1 /* 2 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 * 8 * Driver for the ARC EMAC 10100 (hardware revision 5) 9 * 10 * Contributors: 11 * Amit Bhor 12 * Sameer Dhavale 13 * Vineet Gupta 14 */ 15 16 #include <linux/crc32.h> 17 #include <linux/etherdevice.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/module.h> 21 #include <linux/of_address.h> 22 #include <linux/of_irq.h> 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 #include <linux/of_platform.h> 26 27 #include "emac.h" 28 29 /** 30 * arc_emac_tx_avail - Return the number of available slots in the tx ring. 31 * @priv: Pointer to ARC EMAC private data structure. 32 * 33 * returns: the number of slots available for transmission in tx the ring. 34 */ 35 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv) 36 { 37 return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM; 38 } 39 40 /** 41 * arc_emac_adjust_link - Adjust the PHY link duplex. 42 * @ndev: Pointer to the net_device structure. 43 * 44 * This function is called to change the duplex setting after auto negotiation 45 * is done by the PHY. 46 */ 47 static void arc_emac_adjust_link(struct net_device *ndev) 48 { 49 struct arc_emac_priv *priv = netdev_priv(ndev); 50 struct phy_device *phy_dev = priv->phy_dev; 51 unsigned int reg, state_changed = 0; 52 53 if (priv->link != phy_dev->link) { 54 priv->link = phy_dev->link; 55 state_changed = 1; 56 } 57 58 if (priv->speed != phy_dev->speed) { 59 priv->speed = phy_dev->speed; 60 state_changed = 1; 61 if (priv->set_mac_speed) 62 priv->set_mac_speed(priv, priv->speed); 63 } 64 65 if (priv->duplex != phy_dev->duplex) { 66 reg = arc_reg_get(priv, R_CTRL); 67 68 if (phy_dev->duplex == DUPLEX_FULL) 69 reg |= ENFL_MASK; 70 else 71 reg &= ~ENFL_MASK; 72 73 arc_reg_set(priv, R_CTRL, reg); 74 priv->duplex = phy_dev->duplex; 75 state_changed = 1; 76 } 77 78 if (state_changed) 79 phy_print_status(phy_dev); 80 } 81 82 /** 83 * arc_emac_get_settings - Get PHY settings. 84 * @ndev: Pointer to net_device structure. 85 * @cmd: Pointer to ethtool_cmd structure. 86 * 87 * This implements ethtool command for getting PHY settings. If PHY could 88 * not be found, the function returns -ENODEV. This function calls the 89 * relevant PHY ethtool API to get the PHY settings. 90 * Issue "ethtool ethX" under linux prompt to execute this function. 91 */ 92 static int arc_emac_get_settings(struct net_device *ndev, 93 struct ethtool_cmd *cmd) 94 { 95 struct arc_emac_priv *priv = netdev_priv(ndev); 96 97 return phy_ethtool_gset(priv->phy_dev, cmd); 98 } 99 100 /** 101 * arc_emac_set_settings - Set PHY settings as passed in the argument. 102 * @ndev: Pointer to net_device structure. 103 * @cmd: Pointer to ethtool_cmd structure. 104 * 105 * This implements ethtool command for setting various PHY settings. If PHY 106 * could not be found, the function returns -ENODEV. This function calls the 107 * relevant PHY ethtool API to set the PHY. 108 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this 109 * function. 110 */ 111 static int arc_emac_set_settings(struct net_device *ndev, 112 struct ethtool_cmd *cmd) 113 { 114 struct arc_emac_priv *priv = netdev_priv(ndev); 115 116 if (!capable(CAP_NET_ADMIN)) 117 return -EPERM; 118 119 return phy_ethtool_sset(priv->phy_dev, cmd); 120 } 121 122 /** 123 * arc_emac_get_drvinfo - Get EMAC driver information. 