xref: /linux/drivers/net/ethernet/atheros/alx/main.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3  *
4  *  This file is free software: you may copy, redistribute and/or modify it
5  *  under the terms of the GNU General Public License as published by the
6  *  Free Software Foundation, either version 2 of the License, or (at your
7  *  option) any later version.
8  *
9  *  This file is distributed in the hope that it will be useful, but
10  *  WITHOUT ANY WARRANTY; without even the implied warranty of
11  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  *  General Public License for more details.
13  *
14  *  You should have received a copy of the GNU General Public License
15  *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * This file incorporates work covered by the following copyright and
18  * permission notice:
19  *
20  * Copyright (c) 2012 Qualcomm Atheros, Inc.
21  *
22  * Permission to use, copy, modify, and/or distribute this software for any
23  * purpose with or without fee is hereby granted, provided that the above
24  * copyright notice and this permission notice appear in all copies.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51 
52 const char alx_drv_name[] = "alx";
53 
54 
55 static void alx_free_txbuf(struct alx_priv *alx, int entry)
56 {
57 	struct alx_buffer *txb = &alx->txq.bufs[entry];
58 
59 	if (dma_unmap_len(txb, size)) {
60 		dma_unmap_single(&alx->hw.pdev->dev,
61 				 dma_unmap_addr(txb, dma),
62 				 dma_unmap_len(txb, size),
63 				 DMA_TO_DEVICE);
64 		dma_unmap_len_set(txb, size, 0);
65 	}
66 
67 	if (txb->skb) {
68 		dev_kfree_skb_any(txb->skb);
69 		txb->skb = NULL;
70 	}
71 }
72 
73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74 {
75 	struct alx_rx_queue *rxq = &alx->rxq;
76 	struct sk_buff *skb;
77 	struct alx_buffer *cur_buf;
78 	dma_addr_t dma;
79 	u16 cur, next, count = 0;
80 
81 	next = cur = rxq->write_idx;
82 	if (++next == alx->rx_ringsz)
83 		next = 0;
84 	cur_buf = &rxq->bufs[cur];
85 
86 	while (!cur_buf->skb && next != rxq->read_idx) {
87 		struct alx_rfd *rfd = &rxq->rfd[cur];
88 
89 		skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
90 		if (!skb)
91 			break;
92 		dma = dma_map_single(&alx->hw.pdev->dev,
93 				     skb->data, alx->rxbuf_size,
94 				     DMA_FROM_DEVICE);
95 		if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
96 			dev_kfree_skb(skb);
97 			break;
98 		}
99 
100 		/* Unfortunately, RX descriptor buffers must be 4-byte
101 		 * aligned, so we can't use IP alignment.
102 		 */
103 		if (WARN_ON(dma & 3)) {
104 			dev_kfree_skb(skb);
105 			break;
106 		}
107 
108 		cur_buf->skb = skb;
109 		dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
110 		dma_unmap_addr_set(cur_buf, dma, dma);
111 		rfd->addr = cpu_to_le64(dma);
112 
113 		cur = next;
114 		if (++next == alx->rx_ringsz)
115 			next = 0;
116 		cur_buf = &rxq->bufs[cur];
117 		count++;
118 	}
119 
120 	if (count) {
121 		/* flush all updates before updating hardware */
122 		wmb();
123 		rxq->write_idx = cur;
124 		alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
125 	}
126 
127 	return count;
128 }
129 
130 static inline int alx_tpd_avail(struct alx_priv *alx)
131 {
132 	struct alx_tx_queue *txq = &alx->txq;
133 
134 	if (txq->write_idx >= txq->read_idx)
135 		return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
136 	return txq->read_idx - txq->write_idx - 1;
137 }
138 
139 static bool alx_clean_tx_irq(struct alx_priv *alx)
140 {
141 	struct alx_tx_queue *txq = &alx->txq;
142 	u16 hw_read_idx, sw_read_idx;
143 	unsigned int total_bytes = 0, total_packets = 0;
144 	int budget = ALX_DEFAULT_TX_WORK;
145 
146 	sw_read_idx = txq->read_idx;
147 	hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
148 
149 	if (sw_read_idx != hw_read_idx) {
150 		while (sw_read_idx != hw_read_idx && budget > 0) {
151 			struct sk_buff *skb;
152 
153 			skb = txq->bufs[sw_read_idx].skb;
154 			if (skb) {
155 				total_bytes += skb->len;
156 				total_packets++;
157 				budget--;
158 			}
159 
160 			alx_free_txbuf(alx, sw_read_idx);
161 
162 			if (++sw_read_idx == alx->tx_ringsz)
163 				sw_read_idx = 0;
164 		}
165 		txq->read_idx = sw_read_idx;
166 
167 		netdev_completed_queue(alx->dev, total_packets, total_bytes);
168 	}
169 
170 	if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
171 	    alx_tpd_avail(alx) > alx->tx_ringsz/4)
172 		netif_wake_queue(alx->dev);
173 
174 	return sw_read_idx == hw_read_idx;
175 }
176 
177 static void alx_schedule_link_check(struct alx_priv *alx)
178 {
179 	schedule_work(&alx->link_check_wk);
180 }
181 
182 static void alx_schedule_reset(struct alx_priv *alx)
183 {
184 	schedule_work(&alx->reset_wk);
185 }
186 
187 static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
188 {
189 	struct alx_rx_queue *rxq = &alx->rxq;
190 	struct alx_rrd *rrd;
191 	struct alx_buffer *rxb;
192 	struct sk_buff *skb;
193 	u16 length, rfd_cleaned = 0;
194 	int work = 0;
195 
196 	while (work < budget) {
197 		rrd = &rxq->rrd[rxq->rrd_read_idx];
198 		if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
199 			break;
200 		rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
201 
202 		if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
203 				  RRD_SI) != rxq->read_idx ||
204 		    ALX_GET_FIELD(le32_to_cpu(rrd->word0),
205 				  RRD_NOR) != 1) {
206 			alx_schedule_reset(alx);
207 			return work;
208 		}
209 
