xref: /linux/drivers/net/ethernet/apple/bmac.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Network device driver for the BMAC ethernet controller on
3  * Apple Powermacs.  Assumes it's under a DBDMA controller.
4  *
5  * Copyright (C) 1998 Randy Gobbel.
6  *
7  * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8  * dynamic procfs inode.
9  */
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/proc_fs.h>
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/crc32.h>
22 #include <linux/bitrev.h>
23 #include <linux/ethtool.h>
24 #include <linux/slab.h>
25 #include <asm/prom.h>
26 #include <asm/dbdma.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/machdep.h>
31 #include <asm/pmac_feature.h>
32 #include <asm/macio.h>
33 #include <asm/irq.h>
34 
35 #include "bmac.h"
36 
37 #define trunc_page(x)	((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
38 #define round_page(x)	trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
39 
40 /*
41  * CRC polynomial - used in working out multicast filter bits.
42  */
43 #define ENET_CRCPOLY 0x04c11db7
44 
45 /* switch to use multicast code lifted from sunhme driver */
46 #define SUNHME_MULTICAST
47 
48 #define N_RX_RING	64
49 #define N_TX_RING	32
50 #define MAX_TX_ACTIVE	1
51 #define ETHERCRC	4
52 #define ETHERMINPACKET	64
53 #define ETHERMTU	1500
54 #define RX_BUFLEN	(ETHERMTU + 14 + ETHERCRC + 2)
55 #define TX_TIMEOUT	HZ	/* 1 second */
56 
57 /* Bits in transmit DMA status */
58 #define TX_DMA_ERR	0x80
59 
60 #define XXDEBUG(args)
61 
62 struct bmac_data {
63 	/* volatile struct bmac *bmac; */
64 	struct sk_buff_head *queue;
65 	volatile struct dbdma_regs __iomem *tx_dma;
66 	int tx_dma_intr;
67 	volatile struct dbdma_regs __iomem *rx_dma;
68 	int rx_dma_intr;
69 	volatile struct dbdma_cmd *tx_cmds;	/* xmit dma command list */
70 	volatile struct dbdma_cmd *rx_cmds;	/* recv dma command list */
71 	struct macio_dev *mdev;
72 	int is_bmac_plus;
73 	struct sk_buff *rx_bufs[N_RX_RING];
74 	int rx_fill;
75 	int rx_empty;
76 	struct sk_buff *tx_bufs[N_TX_RING];
77 	int tx_fill;
78 	int tx_empty;
79 	unsigned char tx_fullup;
80 	struct timer_list tx_timeout;
81 	int timeout_active;
82 	int sleeping;
83 	int opened;
84 	unsigned short hash_use_count[64];
85 	unsigned short hash_table_mask[4];
86 	spinlock_t lock;
87 };
88 
89 #if 0 /* Move that to ethtool */
90 
91 typedef struct bmac_reg_entry {
92 	char *name;
93 	unsigned short reg_offset;
94 } bmac_reg_entry_t;
95 
96 #define N_REG_ENTRIES 31
97 
98 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
99 	{"MEMADD", MEMADD},
100 	{"MEMDATAHI", MEMDATAHI},
101 	{"MEMDATALO", MEMDATALO},
102 	{"TXPNTR", TXPNTR},
103 	{"RXPNTR", RXPNTR},
104 	{"IPG1", IPG1},
105 	{"IPG2", IPG2},
106 	{"ALIMIT", ALIMIT},
107 	{"SLOT", SLOT},
108 	{"PALEN", PALEN},
109 	{"PAPAT", PAPAT},
110 	{"TXSFD", TXSFD},
111 	{"JAM", JAM},
112 	{"TXCFG", TXCFG},
113 	{"TXMAX", TXMAX},
114 	{"TXMIN", TXMIN},
115 	{"PAREG", PAREG},
116 	{"DCNT", DCNT},
117 	{"NCCNT", NCCNT},
118 	{"NTCNT", NTCNT},
119 	{"EXCNT", EXCNT},
120 	{"LTCNT", LTCNT},
121 	{"TXSM", TXSM},
122 	{"RXCFG", RXCFG},
123 	{"RXMAX", RXMAX},
124 	{"RXMIN", RXMIN},
125 	{"FRCNT", FRCNT},
126 	{"AECNT", AECNT},
127 	{"FECNT", FECNT},
128 	{"RXSM", RXSM},
129 	{"RXCV", RXCV}
130 };
131 
132 #endif
133 
134 static unsigned char *bmac_emergency_rxbuf;
135 
136 /*
137  * Number of bytes of private data per BMAC: allow enough for
138  * the rx and tx dma commands plus a branch dma command each,
139  * and another 16 bytes to allow us to align the dma command
140  * buffers on a 16 byte boundary.
141  */
142 #define PRIV_BYTES	(sizeof(struct bmac_data) \
143 	+ (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
144 	+ sizeof(struct sk_buff_head))
145 
146 static int bmac_open(struct net_device *dev);
147 static int bmac_close(struct net_device *dev);
148 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
149 static void bmac_set_multicast(struct net_device *dev);
150 static void bmac_reset_and_enable(struct net_device *dev);
151 static void bmac_start_chip(struct net_device *dev);
152 static void bmac_init_chip(struct net_device *dev);
153 static void bmac_init_registers(struct net_device *dev);
154 static void bmac_enable_and_reset_chip(struct net_device *dev);
155 static int bmac_set_address(struct net_device *dev, void *addr);
156 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
157 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
158 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
159 static void bmac_set_timeout(struct net_device *dev);
160 static void bmac_tx_timeout(unsigned long data);
161 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162 static void bmac_start(struct net_device *dev);
163 
164 #define	DBDMA_SET(x)	( ((x) | (x) << 16) )
165 #define	DBDMA_CLEAR(x)	( (x) << 16)
166 
167 static inline void
168 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169 {
170 	__asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171 }
172 
173 static inline unsigned long
174 dbdma_ld32(volatile __u32 __iomem *a)
175 {
176 	__u32 swap;
177 	__asm__ volatile ("lwbrx %0,0,%1" :  "=r" (swap) : "r" (a));
178 	return swap;
179 }
180 
181 static void
182 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183 {
184 	dbdma_st32(&dmap->control,
185 		   DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
186 	eieio();
187 }
188 
189 static void
190 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191 {
192 	dbdma_st32(&dmap->control,
193 		   DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
194 	eieio();
195 	while (dbdma_ld32(&dmap->status) & RUN)
196 		eieio();
197 }
198 
199 static void
200 dbdma_setcmd(volatile struct dbdma_cmd *cp,
201 	     unsigned short cmd, unsigned count, unsigned long addr,
202 	     unsigned long cmd_dep)
203 {
204 	out_le16(&cp->command, cmd);
205 	out_le16(&cp->req_count, count);
206 	out_le32(&cp->phy_addr, addr);
207 	out_le32(&cp->cmd_dep, cmd_dep);
208 	out_le16(&cp->xfer_status, 0);
209 	out_le16(&cp->res_count, 0);
210 }
211 
212 static inline
