xref: /linux/drivers/net/ethernet/amd/xgbe/xgbe-dev.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * AMD 10Gb Ethernet driver
3  *
4  * This file is available to you under your choice of the following two
5  * licenses:
6  *
7  * License 1: GPLv2
8  *
9  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10  *
11  * This file is free software; you may copy, redistribute and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation, either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This file is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
23  *
24  * This file incorporates work covered by the following copyright and
25  * permission notice:
26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
29  *     and you.
30  *
31  *     The Software IS NOT an item of Licensed Software or Licensed Product
32  *     under any End User Software License Agreement or Agreement for Licensed
33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
34  *     granted, free of charge, to any person obtaining a copy of this software
35  *     annotated with this license and the Software, to deal in the Software
36  *     without restriction, including without limitation the rights to use,
37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38  *     of the Software, and to permit persons to whom the Software is furnished
39  *     to do so, subject to the following conditions:
40  *
41  *     The above copyright notice and this permission notice shall be included
42  *     in all copies or substantial portions of the Software.
43  *
44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54  *     THE POSSIBILITY OF SUCH DAMAGE.
55  *
56  *
57  * License 2: Modified BSD
58  *
59  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60  * All rights reserved.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions are met:
64  *     * Redistributions of source code must retain the above copyright
65  *       notice, this list of conditions and the following disclaimer.
66  *     * Redistributions in binary form must reproduce the above copyright
67  *       notice, this list of conditions and the following disclaimer in the
68  *       documentation and/or other materials provided with the distribution.
69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
70  *       names of its contributors may be used to endorse or promote products
71  *       derived from this software without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83  *
84  * This file incorporates work covered by the following copyright and
85  * permission notice:
86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
89  *     and you.
90  *
91  *     The Software IS NOT an item of Licensed Software or Licensed Product
92  *     under any End User Software License Agreement or Agreement for Licensed
93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
94  *     granted, free of charge, to any person obtaining a copy of this software
95  *     annotated with this license and the Software, to deal in the Software
96  *     without restriction, including without limitation the rights to use,
97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98  *     of the Software, and to permit persons to whom the Software is furnished
99  *     to do so, subject to the following conditions:
100  *
101  *     The above copyright notice and this permission notice shall be included
102  *     in all copies or substantial portions of the Software.
103  *
104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114  *     THE POSSIBILITY OF SUCH DAMAGE.
115  */
116 
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 
123 #include "xgbe.h"
124 #include "xgbe-common.h"
125 
126 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
127 				      unsigned int usec)
128 {
129 	unsigned long rate;
130 	unsigned int ret;
131 
132 	DBGPR("-->xgbe_usec_to_riwt\n");
133 
134 	rate = pdata->sysclk_rate;
135 
136 	/*
137 	 * Convert the input usec value to the watchdog timer value. Each
138 	 * watchdog timer value is equivalent to 256 clock cycles.
139 	 * Calculate the required value as:
140 	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
141 	 */
142 	ret = (usec * (rate / 1000000)) / 256;
143 
144 	DBGPR("<--xgbe_usec_to_riwt\n");
145 
146 	return ret;
147 }
148 
149 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
150 				      unsigned int riwt)
151 {
152 	unsigned long rate;
153 	unsigned int ret;
154 
155 	DBGPR("-->xgbe_riwt_to_usec\n");
156 
157 	rate = pdata->sysclk_rate;
158 
159 	/*
160 	 * Convert the input watchdog timer value to the usec value. Each
161 	 * watchdog timer value is equivalent to 256 clock cycles.
162 	 * Calculate the required value as:
163 	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
164 	 */
165 	ret = (riwt * 256) / (rate / 1000000);
166 
167 	DBGPR("<--xgbe_riwt_to_usec\n");
168 
169 	return ret;
170 }
171 
172 static int xgbe_config_pblx8(struct xgbe_prv_data *pdata)
173 {
174 	struct xgbe_channel *channel;
175 	unsigned int i;
176 
177 	channel = pdata->channel;
178 	for (i = 0; i < pdata->channel_count; i++, channel++)
179 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8,
180 				       pdata->pblx8);
181 
182 	return 0;
183 }
184 
185 static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata)
186 {
187 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL);
188 }
189 
190 static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata)
191 {
192 	struct xgbe_channel *channel;
193 	unsigned int i;
194 
195 	channel = pdata->channel;
196 	for (i = 0; i < pdata->channel_count; i++, channel++) {
197 		if (!channel->tx_ring)
198 			break;
199 
200 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL,
201 				       pdata->tx_pbl);
202 	}
203 
204 	return 0;
205 }
206 
207 static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata)
208 {
209 	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL);
210 }
211 
212 static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata)
213 {
214 	struct xgbe_channel *channel;
215 	unsigned int i;
216 
217 	channel = pdata->channel;
218 	for (i = 0; i < pdata->channel_count; i++, channel++) {
219 		if (!channel->rx_ring)
220 			break;
221 
222 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL,
223 				       pdata->rx_pbl);
224 	}
225 
226 	return 0;
227 }
228 
229 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
230 {
231 	struct xgbe_channel *channel;
232 	unsigned int i;
233 
234 	channel = pdata->channel;
235 	for (i = 0; i < pdata->channel_count; i++, channel++) {
236 		if (!channel->tx_ring)
237 			break;
238 
239 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP,
240 				       pdata->tx_osp_mode);
241 	}
242 
243 	return 0;
244 }
245 
246 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
247 {
248 	unsigned int i;
249 
250 	for (i = 0; i < pdata->rx_q_count; i++)
251 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
252 
253 	return 0;
254 }
255 
256 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
257 {
258 	unsigned int i;
259 
260 	for (i = 0; i < pdata->tx_q_count; i++)
261 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
262 
263 	return 0;
264 }
265 
266 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
267 				    unsigned int val)
268 {
269 	unsigned int i;
270 
271 	for (i = 0; i < pdata->rx_q_count; i++)
272 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
273 
274 	return 0;
275 }
276 
277 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
278 				    unsigned int val)
279 {
280 	unsigned int i;
281 
282 	for (i = 0; i < pdata->tx_q_count; i++)
283 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
284 
285 	return 0;
286 }
287 
288 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
289 {
290 	struct xgbe_channel *channel;
291 	unsigned int i;
292 
293 	channel = pdata->channel;
294 	for (i = 0; i < pdata->channel_count; i++, channel++) {
295 		if (!channel->rx_ring)
296 			break;
297 
298 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT,
299 				       pdata->rx_riwt);
300 	}
301 
302 	return 0;
303 }
304 
305 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
306 {
307 	return 0;
308 }
309 
310 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
311 {
312 	struct xgbe_channel *channel;
313 	unsigned int i;
314 
315 	channel = pdata->channel;
316 	for (i = 0; i < pdata->channel_count; i++, channel++) {
317 		if (!channel->rx_ring)
318 			break;
319 
320 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ,
321 				       pdata->rx_buf_size);
322 	}
323 }
324 
325 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
326 {
327 	struct xgbe_channel *channel;
328 	unsigned int i;
329 
330 	channel = pdata->channel;
331 	for (i = 0; i < pdata->channel_count; i++, channel++) {
332 		if (!channel->tx_ring)
333 			break;
334 
335 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1);
336 	}
337 }
338 
339 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
340 {
341 	struct xgbe_channel *channel;
342 	unsigned int i;
343 
344 	channel = pdata->channel;
345 	for (i = 0; i < pdata->channel_count; i++, channel++) {
346 		if (!channel->rx_ring)
347 			break;
348 
349 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1);
350 	}
351 
352 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
353 }
354 
355 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
356 			      unsigned int index, unsigned int val)
357 {
358 	unsigned int wait;
359 	int ret = 0;
360 
361 	mutex_lock(&pdata->rss_mutex);
362 
363 	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
364 		ret = -EBUSY;
365 		goto unlock;
366 	}
367 
368 	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
369 
370 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
371 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
372 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
373 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
374 
375 	wait = 1000;
376 	while (wait--) {
377 		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
378 			goto unlock;
379 
380 		usleep_range(1000, 1500);
381 	}
382 
383 	ret = -EBUSY;
384 
385 unlock:
386 	mutex_unlock(&pdata->rss_mutex);
387 
388 	return ret;
389 }
390 
391 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
392 {
393 	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
394 	unsigned int *key = (unsigned int *)&pdata->rss_key;
395 	int ret;
396 
397 	while (key_regs--) {
398 		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
399 					 key_regs, *key++);
400 		if (ret)
401 			return ret;
402 	}
403 