210 		rxb = &rxq->bufs[rxq->read_idx];
211 		dma_unmap_single(&alx->hw.pdev->dev,
212 				 dma_unmap_addr(rxb, dma),
213 				 dma_unmap_len(rxb, size),
214 				 DMA_FROM_DEVICE);
215 		dma_unmap_len_set(rxb, size, 0);
216 		skb = rxb->skb;
217 		rxb->skb = NULL;
218 
219 		if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
220 		    rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
221 			rrd->word3 = 0;
222 			dev_kfree_skb_any(skb);
223 			goto next_pkt;
224 		}
225 
226 		length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
227 				       RRD_PKTLEN) - ETH_FCS_LEN;
228 		skb_put(skb, length);
229 		skb->protocol = eth_type_trans(skb, alx->dev);
230 
231 		skb_checksum_none_assert(skb);
232 		if (alx->dev->features & NETIF_F_RXCSUM &&
233 		    !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
234 				    cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
235 			switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
236 					      RRD_PID)) {
237 			case RRD_PID_IPV6UDP:
238 			case RRD_PID_IPV4UDP:
239 			case RRD_PID_IPV4TCP:
240 			case RRD_PID_IPV6TCP:
241 				skb->ip_summed = CHECKSUM_UNNECESSARY;
242 				break;
243 			}
244 		}
245 
246 		napi_gro_receive(&alx->napi, skb);
247 		work++;
248 
249 next_pkt:
250 		if (++rxq->read_idx == alx->rx_ringsz)
251 			rxq->read_idx = 0;
252 		if (++rxq->rrd_read_idx == alx->rx_ringsz)
253 			rxq->rrd_read_idx = 0;
254 
255 		if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
256 			rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
257 	}
258 
259 	if (rfd_cleaned)
260 		alx_refill_rx_ring(alx, GFP_ATOMIC);
261 
262 	return work;
263 }
264 
265 static int alx_poll(struct napi_struct *napi, int budget)
266 {
267 	struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
268 	struct alx_hw *hw = &alx->hw;
269 	unsigned long flags;
270 	bool tx_complete;
271 	int work;
272 
273 	tx_complete = alx_clean_tx_irq(alx);
274 	work = alx_clean_rx_irq(alx, budget);
275 
276 	if (!tx_complete || work == budget)
277 		return budget;
278 
279 	napi_complete(&alx->napi);
280 
281 	/* enable interrupt */
282 	spin_lock_irqsave(&alx->irq_lock, flags);
283 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
284 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
285 	spin_unlock_irqrestore(&alx->irq_lock, flags);
286 
287 	alx_post_write(hw);
288 
289 	return work;
290 }
291 
292 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
293 {
294 	struct alx_hw *hw = &alx->hw;
295 	bool write_int_mask = false;
296 
297 	spin_lock(&alx->irq_lock);
298 
299 	/* ACK interrupt */
300 	alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
301 	intr &= alx->int_mask;
302 
303 	if (intr & ALX_ISR_FATAL) {
304 		netif_warn(alx, hw, alx->dev,
305 			   "fatal interrupt 0x%x, resetting\n", intr);
306 		alx_schedule_reset(alx);
307 		goto out;
308 	}
309 
310 	if (intr & ALX_ISR_ALERT)
311 		netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
312 
313 	if (intr & ALX_ISR_PHY) {
314 		/* suppress PHY interrupt, because the source
315 		 * is from PHY internal. only the internal status
316 		 * is cleared, the interrupt status could be cleared.
317 		 */
318 		alx->int_mask &= ~ALX_ISR_PHY;
319 		write_int_mask = true;
320 		alx_schedule_link_check(alx);
321 	}
322 
323 	if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
324 		napi_schedule(&alx->napi);
325 		/* mask rx/tx interrupt, enable them when napi complete */
326 		alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
327 		write_int_mask = true;
328 	}
329 
330 	if (write_int_mask)
331 		alx_write_mem32(hw, ALX_IMR, alx->int_mask);
332 
333 	alx_write_mem32(hw, ALX_ISR, 0);
334 
335  out:
336 	spin_unlock(&alx->irq_lock);
337 	return IRQ_HANDLED;
338 }
339 
340 static irqreturn_t alx_intr_msi(int irq, void *data)
341 {
342 	struct alx_priv *alx = data;
343 
344 	return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
345 }
346 
347 static irqreturn_t alx_intr_legacy(int irq, void *data)
348 {
349 	struct alx_priv *alx = data;
350 	struct alx_hw *hw = &alx->hw;
351 	u32 intr;
352 
353 	intr = alx_read_mem32(hw, ALX_ISR);
354 
355 	if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
356 		return IRQ_NONE;
357 
358 	return alx_intr_handle(alx, intr);
359 }
360 
361 static void alx_init_ring_ptrs(struct alx_priv *alx)
362 {
363 	struct alx_hw *hw = &alx->hw;
364 	u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
365 
366 	alx->rxq.read_idx = 0;
367 	alx->rxq.write_idx = 0;
368 	alx->rxq.rrd_read_idx = 0;
369 	alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
370 	alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
371 	alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
372 	alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
373 	alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
374 	alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
375 
376 	alx->txq.read_idx = 0;
377 	alx->txq.write_idx = 0;
378 	alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
379 	alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
380 	alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
381 
382 	/* load these pointers into the chip */
383 	alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
384 }
385 
386 static void alx_free_txring_buf(struct alx_priv *alx)
387 {
388 	struct alx_tx_queue *txq = &alx->txq;
389 	int i;
390 
391 	if (!txq->bufs)
392 		return;
393 
