xref: /linux/drivers/net/ethernet/atheros/atl1e/atl1e_ethtool.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2007 Atheros Corporation. All rights reserved.
4  *
5  * Derived from Intel e1000 driver
6  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7  */
8 
9 #include <linux/netdevice.h>
10 #include <linux/ethtool.h>
11 #include <linux/slab.h>
12 
13 #include "atl1e.h"
14 
15 static int atl1e_get_link_ksettings(struct net_device *netdev,
16 				    struct ethtool_link_ksettings *cmd)
17 {
18 	struct atl1e_adapter *adapter = netdev_priv(netdev);
19 	struct atl1e_hw *hw = &adapter->hw;
20 	u32 supported, advertising;
21 
22 	supported = (SUPPORTED_10baseT_Half  |
23 			   SUPPORTED_10baseT_Full  |
24 			   SUPPORTED_100baseT_Half |
25 			   SUPPORTED_100baseT_Full |
26 			   SUPPORTED_Autoneg       |
27 			   SUPPORTED_TP);
28 	if (hw->nic_type == athr_l1e)
29 		supported |= SUPPORTED_1000baseT_Full;
30 
31 	advertising = ADVERTISED_TP;
32 
33 	advertising |= ADVERTISED_Autoneg;
34 	advertising |= hw->autoneg_advertised;
35 
36 	cmd->base.port = PORT_TP;
37 	cmd->base.phy_address = 0;
38 
39 	if (adapter->link_speed != SPEED_0) {
40 		cmd->base.speed = adapter->link_speed;
41 		if (adapter->link_duplex == FULL_DUPLEX)
42 			cmd->base.duplex = DUPLEX_FULL;
43 		else
44 			cmd->base.duplex = DUPLEX_HALF;
45 	} else {
46 		cmd->base.speed = SPEED_UNKNOWN;
47 		cmd->base.duplex = DUPLEX_UNKNOWN;
48 	}
49 
50 	cmd->base.autoneg = AUTONEG_ENABLE;
51 
52 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
53 						supported);
54 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
55 						advertising);
56 
57 	return 0;
58 }
59 
60 static int atl1e_set_link_ksettings(struct net_device *netdev,
61 				    const struct ethtool_link_ksettings *cmd)
62 {
63 	struct atl1e_adapter *adapter = netdev_priv(netdev);
64 	struct atl1e_hw *hw = &adapter->hw;
65 	u32 advertising;
66 
67 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
68 						cmd->link_modes.advertising);
69 
70 	while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
71 		msleep(1);
72 
73 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
74 		u16 adv4, adv9;
75 
76 		if (advertising & ADVERTISE_1000_FULL) {
77 			if (hw->nic_type == athr_l1e) {
78 				hw->autoneg_advertised =
79 					advertising & AT_ADV_MASK;
80 			} else {
81 				clear_bit(__AT_RESETTING, &adapter->flags);
82 				return -EINVAL;
83 			}
84 		} else if (advertising & ADVERTISE_1000_HALF) {
85 			clear_bit(__AT_RESETTING, &adapter->flags);
86 			return -EINVAL;
87 		} else {
88 			hw->autoneg_advertised =
89 				advertising & AT_ADV_MASK;
90 		}
91 		advertising = hw->autoneg_advertised |
92 				    ADVERTISED_TP | ADVERTISED_Autoneg;
93 
94 		adv4 = hw->mii_autoneg_adv_reg & ~ADVERTISE_ALL;
95 		adv9 = hw->mii_1000t_ctrl_reg & ~MII_AT001_CR_1000T_SPEED_MASK;
96 		if (hw->autoneg_advertised & ADVERTISE_10_HALF)
97 			adv4 |= ADVERTISE_10HALF;
98 		if (hw->autoneg_advertised & ADVERTISE_10_FULL)
99 			adv4 |= ADVERTISE_10FULL;
100 		if (hw->autoneg_advertised & ADVERTISE_100_HALF)