404 	return 0;
405 }
406 
407 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
408 {
409 	unsigned int i;
410 	int ret;
411 
412 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
413 		ret = xgbe_write_rss_reg(pdata,
414 					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
415 					 pdata->rss_table[i]);
416 		if (ret)
417 			return ret;
418 	}
419 
420 	return 0;
421 }
422 
423 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
424 {
425 	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
426 
427 	return xgbe_write_rss_hash_key(pdata);
428 }
429 
430 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
431 				     const u32 *table)
432 {
433 	unsigned int i;
434 
435 	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
436 		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
437 
438 	return xgbe_write_rss_lookup_table(pdata);
439 }
440 
441 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
442 {
443 	int ret;
444 
445 	if (!pdata->hw_feat.rss)
446 		return -EOPNOTSUPP;
447 
448 	/* Program the hash key */
449 	ret = xgbe_write_rss_hash_key(pdata);
450 	if (ret)
451 		return ret;
452 
453 	/* Program the lookup table */
454 	ret = xgbe_write_rss_lookup_table(pdata);
455 	if (ret)
456 		return ret;
457 
458 	/* Set the RSS options */
459 	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
460 
461 	/* Enable RSS */
462 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
463 
464 	return 0;
465 }
466 
467 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
468 {
469 	if (!pdata->hw_feat.rss)
470 		return -EOPNOTSUPP;
471 
472 	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
473 
474 	return 0;
475 }
476 
477 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
478 {
479 	int ret;
480 
481 	if (!pdata->hw_feat.rss)
482 		return;
483 
484 	if (pdata->netdev->features & NETIF_F_RXHASH)
485 		ret = xgbe_enable_rss(pdata);
486 	else
487 		ret = xgbe_disable_rss(pdata);
488 
489 	if (ret)
490 		netdev_err(pdata->netdev,
491 			   "error configuring RSS, RSS disabled\n");
492 }
493 
494 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
495 {
496 	unsigned int max_q_count, q_count;
497 	unsigned int reg, reg_val;
498 	unsigned int i;
499 
500 	/* Clear MTL flow control */
501 	for (i = 0; i < pdata->rx_q_count; i++)
502 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
503 
504 	/* Clear MAC flow control */
505 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
506 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
507 	reg = MAC_Q0TFCR;
508 	for (i = 0; i < q_count; i++) {
509 		reg_val = XGMAC_IOREAD(pdata, reg);
510 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
511 		XGMAC_IOWRITE(pdata, reg, reg_val);
512 
513 		reg += MAC_QTFCR_INC;
514 	}
515 
516 	return 0;
517 }
518 
519 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
520 {
521 	struct ieee_pfc *pfc = pdata->pfc;
522 	struct ieee_ets *ets = pdata->ets;
523 	unsigned int max_q_count, q_count;
524 	unsigned int reg, reg_val;
525 	unsigned int i;
526 
527 	/* Set MTL flow control */
528 	for (i = 0; i < pdata->rx_q_count; i++) {
529 		unsigned int ehfc = 0;
530 
531 		if (pfc && ets) {
532 			unsigned int prio;
533 
534 			for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
535 				unsigned int tc;
536 
537 				/* Does this queue handle the priority? */
538 				if (pdata->prio2q_map[prio] != i)
539 					continue;
540 
541 				/* Get the Traffic Class for this priority */
542 				tc = ets->prio_tc[prio];
543 
544 				/* Check if flow control should be enabled */
545 				if (pfc->pfc_en & (1 << tc)) {
546 					ehfc = 1;
547 					break;
548 				}
549 			}
550 		} else {
551 			ehfc = 1;
552 		}
553 
554 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
555 
556 		netif_dbg(pdata, drv, pdata->netdev,
557 			  "flow control %s for RXq%u\n",
558 			  ehfc ? "enabled" : "disabled", i);
559 	}
560 
561 	/* Set MAC flow control */
562 	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
563 	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
564 	reg = MAC_Q0TFCR;
565 	for (i = 0; i < q_count; i++) {
566 		reg_val = XGMAC_IOREAD(pdata, reg);
567 
568 		/* Enable transmit flow control */
569 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
570 		/* Set pause time */
571 		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
572 
573 		XGMAC_IOWRITE(pdata, reg, reg_val);
574 
575 		reg += MAC_QTFCR_INC;
576 	}
577 
578 	return 0;
579 }
580 
581 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
582 {
583 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
584 
585 	return 0;
586 }
587 
588 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
589 {
590 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
591 
592 	return 0;
593 }
594 
595 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
596 {
597 	struct ieee_pfc *pfc = pdata->pfc;
598 
599 	if (pdata->tx_pause || (pfc && pfc->pfc_en))
600 		xgbe_enable_tx_flow_control(pdata);
601 	else
602 		xgbe_disable_tx_flow_control(pdata);
603 
604 	return 0;
605 }
606 
607 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
608 {
609 	struct ieee_pfc *pfc = pdata->pfc;
610 
611 	if (pdata->rx_pause || (pfc && pfc->pfc_en))
612 		xgbe_enable_rx_flow_control(pdata);
613 	else
614 		xgbe_disable_rx_flow_control(pdata);
615 
616 	return 0;
617 }
618 
619 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
620 {
621 	struct ieee_pfc *pfc = pdata->pfc;
622 
623 	xgbe_config_tx_flow_control(pdata);
624 	xgbe_config_rx_flow_control(pdata);
625 
626 	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
627 			   (pfc && pfc->pfc_en) ? 1 : 0);
628 }
629 
630 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
631 {
632 	struct xgbe_channel *channel;
633 	unsigned int dma_ch_isr, dma_ch_ier;
634 	unsigned int i;
635 
636 	channel = pdata->channel;
637 	for (i = 0; i < pdata->channel_count; i++, channel++) {
638 		/* Clear all the interrupts which are set */
639 		dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
640 		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
641 
642 		/* Clear all interrupt enable bits */
643 		dma_ch_ier = 0;
644 
645 		/* Enable following interrupts
646 		 *   NIE  - Normal Interrupt Summary Enable
647 		 *   AIE  - Abnormal Interrupt Summary Enable
648 		 *   FBEE - Fatal Bus Error Enable
649 		 */
650 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1);
651 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1);
652 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
653 
654 		if (channel->tx_ring) {
655 			/* Enable the following Tx interrupts
656 			 *   TIE  - Transmit Interrupt Enable (unless using
657 			 *          per channel interrupts)
658 			 */
659 			if (!pdata->per_channel_irq)
660 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
661 		}
662 		if (channel->rx_ring) {
663 			/* Enable following Rx interrupts
664 			 *   RBUE - Receive Buffer Unavailable Enable
665 			 *   RIE  - Receive Interrupt Enable (unless using
666 			 *          per channel interrupts)
667 			 */
668 			XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
669 			if (!pdata->per_channel_irq)
670 				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
671 		}
672 
673 		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
674 	}
675 }
676 
677 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
678 {
679 	unsigned int mtl_q_isr;
680 	unsigned int q_count, i;
681 
682 	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
683 	for (i = 0; i < q_count; i++) {
684 		/* Clear all the interrupts which are set */
685 		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
686 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
687 
688 		/* No MTL interrupts to be enabled */
689 		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
690 	}
691 }
692 
693 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
694 {
695 	unsigned int mac_ier = 0;
696 
697 	/* Enable Timestamp interrupt */
698 	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
699 
700 	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
701 
702 	/* Enable all counter interrupts */
703 	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
704 	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
705 }
706 
707 static int xgbe_set_gmii_speed(struct xgbe_prv_data *pdata)
708 {
709 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x3)
710 		return 0;
711 
712 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x3);
713 
714 	return 0;
715 }
716 
717 static int xgbe_set_gmii_2500_speed(struct xgbe_prv_data *pdata)
718 {
719 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0x2)
720 		return 0;
721 
722 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0x2);
723 
724 	return 0;
725 }
726 
727 static int xgbe_set_xgmii_speed(struct xgbe_prv_data *pdata)
728 {
729 	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) == 0)
730 		return 0;
731 
732 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, 0);
733 
734 	return 0;
735 }
736 
737 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
738 {
739 	/* Put the VLAN tag in the Rx descriptor */
740 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
741 
742 	/* Don't check the VLAN type */
743 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
744 
745 	/* Check only C-TAG (0x8100) packets */
746 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
747 
748 	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
749 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
750 
751 	/* Enable VLAN tag stripping */
752 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
753 
754 	return 0;
755 }
756 
757 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
758 {
759 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
760 
761 	return 0;
762 }
763 
764 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
765 {
766 	/* Enable VLAN filtering */
767 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
768 
769 	/* Enable VLAN Hash Table filtering */
770 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
771 
772 	/* Disable VLAN tag inverse matching */
773 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
774 
775 	/* Only filter on the lower 12-bits of the VLAN tag */
776 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
777 
778 	/* In order for the VLAN Hash Table filtering to be effective,
779 	 * the VLAN tag identifier in the VLAN Tag Register must not
780 	 * be zero.  Set the VLAN tag identifier to "1" to enable the
781 	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
782 	 * 1 will always pass filtering.
