xref: /linux/drivers/net/ethernet/apple/mace.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Network device driver for the MACE ethernet controller on
3  * Apple Powermacs.  Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1996 Paul Mackerras.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/string.h>
14 #include <linux/timer.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/crc32.h>
18 #include <linux/spinlock.h>
19 #include <linux/bitrev.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/dbdma.h>
23 #include <asm/io.h>
24 #include <asm/pgtable.h>
25 #include <asm/macio.h>
26 
27 #include "mace.h"
28 
29 static int port_aaui = -1;
30 
31 #define N_RX_RING	8
32 #define N_TX_RING	6
33 #define MAX_TX_ACTIVE	1
34 #define NCMDS_TX	1	/* dma commands per element in tx ring */
35 #define RX_BUFLEN	(ETH_FRAME_LEN + 8)
36 #define TX_TIMEOUT	HZ	/* 1 second */
37 
38 /* Chip rev needs workaround on HW & multicast addr change */
39 #define BROKEN_ADDRCHG_REV	0x0941
40 
41 /* Bits in transmit DMA status */
42 #define TX_DMA_ERR	0x80
43 
44 struct mace_data {
45     volatile struct mace __iomem *mace;
46     volatile struct dbdma_regs __iomem *tx_dma;
47     int tx_dma_intr;
48     volatile struct dbdma_regs __iomem *rx_dma;
49     int rx_dma_intr;
50     volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
51     volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
52     struct sk_buff *rx_bufs[N_RX_RING];
53     int rx_fill;
54     int rx_empty;
55     struct sk_buff *tx_bufs[N_TX_RING];
56     int tx_fill;
57     int tx_empty;
58     unsigned char maccc;
59     unsigned char tx_fullup;
60     unsigned char tx_active;
61     unsigned char tx_bad_runt;
62     struct timer_list tx_timeout;
63     int timeout_active;
64     int port_aaui;
65     int chipid;
66     struct macio_dev *mdev;
67     spinlock_t lock;
68 };
69 
70 /*
71  * Number of bytes of private data per MACE: allow enough for
72  * the rx and tx dma commands plus a branch dma command each,
73  * and another 16 bytes to allow us to align the dma command
74  * buffers on a 16 byte boundary.
75  */
76 #define PRIV_BYTES	(sizeof(struct mace_data) \
77 	+ (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
78 
79 static int mace_open(struct net_device *dev);
80 static int mace_close(struct net_device *dev);
81 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
82 static void mace_set_multicast(struct net_device *dev);
83 static void mace_reset(struct net_device *dev);
84 static int mace_set_address(struct net_device *dev, void *addr);
85 static irqreturn_t mace_interrupt(int irq, void *dev_id);
86 static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
87 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
88 static void mace_set_timeout(struct net_device *dev);
89 static void mace_tx_timeout(unsigned long data);
90 static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
91 static inline void mace_clean_rings(struct mace_data *mp);
92 static void __mace_set_address(struct net_device *dev, void *addr);
93 
94 /*
95  * If we can't get a skbuff when we need it, we use this area for DMA.
96  */
97 static unsigned char *dummy_buf;
98 
99 static const struct net_device_ops mace_netdev_ops = {
100 	.ndo_open		= mace_open,
101 	.ndo_stop		= mace_close,
102 	.ndo_start_xmit		= mace_xmit_start,
103 	.ndo_set_rx_mode	= mace_set_multicast,
104 	.ndo_set_mac_address	= mace_set_address,
105 	.ndo_change_mtu		= eth_change_mtu,
106 	.ndo_validate_addr	= eth_validate_addr,
107 };
108 
109 static int mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
110 {
111 	struct device_node *mace = macio_get_of_node(mdev);
112 	struct net_device *dev;
113 	struct mace_data *mp;
114 	const unsigned char *addr;
115 	int j, rev, rc = -EBUSY;
116 
117 	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
118 		printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
119 		       mace->full_name);
120 		return -ENODEV;
121 	}
122 
123 	addr = of_get_property(mace, "mac-address", NULL);
124 	if (addr == NULL) {
125 		addr = of_get_property(mace, "local-mac-address", NULL);
126 		if (addr == NULL) {
127 			printk(KERN_ERR "Can't get mac-address for MACE %s\n",
128 			       mace->full_name);
129 			return -ENODEV;
130 		}
131 	}
132 
133 	/*
134 	 * lazy allocate the driver-wide dummy buffer. (Note that we
135 	 * never have more than one MACE in the system anyway)
136 	 */
137 	if (dummy_buf == NULL) {
138 		dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
139 		if (dummy_buf == NULL)
