xref: /linux/drivers/net/ethernet/apple/bmac.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Network device driver for the BMAC ethernet controller on
4  * Apple Powermacs.  Assumes it's under a DBDMA controller.
5  *
6  * Copyright (C) 1998 Randy Gobbel.
7  *
8  * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
9  * dynamic procfs inode.
10  */
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/delay.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/proc_fs.h>
20 #include <linux/init.h>
21 #include <linux/spinlock.h>
22 #include <linux/crc32.h>
23 #include <linux/crc32poly.h>
24 #include <linux/bitrev.h>
25 #include <linux/ethtool.h>
26 #include <linux/slab.h>
27 #include <linux/pgtable.h>
28 #include <asm/dbdma.h>
29 #include <asm/io.h>
30 #include <asm/page.h>
31 #include <asm/machdep.h>
32 #include <asm/pmac_feature.h>
33 #include <asm/macio.h>
34 #include <asm/irq.h>
35 
36 #include "bmac.h"
37 
38 #define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
39 #define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
40 
41 /* switch to use multicast code lifted from sunhme driver */
42 #define SUNHME_MULTICAST
43 
44 #define N_RX_RING	64
45 #define N_TX_RING	32
46 #define MAX_TX_ACTIVE	1
47 #define ETHERCRC	4
48 #define ETHERMINPACKET	64
49 #define ETHERMTU	1500
50 #define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
51 #define TX_TIMEOUT	HZ	/* 1 second */
52 
53 /* Bits in transmit DMA status */
54 #define TX_DMA_ERR	0x80
55 
56 #define XXDEBUG(args)
57 
58 struct bmac_data {
59 	/* volatile struct bmac *bmac; */
60 	struct sk_buff_head *queue;
61 	volatile struct dbdma_regs __iomem *tx_dma;
62 	int tx_dma_intr;
63 	volatile struct dbdma_regs __iomem *rx_dma;
64 	int rx_dma_intr;
65 	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
66 	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
67 	struct macio_dev *mdev;
68 	int is_bmac_plus;
69 	struct sk_buff *rx_bufs[N_RX_RING];
70 	int rx_fill;
71 	int rx_empty;
72 	struct sk_buff *tx_bufs[N_TX_RING];
73 	int tx_fill;
74 	int tx_empty;
75 	unsigned char tx_fullup;
76 	struct timer_list tx_timeout;
77 	int timeout_active;
78 	int sleeping;
79 	int opened;
80 	unsigned short hash_use_count[64];
81 	unsigned short hash_table_mask[4];
82 	spinlock_t lock;
83 };
84 
85 #if 0 /* Move that to ethtool */
86 
87 typedef struct bmac_reg_entry {
88 	char *name;
89 	unsigned short reg_offset;
90 } bmac_reg_entry_t;
91 
92 #define N_REG_ENTRIES 31
93 
94 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
95 	{"MEMADD", MEMADD},
96 	{"MEMDATAHI", MEMDATAHI},
97 	{"MEMDATALO", MEMDATALO},
98 	{"TXPNTR", TXPNTR},
99 	{"RXPNTR", RXPNTR},
100 	{"IPG1", IPG1},
101 	{"IPG2", IPG2},
102 	{"ALIMIT", ALIMIT},
103 	{"SLOT", SLOT},
104 	{"PALEN", PALEN},
105 	{"PAPAT", PAPAT},
106 	{"TXSFD", TXSFD},
107 	{"JAM", JAM},
108 	{"TXCFG", TXCFG},
109 	{"TXMAX", TXMAX},
110 	{"TXMIN", TXMIN},
111 	{"PAREG", PAREG},
112 	{"DCNT", DCNT},
113 	{"NCCNT", NCCNT},
114 	{"NTCNT", NTCNT},
115 	{"EXCNT", EXCNT},
116 	{"LTCNT", LTCNT},
117 	{"TXSM", TXSM},
118 	{"RXCFG", RXCFG},
119 	{"RXMAX", RXMAX},
120 	{"RXMIN", RXMIN},
121 	{"FRCNT", FRCNT},
122 	{"AECNT", AECNT},
123 	{"FECNT", FECNT},
124 	{"RXSM", RXSM},
125 	{"RXCV", RXCV}
126 };
127 
128 #endif
129 
130 static unsigned char *bmac_emergency_rxbuf;
131 
132 /*
133  * Number of bytes of private data per BMAC: allow enough for
134  * the rx and tx dma commands plus a branch dma command each,
135  * and another 16 bytes to allow us to align the dma command
136  * buffers on a 16 byte boundary.
137  */
138 #define PRIV_BYTES	(sizeof(struct bmac_data) \
139 	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
140 	+ sizeof(struct sk_buff_head))
141 
142 static int bmac_open(struct net_device *dev);
143 static int bmac_close(struct net_device *dev);
144 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
145 static void bmac_set_multicast(struct net_device *dev);
146 static void bmac_reset_and_enable(struct net_device *dev);
147 static void bmac_start_chip(struct net_device *dev);
148 static void bmac_init_chip(struct net_device *dev);
149 static void bmac_init_registers(struct net_device *dev);
150 static void bmac_enable_and_reset_chip(struct net_device *dev);
151 static int bmac_set_address(struct net_device *dev, void *addr);
152 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
153 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
154 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
155 static void bmac_set_timeout(struct net_device *dev);
156 static void bmac_tx_timeout(struct timer_list *t);
157 static netdev_tx_t bmac_output(struct sk_buff *skb, struct net_device *dev);
158 static void bmac_start(struct net_device *dev);
159 
160 #define	DBDMA_SET(x)	( ((x) | (x) << 16) )
161 #define	DBDMA_CLEAR(x)	( (x) << 16)
162 
163 static inline void
164 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
165 {
166 	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
167 }
168 
169 static inline unsigned long
170 dbdma_ld32(volatile __u32 __iomem *a)
171 {
172 	__u32 swap;
173 	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
174 	return swap;
175 }
176 
177 static void
178 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
179 {
180 	dbdma_st32(&dmap->control,
181 		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
182 	eieio();
183 }
184 
185 static void
186 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
187 {
188 	dbdma_st32(&dmap->control,
189 		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
190 	eieio();
191 	while (dbdma_ld32(&dmap->status) & RUN)
192 		eieio();
193 }
194 
195 static void
196 dbdma_setcmd(volatile struct dbdma_cmd *cp,
197 	     unsigned short cmd, unsigned count, unsigned long addr,
198 	     unsigned long cmd_dep)
199 {
200 	out_le16(&cp->command, cmd);
201 	out_le16(&cp->req_count, count);
202 	out_le32(&cp->phy_addr, addr);
203 	out_le32(&cp->cmd_dep, cmd_dep);
204 	out_le16(&cp->xfer_status, 0);
