1 /* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */ 2 /* 3 Written/copyright 1993-1998 by Donald Becker. 4 5 Copyright 1993 United States Government as represented by the 6 Director, National Security Agency. 7 This software may be used and distributed according to the terms 8 of the GNU General Public License, incorporated herein by reference. 9 10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work 11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards. 12 13 The author may be reached as becker@scyld.com, or C/O 14 Scyld Computing Corporation 15 410 Severn Ave., Suite 210 16 Annapolis MD 21403 17 18 Andrey V. Savochkin: 19 - alignment problem with 1.3.* kernel and some minor changes. 20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de): 21 - added support for Linux/Alpha, but removed most of it, because 22 it worked only for the PCI chip. 23 - added hook for the 32bit lance driver 24 - added PCnetPCI II (79C970A) to chip table 25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au): 26 - hopefully fix above so Linux/Alpha can use ISA cards too. 27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb 28 v1.12 10/27/97 Module support -djb 29 v1.14 2/3/98 Module support modified, made PCI support optional -djb 30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed 31 before unregister_netdev() which caused NULL pointer 32 reference later in the chain (in rtnetlink_fill_ifinfo()) 33 -- Mika Kuoppala <miku@iki.fi> 34 35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from 36 the 2.1 version of the old driver - Alan Cox 37 38 Get rid of check_region, check kmalloc return in lance_probe1 39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001 40 41 Reworked detection, added support for Racal InterLan EtherBlaster cards 42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004 43 */ 44 45 static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n"; 46 47 #include <linux/module.h> 48 #include <linux/kernel.h> 49 #include <linux/string.h> 50 #include <linux/delay.h> 51 #include <linux/errno.h> 52 #include <linux/ioport.h> 53 #include <linux/slab.h> 54 #include <linux/interrupt.h> 55 #include <linux/pci.h> 56 #include <linux/init.h> 57 #include <linux/netdevice.h> 58 #include <linux/etherdevice.h> 59 #include <linux/skbuff.h> 60 #include <linux/mm.h> 61 #include <linux/bitops.h> 62 #include <net/Space.h> 63 64 #include <asm/io.h> 65 #include <asm/dma.h> 66 67 static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0}; 68 static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options); 69 static int __init do_lance_probe(struct net_device *dev); 70 71 72 static struct card { 73 char id_offset14; 74 char id_offset15; 75 } cards[] = { 76 { //"normal" 77 .id_offset14 = 0x57, 78 .id_offset15 = 0x57, 79 }, 80 { //NI6510EB 81 .id_offset14 = 0x52, 82 .id_offset15 = 0x44, 83 }, 84 { //Racal InterLan EtherBlaster 85 .id_offset14 = 0x52, 86 .id_offset15 = 0x49, 87 }, 88 }; 89 #define NUM_CARDS 3 90 91 #ifdef LANCE_DEBUG 92 static int lance_debug = LANCE_DEBUG; 93 #else 94 static int lance_debug = 1; 95 #endif 96 97 /* 98 Theory of Operation 99 100 I. Board Compatibility 101 102 This device driver is designed for the AMD 79C960, the "PCnet-ISA 103 single-chip ethernet controller for ISA". This chip is used in a wide 104 variety of boards from vendors such as Allied Telesis, HP, Kingston, 105 and Boca. This driver is also intended to work with older AMD 7990 106 designs, such as the NE1500 and NE2100, and newer 79C961. For convenience, 107 I use the name LANCE to refer to all of the AMD chips, even though it properly 108 refers only to the original 7990. 109 110 II. Board-specific settings 111 112 The driver is designed to work the boards that use the faster 113 bus-master mode, rather than in shared memory mode. (Only older designs 114 have on-board buffer memory needed to support the slower shared memory mode.) 115 116 Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA 117 channel. This driver probes the likely base addresses: 118 {0x300, 0x320, 0x340, 0x360}. 119 After the board is found it generates a DMA-timeout interrupt and uses 120 autoIRQ to find the IRQ line. The DMA channel can be set with the low bits 121 of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is 122 probed for by enabling each free DMA channel in turn and checking if 123 initialization succeeds. 