140 			return -ENOMEM;
141 	}
142 
143 	if (macio_request_resources(mdev, "mace")) {
144 		printk(KERN_ERR "MACE: can't request IO resources !\n");
145 		return -EBUSY;
146 	}
147 
148 	dev = alloc_etherdev(PRIV_BYTES);
149 	if (!dev) {
150 		rc = -ENOMEM;
151 		goto err_release;
152 	}
153 	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
154 
155 	mp = netdev_priv(dev);
156 	mp->mdev = mdev;
157 	macio_set_drvdata(mdev, dev);
158 
159 	dev->base_addr = macio_resource_start(mdev, 0);
160 	mp->mace = ioremap(dev->base_addr, 0x1000);
161 	if (mp->mace == NULL) {
162 		printk(KERN_ERR "MACE: can't map IO resources !\n");
163 		rc = -ENOMEM;
164 		goto err_free;
165 	}
166 	dev->irq = macio_irq(mdev, 0);
167 
168 	rev = addr[0] == 0 && addr[1] == 0xA0;
169 	for (j = 0; j < 6; ++j) {
170 		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
171 	}
172 	mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
173 			in_8(&mp->mace->chipid_lo);
174 
175 
176 	mp = netdev_priv(dev);
177 	mp->maccc = ENXMT | ENRCV;
178 
179 	mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
180 	if (mp->tx_dma == NULL) {
181 		printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
182 		rc = -ENOMEM;
183 		goto err_unmap_io;
184 	}
185 	mp->tx_dma_intr = macio_irq(mdev, 1);
186 
187 	mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
188 	if (mp->rx_dma == NULL) {
189 		printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
190 		rc = -ENOMEM;
191 		goto err_unmap_tx_dma;
192 	}
193 	mp->rx_dma_intr = macio_irq(mdev, 2);
194 
195 	mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
196 	mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
197 
198 	memset((char *) mp->tx_cmds, 0,
199 	       (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
200 	init_timer(&mp->tx_timeout);
201 	spin_lock_init(&mp->lock);
202 	mp->timeout_active = 0;
203 
204 	if (port_aaui >= 0)
205 		mp->port_aaui = port_aaui;
206 	else {
207 		/* Apple Network Server uses the AAUI port */
208 		if (of_machine_is_compatible("AAPL,ShinerESB"))
209 			mp->port_aaui = 1;
210 		else {
211 #ifdef CONFIG_MACE_AAUI_PORT
212 			mp->port_aaui = 1;
213 #else
214 			mp->port_aaui = 0;
215 #endif
216 		}
217 	}
218 
219 	dev->netdev_ops = &mace_netdev_ops;
220 
221 	/*
222 	 * Most of what is below could be moved to mace_open()
223 	 */
224 	mace_reset(dev);
225 
226 	rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
227 	if (rc) {
228 		printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
229 		goto err_unmap_rx_dma;
230 	}
231 	rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
232 	if (rc) {
233 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
234 		goto err_free_irq;
235 	}
236 	rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
237 	if (rc) {
238 		printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
239 		goto err_free_tx_irq;
240 	}
241 
242 	rc = register_netdev(dev);
243 	if (rc) {
244 		printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
245 		goto err_free_rx_irq;
246 	}
247 
248 	printk(KERN_INFO "%s: MACE at %pM, chip revision %d.%d\n",
249 	       dev->name, dev->dev_addr,
250 	       mp->chipid >> 8, mp->chipid & 0xff);
251 
252 	return 0;
253 
254  err_free_rx_irq:
255 	free_irq(macio_irq(mdev, 2), dev);
256  err_free_tx_irq:
257 	free_irq(macio_irq(mdev, 1), dev);
258  err_free_irq:
259 	free_irq(macio_irq(mdev, 0), dev);
260  err_unmap_rx_dma:
261 	iounmap(mp->rx_dma);
262  err_unmap_tx_dma:
263 	iounmap(mp->tx_dma);
264  err_unmap_io:
265 	iounmap(mp->mace);
266  err_free:
267 	free_netdev(dev);
268  err_release:
269 	macio_release_resources(mdev);
270 
271 	return rc;
272 }
273 
274 static int mace_remove(struct macio_dev *mdev)
275 {
276 	struct net_device *dev = macio_get_drvdata(mdev);
277 	struct mace_data *mp;
278 
279 	BUG_ON(dev == NULL);
280 
281 	macio_set_drvdata(mdev, NULL);
282 
283 	mp = netdev_priv(dev);
284 
285 	unregister_netdev(dev);
286 
287 	free_irq(dev->irq, dev);
288 	free_irq(mp->tx_dma_intr, dev);
289 	free_irq(mp->rx_dma_intr, dev);
290 
291 	iounmap(mp->rx_dma);
292 	iounmap(mp->tx_dma);
293 	iounmap(mp->mace);
294 
295 	free_netdev(dev);
296 
297 	macio_release_resources(mdev);
298 
299 	return 0;
300 }
301 
302 static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
303 {
304     int i;
305 
306     out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
307 
308     /*
309      * Yes this looks peculiar, but apparently it needs to be this
310      * way on some machines.
