1 /* 2 * Copyright (c) 2013, 2021 Johannes Berg <johannes@sipsolutions.net> 3 * 4 * This file is free software: you may copy, redistribute and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation, either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This file is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * This file incorporates work covered by the following copyright and 18 * permission notice: 19 * 20 * Copyright (c) 2012 Qualcomm Atheros, Inc. 21 * 22 * Permission to use, copy, modify, and/or distribute this software for any 23 * purpose with or without fee is hereby granted, provided that the above 24 * copyright notice and this permission notice appear in all copies. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/interrupt.h> 38 #include <linux/ip.h> 39 #include <linux/ipv6.h> 40 #include <linux/if_vlan.h> 41 #include <linux/mdio.h> 42 #include <linux/aer.h> 43 #include <linux/bitops.h> 44 #include <linux/netdevice.h> 45 #include <linux/etherdevice.h> 46 #include <net/ip6_checksum.h> 47 #include <linux/crc32.h> 48 #include "alx.h" 49 #include "hw.h" 50 #include "reg.h" 51 52 static const char alx_drv_name[] = "alx"; 53 54 static void alx_free_txbuf(struct alx_tx_queue *txq, int entry) 55 { 56 struct alx_buffer *txb = &txq->bufs[entry]; 57 58 if (dma_unmap_len(txb, size)) { 59 dma_unmap_single(txq->dev, 60 dma_unmap_addr(txb, dma), 61 dma_unmap_len(txb, size), 62 DMA_TO_DEVICE); 63 dma_unmap_len_set(txb, size, 0); 64 } 65 66 if (txb->skb) { 67 dev_kfree_skb_any(txb->skb); 68 txb->skb = NULL; 69 } 70 } 71 72 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp) 73 { 74 struct alx_rx_queue *rxq = alx->qnapi[0]->rxq; 75 struct sk_buff *skb; 76 struct alx_buffer *cur_buf; 77 dma_addr_t dma; 78 u16 cur, next, count = 0; 79 80 next = cur = rxq->write_idx; 81 if (++next == alx->rx_ringsz) 82 next = 0; 83 cur_buf = &rxq->bufs[cur]; 84 85 while (!cur_buf->skb && next != rxq->read_idx) { 86 struct alx_rfd *rfd = &rxq->rfd[cur]; 87 88 /* 89 * When DMA RX address is set to something like 90 * 0x....fc0, it will be very likely to cause DMA 91 * RFD overflow issue. 92 * 93 * To work around it, we apply rx skb with 64 bytes 94 * longer space, and offset the address whenever 95 * 0x....fc0 is detected. 96 */ 97 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size + 64, gfp); 98 if (!skb) 99 break; 100 101 if (((unsigned long)skb->data & 0xfff) == 0xfc0) 102 skb_reserve(skb, 64); 103 104 dma = dma_map_single(&alx->hw.pdev->dev, 105 skb->data, alx->rxbuf_size, 106 DMA_FROM_DEVICE); 107 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) { 108 dev_kfree_skb(skb); 109 break; 110 } 111 112 /* Unfortunately, RX descriptor buffers must be 4-byte 113 * aligned, so we can't use IP alignment. 114 */ 115 if (WARN_ON(dma & 3)) { 116 dev_kfree_skb(skb); 117 break; 118 } 119 120 cur_buf->skb = skb; 121 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size); 122 dma_unmap_addr_set(cur_buf, dma, dma); 123 rfd->addr = cpu_to_le64(dma); 124 125 cur = next; 126 if (++next == alx->rx_ringsz) 127 next = 0; 128 cur_buf = &rxq->bufs[cur]; 129 count++; 130 } 131 132 if (count) { 133 /* flush all updates before updating hardware */ 134 wmb(); 135 rxq->write_idx = cur; 136 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur); 137 } 138 139 return count; 140 } 141 142 static struct alx_tx_queue *alx_tx_queue_mapping(struct alx_priv *alx, 143 struct sk_buff *skb) 144 { 145 unsigned int r_idx = skb->queue_mapping; 146 147 if (r_idx >= alx->num_txq) 148 r_idx = r_idx % alx->num_txq; 149 150 return alx->qnapi[r_idx]->txq; 151 } 152 153 static struct netdev_queue *alx_get_tx_queue(const struct alx_tx_queue *txq) 154 { 155 return netdev_get_tx_queue(txq->netdev, txq->queue_idx); 156 } 157 158 static inline int alx_tpd_avail(struct alx_tx_queue *txq) 159 { 160 if (txq->write_idx >= txq->read_idx) 161 return txq->count + txq->read_idx - txq->write_idx - 1; 162 return txq->read_idx - txq->write_idx - 1; 163 } 164 165 static bool alx_clean_tx_irq(struct alx_tx_queue *txq) 166 { 167 struct alx_priv *alx; 168 struct netdev_queue *tx_queue; 169 u16 hw_read_idx, sw_read_idx; 170 unsigned int total_bytes = 0, total_packets = 0; 171 int budget = ALX_DEFAULT_TX_WORK; 172 173 alx = netdev_priv(txq->netdev); 174 tx_queue = alx_get_tx_queue(txq); 175 176 sw_read_idx = txq->read_idx; 177 hw_read_idx = alx_read_mem16(&alx->hw, txq->c_reg); 178 179 if (sw_read_idx != hw_read_idx) { 180 while (sw_read_idx != hw_read_idx && budget > 0) { 181 struct sk_buff *skb; 182 183 skb = txq->bufs[sw_read_idx].skb; 184 if (skb) { 185 total_bytes += skb->len; 186 total_packets++; 187 budget--; 188 } 189 190 alx_free_txbuf(txq, sw_read_idx); 191 192 if (++sw_read_idx == txq->count) 193 sw_read_idx = 0; 194 } 195 txq->read_idx = sw_read_idx; 196 197 netdev_tx_completed_queue(tx_queue, total_packets, total_bytes); 198 } 199 200 if (netif_tx_queue_stopped(tx_queue) && netif_carrier_ok(alx->dev) && 201 alx_tpd_avail(txq) > txq->count / 4) 202 netif_tx_wake_queue(tx_queue); 203 204 return sw_read_idx == hw_read_idx; 205 } 206 207 static void alx_schedule_link_check(struct alx_priv *alx) 208 { 209 schedule_work(&alx->link_check_wk); 210 } 211 212 static void alx_schedule_reset(struct alx_priv *alx) 213 { 214 schedule_work(&alx->reset_wk); 215 } 216 217 static int alx_clean_rx_irq(struct alx_rx_queue *rxq, int budget) 218 { 219 struct alx_priv *alx; 220 struct alx_rrd *rrd; 221 struct alx_buffer *rxb; 222 struct sk_buff *skb; 223 u16 length, rfd_cleaned = 0; 224 int work = 0; 225 226 alx = netdev_priv(rxq->netdev); 227 228 while (work < budget) { 229 rrd = &rxq->rrd[rxq->rrd_read_idx]; 230 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT))) 231 break; 232 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT); 233 234 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0), 235 RRD_SI) != rxq->read_idx || 236 ALX_GET_FIELD(le32_to_cpu(rrd->word0), 237 RRD_NOR) != 1) { 238 alx_schedule_reset(alx); 239 return work; 240 } 241 242 rxb = &rxq->bufs[rxq->read_idx]; 243 dma_unmap_single(rxq->dev, 244 dma_unmap_addr(rxb, dma), 245 dma_unmap_len(rxb, size), 246 DMA_FROM_DEVICE); 247 dma_unmap_len_set(rxb, size, 0); 248 skb = rxb->skb; 249 rxb->skb = NULL; 250 251 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) || 252 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) { 253 rrd->word3 = 0; 254 dev_kfree_skb_any(skb); 255 goto next_pkt; 256 } 257 258 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3), 259 RRD_PKTLEN) - ETH_FCS_LEN; 260 skb_put(skb, length); 261 skb->protocol = eth_type_trans(skb, rxq->netdev); 262 263 skb_checksum_none_assert(skb); 264 if (alx->dev->features & NETIF_F_RXCSUM && 265 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) | 266 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) { 