1 /* 2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net> 3 * 4 * This file is free software: you may copy, redistribute and/or modify it 5 * under the terms of the GNU General Public License as published by the 6 * Free Software Foundation, either version 2 of the License, or (at your 7 * option) any later version. 8 * 9 * This file is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * This file incorporates work covered by the following copyright and 18 * permission notice: 19 * 20 * Copyright (c) 2012 Qualcomm Atheros, Inc. 21 * 22 * Permission to use, copy, modify, and/or distribute this software for any 23 * purpose with or without fee is hereby granted, provided that the above 24 * copyright notice and this permission notice appear in all copies. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/interrupt.h> 38 #include <linux/ip.h> 39 #include <linux/ipv6.h> 40 #include <linux/if_vlan.h> 41 #include <linux/mdio.h> 42 #include <linux/aer.h> 43 #include <linux/bitops.h> 44 #include <linux/netdevice.h> 45 #include <linux/etherdevice.h> 46 #include <net/ip6_checksum.h> 47 #include <linux/crc32.h> 48 #include "alx.h" 49 #include "hw.h" 50 #include "reg.h" 51 52 const char alx_drv_name[] = "alx"; 53 54 55 static void alx_free_txbuf(struct alx_priv *alx, int entry) 56 { 57 struct alx_buffer *txb = &alx->txq.bufs[entry]; 58 59 if (dma_unmap_len(txb, size)) { 60 dma_unmap_single(&alx->hw.pdev->dev, 61 dma_unmap_addr(txb, dma), 62 dma_unmap_len(txb, size), 63 DMA_TO_DEVICE); 64 dma_unmap_len_set(txb, size, 0); 65 } 66 67 if (txb->skb) { 68 dev_kfree_skb_any(txb->skb); 69 txb->skb = NULL; 70 } 71 } 72 73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp) 74 { 75 struct alx_rx_queue *rxq = &alx->rxq; 76 struct sk_buff *skb; 77 struct alx_buffer *cur_buf; 78 dma_addr_t dma; 79 u16 cur, next, count = 0; 80 81 next = cur = rxq->write_idx; 82 if (++next == alx->rx_ringsz) 83 next = 0; 84 cur_buf = &rxq->bufs[cur]; 85 86 while (!cur_buf->skb && next != rxq->read_idx) { 87 struct alx_rfd *rfd = &rxq->rfd[cur]; 88 89 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp); 90 if (!skb) 91 break; 92 dma = dma_map_single(&alx->hw.pdev->dev, 93 skb->data, alx->rxbuf_size, 94 DMA_FROM_DEVICE); 95 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) { 96 dev_kfree_skb(skb); 97 break; 98 } 99 100 /* Unfortunately, RX descriptor buffers must be 4-byte 101 * aligned, so we can't use IP alignment. 102 */ 103 if (WARN_ON(dma & 3)) { 104 dev_kfree_skb(skb); 105 break; 106 } 107 108 cur_buf->skb = skb; 109 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size); 110 dma_unmap_addr_set(cur_buf, dma, dma); 111 rfd->addr = cpu_to_le64(dma); 112 113 cur = next; 114 if (++next == alx->rx_ringsz) 115 next = 0; 116 cur_buf = &rxq->bufs[cur]; 117 count++; 118 } 119 120 if (count) { 121 /* flush all updates before updating hardware */ 122 wmb(); 123 rxq->write_idx = cur; 124 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur); 125 } 126 127 return count; 128 } 129 130 static inline int alx_tpd_avail(struct alx_priv *alx) 131 { 132 struct alx_tx_queue *txq = &alx->txq; 133 134 if (txq->write_idx >= txq->read_idx) 135 return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1; 136 return txq->read_idx - txq->write_idx - 1; 137 } 138 139 static bool alx_clean_tx_irq(struct alx_priv *alx) 140 { 141 struct alx_tx_queue *txq = &alx->txq; 142 u16 hw_read_idx, sw_read_idx; 143 unsigned int total_bytes = 0, total_packets = 0; 144 int budget = ALX_DEFAULT_TX_WORK; 145 146 sw_read_idx = txq->read_idx; 147 hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX); 148 149 if (sw_read_idx != hw_read_idx) { 150 while (sw_read_idx != hw_read_idx && budget > 0) { 151 struct sk_buff *skb; 152 153 skb = txq->bufs[sw_read_idx].skb; 154 if (skb) { 155 total_bytes += skb->len; 156 total_packets++; 157 budget--; 158 } 159 160 alx_free_txbuf(alx, sw_read_idx); 161 162 if (++sw_read_idx == alx->tx_ringsz) 163 sw_read_idx = 0; 164 } 165 txq->read_idx = sw_read_idx; 166 167 netdev_completed_queue(alx->dev, total_packets, total_bytes); 168 } 169 170 if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) && 171 alx_tpd_avail(alx) > alx->tx_ringsz/4) 172 netif_wake_queue(alx->dev); 173 174 return sw_read_idx == hw_read_idx; 175 } 176 177 static void alx_schedule_link_check(struct alx_priv *alx) 178 { 179 schedule_work(&alx->link_check_wk); 180 } 181 182 static void alx_schedule_reset(struct alx_priv *alx) 183 { 184 schedule_work(&alx->reset_wk); 185 } 186 187 static int alx_clean_rx_irq(struct alx_priv *alx, int budget) 188 { 189 struct alx_rx_queue *rxq = &alx->rxq; 190 struct alx_rrd *rrd; 191 struct alx_buffer *rxb; 192 struct sk_buff *skb; 193 u16 length, rfd_cleaned = 0; 194 int work = 0; 195 196 while (work < budget) { 197 rrd = &rxq->rrd[rxq->rrd_read_idx]; 198 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT))) 199 break; 200 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT); 201 202 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0), 203 RRD_SI) != rxq->read_idx || 204 ALX_GET_FIELD(le32_to_cpu(rrd->word0), 205 RRD_NOR) != 1) { 206 alx_schedule_reset(alx); 207 return