394 	for (i = 0; i < alx->tx_ringsz; i++)
395 		alx_free_txbuf(alx, i);
396 
397 	memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
398 	memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
399 	txq->write_idx = 0;
400 	txq->read_idx = 0;
401 
402 	netdev_reset_queue(alx->dev);
403 }
404 
405 static void alx_free_rxring_buf(struct alx_priv *alx)
406 {
407 	struct alx_rx_queue *rxq = &alx->rxq;
408 	struct alx_buffer *cur_buf;
409 	u16 i;
410 
411 	if (rxq == NULL)
412 		return;
413 
414 	for (i = 0; i < alx->rx_ringsz; i++) {
415 		cur_buf = rxq->bufs + i;
416 		if (cur_buf->skb) {
417 			dma_unmap_single(&alx->hw.pdev->dev,
418 					 dma_unmap_addr(cur_buf, dma),
419 					 dma_unmap_len(cur_buf, size),
420 					 DMA_FROM_DEVICE);
421 			dev_kfree_skb(cur_buf->skb);
422 			cur_buf->skb = NULL;
423 			dma_unmap_len_set(cur_buf, size, 0);
424 			dma_unmap_addr_set(cur_buf, dma, 0);
425 		}
426 	}
427 
428 	rxq->write_idx = 0;
429 	rxq->read_idx = 0;
430 	rxq->rrd_read_idx = 0;
431 }
432 
433 static void alx_free_buffers(struct alx_priv *alx)
434 {
435 	alx_free_txring_buf(alx);
436 	alx_free_rxring_buf(alx);
437 }
438 
439 static int alx_reinit_rings(struct alx_priv *alx)
440 {
441 	alx_free_buffers(alx);
442 
443 	alx_init_ring_ptrs(alx);
444 
445 	if (!alx_refill_rx_ring(alx, GFP_KERNEL))
446 		return -ENOMEM;
447 
448 	return 0;
449 }
450 
451 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
452 {
453 	u32 crc32, bit, reg;
454 
455 	crc32 = ether_crc(ETH_ALEN, addr);
456 	reg = (crc32 >> 31) & 0x1;
457 	bit = (crc32 >> 26) & 0x1F;
458 
459 	mc_hash[reg] |= BIT(bit);
460 }
461 
462 static void __alx_set_rx_mode(struct net_device *netdev)
463 {
464 	struct alx_priv *alx = netdev_priv(netdev);
465 	struct alx_hw *hw = &alx->hw;
466 	struct netdev_hw_addr *ha;
467 	u32 mc_hash[2] = {};
468 
469 	if (!(netdev->flags & IFF_ALLMULTI)) {
470 		netdev_for_each_mc_addr(ha, netdev)
471 			alx_add_mc_addr(hw, ha->addr, mc_hash);
472 
473 		alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
474 		alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
475 	}
476 
477 	hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
478 	if (netdev->flags & IFF_PROMISC)
479 		hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
480 	if (netdev->flags & IFF_ALLMULTI)
481 		hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
482 
483 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
484 }
485 
486 static void alx_set_rx_mode(struct net_device *netdev)
487 {
488 	__alx_set_rx_mode(netdev);
489 }
490 
491 static int alx_set_mac_address(struct net_device *netdev, void *data)
492 {
493 	struct alx_priv *alx = netdev_priv(netdev);
494 	struct alx_hw *hw = &alx->hw;
495 	struct sockaddr *addr = data;
496 
497 	if (!is_valid_ether_addr(addr->sa_data))
498 		return -EADDRNOTAVAIL;
499 
500 	if (netdev->addr_assign_type & NET_ADDR_RANDOM)
501 		netdev->addr_assign_type ^= NET_ADDR_RANDOM;
502 
503 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
504 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
505 	alx_set_macaddr(hw, hw->mac_addr);
506 
507 	return 0;
508 }
509 
510 static int alx_alloc_descriptors(struct alx_priv *alx)
511 {
512 	alx->txq.bufs = kcalloc(alx->tx_ringsz,
513 				sizeof(struct alx_buffer),
514 				GFP_KERNEL);
515 	if (!alx->txq.bufs)
516 		return -ENOMEM;
517 
518 	alx->rxq.bufs = kcalloc(alx->rx_ringsz,
519 				sizeof(struct alx_buffer),
520 				GFP_KERNEL);
521 	if (!alx->rxq.bufs)
522 		goto out_free;
523 
524 	/* physical tx/rx ring descriptors
525 	 *
526 	 * Allocate them as a single chunk because they must not cross a
527 	 * 4G boundary (hardware has a single register for high 32 bits
528 	 * of addresses only)
529 	 */
530 	alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
531 			    sizeof(struct alx_rrd) * alx->rx_ringsz +
532 			    sizeof(struct alx_rfd) * alx->rx_ringsz;
533 	alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
534 						alx->descmem.size,
535 						&alx->descmem.dma,
536 						GFP_KERNEL);
537 	if (!alx->descmem.virt)
538 		goto out_free;
539 
540 	alx->txq.tpd = alx->descmem.virt;
541 	alx->txq.tpd_dma = alx->descmem.dma;
542 
543 	/* alignment requirement for next block */
544 	BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
545 
546 	alx->rxq.rrd =
547 		(void *)((u8 *)alx->descmem.virt +
548 			 sizeof(struct alx_txd) * alx->tx_ringsz);
549 	alx->rxq.rrd_dma = alx->descmem.dma +
550 			   sizeof(struct alx_txd) * alx->tx_ringsz;
551 
552 	/* alignment requirement for next block */
553 	BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
554 
555 	alx->rxq.rfd =
556 		(void *)((u8 *)alx->descmem.virt +
557 			 sizeof(struct alx_txd) * alx->tx_ringsz +
558 			 sizeof(struct alx_rrd) * alx->rx_ringsz);
559 	alx->rxq.rfd_dma = alx->descmem.dma +
560 			   sizeof(struct alx_txd) * alx->tx_ringsz +
561 			   sizeof(struct alx_rrd) * alx->rx_ringsz;
562 
563 	return 0;
564 out_free:
565 	kfree(alx->txq.bufs);
566 	kfree(alx->rxq.bufs);
567 	return -ENOMEM;
568 }
569 
570 static int alx_alloc_rings(struct alx_priv *alx)
571 {
572 	int err;
573 
574 	err = alx_alloc_descriptors(alx);
575 	if (err)
576 		return err;
577 
578 	alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
579 	alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
580 	alx->tx_ringsz = alx->tx_ringsz;
581 
582 	netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
583 