267 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2), 268 RRD_PID)) { 269 case RRD_PID_IPV6UDP: 270 case RRD_PID_IPV4UDP: 271 case RRD_PID_IPV4TCP: 272 case RRD_PID_IPV6TCP: 273 skb->ip_summed = CHECKSUM_UNNECESSARY; 274 break; 275 } 276 } 277 278 napi_gro_receive(&rxq->np->napi, skb); 279 work++; 280 281 next_pkt: 282 if (++rxq->read_idx == rxq->count) 283 rxq->read_idx = 0; 284 if (++rxq->rrd_read_idx == rxq->count) 285 rxq->rrd_read_idx = 0; 286 287 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH) 288 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC); 289 } 290 291 if (rfd_cleaned) 292 alx_refill_rx_ring(alx, GFP_ATOMIC); 293 294 return work; 295 } 296 297 static int alx_poll(struct napi_struct *napi, int budget) 298 { 299 struct alx_napi *np = container_of(napi, struct alx_napi, napi); 300 struct alx_priv *alx = np->alx; 301 struct alx_hw *hw = &alx->hw; 302 unsigned long flags; 303 bool tx_complete = true; 304 int work = 0; 305 306 if (np->txq) 307 tx_complete = alx_clean_tx_irq(np->txq); 308 if (np->rxq) 309 work = alx_clean_rx_irq(np->rxq, budget); 310 311 if (!tx_complete || work == budget) 312 return budget; 313 314 napi_complete_done(&np->napi, work); 315 316 /* enable interrupt */ 317 if (alx->hw.pdev->msix_enabled) { 318 alx_mask_msix(hw, np->vec_idx, false); 319 } else { 320 spin_lock_irqsave(&alx->irq_lock, flags); 321 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; 322 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 323 spin_unlock_irqrestore(&alx->irq_lock, flags); 324 } 325 326 alx_post_write(hw); 327 328 return work; 329 } 330 331 static bool alx_intr_handle_misc(struct alx_priv *alx, u32 intr) 332 { 333 struct alx_hw *hw = &alx->hw; 334 335 if (intr & ALX_ISR_FATAL) { 336 netif_warn(alx, hw, alx->dev, 337 "fatal interrupt 0x%x, resetting\n", intr); 338 alx_schedule_reset(alx); 339 return true; 340 } 341 342 if (intr & ALX_ISR_ALERT) 343 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr); 344 345 if (intr & ALX_ISR_PHY) { 346 /* suppress PHY interrupt, because the source 347 * is from PHY internal. only the internal status 348 * is cleared, the interrupt status could be cleared. 349 */ 350 alx->int_mask &= ~ALX_ISR_PHY; 351 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 352 alx_schedule_link_check(alx); 353 } 354 355 return false; 356 } 357 358 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr) 359 { 360 struct alx_hw *hw = &alx->hw; 361 362 spin_lock(&alx->irq_lock); 363 364 /* ACK interrupt */ 365 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS); 366 intr &= alx->int_mask; 367 368 if (alx_intr_handle_misc(alx, intr)) 369 goto out; 370 371 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) { 372 napi_schedule(&alx->qnapi[0]->napi); 373 /* mask rx/tx interrupt, enable them when napi complete */ 374 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 375 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 376 } 377 378 alx_write_mem32(hw, ALX_ISR, 0); 379 380 out: 381 spin_unlock(&alx->irq_lock); 382 return IRQ_HANDLED; 383 } 384 385 static irqreturn_t alx_intr_msix_ring(int irq, void *data) 386 { 387 struct alx_napi *np = data; 388 struct alx_hw *hw = &np->alx->hw; 389 390 /* mask interrupt to ACK chip */ 391 alx_mask_msix(hw, np->vec_idx, true); 392 /* clear interrupt status */ 393 alx_write_mem32(hw, ALX_ISR, np->vec_mask); 394 395 napi_schedule(&np->napi); 396 397 return IRQ_HANDLED; 398 } 399 400 static irqreturn_t alx_intr_msix_misc(int irq, void *data) 401 { 402 struct alx_priv *alx = data; 403 struct alx_hw *hw = &alx->hw; 404 u32 intr; 405 406 /* mask interrupt to ACK chip */ 407 alx_mask_msix(hw, 0, true); 408 409 /* read interrupt status */ 410 intr = alx_read_mem32(hw, ALX_ISR); 411 intr &= (alx->int_mask & ~ALX_ISR_ALL_QUEUES); 412 413 if (alx_intr_handle_misc(alx, intr)) 414 return IRQ_HANDLED; 415 416 /* clear interrupt status */ 417 alx_write_mem32(hw, ALX_ISR, intr); 418 419 /* enable interrupt again */ 420 alx_mask_msix(hw, 0, false); 421 422 return IRQ_HANDLED; 423 } 424 425 static irqreturn_t alx_intr_msi(int irq, void *data) 426 { 427 struct alx_priv *alx = data; 428 429 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR)); 430 } 431 432 static irqreturn_t alx_intr_legacy(int irq, void *data) 433 { 434 struct alx_priv *alx = data; 435 struct alx_hw *hw = &alx->hw; 436 u32 intr; 437 438 intr = alx_read_mem32(hw, ALX_ISR); 439 440 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask)) 441 return IRQ_NONE; 442 443 return alx_intr_handle(alx, intr); 444 } 445 446 static const u16 txring_header_reg[] = {ALX_TPD_PRI0_ADDR_LO, 447 ALX_TPD_PRI1_ADDR_LO, 448 ALX_TPD_PRI2_ADDR_LO, 449 ALX_TPD_PRI3_ADDR_LO}; 450 451 static void alx_init_ring_ptrs(struct alx_priv *alx) 452 { 453 struct alx_hw *hw = &alx->hw; 454 u32 addr_hi = ((u64)alx->descmem.dma) >> 32; 455 struct alx_napi *np; 456 int i; 457 458 for (i = 0; i < alx->num_napi; i++) { 459 np = alx->qnapi[i]; 460 if (np->txq) { 461 np->txq->read_idx = 0; 462 np->txq->write_idx = 0; 463 alx_write_mem32(hw, 464 txring_header_reg[np->txq->queue_idx], 465 np->txq->tpd_dma); 466 } 467 468 if (np->rxq) { 469 np->rxq->read_idx = 0; 470 np->rxq->write_idx = 0; 471 np->rxq->rrd_read_idx = 0; 472 alx_write_mem32(hw, ALX_RRD_ADDR_LO, np->rxq->rrd_dma); 473 alx_write_mem32(hw, ALX_RFD_ADDR_LO, np->rxq->rfd_dma); 474 } 475 } 476 477 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi); 478 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz); 479 480 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi); 481 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz); 482 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz); 483 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size); 484 485 /* load these pointers into the chip */ 486 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR); 487 } 488 489 static void alx_free_txring_buf(struct alx_tx_queue *txq) 490 { 491 int i; 492 493 if (!txq->bufs) 494 return; 495 496 for (i = 0; i < txq->count; i++) 497 alx_free_txbuf(txq, i); 498 499 memset(txq->bufs, 0, txq->count * sizeof(struct alx_buffer)); 500 memset(txq->tpd, 0, txq->count * sizeof(struct alx_txd)); 501 txq->write_idx = 0; 502 txq->read_idx = 0; 503 504 netdev_tx_reset_queue(alx_get_tx_queue(txq)); 505 } 506 507 static void alx_free_rxring_buf(struct alx_rx_queue *rxq) 508 { 509 struct alx_buffer *cur_buf; 510 u16 i; 511 512 if (!rxq->bufs) 513 return; 514 515 for (i = 0; i < rxq->count; i++) { 516 cur_buf = rxq->bufs + i; 517 if (cur_buf->skb) { 518 dma_unmap_single(rxq->dev, 519 dma_unmap_addr(cur_buf, dma), 520 dma_unmap_len(cur_buf, size), 521 DMA_FROM_DEVICE); 522 dev_kfree_skb(cur_buf->skb); 523 cur_buf->skb = NULL; 524 dma_unmap_len_set(cur_buf, size, 0); 525 