_next_to_use, next_next; 1858 struct rx_free_desc *rfd_desc; 1859 1860 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use); 1861 if (++next_next == rfd_ring->count) 1862 next_next = 0; 1863 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; 1864 next_info = &rfd_ring->buffer_info[next_next]; 1865 1866 while (!buffer_info->alloced && !next_info->alloced) { 1867 if (buffer_info->skb) { 1868 buffer_info->alloced = 1; 1869 goto next; 1870 } 1871 1872 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use); 1873 1874 skb = netdev_alloc_skb_ip_align(adapter->netdev, 1875 adapter->rx_buffer_len); 1876 if (unlikely(!skb)) { 1877 /* Better luck next round */ 1878 adapter->netdev->stats.rx_dropped++; 1879 break; 1880 } 1881 1882 buffer_info->alloced = 1; 1883 buffer_info->skb = skb; 1884 buffer_info->length = (u16) adapter->rx_buffer_len; 1885 page = virt_to_page(skb->data); 1886 offset = (unsigned long)skb->data & ~PAGE_MASK; 1887 buffer_info->dma = pci_map_page(pdev, page, offset, 1888 adapter->rx_buffer_len, 1889 PCI_DMA_FROMDEVICE); 1890 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 1891 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len); 1892 rfd_desc->coalese = 0; 1893 1894 next: 1895 rfd_next_to_use = next_next; 1896 if (unlikely(++next_next == rfd_ring->count)) 1897 next_next = 0; 1898 1899 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; 1900 next_info = &rfd_ring->buffer_info[next_next]; 1901 num_alloc++; 1902 } 1903 1904 if (num_alloc) { 1905 /* 1906 * Force memory writes to complete before letting h/w 1907 * know there are new descriptors to fetch. (Only 1908 * applicable for weak-ordered memory model archs, 1909 * such as IA-64). 1910 */ 1911 wmb(); 1912 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use); 1913 } 1914 return num_alloc; 1915 } 1916 1917 static void atl1_intr_rx(struct atl1_adapter *adapter) 1918 { 1919 int i, count; 1920 u16 length; 1921 u16 rrd_next_to_clean; 1922 u32 value; 1923 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; 1924 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; 1925 struct atl1_buffer *buffer_info; 1926 struct rx_return_desc *rrd; 1927 struct sk_buff *skb; 1928 1929 count = 0; 1930 1931 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean); 1932 1933 while (1) { 1934 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean); 1935 i = 1; 1936 if (likely(rrd->xsz.valid)) { /* packet valid */ 1937 chk_rrd: 1938 /* check rrd status */ 1939 if (likely(rrd->num_buf == 1)) 1940 goto rrd_ok; 1941 else if (netif_msg_rx_err(adapter)) { 1942 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1943 "unexpected RRD buffer count\n"); 1944 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1945 "rx_buf_len = %d\n", 1946 adapter->rx_buffer_len); 1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1948 "RRD num_buf = %d\n", 1949 rrd->num_buf); 1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1951 "RRD pkt_len = %d\n", 1952 rrd->xsz.xsum_sz.pkt_size); 1953 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1954 "RRD pkt_flg = 0x%08X\n", 1955 rrd->pkt_flg); 1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1957 "RRD err_flg = 0x%08X\n", 1958 rrd->err_flg); 1959 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1960 "RRD vlan_tag = 0x%08X\n", 1961 rrd->vlan_tag); 1962 } 1963 1964 /* rrd seems to be bad */ 1965 if (unlikely(i-- > 0)) { 1966 /* rrd may not be DMAed completely */ 1967 udelay(1); 1968 goto chk_rrd; 1969 } 1970 /* bad rrd */ 1971 if (netif_msg_rx_err(adapter)) 1972 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 1973 "bad RRD\n"); 1974 /* see if update RFD index */ 1975 if (rrd->num_buf > 1) 1976 atl1_update_rfd_index(adapter, rrd); 1977 1978 /* update rrd */ 1979 rrd->xsz.valid = 0; 1980 if (++rrd_next_to_clean == rrd_ring->count) 1981 rrd_next_to_clean = 0; 1982 count++; 1983 continue; 1984 } else { /* current rrd still not be updated */ 1985 1986 break; 1987 } 1988 rrd_ok: 1989 /* clean alloc flag for bad rrd */ 1990 atl1_clean_alloc_flag(adapter, rrd, 0); 1991 1992 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx]; 1993 if (++rfd_ring->next_to_clean == rfd_ring->count) 1994 rfd_ring->next_to_clean = 0; 1995 1996 /* update rrd next to clean */ 1997 if (++rrd_next_to_clean == rrd_ring->count) 1998 rrd_next_to_clean = 0; 1999 count++; 2000 2001 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { 2002 if (!(rrd->err_flg & 2003 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM 2004 | ERR_FLAG_LEN))) { 2005 /* packet error, don't need upstream */ 2006 buffer_info->alloced = 0; 2007 rrd->xsz.valid = 0; 2008 continue; 2009 } 2010 } 2011 2012 /* Good Receive */ 2013 pci_unmap_page(adapter->pdev, buffer_info->dma, 2014 buffer_info->length, PCI_DMA_FROMDEVICE); 2015 buffer_info->dma = 0; 2016 skb = buffer_info->skb; 2017 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size); 2018 2019 skb_put(skb, length - ETH_FCS_LEN); 2020 2021 /* Receive Checksum Offload */ 2022 atl1_rx_checksum(adapter, rrd, skb); 2023 skb->protocol = eth_type_trans(skb, adapter->netdev); 2024 2025 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) { 2026 u16 vlan_tag = (rrd->vlan_tag >> 4) | 2027 ((rrd->vlan_tag & 7) << 13) | 2028 ((rrd->vlan_tag & 8) << 9); 2029 2030 __vlan_hwaccel_put_tag(skb, vlan_tag); 2031 } 2032 netif_rx(skb); 2033 2034 /* let protocol layer free skb */ 2035 buffer_info->skb = NULL; 2036 buffer_info->alloced = 0; 2037 rrd->xsz.valid = 0; 2038 } 2039 2040 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean); 2041 2042 atl1_alloc_rx_buffers(adapter); 2043 2044 /* update mailbox ? */ 2045 if (count) { 2046 u32 tpd_next_to_use; 2047 u32 rfd_next_to_use; 2048 2049 spin_lock(&adapter->mb_lock); 2050 2051 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); 2052 rfd_next_to_use = 2053 atomic_read(&adapter->rfd_ring.next_to_use); 2054 rrd_next_to_clean = 2055 atomic_read(&adapter->rrd_ring.next_to_clean); 2056 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << 2057 MB_RFD_PROD_INDX_SHIFT) | 2058 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << 2059 MB_RRD_CONS_INDX_SHIFT) | 2060 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << 2061 MB_TPD_PROD_INDX_SHIFT); 2062 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); 2063 spin_unlock(&adapter->mb_lock); 2064 } 2065 } 2066 2067 static void atl1_intr_tx(struct atl1_adapter *adapter) 2068 { 2069 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2070 struct atl1_buffer *buffer_info; 2071 u16 sw_tpd_next_to_clean; 2072 u16 cmb_tpd_next_to_clean; 2073 2074 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean); 2075 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx); 2076 2077 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) { 2078 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean]; 2079 if (buffer_info->dma) { 2080 pci_unmap_page(adapter->pdev, buffer_info->dma, 2081 buffer_info->length, PCI_DMA_TODEVICE); 2082 buffer_info->dma = 0; 2083 } 2084 2085 if (buffer_info->skb) { 2086 dev_kfree_skb_irq(buffer_info->skb); 2087 buffer_info->skb = NULL; 2088 } 2089 2090 if (++sw_tpd_next_to_clean == tpd_ring->count) 2091 sw_tpd_next_to_clean = 0; 2092 } 2093 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean); 2094 2095 if (netif_queue_stopped(adapter->netdev) && 2096 netif_carrier_ok(adapter->netdev)) 2097 netif_wake_queue(adapter->netdev); 2098 } 2099 2100 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring) 2101 { 2102 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean); 2103 u16 next_to_use = atomic_read(&tpd_ring->next_to_use); 2104 return (next_to_clean > next_to_use) ? 