584 	alx_reinit_rings(alx);
585 	return 0;
586 }
587 
588 static void alx_free_rings(struct alx_priv *alx)
589 {
590 	netif_napi_del(&alx->napi);
591 	alx_free_buffers(alx);
592 
593 	kfree(alx->txq.bufs);
594 	kfree(alx->rxq.bufs);
595 
596 	dma_free_coherent(&alx->hw.pdev->dev,
597 			  alx->descmem.size,
598 			  alx->descmem.virt,
599 			  alx->descmem.dma);
600 }
601 
602 static void alx_config_vector_mapping(struct alx_priv *alx)
603 {
604 	struct alx_hw *hw = &alx->hw;
605 
606 	alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
607 	alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
608 	alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
609 }
610 
611 static void alx_irq_enable(struct alx_priv *alx)
612 {
613 	struct alx_hw *hw = &alx->hw;
614 
615 	/* level-1 interrupt switch */
616 	alx_write_mem32(hw, ALX_ISR, 0);
617 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
618 	alx_post_write(hw);
619 }
620 
621 static void alx_irq_disable(struct alx_priv *alx)
622 {
623 	struct alx_hw *hw = &alx->hw;
624 
625 	alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
626 	alx_write_mem32(hw, ALX_IMR, 0);
627 	alx_post_write(hw);
628 
629 	synchronize_irq(alx->hw.pdev->irq);
630 }
631 
632 static int alx_request_irq(struct alx_priv *alx)
633 {
634 	struct pci_dev *pdev = alx->hw.pdev;
635 	struct alx_hw *hw = &alx->hw;
636 	int err;
637 	u32 msi_ctrl;
638 
639 	msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
640 
641 	if (!pci_enable_msi(alx->hw.pdev)) {
642 		alx->msi = true;
643 
644 		alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
645 				msi_ctrl | ALX_MSI_MASK_SEL_LINE);
646 		err = request_irq(pdev->irq, alx_intr_msi, 0,
647 				  alx->dev->name, alx);
648 		if (!err)
649 			goto out;
650 		/* fall back to legacy interrupt */
651 		pci_disable_msi(alx->hw.pdev);
652 	}
653 
654 	alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
655 	err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
656 			  alx->dev->name, alx);
657 out:
658 	if (!err)
659 		alx_config_vector_mapping(alx);
660 	return err;
661 }
662 
663 static void alx_free_irq(struct alx_priv *alx)
664 {
665 	struct pci_dev *pdev = alx->hw.pdev;
666 
667 	free_irq(pdev->irq, alx);
668 
669 	if (alx->msi) {
670 		pci_disable_msi(alx->hw.pdev);
671 		alx->msi = false;
672 	}
673 }
674 
675 static int alx_identify_hw(struct alx_priv *alx)
676 {
677 	struct alx_hw *hw = &alx->hw;
678 	int rev = alx_hw_revision(hw);
679 
680 	if (rev > ALX_REV_C0)
681 		return -EINVAL;
682 
683 	hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
684 
685 	return 0;
686 }
687 
688 static int alx_init_sw(struct alx_priv *alx)
689 {
690 	struct pci_dev *pdev = alx->hw.pdev;
691 	struct alx_hw *hw = &alx->hw;
692 	int err;
693 
694 	err = alx_identify_hw(alx);
695 	if (err) {
696 		dev_err(&pdev->dev, "unrecognized chip, aborting\n");
697 		return err;
698 	}
699 
700 	alx->hw.lnk_patch =
701 		pdev->device == ALX_DEV_ID_AR8161 &&
702 		pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
703 		pdev->subsystem_device == 0x0091 &&
704 		pdev->revision == 0;
705 
706 	hw->smb_timer = 400;
707 	hw->mtu = alx->dev->mtu;
708 	alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
709 	alx->tx_ringsz = 256;
710 	alx->rx_ringsz = 512;
711 	hw->imt = 200;
712 	alx->int_mask = ALX_ISR_MISC;
713 	hw->dma_chnl = hw->max_dma_chnl;
714 	hw->ith_tpd = alx->tx_ringsz / 3;
715 	hw->link_speed = SPEED_UNKNOWN;
716 	hw->duplex = DUPLEX_UNKNOWN;
717 	hw->adv_cfg = ADVERTISED_Autoneg |
718 		      ADVERTISED_10baseT_Half |
719 		      ADVERTISED_10baseT_Full |
720 		      ADVERTISED_100baseT_Full |
721 		      ADVERTISED_100baseT_Half |
722 		      ADVERTISED_1000baseT_Full;
723 	hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
724 
725 	hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
726 		      ALX_MAC_CTRL_MHASH_ALG_HI5B |
727 		      ALX_MAC_CTRL_BRD_EN |
728 		      ALX_MAC_CTRL_PCRCE |
729 		      ALX_MAC_CTRL_CRCE |
730 		      ALX_MAC_CTRL_RXFC_EN |
731 		      ALX_MAC_CTRL_TXFC_EN |
732 		      7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
733 
734 	return err;
735 }
736 
737 
738 static netdev_features_t alx_fix_features(struct net_device *netdev,
739 					  netdev_features_t features)
740 {
741 	if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
742 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
743 
744 	return features;
745 }
746 
747 static void alx_netif_stop(struct alx_priv *alx)
748 {
749 	alx->dev->trans_start = jiffies;
750 	if (netif_carrier_ok(alx->dev)) {
751 		netif_carrier_off(alx->dev);
752 		netif_tx_disable(alx->dev);
753 		napi_disable(&alx->napi);
754 	}
755 }
756 
757 static void alx_halt(struct alx_priv *alx)
758 {
759 	struct alx_hw *hw = &alx->hw;
760 
761 	alx_netif_stop(alx);
762 	hw->link_speed = SPEED_UNKNOWN;
763 	hw->duplex = DUPLEX_UNKNOWN;
764 
765 	alx_reset_mac(hw);
766 
767 	/* disable l0s/l1 */
768 	alx_enable_aspm(hw, false, false);
769 	alx_irq_disable(alx);
770 	alx_free_buffers(alx);
771 }
772 
773 static void alx_configure(struct alx_priv *alx)
774 {
775 	struct alx_hw *hw = &alx->hw;
776 
777 	alx_configure_basic(hw);
778 	alx_disable_rss(hw);
779 	__alx_set_rx_mode(alx->dev);
780 
781 	alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
782 }
783 
784 static void alx_activate(struct alx_priv *alx)
785 {
786 	/* hardware setting lost, restore it */