205 	out_le16(&cp->res_count, 0);
206 }
207 
208 static inline
209 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
210 {
211 	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
212 }
213 
214 
215 static inline
216 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
217 {
218 	return in_le16((void __iomem *)dev->base_addr + reg_offset);
219 }
220 
221 static void
222 bmac_enable_and_reset_chip(struct net_device *dev)
223 {
224 	struct bmac_data *bp = netdev_priv(dev);
225 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
226 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
227 
228 	if (rd)
229 		dbdma_reset(rd);
230 	if (td)
231 		dbdma_reset(td);
232 
233 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
234 }
235 
236 #define MIFDELAY	udelay(10)
237 
238 static unsigned int
239 bmac_mif_readbits(struct net_device *dev, int nb)
240 {
241 	unsigned int val = 0;
242 
243 	while (--nb >= 0) {
244 		bmwrite(dev, MIFCSR, 0);
245 		MIFDELAY;
246 		if (bmread(dev, MIFCSR) & 8)
247 			val |= 1 << nb;
248 		bmwrite(dev, MIFCSR, 1);
249 		MIFDELAY;
250 	}
251 	bmwrite(dev, MIFCSR, 0);
252 	MIFDELAY;
253 	bmwrite(dev, MIFCSR, 1);
254 	MIFDELAY;
255 	return val;
256 }
257 
258 static void
259 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
260 {
261 	int b;
262 
263 	while (--nb >= 0) {
264 		b = (val & (1 << nb))? 6: 4;
265 		bmwrite(dev, MIFCSR, b);
266 		MIFDELAY;
267 		bmwrite(dev, MIFCSR, b|1);
268 		MIFDELAY;
269 	}
270 }
271 
272 static unsigned int
273 bmac_mif_read(struct net_device *dev, unsigned int addr)
274 {
275 	unsigned int val;
276 
277 	bmwrite(dev, MIFCSR, 4);
278 	MIFDELAY;
279 	bmac_mif_writebits(dev, ~0U, 32);
280 	bmac_mif_writebits(dev, 6, 4);
281 	bmac_mif_writebits(dev, addr, 10);
282 	bmwrite(dev, MIFCSR, 2);
283 	MIFDELAY;
284 	bmwrite(dev, MIFCSR, 1);
285 	MIFDELAY;
286 	val = bmac_mif_readbits(dev, 17);
287 	bmwrite(dev, MIFCSR, 4);
288 	MIFDELAY;
289 	return val;
290 }
291 
292 static void
293 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
294 {
295 	bmwrite(dev, MIFCSR, 4);
296 	MIFDELAY;
297 	bmac_mif_writebits(dev, ~0U, 32);
298 	bmac_mif_writebits(dev, 5, 4);
299 	bmac_mif_writebits(dev, addr, 10);
300 	bmac_mif_writebits(dev, 2, 2);
301 	bmac_mif_writebits(dev, val, 16);
302 	bmac_mif_writebits(dev, 3, 2);
303 }
304 
305 static void
306 bmac_init_registers(struct net_device *dev)
307 {
308 	struct bmac_data *bp = netdev_priv(dev);
309 	volatile unsigned short regValue;
310 	const unsigned short *pWord16;
311 	int i;
312 
313 	/* XXDEBUG(("bmac: enter init_registers\n")); */
314 
315 	bmwrite(dev, RXRST, RxResetValue);
316 	bmwrite(dev, TXRST, TxResetBit);
317 
318 	i = 100;
319 	do {
320 		--i;
321 		udelay(10000);
322 		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
323 	} while ((regValue & TxResetBit) && i > 0);
324 
325 	if (!bp->is_bmac_plus) {
326 		regValue = bmread(dev, XCVRIF);
327 		regValue |= ClkBit | SerialMode | COLActiveLow;
328 		bmwrite(dev, XCVRIF, regValue);
329 		udelay(10000);
330 	}
331 
332 	bmwrite(dev, RSEED, (unsigned short)0x1968);
333 
334 	regValue = bmread(dev, XIFC);
335 	regValue |= TxOutputEnable;
336 	bmwrite(dev, XIFC, regValue);
337 
338 	bmread(dev, PAREG);
339 
340 	/* set collision counters to 0 */
341 	bmwrite(dev, NCCNT, 0);
342 	bmwrite(dev, NTCNT, 0);
343 	bmwrite(dev, EXCNT, 0);
344 	bmwrite(dev, LTCNT, 0);
345 
346 	/* set rx counters to 0 */
347 	bmwrite(dev, FRCNT, 0);
348 	bmwrite(dev, LECNT, 0);
349 	bmwrite(dev, AECNT, 0);
350 	bmwrite(dev, FECNT, 0);
351 	bmwrite(dev, RXCV, 0);
352 
353 	/* set tx fifo information */
354 	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
355 
356 	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
357 	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
358 
359 	/* set rx fifo information */
360 	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
361 	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
362 
363 	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
364 	bmread(dev, STATUS);		/* read it just to clear it */
365 
366 	/* zero out the chip Hash Filter registers */
367 	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
368 	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
369 	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
370 	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
371 	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
372 
373 	pWord16 = (const unsigned short *)dev->dev_addr;
374 	bmwrite(dev, MADD0, *pWord16++);
375 	bmwrite(dev, MADD1, *pWord16++);
376 	bmwrite(dev, MADD2, *pWord16);
377 
378 	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
379 
380 	bmwrite(dev, INTDISABLE, EnableNormal);
381 }
382 
383 #if 0
384 static void
385 bmac_disable_interrupts(struct net_device *dev)
386 {
387 	bmwrite(dev, INTDISABLE, DisableAll);
388 }
389 
390 static void
391 bmac_enable_interrupts(struct net_device *dev)
392 {
393 	bmwrite(dev, INTDISABLE, EnableNormal);
394 }
395 #endif
396 
397 
398 static void
399 bmac_start_chip(struct net_device *dev)
400 {
401 	struct bmac_data *bp = netdev_priv(dev);
402 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
403 	unsigned short	oldConfig;
404 
405 	/* enable rx dma channel */
406 	dbdma_continue(rd);
407 
408 	oldConfig = bmread(dev, TXCFG);
409 	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
410 
411 	/* turn on rx plus any other bits already on (promiscuous possibly) */
412 	oldConfig = bmread(dev, RXCFG);
413 	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
414 	udelay(20000);
415 }
416 
417 static void
418 bmac_init_phy(struct net_device *dev)
419 {
420 	unsigned int addr;
421 	struct bmac_data *bp = netdev_priv(dev);
422 
423 	printk(KERN_DEBUG "phy registers:");
424 	for (addr = 0; addr < 32; ++addr) {
425 		if ((addr & 7) == 0)
426 			printk(KERN_DEBUG);
427 		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
428 	}
429 	printk(KERN_CONT "\n");
430 
431 	if (bp->is_bmac_plus) {