124 * @ndev: Pointer to net_device structure. 125 * @info: Pointer to ethtool_drvinfo structure. 126 * 127 * This implements ethtool command for getting the driver information. 128 * Issue "ethtool -i ethX" under linux prompt to execute this function. 129 */ 130 static void arc_emac_get_drvinfo(struct net_device *ndev, 131 struct ethtool_drvinfo *info) 132 { 133 struct arc_emac_priv *priv = netdev_priv(ndev); 134 135 strlcpy(info->driver, priv->drv_name, sizeof(info->driver)); 136 strlcpy(info->version, priv->drv_version, sizeof(info->version)); 137 } 138 139 static const struct ethtool_ops arc_emac_ethtool_ops = { 140 .get_settings = arc_emac_get_settings, 141 .set_settings = arc_emac_set_settings, 142 .get_drvinfo = arc_emac_get_drvinfo, 143 .get_link = ethtool_op_get_link, 144 }; 145 146 #define FIRST_OR_LAST_MASK (FIRST_MASK | LAST_MASK) 147 148 /** 149 * arc_emac_tx_clean - clears processed by EMAC Tx BDs. 150 * @ndev: Pointer to the network device. 151 */ 152 static void arc_emac_tx_clean(struct net_device *ndev) 153 { 154 struct arc_emac_priv *priv = netdev_priv(ndev); 155 struct net_device_stats *stats = &ndev->stats; 156 unsigned int i; 157 158 for (i = 0; i < TX_BD_NUM; i++) { 159 unsigned int *txbd_dirty = &priv->txbd_dirty; 160 struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty]; 161 struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty]; 162 struct sk_buff *skb = tx_buff->skb; 163 unsigned int info = le32_to_cpu(txbd->info); 164 165 if ((info & FOR_EMAC) || !txbd->data || !skb) 166 break; 167 168 if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) { 169 stats->tx_errors++; 170 stats->tx_dropped++; 171 172 if (info & DEFR) 173 stats->tx_carrier_errors++; 174 175 if (info & LTCL) 176 stats->collisions++; 177 178 if (info & UFLO) 179 stats->tx_fifo_errors++; 180 } else if (likely(info & FIRST_OR_LAST_MASK)) { 181 stats->tx_packets++; 182 stats->tx_bytes += skb->len; 183 } 184 185 dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr), 186 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE); 187 188 /* return the sk_buff to system */ 189 dev_kfree_skb_irq(skb); 190 191 txbd->data = 0; 192 txbd->info = 0; 193 tx_buff->skb = NULL; 194 195 *txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM; 196 } 197 198 /* Ensure that txbd_dirty is visible to tx() before checking 199 * for queue stopped. 200 */ 201 smp_mb(); 202 203 if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv)) 204 netif_wake_queue(ndev); 205 } 206 207 /** 208 * arc_emac_rx - processing of Rx packets. 209 * @ndev: Pointer to the network device. 210 * @budget: How many BDs to process on 1 call. 211 * 212 * returns: Number of processed BDs 213 * 214 * Iterate through Rx BDs and deliver received packages to upper layer. 215 */ 216 static int arc_emac_rx(struct net_device *ndev, int budget) 217 { 218 struct arc_emac_priv *priv = netdev_priv(ndev); 219 unsigned int work_done; 220 221 for (work_done = 0; work_done < budget; work_done++) { 222 unsigned int *last_rx_bd = &priv->last_rx_bd; 223 struct net_device_stats *stats = &ndev->stats; 224 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; 225 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; 226 unsigned int pktlen, info = le32_to_cpu(rxbd->info); 227 struct sk_buff *skb; 228 dma_addr_t addr; 229 230 if (unlikely((info & OWN_MASK) == FOR_EMAC)) 231 break; 232 233 /* Make a note that we saw a packet at this BD. 234 * So next time, driver starts from this + 1 235 */ 236 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; 237 238 if (unlikely((info & FIRST_OR_LAST_MASK) != 239 FIRST_OR_LAST_MASK)) { 240 /* We pre-allocate buffers of MTU size so incoming 241 * packets won't be split/chained. 