dma_unmap_addr_set(cur_buf, dma, 0); 526 } 527 } 528 529 rxq->write_idx = 0; 530 rxq->read_idx = 0; 531 rxq->rrd_read_idx = 0; 532 } 533 534 static void alx_free_buffers(struct alx_priv *alx) 535 { 536 int i; 537 538 for (i = 0; i < alx->num_txq; i++) 539 if (alx->qnapi[i] && alx->qnapi[i]->txq) 540 alx_free_txring_buf(alx->qnapi[i]->txq); 541 542 if (alx->qnapi[0] && alx->qnapi[0]->rxq) 543 alx_free_rxring_buf(alx->qnapi[0]->rxq); 544 } 545 546 static int alx_reinit_rings(struct alx_priv *alx) 547 { 548 alx_free_buffers(alx); 549 550 alx_init_ring_ptrs(alx); 551 552 if (!alx_refill_rx_ring(alx, GFP_KERNEL)) 553 return -ENOMEM; 554 555 return 0; 556 } 557 558 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash) 559 { 560 u32 crc32, bit, reg; 561 562 crc32 = ether_crc(ETH_ALEN, addr); 563 reg = (crc32 >> 31) & 0x1; 564 bit = (crc32 >> 26) & 0x1F; 565 566 mc_hash[reg] |= BIT(bit); 567 } 568 569 static void __alx_set_rx_mode(struct net_device *netdev) 570 { 571 struct alx_priv *alx = netdev_priv(netdev); 572 struct alx_hw *hw = &alx->hw; 573 struct netdev_hw_addr *ha; 574 u32 mc_hash[2] = {}; 575 576 if (!(netdev->flags & IFF_ALLMULTI)) { 577 netdev_for_each_mc_addr(ha, netdev) 578 alx_add_mc_addr(hw, ha->addr, mc_hash); 579 580 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]); 581 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]); 582 } 583 584 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN); 585 if (netdev->flags & IFF_PROMISC) 586 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN; 587 if (netdev->flags & IFF_ALLMULTI) 588 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN; 589 590 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 591 } 592 593 static void alx_set_rx_mode(struct net_device *netdev) 594 { 595 __alx_set_rx_mode(netdev); 596 } 597 598 static int alx_set_mac_address(struct net_device *netdev, void *data) 599 { 600 struct alx_priv *alx = netdev_priv(netdev); 601 struct alx_hw *hw = &alx->hw; 602 struct sockaddr *addr = data; 603 604 if (!is_valid_ether_addr(addr->sa_data)) 605 return -EADDRNOTAVAIL; 606 607 if (netdev->addr_assign_type & NET_ADDR_RANDOM) 608 netdev->addr_assign_type ^= NET_ADDR_RANDOM; 609 610 eth_hw_addr_set(netdev, addr->sa_data); 611 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 612 alx_set_macaddr(hw, hw->mac_addr); 613 614 return 0; 615 } 616 617 static int alx_alloc_tx_ring(struct alx_priv *alx, struct alx_tx_queue *txq, 618 int offset) 619 { 620 txq->bufs = kcalloc(txq->count, sizeof(struct alx_buffer), GFP_KERNEL); 621 if (!txq->bufs) 622 return -ENOMEM; 623 624 txq->tpd = alx->descmem.virt + offset; 625 txq->tpd_dma = alx->descmem.dma + offset; 626 offset += sizeof(struct alx_txd) * txq->count; 627 628 return offset; 629 } 630 631 static int alx_alloc_rx_ring(struct alx_priv *alx, struct alx_rx_queue *rxq, 632 int offset) 633 { 634 rxq->bufs = kcalloc(rxq->count, sizeof(struct alx_buffer), GFP_KERNEL); 635 if (!rxq->bufs) 636 return -ENOMEM; 637 638 rxq->rrd = alx->descmem.virt + offset; 639 rxq->rrd_dma = alx->descmem.dma + offset; 640 offset += sizeof(struct alx_rrd) * rxq->count; 641 642 rxq->rfd = alx->descmem.virt + offset; 643 rxq->rfd_dma = alx->descmem.dma + offset; 644 offset += sizeof(struct alx_rfd) * rxq->count; 645 646 return offset; 647 } 648 649 static int alx_alloc_rings(struct alx_priv *alx) 650 { 651 int i, offset = 0; 652 653 /* physical tx/rx ring descriptors 654 * 655 * Allocate them as a single chunk because they must not cross a 656 * 4G boundary (hardware has a single register for high 32 bits 657 * of addresses only) 658 */ 659 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz * 660 alx->num_txq + 661 sizeof(struct alx_rrd) * alx->rx_ringsz + 662 sizeof(struct alx_rfd) * alx->rx_ringsz; 663 alx->descmem.virt = dma_alloc_coherent(&alx->hw.pdev->dev, 664 alx->descmem.size, 665 &alx->descmem.dma, GFP_KERNEL); 666 if (!alx->descmem.virt) 667 return -ENOMEM; 668 669 /* alignment requirements */ 670 BUILD_BUG_ON(sizeof(struct alx_txd) % 8); 671 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8); 672 673 for (i = 0; i < alx->num_txq; i++) { 674 offset = alx_alloc_tx_ring(alx, alx->qnapi[i]->txq, offset); 675 if (offset < 0) { 676 netdev_err(alx->dev, "Allocation of tx buffer failed!\n"); 677 return -ENOMEM; 678 } 679 } 680 681 offset = alx_alloc_rx_ring(alx, alx->qnapi[0]->rxq, offset); 682 if (offset < 0) { 683 netdev_err(alx->dev, "Allocation of rx buffer failed!\n"); 684 return -ENOMEM; 685 } 686 687 return 0; 688 } 689 690 static void alx_free_rings(struct alx_priv *alx) 691 { 692 int i; 693 694 alx_free_buffers(alx); 695 696 for (i = 0; i < alx->num_txq; i++) 697 if (alx->qnapi[i] && alx->qnapi[i]->txq) 698 kfree(alx->qnapi[i]->txq->bufs); 699 700 if (alx->qnapi[0] && alx->qnapi[0]->rxq) 701 kfree(alx->qnapi[0]->rxq->bufs); 702 703 if (alx->descmem.virt) 704 dma_free_coherent(&alx->hw.pdev->dev, 705 alx->descmem.size, 706 alx->descmem.virt, 707 alx->descmem.dma); 708 } 709 710 static void alx_free_napis(struct alx_priv *alx) 711 { 712 struct alx_napi *np; 713 int i; 714 715 for (i = 0; i < alx->num_napi; i++) { 716 np = alx->qnapi[i]; 717 if (!np) 718 continue; 719 720 netif_napi_del(&np->napi); 721 kfree(np->txq); 722 kfree(np->rxq); 723 kfree(np); 724 alx->qnapi[i] = NULL; 725 } 726 } 727 728 static const u16 tx_pidx_reg[] = {ALX_TPD_PRI0_PIDX, ALX_TPD_PRI1_PIDX, 729 ALX_TPD_PRI2_PIDX, ALX_TPD_PRI3_PIDX}; 730 static const u16 tx_cidx_reg[] = {ALX_TPD_PRI0_CIDX, ALX_TPD_PRI1_CIDX, 731 ALX_TPD_PRI2_CIDX, ALX_TPD_PRI3_CIDX}; 732 static const u32 tx_vect_mask[] = {ALX_ISR_TX_Q0, ALX_ISR_TX_Q1, 733 ALX_ISR_TX_Q2, ALX_ISR_TX_Q3}; 734 static const u32 rx_vect_mask[] = {ALX_ISR_RX_Q0, ALX_ISR_RX_Q1, 735 ALX_ISR_RX_Q2, ALX_ISR_RX_Q3, 736 ALX_ISR_RX_Q4, ALX_ISR_RX_Q5, 737 ALX_ISR_RX_Q6, ALX_ISR_RX_Q7}; 738 739 static int alx_alloc_napis(struct alx_priv *alx) 740 { 741 struct alx_napi *np; 742 struct alx_rx_queue *rxq; 743 struct alx_tx_queue *txq; 744 int i; 745 746 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 747 748 /* allocate alx_napi structures */ 749 for (i = 0; i < alx->num_napi; i++) { 750 np = kzalloc(sizeof(struct alx_napi), GFP_KERNEL); 751 if (!np) 752 goto err_out; 753 754 np->alx = alx; 755 netif_napi_add(alx->dev, &np->napi, alx_poll); 756 alx->qnapi[i] = np; 757 } 758 759 /* allocate tx queues */ 760 for (i = 0; i < alx->num_txq; i++) { 761 np = alx->qnapi[i]; 762 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 763 if (!txq) 764 goto err_out; 765 766 np->txq = txq; 767 txq->p_reg = tx_pidx_reg[i]; 768 txq->c_reg = tx_cidx_reg[i]; 769 txq->queue_idx = i; 770 txq->count = alx->tx_ringsz; 771 txq->netdev = alx->dev; 772 txq->dev = &alx->hw.pdev->dev; 773 np->vec_mask |= tx_vect_mask[i]; 774 alx->int_mask |= tx_vect_mask[i]; 775 } 776 777 /* allocate rx queues */ 778 np = alx->qnapi[0]; 779 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL); 780 if (!rxq) 781 goto err_out; 782 783 np->rxq = rxq; 784 rxq->np = alx->qnapi[0]; 785 rxq->queue_idx = 0; 786 rxq->count = alx->rx_ringsz; 787 rxq->netdev = alx->dev; 788 rxq->dev = &alx->hw.pdev->dev; 789 np->vec_mask |= rx_vect_mask[0]; 790 alx->int_mask |= rx_vect_mask[0]; 791 792 return 0; 793 794 err_out: 795 netdev_err(alx->dev, "error allocating internal structures\n"); 796 alx_free_napis(alx); 797 return -ENOMEM; 798 } 799 800 static const int txq_vec_mapping_shift[] = { 801 0, ALX_MSI_MAP_TBL1_TXQ0_SHIFT, 802 0, ALX_MSI_MAP_TBL1_TXQ1_SHIFT, 803 1, ALX_MSI_MAP_TBL2_TXQ2_SHIFT, 804 1, ALX_MSI_MAP_TBL2_TXQ3_SHIFT, 805 }; 806 807 static void alx_config_vector_mapping(struct alx_priv *alx) 808 { 809 struct alx_hw *hw = &alx->hw; 810 u32 tbl[2] = {0, 0}; 811 int i, vector, idx, shift; 812 813 if (alx->hw.pdev->msix_enabled) { 814 /* tx mappings */ 815 for (i = 0, vector = 1; i < alx->num_txq; i++, vector++) { 816 idx = txq_vec_mapping_shift[i * 2]; 817 shift = txq_vec_mapping_shift[i * 2 + 1]; 818 tbl[idx] |= vector << shift; 819 } 820 821 /* rx mapping */ 822 tbl[0] |= 1 << ALX_MSI_MAP_TBL1_RXQ0_SHIFT; 823 } 824 825 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, tbl[0]); 826 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, tbl[1]); 827 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0); 828 } 829 830 static int alx_enable_msix(struct alx_priv *alx) 831 { 832 int err, num_vec, num_txq, num_rxq; 833 834 num_txq = min_t(int, num_online_cpus(), ALX_MAX_TX_QUEUES); 835 num_rxq = 1; 836 num_vec = max_t(int, num_txq, num_rxq) + 1; 837 838 err = pci_alloc_irq_vectors(alx->hw.pdev, num_vec, num_vec, 839 PCI_IRQ_MSIX); 840 if (err < 0) { 841 netdev_warn(alx->dev, "Enabling MSI-X interrupts failed!\n"); 842 return err; 843 } 844 845 alx->num_vec = num_vec; 846 alx->num_napi = num_vec - 1; 847 alx->num_txq = num_txq; 848 alx->num_rxq = num_rxq; 849 850 return err; 851 } 852 853 static int alx_request_msix(struct alx_priv *alx) 854 { 855 struct net_device *netdev = alx->dev; 856 int i, err, vector = 0, free_vector = 0; 857 858 err = request_irq(pci_irq_vector(alx->hw.pdev, 0), alx_intr_msix_misc, 859 0, netdev->name, alx); 860 if (err) 861 goto out_err; 862 863 for (i = 0; i < alx->num_napi; i++) { 864 struct alx_napi *np = alx->qnapi[i]; 865 866 vector++; 867 868 if (np->txq && np->rxq) 869 sprintf(np->irq_lbl, "%s-TxRx-%u", netdev->name, 870 np->txq->queue_idx); 871 else if (np->txq) 872 sprintf(np->irq_lbl, "%s-tx-%u", netdev->name, 873 np->txq->queue_idx); 874 else if (np->rxq) 875 sprintf(np->irq_lbl, "%s-rx-%u", netdev->name, 876 np->rxq->queue_idx); 877 else 878 sprintf(np->irq_lbl, "%s-unused", netdev->name); 879 880 np->vec_idx = vector; 881 err = request_irq(pci_irq_vector(alx->hw.pdev, vector), 882 alx_intr_msix_ring, 0, np->irq_lbl, np); 883 if (err) 884 goto out_free; 885 } 886 return 0; 887 888 out_free: 889 free_irq(pci_irq_vector(alx->hw.pdev, free_vector++), alx); 890 891 vector--; 892 for (i = 0; i < vector; i++) 893 free_irq(pci_irq_vector(alx->hw.pdev,free_vector++), 894 alx->qnapi[i]); 895 896 out_err: 897 return err; 898 } 899 900 static int alx_init_intr(struct alx_priv *alx) 901 { 902 int ret; 903 904 ret = pci_alloc_irq_vectors(alx->hw.pdev, 1, 1, 905 PCI_IRQ_MSI | PCI_IRQ_LEGACY); 906 if (ret < 0) 907 return ret; 908 909 alx->num_vec = 1; 910 alx->num_napi = 1; 911 alx->num_txq = 1; 912 alx->num_rxq = 1; 913 return 0; 914 } 915 916 static void alx_irq_enable(struct alx_priv *alx) 917 { 918 struct alx_hw *hw = &alx->hw; 919 int i; 920 921 /* level-1 interrupt switch */ 922 alx_write_mem32(hw, ALX_ISR, 0); 923 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 924 alx_post_write(hw); 925 926 if (alx->hw.pdev->msix_enabled) { 927 /* enable all msix irqs */ 928 for (i = 0; i < alx->num_vec; i++) 929 alx_mask_msix(hw, i, false); 930 } 931 } 932 933 static void alx_irq_disable(struct alx_priv *alx) 934 { 935 struct alx_hw *hw = &alx->hw; 936 int i; 937 938 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS); 939 alx_write_mem32(hw, ALX_IMR, 0); 940 alx_post_write(hw); 941 942 if (alx->hw.pdev->msix_enabled) { 943 for (i = 0; i < alx->num_vec; i++) { 944 alx_mask_msix(hw, i, true); 945 synchronize_irq(pci_irq_vector(alx->hw.pdev, i)); 946 } 947 } else { 948 synchronize_irq(pci_irq_vector(alx->hw.pdev, 0)); 949 } 950 } 951 952 static int alx_realloc_resources(struct alx_priv *alx) 953 { 954 int err; 955 956 alx_free_rings(alx); 957 alx_free_napis(alx); 958 pci_free_irq_vectors(alx->hw.pdev); 959 960 err = alx_init_intr(alx); 961 if (err) 962 return err; 963 964 err = alx_alloc_napis(alx); 965 if (err) 966 return err; 967 968 err = alx_alloc_rings(alx); 969 if (err) 970 return err; 971 972 return 0; 973 } 974 975 static int alx_request_irq(struct alx_priv *alx) 976 { 977 struct pci_dev *pdev = alx->hw.pdev; 978 struct alx_hw *hw = &alx->hw; 979 int err; 980 u32 msi_ctrl; 981 982 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT; 983 984 if (alx->hw.pdev->msix_enabled) { 985 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, msi_ctrl); 986 err = alx_request_msix(alx); 987 if (!err) 988 goto out; 989 990 /* msix request failed, realloc resources */ 991 err = alx_realloc_resources(alx); 992 if (err) 993 goto out; 994 } 995 996 if (alx->hw.pdev->msi_enabled) { 997 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 998 msi_ctrl | ALX_MSI_MASK_SEL_LINE); 999 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_msi, 0, 1000 alx->dev->name, alx); 1001 if (!err) 1002 goto out; 1003 1004 /* fall back to legacy interrupt */ 1005 pci_free_irq_vectors(alx->hw.pdev); 1006 } 1007 1008 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0); 1009 err = request_irq(pci_irq_vector(pdev, 0), alx_intr_legacy, IRQF_SHARED, 1010 alx->dev->name, alx); 1011 out: 1012 if (!err) 1013 alx_config_vector_mapping(alx); 1014 else 1015 netdev_err(alx->dev, "IRQ registration failed!