work; 208 } 209 210 rxb = &rxq->bufs[rxq->read_idx]; 211 dma_unmap_single(&alx->hw.pdev->dev, 212 dma_unmap_addr(rxb, dma), 213 dma_unmap_len(rxb, size), 214 DMA_FROM_DEVICE); 215 dma_unmap_len_set(rxb, size, 0); 216 skb = rxb->skb; 217 rxb->skb = NULL; 218 219 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) || 220 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) { 221 rrd->word3 = 0; 222 dev_kfree_skb_any(skb); 223 goto next_pkt; 224 } 225 226 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3), 227 RRD_PKTLEN) - ETH_FCS_LEN; 228 skb_put(skb, length); 229 skb->protocol = eth_type_trans(skb, alx->dev); 230 231 skb_checksum_none_assert(skb); 232 if (alx->dev->features & NETIF_F_RXCSUM && 233 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) | 234 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) { 235 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2), 236 RRD_PID)) { 237 case RRD_PID_IPV6UDP: 238 case RRD_PID_IPV4UDP: 239 case RRD_PID_IPV4TCP: 240 case RRD_PID_IPV6TCP: 241 skb->ip_summed = CHECKSUM_UNNECESSARY; 242 break; 243 } 244 } 245 246 napi_gro_receive(&alx->napi, skb); 247 work++; 248 249 next_pkt: 250 if (++rxq->read_idx == alx->rx_ringsz) 251 rxq->read_idx = 0; 252 if (++rxq->rrd_read_idx == alx->rx_ringsz) 253 rxq->rrd_read_idx = 0; 254 255 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH) 256 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC); 257 } 258 259 if (rfd_cleaned) 260 alx_refill_rx_ring(alx, GFP_ATOMIC); 261 262 return work; 263 } 264 265 static int alx_poll(struct napi_struct *napi, int budget) 266 { 267 struct alx_priv *alx = container_of(napi, struct alx_priv, napi); 268 struct alx_hw *hw = &alx->hw; 269 unsigned long flags; 270 bool tx_complete; 271 int work; 272 273 tx_complete = alx_clean_tx_irq(alx); 274 work = alx_clean_rx_irq(alx, budget); 275 276 if (!tx_complete || work == budget) 277 return budget; 278 279 napi_complete(&alx->napi); 280 281 /* enable interrupt */ 282 spin_lock_irqsave(&alx->irq_lock, flags); 283 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; 284 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 285 spin_unlock_irqrestore(&alx->irq_lock, flags); 286 287 alx_post_write(hw); 288 289 return work; 290 } 291 292 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr) 293 { 294 struct alx_hw *hw = &alx->hw; 295 bool write_int_mask = false; 296 297 spin_lock(&alx->irq_lock); 298 299 /* ACK interrupt */ 300 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS); 301 intr &= alx->int_mask; 302 303 if (intr & ALX_ISR_FATAL) { 304 netif_warn(alx, hw, alx->dev, 305 "fatal interrupt 0x%x, resetting\n", intr); 306 alx_schedule_reset(alx); 307 goto out; 308 } 309 310 if (intr & ALX_ISR_ALERT) 311 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr); 312 313 if (intr & ALX_ISR_PHY) { 314 /* suppress PHY interrupt, because the source 315 * is from PHY internal. only the internal status 316 * is cleared, the interrupt status could be cleared. 317 */ 318 alx->int_mask &= ~ALX_ISR_PHY; 319 write_int_mask = true; 320 alx_schedule_link_check(alx); 321 } 322 323 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) { 324 napi_schedule(&alx->napi); 325 /* mask rx/tx interrupt, enable them when napi complete */ 326 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 327 write_int_mask = true; 328 } 329 330 if (write_int_mask) 331 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 332 333 alx_write_mem32(hw, ALX_ISR, 0); 334 335 out: 336 spin_unlock(&alx->irq_lock); 337 return IRQ_HANDLED; 338 } 339 340 static irqreturn_t alx_intr_msi(int irq, void *data) 341 { 342 struct alx_priv *alx = data; 343 344 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR)); 345 } 346 347 static irqreturn_t alx_intr_legacy(int irq, void *data) 348 { 349 struct alx_priv *alx = data; 350 struct alx_hw *hw = &alx->hw; 351 u32 intr; 352 353 intr = alx_read_mem32(hw, ALX_ISR); 354 355 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask)) 356 return IRQ_NONE; 357 358 return alx_intr_handle(alx, intr); 359 } 360 361 static void alx_init_ring_ptrs(struct alx_priv *alx) 362 { 363 struct alx_hw *hw = &alx->hw; 364 u32 addr_hi = ((u64)alx->descmem.dma) >> 32; 365 366 alx->rxq.read_idx = 0; 367 alx->rxq.write_idx = 0; 368 alx->rxq.rrd_read_idx = 0; 369 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi); 370 alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma); 371 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz); 372 alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma); 373 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz); 374 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size); 375 376 alx->txq.read_idx = 0; 377 alx->txq.write_idx = 0; 378 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi); 379 alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma); 380 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz); 381 382 /* load these pointers into the chip */ 383 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR); 384 } 385 386 static void alx_free_txring_buf(struct alx_priv *alx) 387 { 388 struct alx_tx_queue *txq = &alx->txq; 389 int i; 390 391 if (!txq->bufs) 392 return; 393 394 for (i = 0; i < alx->tx_ringsz; i++) 395 alx_free_txbuf(alx, i); 396 397 memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer)); 398 memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd)); 399 txq->write_idx = 0; 400 txq->read_idx = 0; 401 402 netdev_reset_queue(alx->dev); 403 } 404 405 static void alx_free_rxring_buf(struct alx_priv *alx) 406 { 407 struct alx_rx_queue *rxq = &alx->rxq; 408 struct alx_buffer *cur_buf; 409 u16 i; 410 411 if (rxq == NULL) 412 return; 413 414 for (i = 0; i < alx->rx_ringsz; i++) { 415 cur_buf = rxq->bufs + i; 416 if (cur_buf->skb) { 417 dma_unmap_single(&alx->hw.pdev->dev, 418 dma_unmap_addr(cur_buf, dma), 419 dma_unmap_len(cur_buf, size), 420 DMA_FROM_DEVICE); 421 dev_kfree_skb(cur_buf->skb); 422 cur_buf->skb = NULL; 423 dma_unmap_len_set(cur_buf, size, 0); 424 dma_unmap_addr_set(cur_buf, dma, 0); 425 } 426 } 427 428 rxq->write_idx = 0; 429 rxq->read_idx = 0; 430 rxq->rrd_read_idx = 0; 431 } 432 433 static void alx_free_buffers(struct alx_priv *alx) 434 { 435 alx_free_txring_buf(alx); 436 alx_free_rxring_buf(alx); 437 } 438 439 static int alx_reinit_rings(struct alx_priv *alx) 440 { 441 alx_free_buffers(alx); 442 443 alx_init_ring_ptrs(alx); 444 445 if (!alx_refill_rx_ring(alx, GFP_KERNEL)) 446 return -ENOMEM; 447 448 return 0; 449 } 450 451 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash) 452 { 453 u32 crc32, bit, reg; 454 455 crc32 = ether_crc(ETH_ALEN, addr); 456 reg = (crc32 >> 31) & 0x1; 457 bit = (crc32 >> 26) & 0x1F; 458 459 mc_hash[reg] |= BIT(bit); 460 } 461 462 static void __alx_set_rx_mode(struct net_device *netdev) 463 { 464 struct alx_priv *alx = netdev_priv(netdev); 465 struct alx_hw *hw = &alx->hw; 466 struct netdev_hw_addr *ha; 467 u32 mc_hash[2] = {}; 468 469 if (!(netdev->flags & IFF_ALLMULTI)) { 470 netdev_for_each_mc_addr(ha, netdev) 471 alx_add_mc_addr(hw, ha->addr, mc_hash); 472 473 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]); 474 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]); 475 } 476 477 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN); 478 if (netdev->flags & IFF_PROMISC) 479 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN; 480 if (netdev->flags & IFF_ALLMULTI) 481 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN; 482 483 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 484 } 485 486 static void alx_set_rx_mode(struct net_device *netdev) 487 { 488 __alx_set_rx_mode(netdev); 489 } 490 491 static int alx_set_mac_address(struct net_device *netdev, void *data) 492 { 493 struct alx_priv *alx = netdev_priv(netdev); 494 struct alx_hw *hw = &alx->hw; 495 struct sockaddr *addr = data; 496 497 if (!is_valid_ether_addr(addr->sa_data)) 498 return -EADDRNOTAVAIL; 499 500 if (netdev->addr_assign_type & NET_ADDR_RANDOM) 501 netdev->addr_assign_type ^= NET_ADDR_RANDOM; 502 503 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 504 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 505 alx_set_macaddr(hw, hw->mac_addr); 506 507 return 0; 508 } 509 510 static int alx_alloc_descriptors(struct alx_priv *alx) 511 { 512 alx->txq.bufs = kcalloc(alx->tx_ringsz, 513 sizeof(struct alx_buffer), 514 GFP_KERNEL); 515 if (!alx->txq.bufs) 516 return -ENOMEM; 517 518 alx->rxq.bufs = kcalloc(alx->rx_ringsz, 519 sizeof(struct alx_buffer), 520 GFP_KERNEL); 521 if (!alx->rxq.bufs) 522 goto out_free; 523 524 /* physical tx/rx ring descriptors 525 * 526 * Allocate them as a single chunk because they must not cross a 527 * 4G boundary (hardware has a single register for high 32 bits 528 * of addresses only) 529 */ 530 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz + 531 sizeof(struct alx_rrd) * alx->rx_ringsz + 532 sizeof(struct alx_rfd) * alx->rx_ringsz; 533 alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev, 534 alx->descmem.size, 535 &alx->descmem.dma, 536 GFP_KERNEL); 537 if (!alx->descmem.virt) 538 goto out_free; 539 540 alx->txq.tpd = alx->descmem.virt; 541 alx->txq.tpd_dma = alx->descmem.dma; 542 543 /* alignment requirement for next block */ 544 BUILD_BUG_ON(sizeof(struct alx_txd) % 8); 545 546 alx->rxq.rrd = 547 (void *)((u8 *)alx->descmem.virt + 548 sizeof(struct alx_txd) * alx->tx_ringsz); 549 alx->rxq.rrd_dma = alx->descmem.dma + 550 sizeof(struct alx_txd) * alx->tx_ringsz; 551 552 /* alignment requirement for next block */ 553 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8); 554 555 alx->rxq.rfd = 556 (void *)((u8 *)alx->descmem.virt + 557 sizeof(struct alx_txd) * alx->tx_ringsz + 558 sizeof(struct alx_rrd) * alx->rx_ringsz); 559 alx->rxq.rfd_dma = alx->descmem.dma + 560 sizeof(struct alx_txd) * alx->tx_ringsz + 561 sizeof(struct alx_rrd) * alx->rx_ringsz; 562 563 return 0; 564 out_free: 565 kfree(alx->txq.bufs); 566 kfree(alx->rxq.bufs); 567 return -ENOMEM; 568 } 569 570 static int alx_alloc_rings(struct alx_priv *alx) 571 { 572 int err; 573 574 err = alx_alloc_descriptors(alx); 575 if (err) 576 return err; 577 578 alx->int_mask &= ~ALX_ISR_ALL_QUEUES; 579 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0; 580 alx->tx_ringsz = alx->tx_ringsz; 581 582 netif_napi_add(alx->dev, &alx->napi, alx_poll, 64); 