432 		unsigned int capable, ctrl;
433 
434 		ctrl = bmac_mif_read(dev, 0);
435 		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
436 		if (bmac_mif_read(dev, 4) != capable ||
437 		    (ctrl & 0x1000) == 0) {
438 			bmac_mif_write(dev, 4, capable);
439 			bmac_mif_write(dev, 0, 0x1200);
440 		} else
441 			bmac_mif_write(dev, 0, 0x1000);
442 	}
443 }
444 
445 static void bmac_init_chip(struct net_device *dev)
446 {
447 	bmac_init_phy(dev);
448 	bmac_init_registers(dev);
449 }
450 
451 #ifdef CONFIG_PM
452 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
453 {
454 	struct net_device* dev = macio_get_drvdata(mdev);
455 	struct bmac_data *bp = netdev_priv(dev);
456 	unsigned long flags;
457 	unsigned short config;
458 	int i;
459 
460 	netif_device_detach(dev);
461 	/* prolly should wait for dma to finish & turn off the chip */
462 	spin_lock_irqsave(&bp->lock, flags);
463 	if (bp->timeout_active) {
464 		del_timer(&bp->tx_timeout);
465 		bp->timeout_active = 0;
466 	}
467 	disable_irq(dev->irq);
468 	disable_irq(bp->tx_dma_intr);
469 	disable_irq(bp->rx_dma_intr);
470 	bp->sleeping = 1;
471 	spin_unlock_irqrestore(&bp->lock, flags);
472 	if (bp->opened) {
473 		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
474 		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
475 
476 		config = bmread(dev, RXCFG);
477 		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
478 		config = bmread(dev, TXCFG);
479 		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
480 		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
481 		/* disable rx and tx dma */
482 		rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
483 		td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
484 		/* free some skb's */
485 		for (i=0; i<N_RX_RING; i++) {
486 			if (bp->rx_bufs[i] != NULL) {
487 				dev_kfree_skb(bp->rx_bufs[i]);
488 				bp->rx_bufs[i] = NULL;
489 			}
490 		}
491 		for (i = 0; i<N_TX_RING; i++) {
492 			if (bp->tx_bufs[i] != NULL) {
493 		       		dev_kfree_skb(bp->tx_bufs[i]);
494 	       			bp->tx_bufs[i] = NULL;
495 		       	}
496 		}
497 	}
498 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
499 	return 0;
500 }
501 
502 static int bmac_resume(struct macio_dev *mdev)
503 {
504 	struct net_device* dev = macio_get_drvdata(mdev);
505 	struct bmac_data *bp = netdev_priv(dev);
506 
507 	/* see if this is enough */
508 	if (bp->opened)
509 		bmac_reset_and_enable(dev);
510 
511 	enable_irq(dev->irq);
512 	enable_irq(bp->tx_dma_intr);
513 	enable_irq(bp->rx_dma_intr);
514 	netif_device_attach(dev);
515 
516 	return 0;
517 }
518 #endif /* CONFIG_PM */
519 
520 static int bmac_set_address(struct net_device *dev, void *addr)
521 {
522 	struct bmac_data *bp = netdev_priv(dev);
523 	const unsigned short *pWord16;
524 	unsigned long flags;
525 
526 	XXDEBUG(("bmac: enter set_address\n"));
527 	spin_lock_irqsave(&bp->lock, flags);
528 
529 	eth_hw_addr_set(dev, addr);
530 
531 	/* load up the hardware address */
532 	pWord16  = (const unsigned short *)dev->dev_addr;
533 	bmwrite(dev, MADD0, *pWord16++);
534 	bmwrite(dev, MADD1, *pWord16++);
535 	bmwrite(dev, MADD2, *pWord16);
536 
537 	spin_unlock_irqrestore(&bp->lock, flags);
538 	XXDEBUG(("bmac: exit set_address\n"));
539 	return 0;
540 }
541 
542 static inline void bmac_set_timeout(struct net_device *dev)
543 {
544 	struct bmac_data *bp = netdev_priv(dev);
545 	unsigned long flags;
546 
547 	spin_lock_irqsave(&bp->lock, flags);
548 	if (bp->timeout_active)
549 		del_timer(&bp->tx_timeout);
550 	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
551 	add_timer(&bp->tx_timeout);
552 	bp->timeout_active = 1;
553 	spin_unlock_irqrestore(&bp->lock, flags);
554 }
555 
556 static void
557 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
558 {
559 	void *vaddr;
560 	unsigned long baddr;
561 	unsigned long len;
562 
563 	len = skb->len;
564 	vaddr = skb->data;
565 	baddr = virt_to_bus(vaddr);
566 
567 	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
568 }
569 
570 static void
571 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
572 {
573 	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
574 
575 	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
576 		     virt_to_bus(addr), 0);
577 }
578 
579 static void
580 bmac_init_tx_ring(struct bmac_data *bp)
581 {
582 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
583 
584 	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
585 
586 	bp->tx_empty = 0;
587 	bp->tx_fill = 0;
588 	bp->tx_fullup = 0;
589 
590 	/* put a branch at the end of the tx command list */
591 	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
592 		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
593 
594 	/* reset tx dma */
595 	dbdma_reset(td);
596 	out_le32(&td->wait_sel, 0x00200020);
597 	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
598 }
599 
600 static int
601 bmac_init_rx_ring(struct net_device *dev)
602 {
603 	struct bmac_data *bp = netdev_priv(dev);
604 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
605 	int i;
606 	struct sk_buff *skb;
607 
608 	/* initialize list of sk_buffs for receiving and set up recv dma */
609 	memset((char *)bp->rx_cmds, 0,
610 	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
611 	for (i = 0; i < N_RX_RING; i++) {
612 		if ((skb = bp->rx_bufs[i]) == NULL) {
613 			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
614 			if (skb != NULL)
615 				skb_reserve(skb, 2);
616 		}
617 		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
618 	}
619 
620 	bp->rx_empty = 0;
621 	bp->rx_fill = i;
622 
623 	/* Put a branch back to the beginning of the receive command list */
624 	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
625 		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
626 
627 	/* start rx dma */
628 	dbdma_reset(rd);
629 	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
630 
631 	return 1;
632 }
633 
634 
635 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
636 {
637 	struct bmac_data *bp = netdev_priv(dev);