213 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214 {
215 	out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216 }
217 
218 
219 static inline
220 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221 {
222 	return in_le16((void __iomem *)dev->base_addr + reg_offset);
223 }
224 
225 static void
226 bmac_enable_and_reset_chip(struct net_device *dev)
227 {
228 	struct bmac_data *bp = netdev_priv(dev);
229 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231 
232 	if (rd)
233 		dbdma_reset(rd);
234 	if (td)
235 		dbdma_reset(td);
236 
237 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238 }
239 
240 #define MIFDELAY	udelay(10)
241 
242 static unsigned int
243 bmac_mif_readbits(struct net_device *dev, int nb)
244 {
245 	unsigned int val = 0;
246 
247 	while (--nb >= 0) {
248 		bmwrite(dev, MIFCSR, 0);
249 		MIFDELAY;
250 		if (bmread(dev, MIFCSR) & 8)
251 			val |= 1 << nb;
252 		bmwrite(dev, MIFCSR, 1);
253 		MIFDELAY;
254 	}
255 	bmwrite(dev, MIFCSR, 0);
256 	MIFDELAY;
257 	bmwrite(dev, MIFCSR, 1);
258 	MIFDELAY;
259 	return val;
260 }
261 
262 static void
263 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264 {
265 	int b;
266 
267 	while (--nb >= 0) {
268 		b = (val & (1 << nb))? 6: 4;
269 		bmwrite(dev, MIFCSR, b);
270 		MIFDELAY;
271 		bmwrite(dev, MIFCSR, b|1);
272 		MIFDELAY;
273 	}
274 }
275 
276 static unsigned int
277 bmac_mif_read(struct net_device *dev, unsigned int addr)
278 {
279 	unsigned int val;
280 
281 	bmwrite(dev, MIFCSR, 4);
282 	MIFDELAY;
283 	bmac_mif_writebits(dev, ~0U, 32);
284 	bmac_mif_writebits(dev, 6, 4);
285 	bmac_mif_writebits(dev, addr, 10);
286 	bmwrite(dev, MIFCSR, 2);
287 	MIFDELAY;
288 	bmwrite(dev, MIFCSR, 1);
289 	MIFDELAY;
290 	val = bmac_mif_readbits(dev, 17);
291 	bmwrite(dev, MIFCSR, 4);
292 	MIFDELAY;
293 	return val;
294 }
295 
296 static void
297 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298 {
299 	bmwrite(dev, MIFCSR, 4);
300 	MIFDELAY;
301 	bmac_mif_writebits(dev, ~0U, 32);
302 	bmac_mif_writebits(dev, 5, 4);
303 	bmac_mif_writebits(dev, addr, 10);
304 	bmac_mif_writebits(dev, 2, 2);
305 	bmac_mif_writebits(dev, val, 16);
306 	bmac_mif_writebits(dev, 3, 2);
307 }
308 
309 static void
310 bmac_init_registers(struct net_device *dev)
311 {
312 	struct bmac_data *bp = netdev_priv(dev);
313 	volatile unsigned short regValue;
314 	unsigned short *pWord16;
315 	int i;
316 
317 	/* XXDEBUG(("bmac: enter init_registers\n")); */
318 
319 	bmwrite(dev, RXRST, RxResetValue);
320 	bmwrite(dev, TXRST, TxResetBit);
321 
322 	i = 100;
323 	do {
324 		--i;
325 		udelay(10000);
326 		regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327 	} while ((regValue & TxResetBit) && i > 0);
328 
329 	if (!bp->is_bmac_plus) {
330 		regValue = bmread(dev, XCVRIF);
331 		regValue |= ClkBit | SerialMode | COLActiveLow;
332 		bmwrite(dev, XCVRIF, regValue);
333 		udelay(10000);
334 	}
335 
336 	bmwrite(dev, RSEED, (unsigned short)0x1968);
337 
338 	regValue = bmread(dev, XIFC);
339 	regValue |= TxOutputEnable;
340 	bmwrite(dev, XIFC, regValue);
341 
342 	bmread(dev, PAREG);
343 
344 	/* set collision counters to 0 */
345 	bmwrite(dev, NCCNT, 0);
346 	bmwrite(dev, NTCNT, 0);
347 	bmwrite(dev, EXCNT, 0);
348 	bmwrite(dev, LTCNT, 0);
349 
350 	/* set rx counters to 0 */
351 	bmwrite(dev, FRCNT, 0);
352 	bmwrite(dev, LECNT, 0);
353 	bmwrite(dev, AECNT, 0);
354 	bmwrite(dev, FECNT, 0);
355 	bmwrite(dev, RXCV, 0);
356 
357 	/* set tx fifo information */
358 	bmwrite(dev, TXTH, 4);	/* 4 octets before tx starts */
359 
360 	bmwrite(dev, TXFIFOCSR, 0);	/* first disable txFIFO */
361 	bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362 
363 	/* set rx fifo information */
364 	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
365 	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366 
367 	//bmwrite(dev, TXCFG, TxMACEnable);	       	/* TxNeverGiveUp maybe later */
368 	bmread(dev, STATUS);		/* read it just to clear it */
369 
370 	/* zero out the chip Hash Filter registers */
371 	for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372 	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); 	/* bits 15 - 0 */
373 	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); 	/* bits 31 - 16 */
374 	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); 	/* bits 47 - 32 */
375 	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); 	/* bits 63 - 48 */
376 
377 	pWord16 = (unsigned short *)dev->dev_addr;
378 	bmwrite(dev, MADD0, *pWord16++);
379 	bmwrite(dev, MADD1, *pWord16++);
380 	bmwrite(dev, MADD2, *pWord16);
381 
382 	bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
383 
384 	bmwrite(dev, INTDISABLE, EnableNormal);
385 }
386 
387 #if 0
388 static void
389 bmac_disable_interrupts(struct net_device *dev)
390 {
391 	bmwrite(dev, INTDISABLE, DisableAll);
392 }
393 
394 static void
395 bmac_enable_interrupts(struct net_device *dev)
396 {
397 	bmwrite(dev, INTDISABLE, EnableNormal);
398 }
399 #endif
400 
401 
402 static void
403 bmac_start_chip(struct net_device *dev)
404 {
405 	struct bmac_data *bp = netdev_priv(dev);
406 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
407 	unsigned short	oldConfig;
408 
409 	/* enable rx dma channel */
410 	dbdma_continue(rd);
411 
412 	oldConfig = bmread(dev, TXCFG);
413 	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
414 
415 	/* turn on rx plus any other bits already on (promiscuous possibly) */
416 	oldConfig = bmread(dev, RXCFG);
417 	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
418 	udelay(20000);
419 }
420 
421 static void
422 bmac_init_phy(struct net_device *dev)
423 {
424 	unsigned int addr;
425 	struct bmac_data *bp = netdev_priv(dev);
426 
427 	printk(KERN_DEBUG "phy registers:");
428 	for (addr = 0; addr < 32; ++addr) {
429 		if ((addr & 7) == 0)
430 			printk(KERN_DEBUG);
431 		printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
432 	}
433 	printk(KERN_CONT "\n");
434 
435 	if (bp->is_bmac_plus) {
436 		unsigned int capable, ctrl;
437 
438 		ctrl = bmac_mif_read(dev, 0);
439 		capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440 		if (bmac_mif_read(dev, 4) != capable ||