583 584 alx_reinit_rings(alx); 585 return 0; 586 } 587 588 static void alx_free_rings(struct alx_priv *alx) 589 { 590 netif_napi_del(&alx->napi); 591 alx_free_buffers(alx); 592 593 kfree(alx->txq.bufs); 594 kfree(alx->rxq.bufs); 595 596 dma_free_coherent(&alx->hw.pdev->dev, 597 alx->descmem.size, 598 alx->descmem.virt, 599 alx->descmem.dma); 600 } 601 602 static void alx_config_vector_mapping(struct alx_priv *alx) 603 { 604 struct alx_hw *hw = &alx->hw; 605 606 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0); 607 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0); 608 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0); 609 } 610 611 static void alx_irq_enable(struct alx_priv *alx) 612 { 613 struct alx_hw *hw = &alx->hw; 614 615 /* level-1 interrupt switch */ 616 alx_write_mem32(hw, ALX_ISR, 0); 617 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 618 alx_post_write(hw); 619 } 620 621 static void alx_irq_disable(struct alx_priv *alx) 622 { 623 struct alx_hw *hw = &alx->hw; 624 625 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS); 626 alx_write_mem32(hw, ALX_IMR, 0); 627 alx_post_write(hw); 628 629 synchronize_irq(alx->hw.pdev->irq); 630 } 631 632 static int alx_request_irq(struct alx_priv *alx) 633 { 634 struct pci_dev *pdev = alx->hw.pdev; 635 struct alx_hw *hw = &alx->hw; 636 int err; 637 u32 msi_ctrl; 638 639 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT; 640 641 if (!pci_enable_msi(alx->hw.pdev)) { 642 alx->msi = true; 643 644 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 645 msi_ctrl | ALX_MSI_MASK_SEL_LINE); 646 err = request_irq(pdev->irq, alx_intr_msi, 0, 647 alx->dev->name, alx); 648 if (!err) 649 goto out; 650 /* fall back to legacy interrupt */ 651 pci_disable_msi(alx->hw.pdev); 652 } 653 654 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0); 655 err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED, 656 alx->dev->name, alx); 657 out: 658 if (!err) 659 alx_config_vector_mapping(alx); 660 return err; 661 } 662 663 static void alx_free_irq(struct alx_priv *alx) 664 { 665 struct pci_dev *pdev = alx->hw.pdev; 666 667 free_irq(pdev->irq, alx); 668 669 if (alx->msi) { 670 pci_disable_msi(alx->hw.pdev); 671 alx->msi = false; 672 } 673 } 674 675 static int alx_identify_hw(struct alx_priv *alx) 676 { 677 struct alx_hw *hw = &alx->hw; 678 int rev = alx_hw_revision(hw); 679 680 if (rev > ALX_REV_C0) 681 return -EINVAL; 682 683 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2; 684 685 return 0; 686 } 687 688 static int alx_init_sw(struct alx_priv *alx) 689 { 690 struct pci_dev *pdev = alx->hw.pdev; 691 struct alx_hw *hw = &alx->hw; 692 int err; 693 694 err = alx_identify_hw(alx); 695 if (err) { 696 dev_err(&pdev->dev, "unrecognized chip, aborting\n"); 697 return err; 698 } 699 700 alx->hw.lnk_patch = 701 pdev->device == ALX_DEV_ID_AR8161 && 702 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC && 703 pdev->subsystem_device == 0x0091 && 704 pdev->revision == 0; 705 706 hw->smb_timer = 400; 707 hw->mtu = alx->dev->mtu; 708 alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8); 709 alx->tx_ringsz = 256; 710 alx->rx_ringsz = 512; 711 hw->imt = 200; 712 alx->int_mask = ALX_ISR_MISC; 713 hw->dma_chnl = hw->max_dma_chnl; 714 hw->ith_tpd = alx->tx_ringsz / 3; 715 hw->link_speed = SPEED_UNKNOWN; 716 hw->duplex = DUPLEX_UNKNOWN; 717 hw->adv_cfg = ADVERTISED_Autoneg | 718 ADVERTISED_10baseT_Half | 719 ADVERTISED_10baseT_Full | 720 ADVERTISED_100baseT_Full | 721 ADVERTISED_100baseT_Half | 722 ADVERTISED_1000baseT_Full; 723 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX; 724 725 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN | 726 ALX_MAC_CTRL_MHASH_ALG_HI5B | 727 ALX_MAC_CTRL_BRD_EN | 728 ALX_MAC_CTRL_PCRCE | 729 ALX_MAC_CTRL_CRCE | 730 ALX_MAC_CTRL_RXFC_EN | 731 ALX_MAC_CTRL_TXFC_EN | 732 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT; 733 734 return err; 735 } 736 737 738 static netdev_features_t alx_fix_features(struct net_device *netdev, 739 netdev_features_t features) 740 { 741 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE) 742 features &= ~(NETIF_F_TSO | NETIF_F_TSO6); 743 744 return features; 745 } 746 747 static void alx_netif_stop(struct alx_priv *alx) 748 { 749 alx->dev->trans_start = jiffies; 750 if (netif_carrier_ok(alx->dev)) { 751 netif_carrier_off(alx->dev); 752 netif_tx_disable(alx->dev); 753 napi_disable(&alx->napi); 754 } 755 } 756 757 static void alx_halt(struct alx_priv *alx) 758 { 759 struct alx_hw *hw = &alx->hw; 760 761 alx_netif_stop(alx); 762 hw->link_speed = SPEED_UNKNOWN; 763 hw->duplex = DUPLEX_UNKNOWN; 764 765 alx_reset_mac(hw); 766 767 /* disable l0s/l1 */ 768 alx_enable_aspm(hw, false, false); 769 alx_irq_disable(alx); 770 alx_free_buffers(alx); 771 } 772 773 static void alx_configure(struct alx_priv *alx) 774 { 775 struct alx_hw *hw = &alx->hw; 776 777 alx_configure_basic(hw); 778 alx_disable_rss(hw); 779 __alx_set_rx_mode(alx->dev); 780 781 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl); 782 } 783 784 static void alx_activate(struct alx_priv *alx) 785 { 786 /* hardware setting lost, restore it */ 787 alx_reinit_rings(alx); 788 alx_configure(alx); 789 790 /* clear old interrupts */ 791 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 792 793 alx_irq_enable(alx); 794 795 alx_schedule_link_check(alx); 796 } 797 798 static void alx_reinit(struct alx_priv *alx) 799 { 800 ASSERT_RTNL(); 801 802 alx_halt(alx); 803 alx_activate(alx); 804 } 805 806 static int alx_change_mtu(struct net_device *netdev, int mtu) 807 { 808 struct alx_priv *alx = netdev_priv(netdev); 809 int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 810 811 if ((max_frame < ALX_MIN_FRAME_SIZE) || 812 (max_frame > ALX_MAX_FRAME_SIZE)) 813 return -EINVAL; 814 815 if (netdev->mtu == mtu) 816 return 0; 817 818 netdev->mtu = mtu; 819 alx->hw.mtu = mtu; 820 alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ? 