311      */
312     for (i = 200; i > 0; --i)
313 	if (le32_to_cpu(dma->control) & RUN)
314 	    udelay(1);
315 }
316 
317 static void mace_reset(struct net_device *dev)
318 {
319     struct mace_data *mp = netdev_priv(dev);
320     volatile struct mace __iomem *mb = mp->mace;
321     int i;
322 
323     /* soft-reset the chip */
324     i = 200;
325     while (--i) {
326 	out_8(&mb->biucc, SWRST);
327 	if (in_8(&mb->biucc) & SWRST) {
328 	    udelay(10);
329 	    continue;
330 	}
331 	break;
332     }
333     if (!i) {
334 	printk(KERN_ERR "mace: cannot reset chip!\n");
335 	return;
336     }
337 
338     out_8(&mb->imr, 0xff);	/* disable all intrs for now */
339     i = in_8(&mb->ir);
340     out_8(&mb->maccc, 0);	/* turn off tx, rx */
341 
342     out_8(&mb->biucc, XMTSP_64);
343     out_8(&mb->utr, RTRD);
344     out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
345     out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
346     out_8(&mb->rcvfc, 0);
347 
348     /* load up the hardware address */
349     __mace_set_address(dev, dev->dev_addr);
350 
351     /* clear the multicast filter */
352     if (mp->chipid == BROKEN_ADDRCHG_REV)
353 	out_8(&mb->iac, LOGADDR);
354     else {
355 	out_8(&mb->iac, ADDRCHG | LOGADDR);
356 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
357 		;
358     }
359     for (i = 0; i < 8; ++i)
360 	out_8(&mb->ladrf, 0);
361 
362     /* done changing address */
363     if (mp->chipid != BROKEN_ADDRCHG_REV)
364 	out_8(&mb->iac, 0);
365 
366     if (mp->port_aaui)
367     	out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
368     else
369     	out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
370 }
371 
372 static void __mace_set_address(struct net_device *dev, void *addr)
373 {
374     struct mace_data *mp = netdev_priv(dev);
375     volatile struct mace __iomem *mb = mp->mace;
376     unsigned char *p = addr;
377     int i;
378 
379     /* load up the hardware address */
380     if (mp->chipid == BROKEN_ADDRCHG_REV)
381     	out_8(&mb->iac, PHYADDR);
382     else {
383     	out_8(&mb->iac, ADDRCHG | PHYADDR);
384 	while ((in_8(&mb->iac) & ADDRCHG) != 0)
385 	    ;
386     }
387     for (i = 0; i < 6; ++i)
388 	out_8(&mb->padr, dev->dev_addr[i] = p[i]);
389     if (mp->chipid != BROKEN_ADDRCHG_REV)
390         out_8(&mb->iac, 0);
391 }
392 
393 static int mace_set_address(struct net_device *dev, void *addr)
394 {
395     struct mace_data *mp = netdev_priv(dev);
396     volatile struct mace __iomem *mb = mp->mace;
397     unsigned long flags;
398 
399     spin_lock_irqsave(&mp->lock, flags);
400 
401     __mace_set_address(dev, addr);
402 
403     /* note: setting ADDRCHG clears ENRCV */
404     out_8(&mb->maccc, mp->maccc);
405 
406     spin_unlock_irqrestore(&mp->lock, flags);
407     return 0;
408 }
409 
410 static inline void mace_clean_rings(struct mace_data *mp)
411 {
412     int i;
413 
414     /* free some skb's */
415     for (i = 0; i < N_RX_RING; ++i) {
416 	if (mp->rx_bufs[i] != NULL) {
417 	    dev_kfree_skb(mp->rx_bufs[i]);
418 	    mp->rx_bufs[i] = NULL;
419 	}
420     }
421     for (i = mp->tx_empty; i != mp->tx_fill; ) {
422 	dev_kfree_skb(mp->tx_bufs[i]);
423 	if (++i >= N_TX_RING)
424 	    i = 0;
425     }
426 }
427 
428 static int mace_open(struct net_device *dev)
429 {
430     struct mace_data *mp = netdev_priv(dev);
431     volatile struct mace __iomem *mb = mp->mace;
432     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
433     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
434     volatile struct dbdma_cmd *cp;
435     int i;
436     struct sk_buff *skb;
437     unsigned char *data;
438 
439     /* reset the chip */
440     mace_reset(dev);
441 
442     /* initialize list of sk_buffs for receiving and set up recv dma */
443     mace_clean_rings(mp);
444     memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
445     cp = mp->rx_cmds;
446     for (i = 0; i < N_RX_RING - 1; ++i) {