124 125 The HP-J2405A board is an exception: with this board it is easy to read the 126 EEPROM-set values for the base, IRQ, and DMA. (Of course you must already 127 _know_ the base address -- that field is for writing the EEPROM.) 128 129 III. Driver operation 130 131 IIIa. Ring buffers 132 The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes 133 the base and length of the data buffer, along with status bits. The length 134 of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of 135 the buffer length (rather than being directly the buffer length) for 136 implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to 137 ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries 138 needlessly uses extra space and reduces the chance that an upper layer will 139 be able to reorder queued Tx packets based on priority. Decreasing the number 140 of entries makes it more difficult to achieve back-to-back packet transmission 141 and increases the chance that Rx ring will overflow. (Consider the worst case 142 of receiving back-to-back minimum-sized packets.) 143 144 The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver 145 statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to 146 avoid the administrative overhead. For the Rx side this avoids dynamically 147 allocating full-sized buffers "just in case", at the expense of a 148 memory-to-memory data copy for each packet received. For most systems this 149 is a good tradeoff: the Rx buffer will always be in low memory, the copy 150 is inexpensive, and it primes the cache for later packet processing. For Tx 151 the buffers are only used when needed as low-memory bounce buffers. 152 153 IIIB. 16M memory limitations. 154 For the ISA bus master mode all structures used directly by the LANCE, 155 the initialization block, Rx and Tx rings, and data buffers, must be 156 accessible from the ISA bus, i.e. in the lower 16M of real memory. 157 This is a problem for current Linux kernels on >16M machines. The network 158 devices are initialized after memory initialization, and the kernel doles out 159 memory from the top of memory downward. The current solution is to have a 160 special network initialization routine that's called before memory 161 initialization; this will eventually be generalized for all network devices. 162 As mentioned before, low-memory "bounce-buffers" are used when needed. 163 164 IIIC. Synchronization 165 The driver runs as two independent, single-threaded flows of control. One 166 is the send-packet routine, which enforces single-threaded use by the 167 dev->tbusy flag. The other thread is the interrupt handler, which is single 168 threaded by the hardware and other software. 169 170 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 171 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 172 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 173 the 'lp->tx_full' flag. 174 175 The interrupt handler has exclusive control over the Rx ring and records stats 176 from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so 177 we can't avoid the interrupt overhead by having the Tx routine reap the Tx 178 stats.) After reaping the stats, it marks the queue entry as empty by setting 179 the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the 180 tx_full and tbusy flags. 181 182 */ 183 184 /* Set the number of Tx and Rx buffers, using Log_2(# buffers). 185 Reasonable default values are 16 Tx buffers, and 16 Rx buffers. 186 That translates to 4 and 4 (16 == 2^^4). 187 This is a compile-time option for efficiency. 188 */ 189 #ifndef LANCE_LOG_TX_BUFFERS 190 #define LANCE_LOG_TX_BUFFERS 4 191 #define LANCE_LOG_RX_BUFFERS 4 192 #endif 193 194 #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS)) 195 #define TX_RING_MOD_MASK (TX_RING_SIZE - 1) 196 #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29) 197 198 #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS)) 199 #define RX_RING_MOD_MASK (RX_RING_SIZE - 1) 200 #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29) 201 202 #define PKT_BUF_SZ 1544 203 204 /* Offsets from base I/O address. */ 205 #define LANCE_DATA 0x10 206 #define LANCE_ADDR 0x12 207 #define LANCE_RESET 0x14 208 #define LANCE_BUS_IF 0x16 209 #define LANCE_TOTAL_SIZE 0x18 210 211 #define TX_TIMEOUT (HZ/5) 212 213 /* The LANCE Rx and Tx ring descriptors. */ 214 struct lance_rx_head { 215 s32 base; 216 s16 buf_length; /* This length is 2s complement (negative)! */ 217 s16 msg_length; /* This length is "normal". */ 218 }; 219 220 struct lance_tx_head { 221 s32 base; 222 s16 length; /* Length is 2s complement (negative)! */ 223 s16 misc; 224 }; 225 226 /* The LANCE initialization block, described in databook. */ 227 struct lance_init_block { 228 u16 mode; /* Pre-set mode (reg. 15) */ 229 u8 phys_addr[6]; /* Physical ethernet address */ 230 u32 filter[2]; /* Multicast filter (unused). */ 231 /* Receive and transmit ring base, along with extra bits. */ 232 u32 rx_ring; /* Tx and Rx ring base pointers */ 233 u32 tx_ring; 234 }; 235 236 struct lance_private { 237 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */ 238 struct lance_rx_head rx_ring[RX_RING_SIZE]; 239 struct lance_tx_head tx_ring[TX_RING_SIZE]; 240 struct lance_init_block init_block; 241 const char *name; 242 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 243 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 244 /* The addresses of receive-in-place skbuffs. */ 245 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 246 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */ 247 /* Tx low-memory "bounce buffer" address. */ 248 char (*tx_bounce_buffs)[PKT_BUF_SZ]; 249 int cur_rx, cur_tx; /* The next free ring entry */ 250 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 251 int dma; 252 unsigned char chip_version; /* See lance_chip_type. */ 253 spinlock_t devlock; 254 }; 255 256 #define LANCE_MUST_PAD 0x00000001 257 #define LANCE_ENABLE_AUTOSELECT 0x00000002 258 #define LANCE_MUST_REINIT_RING 0x00000004 259 #define LANCE_MUST_UNRESET 0x00000008 260 #define LANCE_HAS_MISSED_FRAME 0x00000010 261 262 /* A mapping from the chip ID number to the part number and features. 263 These are from the datasheets -- in real life the '970 version 264 reportedly has the same ID as the '965. */ 265 static struct lance_chip_type { 266 int id_number; 267 const char *name; 268 int flags; 269 } chip_table[] = { 270 {0x0000, "LANCE 7990", /* Ancient lance chip. */ 271 LANCE_MUST_PAD + LANCE_MUST_UNRESET}, 272 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */ 273 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 274 LANCE_HAS_MISSED_FRAME}, 275 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */ 276 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 277 LANCE_HAS_MISSED_FRAME}, 278 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */ 279 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 280 LANCE_HAS_MISSED_FRAME}, 281 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call 282 it the PCnet32. */ 283 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */ 284 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 285 LANCE_HAS_MISSED_FRAME}, 286 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */ 287 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 288 LANCE_HAS_MISSED_FRAME}, 289 {0x0, "PCnet (unknown)", 290 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING + 291 LANCE_HAS_MISSED_FRAME}, 292 }; 293 294 enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6}; 295 296 297 /* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers. 298 Assume yes until we know the memory size. */ 299 static unsigned char lance_need_isa_bounce_buffers = 1; 300 301 static int lance_open(struct net_device *dev); 302 static void lance_init_ring(struct net_device *dev, gfp_t mode); 303 static netdev_tx_t lance_start_xmit(struct sk_buff *skb, 304 struct net_device *dev); 305 static int lance_rx(struct net_device *dev); 306 static irqreturn_t lance_interrupt(int irq, void *dev_id); 307 static int lance_close(struct net_device *dev); 308 static struct net_device_stats *lance_get_stats(struct net_device *dev); 309 static void set_multicast_list(struct net_device *dev); 310 static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue); 311 312 313 314 #ifdef MODULE 315 #define MAX_CARDS 8 /* Max number of interfaces (cards) per module */ 316 317 static struct net_device *dev_lance[MAX_CARDS]; 318 static int io[MAX_CARDS]; 319 static int dma[MAX_CARDS]; 320 static int irq[MAX_CARDS]; 321 322 module_param_hw_array(io, int, ioport, NULL, 0); 323 module_param_hw_array(dma, int, dma, NULL, 0); 324 