787 	alx_reinit_rings(alx);
788 	alx_configure(alx);
789 
790 	/* clear old interrupts */
791 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
792 
793 	alx_irq_enable(alx);
794 
795 	alx_schedule_link_check(alx);
796 }
797 
798 static void alx_reinit(struct alx_priv *alx)
799 {
800 	ASSERT_RTNL();
801 
802 	alx_halt(alx);
803 	alx_activate(alx);
804 }
805 
806 static int alx_change_mtu(struct net_device *netdev, int mtu)
807 {
808 	struct alx_priv *alx = netdev_priv(netdev);
809 	int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
810 
811 	if ((max_frame < ALX_MIN_FRAME_SIZE) ||
812 	    (max_frame > ALX_MAX_FRAME_SIZE))
813 		return -EINVAL;
814 
815 	if (netdev->mtu == mtu)
816 		return 0;
817 
818 	netdev->mtu = mtu;
819 	alx->hw.mtu = mtu;
820 	alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
821 			   ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
822 	netdev_update_features(netdev);
823 	if (netif_running(netdev))
824 		alx_reinit(alx);
825 	return 0;
826 }
827 
828 static void alx_netif_start(struct alx_priv *alx)
829 {
830 	netif_tx_wake_all_queues(alx->dev);
831 	napi_enable(&alx->napi);
832 	netif_carrier_on(alx->dev);
833 }
834 
835 static int __alx_open(struct alx_priv *alx, bool resume)
836 {
837 	int err;
838 
839 	if (!resume)
840 		netif_carrier_off(alx->dev);
841 
842 	err = alx_alloc_rings(alx);
843 	if (err)
844 		return err;
845 
846 	alx_configure(alx);
847 
848 	err = alx_request_irq(alx);
849 	if (err)
850 		goto out_free_rings;
851 
852 	/* clear old interrupts */
853 	alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
854 
855 	alx_irq_enable(alx);
856 
857 	if (!resume)
858 		netif_tx_start_all_queues(alx->dev);
859 
860 	alx_schedule_link_check(alx);
861 	return 0;
862 
863 out_free_rings:
864 	alx_free_rings(alx);
865 	return err;
866 }
867 
868 static void __alx_stop(struct alx_priv *alx)
869 {
870 	alx_halt(alx);
871 	alx_free_irq(alx);
872 	alx_free_rings(alx);
873 }
874 
875 static const char *alx_speed_desc(struct alx_hw *hw)
876 {
877 	switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
878 	case ADVERTISED_1000baseT_Full:
879 		return "1 Gbps Full";
880 	case ADVERTISED_100baseT_Full:
881 		return "100 Mbps Full";
882 	case ADVERTISED_100baseT_Half:
883 		return "100 Mbps Half";
884 	case ADVERTISED_10baseT_Full:
885 		return "10 Mbps Full";
886 	case ADVERTISED_10baseT_Half:
887 		return "10 Mbps Half";
888 	default:
889 		return "Unknown speed";
890 	}
891 }
892 
893 static void alx_check_link(struct alx_priv *alx)
894 {
895 	struct alx_hw *hw = &alx->hw;
896 	unsigned long flags;
897 	int old_speed;
898 	u8 old_duplex;
899 	int err;
900 
901 	/* clear PHY internal interrupt status, otherwise the main
902 	 * interrupt status will be asserted forever
903 	 */
904 	alx_clear_phy_intr(hw);
905 
906 	old_speed = hw->link_speed;
907 	old_duplex = hw->duplex;
908 	err = alx_read_phy_link(hw);
909 	if (err < 0)
910 		goto reset;
911 
912 	spin_lock_irqsave(&alx->irq_lock, flags);
913 	alx->int_mask |= ALX_ISR_PHY;
914 	alx_write_mem32(hw, ALX_IMR, alx->int_mask);
915 	spin_unlock_irqrestore(&alx->irq_lock, flags);
916 
917 	if (old_speed == hw->link_speed)
918 		return;
919 
920 	if (hw->link_speed != SPEED_UNKNOWN) {
921 		netif_info(alx, link, alx->dev,
922 			   "NIC Up: %s\n", alx_speed_desc(hw));
923 		alx_post_phy_link(hw);
924 		alx_enable_aspm(hw, true, true);
925 		alx_start_mac(hw);
926 
927 		if (old_speed == SPEED_UNKNOWN)
928 			alx_netif_start(alx);
929 	} else {
930 		/* link is now down */
931 		alx_netif_stop(alx);
932 		netif_info(alx, link, alx->dev, "Link Down\n");
933 		err = alx_reset_mac(hw);
934 		if (err)
935 			goto reset;
936 		alx_irq_disable(alx);
937 
938 		/* MAC reset causes all HW settings to be lost, restore all */
939 		err = alx_reinit_rings(alx);
940 		if (err)
941 			goto reset;
942 		alx_configure(alx);
943 		alx_enable_aspm(hw, false, true);
944 		alx_post_phy_link(hw);
945 		alx_irq_enable(alx);
946 	}
947 
948 	return;
949 
950 reset:
951 	alx_schedule_reset(alx);
952 }
953 
954 static int alx_open(struct net_device *netdev)
955 {
956 	return __alx_open(netdev_priv(netdev), false);
957 }
958 
959 static int alx_stop(struct net_device *netdev)
960 {
961 	__alx_stop(netdev_priv(netdev));
962 	return 0;
963 }
964 
965 static void alx_link_check(struct work_struct *work)
966 {
967 	struct alx_priv *alx;
968 
969 	alx = container_of(work, struct alx_priv, link_check_wk);
970 
971 	rtnl_lock();
972 	alx_check_link(alx);
973 	rtnl_unlock();
974 }
975 
976 static void alx_reset(struct work_struct *work)
977 {
978 	struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
979 
980 	rtnl_lock();
981 	alx_reinit(alx);
982 	rtnl_unlock();
983 }
984 
985 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
986 {
987 	u8 cso, css;
988 
989 	if (skb->ip_summed != CHECKSUM_PARTIAL)
990 		return 0;
991 
992 	cso = skb_checksum_start_offset(skb);
993 	if (cso & 1)
994 		return -EINVAL;
995 
996 	css = cso + skb->csum_offset;
997 	first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
998 	first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
999 	first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
1000 
1001 	return 0;
1002 }
1003 
1004 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1005 {
1006 	struct alx_tx_queue *txq = &alx->txq;
1007 	struct alx_txd *tpd, *first_tpd;
1008 	dma_addr_t dma;