638 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
639 	int i;
640 
641 	/* see if there's a free slot in the tx ring */
642 	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
643 	/* 	     bp->tx_empty, bp->tx_fill)); */
644 	i = bp->tx_fill + 1;
645 	if (i >= N_TX_RING)
646 		i = 0;
647 	if (i == bp->tx_empty) {
648 		netif_stop_queue(dev);
649 		bp->tx_fullup = 1;
650 		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
651 		return -1;		/* can't take it at the moment */
652 	}
653 
654 	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
655 
656 	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
657 
658 	bp->tx_bufs[bp->tx_fill] = skb;
659 	bp->tx_fill = i;
660 
661 	dev->stats.tx_bytes += skb->len;
662 
663 	dbdma_continue(td);
664 
665 	return 0;
666 }
667 
668 static int rxintcount;
669 
670 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
671 {
672 	struct net_device *dev = (struct net_device *) dev_id;
673 	struct bmac_data *bp = netdev_priv(dev);
674 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
675 	volatile struct dbdma_cmd *cp;
676 	int i, nb, stat;
677 	struct sk_buff *skb;
678 	unsigned int residual;
679 	int last;
680 	unsigned long flags;
681 
682 	spin_lock_irqsave(&bp->lock, flags);
683 
684 	if (++rxintcount < 10) {
685 		XXDEBUG(("bmac_rxdma_intr\n"));
686 	}
687 
688 	last = -1;
689 	i = bp->rx_empty;
690 
691 	while (1) {
692 		cp = &bp->rx_cmds[i];
693 		stat = le16_to_cpu(cp->xfer_status);
694 		residual = le16_to_cpu(cp->res_count);
695 		if ((stat & ACTIVE) == 0)
696 			break;
697 		nb = RX_BUFLEN - residual - 2;
698 		if (nb < (ETHERMINPACKET - ETHERCRC)) {
699 			skb = NULL;
700 			dev->stats.rx_length_errors++;
701 			dev->stats.rx_errors++;
702 		} else {
703 			skb = bp->rx_bufs[i];
704 			bp->rx_bufs[i] = NULL;
705 		}
706 		if (skb != NULL) {
707 			nb -= ETHERCRC;
708 			skb_put(skb, nb);
709 			skb->protocol = eth_type_trans(skb, dev);
710 			netif_rx(skb);
711 			++dev->stats.rx_packets;
712 			dev->stats.rx_bytes += nb;
713 		} else {
714 			++dev->stats.rx_dropped;
715 		}
716 		if ((skb = bp->rx_bufs[i]) == NULL) {
717 			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
718 			if (skb != NULL)
719 				skb_reserve(bp->rx_bufs[i], 2);
720 		}
721 		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
722 		cp->res_count = cpu_to_le16(0);
723 		cp->xfer_status = cpu_to_le16(0);
724 		last = i;
725 		if (++i >= N_RX_RING) i = 0;
726 	}
727 
728 	if (last != -1) {
729 		bp->rx_fill = last;
730 		bp->rx_empty = i;
731 	}
732 
733 	dbdma_continue(rd);
734 	spin_unlock_irqrestore(&bp->lock, flags);
735 
736 	if (rxintcount < 10) {
737 		XXDEBUG(("bmac_rxdma_intr done\n"));
738 	}
739 	return IRQ_HANDLED;
740 }
741 
742 static int txintcount;
743 
744 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
745 {
746 	struct net_device *dev = (struct net_device *) dev_id;
747 	struct bmac_data *bp = netdev_priv(dev);
748 	volatile struct dbdma_cmd *cp;
749 	int stat;
750 	unsigned long flags;
751 
752 	spin_lock_irqsave(&bp->lock, flags);
753 
754 	if (txintcount++ < 10) {
755 		XXDEBUG(("bmac_txdma_intr\n"));
756 	}
757 
758 	/*     del_timer(&bp->tx_timeout); */
759 	/*     bp->timeout_active = 0; */
760 
761 	while (1) {
762 		cp = &bp->tx_cmds[bp->tx_empty];
763 		stat = le16_to_cpu(cp->xfer_status);
764 		if (txintcount < 10) {
765 			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
766 		}
767 		if (!(stat & ACTIVE)) {
768 			/*
769 			 * status field might not have been filled by DBDMA
770 			 */
771 			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
772 				break;
773 		}
774 
775 		if (bp->tx_bufs[bp->tx_empty]) {
776 			++dev->stats.tx_packets;
777 			dev_consume_skb_irq(bp->tx_bufs[bp->tx_empty]);
778 		}
779 		bp->tx_bufs[bp->tx_empty] = NULL;
780 		bp->tx_fullup = 0;
781 		netif_wake_queue(dev);
782 		if (++bp->tx_empty >= N_TX_RING)
783 			bp->tx_empty = 0;
784 		if (bp->tx_empty == bp->tx_fill)
785 			break;
786 	}
787 
788 	spin_unlock_irqrestore(&bp->lock, flags);
789 
790 	if (txintcount < 10) {
791 		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
792 	}
793 
794 	bmac_start(dev);
795 	return IRQ_HANDLED;
796 }
797 
798 #ifndef SUNHME_MULTICAST
799 /* Real fast bit-reversal algorithm, 6-bit values */
800 static int reverse6[64] = {
801 	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
802 	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
803 	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
804 	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
805 	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
806 	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
807 	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
808 	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
809 };
810 
811 static unsigned int
812 crc416(unsigned int curval, unsigned short nxtval)
813 {
814 	unsigned int counter, cur = curval, next = nxtval;
815 	int high_crc_set, low_data_set;
816 
817 	/* Swap bytes */
818 	next = ((next & 0x00FF) << 8) | (next >> 8);
819 
820 	/* Compute bit-by-bit */
821 	for (counter = 0; counter < 16; ++counter) {
822 		/* is high CRC bit set? */
823 		if ((cur & 0x80000000) == 0) high_crc_set = 0;
824 		else high_crc_set = 1;
825 
826 		cur = cur << 1;
827 
828 		if ((next & 0x0001) == 0) low_data_set = 0;
829 		else low_data_set = 1;
830 
831 		next = next >> 1;
832 
833 		/* do the XOR */
834 		if (high_crc_set ^ low_data_set) cur = cur ^ CRC32_POLY_BE;
835 	}
836 	return cur;
837 }
838 
839 static unsigned int
840 bmac_crc(unsigned short *address)
841 {
842 	unsigned int newcrc;
843 
844 	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
845 	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
846 	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
847 	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
848 
849 	return(newcrc);
850 }
851 
852 /*
853  * Add requested mcast addr to BMac's hash table filter.