module_param_hw_array(irq, int, irq, NULL, 0); 325 module_param(lance_debug, int, 0); 326 MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required"); 327 MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)"); 328 MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)"); 329 MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)"); 330 331 static int __init lance_init_module(void) 332 { 333 struct net_device *dev; 334 int this_dev, found = 0; 335 336 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 337 if (io[this_dev] == 0) { 338 if (this_dev != 0) /* only complain once */ 339 break; 340 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n"); 341 return -EPERM; 342 } 343 dev = alloc_etherdev(0); 344 if (!dev) 345 break; 346 dev->irq = irq[this_dev]; 347 dev->base_addr = io[this_dev]; 348 dev->dma = dma[this_dev]; 349 if (do_lance_probe(dev) == 0) { 350 dev_lance[found++] = dev; 351 continue; 352 } 353 free_netdev(dev); 354 break; 355 } 356 if (found != 0) 357 return 0; 358 return -ENXIO; 359 } 360 module_init(lance_init_module); 361 362 static void cleanup_card(struct net_device *dev) 363 { 364 struct lance_private *lp = dev->ml_priv; 365 if (dev->dma != 4) 366 free_dma(dev->dma); 367 release_region(dev->base_addr, LANCE_TOTAL_SIZE); 368 kfree(lp->tx_bounce_buffs); 369 kfree((void*)lp->rx_buffs); 370 kfree(lp); 371 } 372 373 static void __exit lance_cleanup_module(void) 374 { 375 int this_dev; 376 377 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) { 378 struct net_device *dev = dev_lance[this_dev]; 379 if (dev) { 380 unregister_netdev(dev); 381 cleanup_card(dev); 382 free_netdev(dev); 383 } 384 } 385 } 386 module_exit(lance_cleanup_module); 387 #endif /* MODULE */ 388 MODULE_DESCRIPTION("AMD LANCE/PCnet Ethernet driver"); 389 MODULE_LICENSE("GPL"); 390 391 392 /* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other 393 board probes now that kmalloc() can allocate ISA DMA-able regions. 394 This also allows the LANCE driver to be used as a module. 395 */ 396 static int __init do_lance_probe(struct net_device *dev) 397 { 398 unsigned int *port; 399 int result; 400 401 if (high_memory <= phys_to_virt(16*1024*1024)) 402 lance_need_isa_bounce_buffers = 0; 403 404 for (port = lance_portlist; *port; port++) { 405 int ioaddr = *port; 406 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE, 407 "lance-probe"); 408 409 if (r) { 410 /* Detect the card with minimal I/O reads */ 411 char offset14 = inb(ioaddr + 14); 412 int card; 413 for (card = 0; card < NUM_CARDS; ++card) 414 if (cards[card].id_offset14 == offset14) 415 break; 416 if (card < NUM_CARDS) {/*yes, the first byte matches*/ 417 char offset15 = inb(ioaddr + 15); 418 for (card = 0; card < NUM_CARDS; ++card) 419 if ((cards[card].id_offset14 == offset14) && 420 (cards[card].id_offset15 == offset15)) 421 break; 422 } 423 if (card < NUM_CARDS) { /*Signature OK*/ 424 result = lance_probe1(dev, ioaddr, 0, 0); 425 if (!result) { 426 struct lance_private *lp = dev->ml_priv; 427 int ver = lp->chip_version; 428 429 r->name = chip_table[ver].name; 430 return 0; 431 } 432 } 433 release_region(ioaddr, LANCE_TOTAL_SIZE); 434 } 435 } 436 return -ENODEV; 437 } 438 439 #ifndef MODULE 440 struct net_device * __init lance_probe(int unit) 441 { 442 struct net_device *dev = alloc_etherdev(0); 443 int err; 444 445 if (!dev) 446 return ERR_PTR(-ENODEV); 447 448 sprintf(dev->name, "eth%d", unit); 449 netdev_boot_setup_check(dev); 450 451 err = do_lance_probe(dev); 452 if (err) 453 goto out; 454 return dev; 455 out: 456 free_netdev(dev); 457 return ERR_PTR(err); 458 } 459 #endif 460 461 static const struct net_device_ops lance_netdev_ops = { 462 .ndo_open = lance_open, 463 .ndo_start_xmit = lance_start_xmit, 464 .ndo_stop = lance_close, 465 .ndo_get_stats = lance_get_stats, 466 .ndo_set_rx_mode = set_multicast_list, 467 .ndo_tx_timeout = lance_tx_timeout, 468 .ndo_set_mac_address = eth_mac_addr, 469 .ndo_validate_addr = eth_validate_addr, 470 }; 471 472 static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options) 473 { 474 struct lance_private *lp; 475 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */ 476 int i, reset_val, lance_version; 477 const char *chipname; 478 /* Flags for specific chips or boards. */ 479 unsigned char hpJ2405A = 0; /* HP ISA adaptor */ 480 int hp_builtin = 0; /* HP on-board ethernet. */ 481 static int did_version; /* Already printed version info. */ 482 unsigned long flags; 483 int err = -ENOMEM; 484 void __iomem *bios; 485 u8 addr[ETH_ALEN]; 486 487 /* First we look for special cases. 