783 	 */
784 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
785 
786 	return 0;
787 }
788 
789 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
790 {
791 	/* Disable VLAN filtering */
792 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
793 
794 	return 0;
795 }
796 
797 static u32 xgbe_vid_crc32_le(__le16 vid_le)
798 {
799 	u32 poly = 0xedb88320;	/* CRCPOLY_LE */
800 	u32 crc = ~0;
801 	u32 temp = 0;
802 	unsigned char *data = (unsigned char *)&vid_le;
803 	unsigned char data_byte = 0;
804 	int i, bits;
805 
806 	bits = get_bitmask_order(VLAN_VID_MASK);
807 	for (i = 0; i < bits; i++) {
808 		if ((i % 8) == 0)
809 			data_byte = data[i / 8];
810 
811 		temp = ((crc & 1) ^ data_byte) & 1;
812 		crc >>= 1;
813 		data_byte >>= 1;
814 
815 		if (temp)
816 			crc ^= poly;
817 	}
818 
819 	return crc;
820 }
821 
822 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
823 {
824 	u32 crc;
825 	u16 vid;
826 	__le16 vid_le;
827 	u16 vlan_hash_table = 0;
828 
829 	/* Generate the VLAN Hash Table value */
830 	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
831 		/* Get the CRC32 value of the VLAN ID */
832 		vid_le = cpu_to_le16(vid);
833 		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
834 
835 		vlan_hash_table |= (1 << crc);
836 	}
837 
838 	/* Set the VLAN Hash Table filtering register */
839 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
840 
841 	return 0;
842 }
843 
844 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
845 				     unsigned int enable)
846 {
847 	unsigned int val = enable ? 1 : 0;
848 
849 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
850 		return 0;
851 
852 	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
853 		  enable ? "entering" : "leaving");
854 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
855 
856 	/* Hardware will still perform VLAN filtering in promiscuous mode */
857 	if (enable) {
858 		xgbe_disable_rx_vlan_filtering(pdata);
859 	} else {
860 		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
861 			xgbe_enable_rx_vlan_filtering(pdata);
862 	}
863 
864 	return 0;
865 }
866 
867 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
868 				       unsigned int enable)
869 {
870 	unsigned int val = enable ? 1 : 0;
871 
872 	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
873 		return 0;
874 
875 	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
876 		  enable ? "entering" : "leaving");
877 	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
878 
879 	return 0;
880 }
881 
882 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
883 			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
884 {
885 	unsigned int mac_addr_hi, mac_addr_lo;
886 	u8 *mac_addr;
887 
888 	mac_addr_lo = 0;
889 	mac_addr_hi = 0;
890 
891 	if (ha) {
892 		mac_addr = (u8 *)&mac_addr_lo;
893 		mac_addr[0] = ha->addr[0];
894 		mac_addr[1] = ha->addr[1];
895 		mac_addr[2] = ha->addr[2];
896 		mac_addr[3] = ha->addr[3];
897 		mac_addr = (u8 *)&mac_addr_hi;
898 		mac_addr[0] = ha->addr[4];
899 		mac_addr[1] = ha->addr[5];
900 
901 		netif_dbg(pdata, drv, pdata->netdev,
902 			  "adding mac address %pM at %#x\n",
903 			  ha->addr, *mac_reg);
904 
905 		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
906 	}
907 
908 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
909 	*mac_reg += MAC_MACA_INC;
910 	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
911 	*mac_reg += MAC_MACA_INC;
912 }
913 
914 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
915 {
916 	struct net_device *netdev = pdata->netdev;
917 	struct netdev_hw_addr *ha;
918 	unsigned int mac_reg;
919 	unsigned int addn_macs;
920 
921 	mac_reg = MAC_MACA1HR;
922 	addn_macs = pdata->hw_feat.addn_mac;
923 
924 	if (netdev_uc_count(netdev) > addn_macs) {
925 		xgbe_set_promiscuous_mode(pdata, 1);
926 	} else {
927 		netdev_for_each_uc_addr(ha, netdev) {
928 			xgbe_set_mac_reg(pdata, ha, &mac_reg);
929 			addn_macs--;
930 		}
931 
932 		if (netdev_mc_count(netdev) > addn_macs) {
933 			xgbe_set_all_multicast_mode(pdata, 1);
934 		} else {
935 			netdev_for_each_mc_addr(ha, netdev) {
936 				xgbe_set_mac_reg(pdata, ha, &mac_reg);
937 				addn_macs--;
938 			}
939 		}
940 	}
941 
942 	/* Clear remaining additional MAC address entries */
943 	while (addn_macs--)
944 		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
945 }
946 
947 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
948 {
949 	struct net_device *netdev = pdata->netdev;
950 	struct netdev_hw_addr *ha;
951 	unsigned int hash_reg;
952 	unsigned int hash_table_shift, hash_table_count;
953 	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
954 	u32 crc;
955 	unsigned int i;
956 
957 	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
958 	hash_table_count = pdata->hw_feat.hash_table_size / 32;
959 	memset(hash_table, 0, sizeof(hash_table));
960 
961 	/* Build the MAC Hash Table register values */
962 	netdev_for_each_uc_addr(ha, netdev) {
963 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
964 		crc >>= hash_table_shift;
965 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
966 	}
967 
968 	netdev_for_each_mc_addr(ha, netdev) {
969 		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
970 		crc >>= hash_table_shift;
971 		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
972 	}
973 
974 	/* Set the MAC Hash Table registers */
975 	hash_reg = MAC_HTR0;
976 	for (i = 0; i < hash_table_count; i++) {
977 		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
978 		hash_reg += MAC_HTR_INC;
979 	}
980 }
981 
982 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
983 {
984 	if (pdata->hw_feat.hash_table_size)
985 		xgbe_set_mac_hash_table(pdata);
986 	else
987 		xgbe_set_mac_addn_addrs(pdata);
988 
989 	return 0;
990 }
991 
992 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
993 {
994 	unsigned int mac_addr_hi, mac_addr_lo;
995 
996 	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
997 	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
998 		      (addr[1] <<  8) | (addr[0] <<  0);
999 
1000 	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1001 	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1002 
1003 	return 0;
1004 }
1005 
1006 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1007 {
1008 	struct net_device *netdev = pdata->netdev;
1009 	unsigned int pr_mode, am_mode;
1010 
1011 	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1012 	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1013 
1014 	xgbe_set_promiscuous_mode(pdata, pr_mode);
1015 	xgbe_set_all_multicast_mode(pdata, am_mode);
1016 
1017 	xgbe_add_mac_addresses(pdata);
1018 
1019 	return 0;
1020 }
1021 
1022 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1023 			      int mmd_reg)
1024 {
1025 	unsigned long flags;
1026 	unsigned int mmd_address;
1027 	int mmd_data;
1028 
1029 	if (mmd_reg & MII_ADDR_C45)
1030 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1031 	else
1032 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1033 
1034 	/* The PCS registers are accessed using mmio. The underlying APB3
1035 	 * management interface uses indirect addressing to access the MMD
1036 	 * register sets. This requires accessing of the PCS register in two
1037 	 * phases, an address phase and a data phase.
1038 	 *
1039 	 * The mmio interface is based on 32-bit offsets and values. All
1040 	 * register offsets must therefore be adjusted by left shifting the
1041 	 * offset 2 bits and reading 32 bits of data.
1042 	 */
1043 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1044 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
1045 	mmd_data = XPCS_IOREAD(pdata, (mmd_address & 0xff) << 2);
1046 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1047 
1048 	return mmd_data;
1049 }
1050 
1051 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1052 				int mmd_reg, int mmd_data)
1053 {
1054 	unsigned int mmd_address;
1055 	unsigned long flags;
1056 
1057 	if (mmd_reg & MII_ADDR_C45)
1058 		mmd_address = mmd_reg & ~MII_ADDR_C45;
1059 	else
1060 		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1061 
1062 	/* The PCS registers are accessed using mmio. The underlying APB3
1063 	 * management interface uses indirect addressing to access the MMD
1064 	 * register sets. This requires accessing of the PCS register in two
1065 	 * phases, an address phase and a data phase.
1066 	 *
1067 	 * The mmio interface is based on 32-bit offsets and values. All
1068 	 * register offsets must therefore be adjusted by left shifting the
1069 	 * offset 2 bits and reading 32 bits of data.
1070 	 */
1071 	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1072 	XPCS_IOWRITE(pdata, PCS_MMD_SELECT << 2, mmd_address >> 8);
1073 	XPCS_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1074 	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1075 }
1076 
1077 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1078 {
1079 	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1080 }
1081 
1082 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1083 {
1084 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1085 
1086 	return 0;
1087 }
1088 
1089 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1090 {
1091 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1092 
1093 	return 0;
1094 }
1095 
1096 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1097 {
1098 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1099 
1100 	/* Reset the Tx descriptor
1101 	 *   Set buffer 1 (lo) address to zero
1102 	 *   Set buffer 1 (hi) address to zero
1103 	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1104 	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1105 	 */
1106 	rdesc->desc0 = 0;
1107 	rdesc->desc1 = 0;
1108 	rdesc->desc2 = 0;
1109 	rdesc->desc3 = 0;
1110 
1111 	/* Make sure ownership is written to the descriptor */
1112 	dma_wmb();
1113 }
1114 
1115 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1116 {
1117 	struct xgbe_ring *ring = channel->tx_ring;
1118 	struct xgbe_ring_data *rdata;
1119 	int i;
1120 	int start_index = ring->cur;
1121 
1122 	DBGPR("-->tx_desc_init\n");
1123 
1124 	/* Initialze all descriptors */
1125 	for (i = 0; i < ring->rdesc_count; i++) {
1126 		rdata = XGBE_GET_DESC_DATA(ring, i);
1127 
1128 		/* Initialize Tx descriptor */
1129 		xgbe_tx_desc_reset(rdata);
1130 	}
1131 
1132 	/* Update the total number of Tx descriptors */
1133 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1134 
1135 	/* Update the starting address of descriptor ring */
1136 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1137 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1138 			  upper_32_bits(rdata->rdesc_dma));
1139 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1140 			  lower_32_bits(rdata->rdesc_dma));
1141 
1142 	DBGPR("<--tx_desc_init\n");
1143 }
1144 
1145 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1146 			       struct xgbe_ring_data *rdata, unsigned int index)
1147 {
1148 	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1149 	unsigned int rx_usecs = pdata->rx_usecs;
1150 	unsigned int rx_frames = pdata->rx_frames;
1151 	unsigned int inte;
1152 	dma_addr_t hdr_dma, buf_dma;
1153 
1154 	if (!rx_usecs && !rx_frames) {
1155 		/* No coalescing, interrupt for every descriptor */
1156 		inte = 1;
1157 	} else {
1158 		/* Set interrupt based on Rx frame coalescing setting */
1159 		if (rx_frames && !((index + 1) % rx_frames))
1160 			inte = 1;
1161 		else
1162 			inte = 0;
1163 	}
1164 
1165 	/* Reset the Rx descriptor
1166 	 *   Set buffer 1 (lo) address to header dma address (lo)
1167 	 *   Set buffer 1 (hi) address to header dma address (hi)
1168 	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1169 	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1170 	 *     set control bits OWN and INTE
1171 	 */
1172 	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1173 	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1174 	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1175 	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1176 	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1177 	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1178 
1179 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1180 
1181 	/* Since the Rx DMA engine is likely running, make sure everything