854  *
855  */
856 
857 static void
858 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
859 {
860 	unsigned int	 crc;
861 	unsigned short	 mask;
862 
863 	if (!(*addr)) return;
864 	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
865 	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
866 	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
867 	mask = crc % 16;
868 	mask = (unsigned char)1 << mask;
869 	bp->hash_use_count[crc/16] |= mask;
870 }
871 
872 static void
873 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
874 {
875 	unsigned int crc;
876 	unsigned char mask;
877 
878 	/* Now, delete the address from the filter copy, as indicated */
879 	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
880 	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
881 	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
882 	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
883 	mask = crc % 16;
884 	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
885 	bp->hash_table_mask[crc/16] &= mask;
886 }
887 
888 /*
889  * Sync the adapter with the software copy of the multicast mask
890  *  (logical address filter).
891  */
892 
893 static void
894 bmac_rx_off(struct net_device *dev)
895 {
896 	unsigned short rx_cfg;
897 
898 	rx_cfg = bmread(dev, RXCFG);
899 	rx_cfg &= ~RxMACEnable;
900 	bmwrite(dev, RXCFG, rx_cfg);
901 	do {
902 		rx_cfg = bmread(dev, RXCFG);
903 	}  while (rx_cfg & RxMACEnable);
904 }
905 
906 unsigned short
907 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
908 {
909 	unsigned short rx_cfg;
910 
911 	rx_cfg = bmread(dev, RXCFG);
912 	rx_cfg |= RxMACEnable;
913 	if (hash_enable) rx_cfg |= RxHashFilterEnable;
914 	else rx_cfg &= ~RxHashFilterEnable;
915 	if (promisc_enable) rx_cfg |= RxPromiscEnable;
916 	else rx_cfg &= ~RxPromiscEnable;
917 	bmwrite(dev, RXRST, RxResetValue);
918 	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
919 	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
920 	bmwrite(dev, RXCFG, rx_cfg );
921 	return rx_cfg;
922 }
923 
924 static void
925 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
926 {
927 	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
928 	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
929 	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
930 	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
931 }
932 
933 #if 0
934 static void
935 bmac_add_multi(struct net_device *dev,
936 	       struct bmac_data *bp, unsigned char *addr)
937 {
938 	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
939 	bmac_addhash(bp, addr);
940 	bmac_rx_off(dev);
941 	bmac_update_hash_table_mask(dev, bp);
942 	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
943 	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
944 }
945 
946 static void
947 bmac_remove_multi(struct net_device *dev,
948 		  struct bmac_data *bp, unsigned char *addr)
949 {
950 	bmac_removehash(bp, addr);
951 	bmac_rx_off(dev);
952 	bmac_update_hash_table_mask(dev, bp);
953 	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
954 }
955 #endif
956 
957 /* Set or clear the multicast filter for this adaptor.
958     num_addrs == -1	Promiscuous mode, receive all packets
959     num_addrs == 0	Normal mode, clear multicast list
960     num_addrs > 0	Multicast mode, receive normal and MC packets, and do
961 			best-effort filtering.
962  */
963 static void bmac_set_multicast(struct net_device *dev)
964 {
965 	struct netdev_hw_addr *ha;
966 	struct bmac_data *bp = netdev_priv(dev);
967 	int num_addrs = netdev_mc_count(dev);
968 	unsigned short rx_cfg;
969 	int i;
970 
971 	if (bp->sleeping)
972 		return;
973 
974 	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
975 
976 	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
977 		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
978 		bmac_update_hash_table_mask(dev, bp);
979 		rx_cfg = bmac_rx_on(dev, 1, 0);
980 		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
981 	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
982 		rx_cfg = bmread(dev, RXCFG);
983 		rx_cfg |= RxPromiscEnable;
984 		bmwrite(dev, RXCFG, rx_cfg);
985 		rx_cfg = bmac_rx_on(dev, 0, 1);
986 		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
987 	} else {
988 		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
989 		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
990 		if (num_addrs == 0) {
991 			rx_cfg = bmac_rx_on(dev, 0, 0);
992 			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
993 		} else {
994 			netdev_for_each_mc_addr(ha, dev)
995 				bmac_addhash(bp, ha->addr);
996 			bmac_update_hash_table_mask(dev, bp);
997 			rx_cfg = bmac_rx_on(dev, 1, 0);
998 			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
999 		}
1000 	}
1001 	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1002 }
1003 #else /* ifdef SUNHME_MULTICAST */
1004 
1005 /* The version of set_multicast below was lifted from sunhme.c */
1006 
1007 static void bmac_set_multicast(struct net_device *dev)
1008 {
1009 	struct netdev_hw_addr *ha;
1010 	unsigned short rx_cfg;
1011 	u32 crc;
1012 
1013 	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1014 		bmwrite(dev, BHASH0, 0xffff);
1015 		bmwrite(dev, BHASH1, 0xffff);
1016 		bmwrite(dev, BHASH2, 0xffff);
1017 		bmwrite(dev, BHASH3, 0xffff);
1018 	} else if(dev->flags & IFF_PROMISC) {
1019 		rx_cfg = bmread(dev, RXCFG);
1020 		rx_cfg |= RxPromiscEnable;
1021 		bmwrite(dev, RXCFG, rx_cfg);
1022 	} else {
1023 		u16 hash_table[4] = { 0 };
1024 
1025 		rx_cfg = bmread(dev, RXCFG);
1026 		rx_cfg &= ~RxPromiscEnable;
1027 		bmwrite(dev, RXCFG, rx_cfg);
1028 
1029 		netdev_for_each_mc_addr(ha, dev) {
1030 			crc = ether_crc_le(6, ha->addr);
1031 			crc >>= 26;
1032 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1033 		}
1034 		bmwrite(dev, BHASH0, hash_table[0]);
1035 		bmwrite(dev, BHASH1, hash_table[1]);
1036 		bmwrite(dev, BHASH2, hash_table[2]);
1037 		bmwrite(dev, BHASH3, hash_table[3]);
1038 	}
1039 }
1040 #endif /* SUNHME_MULTICAST */
1041 
1042 static int miscintcount;