821 ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE; 822 netdev_update_features(netdev); 823 if (netif_running(netdev)) 824 alx_reinit(alx); 825 return 0; 826 } 827 828 static void alx_netif_start(struct alx_priv *alx) 829 { 830 netif_tx_wake_all_queues(alx->dev); 831 napi_enable(&alx->napi); 832 netif_carrier_on(alx->dev); 833 } 834 835 static int __alx_open(struct alx_priv *alx, bool resume) 836 { 837 int err; 838 839 if (!resume) 840 netif_carrier_off(alx->dev); 841 842 err = alx_alloc_rings(alx); 843 if (err) 844 return err; 845 846 alx_configure(alx); 847 848 err = alx_request_irq(alx); 849 if (err) 850 goto out_free_rings; 851 852 /* clear old interrupts */ 853 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS); 854 855 alx_irq_enable(alx); 856 857 if (!resume) 858 netif_tx_start_all_queues(alx->dev); 859 860 alx_schedule_link_check(alx); 861 return 0; 862 863 out_free_rings: 864 alx_free_rings(alx); 865 return err; 866 } 867 868 static void __alx_stop(struct alx_priv *alx) 869 { 870 alx_halt(alx); 871 alx_free_irq(alx); 872 alx_free_rings(alx); 873 } 874 875 static const char *alx_speed_desc(struct alx_hw *hw) 876 { 877 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) { 878 case ADVERTISED_1000baseT_Full: 879 return "1 Gbps Full"; 880 case ADVERTISED_100baseT_Full: 881 return "100 Mbps Full"; 882 case ADVERTISED_100baseT_Half: 883 return "100 Mbps Half"; 884 case ADVERTISED_10baseT_Full: 885 return "10 Mbps Full"; 886 case ADVERTISED_10baseT_Half: 887 return "10 Mbps Half"; 888 default: 889 return "Unknown speed"; 890 } 891 } 892 893 static void alx_check_link(struct alx_priv *alx) 894 { 895 struct alx_hw *hw = &alx->hw; 896 unsigned long flags; 897 int old_speed; 898 u8 old_duplex; 899 int err; 900 901 /* clear PHY internal interrupt status, otherwise the main 902 * interrupt status will be asserted forever 903 */ 904 alx_clear_phy_intr(hw); 905 906 old_speed = hw->link_speed; 907 old_duplex = hw->duplex; 908 err = alx_read_phy_link(hw); 909 if (err < 0) 910 goto reset; 911 912 spin_lock_irqsave(&alx->irq_lock, flags); 913 alx->int_mask |= ALX_ISR_PHY; 914 alx_write_mem32(hw, ALX_IMR, alx->int_mask); 915 spin_unlock_irqrestore(&alx->irq_lock, flags); 916 917 if (old_speed == hw->link_speed) 918 return; 919 920 if (hw->link_speed != SPEED_UNKNOWN) { 921 netif_info(alx, link, alx->dev, 922 "NIC Up: %s\n", alx_speed_desc(hw)); 923 alx_post_phy_link(hw); 924 alx_enable_aspm(hw, true, true); 925 alx_start_mac(hw); 926 927 if (old_speed == SPEED_UNKNOWN) 928 alx_netif_start(alx); 929 } else { 930 /* link is now down */ 931 alx_netif_stop(alx); 932 netif_info(alx, link, alx->dev, "Link Down\n"); 933 err = alx_reset_mac(hw); 934 if (err) 935 goto reset; 936 alx_irq_disable(alx); 937 938 /* MAC reset causes all HW settings to be lost, restore all */ 939 err = alx_reinit_rings(alx); 940 if (err) 941 goto reset; 942 alx_configure(alx); 943 alx_enable_aspm(hw, false, true); 944 alx_post_phy_link(hw); 945 alx_irq_enable(alx); 946 } 947 948 return; 949 950 reset: 951 alx_schedule_reset(alx); 952 } 953 954 static int alx_open(struct net_device *netdev) 955 { 956 return __alx_open(netdev_priv(netdev), false); 957 } 958 959 static int alx_stop(struct net_device *netdev) 960 { 961 __alx_stop(netdev_priv(netdev)); 962 return 0; 963 } 964 965 static void alx_link_check(struct work_struct *work) 966 { 967 struct alx_priv *alx; 968 969 alx = container_of(work, struct alx_priv, link_check_wk); 970 971 rtnl_lock(); 972 alx_check_link(alx); 973 rtnl_unlock(); 974 } 975 976 static void alx_reset(struct work_struct *work) 977 { 978 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk); 979 980 rtnl_lock(); 981 alx_reinit(alx); 982 rtnl_unlock(); 983 } 984 985 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first) 986 { 987 u8 cso, css; 988 989 if (skb->ip_summed != CHECKSUM_PARTIAL) 990 return 0; 991 992 cso = skb_checksum_start_offset(skb); 993 if (cso & 1) 994 return -EINVAL; 995 996 css = cso + skb->csum_offset; 997 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT); 998 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT); 999 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT); 1000 1001 return 0; 1002 } 1003 1004 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb) 1005 { 1006 struct alx_tx_queue *txq = &alx->txq; 1007 struct alx_txd *tpd, *first_tpd; 1008 dma_addr_t dma; 1009 int