447 	skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
448 	if (!skb) {
449 	    data = dummy_buf;
450 	} else {
451 	    skb_reserve(skb, 2);	/* so IP header lands on 4-byte bdry */
452 	    data = skb->data;
453 	}
454 	mp->rx_bufs[i] = skb;
455 	cp->req_count = cpu_to_le16(RX_BUFLEN);
456 	cp->command = cpu_to_le16(INPUT_LAST + INTR_ALWAYS);
457 	cp->phy_addr = cpu_to_le32(virt_to_bus(data));
458 	cp->xfer_status = 0;
459 	++cp;
460     }
461     mp->rx_bufs[i] = NULL;
462     cp->command = cpu_to_le16(DBDMA_STOP);
463     mp->rx_fill = i;
464     mp->rx_empty = 0;
465 
466     /* Put a branch back to the beginning of the receive command list */
467     ++cp;
468     cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
469     cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->rx_cmds));
470 
471     /* start rx dma */
472     out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
473     out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
474     out_le32(&rd->control, (RUN << 16) | RUN);
475 
476     /* put a branch at the end of the tx command list */
477     cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
478     cp->command = cpu_to_le16(DBDMA_NOP + BR_ALWAYS);
479     cp->cmd_dep = cpu_to_le32(virt_to_bus(mp->tx_cmds));
480 
481     /* reset tx dma */
482     out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
483     out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
484     mp->tx_fill = 0;
485     mp->tx_empty = 0;
486     mp->tx_fullup = 0;
487     mp->tx_active = 0;
488     mp->tx_bad_runt = 0;
489 
490     /* turn it on! */
491     out_8(&mb->maccc, mp->maccc);
492     /* enable all interrupts except receive interrupts */
493     out_8(&mb->imr, RCVINT);
494 
495     return 0;
496 }
497 
498 static int mace_close(struct net_device *dev)
499 {
500     struct mace_data *mp = netdev_priv(dev);
501     volatile struct mace __iomem *mb = mp->mace;
502     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
503     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
504 
505     /* disable rx and tx */
506     out_8(&mb->maccc, 0);
507     out_8(&mb->imr, 0xff);		/* disable all intrs */
508 
509     /* disable rx and tx dma */
510     rd->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
511     td->control = cpu_to_le32((RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
512 
513     mace_clean_rings(mp);
514 
515     return 0;
516 }
517 
518 static inline void mace_set_timeout(struct net_device *dev)
519 {
520     struct mace_data *mp = netdev_priv(dev);
521 
522     if (mp->timeout_active)
523 	del_timer(&mp->tx_timeout);
524     mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
525     mp->tx_timeout.function = mace_tx_timeout;
526     mp->tx_timeout.data = (unsigned long) dev;
527     add_timer(&mp->tx_timeout);
528     mp->timeout_active = 1;
529 }
530 
531 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
532 {
533     struct mace_data *mp = netdev_priv(dev);
534     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
535     volatile struct dbdma_cmd *cp, *np;
536     unsigned long flags;
537     int fill, next, len;
538 
539     /* see if there's a free slot in the tx ring */
540     spin_lock_irqsave(&mp->lock, flags);
541     fill = mp->tx_fill;
542     next = fill + 1;
543     if (next >= N_TX_RING)
544 	next = 0;
545     if (next == mp->tx_empty) {
546 	netif_stop_queue(dev);
547 	mp->tx_fullup = 1;
548 	spin_unlock_irqrestore(&mp->lock, flags);
549 	return NETDEV_TX_BUSY;		/* can't take it at the moment */
550     }
551     spin_unlock_irqrestore(&mp->lock, flags);
552 
553     /* partially fill in the dma command block */
554     len = skb->len;
555     if (len > ETH_FRAME_LEN) {
556 	printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
557 	len = ETH_FRAME_LEN;
558     }
559     mp->tx_bufs[fill] = skb;
560     cp = mp->tx_cmds + NCMDS_TX * fill;
561     cp->req_count = cpu_to_le16(len);
562     cp->phy_addr = cpu_to_le32(virt_to_bus(skb->data));