\n"); 1016 return err; 1017 } 1018 1019 static void alx_free_irq(struct alx_priv *alx) 1020 { 1021 struct pci_dev *pdev = alx->hw.pdev; 1022 int i; 1023 1024 free_irq(pci_irq_vector(pdev, 0), alx); 1025 if (alx->hw.pdev->msix_enabled) { 1026 for (i = 0; i < alx->num_napi; i++) 1027 free_irq(pci_irq_vector(pdev, i + 1), alx->qnapi[i]); 1028 } 1029 1030 pci_free_irq_vectors(pdev); 1031 } 1032 1033 static int alx_identify_hw(struct alx_priv *alx) 1034 { 1035 struct alx_hw *hw = &alx->hw; 1036 int rev = alx_hw_revision(hw); 1037 1038 if (rev > ALX_REV_C0) 1039 return -EINVAL; 1040 1041 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2; 1042 1043 return 0; 1044 } 1045 1046 static int alx_init_sw(struct alx_priv *alx) 1047 { 1048 struct pci_dev *pdev = alx->hw.pdev; 1049 struct alx_hw *hw = &alx->hw; 1050 int err; 1051 1052 err = alx_identify_hw(alx); 1053 if (err) { 1054 dev_err(&pdev->dev, "unrecognized chip, aborting\n"); 1055 return err; 1056 } 1057 1058 alx->hw.lnk_patch = 1059 pdev->device == ALX_DEV_ID_AR8161 && 1060 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC && 1061 pdev->subsystem_device == 0x0091 && 1062 pdev->revision == 0; 1063 1064 hw->smb_timer = 400; 1065 hw->mtu = alx->dev->mtu; 1066 alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu); 1067 /* MTU range: 34 - 9256 */ 1068 alx->dev->min_mtu = 34; 1069 alx->dev->max_mtu = ALX_MAX_FRAME_LEN(ALX_MAX_FRAME_SIZE); 1070 alx->tx_ringsz = 256; 1071 alx->rx_ringsz = 512; 1072 hw->imt = 200; 1073 alx->int_mask = ALX_ISR_MISC; 1074 hw->dma_chnl = hw->max_dma_chnl; 1075 hw->ith_tpd = alx->tx_ringsz / 3; 1076 hw->link_speed = SPEED_UNKNOWN; 1077 hw->duplex = DUPLEX_UNKNOWN; 1078 hw->adv_cfg = ADVERTISED_Autoneg | 1079 ADVERTISED_10baseT_Half | 1080 ADVERTISED_10baseT_Full | 1081 ADVERTISED_100baseT_Full | 1082 ADVERTISED_100baseT_Half | 1083 ADVERTISED_1000baseT_Full; 1084 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX; 1085 1086 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN | 1087 ALX_MAC_CTRL_MHASH_ALG_HI5B | 1088 ALX_MAC_CTRL_BRD_EN | 1089 ALX_MAC_CTRL_PCRCE | 1090 ALX_MAC_CTRL_CRCE | 1091 ALX_MAC_CTRL_RXFC_EN | 1092 ALX_MAC_CTRL_TXFC_EN | 1093 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT; 1094 mutex_init(&alx->mtx); 1095 1096 return 0; 1097 } 1098 1099 1100 static netdev_features_t alx_fix_features(struct net_device *netdev, 1101 netdev_features_t features) 1102 { 1103 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE) 1104 features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 1105 1106 return features; 1107 } 1108 1109 static void alx_netif_stop(struct alx_priv *alx) 1110 { 1111 int i; 1112 1113 netif_trans_update(alx->dev); 1114 if (netif_carrier_ok(alx->dev)) { 1115 netif_carrier_off(alx->dev); 1116 netif_tx_disable(alx->dev); 1117 for (i = 0; i < alx->num_napi; i++) 1118 napi_disable(&alx->qnapi[i]->napi); 1119 } 1120 } 1121 1122 static void alx_halt(struct alx_priv *alx) 1123 { 1124 struct alx_hw *hw = &alx->hw; 1125 1126 lockdep_assert_held(&alx->mtx); 1127 1128 alx_netif_stop(alx); 1129 hw->link_speed = SPEED_UNKNOWN; 1130 hw->duplex = DUPLEX_UNKNOWN; 1131 1132 alx_reset_mac(hw); 1133 1134 /* disable l0s/l1 */ 1135 alx_enable_aspm(hw, false, false); 1136 alx_irq_disable(alx); 1137 alx_free_buffers(alx); 1138 } 1139 1140 static void alx_configure(struct alx_priv *alx) 1141 { 1142 struct alx_hw *hw = &alx->hw; 1143 1144 alx_configure_basic(hw); 1145 alx_disable_rss(hw); 1146 __alx_set_rx_mode(alx->dev); 1147 1148 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 1149 } 1150 1151 static void alx_activate(struct alx_priv *alx) 1152 { 1153 lockdep_assert_held(&alx->mtx); 1154 1155 /* hardware setting lost, restore it */ 1156 alx_reinit_rings(alx); 1157 alx_configure(alx); 1158 1159 /* clear old interrupts */ 1160 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 1161 1162 alx_irq_enable(alx); 1163 1164 alx_schedule_link_check(alx); 1165 } 1166 1167 static void alx_reinit(struct alx_priv *alx) 1168 { 1169 lockdep_assert_held(&alx->mtx); 1170 1171 alx_halt(alx); 1172 alx_activate(alx); 1173 } 1174 1175 static int alx_change_mtu(struct net_device *netdev, int mtu) 1176 { 1177 struct alx_priv *alx = netdev_priv(netdev); 1178 int max_frame = ALX_MAX_FRAME_LEN(mtu); 1179 1180 netdev->mtu = mtu; 1181 alx->hw.mtu = mtu; 1182 alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE); 1183 netdev_update_features(netdev); 1184 if (netif_running(netdev)) { 1185 mutex_lock(&alx->mtx); 1186 alx_reinit(alx); 1187 mutex_unlock(&alx->mtx); 1188 } 1189 return 0; 1190 } 1191 1192 static void alx_netif_start(struct alx_priv *alx) 1193 { 1194 int i; 1195 1196 netif_tx_wake_all_queues(alx->dev); 1197 for (i = 0; i < alx->num_napi; i++) 1198 napi_enable(&alx->qnapi[i]->napi); 1199 netif_carrier_on(alx->dev); 1200 } 1201 1202 static int __alx_open(struct alx_priv *alx, bool resume) 1203 { 1204 int err; 1205 1206 err = alx_enable_msix(alx); 1207 if (err < 0) { 1208 err = alx_init_intr(alx); 1209 if (err) 1210 return err; 1211 } 1212 1213 if (!resume) 1214 netif_carrier_off(alx->dev); 1215 1216 err = alx_alloc_napis(alx); 1217 if (err) 1218 goto out_disable_adv_intr; 1219 1220 err = alx_alloc_rings(alx); 1221 if (err) 1222 goto out_free_rings; 1223 1224 alx_configure(alx); 1225 1226 err = alx_request_irq(alx); 1227 if (err) 1228 goto out_free_rings; 1229 1230 /* must be called after alx_request_irq because the chip stops working 1231 * if we copy the dma addresses in alx_init_ring_ptrs twice when 1232 * requesting msi-x interrupts failed 1233 */ 1234 alx_reinit_rings(alx); 1235 1236 netif_set_real_num_tx_queues(alx->dev, alx->num_txq); 1237 netif_set_real_num_rx_queues(alx->dev, alx->num_rxq); 1238 1239 /* clear old interrupts */ 1240 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 1241 1242 alx_irq_enable(alx); 1243 1244 if (!resume) 1245 netif_tx_start_all_queues(alx->dev); 1246 1247 alx_schedule_link_check(alx); 1248 return 0; 1249 1250 out_free_rings: 1251 alx_free_rings(alx); 1252 alx_free_napis(alx); 1253 out_disable_adv_intr: 1254 pci_free_irq_vectors(alx->hw.pdev); 1255 return err; 1256 } 1257 1258 static void __alx_stop(struct alx_priv *alx) 1259 { 1260 lockdep_assert_held(&alx->mtx); 1261 1262 alx_free_irq(alx); 1263 1264 cancel_work_sync(&alx->link_check_wk); 1265 cancel_work_sync(&alx->reset_wk); 1266 1267 alx_halt(alx); 1268 alx_free_rings(alx); 1269 alx_free_napis(alx); 1270 } 1271 1272 static const char *alx_speed_desc(struct alx_hw *hw) 1273 { 1274 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) { 1275 case ADVERTISED_1000baseT_Full: 1276 return "1 Gbps Full"; 1277 case ADVERTISED_100baseT_Full: 1278 return "100 Mbps Full"; 1279 case ADVERTISED_100baseT_Half: 1280 return "100 Mbps Half"; 1281 case ADVERTISED_10baseT_Full: 1282 return "10 Mbps Full"; 1283 case ADVERTISED_10baseT_Half: 1284 return "10 Mbps Half"; 1285 default: 1286 return "Unknown speed"; 1287 } 1288 } 1289 1290 static void alx_check_link(struct alx_priv *alx) 1291 { 1292 struct alx_hw *hw = &alx->hw; 1293 unsigned long flags; 1294 int old_speed; 1295 int err; 1296 1297 lockdep_assert_held(&alx->mtx); 1298 1299 /* clear PHY internal interrupt status, otherwise the main 1300 * interrupt status will be asserted forever 1301 */ 1302 alx_clear_phy_intr(hw); 1303 1304 old_speed = hw->link_speed; 1305 err = alx_read_phy_link(hw); 1306 if (err < 0) 1307 goto reset; 1308 1309 spin_lock_irqsave(&alx->irq_lock, flags); 1310 alx->int_mask |= ALX_ISR_PHY; 1311 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 1312 