242 */ 243 if (net_ratelimit()) 244 netdev_err(ndev, "incomplete packet received\n"); 245 246 /* Return ownership to EMAC */ 247 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 248 stats->rx_errors++; 249 stats->rx_length_errors++; 250 continue; 251 } 252 253 pktlen = info & LEN_MASK; 254 stats->rx_packets++; 255 stats->rx_bytes += pktlen; 256 skb = rx_buff->skb; 257 skb_put(skb, pktlen); 258 skb->dev = ndev; 259 skb->protocol = eth_type_trans(skb, ndev); 260 261 dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr), 262 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE); 263 264 /* Prepare the BD for next cycle */ 265 rx_buff->skb = netdev_alloc_skb_ip_align(ndev, 266 EMAC_BUFFER_SIZE); 267 if (unlikely(!rx_buff->skb)) { 268 stats->rx_errors++; 269 /* Because receive_skb is below, increment rx_dropped */ 270 stats->rx_dropped++; 271 continue; 272 } 273 274 /* receive_skb only if new skb was allocated to avoid holes */ 275 netif_receive_skb(skb); 276 277 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data, 278 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); 279 if (dma_mapping_error(&ndev->dev, addr)) { 280 if (net_ratelimit()) 281 netdev_err(ndev, "cannot dma map\n"); 282 dev_kfree_skb(rx_buff->skb); 283 stats->rx_errors++; 284 continue; 285 } 286 dma_unmap_addr_set(rx_buff, addr, addr); 287 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); 288 289 rxbd->data = cpu_to_le32(addr); 290 291 /* Make sure pointer to data buffer is set */ 292 wmb(); 293 294 /* Return ownership to EMAC */ 295 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 296 } 297 298 return work_done; 299 } 300 301 /** 302 * arc_emac_poll - NAPI poll handler. 303 * @napi: Pointer to napi_struct structure. 304 * @budget: How many BDs to process on 1 call. 305 * 306 * returns: Number of processed BDs 307 */ 308 static int arc_emac_poll(struct napi_struct *napi, int budget) 309 { 310 struct net_device *ndev = napi->dev; 311 struct arc_emac_priv *priv = netdev_priv(ndev); 312 unsigned int work_done; 313 314 arc_emac_tx_clean(ndev); 315 316 work_done = arc_emac_rx(ndev, budget); 317 if (work_done < budget) { 318 napi_complete(napi); 319 arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK); 320 } 321 322 return work_done; 323 } 324 325 /** 326 * arc_emac_intr - Global interrupt handler for EMAC. 327 * @irq: irq number. 328 * @dev_instance: device instance. 329 * 330 * returns: IRQ_HANDLED for all cases. 331 * 332 * ARC EMAC has only 1 interrupt line, and depending on bits raised in 333 * STATUS register we may tell what is a reason for interrupt to fire. 334 */ 335 static irqreturn_t arc_emac_intr(int irq, void *dev_instance) 336 { 337 struct net_device *ndev = dev_instance; 338 struct arc_emac_priv *priv = netdev_priv(ndev); 339 struct net_device_stats *stats = &ndev->stats; 340 unsigned int status; 341 342 status = arc_reg_get(priv, R_STATUS); 343 status &= ~MDIO_MASK; 344 345 /* Reset all flags except "MDIO complete" */ 346 arc_reg_set(priv, R_STATUS, status); 347 348 if (status & (RXINT_MASK | TXINT_MASK)) { 349 if (likely(napi_schedule_prep(&priv->napi))) { 350 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK); 351 __napi_schedule(&priv->napi); 352 } 353 } 354 355 if (status & ERR_MASK) { 356 /* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding 357 * 8-bit error counter overrun. 