563 
564     np = mp->tx_cmds + NCMDS_TX * next;
565     out_le16(&np->command, DBDMA_STOP);
566 
567     /* poke the tx dma channel */
568     spin_lock_irqsave(&mp->lock, flags);
569     mp->tx_fill = next;
570     if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
571 	out_le16(&cp->xfer_status, 0);
572 	out_le16(&cp->command, OUTPUT_LAST);
573 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
574 	++mp->tx_active;
575 	mace_set_timeout(dev);
576     }
577     if (++next >= N_TX_RING)
578 	next = 0;
579     if (next == mp->tx_empty)
580 	netif_stop_queue(dev);
581     spin_unlock_irqrestore(&mp->lock, flags);
582 
583     return NETDEV_TX_OK;
584 }
585 
586 static void mace_set_multicast(struct net_device *dev)
587 {
588     struct mace_data *mp = netdev_priv(dev);
589     volatile struct mace __iomem *mb = mp->mace;
590     int i;
591     u32 crc;
592     unsigned long flags;
593 
594     spin_lock_irqsave(&mp->lock, flags);
595     mp->maccc &= ~PROM;
596     if (dev->flags & IFF_PROMISC) {
597 	mp->maccc |= PROM;
598     } else {
599 	unsigned char multicast_filter[8];
600 	struct netdev_hw_addr *ha;
601 
602 	if (dev->flags & IFF_ALLMULTI) {
603 	    for (i = 0; i < 8; i++)
604 		multicast_filter[i] = 0xff;
605 	} else {
606 	    for (i = 0; i < 8; i++)
607 		multicast_filter[i] = 0;
608 	    netdev_for_each_mc_addr(ha, dev) {
609 	        crc = ether_crc_le(6, ha->addr);
610 		i = crc >> 26;	/* bit number in multicast_filter */
611 		multicast_filter[i >> 3] |= 1 << (i & 7);
612 	    }
613 	}
614 #if 0
615 	printk("Multicast filter :");
616 	for (i = 0; i < 8; i++)
617 	    printk("%02x ", multicast_filter[i]);
618 	printk("\n");
619 #endif
620 
621 	if (mp->chipid == BROKEN_ADDRCHG_REV)
622 	    out_8(&mb->iac, LOGADDR);
623 	else {
624 	    out_8(&mb->iac, ADDRCHG | LOGADDR);
625 	    while ((in_8(&mb->iac) & ADDRCHG) != 0)
626 		;
627 	}
628 	for (i = 0; i < 8; ++i)
629 	    out_8(&mb->ladrf, multicast_filter[i]);
630 	if (mp->chipid != BROKEN_ADDRCHG_REV)
631 	    out_8(&mb->iac, 0);
632     }
633     /* reset maccc */
634     out_8(&mb->maccc, mp->maccc);
635     spin_unlock_irqrestore(&mp->lock, flags);
636 }
637 
638 static void mace_handle_misc_intrs(struct mace_data *mp, int intr, struct net_device *dev)
639 {
640     volatile struct mace __iomem *mb = mp->mace;
641     static int mace_babbles, mace_jabbers;
642 
643     if (intr & MPCO)
644 	dev->stats.rx_missed_errors += 256;
645     dev->stats.rx_missed_errors += in_8(&mb->mpc);   /* reading clears it */
646     if (intr & RNTPCO)
647 	dev->stats.rx_length_errors += 256;
648     dev->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
649     if (intr & CERR)
650 	++dev->stats.tx_heartbeat_errors;
651     if (intr & BABBLE)
652 	if (mace_babbles++ < 4)
653 	    printk(KERN_DEBUG "mace: babbling transmitter\n");
654     if (intr & JABBER)
655 	if (mace_jabbers++ < 4)
656 	    printk(KERN_DEBUG "mace: jabbering transceiver\n");
657 }
658 
659 static irqreturn_t mace_interrupt(int irq, void *dev_id)
660 {
661     struct net_device *dev = (struct net_device *) dev_id;
662     struct mace_data *mp = netdev_priv(dev);
663     volatile struct mace __iomem *mb = mp->mace;
664     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
665     volatile struct dbdma_cmd *cp;
666     int intr, fs, i, stat, x;
667     int xcount, dstat;
668     unsigned long flags;
669     /* static int mace_last_fs, mace_last_xcount; */
670 
671     spin_lock_irqsave(&mp->lock, flags);
672     intr = in_8(&mb->ir);		/* read interrupt register */
673     in_8(&mb->xmtrc);			/* get retries */
674     mace_handle_misc_intrs(mp, intr, dev);
675 
676     i = mp->tx_empty;
677     while (in_8(&mb->pr) & XMTSV) {
678 	del_timer(&mp->tx_timeout);
679 	mp->timeout_active = 0;
680 	/*
681 	 * Clear any interrupt indication associated with this status
682 	 * word.  This appears to unlatch any error indication from
683 	 * the DMA controller.