maplen, f, first_idx = txq->write_idx; 1010 1011 first_tpd = &txq->tpd[txq->write_idx]; 1012 tpd = first_tpd; 1013 1014 maplen = skb_headlen(skb); 1015 dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen, 1016 DMA_TO_DEVICE); 1017 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) 1018 goto err_dma; 1019 1020 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1021 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1022 1023 tpd->adrl.addr = cpu_to_le64(dma); 1024 tpd->len = cpu_to_le16(maplen); 1025 1026 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 1027 struct skb_frag_struct *frag; 1028 1029 frag = &skb_shinfo(skb)->frags[f]; 1030 1031 if (++txq->write_idx == alx->tx_ringsz) 1032 txq->write_idx = 0; 1033 tpd = &txq->tpd[txq->write_idx]; 1034 1035 tpd->word1 = first_tpd->word1; 1036 1037 maplen = skb_frag_size(frag); 1038 dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0, 1039 maplen, DMA_TO_DEVICE); 1040 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) 1041 goto err_dma; 1042 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen); 1043 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma); 1044 1045 tpd->adrl.addr = cpu_to_le64(dma); 1046 tpd->len = cpu_to_le16(maplen); 1047 } 1048 1049 /* last TPD, set EOP flag and store skb */ 1050 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT); 1051 txq->bufs[txq->write_idx].skb = skb; 1052 1053 if (++txq->write_idx == alx->tx_ringsz) 1054 txq->write_idx = 0; 1055 1056 return 0; 1057 1058 err_dma: 1059 f = first_idx; 1060 while (f != txq->write_idx) { 1061 alx_free_txbuf(alx, f); 1062 if (++f == alx->tx_ringsz) 1063 f = 0; 1064 } 1065 return -ENOMEM; 1066 } 1067 1068 static netdev_tx_t alx_start_xmit(struct sk_buff *skb, 1069 struct net_device *netdev) 1070 { 1071 struct alx_priv *alx = netdev_priv(netdev); 1072 struct alx_tx_queue *txq = &alx->txq; 1073 struct alx_txd *first; 1074 int tpdreq = skb_shinfo(skb)->nr_frags + 1; 1075 1076 if (alx_tpd_avail(alx) < tpdreq) { 1077 netif_stop_queue(alx->dev); 1078 goto drop; 1079 } 1080 1081 first = &txq->tpd[txq->write_idx]; 1082 memset(first, 0, sizeof(*first)); 1083 1084 if (alx_tx_csum(skb, first)) 1085 goto drop; 1086 1087 if (alx_map_tx_skb(alx, skb) < 0) 1088 goto drop; 1089 1090 netdev_sent_queue(alx->dev, skb->len); 1091 1092 /* flush updates before updating hardware */ 1093 wmb(); 1094 alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx); 1095 1096 if (alx_tpd_avail(alx) < alx->tx_ringsz/8) 1097 netif_stop_queue(alx->dev); 1098 1099 return NETDEV_TX_OK; 1100 1101 drop: 1102 dev_kfree_skb_any(skb); 1103 return NETDEV_TX_OK; 1104 } 1105 1106 static void alx_tx_timeout(struct net_device *dev) 1107 { 1108 struct alx_priv *alx = netdev_priv(dev); 1109 1110 alx_schedule_reset(alx); 1111 } 1112 1113 static int alx_mdio_read(struct net_device *netdev, 1114 int prtad, int devad, u16 addr) 1115 { 1116 struct alx_priv *alx = netdev_priv(netdev); 1117 struct alx_hw *hw = &alx->hw; 1118 u16 val; 1119 int err; 1120 1121 if (prtad != hw->mdio.prtad) 1122 return -EINVAL; 1123 1124 if (devad == MDIO_DEVAD_NONE) 1125 err = alx_read_phy_reg(hw, addr, &val); 1126 else 1127 err = alx_read_phy_ext(hw, devad, addr, &val); 1128 1129 if (err) 1130 return err; 1131 return val; 1132 } 1133 1134 static int alx_mdio_write(struct net_device *netdev, 1135 int prtad, int devad, u16 addr, u16 val) 1136 { 1137 struct alx_priv *alx = netdev_priv(netdev); 1138 struct alx_hw *hw = &alx->hw; 1139 1140 if (prtad != hw->mdio.prtad) 1141 return -EINVAL; 1142 1143 if (devad == MDIO_DEVAD_NONE) 1144 return alx_write_phy_reg(hw, addr, val); 1145 1146 return alx_write_phy_ext(hw, devad, addr, val); 1147 } 1148 1149 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 1150 { 1151 struct alx_priv *alx = netdev_priv(netdev); 1152 1153 if (!netif_running(netdev)) 1154 return -EAGAIN; 1155 1156 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd); 1157 } 1158 1159 #ifdef CONFIG_NET_POLL_CONTROLLER 1160 static void alx_poll_controller(struct net_device *netdev) 1161 { 1162 struct alx_priv *alx = netdev_priv(netdev); 1163 1164 if (alx->msi) 1165 alx_intr_msi(0, alx); 1166 else 1167 alx_intr_legacy(0, alx); 1168 } 1169 #endif 1170 1171 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev, 1172 struct rtnl_link_stats64 *net_stats) 1173 { 1174 struct alx_priv *alx = netdev_priv(dev); 1175 struct alx_hw_stats *hw_stats = &alx->hw.stats; 1176 1177 spin_lock(&alx->stats_lock); 1178 1179 alx_update_hw_stats(&alx->hw); 1180 1181 net_stats->tx_bytes = hw_stats->tx_byte_cnt; 1182 net_stats->rx_bytes = hw_stats->rx_byte_cnt; 1183 net_stats->multicast = hw_stats->rx_mcast; 1184 net_stats->collisions = hw_stats->tx_single_col + 1185 hw_stats->tx_multi_col + 1186 hw_stats->tx_late_col + 1187 hw_stats->tx_abort_col; 1188 1189 net_stats->rx_errors = hw_stats->rx_frag + 1190 hw_stats->rx_fcs_err + 1191 hw_stats->rx_len_err + 1192 hw_stats->rx_ov_sz + 1193 hw_stats->rx_ov_rrd + 1194 hw_stats->rx_align_err + 1195 hw_stats->rx_ov_rxf; 1196 1197 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf; 1198 net_stats->rx_length_errors = hw_stats->rx_len_err; 1199 net_stats->rx_crc_errors = hw_stats->rx_fcs_err; 1200 net_stats->rx_frame_errors = hw_stats->rx_align_err; 1201 net_stats->rx_dropped = hw_stats->rx_ov_rrd; 1202 1203 net_stats->tx_errors = hw_stats->tx_late_col + 1204 hw_stats->tx_abort_col + 1205 hw_stats->tx_underrun + 1206 hw_stats->tx_trunc; 1207 1208 net_stats->tx_aborted_errors = hw_stats->tx_abort_col; 1209 net_stats->tx_fifo_errors = hw_stats->tx_underrun; 1210 net_stats->tx_window_errors = hw_stats->tx_late_col; 1211 1212 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; 1213 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; 1214 1215 spin_unlock(&alx->stats_lock); 1216 1217 return net_stats; 1218 } 1219 1220 static const struct net_device_ops alx_netdev_ops = { 1221 .ndo_open = alx_open, 1222 .ndo_stop = alx_stop, 1223 .ndo_start_xmit = alx_start_xmit, 1224 .ndo_get_stats64 = alx_get_stats64, 1225 .ndo_set_rx_mode = alx_set_rx_mode, 1226 .ndo_validate_addr = eth_validate_addr, 1227 .ndo_set_mac_address = alx_set_mac_address, 1228 .ndo_change_mtu = alx_change_mtu, 1229 .ndo_do_ioctl = alx_ioctl, 1230 .ndo_tx_timeout = alx_tx_timeout, 1231 .ndo_fix_features = alx_fix_features, 1232 #ifdef CONFIG_NET_POLL_CONTROLLER 1233 .ndo_poll_controller = alx_poll_controller, 1234 #endif 1235 }; 1236 1237 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1238 { 1239 struct net_device *netdev; 1240 struct alx_priv *alx; 1241 struct alx_hw *hw; 1242 bool phy_configured; 1243 int bars, err; 1244 1245 err = pci_enable_device_mem(pdev); 1246 if (err) 1247 return err; 1248 1249 /* The alx chip can DMA to 64-bit addresses, but it uses a single 1250 * shared register for the high 32 bits, so only a single, aligned, 1251 * 4 GB physical address range can be used for descriptors. 1252 */ 1253 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1254 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n"); 1255 } else { 1256 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1257 if (err) { 1258 dev_err(&pdev->dev, "No usable DMA config, aborting\n"); 1259 goto out_pci_disable; 1260 } 1261 } 1262 1263 bars = pci_select_bars(pdev, IORESOURCE_MEM); 1264 err = pci_request_selected_regions(pdev, bars, alx_drv_name); 1265 if (err) { 1266 dev_err(&pdev->dev, 1267 "pci_request_selected_regions failed(bars:%d)\n", bars); 1268 goto out_pci_disable; 1269 } 1270 1271 pci_enable_pcie_error_reporting(pdev); 1272 pci_set_master(pdev); 1273 1274 if (!pdev->pm_cap) { 1275 dev_err(&pdev->dev, 1276 "Can't find power management capability, aborting\n"); 1277 err = -EIO; 1278 goto out_pci_release; 1279 } 1280 1281 netdev = alloc_etherdev(sizeof(*alx)); 1282 if (!netdev) { 1283 err = -ENOMEM; 1284 goto out_pci_release; 1285 } 1286 1287 SET_NETDEV_DEV(netdev, &pdev->dev); 1288 alx = netdev_priv(netdev); 1289 spin_lock_init(&alx->hw.mdio_lock); 1290 spin_lock_init(&alx->irq_lock); 1291 spin_lock_init(&alx->stats_lock); 1292 alx->dev = netdev; 1293 alx->hw.pdev = pdev; 1294 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP | 1295 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL; 1296 hw = &alx->hw; 1297 pci_set_drvdata(pdev, alx); 1298 1299 hw->hw_addr = pci_ioremap_bar(pdev, 0); 1300 if (!hw->hw_addr) { 1301 dev_err(&pdev->dev, "cannot map device registers\n"); 1302 err = -EIO; 1303 goto out_free_netdev; 1304 } 1305 1306 netdev->netdev_ops = &alx_netdev_ops; 1307 netdev->ethtool_ops = &alx_ethtool_ops; 1308 netdev->irq = pdev->irq; 1309 netdev->watchdog_timeo = ALX_WATCHDOG_TIME; 1310 1311 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG) 1312 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG; 1313 1314 err = alx_init_sw(alx); 1315 if (err) { 1316 dev_err(&pdev->dev, "net device private data init failed\n"); 1317 goto out_unmap; 1318 } 1319 1320 alx_reset_pcie(hw); 1321 1322 phy_configured = alx_phy_configured(hw); 1323 1324 if (!phy_configured) 1325 alx_reset_phy(hw); 1326 1327 err = alx_reset_mac(hw); 1328 if (err) { 1329 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err); 1330 goto out_unmap; 1331 } 1332 1333 /* setup link to put it in a known good starting state */ 1334 if (!phy_configured) { 1335 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl); 1336 if (err) { 1337 dev_err(&pdev->dev, 1338 "failed to configure PHY speed/duplex (err=%d)\n", 1339 err); 1340 goto out_unmap; 1341 } 1342 } 1343 1344 netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; 1345 1346 if (alx_get_perm_macaddr(hw, hw->perm_addr)) { 1347 dev_warn(&pdev->dev, 1348 "Invalid permanent address programmed, using random one\n"); 1349 eth_hw_addr_random(netdev); 1350 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len); 1351 } 1352 1353 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN); 1354 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN); 1355 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN); 1356 1357 hw->mdio.prtad = 0; 1358 hw->mdio.mmds = 0; 1359 hw->mdio.dev = netdev; 1360 hw->mdio.mode_support = MDIO_SUPPORTS_C45 | 1361 MDIO_SUPPORTS_C22 | 1362 MDIO_EMULATE_C22; 1363 hw->mdio.mdio_read = alx_mdio_read; 1364 hw->mdio.mdio_write = alx_mdio_write; 1365 1366 if (!alx_get_phy_info(hw)) { 1367 dev_err(&pdev->dev, "failed to identify