101 			adv4 |= ADVERTISE_100HALF;
102 		if (hw->autoneg_advertised & ADVERTISE_100_FULL)
103 			adv4 |= ADVERTISE_100FULL;
104 		if (hw->autoneg_advertised & ADVERTISE_1000_FULL)
105 			adv9 |= ADVERTISE_1000FULL;
106 
107 		if (adv4 != hw->mii_autoneg_adv_reg ||
108 				adv9 != hw->mii_1000t_ctrl_reg) {
109 			hw->mii_autoneg_adv_reg = adv4;
110 			hw->mii_1000t_ctrl_reg = adv9;
111 			hw->re_autoneg = true;
112 		}
113 
114 	} else {
115 		clear_bit(__AT_RESETTING, &adapter->flags);
116 		return -EINVAL;
117 	}
118 
119 	/* reset the link */
120 
121 	if (netif_running(adapter->netdev)) {
122 		atl1e_down(adapter);
123 		atl1e_up(adapter);
124 	} else
125 		atl1e_reset_hw(&adapter->hw);
126 
127 	clear_bit(__AT_RESETTING, &adapter->flags);
128 	return 0;
129 }
130 
131 static u32 atl1e_get_msglevel(struct net_device *netdev)
132 {
133 #ifdef DBG
134 	return 1;
135 #else
136 	return 0;
137 #endif
138 }
139 
140 static int atl1e_get_regs_len(struct net_device *netdev)
141 {
142 	return AT_REGS_LEN * sizeof(u32);
143 }
144 
145 static void atl1e_get_regs(struct net_device *netdev,
146 			   struct ethtool_regs *regs, void *p)
147 {
148 	struct atl1e_adapter *adapter = netdev_priv(netdev);
149 	struct atl1e_hw *hw = &adapter->hw;
150 	u32 *regs_buff = p;
151 	u16 phy_data;
152 
153 	memset(p, 0, AT_REGS_LEN * sizeof(u32));
154 
155 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
156 
157 	regs_buff[0]  = AT_READ_REG(hw, REG_VPD_CAP);
158 	regs_buff[1]  = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
159 	regs_buff[2]  = AT_READ_REG(hw, REG_SPI_FLASH_CONFIG);
160 	regs_buff[3]  = AT_READ_REG(hw, REG_TWSI_CTRL);
161 	regs_buff[4]  = AT_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL);
162 	regs_buff[5]  = AT_READ_REG(hw, REG_MASTER_CTRL);
163 	regs_buff[6]  = AT_READ_REG(hw, REG_MANUAL_TIMER_INIT);
164 	regs_buff[7]  = AT_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT);
165 	regs_buff[8]  = AT_READ_REG(hw, REG_GPHY_CTRL);
166 	regs_buff[9]  = AT_READ_REG(hw, REG_CMBDISDMA_TIMER);
167 	regs_buff[10] = AT_READ_REG(hw, REG_IDLE_STATUS);
168 	regs_buff[11] = AT_READ_REG(hw, REG_MDIO_CTRL);
169 	regs_buff[12] = AT_READ_REG(hw, REG_SERDES_LOCK);
170 	regs_buff[13] = AT_READ_REG(hw, REG_MAC_CTRL);
171 	regs_buff[14] = AT_READ_REG(hw, REG_MAC_IPG_IFG);
172 	regs_buff[15] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
173 	regs_buff[16] = AT_READ_REG(hw, REG_MAC_STA_ADDR+4);
174 	regs_buff[17] = AT_READ_REG(hw, REG_RX_HASH_TABLE);
175 	regs_buff[18] = AT_READ_REG(hw, REG_RX_HASH_TABLE+4);
176 	regs_buff[19] = AT_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL);
177 	regs_buff[20] = AT_READ_REG(hw, REG_MTU);
178 	regs_buff[21] = AT_READ_REG(hw, REG_WOL_CTRL);
179 	regs_buff[22] = AT_READ_REG(hw, REG_SRAM_TRD_ADDR);
180 	regs_buff[23] = AT_READ_REG(hw, REG_SRAM_TRD_LEN);
181 	regs_buff[24] = AT_READ_REG(hw, REG_SRAM_RXF_ADDR);
182 	regs_buff[25] = AT_READ_REG(hw, REG_SRAM_RXF_LEN);
183 	regs_buff[26] = AT_READ_REG(hw, REG_SRAM_TXF_ADDR);