684 	 */
685 	intr = in_8(&mb->ir);
686 	if (intr != 0)
687 	    mace_handle_misc_intrs(mp, intr, dev);
688 	if (mp->tx_bad_runt) {
689 	    fs = in_8(&mb->xmtfs);
690 	    mp->tx_bad_runt = 0;
691 	    out_8(&mb->xmtfc, AUTO_PAD_XMIT);
692 	    continue;
693 	}
694 	dstat = le32_to_cpu(td->status);
695 	/* stop DMA controller */
696 	out_le32(&td->control, RUN << 16);
697 	/*
698 	 * xcount is the number of complete frames which have been
699 	 * written to the fifo but for which status has not been read.
700 	 */
701 	xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
702 	if (xcount == 0 || (dstat & DEAD)) {
703 	    /*
704 	     * If a packet was aborted before the DMA controller has
705 	     * finished transferring it, it seems that there are 2 bytes
706 	     * which are stuck in some buffer somewhere.  These will get
707 	     * transmitted as soon as we read the frame status (which
708 	     * reenables the transmit data transfer request).  Turning
709 	     * off the DMA controller and/or resetting the MACE doesn't
710 	     * help.  So we disable auto-padding and FCS transmission
711 	     * so the two bytes will only be a runt packet which should
712 	     * be ignored by other stations.
713 	     */
714 	    out_8(&mb->xmtfc, DXMTFCS);
715 	}
716 	fs = in_8(&mb->xmtfs);
717 	if ((fs & XMTSV) == 0) {
718 	    printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
719 		   fs, xcount, dstat);
720 	    mace_reset(dev);
721 		/*
722 		 * XXX mace likes to hang the machine after a xmtfs error.
723 		 * This is hard to reproduce, resetting *may* help
724 		 */
725 	}
726 	cp = mp->tx_cmds + NCMDS_TX * i;
727 	stat = le16_to_cpu(cp->xfer_status);
728 	if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
729 	    /*
730 	     * Check whether there were in fact 2 bytes written to
731 	     * the transmit FIFO.
732 	     */
733 	    udelay(1);
734 	    x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
735 	    if (x != 0) {
736 		/* there were two bytes with an end-of-packet indication */
737 		mp->tx_bad_runt = 1;
738 		mace_set_timeout(dev);
739 	    } else {
740 		/*
741 		 * Either there weren't the two bytes buffered up, or they
742 		 * didn't have an end-of-packet indication.
743 		 * We flush the transmit FIFO just in case (by setting the
744 		 * XMTFWU bit with the transmitter disabled).