spin_unlock_irqrestore(&alx->irq_lock, flags); 1313 1314 if (old_speed == hw->link_speed) 1315 return; 1316 1317 if (hw->link_speed != SPEED_UNKNOWN) { 1318 netif_info(alx, link, alx->dev, 1319 "NIC Up: %s\n", alx_speed_desc(hw)); 1320 alx_post_phy_link(hw); 1321 alx_enable_aspm(hw, true, true); 1322 alx_start_mac(hw); 1323 1324 if (old_speed == SPEED_UNKNOWN) 1325 alx_netif_start(alx); 1326 } else { 1327 /* link is now down */ 1328 alx_netif_stop(alx); 1329 netif_info(alx, link, alx->dev, "Link Down\n"); 1330 err = alx_reset_mac(hw); 1331 if (err) 1332 goto reset; 1333 alx_irq_disable(alx); 1334 1335 /* MAC reset causes all HW settings to be lost, restore all */ 1336 err = alx_reinit_rings(alx); 1337 if (err) 1338 goto reset; 1339 alx_configure(alx); 1340 alx_enable_aspm(hw, false, true); 1341 alx_post_phy_link(hw); 1342 alx_irq_enable(alx); 1343 } 1344 1345 return; 1346 1347 reset: 1348 alx_schedule_reset(alx); 1349 } 1350 1351 static int alx_open(struct net_device *netdev) 1352 { 1353 struct alx_priv *alx = netdev_priv(netdev); 1354 int ret; 1355 1356 mutex_lock(&alx->mtx); 1357 ret = __alx_open(alx, false); 1358 mutex_unlock(&alx->mtx); 1359 1360 return ret; 1361 } 1362 1363 static int alx_stop(struct net_device *netdev) 1364 { 1365 struct alx_priv *alx = netdev_priv(netdev); 1366 1367 mutex_lock(&alx->mtx); 1368 __alx_stop(alx); 1369 mutex_unlock(&alx->mtx); 1370 1371 return 0; 1372 } 1373 1374 static void alx_link_check(struct work_struct *work) 1375 { 1376 struct alx_priv *alx; 1377 1378 alx = container_of(work, struct alx_priv, link_check_wk); 1379 1380 mutex_lock(&alx->mtx); 1381 alx_check_link(alx); 1382 mutex_unlock(&alx->mtx); 1383 } 1384 1385 static void alx_reset(struct work_struct *work) 1386 { 1387 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk); 1388 1389 mutex_lock(&alx->mtx); 1390 alx_reinit(alx); 1391 mutex_unlock(&alx->mtx); 1392 } 1393 1394 static int alx_tpd_req(struct sk_buff *skb) 1395 { 1396 int num; 1397 1398 num = skb_shinfo(skb)->nr_frags + 1; 1399 /* we need one extra descriptor for LSOv2 */ 1400 if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) 1401 num++; 1402 1403 return num; 1404 } 1405 1406 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first) 1407 { 1408 u8 cso, css; 1409 1410 if (skb->ip_summed != CHECKSUM_PARTIAL) 1411 return 0; 1412 1413 cso = skb_checksum_start_offset(skb); 1414 if (cso & 1) 1415 return -EINVAL; 1416 1417 css = cso + skb->csum_offset; 1418 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT); 1419 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT); 1420 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT); 1421 1422 return 0; 1423 } 1424 1425 static int alx_tso(struct sk_buff *skb, struct alx_txd *first) 1426 { 1427 int err; 1428 1429 if (skb->ip_summed != CHECKSUM_PARTIAL) 1430 return 0; 1431 1432 if (!skb_is_gso(skb)) 1433 return 0; 1434 1435 err = skb_cow_head(skb, 0); 1436 if (err < 0) 1437 return err; 1438 1439 if (skb->protocol == htons(ETH_P_IP)) { 1440 struct iphdr *iph = ip_hdr(skb); 1441 1442 iph->check = 0; 1443 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 1444 0, IPPROTO_TCP, 0); 1445 first->word1 |= 1 << TPD_IPV4_SHIFT; 1446 } else if (skb_is_gso_v6(skb)) { 1447 tcp_v6_gso_csum_prep(skb); 1448 /* LSOv2: the first TPD only provides the packet length */ 1449 first->adrl.l.pkt_len = skb->len; 1450 first->word1 |= 1 << TPD_LSO_V2_SHIFT; 1451 } 1452 1453 first->word1 |= 1 << TPD_LSO_EN_SHIFT; 1454 first->word1 |= (skb_transport_offset(skb) & 1455 TPD_L4HDROFFSET_MASK) << TPD_L4HDROFFSET_SHIFT; 1456 first->word1 |= (skb_shinfo(skb)->gso_size & 1457 TPD_MSS_MASK) << TPD_MSS_SHIFT; 1458 return 1; 1459 } 1460 1461 static int alx_map_tx_skb(struct alx_tx_queue *txq, struct sk_buff *skb) 1462 { 1463 struct alx_txd *tpd, *first_tpd; 1464 dma_addr_t dma; 1465 int maplen, f, first_idx = txq->write_idx; 1466 1467 first_tpd = &txq->tpd[txq->write_idx]; 1468 tpd = first_tpd; 1469 1470 if (tpd->word1 & (1 << TPD_LSO_V2_SHIFT)) { 1471 if (++txq->write_idx == txq->count) 1472 txq->write_idx = 0; 1473 1474 tpd = &txq->tpd[txq->write_idx]; 1475 tpd->len = first_tpd->len; 1476 tpd->vlan_tag = first_tpd->vlan_tag; 1477 tpd->word1 = first_tpd->word1; 1478 } 1479 1480 maplen = skb_headlen(skb); 1481 dma = dma_map_single(txq->dev, skb->data, maplen, 1482 DMA_TO_DEVICE); 1483 if (dma_mapping_error(txq->dev, dma)) 1484 goto err_dma; 1485 1486 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1487 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1488 1489 tpd->adrl.addr = cpu_to_le64(dma); 1490 tpd->len = cpu_to_le16(maplen); 1491 1492 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1493 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 1494 1495 if (++txq->write_idx == txq->count) 1496 txq->write_idx = 0; 1497 tpd = &txq->tpd[txq->write_idx]; 1498 1499 tpd->word1 = first_tpd->word1; 1500 1501 maplen = skb_frag_size(frag); 1502 dma = skb_frag_dma_map(txq->dev, frag, 0, 1503 maplen, DMA_TO_DEVICE); 1504 if (dma_mapping_error(txq->dev, dma)) 1505 goto err_dma; 1506 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1507 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1508 1509 tpd->adrl.addr = cpu_to_le64(dma); 1510 tpd->len = cpu_to_le16(maplen); 1511 } 1512 1513 /* last TPD, set EOP flag and store skb */ 1514 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT); 1515 txq->bufs[txq->write_idx].skb = skb; 1516 1517 if (++txq->write_idx == txq->count) 1518 txq->write_idx = 0; 1519 1520 return 0; 1521 1522 err_dma: 1523 f = first_idx; 1524 while (f != txq->write_idx) { 1525 alx_free_txbuf(txq, f); 1526 if (++f == txq->count) 1527 f = 0; 1528 } 1529 return -ENOMEM; 1530 } 1531 1532 static netdev_tx_t alx_start_xmit_ring(struct sk_buff *skb, 1533 struct alx_tx_queue *txq) 1534 { 1535 struct alx_priv *alx; 1536 struct alx_txd *first; 1537 int tso; 1538 1539 alx = netdev_priv(txq->netdev); 1540 1541 if (alx_tpd_avail(txq) < alx_tpd_req(skb)) { 1542 netif_tx_stop_queue(alx_get_tx_queue(txq)); 1543 goto drop; 1544 } 1545 1546 first = &txq->tpd[txq->write_idx]; 1547 memset(first, 0, sizeof(*first)); 1548 1549 tso = alx_tso(skb, first); 1550 if (tso < 0) 1551 goto drop; 1552 else if (!tso && alx_tx_csum(skb, first)) 1553 goto drop; 1554 1555 if (alx_map_tx_skb(txq, skb) < 0) 1556 goto drop; 1557 1558 netdev_tx_sent_queue(alx_get_tx_queue(txq), skb->len); 1559 1560 /* flush updates before updating hardware */ 1561 wmb(); 1562 alx_write_mem16(&alx->hw, txq->p_reg, txq->write_idx); 1563 1564 if (alx_tpd_avail(txq) < txq->count / 8) 1565 netif_tx_stop_queue(alx_get_tx_queue(txq)); 1566 1567 return NETDEV_TX_OK; 1568 1569 drop: 1570 dev_kfree_skb_any(skb); 1571 return NETDEV_TX_OK; 1572 } 1573 1574 static netdev_tx_t alx_start_xmit(struct sk_buff *skb, 1575 struct net_device *netdev) 1576 { 1577 