1009 	int maplen, f, first_idx = txq->write_idx;
1010 
1011 	first_tpd = &txq->tpd[txq->write_idx];
1012 	tpd = first_tpd;
1013 
1014 	maplen = skb_headlen(skb);
1015 	dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1016 			     DMA_TO_DEVICE);
1017 	if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1018 		goto err_dma;
1019 
1020 	dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1021 	dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1022 
1023 	tpd->adrl.addr = cpu_to_le64(dma);
1024 	tpd->len = cpu_to_le16(maplen);
1025 
1026 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1027 		struct skb_frag_struct *frag;
1028 
1029 		frag = &skb_shinfo(skb)->frags[f];
1030 
1031 		if (++txq->write_idx == alx->tx_ringsz)
1032 			txq->write_idx = 0;
1033 		tpd = &txq->tpd[txq->write_idx];
1034 
1035 		tpd->word1 = first_tpd->word1;
1036 
1037 		maplen = skb_frag_size(frag);
1038 		dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1039 				       maplen, DMA_TO_DEVICE);
1040 		if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1041 			goto err_dma;
1042 		dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1043 		dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1044 
1045 		tpd->adrl.addr = cpu_to_le64(dma);
1046 		tpd->len = cpu_to_le16(maplen);
1047 	}
1048 
1049 	/* last TPD, set EOP flag and store skb */
1050 	tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1051 	txq->bufs[txq->write_idx].skb = skb;
1052 
1053 	if (++txq->write_idx == alx->tx_ringsz)
1054 		txq->write_idx = 0;
1055 
1056 	return 0;
1057 
1058 err_dma:
1059 	f = first_idx;
1060 	while (f != txq->write_idx) {
1061 		alx_free_txbuf(alx, f);
1062 		if (++f == alx->tx_ringsz)
1063 			f = 0;
1064 	}
1065 	return -ENOMEM;
1066 }
1067 
1068 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1069 				  struct net_device *netdev)
1070 {
1071 	struct alx_priv *alx = netdev_priv(netdev);
1072 	struct alx_tx_queue *txq = &alx->txq;
1073 	struct alx_txd *first;
1074 	int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1075 
1076 	if (alx_tpd_avail(alx) < tpdreq) {
1077 		netif_stop_queue(alx->dev);
1078 		goto drop;
1079 	}
1080 
1081 	first = &txq->tpd[txq->write_idx];
1082 	memset(first, 0, sizeof(*first));
1083 
1084 	if (alx_tx_csum(skb, first))
1085 		goto drop;
1086 
1087 	if (alx_map_tx_skb(alx, skb) < 0)
1088 		goto drop;
1089 
1090 	netdev_sent_queue(alx->dev, skb->len);
1091 
1092 	/* flush updates before updating hardware */
1093 	wmb();
1094 	alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1095 
1096 	if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1097 		netif_stop_queue(alx->dev);
1098 
1099 	return NETDEV_TX_OK;
1100 
1101 drop:
1102 	dev_kfree_skb_any(skb);
1103 	return NETDEV_TX_OK;
1104 }
1105 
1106 static void alx_tx_timeout(struct net_device *dev)
1107 {
1108 	struct alx_priv *alx = netdev_priv(dev);
1109 
1110 	alx_schedule_reset(alx);
1111 }
1112 
1113 static int alx_mdio_read(struct net_device *netdev,
1114 			 int prtad, int devad, u16 addr)
1115 {
1116 	struct alx_priv *alx = netdev_priv(netdev);
1117 	struct alx_hw *hw = &alx->hw;
1118 	u16 val;
1119 	int err;
1120 
1121 	if (prtad != hw->mdio.prtad)
1122 		return -EINVAL;
1123 
1124 	if (devad == MDIO_DEVAD_NONE)
1125 		err = alx_read_phy_reg(hw, addr, &val);
1126 	else
1127 		err = alx_read_phy_ext(hw, devad, addr, &val);
1128 
1129 	if (err)
1130 		return err;
1131 	return val;
1132 }
1133 
1134 static int alx_mdio_write(struct net_device *netdev,
1135 			  int prtad, int devad, u16 addr, u16 val)
1136 {
1137 	struct alx_priv *alx = netdev_priv(netdev);
1138 	struct alx_hw *hw = &alx->hw;
1139 
1140 	if (prtad != hw->mdio.prtad)
1141 		return -EINVAL;
1142 
1143 	if (devad == MDIO_DEVAD_NONE)
1144 		return alx_write_phy_reg(hw, addr, val);
1145 
1146 	return alx_write_phy_ext(hw, devad, addr, val);
1147 }
1148 
1149 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1150 {
1151 	struct alx_priv *alx = netdev_priv(netdev);
1152 
1153 	if (!netif_running(netdev))
1154 		return -EAGAIN;
1155 
1156 	return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1157 }
1158 
1159 #ifdef CONFIG_NET_POLL_CONTROLLER
1160 static void alx_poll_controller(struct net_device *netdev)
1161 {
1162 	struct alx_priv *alx = netdev_priv(netdev);
1163 
1164 	if (alx->msi)
1165 		alx_intr_msi(0, alx);
1166 	else
1167 		alx_intr_legacy(0, alx);
1168 }
1169 #endif
1170 
1171 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1172 					struct rtnl_link_stats64 *net_stats)
1173 {
1174 	struct alx_priv *alx = netdev_priv(dev);
1175 	struct alx_hw_stats *hw_stats = &alx->hw.stats;
1176 
1177 	spin_lock(&alx->stats_lock);
1178 
1179 	alx_update_hw_stats(&alx->hw);
1180 
1181 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1182 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1183 	net_stats->multicast  = hw_stats->rx_mcast;
1184 	net_stats->collisions = hw_stats->tx_single_col +
1185 				hw_stats->tx_multi_col +
1186 				hw_stats->tx_late_col +
1187 				hw_stats->tx_abort_col;
1188 
1189 	net_stats->rx_errors  = hw_stats->rx_frag +
1190 				hw_stats->rx_fcs_err +
1191 				hw_stats->rx_len_err +
1192 				hw_stats->rx_ov_sz +
1193 				hw_stats->rx_ov_rrd +
1194 				hw_stats->rx_align_err +
1195 				hw_stats->rx_ov_rxf;
1196 
1197 	net_stats->rx_fifo_errors   = hw_stats->rx_ov_rxf;