184 	regs_buff[27] = AT_READ_REG(hw, REG_SRAM_TXF_LEN);
185 	regs_buff[28] = AT_READ_REG(hw, REG_SRAM_TCPH_ADDR);
186 	regs_buff[29] = AT_READ_REG(hw, REG_SRAM_PKTH_ADDR);
187 
188 	atl1e_read_phy_reg(hw, MII_BMCR, &phy_data);
189 	regs_buff[73] = (u32)phy_data;
190 	atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
191 	regs_buff[74] = (u32)phy_data;
192 }
193 
194 static int atl1e_get_eeprom_len(struct net_device *netdev)
195 {
196 	struct atl1e_adapter *adapter = netdev_priv(netdev);
197 
198 	if (!atl1e_check_eeprom_exist(&adapter->hw))
199 		return AT_EEPROM_LEN;
200 	else
201 		return 0;
202 }
203 
204 static int atl1e_get_eeprom(struct net_device *netdev,
205 		struct ethtool_eeprom *eeprom, u8 *bytes)
206 {
207 	struct atl1e_adapter *adapter = netdev_priv(netdev);
208 	struct atl1e_hw *hw = &adapter->hw;
209 	u32 *eeprom_buff;
210 	int first_dword, last_dword;
211 	int ret_val = 0;
212 	int i;
213 
214 	if (eeprom->len == 0)
215 		return -EINVAL;
216 
217 	if (atl1e_check_eeprom_exist(hw)) /* not exist */
218 		return -EINVAL;
219 
220 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
221 
222 	first_dword = eeprom->offset >> 2;
223 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
224 
225 	eeprom_buff = kmalloc_array(last_dword - first_dword + 1, sizeof(u32),
226 				    GFP_KERNEL);
227 	if (eeprom_buff == NULL)
228 		return -ENOMEM;
229 
230 	for (i = first_dword; i < last_dword; i++) {
231 		if (!atl1e_read_eeprom(hw, i * 4, &(eeprom_buff[i-first_dword]))) {
232 			kfree(eeprom_buff);
233 			return -EIO;
234 		}
235 	}
236 
237 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3),
238 			eeprom->len);
239 	kfree(eeprom_buff);
240 
241 	return ret_val;
242 }
243 
244 static int atl1e_set_eeprom(struct net_device *netdev,
245 			    struct ethtool_eeprom *eeprom, u8 *bytes)
246 {
247 	struct atl1e_adapter *adapter = netdev_priv(netdev);
248 	struct atl1e_hw *hw = &adapter->hw;
249 	u32 *eeprom_buff;
250 	u32 *ptr;
251 	int first_dword, last_dword;
252 	int ret_val = 0;
253 	int i;
254 
255 	if (eeprom->len == 0)
256 		return -EOPNOTSUPP;
257 
258 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
259 		return -EINVAL;
260 
261 	first_dword = eeprom->offset >> 2;
262 	last_dword = (eeprom->offset + eeprom->len - 1) >> 2;
263 	eeprom_buff = kmalloc(AT_EEPROM_LEN, GFP_KERNEL);
264 	if (eeprom_buff == NULL)
265 		return -ENOMEM;
266 
267 	ptr = eeprom_buff;
268 
269 	if (eeprom->offset & 3) {
270 		/* need read/modify/write of first changed EEPROM word */
271 		/* only the second byte of the word is being modified */
272 		if (!atl1e_read_eeprom(hw, first_dword * 4, &(eeprom_buff[0]))) {
273 			ret_val = -EIO;
274 			goto out;
275 		}
276 		ptr++;
277 	}
278 	if (((eeprom->offset + eeprom->len) & 3)) {
279 		/* need read/modify/write of last changed EEPROM word */
280 		/* only the first byte of the word is being modified */
281 
282 		if (!atl1e_read_eeprom(hw, last_dword * 4,
283 				&(eeprom_buff[last_dword - first_dword]))) {
284 			ret_val = -EIO;
285 			goto out;
286 		}
287 	}
288 