358 */ 359 360 if (status & MSER_MASK) { 361 stats->rx_missed_errors += 0x100; 362 stats->rx_errors += 0x100; 363 } 364 365 if (status & RXCR_MASK) { 366 stats->rx_crc_errors += 0x100; 367 stats->rx_errors += 0x100; 368 } 369 370 if (status & RXFR_MASK) { 371 stats->rx_frame_errors += 0x100; 372 stats->rx_errors += 0x100; 373 } 374 375 if (status & RXFL_MASK) { 376 stats->rx_over_errors += 0x100; 377 stats->rx_errors += 0x100; 378 } 379 } 380 381 return IRQ_HANDLED; 382 } 383 384 #ifdef CONFIG_NET_POLL_CONTROLLER 385 static void arc_emac_poll_controller(struct net_device *dev) 386 { 387 disable_irq(dev->irq); 388 arc_emac_intr(dev->irq, dev); 389 enable_irq(dev->irq); 390 } 391 #endif 392 393 /** 394 * arc_emac_open - Open the network device. 395 * @ndev: Pointer to the network device. 396 * 397 * returns: 0, on success or non-zero error value on failure. 398 * 399 * This function sets the MAC address, requests and enables an IRQ 400 * for the EMAC device and starts the Tx queue. 401 * It also connects to the phy device. 402 */ 403 static int arc_emac_open(struct net_device *ndev) 404 { 405 struct arc_emac_priv *priv = netdev_priv(ndev); 406 struct phy_device *phy_dev = priv->phy_dev; 407 int i; 408 409 phy_dev->autoneg = AUTONEG_ENABLE; 410 phy_dev->speed = 0; 411 phy_dev->duplex = 0; 412 phy_dev->advertising &= phy_dev->supported; 413 414 priv->last_rx_bd = 0; 415 416 /* Allocate and set buffers for Rx BD's */ 417 for (i = 0; i < RX_BD_NUM; i++) { 418 dma_addr_t addr; 419 unsigned int *last_rx_bd = &priv->last_rx_bd; 420 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd]; 421 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd]; 422 423 rx_buff->skb = netdev_alloc_skb_ip_align(ndev, 424 EMAC_BUFFER_SIZE); 425 if (unlikely(!rx_buff->skb)) 426 return -ENOMEM; 427 428 addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data, 429 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE); 430 if (dma_mapping_error(&ndev->dev, addr)) { 431 netdev_err(ndev, "cannot dma map\n"); 432 dev_kfree_skb(rx_buff->skb); 433 return -ENOMEM; 434 } 435 dma_unmap_addr_set(rx_buff, addr, addr); 436 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE); 437 438 rxbd->data = cpu_to_le32(addr); 439 440 /* Make sure pointer to data buffer is set */ 441 wmb(); 442 443 /* Return ownership to EMAC */ 444 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE); 445 446 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM; 447 } 448 449 priv->txbd_curr = 0; 450 priv->txbd_dirty = 0; 451 452 /* Clean Tx BD's */ 453 memset(priv->txbd, 0, TX_RING_SZ); 454 455 /* Initialize logical address filter */ 456 arc_reg_set(priv, R_LAFL, 0); 457 arc_reg_set(priv, R_LAFH, 0); 458 459 /* Set BD ring pointers for device side */ 460 arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma); 461 arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma); 462 463 /* Enable interrupts */ 464 arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); 465 466 /* Set CONTROL */ 467 arc_reg_set(priv, R_CTRL, 468 (RX_BD_NUM << 24) | /* RX BD table length */ 469 (TX_BD_NUM << 16) | /* TX BD table length */ 470 TXRN_MASK | RXRN_MASK); 471 472 napi_enable(&priv->napi); 473 474 /* Enable EMAC */ 475 arc_reg_or(priv, R_CTRL, EN_MASK); 476 477 phy_start_aneg(priv->phy_dev); 478 479 netif_start_queue(ndev); 480 481 return 0; 482 } 483 484 /** 485 * arc_emac_set_rx_mode - Change the receive filtering mode. 486 * @ndev: Pointer to the network device. 487 * 488 * This function enables/disables promiscuous or all-multicast mode 489 * and updates the multicast filtering list of the network device. 490 */ 491 static void arc_emac_set_rx_mode(struct net_device *ndev) 492 { 493 struct arc_emac_priv *priv = netdev_priv(ndev); 494 495 if (ndev->flags & IFF_PROMISC) { 496 arc_reg_or(priv, R_CTRL, PROM_MASK); 497 } else { 498 arc_reg_clr(priv, R_CTRL, PROM_MASK); 499 500 if (ndev->flags & IFF_ALLMULTI) { 501 arc_reg_set(priv, R_LAFL, ~0); 502 arc_reg_set(priv, R_LAFH, ~0); 503 } else { 504 struct netdev_hw_addr *ha; 505 unsigned int filter[2] = { 0, 0 }; 506 int bit; 507 508 netdev_for_each_mc_addr(ha, ndev) { 509 bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26; 510 filter[bit >> 5] |= 1 << (bit & 31); 511 } 512 513 arc_reg_set(priv, R_LAFL, filter[0]); 514 arc_reg_set(priv, R_LAFH, filter[1]); 515 } 516 } 517 } 518 519 /** 520 * arc_free_tx_queue - free skb from tx queue 521 * @ndev: Pointer to the network device. 522 * 523 * This function must be called while EMAC disable 524 */ 525 static void arc_free_tx_queue(struct net_device *ndev) 526 { 527 struct arc_emac_priv *priv = netdev_priv(ndev); 528 unsigned int i; 529 530 for (i = 0; i < TX_BD_NUM; i++) { 531 struct arc_emac_bd *txbd = &priv->txbd[i]; 532 struct buffer_state *tx_buff = &priv->tx_buff[i]; 533 534 if (tx_buff->skb) { 535 dma_unmap_single(&ndev->dev, 536 dma_unmap_addr(tx_buff, addr), 537 dma_unmap_len(tx_buff, len), 538 DMA_TO_DEVICE); 539 540 /* return the sk_buff to system */ 541 dev_kfree_skb_irq(tx_buff->skb); 542 } 543 544 txbd->info = 0; 545 txbd->data = 0; 546 tx_buff->skb = NULL; 547 } 548 } 549 550 /** 551 * arc_free_rx_queue - free skb from rx queue 552 * @ndev: Pointer to the network device. 553 * 554 * This function must be called while EMAC disable 555 */ 556 static void arc_free_rx_queue(struct net_device *ndev) 557 { 558 struct arc_emac_priv *priv = netdev_priv(ndev); 559 unsigned int i; 560 561 for (i = 0; i < RX_BD_NUM; i++) { 562 struct arc_emac_bd *rxbd = &priv->rxbd[i]; 563 struct buffer_state *rx_buff = &priv->rx_buff[i]; 564 565 if (rx_buff->skb) { 566 dma_unmap_single(&ndev->dev, 567 dma_unmap_addr(rx_buff, addr), 568 dma_unmap_len(rx_buff, len), 569 DMA_FROM_DEVICE); 570 571 /* return the sk_buff to system */ 572 dev_kfree_skb_irq(rx_buff->skb); 573 } 574 575 rxbd->info = 0; 576 rxbd->data = 0; 577 rx_buff->skb = NULL; 578 } 579 } 580 581 /** 582 * arc_emac_stop - Close the network device. 583 * @ndev: Pointer to the network device. 584 * 585 * This function stops the Tx queue, disables interrupts and frees the IRQ for 586 * the EMAC device. 587 * It also disconnects the PHY device associated with the EMAC device. 