745 		 */
746 		out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
747 		out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
748 		udelay(1);
749 		out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
750 		out_8(&mb->xmtfc, AUTO_PAD_XMIT);
751 	    }
752 	}
753 	/* dma should have finished */
754 	if (i == mp->tx_fill) {
755 	    printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
756 		   fs, xcount, dstat);
757 	    continue;
758 	}
759 	/* Update stats */
760 	if (fs & (UFLO|LCOL|LCAR|RTRY)) {
761 	    ++dev->stats.tx_errors;
762 	    if (fs & LCAR)
763 		++dev->stats.tx_carrier_errors;
764 	    if (fs & (UFLO|LCOL|RTRY))
765 		++dev->stats.tx_aborted_errors;
766 	} else {
767 	    dev->stats.tx_bytes += mp->tx_bufs[i]->len;
768 	    ++dev->stats.tx_packets;
769 	}
770 	dev_kfree_skb_irq(mp->tx_bufs[i]);
771 	--mp->tx_active;
772 	if (++i >= N_TX_RING)
773 	    i = 0;
774 #if 0
775 	mace_last_fs = fs;
776 	mace_last_xcount = xcount;
777 #endif
778     }
779 
780     if (i != mp->tx_empty) {
781 	mp->tx_fullup = 0;
782 	netif_wake_queue(dev);
783     }
784     mp->tx_empty = i;
785     i += mp->tx_active;
786     if (i >= N_TX_RING)
787 	i -= N_TX_RING;
788     if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
789 	do {
790 	    /* set up the next one */
791 	    cp = mp->tx_cmds + NCMDS_TX * i;
792 	    out_le16(&cp->xfer_status, 0);
793 	    out_le16(&cp->command, OUTPUT_LAST);
794 	    ++mp->tx_active;
795 	    if (++i >= N_TX_RING)
796 		i = 0;
797 	} while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
798 	out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
799 	mace_set_timeout(dev);
800     }
801     spin_unlock_irqrestore(&mp->lock, flags);
802     return IRQ_HANDLED;
803 }
804 
805 static void mace_tx_timeout(unsigned long data)
806 {
807     struct net_device *dev = (struct net_device *) data;
808     struct mace_data *mp = netdev_priv(dev);
809     volatile struct mace __iomem *mb = mp->mace;
810     volatile struct dbdma_regs __iomem *td = mp->tx_dma;
811     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
812     volatile struct dbdma_cmd *cp;
813     unsigned long flags;
814     int i;
815 
816     spin_lock_irqsave(&mp->lock, flags);
817     mp->timeout_active = 0;
818     if (mp->tx_active == 0 && !mp->tx_bad_runt)
819 	goto out;
820 
821     /* update various counters */
822     mace_handle_misc_intrs(mp, in_8(&mb->ir), dev);
823 
824     cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
825 
826     /* turn off both tx and rx and reset the chip */
827     out_8(&mb->maccc, 0);
828     printk(KERN_ERR "mace: transmit timeout - resetting\n");
829     dbdma_reset(td);
830     mace_reset(dev);
831 
832     /* restart rx dma */
833     cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
834     dbdma_reset(rd);
835     out_le16(&cp->xfer_status, 0);
836     out_le32(&rd->cmdptr, virt_to_bus(cp));
837     out_le32(&rd->control, (RUN << 16) | RUN);
838 
839     /* fix up the transmit side */
840     i = mp->tx_empty;
841     mp->tx_active = 0;
842     ++dev->stats.tx_errors;
843     if (mp->tx_bad_runt) {
844 	mp->tx_bad_runt = 0;
845     } else if (i != mp->tx_fill) {
846 	dev_kfree_skb(mp->tx_bufs[i]);
847 	if (++i >= N_TX_RING)
848 	    i = 0;
849 	mp->tx_empty = i;
850     }
851     mp->tx_fullup = 0;
852     netif_wake_queue(dev);
853     if (i != mp->tx_fill) {
854 	cp = mp->tx_cmds + NCMDS_TX * i;
855 	out_le16(&cp->xfer_status, 0);
856 	out_le16(&cp->command, OUTPUT_LAST);
857 	out_le32(&td->cmdptr, virt_to_bus(cp));
858 	out_le32(&td->control, (RUN << 16) | RUN);
859 	++mp->tx_active;
860 	mace_set_timeout(dev);
861     }
862 
863     /* turn it back on */
864     out_8(&mb->imr, RCVINT);
865     out_8(&mb->maccc, mp->maccc);
866 
867 out:
868     spin_unlock_irqrestore(&mp->lock, flags);
869 }
870 
871 static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
872 {
873 	return IRQ_HANDLED;
874 }
875 
876 static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
877 {
878     struct net_device *dev = (struct net_device *) dev_id;
879     struct mace_data *mp = netdev_priv(dev);
880     volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
881     volatile struct dbdma_cmd *cp, *np;