289 	/* Device's eeprom is always little-endian, word addressable */
290 	memcpy(ptr, bytes, eeprom->len);
291 
292 	for (i = 0; i < last_dword - first_dword + 1; i++) {
293 		if (!atl1e_write_eeprom(hw, ((first_dword + i) * 4),
294 				  eeprom_buff[i])) {
295 			ret_val = -EIO;
296 			goto out;
297 		}
298 	}
299 out:
300 	kfree(eeprom_buff);
301 	return ret_val;
302 }
303 
304 static void atl1e_get_drvinfo(struct net_device *netdev,
305 		struct ethtool_drvinfo *drvinfo)
306 {
307 	struct atl1e_adapter *adapter = netdev_priv(netdev);
308 
309 	strscpy(drvinfo->driver,  atl1e_driver_name, sizeof(drvinfo->driver));
310 	strscpy(drvinfo->fw_version, "L1e", sizeof(drvinfo->fw_version));
311 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
312 		sizeof(drvinfo->bus_info));
313 }
314 
315 static void atl1e_get_wol(struct net_device *netdev,
316 			  struct ethtool_wolinfo *wol)
317 {
318 	struct atl1e_adapter *adapter = netdev_priv(netdev);
319 
320 	wol->supported = WAKE_MAGIC | WAKE_PHY;
321 	wol->wolopts = 0;
322 
323 	if (adapter->wol & AT_WUFC_EX)
324 		wol->wolopts |= WAKE_UCAST;
325 	if (adapter->wol & AT_WUFC_MC)
326 		wol->wolopts |= WAKE_MCAST;
327 	if (adapter->wol & AT_WUFC_BC)
328 		wol->wolopts |= WAKE_BCAST;
329 	if (adapter->wol & AT_WUFC_MAG)
330 		wol->wolopts |= WAKE_MAGIC;
331 	if (adapter->wol & AT_WUFC_LNKC)
332 		wol->wolopts |= WAKE_PHY;
333 }
334 
335 static int atl1e_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
336 {
337 	struct atl1e_adapter *adapter = netdev_priv(netdev);
338 
339 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE |
340 			    WAKE_UCAST | WAKE_MCAST | WAKE_BCAST))
341 		return -EOPNOTSUPP;
342 	/* these settings will always override what we currently have */
343 	adapter->wol = 0;
344 
345 	if (wol->wolopts & WAKE_MAGIC)
346 		adapter->wol |= AT_WUFC_MAG;
347 	if (wol->wolopts & WAKE_PHY)
348 		adapter->wol |= AT_WUFC_LNKC;
349 
350 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
351 
352 	return 0;
353 }
354 
355 static int atl1e_nway_reset(struct net_device *netdev)
356 {
357 	struct atl1e_adapter *adapter = netdev_priv(netdev);
358 	if (netif_running(netdev))
359 		atl1e_reinit_locked(adapter);
360 	return 0;
361 }
362 
363 static const struct ethtool_ops atl1e_ethtool_ops = {
364 	.get_drvinfo            = atl1e_get_drvinfo,
365 	.get_regs_len           = atl1e_get_regs_len,
366 	.get_regs               = atl1e_get_regs,
367 	.get_wol                = atl1e_get_wol,
368 	.set_wol                = atl1e_set_wol,
369 	.get_msglevel           = atl1e_get_msglevel,
370 	.nway_reset             = atl1e_nway_reset,
371 	.get_link               = ethtool_op_get_link,
372 	.get_eeprom_len         = atl1e_get_eeprom_len,
373 	.get_eeprom             = atl1e_get_eeprom,
374 	.set_eeprom             = atl1e_set_eeprom,
375 	.get_link_ksettings     = atl1e_get_link_ksettings,
376 	.set_link_ksettings     = atl1e_set_link_ksettings,
377 };
378 
379 void atl1e_set_ethtool_ops(struct net_device *netdev)
380 {
381 	netdev->ethtool_ops = &atl1e_ethtool_ops;
382 }
383