struct alx_priv *alx = netdev_priv(netdev); 1578 return alx_start_xmit_ring(skb, alx_tx_queue_mapping(alx, skb)); 1579 } 1580 1581 static void alx_tx_timeout(struct net_device *dev, unsigned int txqueue) 1582 { 1583 struct alx_priv *alx = netdev_priv(dev); 1584 1585 alx_schedule_reset(alx); 1586 } 1587 1588 static int alx_mdio_read(struct net_device *netdev, 1589 int prtad, int devad, u16 addr) 1590 { 1591 struct alx_priv *alx = netdev_priv(netdev); 1592 struct alx_hw *hw = &alx->hw; 1593 u16 val; 1594 int err; 1595 1596 if (prtad != hw->mdio.prtad) 1597 return -EINVAL; 1598 1599 if (devad == MDIO_DEVAD_NONE) 1600 err = alx_read_phy_reg(hw, addr, &val); 1601 else 1602 err = alx_read_phy_ext(hw, devad, addr, &val); 1603 1604 if (err) 1605 return err; 1606 return val; 1607 } 1608 1609 static int alx_mdio_write(struct net_device *netdev, 1610 int prtad, int devad, u16 addr, u16 val) 1611 { 1612 struct alx_priv *alx = netdev_priv(netdev); 1613 struct alx_hw *hw = &alx->hw; 1614 1615 if (prtad != hw->mdio.prtad) 1616 return -EINVAL; 1617 1618 if (devad == MDIO_DEVAD_NONE) 1619 return alx_write_phy_reg(hw, addr, val); 1620 1621 return alx_write_phy_ext(hw, devad, addr, val); 1622 } 1623 1624 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1625 { 1626 struct alx_priv *alx = netdev_priv(netdev); 1627 1628 if (!netif_running(netdev)) 1629 return -EAGAIN; 1630 1631 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd); 1632 } 1633 1634 #ifdef CONFIG_NET_POLL_CONTROLLER 1635 static void alx_poll_controller(struct net_device *netdev) 1636 { 1637 struct alx_priv *alx = netdev_priv(netdev); 1638 int i; 1639 1640 if (alx->hw.pdev->msix_enabled) { 1641 alx_intr_msix_misc(0, alx); 1642 for (i = 0; i < alx->num_txq; i++) 1643 alx_intr_msix_ring(0, alx->qnapi[i]); 1644 } else if (alx->hw.pdev->msi_enabled) 1645 alx_intr_msi(0, alx); 1646 else 1647 alx_intr_legacy(0, alx); 1648 } 1649 #endif 1650 1651 static void alx_get_stats64(struct net_device *dev, 1652 struct rtnl_link_stats64 *net_stats) 1653 { 1654 struct alx_priv *alx = netdev_priv(dev); 1655 struct alx_hw_stats *hw_stats = &alx->hw.stats; 1656 1657 spin_lock(&alx->stats_lock); 1658 1659 alx_update_hw_stats(&alx->hw); 1660 1661 net_stats->tx_bytes = hw_stats->tx_byte_cnt; 1662 net_stats->rx_bytes = hw_stats->rx_byte_cnt; 1663 net_stats->multicast = hw_stats->rx_mcast; 1664 net_stats->collisions = hw_stats->tx_single_col + 1665 hw_stats->tx_multi_col + 1666 hw_stats->tx_late_col + 1667 hw_stats->tx_abort_col; 1668 1669 net_stats->rx_errors = hw_stats->rx_frag + 1670 hw_stats->rx_fcs_err + 1671 hw_stats->rx_len_err + 1672 hw_stats->rx_ov_sz + 1673 hw_stats->rx_ov_rrd + 1674 hw_stats->rx_align_err + 1675 hw_stats->rx_ov_rxf; 1676 1677 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf; 1678 net_stats->rx_length_errors = hw_stats->rx_len_err; 1679 net_stats->rx_crc_errors = hw_stats->rx_fcs_err; 1680 net_stats->rx_frame_errors = hw_stats->rx_align_err; 1681 net_stats->rx_dropped = hw_stats->rx_ov_rrd; 1682 1683 net_stats->tx_errors = hw_stats->tx_late_col + 1684 hw_stats->tx_abort_col + 1685 hw_stats->tx_underrun + 1686 hw_stats->tx_trunc; 1687 1688 net_stats->tx_aborted_errors = hw_stats->tx_abort_col; 1689 net_stats->tx_fifo_errors = hw_stats->tx_underrun; 1690 net_stats->tx_window_errors = hw_stats->tx_late_col; 1691 1692 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; 1693 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; 1694 1695 spin_unlock(&alx->stats_lock); 1696 } 1697 1698 static const struct net_device_ops alx_netdev_ops = { 1699 .ndo_open = alx_open, 1700 .ndo_stop = alx_stop, 1701 .ndo_start_xmit = alx_start_xmit, 1702 .ndo_get_stats64 = alx_get_stats64, 1703 .ndo_set_rx_mode = alx_set_rx_mode, 1704 .ndo_validate_addr = eth_validate_addr, 1705 .ndo_set_mac_address = alx_set_mac_address, 1706 .ndo_change_mtu = alx_change_mtu, 1707 .ndo_eth_ioctl = alx_ioctl, 1708 .ndo_tx_timeout = alx_tx_timeout, 1709 .ndo_fix_features = alx_fix_features, 1710 #ifdef CONFIG_NET_POLL_CONTROLLER 1711 .ndo_poll_controller = alx_poll_controller, 1712 #endif 1713 }; 1714 1715 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1716 { 1717 struct net_device *netdev; 1718 struct alx_priv *alx; 1719 struct alx_hw *hw; 1720 bool phy_configured; 1721 int err; 1722 1723 err = pci_enable_device_mem(pdev); 1724 if (err) 1725 return err; 1726 1727 /* The alx chip can DMA to 64-bit addresses, but it uses a single 1728 * shared register for the high 32 bits, so only a single, aligned, 1729 * 4 GB physical address range can be used for descriptors. 1730 */ 1731 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1732 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n"); 1733 } else { 1734 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1735 if (err) { 1736 dev_err(&pdev->dev, "No usable DMA config, aborting\n"); 1737 goto out_pci_disable; 1738 } 1739 } 1740 1741 err = pci_request_mem_regions(pdev, alx_drv_name); 1742 if (err) { 1743 dev_err(&pdev->dev, 1744 "pci_request_mem_regions failed\n"); 1745 goto out_pci_disable; 1746 } 1747 1748 pci_enable_pcie_error_reporting(pdev); 1749 pci_set_master(pdev); 1750 1751 if (!pdev->pm_cap) { 1752 dev_err(&pdev->dev, 1753 "Can't find power management capability, aborting\n"); 1754 err = -EIO; 1755 goto out_pci_release; 1756 } 1757 1758 netdev = alloc_etherdev_mqs(sizeof(*alx), 1759 ALX_MAX_TX_QUEUES, 1); 1760 if (!netdev) { 1761 err = -ENOMEM; 1762 goto out_pci_release; 1763 } 1764 1765 SET_NETDEV_DEV(netdev, &pdev->dev); 1766 alx = netdev_priv(netdev); 1767 spin_lock_init(&alx->hw.mdio_lock); 1768 spin_lock_init(&alx->irq_lock); 1769 spin_lock_init(&alx->stats_lock); 1770 alx->dev = netdev; 1771 alx->hw.pdev = pdev; 1772 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP | 1773 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL; 1774 hw = &alx->hw; 1775 pci_set_drvdata(pdev, alx); 1776 1777 hw->hw_addr = pci_ioremap_bar(pdev, 0); 1778 if (!hw->hw_addr) { 1779 dev_err(&pdev->dev, "cannot map device registers\n"); 1780 err = -EIO; 1781 goto out_free_netdev; 1782 } 1783 1784 netdev->netdev_ops = &alx_netdev_ops; 1785 netdev->ethtool_ops = &alx_ethtool_ops; 1786 netdev->irq = pci_irq_vector(pdev, 0); 1787 netdev->watchdog_timeo = ALX_WATCHDOG_TIME; 1788 1789 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG) 1790 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG; 1791 1792 err = alx_init_sw(alx); 1793 if (err) { 1794 dev_err(&pdev->dev, "net device private data init failed\n"); 1795 goto out_unmap; 1796 } 1797 1798 mutex_lock(&alx->mtx); 1799 1800 alx_reset_pcie(hw); 1801 1802 phy_configured = alx_phy_configured(hw); 1803 1804 if (!phy_configured) 1805 alx_reset_phy(hw); 1806 1807 err = alx_reset_mac(hw); 1808 if (err) { 1809 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err); 