1198 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1199 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1200 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1201 	net_stats->rx_dropped       = hw_stats->rx_ov_rrd;
1202 
1203 	net_stats->tx_errors = hw_stats->tx_late_col +
1204 			       hw_stats->tx_abort_col +
1205 			       hw_stats->tx_underrun +
1206 			       hw_stats->tx_trunc;
1207 
1208 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1209 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1210 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1211 
1212 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1213 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1214 
1215 	spin_unlock(&alx->stats_lock);
1216 
1217 	return net_stats;
1218 }
1219 
1220 static const struct net_device_ops alx_netdev_ops = {
1221 	.ndo_open               = alx_open,
1222 	.ndo_stop               = alx_stop,
1223 	.ndo_start_xmit         = alx_start_xmit,
1224 	.ndo_get_stats64        = alx_get_stats64,
1225 	.ndo_set_rx_mode        = alx_set_rx_mode,
1226 	.ndo_validate_addr      = eth_validate_addr,
1227 	.ndo_set_mac_address    = alx_set_mac_address,
1228 	.ndo_change_mtu         = alx_change_mtu,
1229 	.ndo_do_ioctl           = alx_ioctl,
1230 	.ndo_tx_timeout         = alx_tx_timeout,
1231 	.ndo_fix_features	= alx_fix_features,
1232 #ifdef CONFIG_NET_POLL_CONTROLLER
1233 	.ndo_poll_controller    = alx_poll_controller,
1234 #endif
1235 };
1236 
1237 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1238 {
1239 	struct net_device *netdev;
1240 	struct alx_priv *alx;
1241 	struct alx_hw *hw;
1242 	bool phy_configured;
1243 	int bars, err;
1244 
1245 	err = pci_enable_device_mem(pdev);
1246 	if (err)
1247 		return err;
1248 
1249 	/* The alx chip can DMA to 64-bit addresses, but it uses a single
1250 	 * shared register for the high 32 bits, so only a single, aligned,
1251 	 * 4 GB physical address range can be used for descriptors.
1252 	 */
1253 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1254 		dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1255 	} else {
1256 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1257 		if (err) {
1258 			dev_err(&pdev->dev, "No usable DMA config, aborting\n");
1259 			goto out_pci_disable;
1260 		}
1261 	}
1262 
1263 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1264 	err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1265 	if (err) {
1266 		dev_err(&pdev->dev,
1267 			"pci_request_selected_regions failed(bars:%d)\n", bars);
1268 		goto out_pci_disable;
1269 	}
1270 
1271 	pci_enable_pcie_error_reporting(pdev);
1272 	pci_set_master(pdev);
1273 
1274 	if (!pdev->pm_cap) {
1275 		dev_err(&pdev->dev,
1276 			"Can't find power management capability, aborting\n");
1277 		err = -EIO;
1278 		goto out_pci_release;
1279 	}
1280 
1281 	netdev = alloc_etherdev(sizeof(*alx));
1282 	if (!netdev) {
1283 		err = -ENOMEM;
1284 		goto out_pci_release;
1285 	}
1286 
1287 	SET_NETDEV_DEV(netdev, &pdev->dev);
1288 	alx = netdev_priv(netdev);
1289 	spin_lock_init(&alx->hw.mdio_lock);
1290 	spin_lock_init(&alx->irq_lock);
1291 	spin_lock_init(&alx->stats_lock);
1292 	alx->dev = netdev;
1293 	alx->hw.pdev = pdev;
1294 	alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1295 			  NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1296 	hw = &alx->hw;
1297 	pci_set_drvdata(pdev, alx);
1298 
1299 	hw->hw_addr = pci_ioremap_bar(pdev, 0);
1300 	if (!hw->hw_addr) {
1301 		dev_err(&pdev->dev, "cannot map device registers\n");
1302 		err = -EIO;
1303 		goto out_free_netdev;
1304 	}
1305 
1306 	netdev->netdev_ops = &alx_netdev_ops;
1307 	netdev->ethtool_ops = &alx_ethtool_ops;
1308 	netdev->irq = pdev->irq;
1309 	netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1310 
1311 	if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1312 		pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1313 
1314 	err = alx_init_sw(alx);
1315 	if (err) {
1316 		dev_err(&pdev->dev, "net device private data init failed\n");
1317 		goto out_unmap;
1318 	}
1319 
1320 	alx_reset_pcie(hw);
1321 
1322 	phy_configured = alx_phy_configured(hw);
1323 
1324 	if (!phy_configured)
1325 		alx_reset_phy(hw);
1326 
1327 	err = alx_reset_mac(hw);
1328 	if (err) {
1329 		dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1330 		goto out_unmap;
1331 	}
1332 
1333 	/* setup link to put it in a known good starting state */
1334 	if (!phy_configured) {
1335 		err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1336 		if (err) {
1337 			dev_err(&pdev->dev,
1338 				"failed to configure PHY speed/duplex (err=%d)\n",
1339 				err);
1340 			goto out_unmap;
1341 		}
1342 	}
1343 
1344 	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1345 
1346 	if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1347 		dev_warn(&pdev->dev,
1348 			 "Invalid permanent address programmed, using random one\n");
1349 		eth_hw_addr_random(netdev);
1350 		memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1351 	}
1352 
1353 	memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1354 	memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1355 	memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1356 
1357 	hw->mdio.prtad = 0;
1358 	hw->mdio.mmds = 0;
1359 	hw->mdio.dev = netdev;
1360 	hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1361 				MDIO_SUPPORTS_C22 |
1362 				MDIO_EMULATE_C22;
1363 	hw->mdio.mdio_read = alx_mdio_read;
1364 	hw->mdio.mdio_write = alx_mdio_write;
1365 