1182 	 * is written to the descriptor(s) before setting the OWN bit
1183 	 * for the descriptor
1184 	 */
1185 	dma_wmb();
1186 
1187 	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1188 
1189 	/* Make sure ownership is written to the descriptor */
1190 	dma_wmb();
1191 }
1192 
1193 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1194 {
1195 	struct xgbe_prv_data *pdata = channel->pdata;
1196 	struct xgbe_ring *ring = channel->rx_ring;
1197 	struct xgbe_ring_data *rdata;
1198 	unsigned int start_index = ring->cur;
1199 	unsigned int i;
1200 
1201 	DBGPR("-->rx_desc_init\n");
1202 
1203 	/* Initialize all descriptors */
1204 	for (i = 0; i < ring->rdesc_count; i++) {
1205 		rdata = XGBE_GET_DESC_DATA(ring, i);
1206 
1207 		/* Initialize Rx descriptor */
1208 		xgbe_rx_desc_reset(pdata, rdata, i);
1209 	}
1210 
1211 	/* Update the total number of Rx descriptors */
1212 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1213 
1214 	/* Update the starting address of descriptor ring */
1215 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1216 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1217 			  upper_32_bits(rdata->rdesc_dma));
1218 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1219 			  lower_32_bits(rdata->rdesc_dma));
1220 
1221 	/* Update the Rx Descriptor Tail Pointer */
1222 	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1223 	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1224 			  lower_32_bits(rdata->rdesc_dma));
1225 
1226 	DBGPR("<--rx_desc_init\n");
1227 }
1228 
1229 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1230 				      unsigned int addend)
1231 {
1232 	/* Set the addend register value and tell the device */
1233 	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1234 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1235 
1236 	/* Wait for addend update to complete */
1237 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1238 		udelay(5);
1239 }
1240 
1241 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1242 				 unsigned int nsec)
1243 {
1244 	/* Set the time values and tell the device */
1245 	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1246 	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1247 	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1248 
1249 	/* Wait for time update to complete */
1250 	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1251 		udelay(5);
1252 }
1253 
1254 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1255 {
1256 	u64 nsec;
1257 
1258 	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1259 	nsec *= NSEC_PER_SEC;
1260 	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1261 
1262 	return nsec;
1263 }
1264 
1265 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1266 {
1267 	unsigned int tx_snr;
1268 	u64 nsec;
1269 
1270 	tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1271 	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1272 		return 0;
1273 
1274 	nsec = XGMAC_IOREAD(pdata, MAC_TXSSR);
1275 	nsec *= NSEC_PER_SEC;
1276 	nsec += tx_snr;
1277 
1278 	return nsec;
1279 }
1280 
1281 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1282 			       struct xgbe_ring_desc *rdesc)
1283 {
1284 	u64 nsec;
1285 
1286 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1287 	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1288 		nsec = le32_to_cpu(rdesc->desc1);
1289 		nsec <<= 32;
1290 		nsec |= le32_to_cpu(rdesc->desc0);
1291 		if (nsec != 0xffffffffffffffffULL) {
1292 			packet->rx_tstamp = nsec;
1293 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1294 				       RX_TSTAMP, 1);
1295 		}
1296 	}
1297 }
1298 
1299 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1300 			      unsigned int mac_tscr)
1301 {
1302 	/* Set one nano-second accuracy */
1303 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1304 
1305 	/* Set fine timestamp update */
1306 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1307 
1308 	/* Overwrite earlier timestamps */
1309 	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1310 
1311 	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1312 
1313 	/* Exit if timestamping is not enabled */
1314 	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1315 		return 0;
1316 
1317 	/* Initialize time registers */
1318 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1319 	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1320 	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1321 	xgbe_set_tstamp_time(pdata, 0, 0);
1322 
1323 	/* Initialize the timecounter */
1324 	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1325 			 ktime_to_ns(ktime_get_real()));
1326 
1327 	return 0;
1328 }
1329 
1330 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
1331 {
1332 	unsigned int offset, queue, prio;
1333 	u8 i;
1334 
1335 	netdev_reset_tc(pdata->netdev);
1336 	if (!pdata->num_tcs)
1337 		return;
1338 
1339 	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
1340 
1341 	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
1342 		while ((queue < pdata->tx_q_count) &&
1343 		       (pdata->q2tc_map[queue] == i))
1344 			queue++;
1345 
1346 		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
1347 			  i, offset, queue - 1);
1348 		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
1349 		offset = queue;
1350 	}
1351 
1352 	if (!pdata->ets)
1353 		return;
1354 
1355 	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
1356 		netdev_set_prio_tc_map(pdata->netdev, prio,
1357 				       pdata->ets->prio_tc[prio]);
1358 }
1359 
1360 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
1361 {
1362 	struct ieee_ets *ets = pdata->ets;
1363 	unsigned int total_weight, min_weight, weight;
1364 	unsigned int mask, reg, reg_val;
1365 	unsigned int i, prio;
1366 
1367 	if (!ets)
1368 		return;
1369 
1370 	/* Set Tx to deficit weighted round robin scheduling algorithm (when
1371 	 * traffic class is using ETS algorithm)
1372 	 */
1373 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
1374 
1375 	/* Set Traffic Class algorithms */
1376 	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
1377 	min_weight = total_weight / 100;
1378 	if (!min_weight)
1379 		min_weight = 1;
1380 
1381 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1382 		/* Map the priorities to the traffic class */
1383 		mask = 0;
1384 		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
1385 			if (ets->prio_tc[prio] == i)
1386 				mask |= (1 << prio);
1387 		}
1388 		mask &= 0xff;
1389 
1390 		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
1391 			  i, mask);
1392 		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
1393 		reg_val = XGMAC_IOREAD(pdata, reg);
1394 
1395 		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
1396 		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
1397 
1398 		XGMAC_IOWRITE(pdata, reg, reg_val);
1399 
1400 		/* Set the traffic class algorithm */
1401 		switch (ets->tc_tsa[i]) {
1402 		case IEEE_8021QAZ_TSA_STRICT:
1403 			netif_dbg(pdata, drv, pdata->netdev,
1404 				  "TC%u using SP\n", i);
1405 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1406 					       MTL_TSA_SP);
1407 			break;
1408 		case IEEE_8021QAZ_TSA_ETS:
1409 			weight = total_weight * ets->tc_tx_bw[i] / 100;
1410 			weight = clamp(weight, min_weight, total_weight);
1411 
1412 			netif_dbg(pdata, drv, pdata->netdev,
1413 				  "TC%u using DWRR (weight %u)\n", i, weight);
1414 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1415 					       MTL_TSA_ETS);
1416 			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
1417 					       weight);
1418 			break;
1419 		}
1420 	}
1421 
1422 	xgbe_config_tc(pdata);
1423 }
1424 
1425 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
1426 {
1427 	xgbe_config_flow_control(pdata);
1428 }
1429 
1430 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1431 			       struct xgbe_ring *ring)
1432 {
1433 	struct xgbe_prv_data *pdata = channel->pdata;
1434 	struct xgbe_ring_data *rdata;
1435 
1436 	/* Make sure everything is written before the register write */
1437 	wmb();
1438 
1439 	/* Issue a poll command to Tx DMA by writing address
1440 	 * of next immediate free descriptor */
1441 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1442 	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1443 			  lower_32_bits(rdata->rdesc_dma));
1444 
1445 	/* Start the Tx timer */
1446 	if (pdata->tx_usecs && !channel->tx_timer_active) {
1447 		channel->tx_timer_active = 1;
1448 		mod_timer(&channel->tx_timer,
1449 			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1450 	}
1451 
1452 	ring->tx.xmit_more = 0;
1453 }
1454 
1455 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1456 {
1457 	struct xgbe_prv_data *pdata = channel->pdata;
1458 	struct xgbe_ring *ring = channel->tx_ring;
1459 	struct xgbe_ring_data *rdata;
1460 	struct xgbe_ring_desc *rdesc;
1461 	struct xgbe_packet_data *packet = &ring->packet_data;
1462 	unsigned int csum, tso, vlan;
1463 	unsigned int tso_context, vlan_context;
1464 	unsigned int tx_set_ic;
1465 	int start_index = ring->cur;
1466 	int cur_index = ring->cur;
1467 	int i;
1468 
1469 	DBGPR("-->xgbe_dev_xmit\n");
1470 
1471 	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1472 			      CSUM_ENABLE);
1473 	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1474 			     TSO_ENABLE);
1475 	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1476 			      VLAN_CTAG);
1477 
1478 	if (tso && (packet->mss != ring->tx.cur_mss))
1479 		tso_context = 1;
1480 	else
1481 		tso_context = 0;
1482 
1483 	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1484 		vlan_context = 1;
1485 	else
1486 		vlan_context = 0;
1487 
1488 	/* Determine if an interrupt should be generated for this Tx:
1489 	 *   Interrupt:
1490 	 *     - Tx frame count exceeds the frame count setting
1491 	 *     - Addition of Tx frame count to the frame count since the
1492 	 *       last interrupt was set exceeds the frame count setting
1493 	 *   No interrupt:
1494 	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1495 	 *     - Addition of Tx frame count to the frame count since the
1496 	 *       last interrupt was set does not exceed the frame count setting
1497 	 */
1498 	ring->coalesce_count += packet->tx_packets;
1499 	if (!pdata->tx_frames)
1500 		tx_set_ic = 0;
1501 	else if (packet->tx_packets > pdata->tx_frames)
1502 		tx_set_ic = 1;
1503 	else if ((ring->coalesce_count % pdata->tx_frames) <
1504 		 packet->tx_packets)
1505 		tx_set_ic = 1;
1506 	else
1507 		tx_set_ic = 0;
1508 
1509 	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1510 	rdesc = rdata->rdesc;
1511 
1512 	/* Create a context descriptor if this is a TSO packet */
1513 	if (tso_context || vlan_context) {
1514 		if (tso_context) {
1515 			netif_dbg(pdata, tx_queued, pdata->netdev,
1516 				  "TSO context descriptor, mss=%u\n",
1517 				  packet->mss);
1518 
1519 			/* Set the MSS size */
1520 			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1521 					  MSS, packet->mss);
1522 
1523 			/* Mark it as a CONTEXT descriptor */
1524 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1525 					  CTXT, 1);
1526 
1527 			/* Indicate this descriptor contains the MSS */
1528 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1529 					  TCMSSV, 1);
1530 
1531 			ring->tx.cur_mss = packet->mss;
1532 		}
1533 
1534 		if (vlan_context) {
1535 			netif_dbg(pdata, tx_queued, pdata->netdev,
1536 				  "VLAN context descriptor, ctag=%u\n",
1537 				  packet->vlan_ctag);
1538 
1539 			/* Mark it as a CONTEXT descriptor */
1540 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1541 					  CTXT, 1);
1542 
1543 			/* Set the VLAN tag */
1544 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1545 					  VT, packet->vlan_ctag);
1546 
1547 			/* Indicate this descriptor contains the VLAN tag */
1548 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1549 					  VLTV, 1);
1550 
1551 			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1552 		}
1553 
1554 		cur_index++;
1555 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1556 		rdesc = rdata->rdesc;
1557 	}
1558 
1559 	/* Update buffer address (for TSO this is the header) */
1560 	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1561 	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1562 
1563 	/* Update the buffer length */