1043 
1044 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1045 {
1046 	struct net_device *dev = (struct net_device *) dev_id;
1047 	unsigned int status = bmread(dev, STATUS);
1048 	if (miscintcount++ < 10) {
1049 		XXDEBUG(("bmac_misc_intr\n"));
1050 	}
1051 	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1052 	/*     bmac_txdma_intr_inner(irq, dev_id); */
1053 	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1054 	if (status & RxErrorMask) dev->stats.rx_errors++;
1055 	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1056 	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1057 	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1058 	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1059 
1060 	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1061 	if (status & TxErrorMask) dev->stats.tx_errors++;
1062 	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1063 	if (status & TxNormalCollExp) dev->stats.collisions++;
1064 	return IRQ_HANDLED;
1065 }
1066 
1067 /*
1068  * Procedure for reading EEPROM
1069  */
1070 #define SROMAddressLength	5
1071 #define DataInOn		0x0008
1072 #define DataInOff		0x0000
1073 #define Clk			0x0002
1074 #define ChipSelect		0x0001
1075 #define SDIShiftCount		3
1076 #define SD0ShiftCount		2
1077 #define	DelayValue		1000	/* number of microseconds */
1078 #define SROMStartOffset		10	/* this is in words */
1079 #define SROMReadCount		3	/* number of words to read from SROM */
1080 #define SROMAddressBits		6
1081 #define EnetAddressOffset	20
1082 
1083 static unsigned char
1084 bmac_clock_out_bit(struct net_device *dev)
1085 {
1086 	unsigned short         data;
1087 	unsigned short         val;
1088 
1089 	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1090 	udelay(DelayValue);
1091 
1092 	data = bmread(dev, SROMCSR);
1093 	udelay(DelayValue);
1094 	val = (data >> SD0ShiftCount) & 1;
1095 
1096 	bmwrite(dev, SROMCSR, ChipSelect);
1097 	udelay(DelayValue);
1098 
1099 	return val;
1100 }
1101 
1102 static void
1103 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1104 {
1105 	unsigned short data;
1106 
1107 	if (val != 0 && val != 1) return;
1108 
1109 	data = (val << SDIShiftCount);
1110 	bmwrite(dev, SROMCSR, data | ChipSelect  );
1111 	udelay(DelayValue);
1112 
1113 	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1114 	udelay(DelayValue);
1115 
1116 	bmwrite(dev, SROMCSR, data | ChipSelect);
1117 	udelay(DelayValue);
1118 }
1119 
1120 static void
1121 reset_and_select_srom(struct net_device *dev)
1122 {
1123 	/* first reset */
1124 	bmwrite(dev, SROMCSR, 0);
1125 	udelay(DelayValue);
1126 
1127 	/* send it the read command (110) */
1128 	bmac_clock_in_bit(dev, 1);
1129 	bmac_clock_in_bit(dev, 1);
1130 	bmac_clock_in_bit(dev, 0);
1131 }
1132 
1133 static unsigned short
1134 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1135 {
1136 	unsigned short data, val;
1137 	int i;
1138 
1139 	/* send out the address we want to read from */
1140 	for (i = 0; i < addr_len; i++)	{
1141 		val = addr >> (addr_len-i-1);
1142 		bmac_clock_in_bit(dev, val & 1);
1143 	}
1144 
1145 	/* Now read in the 16-bit data */
1146 	data = 0;
1147 	for (i = 0; i < 16; i++)	{
1148 		val = bmac_clock_out_bit(dev);
1149 		data <<= 1;
1150 		data |= val;
1151 	}
1152 	bmwrite(dev, SROMCSR, 0);
1153 
1154 	return data;
1155 }
1156 
1157 /*
1158  * It looks like Cogent and SMC use different methods for calculating
1159  * checksums. What a pain..
1160  */
1161 
1162 static int
1163 bmac_verify_checksum(struct net_device *dev)
1164 {
1165 	unsigned short data, storedCS;
1166 
1167 	reset_and_select_srom(dev);
1168 	data = read_srom(dev, 3, SROMAddressBits);
1169 	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1170 
1171 	return 0;
1172 }
1173 
1174 
1175 static void
1176 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1177 {
1178 	int i;
1179 	unsigned short data;
1180 
1181 	for (i = 0; i < 3; i++)
1182 		{
1183 			reset_and_select_srom(dev);
1184 			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1185 			ea[2*i]   = bitrev8(data & 0x0ff);
1186 			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1187 		}
1188 }
1189 
1190 static void bmac_reset_and_enable(struct net_device *dev)
1191 {
1192 	struct bmac_data *bp = netdev_priv(dev);
1193 	unsigned long flags;
1194 	struct sk_buff *skb;
1195 	unsigned char *data;
1196 
1197 	spin_lock_irqsave(&bp->lock, flags);
1198 	bmac_enable_and_reset_chip(dev);
1199 	bmac_init_tx_ring(bp);
1200 	bmac_init_rx_ring(dev);
1201 	bmac_init_chip(dev);
1202 	bmac_start_chip(dev);
1203 	bmwrite(dev, INTDISABLE, EnableNormal);
1204 	bp->sleeping = 0;
1205 
1206 	/*
1207 	 * It seems that the bmac can't receive until it's transmitted
1208 	 * a packet.  So we give it a dummy packet to transmit.
1209 	 */
1210 	skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1211 	if (skb != NULL) {
1212 		data = skb_put_zero(skb, ETHERMINPACKET);
1213 		memcpy(data, dev->dev_addr, ETH_ALEN);
1214 		memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1215 		bmac_transmit_packet(skb, dev);
1216 	}
1217 	spin_unlock_irqrestore(&bp->lock, flags);
1218 }
1219 
1220 static const struct ethtool_ops bmac_ethtool_ops = {
1221 	.get_link		= ethtool_op_get_link,
1222 };
1223 
1224 static const struct net_device_ops bmac_netdev_ops = {
1225 	.ndo_open		= bmac_open,
1226 	.ndo_stop		= bmac_close,
1227 	.ndo_start_xmit		= bmac_output,
1228 	.ndo_set_rx_mode	= bmac_set_multicast,
1229 	.ndo_set_mac_address	= bmac_set_address,
1230 	.ndo_validate_addr	= eth_validate_addr,
1231 };
1232 
1233 static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1234 {
1235 	int j, rev, ret;
1236 	struct bmac_data *bp;
1237 	const unsigned char *prop_addr;
1238 	unsigned char addr[6];
1239 	u8 macaddr[6];
1240 	struct net_device *dev;
1241 	int is_bmac_plus = ((int)match->data) != 0;
1242 
1243 	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1244 		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1245 		return -ENODEV;
1246 	}