2105 next_to_clean - next_to_use - 1 : 2106 tpd_ring->count + next_to_clean - next_to_use - 1; 2107 } 2108 2109 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb, 2110 struct tx_packet_desc *ptpd) 2111 { 2112 u8 hdr_len, ip_off; 2113 u32 real_len; 2114 int err; 2115 2116 if (skb_shinfo(skb)->gso_size) { 2117 if (skb_header_cloned(skb)) { 2118 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2119 if (unlikely(err)) 2120 return -1; 2121 } 2122 2123 if (skb->protocol == htons(ETH_P_IP)) { 2124 struct iphdr *iph = ip_hdr(skb); 2125 2126 real_len = (((unsigned char *)iph - skb->data) + 2127 ntohs(iph->tot_len)); 2128 if (real_len < skb->len) 2129 pskb_trim(skb, real_len); 2130 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); 2131 if (skb->len == hdr_len) { 2132 iph->check = 0; 2133 tcp_hdr(skb)->check = 2134 ~csum_tcpudp_magic(iph->saddr, 2135 iph->daddr, tcp_hdrlen(skb), 2136 IPPROTO_TCP, 0); 2137 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << 2138 TPD_IPHL_SHIFT; 2139 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & 2140 TPD_TCPHDRLEN_MASK) << 2141 TPD_TCPHDRLEN_SHIFT; 2142 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT; 2143 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT; 2144 return 1; 2145 } 2146 2147 iph->check = 0; 2148 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2149 iph->daddr, 0, IPPROTO_TCP, 0); 2150 ip_off = (unsigned char *)iph - 2151 (unsigned char *) skb_network_header(skb); 2152 if (ip_off == 8) /* 802.3-SNAP frame */ 2153 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; 2154 else if (ip_off != 0) 2155 return -2; 2156 2157 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << 2158 TPD_IPHL_SHIFT; 2159 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & 2160 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT; 2161 ptpd->word3 |= (skb_shinfo(skb)->gso_size & 2162 TPD_MSS_MASK) << TPD_MSS_SHIFT; 2163 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT; 2164 return 3; 2165 } 2166 } 2167 return false; 2168 } 2169 2170 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb, 2171 struct tx_packet_desc *ptpd) 2172 { 2173 u8 css, cso; 2174 2175 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 2176 css = skb_checksum_start_offset(skb); 2177 cso = css + (u8) skb->csum_offset; 2178 if (unlikely(css & 0x1)) { 2179 /* L1 hardware requires an even number here */ 2180 if (netif_msg_tx_err(adapter)) 2181 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2182 "payload offset not an even number\n"); 2183 return -1; 2184 } 2185 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) << 2186 TPD_PLOADOFFSET_SHIFT; 2187 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) << 2188 TPD_CCSUMOFFSET_SHIFT; 2189 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT; 2190 return true; 2191 } 2192 return 0; 2193 } 2194 2195 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb, 2196 struct tx_packet_desc *ptpd) 2197 { 2198 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2199 struct atl1_buffer *buffer_info; 2200 u16 buf_len = skb->len; 2201 struct page *page; 2202 unsigned long offset; 2203 unsigned int nr_frags; 2204 unsigned int f; 2205 int retval; 2206 u16 next_to_use; 2207 u16 data_len; 2208 u8 hdr_len; 2209 2210 buf_len -= skb->data_len; 2211 nr_frags = skb_shinfo(skb)->nr_frags; 2212 next_to_use = atomic_read(&tpd_ring->next_to_use); 2213 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2214 BUG_ON(buffer_info->skb); 2215 /* put skb in last TPD */ 2216 buffer_info->skb = NULL; 2217 2218 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK; 2219 if (retval) { 2220 /* TSO */ 2221 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2222 buffer_info->length = hdr_len; 2223 page = virt_to_page(skb->data); 2224 offset = (unsigned long)skb->data & ~PAGE_MASK; 2225 buffer_info->dma = pci_map_page(adapter->pdev, page, 2226 offset, hdr_len, 2227 PCI_DMA_TODEVICE); 2228 2229 if (++next_to_use == tpd_ring->count) 2230 next_to_use = 0; 2231 2232 if (buf_len > hdr_len) { 2233 int i, nseg; 2234 2235 data_len = buf_len - hdr_len; 2236 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) / 2237 ATL1_MAX_TX_BUF_LEN; 2238 for (i = 0; i < nseg; i++) { 2239 buffer_info = 2240 &tpd_ring->buffer_info[next_to_use]; 2241 buffer_info->skb = NULL; 2242 buffer_info->length = 2243 (ATL1_MAX_TX_BUF_LEN >= 2244 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len; 2245 data_len -= buffer_info->length; 2246 page = virt_to_page(skb->data + 2247 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)); 2248 offset = (unsigned long)(skb->data + 2249 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) & 2250 ~PAGE_MASK; 2251 buffer_info->dma = pci_map_page(adapter->pdev, 2252 page, offset, buffer_info->length, 2253 PCI_DMA_TODEVICE); 2254 if (++next_to_use == tpd_ring->count) 2255 next_to_use = 0; 2256 } 2257 } 2258 } else { 2259 /* not TSO */ 2260 buffer_info->length = buf_len; 2261 page = virt_to_page(skb->data); 2262 offset = (unsigned long)skb->data & ~PAGE_MASK; 2263 buffer_info->dma = pci_map_page(adapter->pdev, page, 2264 offset, buf_len, PCI_DMA_TODEVICE); 2265 if (++next_to_use == tpd_ring->count) 2266 next_to_use = 0; 2267 } 2268 2269 for (f = 0; f < nr_frags; f++) { 2270 const struct skb_frag_struct *frag; 2271 u16 i, nseg; 2272 2273 frag = &skb_shinfo(skb)->frags[f]; 2274 buf_len = skb_frag_size(frag); 2275 2276 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) / 2277 ATL1_MAX_TX_BUF_LEN; 2278 for (i = 0; i < nseg; i++) { 2279 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2280 BUG_ON(buffer_info->skb); 2281 2282 buffer_info->skb = NULL; 2283 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ? 