1564 	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1565 			  rdata->skb_dma_len);
1566 
1567 	/* VLAN tag insertion check */
1568 	if (vlan)
1569 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1570 				  TX_NORMAL_DESC2_VLAN_INSERT);
1571 
1572 	/* Timestamp enablement check */
1573 	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1574 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1575 
1576 	/* Mark it as First Descriptor */
1577 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1578 
1579 	/* Mark it as a NORMAL descriptor */
1580 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1581 
1582 	/* Set OWN bit if not the first descriptor */
1583 	if (cur_index != start_index)
1584 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1585 
1586 	if (tso) {
1587 		/* Enable TSO */
1588 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1589 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1590 				  packet->tcp_payload_len);
1591 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1592 				  packet->tcp_header_len / 4);
1593 
1594 		pdata->ext_stats.tx_tso_packets++;
1595 	} else {
1596 		/* Enable CRC and Pad Insertion */
1597 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1598 
1599 		/* Enable HW CSUM */
1600 		if (csum)
1601 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1602 					  CIC, 0x3);
1603 
1604 		/* Set the total length to be transmitted */
1605 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1606 				  packet->length);
1607 	}
1608 
1609 	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1610 		cur_index++;
1611 		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1612 		rdesc = rdata->rdesc;
1613 
1614 		/* Update buffer address */
1615 		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1616 		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1617 
1618 		/* Update the buffer length */
1619 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1620 				  rdata->skb_dma_len);
1621 
1622 		/* Set OWN bit */
1623 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1624 
1625 		/* Mark it as NORMAL descriptor */
1626 		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1627 
1628 		/* Enable HW CSUM */
1629 		if (csum)
1630 			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1631 					  CIC, 0x3);
1632 	}
1633 
1634 	/* Set LAST bit for the last descriptor */
1635 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1636 
1637 	/* Set IC bit based on Tx coalescing settings */
1638 	if (tx_set_ic)
1639 		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1640 
1641 	/* Save the Tx info to report back during cleanup */
1642 	rdata->tx.packets = packet->tx_packets;
1643 	rdata->tx.bytes = packet->tx_bytes;
1644 
1645 	/* In case the Tx DMA engine is running, make sure everything
1646 	 * is written to the descriptor(s) before setting the OWN bit
1647 	 * for the first descriptor
1648 	 */
1649 	dma_wmb();
1650 
1651 	/* Set OWN bit for the first descriptor */
1652 	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1653 	rdesc = rdata->rdesc;
1654 	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1655 
1656 	if (netif_msg_tx_queued(pdata))
1657 		xgbe_dump_tx_desc(pdata, ring, start_index,
1658 				  packet->rdesc_count, 1);
1659 
1660 	/* Make sure ownership is written to the descriptor */
1661 	smp_wmb();
1662 
1663 	ring->cur = cur_index + 1;
1664 	if (!packet->skb->xmit_more ||
1665 	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1666 						   channel->queue_index)))
1667 		xgbe_tx_start_xmit(channel, ring);
1668 	else
1669 		ring->tx.xmit_more = 1;
1670 
1671 	DBGPR("  %s: descriptors %u to %u written\n",
1672 	      channel->name, start_index & (ring->rdesc_count - 1),
1673 	      (ring->cur - 1) & (ring->rdesc_count - 1));
1674 
1675 	DBGPR("<--xgbe_dev_xmit\n");
1676 }
1677 
1678 static int xgbe_dev_read(struct xgbe_channel *channel)
1679 {
1680 	struct xgbe_prv_data *pdata = channel->pdata;
1681 	struct xgbe_ring *ring = channel->rx_ring;
1682 	struct xgbe_ring_data *rdata;
1683 	struct xgbe_ring_desc *rdesc;
1684 	struct xgbe_packet_data *packet = &ring->packet_data;
1685 	struct net_device *netdev = pdata->netdev;
1686 	unsigned int err, etlt, l34t;
1687 
1688 	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1689 
1690 	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1691 	rdesc = rdata->rdesc;
1692 
1693 	/* Check for data availability */
1694 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1695 		return 1;
1696 
1697 	/* Make sure descriptor fields are read after reading the OWN bit */
1698 	dma_rmb();
1699 
1700 	if (netif_msg_rx_status(pdata))
1701 		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1702 
1703 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1704 		/* Timestamp Context Descriptor */
1705 		xgbe_get_rx_tstamp(packet, rdesc);
1706 
1707 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1708 			       CONTEXT, 1);
1709 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1710 			       CONTEXT_NEXT, 0);
1711 		return 0;
1712 	}
1713 
1714 	/* Normal Descriptor, be sure Context Descriptor bit is off */
1715 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1716 
1717 	/* Indicate if a Context Descriptor is next */
1718 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1719 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1720 			       CONTEXT_NEXT, 1);
1721 
1722 	/* Get the header length */
1723 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1724 		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1725 						      RX_NORMAL_DESC2, HL);
1726 		if (rdata->rx.hdr_len)
1727 			pdata->ext_stats.rx_split_header_packets++;
1728 	}
1729 
1730 	/* Get the RSS hash */
1731 	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1732 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1733 			       RSS_HASH, 1);
1734 
1735 		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1736 
1737 		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1738 		switch (l34t) {
1739 		case RX_DESC3_L34T_IPV4_TCP:
1740 		case RX_DESC3_L34T_IPV4_UDP:
1741 		case RX_DESC3_L34T_IPV6_TCP:
1742 		case RX_DESC3_L34T_IPV6_UDP:
1743 			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1744 			break;
1745 		default:
1746 			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1747 		}
1748 	}
1749 
1750 	/* Get the packet length */
1751 	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1752 
1753 	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1754 		/* Not all the data has been transferred for this packet */
1755 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1756 			       INCOMPLETE, 1);
1757 		return 0;
1758 	}
1759 
1760 	/* This is the last of the data for this packet */
1761 	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1762 		       INCOMPLETE, 0);
1763 
1764 	/* Set checksum done indicator as appropriate */
1765 	if (netdev->features & NETIF_F_RXCSUM)
1766 		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1767 			       CSUM_DONE, 1);
1768 
1769 	/* Check for errors (only valid in last descriptor) */
1770 	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1771 	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1772 	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
1773 
1774 	if (!err || !etlt) {
1775 		/* No error if err is 0 or etlt is 0 */
1776 		if ((etlt == 0x09) &&
1777 		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1778 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1779 				       VLAN_CTAG, 1);
1780 			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1781 							      RX_NORMAL_DESC0,
1782 							      OVT);
1783 			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
1784 				  packet->vlan_ctag);
1785 		}
1786 	} else {
1787 		if ((etlt == 0x05) || (etlt == 0x06))
1788 			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1789 				       CSUM_DONE, 0);
1790 		else
1791 			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1792 				       FRAME, 1);
1793 	}
1794 
1795 	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
1796 	      ring->cur & (ring->rdesc_count - 1), ring->cur);
1797 
1798 	return 0;
1799 }
1800 
1801 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1802 {
1803 	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1804 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
1805 }
1806 
1807 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1808 {
1809 	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1810 	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
1811 }
1812 
1813 static int xgbe_enable_int(struct xgbe_channel *channel,
1814 			   enum xgbe_int int_id)
1815 {
1816 	unsigned int dma_ch_ier;
1817 
1818 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1819 
1820 	switch (int_id) {
1821 	case XGMAC_INT_DMA_CH_SR_TI:
1822 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1823 		break;
1824 	case XGMAC_INT_DMA_CH_SR_TPS:
1825 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1);
1826 		break;
1827 	case XGMAC_INT_DMA_CH_SR_TBU:
1828 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1);
1829 		break;
1830 	case XGMAC_INT_DMA_CH_SR_RI:
1831 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1832 		break;
1833 	case XGMAC_INT_DMA_CH_SR_RBU:
1834 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
1835 		break;
1836 	case XGMAC_INT_DMA_CH_SR_RPS:
1837 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1);
1838 		break;
1839 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1840 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
1841 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
1842 		break;
1843 	case XGMAC_INT_DMA_CH_SR_FBE:
1844 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
1845 		break;
1846 	case XGMAC_INT_DMA_ALL:
1847 		dma_ch_ier |= channel->saved_ier;
1848 		break;
1849 	default:
1850 		return -1;
1851 	}
1852 
1853 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1854 
1855 	return 0;
1856 }
1857 
1858 static int xgbe_disable_int(struct xgbe_channel *channel,
1859 			    enum xgbe_int int_id)
1860 {
1861 	unsigned int dma_ch_ier;
1862 
1863 	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1864 
1865 	switch (int_id) {
1866 	case XGMAC_INT_DMA_CH_SR_TI:
1867 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1868 		break;
1869 	case XGMAC_INT_DMA_CH_SR_TPS:
1870 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0);
1871 		break;
1872 	case XGMAC_INT_DMA_CH_SR_TBU:
1873 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0);
1874 		break;
1875 	case XGMAC_INT_DMA_CH_SR_RI:
1876 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1877 		break;
1878 	case XGMAC_INT_DMA_CH_SR_RBU:
1879 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0);
1880 		break;
1881 	case XGMAC_INT_DMA_CH_SR_RPS:
1882 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0);
1883 		break;
1884 	case XGMAC_INT_DMA_CH_SR_TI_RI:
1885 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
1886 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
1887 		break;
1888 	case XGMAC_INT_DMA_CH_SR_FBE:
1889 		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0);
1890 		break;
1891 	case XGMAC_INT_DMA_ALL:
1892 		channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK;
1893 		dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK;
1894 		break;
1895 	default:
1896 		return -1;
1897 	}
1898 
1899 	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
1900 
1901 	return 0;
1902 }
1903 
1904 static int xgbe_exit(struct xgbe_prv_data *pdata)
1905 {
1906 	unsigned int count = 2000;
1907 
1908 	DBGPR("-->xgbe_exit\n");
1909 
1910 	/* Issue a software reset */
1911 	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1912 	usleep_range(10, 15);
1913 
1914 	/* Poll Until Poll Condition */
1915 	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1916 		usleep_range(500, 600);
1917 
1918 	if (!count)
1919 		return -EBUSY;
1920 
1921 	DBGPR("<--xgbe_exit\n");
1922 
1923 	return 0;
1924 }
1925 
1926 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1927 {
1928 	unsigned int i, count;
1929 
1930 	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1931 		return 0;
1932 
1933 	for (i = 0; i < pdata->tx_q_count; i++)
1934 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1935 
1936 	/* Poll Until Poll Condition */