1810 goto out_unlock; 1811 } 1812 1813 /* setup link to put it in a known good starting state */ 1814 if (!phy_configured) { 1815 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl); 1816 if (err) { 1817 dev_err(&pdev->dev, 1818 "failed to configure PHY speed/duplex (err=%d)\n", 1819 err); 1820 goto out_unlock; 1821 } 1822 } 1823 1824 netdev->hw_features = NETIF_F_SG | 1825 NETIF_F_HW_CSUM | 1826 NETIF_F_RXCSUM | 1827 NETIF_F_TSO | 1828 NETIF_F_TSO6; 1829 1830 if (alx_get_perm_macaddr(hw, hw->perm_addr)) { 1831 dev_warn(&pdev->dev, 1832 "Invalid permanent address programmed, using random one\n"); 1833 eth_hw_addr_random(netdev); 1834 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len); 1835 } 1836 1837 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN); 1838 eth_hw_addr_set(netdev, hw->mac_addr); 1839 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN); 1840 1841 hw->mdio.prtad = 0; 1842 hw->mdio.mmds = 0; 1843 hw->mdio.dev = netdev; 1844 hw->mdio.mode_support = MDIO_SUPPORTS_C45 | 1845 MDIO_SUPPORTS_C22 | 1846 MDIO_EMULATE_C22; 1847 hw->mdio.mdio_read = alx_mdio_read; 1848 hw->mdio.mdio_write = alx_mdio_write; 1849 1850 if (!alx_get_phy_info(hw)) { 1851 dev_err(&pdev->dev, "failed to identify PHY\n"); 1852 err = -EIO; 1853 goto out_unlock; 1854 } 1855 1856 mutex_unlock(&alx->mtx); 1857 1858 INIT_WORK(&alx->link_check_wk, alx_link_check); 1859 INIT_WORK(&alx->reset_wk, alx_reset); 1860 netif_carrier_off(netdev); 1861 1862 err = register_netdev(netdev); 1863 if (err) { 1864 dev_err(&pdev->dev, "register netdevice failed\n"); 1865 goto out_unmap; 1866 } 1867 1868 netdev_info(netdev, 1869 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", 1870 netdev->dev_addr); 1871 1872 return 0; 1873 1874 out_unlock: 1875 mutex_unlock(&alx->mtx); 1876 out_unmap: 1877 iounmap(hw->hw_addr); 1878 out_free_netdev: 1879 free_netdev(netdev); 1880 out_pci_release: 1881 pci_release_mem_regions(pdev); 1882 pci_disable_pcie_error_reporting(pdev); 1883 out_pci_disable: 1884 pci_disable_device(pdev); 1885 return err; 1886 } 1887 1888 static void alx_remove(struct pci_dev *pdev) 1889 { 1890 struct alx_priv *alx = pci_get_drvdata(pdev); 1891 struct alx_hw *hw = &alx->hw; 1892 1893 /* restore permanent mac address */ 1894 alx_set_macaddr(hw, hw->perm_addr); 1895 1896 unregister_netdev(alx->dev); 1897 iounmap(hw->hw_addr); 1898 pci_release_mem_regions(pdev); 1899 1900 pci_disable_pcie_error_reporting(pdev); 1901 pci_disable_device(pdev); 1902 1903 mutex_destroy(&alx->mtx); 1904 1905 free_netdev(alx->dev); 1906 } 1907 1908 static int alx_suspend(struct device *dev) 1909 { 1910 struct alx_priv *alx = dev_get_drvdata(dev); 1911 1912 if (!netif_running(alx->dev)) 1913 return 0; 1914 1915 rtnl_lock(); 1916 netif_device_detach(alx->dev); 1917 1918 mutex_lock(&alx->mtx); 1919 __alx_stop(alx); 1920 mutex_unlock(&alx->mtx); 1921 rtnl_unlock(); 1922 1923 return 0; 1924 } 1925 1926 static int alx_resume(struct device *dev) 1927 { 1928 struct alx_priv *alx = dev_get_drvdata(dev); 1929 struct alx_hw *hw = &alx->hw; 1930 int err; 1931 1932 rtnl_lock(); 1933 mutex_lock(&alx->mtx); 1934 alx_reset_phy(hw); 1935 1936 if (!netif_running(alx->dev)) { 1937 err = 0; 1938 goto unlock; 1939 } 1940 1941 err = __alx_open(alx, true); 1942 if (err) 1943 goto unlock; 1944 1945 netif_device_attach(alx->dev); 1946 1947 unlock: 1948 mutex_unlock(&alx->mtx); 1949 rtnl_unlock(); 1950 return err; 1951 } 1952 1953 static DEFINE_SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume); 1954 1955 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev, 1956 pci_channel_state_t state) 1957 { 1958 struct alx_priv *alx = pci_get_drvdata(pdev); 1959 struct net_device *netdev = alx->dev; 1960 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET; 1961 1962 dev_info(&pdev->dev, "pci error detected\n"); 1963 1964 mutex_lock(&alx->mtx); 1965 1966 if (netif_running(netdev)) { 1967 netif_device_detach(netdev); 1968 alx_halt(alx); 1969 } 1970 1971 if (state == pci_channel_io_perm_failure) 1972 rc = PCI_ERS_RESULT_DISCONNECT; 1973 else 1974 pci_disable_device(pdev); 1975 1976 mutex_unlock(&alx->mtx); 1977 1978 return rc; 1979 } 1980 1981 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev) 1982 { 1983 struct alx_priv *alx = pci_get_drvdata(pdev); 1984 struct alx_hw *hw = &alx->hw; 1985 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 1986 1987 dev_info(&pdev->dev, "pci error slot reset\n"); 1988 1989 mutex_lock(&alx->mtx); 1990 1991 if (pci_enable_device(pdev)) { 1992 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n"); 1993 goto out; 1994 } 1995 1996 pci_set_master(pdev); 1997 1998 alx_reset_pcie(hw); 1999 if (!alx_reset_mac(hw)) 2000 rc = PCI_ERS_RESULT_RECOVERED; 2001 out: 2002 mutex_unlock(&alx->mtx); 2003 2004 return rc; 2005 } 2006 2007 static void alx_pci_error_resume(struct pci_dev *pdev) 2008 { 2009 struct alx_priv *alx = pci_get_drvdata(pdev); 2010 struct net_device *netdev = alx->dev; 2011 2012 dev_info(&pdev->dev, "pci error resume\n"); 2013 2014 mutex_lock(&alx->mtx); 2015 2016 if (netif_running(netdev)) { 2017 alx_activate(alx); 2018 netif_device_attach(netdev); 2019 } 2020 2021 mutex_unlock(&alx->mtx); 2022 } 2023 2024 static const struct pci_error_handlers alx_err_handlers = { 2025 .error_detected = alx_pci_error_detected, 2026 .slot_reset = alx_pci_error_slot_reset, 2027 .resume = alx_pci_error_resume, 2028 }; 2029 2030 static const struct pci_device_id alx_pci_tbl[] = { 2031 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161), 2032 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2033 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200), 2034 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2035 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400), 2036 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2037 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2500), 2038 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2039 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162), 2040 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 2041 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) }, 2042 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) }, 2043 {} 2044 }; 2045 2046 static struct pci_driver alx_driver = { 2047 .name = alx_drv_name, 2048 .id_table = alx_pci_tbl, 2049 .probe = alx_probe, 2050 .remove = alx_remove, 2051 .err_handler = &alx_err_handlers, 2052 .driver.pm = pm_sleep_ptr(&alx_pm_ops), 2053 }; 2054 2055 module_pci_driver(alx_driver); 2056 MODULE_DEVICE_TABLE(pci, alx_pci_tbl); 2057 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 2058 MODULE_AUTHOR("Qualcomm Corporation"); 2059 MODULE_DESCRIPTION( 2060 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver"); 2061 MODULE_LICENSE("GPL"); 2062