441 		    (ctrl & 0x1000) == 0) {
442 			bmac_mif_write(dev, 4, capable);
443 			bmac_mif_write(dev, 0, 0x1200);
444 		} else
445 			bmac_mif_write(dev, 0, 0x1000);
446 	}
447 }
448 
449 static void bmac_init_chip(struct net_device *dev)
450 {
451 	bmac_init_phy(dev);
452 	bmac_init_registers(dev);
453 }
454 
455 #ifdef CONFIG_PM
456 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457 {
458 	struct net_device* dev = macio_get_drvdata(mdev);
459 	struct bmac_data *bp = netdev_priv(dev);
460 	unsigned long flags;
461 	unsigned short config;
462 	int i;
463 
464 	netif_device_detach(dev);
465 	/* prolly should wait for dma to finish & turn off the chip */
466 	spin_lock_irqsave(&bp->lock, flags);
467 	if (bp->timeout_active) {
468 		del_timer(&bp->tx_timeout);
469 		bp->timeout_active = 0;
470 	}
471 	disable_irq(dev->irq);
472 	disable_irq(bp->tx_dma_intr);
473 	disable_irq(bp->rx_dma_intr);
474 	bp->sleeping = 1;
475 	spin_unlock_irqrestore(&bp->lock, flags);
476 	if (bp->opened) {
477 		volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478 		volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479 
480 		config = bmread(dev, RXCFG);
481 		bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482 		config = bmread(dev, TXCFG);
483        		bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484 		bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485        		/* disable rx and tx dma */
486 		rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
487 		td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
488        		/* free some skb's */
489        		for (i=0; i<N_RX_RING; i++) {
490        			if (bp->rx_bufs[i] != NULL) {
491        				dev_kfree_skb(bp->rx_bufs[i]);
492        				bp->rx_bufs[i] = NULL;
493        			}
494        		}
495        		for (i = 0; i<N_TX_RING; i++) {
496 			if (bp->tx_bufs[i] != NULL) {
497 		       		dev_kfree_skb(bp->tx_bufs[i]);
498 	       			bp->tx_bufs[i] = NULL;
499 		       	}
500 		}
501 	}
502        	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503 	return 0;
504 }
505 
506 static int bmac_resume(struct macio_dev *mdev)
507 {
508 	struct net_device* dev = macio_get_drvdata(mdev);
509 	struct bmac_data *bp = netdev_priv(dev);
510 
511 	/* see if this is enough */
512 	if (bp->opened)
513 		bmac_reset_and_enable(dev);
514 
515 	enable_irq(dev->irq);
516        	enable_irq(bp->tx_dma_intr);
517        	enable_irq(bp->rx_dma_intr);
518        	netif_device_attach(dev);
519 
520 	return 0;
521 }
522 #endif /* CONFIG_PM */
523 
524 static int bmac_set_address(struct net_device *dev, void *addr)
525 {
526 	struct bmac_data *bp = netdev_priv(dev);
527 	unsigned char *p = addr;
528 	unsigned short *pWord16;
529 	unsigned long flags;
530 	int i;
531 
532 	XXDEBUG(("bmac: enter set_address\n"));
533 	spin_lock_irqsave(&bp->lock, flags);
534 
535 	for (i = 0; i < 6; ++i) {
536 		dev->dev_addr[i] = p[i];
537 	}
538 	/* load up the hardware address */
539 	pWord16  = (unsigned short *)dev->dev_addr;
540 	bmwrite(dev, MADD0, *pWord16++);
541 	bmwrite(dev, MADD1, *pWord16++);
542 	bmwrite(dev, MADD2, *pWord16);
543 
544 	spin_unlock_irqrestore(&bp->lock, flags);
545 	XXDEBUG(("bmac: exit set_address\n"));
546 	return 0;
547 }
548 
549 static inline void bmac_set_timeout(struct net_device *dev)
550 {
551 	struct bmac_data *bp = netdev_priv(dev);
552 	unsigned long flags;
553 
554 	spin_lock_irqsave(&bp->lock, flags);
555 	if (bp->timeout_active)
556 		del_timer(&bp->tx_timeout);
557 	bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558 	bp->tx_timeout.function = bmac_tx_timeout;
559 	bp->tx_timeout.data = (unsigned long) dev;
560 	add_timer(&bp->tx_timeout);
561 	bp->timeout_active = 1;
562 	spin_unlock_irqrestore(&bp->lock, flags);
563 }
564 
565 static void
566 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
567 {
568 	void *vaddr;
569 	unsigned long baddr;
570 	unsigned long len;
571 
572 	len = skb->len;
573 	vaddr = skb->data;
574 	baddr = virt_to_bus(vaddr);
575 
576 	dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
577 }
578 
579 static void
580 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
581 {
582 	unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
583 
584 	dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
585 		     virt_to_bus(addr), 0);
586 }
587 
588 static void
589 bmac_init_tx_ring(struct bmac_data *bp)
590 {
591 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
592 
593 	memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
594 
595 	bp->tx_empty = 0;
596 	bp->tx_fill = 0;
597 	bp->tx_fullup = 0;
598 
599 	/* put a branch at the end of the tx command list */
600 	dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
601 		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
602 
603 	/* reset tx dma */
604 	dbdma_reset(td);
605 	out_le32(&td->wait_sel, 0x00200020);
606 	out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
607 }
608 
609 static int
610 bmac_init_rx_ring(struct net_device *dev)
611 {
612 	struct bmac_data *bp = netdev_priv(dev);
613 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614 	int i;
615 	struct sk_buff *skb;
616 
617 	/* initialize list of sk_buffs for receiving and set up recv dma */
618 	memset((char *)bp->rx_cmds, 0,
619 	       (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620 	for (i = 0; i < N_RX_RING; i++) {
621 		if ((skb = bp->rx_bufs[i]) == NULL) {
622 			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
623 			if (skb != NULL)
624 				skb_reserve(skb, 2);
625 		}
626 		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627 	}
628 
629 	bp->rx_empty = 0;
630 	bp->rx_fill = i;
631 
632 	/* Put a branch back to the beginning of the receive command list */
633 	dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634 		     (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635 
636 	/* start rx dma */
637 	dbdma_reset(rd);
638 	out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639 
640 	return 1;
641 }
642 
643 
644 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645 {