2284 ATL1_MAX_TX_BUF_LEN : buf_len; 2285 buf_len -= buffer_info->length; 2286 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev, 2287 frag, i * ATL1_MAX_TX_BUF_LEN, 2288 buffer_info->length, DMA_TO_DEVICE); 2289 2290 if (++next_to_use == tpd_ring->count) 2291 next_to_use = 0; 2292 } 2293 } 2294 2295 /* last tpd's buffer-info */ 2296 buffer_info->skb = skb; 2297 } 2298 2299 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count, 2300 struct tx_packet_desc *ptpd) 2301 { 2302 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2303 struct atl1_buffer *buffer_info; 2304 struct tx_packet_desc *tpd; 2305 u16 j; 2306 u32 val; 2307 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use); 2308 2309 for (j = 0; j < count; j++) { 2310 buffer_info = &tpd_ring->buffer_info[next_to_use]; 2311 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use); 2312 if (tpd != ptpd) 2313 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc)); 2314 tpd->buffer_addr = cpu_to_le64(buffer_info->dma); 2315 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT); 2316 tpd->word2 |= (cpu_to_le16(buffer_info->length) & 2317 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT; 2318 2319 /* 2320 * if this is the first packet in a TSO chain, set 2321 * TPD_HDRFLAG, otherwise, clear it. 2322 */ 2323 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & 2324 TPD_SEGMENT_EN_MASK; 2325 if (val) { 2326 if (!j) 2327 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT; 2328 else 2329 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT); 2330 } 2331 2332 if (j == (count - 1)) 2333 tpd->word3 |= 1 << TPD_EOP_SHIFT; 2334 2335 if (++next_to_use == tpd_ring->count) 2336 next_to_use = 0; 2337 } 2338 /* 2339 * Force memory writes to complete before letting h/w 2340 * know there are new descriptors to fetch. (Only 2341 * applicable for weak-ordered memory model archs, 2342 * such as IA-64). 2343 */ 2344 wmb(); 2345 2346 atomic_set(&tpd_ring->next_to_use, next_to_use); 2347 } 2348 2349 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb, 2350 struct net_device *netdev) 2351 { 2352 struct atl1_adapter *adapter = netdev_priv(netdev); 2353 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; 2354 int len; 2355 int tso; 2356 int count = 1; 2357 int ret_val; 2358 struct tx_packet_desc *ptpd; 2359 u16 vlan_tag; 2360 unsigned int nr_frags = 0; 2361 unsigned int mss = 0; 2362 unsigned int f; 2363 unsigned int proto_hdr_len; 2364 2365 len = skb_headlen(skb); 2366 2367 if (unlikely(skb->len <= 0)) { 2368 dev_kfree_skb_any(skb); 2369 return NETDEV_TX_OK; 2370 } 2371 2372 nr_frags = skb_shinfo(skb)->nr_frags; 2373 for (f = 0; f < nr_frags; f++) { 2374 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2375 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) / 2376 ATL1_MAX_TX_BUF_LEN; 2377 } 2378 2379 mss = skb_shinfo(skb)->gso_size; 2380 if (mss) { 2381 if (skb->protocol == htons(ETH_P_IP)) { 2382 proto_hdr_len = (skb_transport_offset(skb) + 2383 tcp_hdrlen(skb)); 2384 if (unlikely(proto_hdr_len > len)) { 2385 dev_kfree_skb_any(skb); 2386 return NETDEV_TX_OK; 2387 } 2388 /* need additional TPD ? */ 2389 if (proto_hdr_len != len) 2390 count += (len - proto_hdr_len + 2391 ATL1_MAX_TX_BUF_LEN - 1) / 2392 ATL1_MAX_TX_BUF_LEN; 2393 } 2394 } 2395 2396 if (atl1_tpd_avail(&adapter->tpd_ring) < count) { 2397 /* not enough descriptors */ 2398 netif_stop_queue(netdev); 2399 if (netif_msg_tx_queued(adapter)) 2400 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2401 "tx busy\n"); 2402 return NETDEV_TX_BUSY; 2403 } 2404 2405 ptpd = ATL1_TPD_DESC(tpd_ring, 2406 (u16) atomic_read(&tpd_ring->next_to_use)); 2407 memset(ptpd, 0, sizeof(struct tx_packet_desc)); 2408 2409 if (vlan_tx_tag_present(skb)) { 2410 vlan_tag = vlan_tx_tag_get(skb); 2411 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) | 2412 ((vlan_tag >> 9) & 0x8); 2413 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT; 2414 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) << 2415 TPD_VLANTAG_SHIFT; 2416 } 2417 2418 tso = atl1_tso(adapter, skb, ptpd); 2419 if (tso < 0) { 2420 dev_kfree_skb_any(skb); 2421 return NETDEV_TX_OK; 2422 } 2423 2424 if (!tso) { 2425 ret_val = atl1_tx_csum(adapter, skb, ptpd); 2426 if (ret_val < 0) { 2427 dev_kfree_skb_any(skb); 2428 return NETDEV_TX_OK; 2429 } 2430 } 2431 2432 atl1_tx_map(adapter, skb, ptpd); 2433 atl1_tx_queue(adapter, count, ptpd); 2434 atl1_update_mailbox(adapter); 2435 mmiowb(); 2436 return NETDEV_TX_OK; 2437 } 2438 2439 /* 2440 * atl1_intr - Interrupt Handler 2441 * @irq: interrupt number 2442 * @data: pointer to a network interface device structure 2443 * @pt_regs: CPU registers structure 2444 */ 2445 static irqreturn_t atl1_intr(int irq, void *data) 2446 { 2447 struct atl1_adapter *adapter = netdev_priv(data); 2448 u32 status; 2449 int max_ints = 10; 2450 2451 status = adapter->cmb.cmb->int_stats; 2452 if (!status) 2453 return IRQ_NONE; 2454 2455 do { 2456 /* clear CMB interrupt status at once */ 2457 adapter->cmb.cmb->int_stats = 0; 2458 2459 if (status & ISR_GPHY) /* clear phy status */ 2460 atlx_clear_phy_int(adapter); 2461 2462 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ 2463 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR); 2464 2465 /* check if SMB intr */ 2466 if (status & ISR_SMB) 2467 atl1_inc_smb(adapter); 2468 2469 /* check if PCIE PHY Link down */ 2470 if (status & ISR_PHY_LINKDOWN) { 2471 if (netif_msg_intr(adapter)) 2472 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2473 "pcie phy link down %x\n", status); 2474 if (netif_running(adapter->netdev)) { /* reset MAC */ 2475 iowrite32(0, adapter->hw.hw_addr + REG_IMR); 2476 schedule_work(&adapter->pcie_dma_to_rst_task); 2477 return IRQ_HANDLED; 2478 } 2479 } 2480 2481 /* check if DMA read/write error ? */ 2482 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { 2483 if (netif_msg_intr(adapter)) 2484 dev_printk(KERN_DEBUG, &adapter->pdev->dev, 2485 "pcie DMA r/w error (status = 0x%x)\n", 2486 status); 2487 iowrite32(0, adapter->hw.hw_addr + REG_IMR); 2488 schedule_work(&adapter->pcie_dma_to_rst_task); 2489 return IRQ_HANDLED; 2490 } 2491 2492 /* link event */ 2493 if (status & ISR_GPHY) { 2494 adapter->soft_stats.tx_carrier_errors++; 2495 atl1_check_for_link(adapter); 2496 } 2497 2498 /* transmit event */ 2499 if (status & ISR_CMB_TX) 2500 atl1_intr_tx(adapter); 2501 2502 /* rx exception */ 2503 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN | 2504 ISR_RRD_OV | ISR_HOST_RFD_UNRUN | 2505 ISR_HOST_RRD_OV | ISR_CMB_RX))) { 2506 if (status & (ISR_RXF_OV | ISR_RFD_UNRUN | 2507 ISR_RRD_OV | ISR_HOST_RFD_UNRUN | 2508 ISR_HOST_RRD_OV)) 2509 if (netif_msg_intr(adapter)) 2510 dev_printk(KERN_DEBUG, 2511 &adapter->pdev->dev, 2512 "rx exception, ISR = 0x%x\n", 2513 status); 2514 atl1_intr_rx(adapter); 2515 } 2516 2517 if (--max_ints < 0) 2518 break; 2519 2520 } while ((status = adapter->cmb.cmb->int_stats)); 2521 2522 /* re-enable Interrupt */ 2523 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR); 2524 return IRQ_HANDLED; 2525 } 2526 2527 2528 /* 2529 * atl1_phy_config - Timer Call-back 2530 * @data: pointer to netdev cast into an unsigned long 2531 */ 2532 static void atl1_phy_config(unsigned long data) 2533 { 2534 struct atl1_adapter *adapter = (struct atl1_adapter *)data; 2535 struct atl1_hw *hw = &adapter->hw; 2536 unsigned long flags; 2537 2538 spin_lock_irqsave(&adapter->lock, flags); 2539 adapter->phy_timer_pending = false; 2540 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); 2541 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg); 2542 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN); 2543 spin_unlock_irqrestore(&adapter->lock, flags); 2544 } 2545 2546 /* 2547 * Orphaned vendor comment left intact here: 2548 * <vendor comment> 2549 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT 2550 * will assert. We do soft reset <0x1400=1> according 2551 * with the SPEC. BUT, it seemes that PCIE or DMA 2552 * state-machine will not be reset. DMAR_TO_INT will 2553 * assert again and again. 