588 */ 589 static int arc_emac_stop(struct net_device *ndev) 590 { 591 struct arc_emac_priv *priv = netdev_priv(ndev); 592 593 napi_disable(&priv->napi); 594 netif_stop_queue(ndev); 595 596 /* Disable interrupts */ 597 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK); 598 599 /* Disable EMAC */ 600 arc_reg_clr(priv, R_CTRL, EN_MASK); 601 602 /* Return the sk_buff to system */ 603 arc_free_tx_queue(ndev); 604 arc_free_rx_queue(ndev); 605 606 return 0; 607 } 608 609 /** 610 * arc_emac_stats - Get system network statistics. 611 * @ndev: Pointer to net_device structure. 612 * 613 * Returns the address of the device statistics structure. 614 * Statistics are updated in interrupt handler. 615 */ 616 static struct net_device_stats *arc_emac_stats(struct net_device *ndev) 617 { 618 struct arc_emac_priv *priv = netdev_priv(ndev); 619 struct net_device_stats *stats = &ndev->stats; 620 unsigned long miss, rxerr; 621 u8 rxcrc, rxfram, rxoflow; 622 623 rxerr = arc_reg_get(priv, R_RXERR); 624 miss = arc_reg_get(priv, R_MISS); 625 626 rxcrc = rxerr; 627 rxfram = rxerr >> 8; 628 rxoflow = rxerr >> 16; 629 630 stats->rx_errors += miss; 631 stats->rx_errors += rxcrc + rxfram + rxoflow; 632 633 stats->rx_over_errors += rxoflow; 634 stats->rx_frame_errors += rxfram; 635 stats->rx_crc_errors += rxcrc; 636 stats->rx_missed_errors += miss; 637 638 return stats; 639 } 640 641 /** 642 * arc_emac_tx - Starts the data transmission. 643 * @skb: sk_buff pointer that contains data to be Transmitted. 644 * @ndev: Pointer to net_device structure. 645 * 646 * returns: NETDEV_TX_OK, on success 647 * NETDEV_TX_BUSY, if any of the descriptors are not free. 648 * 649 * This function is invoked from upper layers to initiate transmission. 650 */ 651 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev) 652 { 653 struct arc_emac_priv *priv = netdev_priv(ndev); 654 unsigned int len, *txbd_curr = &priv->txbd_curr; 655 struct net_device_stats *stats = &ndev->stats; 656 __le32 *info = &priv->txbd[*txbd_curr].info; 657 dma_addr_t addr; 658 659 if (skb_padto(skb, ETH_ZLEN)) 660 return NETDEV_TX_OK; 661 662 len = max_t(unsigned int, ETH_ZLEN, skb->len); 663 664 if (unlikely(!arc_emac_tx_avail(priv))) { 665 netif_stop_queue(ndev); 666 netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n"); 667 return NETDEV_TX_BUSY; 668 } 669 670 addr = dma_map_single(&ndev->dev, (void *)skb->data, len, 671 DMA_TO_DEVICE); 672 673 if (unlikely(dma_mapping_error(&ndev->dev, addr))) { 674 stats->tx_dropped++; 675 stats->tx_errors++; 676 dev_kfree_skb(skb); 677 return NETDEV_TX_OK; 678 } 679 dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr); 680 dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len); 681 682 priv->txbd[*txbd_curr].data = cpu_to_le32(addr); 683 684 /* Make sure pointer to data buffer is set */ 685 wmb(); 686 687 skb_tx_timestamp(skb); 688 689 *info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len); 690 691 /* Make sure info word is set */ 692 wmb(); 693 694 priv->tx_buff[*txbd_curr].skb = skb; 695 696 /* Increment index to point to the next BD */ 697 *txbd_curr = (*txbd_curr + 1) % TX_BD_NUM; 698 699 /* Ensure that tx_clean() sees the new txbd_curr before 700 * checking the queue status. This prevents an unneeded wake 701 * of the queue in tx_clean(). 