646 	struct bmac_data *bp = netdev_priv(dev);
647 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648 	int i;
649 
650 	/* see if there's a free slot in the tx ring */
651 	/* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652 	/* 	     bp->tx_empty, bp->tx_fill)); */
653 	i = bp->tx_fill + 1;
654 	if (i >= N_TX_RING)
655 		i = 0;
656 	if (i == bp->tx_empty) {
657 		netif_stop_queue(dev);
658 		bp->tx_fullup = 1;
659 		XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660 		return -1;		/* can't take it at the moment */
661 	}
662 
663 	dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664 
665 	bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666 
667 	bp->tx_bufs[bp->tx_fill] = skb;
668 	bp->tx_fill = i;
669 
670 	dev->stats.tx_bytes += skb->len;
671 
672 	dbdma_continue(td);
673 
674 	return 0;
675 }
676 
677 static int rxintcount;
678 
679 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680 {
681 	struct net_device *dev = (struct net_device *) dev_id;
682 	struct bmac_data *bp = netdev_priv(dev);
683 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684 	volatile struct dbdma_cmd *cp;
685 	int i, nb, stat;
686 	struct sk_buff *skb;
687 	unsigned int residual;
688 	int last;
689 	unsigned long flags;
690 
691 	spin_lock_irqsave(&bp->lock, flags);
692 
693 	if (++rxintcount < 10) {
694 		XXDEBUG(("bmac_rxdma_intr\n"));
695 	}
696 
697 	last = -1;
698 	i = bp->rx_empty;
699 
700 	while (1) {
701 		cp = &bp->rx_cmds[i];
702 		stat = le16_to_cpu(cp->xfer_status);
703 		residual = le16_to_cpu(cp->res_count);
704 		if ((stat & ACTIVE) == 0)
705 			break;
706 		nb = RX_BUFLEN - residual - 2;
707 		if (nb < (ETHERMINPACKET - ETHERCRC)) {
708 			skb = NULL;
709 			dev->stats.rx_length_errors++;
710 			dev->stats.rx_errors++;
711 		} else {
712 			skb = bp->rx_bufs[i];
713 			bp->rx_bufs[i] = NULL;
714 		}
715 		if (skb != NULL) {
716 			nb -= ETHERCRC;
717 			skb_put(skb, nb);
718 			skb->protocol = eth_type_trans(skb, dev);
719 			netif_rx(skb);
720 			++dev->stats.rx_packets;
721 			dev->stats.rx_bytes += nb;
722 		} else {
723 			++dev->stats.rx_dropped;
724 		}
725 		if ((skb = bp->rx_bufs[i]) == NULL) {
726 			bp->rx_bufs[i] = skb = netdev_alloc_skb(dev, RX_BUFLEN + 2);
727 			if (skb != NULL)
728 				skb_reserve(bp->rx_bufs[i], 2);
729 		}
730 		bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
731 		cp->res_count = cpu_to_le16(0);
732 		cp->xfer_status = cpu_to_le16(0);
733 		last = i;
734 		if (++i >= N_RX_RING) i = 0;
735 	}
736 
737 	if (last != -1) {
738 		bp->rx_fill = last;
739 		bp->rx_empty = i;
740 	}
741 
742 	dbdma_continue(rd);
743 	spin_unlock_irqrestore(&bp->lock, flags);
744 
745 	if (rxintcount < 10) {
746 		XXDEBUG(("bmac_rxdma_intr done\n"));
747 	}
748 	return IRQ_HANDLED;
749 }
750 
751 static int txintcount;
752 
753 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
754 {
755 	struct net_device *dev = (struct net_device *) dev_id;
756 	struct bmac_data *bp = netdev_priv(dev);
757 	volatile struct dbdma_cmd *cp;
758 	int stat;
759 	unsigned long flags;
760 
761 	spin_lock_irqsave(&bp->lock, flags);
762 
763 	if (txintcount++ < 10) {
764 		XXDEBUG(("bmac_txdma_intr\n"));
765 	}
766 
767 	/*     del_timer(&bp->tx_timeout); */
768 	/*     bp->timeout_active = 0; */
769 
770 	while (1) {
771 		cp = &bp->tx_cmds[bp->tx_empty];
772 		stat = le16_to_cpu(cp->xfer_status);
773 		if (txintcount < 10) {
774 			XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
775 		}
776 		if (!(stat & ACTIVE)) {
777 			/*
778 			 * status field might not have been filled by DBDMA
779 			 */
780 			if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
781 				break;
782 		}
783 
784 		if (bp->tx_bufs[bp->tx_empty]) {
785 			++dev->stats.tx_packets;
786 			dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
787 		}
788 		bp->tx_bufs[bp->tx_empty] = NULL;
789 		bp->tx_fullup = 0;
790 		netif_wake_queue(dev);
791 		if (++bp->tx_empty >= N_TX_RING)
792 			bp->tx_empty = 0;
793 		if (bp->tx_empty == bp->tx_fill)
794 			break;
795 	}
796 
797 	spin_unlock_irqrestore(&bp->lock, flags);
798 
799 	if (txintcount < 10) {
800 		XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
801 	}
802 
803 	bmac_start(dev);
804 	return IRQ_HANDLED;
805 }
806 
807 #ifndef SUNHME_MULTICAST
808 /* Real fast bit-reversal algorithm, 6-bit values */
809 static int reverse6[64] = {
810 	0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
811 	0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
812 	0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
813 	0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
814 	0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
815 	0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
816 	0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
817 	0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
818 };
819 
820 static unsigned int
821 crc416(unsigned int curval, unsigned short nxtval)
822 {
823 	register unsigned int counter, cur = curval, next = nxtval;
824 	register int high_crc_set, low_data_set;
825 
826 	/* Swap bytes */
827 	next = ((next & 0x00FF) << 8) | (next >> 8);
828 
829 	/* Compute bit-by-bit */
830 	for (counter = 0; counter < 16; ++counter) {
831 		/* is high CRC bit set? */
832 		if ((cur & 0x80000000) == 0) high_crc_set = 0;
833 		else high_crc_set = 1;
834 
835 		cur = cur << 1;
836 
837 		if ((next & 0x0001) == 0) low_data_set = 0;
838 		else low_data_set = 1;
839 
840 		next = next >> 1;
841 
842 		/* do the XOR */
843 		if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
844 	}
845 	return cur;
846 }
847 
848 static unsigned int
849 bmac_crc(unsigned short *address)
850 {
851 	unsigned int newcrc;
852 
853 	XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
854 	newcrc = crc416(0xffffffff, *address);	/* address bits 47 - 32 */
855 	newcrc = crc416(newcrc, address[1]);	/* address bits 31 - 16 */
856 	newcrc = crc416(newcrc, address[2]);	/* address bits 15 - 0  */
857 
858 	return(newcrc);
859 }
860 
861 /*
862  * Add requested mcast addr to BMac's hash table filter.