2554 * </vendor comment> 2555 */ 2556 2557 static int atl1_reset(struct atl1_adapter *adapter) 2558 { 2559 int ret; 2560 ret = atl1_reset_hw(&adapter->hw); 2561 if (ret) 2562 return ret; 2563 return atl1_init_hw(&adapter->hw); 2564 } 2565 2566 static s32 atl1_up(struct atl1_adapter *adapter) 2567 { 2568 struct net_device *netdev = adapter->netdev; 2569 int err; 2570 int irq_flags = 0; 2571 2572 /* hardware has been reset, we need to reload some things */ 2573 atlx_set_multi(netdev); 2574 atl1_init_ring_ptrs(adapter); 2575 atlx_restore_vlan(adapter); 2576 err = atl1_alloc_rx_buffers(adapter); 2577 if (unlikely(!err)) 2578 /* no RX BUFFER allocated */ 2579 return -ENOMEM; 2580 2581 if (unlikely(atl1_configure(adapter))) { 2582 err = -EIO; 2583 goto err_up; 2584 } 2585 2586 err = pci_enable_msi(adapter->pdev); 2587 if (err) { 2588 if (netif_msg_ifup(adapter)) 2589 dev_info(&adapter->pdev->dev, 2590 "Unable to enable MSI: %d\n", err); 2591 irq_flags |= IRQF_SHARED; 2592 } 2593 2594 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags, 2595 netdev->name, netdev); 2596 if (unlikely(err)) 2597 goto err_up; 2598 2599 atlx_irq_enable(adapter); 2600 atl1_check_link(adapter); 2601 netif_start_queue(netdev); 2602 return 0; 2603 2604 err_up: 2605 pci_disable_msi(adapter->pdev); 2606 /* free rx_buffers */ 2607 atl1_clean_rx_ring(adapter); 2608 return err; 2609 } 2610 2611 static void atl1_down(struct atl1_adapter *adapter) 2612 { 2613 struct net_device *netdev = adapter->netdev; 2614 2615 netif_stop_queue(netdev); 2616 del_timer_sync(&adapter->phy_config_timer); 2617 adapter->phy_timer_pending = false; 2618 2619 atlx_irq_disable(adapter); 2620 free_irq(adapter->pdev->irq, netdev); 2621 pci_disable_msi(adapter->pdev); 2622 atl1_reset_hw(&adapter->hw); 2623 adapter->cmb.cmb->int_stats = 0; 2624 2625 adapter->link_speed = SPEED_0; 2626 adapter->link_duplex = -1; 2627 netif_carrier_off(netdev); 2628 2629 atl1_clean_tx_ring(adapter); 2630 atl1_clean_rx_ring(adapter); 2631 } 2632 2633 static void atl1_tx_timeout_task(struct work_struct *work) 2634 { 2635 struct atl1_adapter *adapter = 2636 container_of(work, struct atl1_adapter, tx_timeout_task); 2637 struct net_device *netdev = adapter->netdev; 2638 2639 netif_device_detach(netdev); 2640 atl1_down(adapter); 2641 atl1_up(adapter); 2642 netif_device_attach(netdev); 2643 } 2644 2645 /* 2646 * atl1_change_mtu - Change the Maximum Transfer Unit 2647 * @netdev: network interface device structure 2648 * @new_mtu: new value for maximum frame size 2649 * 2650 * Returns 0 on success, negative on failure 2651 */ 2652 static int atl1_change_mtu(struct net_device *netdev, int new_mtu) 2653 { 2654 struct atl1_adapter *adapter = netdev_priv(netdev); 2655 int old_mtu = netdev->mtu; 2656 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 2657 2658 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || 2659 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 2660 if (netif_msg_link(adapter)) 2661 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n"); 2662 return -EINVAL; 2663 } 2664 2665 adapter->hw.max_frame_size = max_frame; 2666 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3; 2667 adapter->rx_buffer_len = (max_frame + 7) & ~7; 2668 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8; 2669 2670 netdev->mtu = new_mtu; 2671 if ((old_mtu != new_mtu) && netif_running(netdev)) { 2672 atl1_down(adapter); 2673 atl1_up(adapter); 2674 } 2675 2676 return 0; 2677 } 2678 2679 /* 2680 * atl1_open - Called when a network interface is made active 2681 * @netdev: network interface device structure 2682 * 2683 * Returns 0 on success, negative value on failure 2684 * 2685 * The open entry point is called when a network interface is made 2686 * active by the system (IFF_UP). At this point all resources needed 2687 * for transmit and receive operations are allocated, the interrupt 2688 * handler is registered with the OS, the watchdog timer is started, 2689 * and the stack is notified that the interface is ready. 2690 */ 2691 static int atl1_open(struct net_device *netdev) 2692 { 2693 struct atl1_adapter *adapter = netdev_priv(netdev); 2694 int err; 2695 2696 netif_carrier_off(netdev); 2697 2698 /* allocate transmit descriptors */ 2699 err = atl1_setup_ring_resources(adapter); 2700 if (err) 2701 return err; 2702 2703 err = atl1_up(adapter); 2704 if (err) 2705 goto err_up; 2706 2707 return 0; 2708 2709 err_up: 2710 atl1_reset(adapter); 2711 return err; 2712 } 2713 2714 /* 2715 * atl1_close - Disables a network interface 2716 * @netdev: network interface device structure 2717 * 2718 * Returns 0, this is not allowed to fail 2719 * 2720 * The close entry point is called when an interface is de-activated 2721 * by the OS. The hardware is still under the drivers control, but 2722 * needs to be disabled. A global MAC reset is issued to stop the 2723 * hardware, and all transmit and receive resources are freed. 2724 */ 2725 static int atl1_close(struct net_device *netdev) 2726 { 2727 struct atl1_adapter *adapter = netdev_priv(netdev); 2728 atl1_down(adapter); 2729 atl1_free_ring_resources(adapter); 2730 return 0; 2731 } 2732 2733 #ifdef CONFIG_PM 2734 static int atl1_suspend(struct device *dev) 2735 { 2736 struct pci_dev *pdev = to_pci_dev(dev); 2737 struct net_device *netdev = pci_get_drvdata(pdev); 2738 struct atl1_adapter *adapter = netdev_priv(netdev); 2739 struct atl1_hw *hw = &adapter->hw; 2740 u32 ctrl = 0; 2741 u32 wufc = adapter->wol; 2742 u32 val; 2743 u16 speed; 2744 u16 duplex; 2745 2746 netif_device_detach(netdev); 2747 if (netif_running(netdev)) 2748 atl1_down(adapter); 2749 2750 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); 2751 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); 2752 val = ctrl & BMSR_LSTATUS; 2753 if (val) 2754 wufc &= ~ATLX_WUFC_LNKC; 2755 if (!wufc) 2756 goto disable_wol; 2757 2758 if (val) { 2759 val = atl1_get_speed_and_duplex(hw, &speed, &duplex); 2760 if (val) { 2761 if (netif_msg_ifdown(adapter)) 2762 dev_printk(KERN_DEBUG, &pdev->dev, 2763 "error getting speed/duplex\n"); 2764 goto disable_wol; 2765 } 2766 2767 ctrl = 0; 2768 2769 /* enable magic packet WOL */ 2770 if (wufc & ATLX_WUFC_MAG) 2771 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN); 2772 