882     int i, nb, stat, next;
883     struct sk_buff *skb;
884     unsigned frame_status;
885     static int mace_lost_status;
886     unsigned char *data;
887     unsigned long flags;
888 
889     spin_lock_irqsave(&mp->lock, flags);
890     for (i = mp->rx_empty; i != mp->rx_fill; ) {
891 	cp = mp->rx_cmds + i;
892 	stat = le16_to_cpu(cp->xfer_status);
893 	if ((stat & ACTIVE) == 0) {
894 	    next = i + 1;
895 	    if (next >= N_RX_RING)
896 		next = 0;
897 	    np = mp->rx_cmds + next;
898 	    if (next != mp->rx_fill &&
899 		(le16_to_cpu(np->xfer_status) & ACTIVE) != 0) {
900 		printk(KERN_DEBUG "mace: lost a status word\n");
901 		++mace_lost_status;
902 	    } else
903 		break;
904 	}
905 	nb = le16_to_cpu(cp->req_count) - le16_to_cpu(cp->res_count);
906 	out_le16(&cp->command, DBDMA_STOP);
907 	/* got a packet, have a look at it */
908 	skb = mp->rx_bufs[i];
909 	if (!skb) {
910 	    ++dev->stats.rx_dropped;
911 	} else if (nb > 8) {
912 	    data = skb->data;
913 	    frame_status = (data[nb-3] << 8) + data[nb-4];
914 	    if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
915 		++dev->stats.rx_errors;
916 		if (frame_status & RS_OFLO)
917 		    ++dev->stats.rx_over_errors;
918 		if (frame_status & RS_FRAMERR)
919 		    ++dev->stats.rx_frame_errors;
920 		if (frame_status & RS_FCSERR)
921 		    ++dev->stats.rx_crc_errors;
922 	    } else {
923 		/* Mace feature AUTO_STRIP_RCV is on by default, dropping the
924 		 * FCS on frames with 802.3 headers. This means that Ethernet
925 		 * frames have 8 extra octets at the end, while 802.3 frames
926 		 * have only 4. We need to correctly account for this. */
927 		if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
928 		    nb -= 4;
929 		else	/* Ethernet header; mace includes FCS */
930 		    nb -= 8;
931 		skb_put(skb, nb);
932 		skb->protocol = eth_type_trans(skb, dev);
933 		dev->stats.rx_bytes += skb->len;
934 		netif_rx(skb);
935 		mp->rx_bufs[i] = NULL;
936 		++dev->stats.rx_packets;
937 	    }
938 	} else {
939 	    ++dev->stats.rx_errors;
940 	    ++dev->stats.rx_length_errors;
941 	}
942 
943 	/* advance to next */
944 	if (++i >= N_RX_RING)
945 	    i = 0;
946     }
947     mp->rx_empty = i;
948 
949     i = mp->rx_fill;
950     for (;;) {
951 	next = i + 1;
952 	if (next >= N_RX_RING)
953 	    next = 0;
954 	if (next == mp->rx_empty)
955 	    break;
956 	cp = mp->rx_cmds + i;
957 	skb = mp->rx_bufs[i];
958 	if (!skb) {
959 	    skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
960 	    if (skb) {
961 		skb_reserve(skb, 2);
962 		mp->rx_bufs[i] = skb;
963 	    }
964 	}
965 	cp->req_count = cpu_to_le16(RX_BUFLEN);
966 	data = skb? skb->data: dummy_buf;
967 	cp->phy_addr = cpu_to_le32(virt_to_bus(data));
968 	out_le16(&cp->xfer_status, 0);
969 	out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
970 #if 0
971 	if ((le32_to_cpu(rd->status) & ACTIVE) != 0) {
972 	    out_le32(&rd->control, (PAUSE << 16) | PAUSE);
973 	    while ((in_le32(&rd->status) & ACTIVE) != 0)
974 		;
975 	}
976 #endif
977 	i = next;
978     }
979     if (i != mp->rx_fill) {
980 	out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
981 	mp->rx_fill = i;
982     }
983     spin_unlock_irqrestore(&mp->lock, flags);
984     return IRQ_HANDLED;
985 }
986 
987 static const struct of_device_id mace_match[] =
988 {
989 	{
990 	.name 		= "mace",
991 	},
992 	{},
993 };
994 MODULE_DEVICE_TABLE (of, mace_match);
995 
996 static struct macio_driver mace_driver =
997 {
998 	.driver = {
999 		.name 		= "mace",
1000 		.owner		= THIS_MODULE,
1001 		.of_match_table	= mace_match,
1002 	},
1003 	.probe		= mace_probe,
1004 	.remove		= mace_remove,
1005 };
1006 
1007 
1008 static int __init mace_init(void)
1009 {
1010 	return macio_register_driver(&mace_driver);
1011 }
1012 
1013 static void __exit mace_cleanup(void)
1014 {
1015 	macio_unregister_driver(&mace_driver);
1016 
1017 	kfree(dummy_buf);
1018 	dummy_buf = NULL;
1019 }
1020 
1021 MODULE_AUTHOR("Paul Mackerras");
1022 MODULE_DESCRIPTION("PowerMac MACE driver.");
1023 module_param(port_aaui, int, 0);
1024 MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
1025 MODULE_LICENSE("GPL");
1026 
1027 module_init(mace_init);
1028 module_exit(mace_cleanup);
1029