863  *
864  */
865 
866 static void
867 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
868 {
869 	unsigned int	 crc;
870 	unsigned short	 mask;
871 
872 	if (!(*addr)) return;
873 	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
874 	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
875 	if (bp->hash_use_count[crc]++) return; /* This bit is already set */
876 	mask = crc % 16;
877 	mask = (unsigned char)1 << mask;
878 	bp->hash_use_count[crc/16] |= mask;
879 }
880 
881 static void
882 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
883 {
884 	unsigned int crc;
885 	unsigned char mask;
886 
887 	/* Now, delete the address from the filter copy, as indicated */
888 	crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
889 	crc = reverse6[crc];	/* Hyperfast bit-reversing algorithm */
890 	if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
891 	if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
892 	mask = crc % 16;
893 	mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
894 	bp->hash_table_mask[crc/16] &= mask;
895 }
896 
897 /*
898  * Sync the adapter with the software copy of the multicast mask
899  *  (logical address filter).
900  */
901 
902 static void
903 bmac_rx_off(struct net_device *dev)
904 {
905 	unsigned short rx_cfg;
906 
907 	rx_cfg = bmread(dev, RXCFG);
908 	rx_cfg &= ~RxMACEnable;
909 	bmwrite(dev, RXCFG, rx_cfg);
910 	do {
911 		rx_cfg = bmread(dev, RXCFG);
912 	}  while (rx_cfg & RxMACEnable);
913 }
914 
915 unsigned short
916 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
917 {
918 	unsigned short rx_cfg;
919 
920 	rx_cfg = bmread(dev, RXCFG);
921 	rx_cfg |= RxMACEnable;
922 	if (hash_enable) rx_cfg |= RxHashFilterEnable;
923 	else rx_cfg &= ~RxHashFilterEnable;
924 	if (promisc_enable) rx_cfg |= RxPromiscEnable;
925 	else rx_cfg &= ~RxPromiscEnable;
926 	bmwrite(dev, RXRST, RxResetValue);
927 	bmwrite(dev, RXFIFOCSR, 0);	/* first disable rxFIFO */
928 	bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
929 	bmwrite(dev, RXCFG, rx_cfg );
930 	return rx_cfg;
931 }
932 
933 static void
934 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
935 {
936 	bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
937 	bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
938 	bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
939 	bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
940 }
941 
942 #if 0
943 static void
944 bmac_add_multi(struct net_device *dev,
945 	       struct bmac_data *bp, unsigned char *addr)
946 {
947 	/* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
948 	bmac_addhash(bp, addr);
949 	bmac_rx_off(dev);
950 	bmac_update_hash_table_mask(dev, bp);
951 	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
952 	/* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
953 }
954 
955 static void
956 bmac_remove_multi(struct net_device *dev,
957 		  struct bmac_data *bp, unsigned char *addr)
958 {
959 	bmac_removehash(bp, addr);
960 	bmac_rx_off(dev);
961 	bmac_update_hash_table_mask(dev, bp);
962 	bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
963 }
964 #endif
965 
966 /* Set or clear the multicast filter for this adaptor.
967     num_addrs == -1	Promiscuous mode, receive all packets
968     num_addrs == 0	Normal mode, clear multicast list
969     num_addrs > 0	Multicast mode, receive normal and MC packets, and do
970 			best-effort filtering.
971  */
972 static void bmac_set_multicast(struct net_device *dev)
973 {
974 	struct netdev_hw_addr *ha;
975 	struct bmac_data *bp = netdev_priv(dev);
976 	int num_addrs = netdev_mc_count(dev);
977 	unsigned short rx_cfg;
978 	int i;
979 
980 	if (bp->sleeping)
981 		return;
982 
983 	XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
984 
985 	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
986 		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
987 		bmac_update_hash_table_mask(dev, bp);
988 		rx_cfg = bmac_rx_on(dev, 1, 0);
989 		XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
990 	} else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
991 		rx_cfg = bmread(dev, RXCFG);
992 		rx_cfg |= RxPromiscEnable;
993 		bmwrite(dev, RXCFG, rx_cfg);
994 		rx_cfg = bmac_rx_on(dev, 0, 1);
995 		XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
996 	} else {
997 		for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
998 		for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
999 		if (num_addrs == 0) {
1000 			rx_cfg = bmac_rx_on(dev, 0, 0);
1001 			XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1002 		} else {
1003 			netdev_for_each_mc_addr(ha, dev)
1004 				bmac_addhash(bp, ha->addr);
1005 			bmac_update_hash_table_mask(dev, bp);
1006 			rx_cfg = bmac_rx_on(dev, 1, 0);
1007 			XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1008 		}
1009 	}
1010 	/* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1011 }
1012 #else /* ifdef SUNHME_MULTICAST */
1013 
1014 /* The version of set_multicast below was lifted from sunhme.c */
1015 
1016 static void bmac_set_multicast(struct net_device *dev)
1017 {
1018 	struct netdev_hw_addr *ha;
1019 	unsigned short rx_cfg;
1020 	u32 crc;
1021 
1022 	if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1023 		bmwrite(dev, BHASH0, 0xffff);
1024 		bmwrite(dev, BHASH1, 0xffff);
1025 		bmwrite(dev, BHASH2, 0xffff);
1026 		bmwrite(dev, BHASH3, 0xffff);
1027 	} else if(dev->flags & IFF_PROMISC) {
1028 		rx_cfg = bmread(dev, RXCFG);