702 */ 703 smp_mb(); 704 705 if (!arc_emac_tx_avail(priv)) { 706 netif_stop_queue(ndev); 707 /* Refresh tx_dirty */ 708 smp_mb(); 709 if (arc_emac_tx_avail(priv)) 710 netif_start_queue(ndev); 711 } 712 713 arc_reg_set(priv, R_STATUS, TXPL_MASK); 714 715 return NETDEV_TX_OK; 716 } 717 718 static void arc_emac_set_address_internal(struct net_device *ndev) 719 { 720 struct arc_emac_priv *priv = netdev_priv(ndev); 721 unsigned int addr_low, addr_hi; 722 723 addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]); 724 addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]); 725 726 arc_reg_set(priv, R_ADDRL, addr_low); 727 arc_reg_set(priv, R_ADDRH, addr_hi); 728 } 729 730 /** 731 * arc_emac_set_address - Set the MAC address for this device. 732 * @ndev: Pointer to net_device structure. 733 * @p: 6 byte Address to be written as MAC address. 734 * 735 * This function copies the HW address from the sockaddr structure to the 736 * net_device structure and updates the address in HW. 737 * 738 * returns: -EBUSY if the net device is busy or 0 if the address is set 739 * successfully. 740 */ 741 static int arc_emac_set_address(struct net_device *ndev, void *p) 742 { 743 struct sockaddr *addr = p; 744 745 if (netif_running(ndev)) 746 return -EBUSY; 747 748 if (!is_valid_ether_addr(addr->sa_data)) 749 return -EADDRNOTAVAIL; 750 751 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 752 753 arc_emac_set_address_internal(ndev); 754 755 return 0; 756 } 757 758 static const struct net_device_ops arc_emac_netdev_ops = { 759 .ndo_open = arc_emac_open, 760 .ndo_stop = arc_emac_stop, 761 .ndo_start_xmit = arc_emac_tx, 762 .ndo_set_mac_address = arc_emac_set_address, 763 .ndo_get_stats = arc_emac_stats, 764 .ndo_set_rx_mode = arc_emac_set_rx_mode, 765 #ifdef CONFIG_NET_POLL_CONTROLLER 766 .ndo_poll_controller = arc_emac_poll_controller, 767 #endif 768 }; 769 770 int arc_emac_probe(struct net_device *ndev, int interface) 771 { 772 struct device *dev = ndev->dev.parent; 773 struct resource res_regs; 774 struct device_node *phy_node; 775 struct arc_emac_priv *priv; 776 const char *mac_addr; 777 unsigned int id, clock_frequency, irq; 778 int err; 779 780 /* Get PHY from device tree */ 781 phy_node = of_parse_phandle(dev->of_node, "phy", 0); 782 if (!phy_node) { 783 dev_err(dev, "failed to retrieve phy description from device tree\n"); 784 return -ENODEV; 785 } 786 787 /* Get EMAC registers base address from device tree */ 788 err = of_address_to_resource(dev->of_node, 0, &res_regs); 789 if (err) { 790 dev_err(dev, "failed to retrieve registers base from device tree\n"); 791 return -ENODEV; 792 } 793 794 /* Get IRQ from device tree */ 795 irq = irq_of_parse_and_map(dev->of_node, 0); 796 if (!irq) { 797 dev_err(dev, "failed to retrieve <irq> value from device tree\n"); 798 return -ENODEV; 799 } 800 801 ndev->netdev_ops = &arc_emac_netdev_ops; 802 ndev->ethtool_ops = &arc_emac_ethtool_ops; 803 ndev->watchdog_timeo = TX_TIMEOUT; 804 /* FIXME :: no multicast support yet */ 805 ndev->flags &= ~IFF_MULTICAST; 806 807 priv = netdev_priv(ndev); 808 priv->dev = dev; 809 810 priv->regs = devm_ioremap_resource(dev, &res_regs); 811 if (IS_ERR(priv->regs)) 812 return PTR_ERR(priv->regs); 813 814 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs); 815 816 if (priv->clk) { 817 err = clk_prepare_enable(priv->clk); 818 if (err) { 819 dev_err(dev, "failed to enable clock\n"); 820 return err; 821 } 822 823 clock_frequency = clk_get_rate(priv->clk); 824 } else { 825 /* Get CPU clock frequency from device tree */ 826 if (of_property_read_u32(dev->of_node, "clock-frequency", 827 &clock_frequency)) { 828 dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n"); 829 return -EINVAL; 830 } 831 } 832 833 id = arc_reg_get(priv, R_ID); 834 835 /* Check for EMAC revision 5 or 7, magic number */ 836 if (!