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); 2773 ioread32(hw->hw_addr + REG_WOL_CTRL); 2774 2775 /* configure the mac */ 2776 ctrl = MAC_CTRL_RX_EN; 2777 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 : 2778 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); 2779 if (duplex == FULL_DUPLEX) 2780 ctrl |= MAC_CTRL_DUPLX; 2781 ctrl |= (((u32)adapter->hw.preamble_len & 2782 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); 2783 __atlx_vlan_mode(netdev->features, &ctrl); 2784 if (wufc & ATLX_WUFC_MAG) 2785 ctrl |= MAC_CTRL_BC_EN; 2786 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL); 2787 ioread32(hw->hw_addr + REG_MAC_CTRL); 2788 2789 /* poke the PHY */ 2790 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2791 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2792 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); 2793 ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2794 } else { 2795 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); 2796 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); 2797 ioread32(hw->hw_addr + REG_WOL_CTRL); 2798 iowrite32(0, hw->hw_addr + REG_MAC_CTRL); 2799 ioread32(hw->hw_addr + REG_MAC_CTRL); 2800 hw->phy_configured = false; 2801 } 2802 2803 return 0; 2804 2805 disable_wol: 2806 iowrite32(0, hw->hw_addr + REG_WOL_CTRL); 2807 ioread32(hw->hw_addr + REG_WOL_CTRL); 2808 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2809 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; 2810 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); 2811 ioread32(hw->hw_addr + REG_PCIE_PHYMISC); 2812 hw->phy_configured = false; 2813 2814 return 0; 2815 } 2816 2817 static int atl1_resume(struct device *dev) 2818 { 2819 struct pci_dev *pdev = to_pci_dev(dev); 2820 struct net_device *netdev = pci_get_drvdata(pdev); 2821 struct atl1_adapter *adapter = netdev_priv(netdev); 2822 2823 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL); 2824 2825 atl1_reset_hw(&adapter->hw); 2826 2827 if (netif_running(netdev)) { 2828 adapter->cmb.cmb->int_stats = 0; 2829 atl1_up(adapter); 2830 } 2831 netif_device_attach(netdev); 2832 2833 return 0; 2834 } 2835 2836 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume); 2837 #define ATL1_PM_OPS (&atl1_pm_ops) 2838 2839 #else 2840 2841 static int atl1_suspend(struct device *dev) { return 0; } 2842 2843 #define ATL1_PM_OPS NULL 2844 #endif 2845 2846 static void atl1_shutdown(struct pci_dev *pdev) 2847 { 2848 struct net_device *netdev = pci_get_drvdata(pdev); 2849 struct atl1_adapter *adapter = netdev_priv(netdev); 2850 2851 atl1_suspend(&pdev->dev); 2852 pci_wake_from_d3(pdev, adapter->wol); 2853 pci_set_power_state(pdev, PCI_D3hot); 2854 } 2855 2856 #ifdef CONFIG_NET_POLL_CONTROLLER 2857 static void atl1_poll_controller(struct net_device *netdev) 2858 { 2859 disable_irq(netdev->irq); 2860 atl1_intr(netdev->irq, netdev); 2861 enable_irq(netdev->irq); 2862 } 2863 #endif 2864 2865 static const struct net_device_ops atl1_netdev_ops = { 2866 .ndo_open = atl1_open, 2867 .ndo_stop = atl1_close, 2868 .ndo_start_xmit = atl1_xmit_frame, 2869 .ndo_set_rx_mode = atlx_set_multi, 2870 .ndo_validate_addr = eth_validate_addr, 2871 .ndo_set_mac_address = atl1_set_mac, 2872 .ndo_change_mtu = atl1_change_mtu, 2873 .ndo_fix_features = atlx_fix_features, 2874 .ndo_set_features = atlx_set_features, 2875 .ndo_do_ioctl = atlx_ioctl, 2876 .ndo_tx_timeout = atlx_tx_timeout, 2877 #ifdef CONFIG_NET_POLL_CONTROLLER 2878 .ndo_poll_controller = atl1_poll_controller, 2879 #endif 2880 }; 2881 2882 /* 2883 * atl1_probe - Device Initialization Routine 2884 * @pdev: PCI device information struct 2885 * @ent: entry in atl1_pci_tbl 2886 * 2887 * Returns 0 on success, negative on failure 2888 * 2889 * atl1_probe initializes an adapter identified by a pci_dev structure. 2890 * The OS initialization, configuring of the adapter private structure, 2891 * and a hardware reset occur. 2892 */ 2893 static int __devinit atl1_probe(struct pci_dev *pdev, 2894 const struct pci_device_id *ent) 2895 { 2896 struct net_device *netdev; 2897 struct atl1_adapter *adapter; 2898 static int cards_found = 0; 2899 int err; 2900 2901 err = pci_enable_device(pdev); 2902 if (err) 2903 return err; 2904 2905 /* 2906 * The atl1 chip can DMA to 64-bit addresses, but it uses a single 2907 * shared register for the high 32 bits, so only a single, aligned, 2908 * 4 GB physical address range can be used at a time. 2909 * 2910 * Supporting 64-bit DMA on this hardware is more trouble than it's 2911 * worth. It is far easier to limit to 32-bit DMA than update 2912 * various kernel subsystems to support the mechanics required by a 2913 * fixed-high-32-bit system. 2914 */ 2915 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2916 if (err) { 2917 dev_err(&pdev->dev, "no usable DMA configuration\n"); 2918 goto err_dma; 2919 } 2920 /* 2921 * Mark all PCI regions associated with PCI device 2922 * pdev as being reserved by owner atl1_driver_name 2923 */ 2924 err = pci_request_regions(pdev, ATLX_DRIVER_NAME); 2925 if (err) 2926 goto err_request_regions; 2927 2928 /* 2929 * Enables bus-mastering on the device and calls 2930 * pcibios_set_master to do the needed arch specific settings 2931 */ 2932 pci_set_master(pdev); 2933 2934 netdev = alloc_etherdev(sizeof(struct atl1_adapter)); 2935 if (!netdev) { 2936 err = -ENOMEM; 2937 goto err_alloc_etherdev; 2938 } 2939 SET_NETDEV_DEV(netdev, &pdev->dev); 2940 2941 pci_set_drvdata(pdev, netdev); 2942 adapter = netdev_priv(netdev); 2943 adapter->netdev = netdev; 2944 adapter->pdev = pdev; 2945 adapter->hw.back = adapter; 2946 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg); 2947 2948 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0); 2949 if (!adapter->hw.hw_addr) { 2950 err = -EIO; 2951 goto err_pci_iomap; 2952 } 2953 /* get device revision number */ 2954 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr + 2955 (REG_MASTER_CTRL + 2)); 2956 if (netif_msg_probe(adapter)) 2957 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION); 2958 2959 /* set default ring resource counts */ 2960 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD; 2961 adapter->tpd_ring.count = ATL1_DEFAULT_TPD; 2962 2963 adapter->mii.dev = netdev; 2964 adapter->mii.mdio_read = mdio_read; 2965 adapter->mii.mdio_write = mdio_write; 2966 adapter->mii.phy_id_mask = 0x1f; 2967 adapter->mii.reg_num_mask = 0x1f; 2968 2969 netdev->netdev_ops = &atl1_netdev_ops; 2970 netdev->watchdog_timeo = 5 * HZ; 2971 2972 netdev->ethtool_ops = &atl1_ethtool_ops; 2973 adapter->bd_number = cards_found; 2974 2975 /* setup the private structure */ 2976 err = atl1_sw_init(adapter); 2977 if (err) 2978 goto err_common; 2979 2980 netdev->features = NETIF_F_HW_CSUM; 2981 netdev->features |= NETIF_F_SG; 2982 netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX); 2983 2984 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO | 2985 NETIF_F_HW_VLAN_RX; 