1366 	if (!alx_get_phy_info(hw)) {
1367 		dev_err(&pdev->dev, "failed to identify PHY\n");
1368 		err = -EIO;
1369 		goto out_unmap;
1370 	}
1371 
1372 	INIT_WORK(&alx->link_check_wk, alx_link_check);
1373 	INIT_WORK(&alx->reset_wk, alx_reset);
1374 	netif_carrier_off(netdev);
1375 
1376 	err = register_netdev(netdev);
1377 	if (err) {
1378 		dev_err(&pdev->dev, "register netdevice failed\n");
1379 		goto out_unmap;
1380 	}
1381 
1382 	netdev_info(netdev,
1383 		    "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1384 		    netdev->dev_addr);
1385 
1386 	return 0;
1387 
1388 out_unmap:
1389 	iounmap(hw->hw_addr);
1390 out_free_netdev:
1391 	free_netdev(netdev);
1392 out_pci_release:
1393 	pci_release_selected_regions(pdev, bars);
1394 out_pci_disable:
1395 	pci_disable_device(pdev);
1396 	return err;
1397 }
1398 
1399 static void alx_remove(struct pci_dev *pdev)
1400 {
1401 	struct alx_priv *alx = pci_get_drvdata(pdev);
1402 	struct alx_hw *hw = &alx->hw;
1403 
1404 	cancel_work_sync(&alx->link_check_wk);
1405 	cancel_work_sync(&alx->reset_wk);
1406 
1407 	/* restore permanent mac address */
1408 	alx_set_macaddr(hw, hw->perm_addr);
1409 
1410 	unregister_netdev(alx->dev);
1411 	iounmap(hw->hw_addr);
1412 	pci_release_selected_regions(pdev,
1413 				     pci_select_bars(pdev, IORESOURCE_MEM));
1414 
1415 	pci_disable_pcie_error_reporting(pdev);
1416 	pci_disable_device(pdev);
1417 
1418 	free_netdev(alx->dev);
1419 }
1420 
1421 #ifdef CONFIG_PM_SLEEP
1422 static int alx_suspend(struct device *dev)
1423 {
1424 	struct pci_dev *pdev = to_pci_dev(dev);
1425 	struct alx_priv *alx = pci_get_drvdata(pdev);
1426 
1427 	if (!netif_running(alx->dev))
1428 		return 0;
1429 	netif_device_detach(alx->dev);
1430 	__alx_stop(alx);
1431 	return 0;
1432 }
1433 
1434 static int alx_resume(struct device *dev)
1435 {
1436 	struct pci_dev *pdev = to_pci_dev(dev);
1437 	struct alx_priv *alx = pci_get_drvdata(pdev);
1438 	struct alx_hw *hw = &alx->hw;
1439 
1440 	alx_reset_phy(hw);
1441 
1442 	if (!netif_running(alx->dev))
1443 		return 0;
1444 	netif_device_attach(alx->dev);
1445 	return __alx_open(alx, true);
1446 }
1447 
1448 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1449 #define ALX_PM_OPS      (&alx_pm_ops)
1450 #else
1451 #define ALX_PM_OPS      NULL
1452 #endif
1453 
1454 
1455 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1456 					       pci_channel_state_t state)
1457 {
1458 	struct alx_priv *alx = pci_get_drvdata(pdev);
1459 	struct net_device *netdev = alx->dev;
1460 	pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1461 
1462 	dev_info(&pdev->dev, "pci error detected\n");
1463 
1464 	rtnl_lock();
1465 
1466 	if (netif_running(netdev)) {
1467 		netif_device_detach(netdev);
1468 		alx_halt(alx);
1469 	}
1470 
1471 	if (state == pci_channel_io_perm_failure)
1472 		rc = PCI_ERS_RESULT_DISCONNECT;
1473 	else
1474 		pci_disable_device(pdev);
1475 
1476 	rtnl_unlock();
1477 
1478 	return rc;
1479 }
1480 
1481 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1482 {
1483 	struct alx_priv *alx = pci_get_drvdata(pdev);
1484 	struct alx_hw *hw = &alx->hw;
1485 	pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1486 
1487 	dev_info(&pdev->dev, "pci error slot reset\n");
1488 
1489 	rtnl_lock();
1490 
1491 	if (pci_enable_device(pdev)) {
1492 		dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1493 		goto out;
1494 	}
1495 
1496 	pci_set_master(pdev);
1497 
1498 	alx_reset_pcie(hw);
1499 	if (!alx_reset_mac(hw))
1500 		rc = PCI_ERS_RESULT_RECOVERED;
1501 out:
1502 	pci_cleanup_aer_uncorrect_error_status(pdev);
1503 
1504 	rtnl_unlock();
1505 
1506 	return rc;
1507 }
1508 
1509 static void alx_pci_error_resume(struct pci_dev *pdev)
1510 {
1511 	struct alx_priv *alx = pci_get_drvdata(pdev);
1512 	struct net_device *netdev = alx->dev;
1513 
1514 	dev_info(&pdev->dev, "pci error resume\n");
1515 
1516 	rtnl_lock();
1517 
1518 	if (netif_running(netdev)) {
1519 		alx_activate(alx);
1520 		netif_device_attach(netdev);
1521 	}
1522 
1523 	rtnl_unlock();
1524 }
1525 
1526 static const struct pci_error_handlers alx_err_handlers = {
1527 	.error_detected = alx_pci_error_detected,
1528 	.slot_reset     = alx_pci_error_slot_reset,
1529 	.resume         = alx_pci_error_resume,
1530 };
1531 
1532 static const struct pci_device_id alx_pci_tbl[] = {
1533 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1534 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1535 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1536 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1537 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1538 	  .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1539 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1540 	{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1541 	{}
1542 };
1543 
1544 static struct pci_driver alx_driver = {
1545 	.name        = alx_drv_name,
1546 	.id_table    = alx_pci_tbl,
1547 	.probe       = alx_probe,
1548 	.remove      = alx_remove,
1549 	.err_handler = &alx_err_handlers,
1550 	.driver.pm   = ALX_PM_OPS,
1551 };
1552 
1553 module_pci_driver(alx_driver);
1554 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1555 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1556 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1557 MODULE_DESCRIPTION(
1558 	"Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1559 MODULE_LICENSE("GPL");
1560