1029 		rx_cfg |= RxPromiscEnable;
1030 		bmwrite(dev, RXCFG, rx_cfg);
1031 	} else {
1032 		u16 hash_table[4] = { 0 };
1033 
1034 		rx_cfg = bmread(dev, RXCFG);
1035 		rx_cfg &= ~RxPromiscEnable;
1036 		bmwrite(dev, RXCFG, rx_cfg);
1037 
1038 		netdev_for_each_mc_addr(ha, dev) {
1039 			crc = ether_crc_le(6, ha->addr);
1040 			crc >>= 26;
1041 			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1042 		}
1043 		bmwrite(dev, BHASH0, hash_table[0]);
1044 		bmwrite(dev, BHASH1, hash_table[1]);
1045 		bmwrite(dev, BHASH2, hash_table[2]);
1046 		bmwrite(dev, BHASH3, hash_table[3]);
1047 	}
1048 }
1049 #endif /* SUNHME_MULTICAST */
1050 
1051 static int miscintcount;
1052 
1053 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1054 {
1055 	struct net_device *dev = (struct net_device *) dev_id;
1056 	unsigned int status = bmread(dev, STATUS);
1057 	if (miscintcount++ < 10) {
1058 		XXDEBUG(("bmac_misc_intr\n"));
1059 	}
1060 	/* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1061 	/*     bmac_txdma_intr_inner(irq, dev_id); */
1062 	/*   if (status & FrameReceived) dev->stats.rx_dropped++; */
1063 	if (status & RxErrorMask) dev->stats.rx_errors++;
1064 	if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1065 	if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1066 	if (status & RxOverFlow) dev->stats.rx_over_errors++;
1067 	if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1068 
1069 	/*   if (status & FrameSent) dev->stats.tx_dropped++; */
1070 	if (status & TxErrorMask) dev->stats.tx_errors++;
1071 	if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1072 	if (status & TxNormalCollExp) dev->stats.collisions++;
1073 	return IRQ_HANDLED;
1074 }
1075 
1076 /*
1077  * Procedure for reading EEPROM
1078  */
1079 #define SROMAddressLength	5
1080 #define DataInOn		0x0008
1081 #define DataInOff		0x0000
1082 #define Clk			0x0002
1083 #define ChipSelect		0x0001
1084 #define SDIShiftCount		3
1085 #define SD0ShiftCount		2
1086 #define	DelayValue		1000	/* number of microseconds */
1087 #define SROMStartOffset		10	/* this is in words */
1088 #define SROMReadCount		3	/* number of words to read from SROM */
1089 #define SROMAddressBits		6
1090 #define EnetAddressOffset	20
1091 
1092 static unsigned char
1093 bmac_clock_out_bit(struct net_device *dev)
1094 {
1095 	unsigned short         data;
1096 	unsigned short         val;
1097 
1098 	bmwrite(dev, SROMCSR, ChipSelect | Clk);
1099 	udelay(DelayValue);
1100 
1101 	data = bmread(dev, SROMCSR);
1102 	udelay(DelayValue);
1103 	val = (data >> SD0ShiftCount) & 1;
1104 
1105 	bmwrite(dev, SROMCSR, ChipSelect);
1106 	udelay(DelayValue);
1107 
1108 	return val;
1109 }
1110 
1111 static void
1112 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1113 {
1114 	unsigned short data;
1115 
1116 	if (val != 0 && val != 1) return;
1117 
1118 	data = (val << SDIShiftCount);
1119 	bmwrite(dev, SROMCSR, data | ChipSelect  );
1120 	udelay(DelayValue);
1121 
1122 	bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1123 	udelay(DelayValue);
1124 
1125 	bmwrite(dev, SROMCSR, data | ChipSelect);
1126 	udelay(DelayValue);
1127 }
1128 
1129 static void
1130 reset_and_select_srom(struct net_device *dev)
1131 {
1132 	/* first reset */
1133 	bmwrite(dev, SROMCSR, 0);
1134 	udelay(DelayValue);
1135 
1136 	/* send it the read command (110) */
1137 	bmac_clock_in_bit(dev, 1);
1138 	bmac_clock_in_bit(dev, 1);
1139 	bmac_clock_in_bit(dev, 0);
1140 }
1141 
1142 static unsigned short
1143 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1144 {
1145 	unsigned short data, val;
1146 	int i;
1147 
1148 	/* send out the address we want to read from */
1149 	for (i = 0; i < addr_len; i++)	{
1150 		val = addr >> (addr_len-i-1);
1151 		bmac_clock_in_bit(dev, val & 1);
1152 	}
1153 
1154 	/* Now read in the 16-bit data */
1155 	data = 0;
1156 	for (i = 0; i < 16; i++)	{
1157 		val = bmac_clock_out_bit(dev);
1158 		data <<= 1;
1159 		data |= val;
1160 	}
1161 	bmwrite(dev, SROMCSR, 0);
1162 
1163 	return data;
1164 }
1165 
1166 /*
1167  * It looks like Cogent and SMC use different methods for calculating
1168  * checksums. What a pain..
1169  */
1170 
1171 static int
1172 bmac_verify_checksum(struct net_device *dev)
1173 {
1174 	unsigned short data, storedCS;
1175 
1176 	reset_and_select_srom(dev);
1177 	data = read_srom(dev, 3, SROMAddressBits);
1178 	storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1179 
1180 	return 0;
1181 }
1182 
1183 
1184 static void
1185 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1186 {
1187 	int i;
1188 	unsigned short data;
1189 
1190 	for (i = 0; i < 6; i++)
1191 		{
1192 			reset_and_select_srom(dev);
1193 			data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1194 			ea[2*i]   = bitrev8(data & 0x0ff);
1195 			ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1196 		}
1197 }
1198 
1199 static void bmac_reset_and_enable(struct net_device *dev)
1200 {
1201 	struct bmac_data *bp = netdev_priv(dev);
1202 	unsigned long flags;
1203 	struct sk_buff *skb;
1204 	unsigned char *data;
1205 
1206 	spin_lock_irqsave(&bp->lock, flags);
1207 	bmac_enable_and_reset_chip(dev);
1208 	bmac_init_tx_ring(bp);
1209 	bmac_init_rx_ring(dev);
1210 	bmac_init_chip(dev);
1211 	bmac_start_chip(dev);
1212 	bmwrite(dev, INTDISABLE, EnableNormal);
1213 	bp->sleeping = 0;
1214 
1215 	/*
1216 	 * It seems that the bmac can't receive until it's transmitted
1217 	 * a packet.  So we give it a dummy packet to transmit.