2986 2987 /* is this valid? see atl1_setup_mac_ctrl() */ 2988 netdev->features |= NETIF_F_RXCSUM; 2989 2990 /* 2991 * patch for some L1 of old version, 2992 * the final version of L1 may not need these 2993 * patches 2994 */ 2995 /* atl1_pcie_patch(adapter); */ 2996 2997 /* really reset GPHY core */ 2998 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); 2999 3000 /* 3001 * reset the controller to 3002 * put the device in a known good starting state 3003 */ 3004 if (atl1_reset_hw(&adapter->hw)) { 3005 err = -EIO; 3006 goto err_common; 3007 } 3008 3009 /* copy the MAC address out of the EEPROM */ 3010 atl1_read_mac_addr(&adapter->hw); 3011 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); 3012 3013 if (!is_valid_ether_addr(netdev->dev_addr)) { 3014 err = -EIO; 3015 goto err_common; 3016 } 3017 3018 atl1_check_options(adapter); 3019 3020 /* pre-init the MAC, and setup link */ 3021 err = atl1_init_hw(&adapter->hw); 3022 if (err) { 3023 err = -EIO; 3024 goto err_common; 3025 } 3026 3027 atl1_pcie_patch(adapter); 3028 /* assume we have no link for now */ 3029 netif_carrier_off(netdev); 3030 3031 setup_timer(&adapter->phy_config_timer, atl1_phy_config, 3032 (unsigned long)adapter); 3033 adapter->phy_timer_pending = false; 3034 3035 INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task); 3036 3037 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task); 3038 3039 INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task); 3040 3041 err = register_netdev(netdev); 3042 if (err) 3043 goto err_common; 3044 3045 cards_found++; 3046 atl1_via_workaround(adapter); 3047 return 0; 3048 3049 err_common: 3050 pci_iounmap(pdev, adapter->hw.hw_addr); 3051 err_pci_iomap: 3052 free_netdev(netdev); 3053 err_alloc_etherdev: 3054 pci_release_regions(pdev); 3055 err_dma: 3056 err_request_regions: 3057 pci_disable_device(pdev); 3058 return err; 3059 } 3060 3061 /* 3062 * atl1_remove - Device Removal Routine 3063 * @pdev: PCI device information struct 3064 * 3065 * atl1_remove is called by the PCI subsystem to alert the driver 3066 * that it should release a PCI device. The could be caused by a 3067 * Hot-Plug event, or because the driver is going to be removed from 3068 * memory. 3069 */ 3070 static void __devexit atl1_remove(struct pci_dev *pdev) 3071 { 3072 struct net_device *netdev = pci_get_drvdata(pdev); 3073 struct atl1_adapter *adapter; 3074 /* Device not available. Return. */ 3075 if (!netdev) 3076 return; 3077 3078 adapter = netdev_priv(netdev); 3079 3080 /* 3081 * Some atl1 boards lack persistent storage for their MAC, and get it 3082 * from the BIOS during POST. If we've been messing with the MAC 3083 * address, we need to save the permanent one. 3084 */ 3085 if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) { 3086 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, 3087 ETH_ALEN); 3088 atl1_set_mac_addr(&adapter->hw); 3089 } 3090 3091 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); 3092 unregister_netdev(netdev); 3093 pci_iounmap(pdev, adapter->hw.hw_addr); 3094 pci_release_regions(pdev); 3095 free_netdev(netdev); 3096 pci_disable_device(pdev); 3097 } 3098 3099 static struct pci_driver atl1_driver = { 3100 .name = ATLX_DRIVER_NAME, 3101 .id_table = atl1_pci_tbl, 3102 .probe = atl1_probe, 3103 .remove = __devexit_p(atl1_remove), 3104 .shutdown = atl1_shutdown, 3105 .driver.pm = ATL1_PM_OPS, 3106 }; 3107 3108 /* 3109 * atl1_exit_module - Driver Exit Cleanup Routine 3110 * 3111 * atl1_exit_module is called just before the driver is removed 3112 * from memory. 3113 */ 3114 static void __exit atl1_exit_module(void) 3115 { 3116 pci_unregister_driver(&atl1_driver); 3117 } 3118 3119 /* 3120 * atl1_init_module - Driver Registration Routine 3121 * 3122 * atl1_init_module is the first routine called when the driver is 3123 * loaded. All it does is register with the PCI subsystem. 3124 */ 3125 static int __init atl1_init_module(void) 3126 { 3127 return pci_register_driver(&atl1_driver); 3128 } 3129 3130 module_init(atl1_init_module); 3131 module_exit(atl1_exit_module); 3132 3133 struct atl1_stats { 3134 char stat_string[ETH_GSTRING_LEN]; 3135 int sizeof_stat; 3136 int stat_offset; 3137 }; 3138 3139 #define ATL1_STAT(m) \ 3140 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m) 3141 3142 static struct atl1_stats atl1_gstrings_stats[] = { 3143 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)}, 3144 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)}, 3145 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)}, 3146 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)}, 3147 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)}, 3148 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)}, 3149 {"multicast", ATL1_STAT(soft_stats.multicast)}, 3150 {"collisions", ATL1_STAT(soft_stats.collisions)}, 3151 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)}, 3152 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, 3153 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)}, 3154 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)}, 3155 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)}, 3156 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, 3157 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)}, 3158 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)}, 3159 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)}, 3160 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)}, 3161 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)}, 3162 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)}, 3163 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)}, 3164 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)}, 3165 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)}, 3166 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)}, 3167 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)}, 3168 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)}, 3169 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)}, 3170 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)}, 3171 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)} 3172 }; 3173 3174 static void atl1_get_ethtool_stats(struct net_device *netdev, 3175 struct ethtool_stats *stats, u64 *data) 3176 { 3177 struct atl1_adapter *adapter = netdev_priv(netdev); 3178 int i; 3179 char *p; 3180 3181 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { 3182 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset; 3183 data[i] = (atl1_gstrings_stats[i].sizeof_stat == 3184 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 3185 } 3186 3187 } 3188 3189 static int atl1_get_sset_count(struct net_device *netdev, int sset) 3190 { 3191 switch (sset) { 3192 case ETH_SS_STATS: 3193 return ARRAY_SIZE(atl1_gstrings_stats); 3194 default: 3195 return -EOPNOTSUPP; 3196 } 3197 } 3198 3199 static int atl1_get_settings(struct net_device *netdev, 3200 struct ethtool_cmd *ecmd) 3201 { 3202 struct atl1_adapter *adapter = netdev_priv(netdev); 3203 struct atl1_hw *hw = &adapter->hw; 3204 3205 ecmd->supported = (SUPPORTED_10baseT_Half | 3206 SUPPORTED_10baseT_Full | 3207 SUPPORTED_100baseT_Half | 3208 SUPPORTED_100baseT_Full | 3209 SUPPORTED_1000baseT_Full | 3210 SUPPORTED_Autoneg | SUPPORTED_TP); 3211 ecmd->advertising = ADVERTISED_TP; 3212 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3213 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3214 ecmd->advertising |= ADVERTISED_Autoneg; 3215 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) { 3216 ecmd->advertising |= ADVERTISED_Autoneg; 3217 ecmd->advertising |= 3218 (ADVERTISED_10baseT_Half | 3219 ADVERTISED_10baseT_Full | 3220 ADVERTISED_100baseT_Half | 3221 ADVERTISED_100baseT_Full | 3222 ADVERTISED_1000baseT_Full); 3223 } else 3224 ecmd->advertising |= (ADVERTISED_1000baseT_Full); 3225 } 3226 ecmd->port = PORT_TP; 3227 ecmd->phy_address = 0; 3228 ecmd->transceiver = XCVR_INTERNAL; 3229 3230 if (netif_carrier_ok(adapter->netdev)) { 3231 u16 link_speed, link_duplex; 3232 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex); 3233 ethtool_cmd_speed_set(ecmd, link_speed); 3234 if (link_duplex == FULL_DUPLEX) 3235 ecmd->duplex = DUPLEX_FULL; 3236 else 3237 ecmd->duplex = DUPLEX_HALF; 3238 } else { 3239 ethtool_cmd_speed_set(ecmd, -1); 3240 ecmd->duplex = -1; 3241 } 3242 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3243 hw->media_type == MEDIA_TYPE_1000M_FULL) 3244 ecmd->autoneg = AUTONEG_ENABLE; 3245 else 3246 ecmd->autoneg = AUTONEG_DISABLE; 3247 3248 return 0; 3249 } 3250 3251 static int atl1_set_settings(struct net_device *netdev, 3252 struct ethtool_cmd *ecmd) 3253 { 3254 struct atl1_adapter *adapter = netdev_priv(netdev); 3255 struct atl1_hw *hw = &adapter->hw; 3256 u16 phy_data; 3257 int ret_val = 0; 3258 u16 old_media_type = hw->media_type; 3259 3260 if (netif_running(adapter->netdev)) { 3261 if (netif_msg_link(adapter)) 3262 dev_dbg(&adapter->pdev->dev, 3263 "ethtool shutting down adapter\n"); 3264 atl1_down(adapter); 3265 } 3266 3267 if (ecmd->autoneg == AUTONEG_ENABLE) 3268 hw->media_type = MEDIA_TYPE_AUTO_SENSOR; 3269 else { 3270 u32 speed = ethtool_cmd_speed(ecmd); 3271 if (speed == SPEED_1000) { 3272 if (ecmd->duplex != DUPLEX_FULL) { 3273 if (netif_msg_link(adapter)) 3274 dev_warn(&adapter->pdev->dev, 3275 "1000M half is invalid\n"); 3276 ret_val = -EINVAL; 3277 goto exit_sset; 3278 } 3279 hw->media_type = MEDIA_TYPE_1000M_FULL; 3280 } else if (speed == SPEED_100) { 3281 if (ecmd->duplex == DUPLEX_FULL) 3282 hw->media_type = MEDIA_TYPE_100M_FULL; 3283 else 3284 hw->media_type = MEDIA_TYPE_100M_HALF; 3285 } else { 3286 if (ecmd->duplex == DUPLEX_FULL) 3287 hw->media_type = MEDIA_TYPE_10M_FULL; 3288 else 3289 hw->media_type = MEDIA_TYPE_10M_HALF; 3290 } 3291 } 3292 switch (hw->media_type) { 3293 case MEDIA_TYPE_AUTO_SENSOR: 3294 ecmd->advertising = 3295 ADVERTISED_10baseT_Half | 3296 ADVERTISED_10baseT_Full | 3297 ADVERTISED_100baseT_Half | 3298 ADVERTISED_100baseT_Full | 3299 ADVERTISED_1000baseT_Full | 3300 ADVERTISED_Autoneg | ADVERTISED_TP; 3301 break; 3302 case MEDIA_TYPE_1000M_FULL: 3303 ecmd->advertising = 3304 ADVERTISED_1000baseT_Full | 3305 ADVERTISED_Autoneg | ADVERTISED_TP; 3306 break; 3307 default: 3308 ecmd->advertising = 0; 3309 break; 3310 } 3311 if (atl1_phy_setup_autoneg_adv(hw)) { 3312 ret_val = -EINVAL; 3313 if (netif_msg_link(adapter)) 3314 dev_warn(&adapter->pdev->dev, 3315 "invalid ethtool speed/duplex setting\n"); 3316 goto exit_sset; 3317 } 3318 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3319 hw->media_type == MEDIA_TYPE_1000M_FULL) 3320 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 3321 else { 3322 switch (hw->media_type) { 3323 case MEDIA_TYPE_100M_FULL: 3324 phy_data = 3325 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | 3326 MII_CR_RESET; 3327 break; 3328 case MEDIA_TYPE_100M_HALF: 3329 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 3330 break; 3331 case MEDIA_TYPE_10M_FULL: 3332 phy_data = 3333 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; 3334 break; 3335 default: 3336 /* MEDIA_TYPE_10M_HALF: */ 3337 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 3338 break; 3339 } 3340 } 3341 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 3342 exit_sset: 3343 if (ret_val) 3344 hw->media_type = old_media_type; 3345 3346 if (netif_running(adapter->netdev)) { 3347 if (netif_msg_link(adapter)) 3348 dev_dbg(&adapter->pdev->dev, 3349 "ethtool starting adapter\n"); 3350 atl1_up(adapter); 3351 } else if (!ret_val) { 3352 if (netif_msg_link(adapter)) 3353 dev_dbg(&adapter->pdev->dev, 3354 "ethtool resetting adapter\n"); 3355 atl1_reset(adapter); 3356 } 3357 return ret_val; 3358 } 3359 3360 static void atl1_get_drvinfo(struct net_device *netdev, 3361 struct ethtool_drvinfo *drvinfo) 3362 { 3363 struct atl1_adapter *adapter = netdev_priv(netdev); 3364 3365 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver)); 3366 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION, 3367 sizeof(drvinfo->version)); 3368 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version)); 3369 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 3370 sizeof(drvinfo->bus_info)); 3371 drvinfo->eedump_len = ATL1_EEDUMP_LEN; 3372 } 3373 3374 static void atl1_get_wol(struct net_device *netdev, 3375 struct ethtool_wolinfo *wol) 3376 { 3377 struct atl1_adapter *adapter = netdev_priv(netdev); 3378 3379 wol->supported = WAKE_MAGIC; 3380 wol->wolopts = 0; 3381 if (adapter->wol & ATLX_WUFC_MAG) 3382 wol->wolopts |= WAKE_MAGIC; 3383 } 3384 3385 static int atl1_set_wol(struct net_device *netdev, 3386 struct ethtool_wolinfo *wol) 3387 { 3388 struct atl1_adapter *adapter = netdev_priv(netdev); 3389 3390 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 3391 WAKE_ARP | WAKE_MAGICSECURE)) 3392 return -EOPNOTSUPP; 3393 adapter->wol = 0; 3394 if (wol->wolopts & WAKE_MAGIC) 3395 adapter->wol |= ATLX_WUFC_MAG; 3396 3397 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 3398 3399 return 0; 3400 } 3401 3402 static u32 atl1_get_msglevel(struct net_device *netdev) 3403 { 3404 struct atl1_adapter *adapter = netdev_priv(netdev); 3405 return adapter->msg_enable; 3406 } 3407 3408 static void atl1_set_msglevel(struct net_device *netdev, u32 value) 3409 { 3410 struct atl1_adapter *adapter = netdev_priv(netdev); 3411 adapter->msg_enable = value; 3412 } 3413 3414 static int atl1_get_regs_len(struct net_device *netdev) 3415 { 3416 return ATL1_REG_COUNT * sizeof(u32); 3417 } 3418 3419 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 3420 void *p) 3421 { 3422 struct atl1_adapter *adapter = netdev_priv(netdev); 3423 struct atl1_hw *hw = &adapter->hw; 3424 unsigned int i; 3425 u32 *regbuf = p; 3426 3427 for (i = 0; i < ATL1_REG_COUNT; i++) { 3428 /* 3429 * This switch statement avoids reserved regions 3430 * of register space. 