(id == 0x0005fd02 || id == 0x0007fd02)) { 837 dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id); 838 err = -ENODEV; 839 goto out_clken; 840 } 841 dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id); 842 843 /* Set poll rate so that it polls every 1 ms */ 844 arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000); 845 846 ndev->irq = irq; 847 dev_info(dev, "IRQ is %d\n", ndev->irq); 848 849 /* Register interrupt handler for device */ 850 err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0, 851 ndev->name, ndev); 852 if (err) { 853 dev_err(dev, "could not allocate IRQ\n"); 854 goto out_clken; 855 } 856 857 /* Get MAC address from device tree */ 858 mac_addr = of_get_mac_address(dev->of_node); 859 860 if (mac_addr) 861 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); 862 else 863 eth_hw_addr_random(ndev); 864 865 arc_emac_set_address_internal(ndev); 866 dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr); 867 868 /* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */ 869 priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ, 870 &priv->rxbd_dma, GFP_KERNEL); 871 872 if (!priv->rxbd) { 873 dev_err(dev, "failed to allocate data buffers\n"); 874 err = -ENOMEM; 875 goto out_clken; 876 } 877 878 priv->txbd = priv->rxbd + RX_BD_NUM; 879 880 priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ; 881 dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n", 882 (unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma); 883 884 err = arc_mdio_probe(priv); 885 if (err) { 886 dev_err(dev, "failed to probe MII bus\n"); 887 goto out_clken; 888 } 889 890 priv->phy_dev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0, 891 interface); 892 if (!priv->phy_dev) { 893 dev_err(dev, "of_phy_connect() failed\n"); 894 err = -ENODEV; 895 goto out_mdio; 896 } 897 898 dev_info(dev, "connected to %s phy with id 0x%x\n", 899 priv->phy_dev->drv->name, priv->phy_dev->phy_id); 900 901 netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT); 902 903 err = register_netdev(ndev); 904 if (err) { 905 dev_err(dev, "failed to register network device\n"); 906 goto out_netif_api; 907 } 908 909 return 0; 910 911 out_netif_api: 912 netif_napi_del(&priv->napi); 913 phy_disconnect(priv->phy_dev); 914 priv->phy_dev = NULL; 915 out_mdio: 916 arc_mdio_remove(priv); 917 out_clken: 918 if (priv->clk) 919 clk_disable_unprepare(priv->clk); 920 return err; 921 } 922 EXPORT_SYMBOL_GPL(arc_emac_probe); 923 924 int arc_emac_remove(struct net_device *ndev) 925 { 926 struct arc_emac_priv *priv = netdev_priv(ndev); 927 928 phy_disconnect(priv->phy_dev); 929 priv->phy_dev = NULL; 930 arc_mdio_remove(priv); 931 unregister_netdev(ndev); 932 netif_napi_del(&priv->napi); 933 934 if (!IS_ERR(priv->clk)) 935 clk_disable_unprepare(priv->clk); 936 937 return 0; 938 } 939 EXPORT_SYMBOL_GPL(arc_emac_remove); 940 941 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>"); 942 MODULE_DESCRIPTION("ARC EMAC driver"); 943 MODULE_LICENSE("GPL"); 944