1218 	 */
1219 	skb = netdev_alloc_skb(dev, ETHERMINPACKET);
1220 	if (skb != NULL) {
1221 		data = skb_put(skb, ETHERMINPACKET);
1222 		memset(data, 0, ETHERMINPACKET);
1223 		memcpy(data, dev->dev_addr, ETH_ALEN);
1224 		memcpy(data + ETH_ALEN, dev->dev_addr, ETH_ALEN);
1225 		bmac_transmit_packet(skb, dev);
1226 	}
1227 	spin_unlock_irqrestore(&bp->lock, flags);
1228 }
1229 
1230 static const struct ethtool_ops bmac_ethtool_ops = {
1231 	.get_link		= ethtool_op_get_link,
1232 };
1233 
1234 static const struct net_device_ops bmac_netdev_ops = {
1235 	.ndo_open		= bmac_open,
1236 	.ndo_stop		= bmac_close,
1237 	.ndo_start_xmit		= bmac_output,
1238 	.ndo_set_rx_mode	= bmac_set_multicast,
1239 	.ndo_set_mac_address	= bmac_set_address,
1240 	.ndo_change_mtu		= eth_change_mtu,
1241 	.ndo_validate_addr	= eth_validate_addr,
1242 };
1243 
1244 static int bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1245 {
1246 	int j, rev, ret;
1247 	struct bmac_data *bp;
1248 	const unsigned char *prop_addr;
1249 	unsigned char addr[6];
1250 	struct net_device *dev;
1251 	int is_bmac_plus = ((int)match->data) != 0;
1252 
1253 	if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1254 		printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1255 		return -ENODEV;
1256 	}
1257 	prop_addr = of_get_property(macio_get_of_node(mdev),
1258 			"mac-address", NULL);
1259 	if (prop_addr == NULL) {
1260 		prop_addr = of_get_property(macio_get_of_node(mdev),
1261 				"local-mac-address", NULL);
1262 		if (prop_addr == NULL) {
1263 			printk(KERN_ERR "BMAC: Can't get mac-address\n");
1264 			return -ENODEV;
1265 		}
1266 	}
1267 	memcpy(addr, prop_addr, sizeof(addr));
1268 
1269 	dev = alloc_etherdev(PRIV_BYTES);
1270 	if (!dev)
1271 		return -ENOMEM;
1272 
1273 	bp = netdev_priv(dev);
1274 	SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1275 	macio_set_drvdata(mdev, dev);
1276 
1277 	bp->mdev = mdev;
1278 	spin_lock_init(&bp->lock);
1279 
1280 	if (macio_request_resources(mdev, "bmac")) {
1281 		printk(KERN_ERR "BMAC: can't request IO resource !\n");
1282 		goto out_free;
1283 	}
1284 
1285 	dev->base_addr = (unsigned long)
1286 		ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1287 	if (dev->base_addr == 0)
1288 		goto out_release;
1289 
1290 	dev->irq = macio_irq(mdev, 0);
1291 
1292 	bmac_enable_and_reset_chip(dev);
1293 	bmwrite(dev, INTDISABLE, DisableAll);
1294 
1295 	rev = addr[0] == 0 && addr[1] == 0xA0;
1296 	for (j = 0; j < 6; ++j)
1297 		dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1298 
1299 	/* Enable chip without interrupts for now */
1300 	bmac_enable_and_reset_chip(dev);
1301 	bmwrite(dev, INTDISABLE, DisableAll);
1302 
1303 	dev->netdev_ops = &bmac_netdev_ops;
1304 	dev->ethtool_ops = &bmac_ethtool_ops;
1305 
1306 	bmac_get_station_address(dev, addr);
1307 	if (bmac_verify_checksum(dev) != 0)
1308 		goto err_out_iounmap;
1309 
1310 	bp->is_bmac_plus = is_bmac_plus;
1311 	bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1312 	if (!bp->tx_dma)
1313 		goto err_out_iounmap;
1314 	bp->tx_dma_intr = macio_irq(mdev, 1);
1315 	bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1316 	if (!bp->rx_dma)
1317 		goto err_out_iounmap_tx;
1318 	bp->rx_dma_intr = macio_irq(mdev, 2);
1319 
1320 	bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1321 	bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1322 
1323 	bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1324 	skb_queue_head_init(bp->queue);
1325 
1326 	init_timer(&bp->tx_timeout);
1327 
1328 	ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1329 	if (ret) {
1330 		printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1331 		goto err_out_iounmap_rx;
1332 	}
1333 	ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1334 	if (ret) {
1335 		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1336 		goto err_out_irq0;
1337 	}
1338 	ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1339 	if (ret) {
1340 		printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1341 		goto err_out_irq1;
1342 	}
1343 
1344 	/* Mask chip interrupts and disable chip, will be
1345 	 * re-enabled on open()
1346 	 */
1347 	disable_irq(dev->irq);
1348 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1349 
1350 	if (register_netdev(dev) != 0) {
1351 		printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1352 		goto err_out_irq2;
1353 	}
1354 
1355 	printk(KERN_INFO "%s: BMAC%s at %pM",
1356 	       dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1357 	XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1358 	printk("\n");
1359 
1360 	return 0;
1361 
1362 err_out_irq2:
1363 	free_irq(bp->rx_dma_intr, dev);
1364 err_out_irq1:
1365 	free_irq(bp->tx_dma_intr, dev);
1366 err_out_irq0:
1367 	free_irq(dev->irq, dev);
1368 err_out_iounmap_rx:
1369 	iounmap(bp->rx_dma);
1370 err_out_iounmap_tx:
1371 	iounmap(bp->tx_dma);
1372 err_out_iounmap:
1373 	iounmap((void __iomem *)dev->base_addr);
1374 out_release:
1375 	macio_release_resources(mdev);
1376 out_free:
1377 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1378 	free_netdev(dev);
1379 
1380 	return -ENODEV;
1381 }
1382 
1383 static int bmac_open(struct net_device *dev)
1384 {
1385 	struct bmac_data *bp = netdev_priv(dev);
1386 	/* XXDEBUG(("bmac: enter open\n")); */
1387 	/* reset the chip */
1388 	bp->opened = 1;
1389 	bmac_reset_and_enable(dev);
1390 	enable_irq(dev->irq);
1391 	return 0;
1392 }
1393 
1394 static int bmac_close(struct net_device *dev)
1395 {
1396 	struct bmac_data *bp = netdev_priv(dev);
1397 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1398 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1399 	unsigned short config;
1400 	int i;
1401 
1402 	bp->sleeping = 1;
1403 
1404 	/* disable rx and tx */
1405 	config = bmread(dev, RXCFG);
1406 	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1407 
1408 	config = bmread(dev, TXCFG);
1409 	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1410 
1411 	bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1412 
1413 	/* disable rx and tx dma */
1414 	rd->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1415 	td->control = cpu_to_le32(DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE));	/* clear run bit */
1416 
1417 	/* free some skb's */
1418 	XXDEBUG(("bmac: free rx bufs\n"));
1419 	for (i=0; i<N_RX_RING; i++) {
1420 		if (bp->rx_bufs[i] != NULL) {
1421 			dev_kfree_skb(bp->rx_bufs[i]);
1422 			bp->rx_bufs[i] = NULL;
1423 		}
1424 	}
1425 	XXDEBUG(("bmac: free tx bufs\n"));
1426 	for (i = 0; i<N_TX_RING; i++) {
1427 		if (bp->tx_bufs[i] != NULL) {
1428 			dev_kfree_skb(bp->tx_bufs[i]);
1429 			bp->tx_bufs[i] = NULL;
1430 		}
1431 	}
1432 	XXDEBUG(("bmac: all bufs freed\n"));