3431 */ 3432 switch (i) { 3433 case 6 ... 9: 3434 case 14: 3435 case 29 ... 31: 3436 case 34 ... 63: 3437 case 75 ... 127: 3438 case 136 ... 1023: 3439 case 1027 ... 1087: 3440 case 1091 ... 1151: 3441 case 1194 ... 1195: 3442 case 1200 ... 1201: 3443 case 1206 ... 1213: 3444 case 1216 ... 1279: 3445 case 1290 ... 1311: 3446 case 1323 ... 1343: 3447 case 1358 ... 1359: 3448 case 1368 ... 1375: 3449 case 1378 ... 1383: 3450 case 1388 ... 1391: 3451 case 1393 ... 1395: 3452 case 1402 ... 1403: 3453 case 1410 ... 1471: 3454 case 1522 ... 1535: 3455 /* reserved region; don't read it */ 3456 regbuf[i] = 0; 3457 break; 3458 default: 3459 /* unreserved region */ 3460 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32))); 3461 } 3462 } 3463 } 3464 3465 static void atl1_get_ringparam(struct net_device *netdev, 3466 struct ethtool_ringparam *ring) 3467 { 3468 struct atl1_adapter *adapter = netdev_priv(netdev); 3469 struct atl1_tpd_ring *txdr = &adapter->tpd_ring; 3470 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring; 3471 3472 ring->rx_max_pending = ATL1_MAX_RFD; 3473 ring->tx_max_pending = ATL1_MAX_TPD; 3474 ring->rx_pending = rxdr->count; 3475 ring->tx_pending = txdr->count; 3476 } 3477 3478 static int atl1_set_ringparam(struct net_device *netdev, 3479 struct ethtool_ringparam *ring) 3480 { 3481 struct atl1_adapter *adapter = netdev_priv(netdev); 3482 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring; 3483 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring; 3484 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring; 3485 3486 struct atl1_tpd_ring tpd_old, tpd_new; 3487 struct atl1_rfd_ring rfd_old, rfd_new; 3488 struct atl1_rrd_ring rrd_old, rrd_new; 3489 struct atl1_ring_header rhdr_old, rhdr_new; 3490 struct atl1_smb smb; 3491 struct atl1_cmb cmb; 3492 int err; 3493 3494 tpd_old = adapter->tpd_ring; 3495 rfd_old = adapter->rfd_ring; 3496 rrd_old = adapter->rrd_ring; 3497 rhdr_old = adapter->ring_header; 3498 3499 if (netif_running(adapter->netdev)) 3500 atl1_down(adapter); 3501 3502 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD); 3503 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD : 3504 rfdr->count; 3505 rfdr->count = (rfdr->count + 3) & ~3; 3506 rrdr->count = rfdr->count; 3507 3508 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD); 3509 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD : 3510 tpdr->count; 3511 tpdr->count = (tpdr->count + 3) & ~3; 3512 3513 if (netif_running(adapter->netdev)) { 3514 /* try to get new resources before deleting old */ 3515 err = atl1_setup_ring_resources(adapter); 3516 if (err) 3517 goto err_setup_ring; 3518 3519 /* 3520 * save the new, restore the old in order to free it, 3521 * then restore the new back again 3522 */ 3523 3524 rfd_new = adapter->rfd_ring; 3525 rrd_new = adapter->rrd_ring; 3526 tpd_new = adapter->tpd_ring; 3527 rhdr_new = adapter->ring_header; 3528 adapter->rfd_ring = rfd_old; 3529 adapter->rrd_ring = rrd_old; 3530 adapter->tpd_ring = tpd_old; 3531 adapter->ring_header = rhdr_old; 3532 /* 3533 * Save SMB and CMB, since atl1_free_ring_resources 3534 * will clear them. 3535 */ 3536 smb = adapter->smb; 3537 cmb = adapter->cmb; 3538 atl1_free_ring_resources(adapter); 3539 adapter->rfd_ring = rfd_new; 3540 adapter->rrd_ring = rrd_new; 3541 adapter->tpd_ring = tpd_new; 3542 adapter->ring_header = rhdr_new; 3543 adapter->smb = smb; 3544 adapter->cmb = cmb; 3545 3546 err = atl1_up(adapter); 3547 if (err) 3548 return err; 3549 } 3550 return 0; 3551 3552 err_setup_ring: 3553 adapter->rfd_ring = rfd_old; 3554 adapter->rrd_ring = rrd_old; 3555 adapter->tpd_ring = tpd_old; 3556 adapter->ring_header = rhdr_old; 3557 atl1_up(adapter); 3558 return err; 3559 } 3560 3561 static void atl1_get_pauseparam(struct net_device *netdev, 3562 struct ethtool_pauseparam *epause) 3563 { 3564 struct atl1_adapter *adapter = netdev_priv(netdev); 3565 struct atl1_hw *hw = &adapter->hw; 3566 3567 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3568 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3569 epause->autoneg = AUTONEG_ENABLE; 3570 } else { 3571 epause->autoneg = AUTONEG_DISABLE; 3572 } 3573 epause->rx_pause = 1; 3574 epause->tx_pause = 1; 3575 } 3576 3577 static int atl1_set_pauseparam(struct net_device *netdev, 3578 struct ethtool_pauseparam *epause) 3579 { 3580 struct atl1_adapter *adapter = netdev_priv(netdev); 3581 struct atl1_hw *hw = &adapter->hw; 3582 3583 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3584 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3585 epause->autoneg = AUTONEG_ENABLE; 3586 } else { 3587 epause->autoneg = AUTONEG_DISABLE; 3588 } 3589 3590 epause->rx_pause = 1; 3591 epause->tx_pause = 1; 3592 3593 return 0; 3594 } 3595 3596 static void atl1_get_strings(struct net_device *netdev, u32 stringset, 3597 u8 *data) 3598 { 3599 u8 *p = data; 3600 int i; 3601 3602 switch (stringset) { 3603 case ETH_SS_STATS: 3604 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { 3605 memcpy(p, atl1_gstrings_stats[i].stat_string, 3606 ETH_GSTRING_LEN); 3607 p += ETH_GSTRING_LEN; 3608 } 3609 break; 3610 } 3611 } 3612 3613 static int atl1_nway_reset(struct net_device *netdev) 3614 { 3615 struct atl1_adapter *adapter = netdev_priv(netdev); 3616 struct atl1_hw *hw = &adapter->hw; 3617 3618 if (netif_running(netdev)) { 3619 u16 phy_data; 3620 atl1_down(adapter); 3621 3622 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || 3623 hw->media_type == MEDIA_TYPE_1000M_FULL) { 3624 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; 3625 } else { 3626 switch (hw->media_type) { 3627 case MEDIA_TYPE_100M_FULL: 3628 phy_data = MII_CR_FULL_DUPLEX | 3629 MII_CR_SPEED_100 | MII_CR_RESET; 3630 break; 3631 case MEDIA_TYPE_100M_HALF: 3632 phy_data = MII_CR_SPEED_100 | MII_CR_RESET; 3633 break; 3634 case MEDIA_TYPE_10M_FULL: 3635 phy_data = MII_CR_FULL_DUPLEX | 3636 MII_CR_SPEED_10 | MII_CR_RESET; 3637 break; 3638 default: 3639 /* MEDIA_TYPE_10M_HALF */ 3640 phy_data = MII_CR_SPEED_10 | MII_CR_RESET; 3641 } 3642 } 3643 atl1_write_phy_reg(hw, MII_BMCR, phy_data); 3644 atl1_up(adapter); 3645 } 3646 return 0; 3647 } 3648 3649 static const struct ethtool_ops atl1_ethtool_ops = { 3650 .get_settings = atl1_get_settings, 3651 .set_settings = atl1_set_settings, 3652 .get_drvinfo = atl1_get_drvinfo, 3653 .get_wol = atl1_get_wol, 3654 .set_wol = atl1_set_wol, 3655 .get_msglevel = atl1_get_msglevel, 3656 .set_msglevel = atl1_set_msglevel, 3657 .get_regs_len = atl1_get_regs_len, 3658 .get_regs = atl1_get_regs, 3659 .get_ringparam = atl1_get_ringparam, 3660 .set_ringparam = atl1_set_ringparam, 3661 .get_pauseparam = atl1_get_pauseparam, 3662 .set_pauseparam = atl1_set_pauseparam, 3663 .get_link = ethtool_op_get_link, 3664 .get_strings = atl1_get_strings, 3665 .nway_reset = atl1_nway_reset, 3666 .get_ethtool_stats = atl1_get_ethtool_stats, 3667 .get_sset_count = atl1_get_sset_count, 3668 }; 3669