1937 	for (i = 0; i < pdata->tx_q_count; i++) {
1938 		count = 2000;
1939 		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1940 							MTL_Q_TQOMR, FTQ))
1941 			usleep_range(500, 600);
1942 
1943 		if (!count)
1944 			return -EBUSY;
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1951 {
1952 	/* Set enhanced addressing mode */
1953 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1);
1954 
1955 	/* Set the System Bus mode */
1956 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1);
1957 	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1);
1958 }
1959 
1960 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1961 {
1962 	unsigned int arcache, awcache;
1963 
1964 	arcache = 0;
1965 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache);
1966 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain);
1967 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache);
1968 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain);
1969 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache);
1970 	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain);
1971 	XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache);
1972 
1973 	awcache = 0;
1974 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache);
1975 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain);
1976 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache);
1977 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain);
1978 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache);
1979 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain);
1980 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache);
1981 	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain);
1982 	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache);
1983 }
1984 
1985 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1986 {
1987 	unsigned int i;
1988 
1989 	/* Set Tx to weighted round robin scheduling algorithm */
1990 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1991 
1992 	/* Set Tx traffic classes to use WRR algorithm with equal weights */
1993 	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1994 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1995 				       MTL_TSA_ETS);
1996 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1997 	}
1998 
1999 	/* Set Rx to strict priority algorithm */
2000 	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2001 }
2002 
2003 static unsigned int xgbe_calculate_per_queue_fifo(unsigned int fifo_size,
2004 						  unsigned int queue_count)
2005 {
2006 	unsigned int q_fifo_size;
2007 	unsigned int p_fifo;
2008 
2009 	/* Calculate the configured fifo size */
2010 	q_fifo_size = 1 << (fifo_size + 7);
2011 
2012 	/* The configured value may not be the actual amount of fifo RAM */
2013 	q_fifo_size = min_t(unsigned int, XGBE_FIFO_MAX, q_fifo_size);
2014 
2015 	q_fifo_size = q_fifo_size / queue_count;
2016 
2017 	/* Each increment in the queue fifo size represents 256 bytes of
2018 	 * fifo, with 0 representing 256 bytes. Distribute the fifo equally
2019 	 * between the queues.
2020 	 */
2021 	p_fifo = q_fifo_size / 256;
2022 	if (p_fifo)
2023 		p_fifo--;
2024 
2025 	return p_fifo;
2026 }
2027 
2028 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2029 {
2030 	unsigned int fifo_size;
2031 	unsigned int i;
2032 
2033 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.tx_fifo_size,
2034 						  pdata->tx_q_count);
2035 
2036 	for (i = 0; i < pdata->tx_q_count; i++)
2037 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo_size);
2038 
2039 	netif_info(pdata, drv, pdata->netdev,
2040 		   "%d Tx hardware queues, %d byte fifo per queue\n",
2041 		   pdata->tx_q_count, ((fifo_size + 1) * 256));
2042 }
2043 
2044 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2045 {
2046 	unsigned int fifo_size;
2047 	unsigned int i;
2048 
2049 	fifo_size = xgbe_calculate_per_queue_fifo(pdata->hw_feat.rx_fifo_size,
2050 						  pdata->rx_q_count);
2051 
2052 	for (i = 0; i < pdata->rx_q_count; i++)
2053 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo_size);
2054 
2055 	netif_info(pdata, drv, pdata->netdev,
2056 		   "%d Rx hardware queues, %d byte fifo per queue\n",
2057 		   pdata->rx_q_count, ((fifo_size + 1) * 256));
2058 }
2059 
2060 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2061 {
2062 	unsigned int qptc, qptc_extra, queue;
2063 	unsigned int prio_queues;
2064 	unsigned int ppq, ppq_extra, prio;
2065 	unsigned int mask;
2066 	unsigned int i, j, reg, reg_val;
2067 
2068 	/* Map the MTL Tx Queues to Traffic Classes
2069 	 *   Note: Tx Queues >= Traffic Classes
2070 	 */
2071 	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2072 	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2073 
2074 	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2075 		for (j = 0; j < qptc; j++) {
2076 			netif_dbg(pdata, drv, pdata->netdev,
2077 				  "TXq%u mapped to TC%u\n", queue, i);
2078 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2079 					       Q2TCMAP, i);
2080 			pdata->q2tc_map[queue++] = i;
2081 		}
2082 
2083 		if (i < qptc_extra) {
2084 			netif_dbg(pdata, drv, pdata->netdev,
2085 				  "TXq%u mapped to TC%u\n", queue, i);
2086 			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2087 					       Q2TCMAP, i);
2088 			pdata->q2tc_map[queue++] = i;
2089 		}
2090 	}
2091 
2092 	/* Map the 8 VLAN priority values to available MTL Rx queues */
2093 	prio_queues = min_t(unsigned int, IEEE_8021QAZ_MAX_TCS,
2094 			    pdata->rx_q_count);
2095 	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2096 	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2097 
2098 	reg = MAC_RQC2R;
2099 	reg_val = 0;
2100 	for (i = 0, prio = 0; i < prio_queues;) {
2101 		mask = 0;
2102 		for (j = 0; j < ppq; j++) {
2103 			netif_dbg(pdata, drv, pdata->netdev,
2104 				  "PRIO%u mapped to RXq%u\n", prio, i);
2105 			mask |= (1 << prio);
2106 			pdata->prio2q_map[prio++] = i;
2107 		}
2108 
2109 		if (i < ppq_extra) {
2110 			netif_dbg(pdata, drv, pdata->netdev,
2111 				  "PRIO%u mapped to RXq%u\n", prio, i);
2112 			mask |= (1 << prio);
2113 			pdata->prio2q_map[prio++] = i;
2114 		}
2115 
2116 		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2117 
2118 		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2119 			continue;
2120 
2121 		XGMAC_IOWRITE(pdata, reg, reg_val);
2122 		reg += MAC_RQC2_INC;
2123 		reg_val = 0;
2124 	}
2125 
2126 	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2127 	reg = MTL_RQDCM0R;
2128 	reg_val = 0;
2129 	for (i = 0; i < pdata->rx_q_count;) {
2130 		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2131 
2132 		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2133 			continue;
2134 
2135 		XGMAC_IOWRITE(pdata, reg, reg_val);
2136 
2137 		reg += MTL_RQDCM_INC;
2138 		reg_val = 0;
2139 	}
2140 }
2141 
2142 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2143 {
2144 	unsigned int i;
2145 
2146 	for (i = 0; i < pdata->rx_q_count; i++) {
2147 		/* Activate flow control when less than 4k left in fifo */
2148 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA, 2);
2149 
2150 		/* De-activate flow control when more than 6k left in fifo */
2151 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD, 4);
2152 	}
2153 }
2154 
2155 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2156 {
2157 	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2158 
2159 	/* Filtering is done using perfect filtering and hash filtering */
2160 	if (pdata->hw_feat.hash_table_size) {
2161 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2162 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2163 		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2164 	}
2165 }
2166 
2167 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2168 {
2169 	unsigned int val;
2170 
2171 	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2172 
2173 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2174 }
2175 
2176 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2177 {
2178 	switch (pdata->phy_speed) {
2179 	case SPEED_10000:
2180 		xgbe_set_xgmii_speed(pdata);
2181 		break;
2182 
2183 	case SPEED_2500:
2184 		xgbe_set_gmii_2500_speed(pdata);
2185 		break;
2186 
2187 	case SPEED_1000:
2188 		xgbe_set_gmii_speed(pdata);
2189 		break;
2190 	}
2191 }
2192 
2193 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2194 {
2195 	if (pdata->netdev->features & NETIF_F_RXCSUM)
2196 		xgbe_enable_rx_csum(pdata);
2197 	else
2198 		xgbe_disable_rx_csum(pdata);
2199 }
2200 
2201 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2202 {
2203 	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2204 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2205 	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2206 
2207 	/* Set the current VLAN Hash Table register value */
2208 	xgbe_update_vlan_hash_table(pdata);
2209 
2210 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2211 		xgbe_enable_rx_vlan_filtering(pdata);
2212 	else
2213 		xgbe_disable_rx_vlan_filtering(pdata);
2214 
2215 	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2216 		xgbe_enable_rx_vlan_stripping(pdata);
2217 	else
2218 		xgbe_disable_rx_vlan_stripping(pdata);
2219 }
2220 
2221 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2222 {
2223 	bool read_hi;
2224 	u64 val;
2225 
2226 	switch (reg_lo) {
2227 	/* These registers are always 64 bit */
2228 	case MMC_TXOCTETCOUNT_GB_LO:
2229 	case MMC_TXOCTETCOUNT_G_LO:
2230 	case MMC_RXOCTETCOUNT_GB_LO:
2231 	case MMC_RXOCTETCOUNT_G_LO:
2232 		read_hi = true;
2233 		break;
2234 
2235 	default:
2236 		read_hi = false;
2237 	}
2238 
2239 	val = XGMAC_IOREAD(pdata, reg_lo);
2240 
2241 	if (read_hi)
2242 		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2243 
2244 	return val;
2245 }
2246 
2247 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2248 {
2249 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2250 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2251 
2252 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2253 		stats->txoctetcount_gb +=
2254 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2255 
2256 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2257 		stats->txframecount_gb +=
2258 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2259 
2260 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2261 		stats->txbroadcastframes_g +=
2262 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2263 
2264 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2265 		stats->txmulticastframes_g +=
2266 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2267 
2268 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2269 		stats->tx64octets_gb +=
2270 			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2271 
2272 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2273 		stats->tx65to127octets_gb +=
2274 			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2275 
2276 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2277 		stats->tx128to255octets_gb +=
2278 			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2279 
2280 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2281 		stats->tx256to511octets_gb +=
2282 			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2283 
2284 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2285 		stats->tx512to1023octets_gb +=
2286 			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2287 
2288 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2289 		stats->tx1024tomaxoctets_gb +=
2290 			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2291 
2292 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2293 		stats->txunicastframes_gb +=
2294 			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2295 
2296 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2297 		stats->txmulticastframes_gb +=
2298 			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2299 
2300 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2301 		stats->txbroadcastframes_g +=
2302 			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2303 
2304 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2305 		stats->txunderflowerror +=
2306 			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2307 
2308 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2309 		stats->txoctetcount_g +=
2310 			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2311 