1433 
1434 	bp->opened = 0;
1435 	disable_irq(dev->irq);
1436 	pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1437 
1438 	return 0;
1439 }
1440 
1441 static void
1442 bmac_start(struct net_device *dev)
1443 {
1444 	struct bmac_data *bp = netdev_priv(dev);
1445 	int i;
1446 	struct sk_buff *skb;
1447 	unsigned long flags;
1448 
1449 	if (bp->sleeping)
1450 		return;
1451 
1452 	spin_lock_irqsave(&bp->lock, flags);
1453 	while (1) {
1454 		i = bp->tx_fill + 1;
1455 		if (i >= N_TX_RING)
1456 			i = 0;
1457 		if (i == bp->tx_empty)
1458 			break;
1459 		skb = skb_dequeue(bp->queue);
1460 		if (skb == NULL)
1461 			break;
1462 		bmac_transmit_packet(skb, dev);
1463 	}
1464 	spin_unlock_irqrestore(&bp->lock, flags);
1465 }
1466 
1467 static int
1468 bmac_output(struct sk_buff *skb, struct net_device *dev)
1469 {
1470 	struct bmac_data *bp = netdev_priv(dev);
1471 	skb_queue_tail(bp->queue, skb);
1472 	bmac_start(dev);
1473 	return NETDEV_TX_OK;
1474 }
1475 
1476 static void bmac_tx_timeout(unsigned long data)
1477 {
1478 	struct net_device *dev = (struct net_device *) data;
1479 	struct bmac_data *bp = netdev_priv(dev);
1480 	volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1481 	volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1482 	volatile struct dbdma_cmd *cp;
1483 	unsigned long flags;
1484 	unsigned short config, oldConfig;
1485 	int i;
1486 
1487 	XXDEBUG(("bmac: tx_timeout called\n"));
1488 	spin_lock_irqsave(&bp->lock, flags);
1489 	bp->timeout_active = 0;
1490 
1491 	/* update various counters */
1492 /*     	bmac_handle_misc_intrs(bp, 0); */
1493 
1494 	cp = &bp->tx_cmds[bp->tx_empty];
1495 /*	XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1496 /* 	   le32_to_cpu(td->status), le16_to_cpu(cp->xfer_status), bp->tx_bad_runt, */
1497 /* 	   mb->pr, mb->xmtfs, mb->fifofc)); */
1498 
1499 	/* turn off both tx and rx and reset the chip */
1500 	config = bmread(dev, RXCFG);
1501 	bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1502 	config = bmread(dev, TXCFG);
1503 	bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1504 	out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1505 	printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1506 	bmac_enable_and_reset_chip(dev);
1507 
1508 	/* restart rx dma */
1509 	cp = bus_to_virt(le32_to_cpu(rd->cmdptr));
1510 	out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1511 	out_le16(&cp->xfer_status, 0);
1512 	out_le32(&rd->cmdptr, virt_to_bus(cp));
1513 	out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1514 
1515 	/* fix up the transmit side */
1516 	XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1517 		 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1518 	i = bp->tx_empty;
1519 	++dev->stats.tx_errors;
1520 	if (i != bp->tx_fill) {
1521 		dev_kfree_skb(bp->tx_bufs[i]);
1522 		bp->tx_bufs[i] = NULL;
1523 		if (++i >= N_TX_RING) i = 0;
1524 		bp->tx_empty = i;
1525 	}
1526 	bp->tx_fullup = 0;
1527 	netif_wake_queue(dev);
1528 	if (i != bp->tx_fill) {
1529 		cp = &bp->tx_cmds[i];
1530 		out_le16(&cp->xfer_status, 0);
1531 		out_le16(&cp->command, OUTPUT_LAST);
1532 		out_le32(&td->cmdptr, virt_to_bus(cp));
1533 		out_le32(&td->control, DBDMA_SET(RUN));
1534 		/* 	bmac_set_timeout(dev); */
1535 		XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1536 	}
1537 
1538 	/* turn it back on */
1539 	oldConfig = bmread(dev, RXCFG);
1540 	bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1541 	oldConfig = bmread(dev, TXCFG);
1542 	bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1543 
1544 	spin_unlock_irqrestore(&bp->lock, flags);
1545 }
1546 
1547 #if 0
1548 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1549 {
1550 	int i,*ip;
1551 
1552 	for (i=0;i< count;i++) {
1553 		ip = (int*)(cp+i);
1554 
1555 		printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1556 		       le32_to_cpup(ip+0),
1557 		       le32_to_cpup(ip+1),
1558 		       le32_to_cpup(ip+2),
1559 		       le32_to_cpup(ip+3));
1560 	}
1561 
1562 }
1563 #endif
1564 
1565 #if 0
1566 static int
1567 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1568 {
1569 	int len = 0;
1570 	off_t pos   = 0;
1571 	off_t begin = 0;
1572 	int i;
1573 
1574 	if (bmac_devs == NULL)
1575 		return -ENOSYS;
1576 
1577 	len += sprintf(buffer, "BMAC counters & registers\n");
1578 
1579 	for (i = 0; i<N_REG_ENTRIES; i++) {
1580 		len += sprintf(buffer + len, "%s: %#08x\n",
1581 			       reg_entries[i].name,
1582 			       bmread(bmac_devs, reg_entries[i].reg_offset));
1583 		pos = begin + len;
1584 
1585 		if (pos < offset) {
1586 			len = 0;
1587 			begin = pos;
1588 		}
1589 
1590 		if (pos > offset+length) break;
1591 	}
1592 
1593 	*start = buffer + (offset - begin);
1594 	len -= (offset - begin);
1595 
1596 	if (len > length) len = length;
1597 
1598 	return len;
1599 }
1600 #endif
1601 
1602 static int bmac_remove(struct macio_dev *mdev)
1603 {
1604 	struct net_device *dev = macio_get_drvdata(mdev);
1605 	struct bmac_data *bp = netdev_priv(dev);
1606 
1607 	unregister_netdev(dev);
1608 
1609        	free_irq(dev->irq, dev);
1610 	free_irq(bp->tx_dma_intr, dev);
1611 	free_irq(bp->rx_dma_intr, dev);
1612 
1613 	iounmap((void __iomem *)dev->base_addr);
1614 	iounmap(bp->tx_dma);
1615 	iounmap(bp->rx_dma);
1616 
1617 	macio_release_resources(mdev);
1618 
1619 	free_netdev(dev);
1620 
1621 	return 0;
1622 }
1623 
1624 static const struct of_device_id bmac_match[] =
1625 {
1626 	{
1627 	.name 		= "bmac",
1628 	.data		= (void *)0,
1629 	},
1630 	{
1631 	.type		= "network",
1632 	.compatible	= "bmac+",
1633 	.data		= (void *)1,
1634 	},
1635 	{},
1636 };
1637 MODULE_DEVICE_TABLE (of, bmac_match);
1638 
1639 static struct macio_driver bmac_driver =
1640 {
1641 	.driver = {
1642 		.name 		= "bmac",
1643 		.owner		= THIS_MODULE,
1644 		.of_match_table	= bmac_match,
1645 	},
1646 	.probe		= bmac_probe,
1647 	.remove		= bmac_remove,
1648 #ifdef CONFIG_PM
1649 	.suspend	= bmac_suspend,
1650 	.resume		= bmac_resume,
1651 #endif
1652 };
1653 
1654 
1655 static int __init bmac_init(void)
1656 {
1657 	if (bmac_emergency_rxbuf == NULL) {
1658 		bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1659 		if (bmac_emergency_rxbuf == NULL)
1660 			return -ENOMEM;
1661 	}
1662 
1663 	return macio_register_driver(&bmac_driver);
1664 }
1665 
1666 static void __exit bmac_exit(void)
1667 {
1668 	macio_unregister_driver(&bmac_driver);
1669 
1670 	kfree(bmac_emergency_rxbuf);
1671 	bmac_emergency_rxbuf = NULL;
1672 }
1673 
1674 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1675 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1676 MODULE_LICENSE("GPL");
1677 
1678 module_init(bmac_init);
1679 module_exit(bmac_exit);
1680