PHY\n"); 1368 err = -EIO; 1369 goto out_unmap; 1370 } 1371 1372 INIT_WORK(&alx->link_check_wk, alx_link_check); 1373 INIT_WORK(&alx->reset_wk, alx_reset); 1374 netif_carrier_off(netdev); 1375 1376 err = register_netdev(netdev); 1377 if (err) { 1378 dev_err(&pdev->dev, "register netdevice failed\n"); 1379 goto out_unmap; 1380 } 1381 1382 netdev_info(netdev, 1383 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n", 1384 netdev->dev_addr); 1385 1386 return 0; 1387 1388 out_unmap: 1389 iounmap(hw->hw_addr); 1390 out_free_netdev: 1391 free_netdev(netdev); 1392 out_pci_release: 1393 pci_release_selected_regions(pdev, bars); 1394 out_pci_disable: 1395 pci_disable_device(pdev); 1396 return err; 1397 } 1398 1399 static void alx_remove(struct pci_dev *pdev) 1400 { 1401 struct alx_priv *alx = pci_get_drvdata(pdev); 1402 struct alx_hw *hw = &alx->hw; 1403 1404 cancel_work_sync(&alx->link_check_wk); 1405 cancel_work_sync(&alx->reset_wk); 1406 1407 /* restore permanent mac address */ 1408 alx_set_macaddr(hw, hw->perm_addr); 1409 1410 unregister_netdev(alx->dev); 1411 iounmap(hw->hw_addr); 1412 pci_release_selected_regions(pdev, 1413 pci_select_bars(pdev, IORESOURCE_MEM)); 1414 1415 pci_disable_pcie_error_reporting(pdev); 1416 pci_disable_device(pdev); 1417 1418 free_netdev(alx->dev); 1419 } 1420 1421 #ifdef CONFIG_PM_SLEEP 1422 static int alx_suspend(struct device *dev) 1423 { 1424 struct pci_dev *pdev = to_pci_dev(dev); 1425 struct alx_priv *alx = pci_get_drvdata(pdev); 1426 1427 if (!netif_running(alx->dev)) 1428 return 0; 1429 netif_device_detach(alx->dev); 1430 __alx_stop(alx); 1431 return 0; 1432 } 1433 1434 static int alx_resume(struct device *dev) 1435 { 1436 struct pci_dev *pdev = to_pci_dev(dev); 1437 struct alx_priv *alx = pci_get_drvdata(pdev); 1438 struct alx_hw *hw = &alx->hw; 1439 1440 alx_reset_phy(hw); 1441 1442 if (!netif_running(alx->dev)) 1443 return 0; 1444 netif_device_attach(alx->dev); 1445 return __alx_open(alx, true); 1446 } 1447 1448 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume); 1449 #define ALX_PM_OPS (&alx_pm_ops) 1450 #else 1451 #define ALX_PM_OPS NULL 1452 #endif 1453 1454 1455 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev, 1456 pci_channel_state_t state) 1457 { 1458 struct alx_priv *alx = pci_get_drvdata(pdev); 1459 struct net_device *netdev = alx->dev; 1460 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET; 1461 1462 dev_info(&pdev->dev, "pci error detected\n"); 1463 1464 rtnl_lock(); 1465 1466 if (netif_running(netdev)) { 1467 netif_device_detach(netdev); 1468 alx_halt(alx); 1469 } 1470 1471 if (state == pci_channel_io_perm_failure) 1472 rc = PCI_ERS_RESULT_DISCONNECT; 1473 else 1474 pci_disable_device(pdev); 1475 1476 rtnl_unlock(); 1477 1478 return rc; 1479 } 1480 1481 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev) 1482 { 1483 struct alx_priv *alx = pci_get_drvdata(pdev); 1484 struct alx_hw *hw = &alx->hw; 1485 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; 1486 1487 dev_info(&pdev->dev, "pci error slot reset\n"); 1488 1489 rtnl_lock(); 1490 1491 if (pci_enable_device(pdev)) { 1492 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n"); 1493 goto out; 1494 } 1495 1496 pci_set_master(pdev); 1497 1498 alx_reset_pcie(hw); 1499 if (!alx_reset_mac(hw)) 1500 rc = PCI_ERS_RESULT_RECOVERED; 1501 out: 1502 pci_cleanup_aer_uncorrect_error_status(pdev); 1503 1504 rtnl_unlock(); 1505 1506 return rc; 1507 } 1508 1509 static void alx_pci_error_resume(struct pci_dev *pdev) 1510 { 1511 struct alx_priv *alx = pci_get_drvdata(pdev); 1512 struct net_device *netdev = alx->dev; 1513 1514 dev_info(&pdev->dev, "pci error resume\n"); 1515 1516 rtnl_lock(); 1517 1518 if (netif_running(netdev)) { 1519 alx_activate(alx); 1520 netif_device_attach(netdev); 1521 } 1522 1523 rtnl_unlock(); 1524 } 1525 1526 static const struct pci_error_handlers alx_err_handlers = { 1527 .error_detected = alx_pci_error_detected, 1528 .slot_reset = alx_pci_error_slot_reset, 1529 .resume = alx_pci_error_resume, 1530 }; 1531 1532 static const struct pci_device_id alx_pci_tbl[] = { 1533 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161), 1534 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1535 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200), 1536 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1537 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162), 1538 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG }, 1539 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) }, 1540 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) }, 1541 {} 1542 }; 1543 1544 static struct pci_driver alx_driver = { 1545 .name = alx_drv_name, 1546 .id_table = alx_pci_tbl, 1547 .probe = alx_probe, 1548 .remove = alx_remove, 1549 .err_handler = &alx_err_handlers, 1550 .driver.pm = ALX_PM_OPS, 1551 }; 1552 1553 module_pci_driver(alx_driver); 1554 MODULE_DEVICE_TABLE(pci, alx_pci_tbl); 1555 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>"); 1556 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>"); 1557 MODULE_DESCRIPTION( 1558 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver"); 1559 MODULE_LICENSE("GPL"); 1560