2312 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2313 		stats->txframecount_g +=
2314 			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2315 
2316 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2317 		stats->txpauseframes +=
2318 			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2319 
2320 	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2321 		stats->txvlanframes_g +=
2322 			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2323 }
2324 
2325 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2326 {
2327 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2328 	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2329 
2330 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2331 		stats->rxframecount_gb +=
2332 			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2333 
2334 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2335 		stats->rxoctetcount_gb +=
2336 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2337 
2338 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2339 		stats->rxoctetcount_g +=
2340 			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2341 
2342 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2343 		stats->rxbroadcastframes_g +=
2344 			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2345 
2346 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2347 		stats->rxmulticastframes_g +=
2348 			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2349 
2350 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2351 		stats->rxcrcerror +=
2352 			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2353 
2354 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2355 		stats->rxrunterror +=
2356 			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2357 
2358 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2359 		stats->rxjabbererror +=
2360 			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2361 
2362 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2363 		stats->rxundersize_g +=
2364 			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2365 
2366 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2367 		stats->rxoversize_g +=
2368 			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2369 
2370 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2371 		stats->rx64octets_gb +=
2372 			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2373 
2374 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2375 		stats->rx65to127octets_gb +=
2376 			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2377 
2378 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2379 		stats->rx128to255octets_gb +=
2380 			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2381 
2382 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2383 		stats->rx256to511octets_gb +=
2384 			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2385 
2386 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2387 		stats->rx512to1023octets_gb +=
2388 			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2389 
2390 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2391 		stats->rx1024tomaxoctets_gb +=
2392 			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2393 
2394 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2395 		stats->rxunicastframes_g +=
2396 			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2397 
2398 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2399 		stats->rxlengtherror +=
2400 			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2401 
2402 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2403 		stats->rxoutofrangetype +=
2404 			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2405 
2406 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2407 		stats->rxpauseframes +=
2408 			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2409 
2410 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2411 		stats->rxfifooverflow +=
2412 			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2413 
2414 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2415 		stats->rxvlanframes_gb +=
2416 			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2417 
2418 	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2419 		stats->rxwatchdogerror +=
2420 			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2421 }
2422 
2423 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2424 {
2425 	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2426 
2427 	/* Freeze counters */
2428 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2429 
2430 	stats->txoctetcount_gb +=
2431 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2432 
2433 	stats->txframecount_gb +=
2434 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2435 
2436 	stats->txbroadcastframes_g +=
2437 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2438 
2439 	stats->txmulticastframes_g +=
2440 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2441 
2442 	stats->tx64octets_gb +=
2443 		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2444 
2445 	stats->tx65to127octets_gb +=
2446 		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2447 
2448 	stats->tx128to255octets_gb +=
2449 		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2450 
2451 	stats->tx256to511octets_gb +=
2452 		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2453 
2454 	stats->tx512to1023octets_gb +=
2455 		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2456 
2457 	stats->tx1024tomaxoctets_gb +=
2458 		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2459 
2460 	stats->txunicastframes_gb +=
2461 		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2462 
2463 	stats->txmulticastframes_gb +=
2464 		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2465 
2466 	stats->txbroadcastframes_g +=
2467 		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2468 
2469 	stats->txunderflowerror +=
2470 		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2471 
2472 	stats->txoctetcount_g +=
2473 		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2474 
2475 	stats->txframecount_g +=
2476 		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2477 
2478 	stats->txpauseframes +=
2479 		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2480 
2481 	stats->txvlanframes_g +=
2482 		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2483 
2484 	stats->rxframecount_gb +=
2485 		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2486 
2487 	stats->rxoctetcount_gb +=
2488 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2489 
2490 	stats->rxoctetcount_g +=
2491 		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2492 
2493 	stats->rxbroadcastframes_g +=
2494 		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2495 
2496 	stats->rxmulticastframes_g +=
2497 		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2498 
2499 	stats->rxcrcerror +=
2500 		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2501 
2502 	stats->rxrunterror +=
2503 		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2504 
2505 	stats->rxjabbererror +=
2506 		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2507 
2508 	stats->rxundersize_g +=
2509 		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2510 
2511 	stats->rxoversize_g +=
2512 		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2513 
2514 	stats->rx64octets_gb +=
2515 		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2516 
2517 	stats->rx65to127octets_gb +=
2518 		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2519 
2520 	stats->rx128to255octets_gb +=
2521 		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2522 
2523 	stats->rx256to511octets_gb +=
2524 		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2525 
2526 	stats->rx512to1023octets_gb +=
2527 		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2528 
2529 	stats->rx1024tomaxoctets_gb +=
2530 		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2531 
2532 	stats->rxunicastframes_g +=
2533 		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2534 
2535 	stats->rxlengtherror +=
2536 		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2537 
2538 	stats->rxoutofrangetype +=
2539 		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2540 
2541 	stats->rxpauseframes +=
2542 		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2543 
2544 	stats->rxfifooverflow +=
2545 		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2546 
2547 	stats->rxvlanframes_gb +=
2548 		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2549 
2550 	stats->rxwatchdogerror +=
2551 		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2552 
2553 	/* Un-freeze counters */
2554 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2555 }
2556 
2557 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
2558 {
2559 	/* Set counters to reset on read */
2560 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2561 
2562 	/* Reset the counters */
2563 	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2564 }
2565 
2566 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
2567 				 struct xgbe_channel *channel)
2568 {
2569 	unsigned int tx_dsr, tx_pos, tx_qidx;
2570 	unsigned int tx_status;
2571 	unsigned long tx_timeout;
2572 
2573 	/* Calculate the status register to read and the position within */
2574 	if (channel->queue_index < DMA_DSRX_FIRST_QUEUE) {
2575 		tx_dsr = DMA_DSR0;
2576 		tx_pos = (channel->queue_index * DMA_DSR_Q_WIDTH) +
2577 			 DMA_DSR0_TPS_START;
2578 	} else {
2579 		tx_qidx = channel->queue_index - DMA_DSRX_FIRST_QUEUE;
2580 
2581 		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2582 		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2583 			 DMA_DSRX_TPS_START;
2584 	}
2585 
2586 	/* The Tx engine cannot be stopped if it is actively processing
2587 	 * descriptors. Wait for the Tx engine to enter the stopped or
2588 	 * suspended state.  Don't wait forever though...
2589 	 */
2590 	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
2591 	while (time_before(jiffies, tx_timeout)) {
2592 		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2593 		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2594 		if ((tx_status == DMA_TPS_STOPPED) ||
2595 		    (tx_status == DMA_TPS_SUSPENDED))
2596 			break;
2597 
2598 		usleep_range(500, 1000);
2599 	}
2600 
2601 	if (!time_before(jiffies, tx_timeout))
2602 		netdev_info(pdata->netdev,
2603 			    "timed out waiting for Tx DMA channel %u to stop\n",
2604 			    channel->queue_index);
2605 }
2606 
2607 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
2608 {
2609 	struct xgbe_channel *channel;
2610 	unsigned int i;
2611 
2612 	/* Enable each Tx DMA channel */
2613 	channel = pdata->channel;
2614 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2615 		if (!channel->tx_ring)
2616 			break;
2617 
2618 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2619 	}
2620 
2621 	/* Enable each Tx queue */
2622 	for (i = 0; i < pdata->tx_q_count; i++)
2623 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2624 				       MTL_Q_ENABLED);
2625 
2626 	/* Enable MAC Tx */
2627 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2628 }
2629 
2630 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
2631 {
2632 	struct xgbe_channel *channel;
2633 	unsigned int i;
2634 
2635 	/* Prepare for Tx DMA channel stop */
2636 	channel = pdata->channel;
2637 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2638 		if (!channel->tx_ring)
2639 			break;
2640 
2641 		xgbe_prepare_tx_stop(pdata, channel);
2642 	}
2643 
2644 	/* Disable MAC Tx */
2645 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2646 
2647 	/* Disable each Tx queue */
2648 	for (i = 0; i < pdata->tx_q_count; i++)
2649 		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2650 
2651 	/* Disable each Tx DMA channel */
2652 	channel = pdata->channel;
2653 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2654 		if (!channel->tx_ring)
2655 			break;
2656 
2657 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2658 	}
2659 }
2660 
2661 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
2662 				 unsigned int queue)
2663 {
2664 	unsigned int rx_status;
2665 	unsigned long rx_timeout;
2666 
2667 	/* The Rx engine cannot be stopped if it is actively processing
2668 	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
2669 	 * wait forever though...