1247 	prop_addr = of_get_property(macio_get_of_node(mdev),
1248 			"mac-address", NULL);
1249 	if (prop_addr == NULL) {
1250 		prop_addr = of_get_property(macio_get_of_node(mdev),
1251 				"local-mac-address", NULL);
1252 		if (prop_addr == NULL) {
1253 			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1254 			return -ENODEV;
1255 		}
1256 	}
1257 	memcpy(addr, prop_addr, sizeof(addr));
1258 
1259 	dev = alloc_etherdev(PRIV_BYTES);
1260 	if (!dev)
1261 		return -ENOMEM;
1262 
1263 	bp = netdev_priv(dev);
1264 	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1265 	macio_set_drvdata(mdev, dev);
1266 
1267 	bp->mdev = mdev;
1268 	spin_lock_init(&bp->lock);
1269 
1270 	if (macio_request_resources(mdev, "bmac")) {
1271 		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1272 		goto out_free;
1273 	}
1274 
1275 	dev->base_addr = (unsigned long)
1276 		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1277 	if (dev->base_addr == 0)
1278 		goto out_release;
1279 
1280 	dev->irq = macio_irq(mdev, 0);
1281 
1282 	bmac_enable_and_reset_chip(dev);
1283 	bmwrite(dev, INTDISABLE, DisableAll);
1284 
1285 	rev = addr[0] == 0 && addr[1] == 0xA0;
1286 	for (j = 0; j < 6; ++j)
1287 		macaddr[j] = rev ? bitrev8(addr[j]): addr[j];
1288 
1289 	eth_hw_addr_set(dev, macaddr);
1290 
1291 	/* Enable chip without interrupts for now */
1292 	bmac_enable_and_reset_chip(dev);
1293 	bmwrite(dev, INTDISABLE, DisableAll);
1294 
1295 	dev->netdev_ops = &bmac_netdev_ops;
1296 	dev->ethtool_ops = &bmac_ethtool_ops;
1297 
1298 	bmac_get_station_address(dev, addr);
1299 	if (bmac_verify_checksum(dev) != 0)
1300 		goto err_out_iounmap;
1301 
1302 	bp->is_bmac_plus = is_bmac_plus;
1303 	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1304 	if (!bp->tx_dma)
1305 		goto err_out_iounmap;
1306 	bp->tx_dma_intr = macio_irq(mdev, 1);
1307 	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1308 	if (!bp->rx_dma)
1309 		goto err_out_iounmap_tx;
1310 	bp->rx_dma_intr = macio_irq(mdev, 2);
1311 
1312 	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1313 	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1314 
1315 	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1316 	skb_queue_head_init(bp->queue);
1317 
1318 	timer_setup(&bp->tx_timeout, bmac_tx_timeout, 0);
1319 
1320 	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1321 	if (ret) {
1322 		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1323 		goto err_out_iounmap_rx;
1324 	}
1325 	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1326 	if (ret) {
1327 		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1328 		goto err_out_irq0;
1329 	}
1330 	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1331 	if (ret) {
1332 		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1333 		goto err_out_irq1;
1334 	}
1335 
1336 	/* Mask chip interrupts and disable chip, will be
1337 	 * re-enabled on open()
1338 	 */
1339 	disable_irq(dev->irq);
1340 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1341 
1342 	if (register_netdev(dev) != 0) {
1343 		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1344 		goto err_out_irq2;
1345 	}
1346 
1347 	printk(KERN_INFO "%s: BMAC%s at %pM",
1348 	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1349 	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1350 	printk("\n");
1351 
1352 	return 0;
1353 
1354 err_out_irq2:
1355 	free_irq(bp->rx_dma_intr, dev);
1356 err_out_irq1:
1357 	free_irq(bp->tx_dma_intr, dev);
1358 err_out_irq0:
1359 	free_irq(dev->irq, dev);
1360 err_out_iounmap_rx:
1361 	iounmap(bp->rx_dma);
1362 err_out_iounmap_tx:
1363 	iounmap(bp->tx_dma);
1364 err_out_iounmap:
1365 	iounmap((void __iomem *)dev->base_addr);
1366 out_release:
1367 	macio_release_resources(mdev);
1368 out_free:
1369 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1370 	free_netdev(dev);
1371 
1372 	return -ENODEV;
1373 }
1374 
1375 static int bmac_open(struct net_device *dev)
1376 {
1377 	struct bmac_data *bp = netdev_priv(dev);
1378 	/* XXDEBUG(("bmac: enter open\n")); */
1379 	/* reset the chip */
1380 	bp->opened = 1;
1381 	bmac_reset_and_enable(dev);
1382 	enable_irq(dev->irq);
1383 	return 0;
1384 }
1385 
1386 static int bmac_close(struct net_device *dev)
1387 {
1388 	struct bmac_data *bp = netdev_priv(dev);
1389 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1390 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1391 	unsigned short config;
1392 	int i;
1393 
1394 	bp->sleeping = 1;
1395 
1396 	/* disable rx and tx */
1397 	config = bmread(dev, RXCFG);
1398 	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1399 
1400 	config = bmread(dev, TXCFG);
1401 	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1402 
1403 	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1404 
1405 	/* disable rx and tx dma */
1406 	rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1407 	td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1408 
1409 	/* free some skb's */
1410 	XXDEBUG(("bmac: free rx bufs\n"));
1411 	for (i=0; i<N_RX_RING; i++) {
1412 		if (bp->rx_bufs[i] != NULL) {
1413 			dev_kfree_skb(bp->rx_bufs[i]);
1414 			bp->rx_bufs[i] = NULL;
1415 		}
1416 	}
1417 	XXDEBUG(("bmac: free tx bufs\n"));
1418 	for (i = 0; i<N_TX_RING; i++) {
1419 		if (bp->tx_bufs[i] != NULL) {
1420 			dev_kfree_skb(bp->tx_bufs[i]);
1421 			bp->tx_bufs[i] = NULL;
1422 		}
1423 	}
1424 	XXDEBUG(("bmac: all bufs freed\n"));
1425 
1426 	bp->opened = 0;
1427 	disable_irq(dev->irq);
1428 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1429 
1430 	return 0;
1431 }
1432 
1433 static void
1434 bmac_start(struct net_device *dev)
1435 {
1436 	struct bmac_data *bp = netdev_priv(dev);
1437 	int i;
1438 	struct sk_buff *skb;
1439 	unsigned long flags;
1440 
1441 	if (bp->sleeping)
1442 		return;
1443 
1444 	spin_lock_irqsave(&bp->lock, flags);
1445 	while (1) {
1446 		i = bp->tx_fill + 1;
1447 		if (i >= N_TX_RING)
1448 			i = 0;
1449 		if (i == bp->tx_empty)
1450 			break;
1451 		skb = skb_dequeue(bp->queue);
1452 		if (skb == NULL)
1453 			break;
1454 		bmac_transmit_packet(skb, dev);