2670 	 */
2671 	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
2672 	while (time_before(jiffies, rx_timeout)) {
2673 		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
2674 		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
2675 		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
2676 			break;
2677 
2678 		usleep_range(500, 1000);
2679 	}
2680 
2681 	if (!time_before(jiffies, rx_timeout))
2682 		netdev_info(pdata->netdev,
2683 			    "timed out waiting for Rx queue %u to empty\n",
2684 			    queue);
2685 }
2686 
2687 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
2688 {
2689 	struct xgbe_channel *channel;
2690 	unsigned int reg_val, i;
2691 
2692 	/* Enable each Rx DMA channel */
2693 	channel = pdata->channel;
2694 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2695 		if (!channel->rx_ring)
2696 			break;
2697 
2698 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2699 	}
2700 
2701 	/* Enable each Rx queue */
2702 	reg_val = 0;
2703 	for (i = 0; i < pdata->rx_q_count; i++)
2704 		reg_val |= (0x02 << (i << 1));
2705 	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2706 
2707 	/* Enable MAC Rx */
2708 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2709 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2710 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2711 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2712 }
2713 
2714 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
2715 {
2716 	struct xgbe_channel *channel;
2717 	unsigned int i;
2718 
2719 	/* Disable MAC Rx */
2720 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2721 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2722 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2723 	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2724 
2725 	/* Prepare for Rx DMA channel stop */
2726 	for (i = 0; i < pdata->rx_q_count; i++)
2727 		xgbe_prepare_rx_stop(pdata, i);
2728 
2729 	/* Disable each Rx queue */
2730 	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2731 
2732 	/* Disable each Rx DMA channel */
2733 	channel = pdata->channel;
2734 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2735 		if (!channel->rx_ring)
2736 			break;
2737 
2738 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2739 	}
2740 }
2741 
2742 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2743 {
2744 	struct xgbe_channel *channel;
2745 	unsigned int i;
2746 
2747 	/* Enable each Tx DMA channel */
2748 	channel = pdata->channel;
2749 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2750 		if (!channel->tx_ring)
2751 			break;
2752 
2753 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
2754 	}
2755 
2756 	/* Enable MAC Tx */
2757 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2758 }
2759 
2760 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2761 {
2762 	struct xgbe_channel *channel;
2763 	unsigned int i;
2764 
2765 	/* Prepare for Tx DMA channel stop */
2766 	channel = pdata->channel;
2767 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2768 		if (!channel->tx_ring)
2769 			break;
2770 
2771 		xgbe_prepare_tx_stop(pdata, channel);
2772 	}
2773 
2774 	/* Disable MAC Tx */
2775 	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2776 
2777 	/* Disable each Tx DMA channel */
2778 	channel = pdata->channel;
2779 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2780 		if (!channel->tx_ring)
2781 			break;
2782 
2783 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
2784 	}
2785 }
2786 
2787 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2788 {
2789 	struct xgbe_channel *channel;
2790 	unsigned int i;
2791 
2792 	/* Enable each Rx DMA channel */
2793 	channel = pdata->channel;
2794 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2795 		if (!channel->rx_ring)
2796 			break;
2797 
2798 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
2799 	}
2800 }
2801 
2802 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2803 {
2804 	struct xgbe_channel *channel;
2805 	unsigned int i;
2806 
2807 	/* Disable each Rx DMA channel */
2808 	channel = pdata->channel;
2809 	for (i = 0; i < pdata->channel_count; i++, channel++) {
2810 		if (!channel->rx_ring)
2811 			break;
2812 
2813 		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
2814 	}
2815 }
2816 
2817 static int xgbe_init(struct xgbe_prv_data *pdata)
2818 {
2819 	struct xgbe_desc_if *desc_if = &pdata->desc_if;
2820 	int ret;
2821 
2822 	DBGPR("-->xgbe_init\n");
2823 
2824 	/* Flush Tx queues */
2825 	ret = xgbe_flush_tx_queues(pdata);
2826 	if (ret)
2827 		return ret;
2828 
2829 	/*
2830 	 * Initialize DMA related features
2831 	 */
2832 	xgbe_config_dma_bus(pdata);
2833 	xgbe_config_dma_cache(pdata);
2834 	xgbe_config_osp_mode(pdata);
2835 	xgbe_config_pblx8(pdata);
2836 	xgbe_config_tx_pbl_val(pdata);
2837 	xgbe_config_rx_pbl_val(pdata);
2838 	xgbe_config_rx_coalesce(pdata);
2839 	xgbe_config_tx_coalesce(pdata);
2840 	xgbe_config_rx_buffer_size(pdata);
2841 	xgbe_config_tso_mode(pdata);
2842 	xgbe_config_sph_mode(pdata);
2843 	xgbe_config_rss(pdata);
2844 	desc_if->wrapper_tx_desc_init(pdata);
2845 	desc_if->wrapper_rx_desc_init(pdata);
2846 	xgbe_enable_dma_interrupts(pdata);
2847 
2848 	/*
2849 	 * Initialize MTL related features
2850 	 */
2851 	xgbe_config_mtl_mode(pdata);
2852 	xgbe_config_queue_mapping(pdata);
2853 	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2854 	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2855 	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2856 	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2857 	xgbe_config_tx_fifo_size(pdata);
2858 	xgbe_config_rx_fifo_size(pdata);
2859 	xgbe_config_flow_control_threshold(pdata);
2860 	/*TODO: Error Packet and undersized good Packet forwarding enable
2861 		(FEP and FUP)
2862 	 */
2863 	xgbe_config_dcb_tc(pdata);
2864 	xgbe_config_dcb_pfc(pdata);
2865 	xgbe_enable_mtl_interrupts(pdata);
2866 
2867 	/*
2868 	 * Initialize MAC related features
2869 	 */
2870 	xgbe_config_mac_address(pdata);
2871 	xgbe_config_rx_mode(pdata);
2872 	xgbe_config_jumbo_enable(pdata);
2873 	xgbe_config_flow_control(pdata);
2874 	xgbe_config_mac_speed(pdata);
2875 	xgbe_config_checksum_offload(pdata);
2876 	xgbe_config_vlan_support(pdata);
2877 	xgbe_config_mmc(pdata);
2878 	xgbe_enable_mac_interrupts(pdata);
2879 
2880 	DBGPR("<--xgbe_init\n");
2881 
2882 	return 0;
2883 }
2884 
2885 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2886 {
2887 	DBGPR("-->xgbe_init_function_ptrs\n");
2888 
2889 	hw_if->tx_complete = xgbe_tx_complete;
2890 
2891 	hw_if->set_mac_address = xgbe_set_mac_address;
2892 	hw_if->config_rx_mode = xgbe_config_rx_mode;
2893 
2894 	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2895 	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2896 
2897 	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2898 	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2899 	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2900 	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2901 	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2902 
2903 	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2904 	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2905 
2906 	hw_if->set_gmii_speed = xgbe_set_gmii_speed;
2907 	hw_if->set_gmii_2500_speed = xgbe_set_gmii_2500_speed;
2908 	hw_if->set_xgmii_speed = xgbe_set_xgmii_speed;
2909 
2910 	hw_if->enable_tx = xgbe_enable_tx;
2911 	hw_if->disable_tx = xgbe_disable_tx;
2912 	hw_if->enable_rx = xgbe_enable_rx;
2913 	hw_if->disable_rx = xgbe_disable_rx;
2914 
2915 	hw_if->powerup_tx = xgbe_powerup_tx;
2916 	hw_if->powerdown_tx = xgbe_powerdown_tx;
2917 	hw_if->powerup_rx = xgbe_powerup_rx;
2918 	hw_if->powerdown_rx = xgbe_powerdown_rx;
2919 
2920 	hw_if->dev_xmit = xgbe_dev_xmit;
2921 	hw_if->dev_read = xgbe_dev_read;
2922 	hw_if->enable_int = xgbe_enable_int;
2923 	hw_if->disable_int = xgbe_disable_int;
2924 	hw_if->init = xgbe_init;
2925 	hw_if->exit = xgbe_exit;
2926 
2927 	/* Descriptor related Sequences have to be initialized here */
2928 	hw_if->tx_desc_init = xgbe_tx_desc_init;
2929 	hw_if->rx_desc_init = xgbe_rx_desc_init;
2930 	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2931 	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
2932 	hw_if->is_last_desc = xgbe_is_last_desc;
2933 	hw_if->is_context_desc = xgbe_is_context_desc;
2934 	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
2935 
2936 	/* For FLOW ctrl */
2937 	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2938 	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2939 
2940 	/* For RX coalescing */
2941 	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2942 	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2943 	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2944 	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2945 
2946 	/* For RX and TX threshold config */
2947 	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2948 	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2949 
2950 	/* For RX and TX Store and Forward Mode config */
2951 	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2952 	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2953 
2954 	/* For TX DMA Operating on Second Frame config */
2955 	hw_if->config_osp_mode = xgbe_config_osp_mode;
2956 
2957 	/* For RX and TX PBL config */
2958 	hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val;
2959 	hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val;
2960 	hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val;
2961 	hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val;
2962 	hw_if->config_pblx8 = xgbe_config_pblx8;
2963 
2964 	/* For MMC statistics support */
2965 	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2966 	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2967 	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2968 
2969 	/* For PTP config */
2970 	hw_if->config_tstamp = xgbe_config_tstamp;
2971 	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
2972 	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
2973 	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
2974 	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
2975 
2976 	/* For Data Center Bridging config */
2977 	hw_if->config_tc = xgbe_config_tc;
2978 	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
2979 	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
2980 
2981 	/* For Receive Side Scaling */
2982 	hw_if->enable_rss = xgbe_enable_rss;
2983 	hw_if->disable_rss = xgbe_disable_rss;
2984 	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2985 	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2986 
2987 	DBGPR("<--xgbe_init_function_ptrs\n");
2988 }
2989