1455 	}
1456 	spin_unlock_irqrestore(&bp->lock, flags);
1457 }
1458 
1459 static netdev_tx_t
1460 bmac_output(struct sk_buff *skb, struct net_device *dev)
1461 {
1462 	struct bmac_data *bp = netdev_priv(dev);
1463 	skb_queue_tail(bp->queue, skb);
1464 	bmac_start(dev);
1465 	return NETDEV_TX_OK;
1466 }
1467 
1468 static void bmac_tx_timeout(struct timer_list *t)
1469 {
1470 	struct bmac_data *bp = from_timer(bp, t, tx_timeout);
1471 	struct net_device *dev = macio_get_drvdata(bp->mdev);
1472 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1473 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1474 	volatile struct dbdma_cmd *cp;
1475 	unsigned long flags;
1476 	unsigned short config, oldConfig;
1477 	int i;
1478 
1479 	XXDEBUG(("bmac: tx_timeout called\n"));
1480 	spin_lock_irqsave(&bp->lock, flags);
1481 	bp->timeout_active = 0;
1482 
1483 	/* update various counters */
1484 /*     	bmac_handle_misc_intrs(bp, 0); */
1485 
1486 	cp = &bp->tx_cmds[bp->tx_empty];
1487 /*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1488 /* 	   le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1489 /* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1490 
1491 	/* turn off both tx and rx and reset the chip */
1492 	config = bmread(dev, RXCFG);
1493 	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1494 	config = bmread(dev, TXCFG);
1495 	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1496 	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1497 	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1498 	bmac_enable_and_reset_chip(dev);
1499 
1500 	/* restart rx dma */
1501 	cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1502 	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1503 	out_le16(&cp->xfer_status, 0);
1504 	out_le32(&rd->cmdptr, virt_to_bus(cp));
1505 	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1506 
1507 	/* fix up the transmit side */
1508 	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1509 		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1510 	i = bp->tx_empty;
1511 	++dev->stats.tx_errors;
1512 	if (i != bp->tx_fill) {
1513 		dev_kfree_skb_irq(bp->tx_bufs[i]);
1514 		bp->tx_bufs[i] = NULL;
1515 		if (++i >= N_TX_RING) i = 0;
1516 		bp->tx_empty = i;
1517 	}
1518 	bp->tx_fullup = 0;
1519 	netif_wake_queue(dev);
1520 	if (i != bp->tx_fill) {
1521 		cp = &bp->tx_cmds[i];
1522 		out_le16(&cp->xfer_status, 0);
1523 		out_le16(&cp->command, OUTPUT_LAST);
1524 		out_le32(&td->cmdptr, virt_to_bus(cp));
1525 		out_le32(&td->control, DBDMA_SET(RUN));
1526 		/* 	bmac_set_timeout(dev); */
1527 		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1528 	}
1529 
1530 	/* turn it back on */
1531 	oldConfig = bmread(dev, RXCFG);
1532 	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1533 	oldConfig = bmread(dev, TXCFG);
1534 	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1535 
1536 	spin_unlock_irqrestore(&bp->lock, flags);
1537 }
1538 
1539 #if 0
1540 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1541 {
1542 	int i,*ip;
1543 
1544 	for (i=0;i< count;i++) {
1545 		ip = (int*)(cp+i);
1546 
1547 		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1548 		       le32_to_cpup(ip+0),
1549 		       le32_to_cpup(ip+1),
1550 		       le32_to_cpup(ip+2),
1551 		       le32_to_cpup(ip+3));
1552 	}
1553 
1554 }
1555 #endif
1556 
1557 #if 0
1558 static int
1559 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1560 {
1561 	int len = 0;
1562 	off_t pos   = 0;
1563 	off_t begin = 0;
1564 	int i;
1565 
1566 	if (bmac_devs == NULL)
1567 		return -ENOSYS;
1568 
1569 	len += sprintf(buffer, "BMAC counters & registers\n");
1570 
1571 	for (i = 0; i<N_REG_ENTRIES; i++) {
1572 		len += sprintf(buffer + len, "%s: %#08x\n",
1573 			       reg_entries[i].name,
1574 			       bmread(bmac_devs, reg_entries[i].reg_offset));
1575 		pos = begin + len;
1576 
1577 		if (pos < offset) {
1578 			len = 0;
1579 			begin = pos;
1580 		}
1581 
1582 		if (pos > offset+length) break;
1583 	}
1584 
1585 	*start = buffer + (offset - begin);
1586 	len -= (offset - begin);
1587 
1588 	if (len > length) len = length;
1589 
1590 	return len;
1591 }
1592 #endif
1593 
1594 static int bmac_remove(struct macio_dev *mdev)
1595 {
1596 	struct net_device *dev = macio_get_drvdata(mdev);
1597 	struct bmac_data *bp = netdev_priv(dev);
1598 
1599 	unregister_netdev(dev);
1600 
1601 	free_irq(dev->irq, dev);
1602 	free_irq(bp->tx_dma_intr, dev);
1603 	free_irq(bp->rx_dma_intr, dev);
1604 
1605 	iounmap((void __iomem *)dev->base_addr);
1606 	iounmap(bp->tx_dma);
1607 	iounmap(bp->rx_dma);
1608 
1609 	macio_release_resources(mdev);
1610 
1611 	free_netdev(dev);
1612 
1613 	return 0;
1614 }
1615 
1616 static const struct of_device_id bmac_match[] =
1617 {
1618 	{
1619 	.name 		= "bmac",
1620 	.data		= (void *)0,
1621 	},
1622 	{
1623 	.type		= "network",
1624 	.compatible	= "bmac+",
1625 	.data		= (void *)1,
1626 	},
1627 	{},
1628 };
1629 MODULE_DEVICE_TABLE (of, bmac_match);
1630 
1631 static struct macio_driver bmac_driver =
1632 {
1633 	.driver = {
1634 		.name 		= "bmac",
1635 		.owner		= THIS_MODULE,
1636 		.of_match_table	= bmac_match,
1637 	},
1638 	.probe		= bmac_probe,
1639 	.remove		= bmac_remove,
1640 #ifdef CONFIG_PM
1641 	.suspend	= bmac_suspend,
1642 	.resume		= bmac_resume,
1643 #endif
1644 };
1645 
1646 
1647 static int __init bmac_init(void)
1648 {
1649 	if (bmac_emergency_rxbuf == NULL) {
1650 		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1651 		if (bmac_emergency_rxbuf == NULL)
1652 			return -ENOMEM;
1653 	}
1654 
1655 	return macio_register_driver(&bmac_driver);
1656 }
1657 
1658 static void __exit bmac_exit(void)
1659 {
1660 	macio_unregister_driver(&bmac_driver);
1661 
1662 	kfree(bmac_emergency_rxbuf);
1663 	bmac_emergency_rxbuf = NULL;
1664 }
1665 
1666 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1667 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1668 MODULE_LICENSE("GPL");
1669 
1670 module_init(bmac_init);
1671 module_exit(bmac_exit);
1672