488 Check for HP's on-board ethernet by looking for 'HP' in the BIOS. 489 There are two HP versions, check the BIOS for the configuration port. 490 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com. 491 */ 492 bios = ioremap(0xf00f0, 0x14); 493 if (!bios) 494 return -ENOMEM; 495 if (readw(bios + 0x12) == 0x5048) { 496 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360}; 497 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99; 498 /* We can have boards other than the built-in! Verify this is on-board. */ 499 if ((inb(hp_port) & 0xc0) == 0x80 && 500 ioaddr_table[inb(hp_port) & 3] == ioaddr) 501 hp_builtin = hp_port; 502 } 503 iounmap(bios); 504 /* We also recognize the HP Vectra on-board here, but check below. */ 505 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 && 506 inb(ioaddr+2) == 0x09); 507 508 /* Reset the LANCE. */ 509 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */ 510 511 /* The Un-Reset needed is only needed for the real NE2100, and will 512 confuse the HP board. */ 513 if (!hpJ2405A) 514 outw(reset_val, ioaddr+LANCE_RESET); 515 516 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */ 517 if (inw(ioaddr+LANCE_DATA) != 0x0004) 518 return -ENODEV; 519 520 /* Get the version of the chip. */ 521 outw(88, ioaddr+LANCE_ADDR); 522 if (inw(ioaddr+LANCE_ADDR) != 88) { 523 lance_version = 0; 524 } else { /* Good, it's a newer chip. */ 525 int chip_version = inw(ioaddr+LANCE_DATA); 526 outw(89, ioaddr+LANCE_ADDR); 527 chip_version |= inw(ioaddr+LANCE_DATA) << 16; 528 if (lance_debug > 2) 529 printk(" LANCE chip version is %#x.\n", chip_version); 530 if ((chip_version & 0xfff) != 0x003) 531 return -ENODEV; 532 chip_version = (chip_version >> 12) & 0xffff; 533 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) { 534 if (chip_table[lance_version].id_number == chip_version) 535 break; 536 } 537 } 538 539 /* We can't allocate private data from alloc_etherdev() because it must 540 a ISA DMA-able region. */ 541 chipname = chip_table[lance_version].name; 542 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr); 543 544 /* There is a 16 byte station address PROM at the base address. 545 The first six bytes are the station address. */ 546 for (i = 0; i < 6; i++) 547 addr[i] = inb(ioaddr + i); 548 eth_hw_addr_set(dev, addr); 549 printk("%pM", dev->dev_addr); 550 551 dev->base_addr = ioaddr; 552 /* Make certain the data structures used by the LANCE are aligned and DMAble. */ 553 554 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL); 555 if (!lp) 556 return -ENOMEM; 557 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp); 558 dev->ml_priv = lp; 559 lp->name = chipname; 560 lp->rx_buffs = (unsigned long)kmalloc_array(RX_RING_SIZE, PKT_BUF_SZ, 561 GFP_DMA | GFP_KERNEL); 562 if (!lp->rx_buffs) 563 goto out_lp; 564 if (lance_need_isa_bounce_buffers) { 565 lp->tx_bounce_buffs = kmalloc_array(TX_RING_SIZE, PKT_BUF_SZ, 566 GFP_DMA | GFP_KERNEL); 567 if (!lp->tx_bounce_buffs) 568 goto out_rx; 569 } else 570 lp->tx_bounce_buffs = NULL; 571 572 lp->chip_version = lance_version; 573 spin_lock_init(&lp->devlock); 574 575 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */ 576 for (i = 0; i < 6; i++) 577 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 578 lp->init_block.filter[0] = 0x00000000; 579 lp->init_block.filter[1] = 0x00000000; 580 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 581 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 582 583 outw(0x0001, ioaddr+LANCE_ADDR); 584 inw(ioaddr+LANCE_ADDR); 585 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 586 outw(0x0002, ioaddr+LANCE_ADDR); 587 inw(ioaddr+LANCE_ADDR); 588 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 589 outw(0x0000, ioaddr+LANCE_ADDR); 590 inw(ioaddr+LANCE_ADDR); 591 592 if (irq) { /* Set iff PCI card. */ 593 dev->dma = 4; /* Native bus-master, no DMA channel needed. */ 594 dev->irq = irq; 595 } else if (hp_builtin) { 596 static const char dma_tbl[4] = {3, 5, 6, 0}; 597 static const char irq_tbl[4] = {3, 4, 5, 9}; 598 unsigned char port_val = inb(hp_builtin); 599 dev->dma = dma_tbl[(port_val >> 4) & 3]; 600 dev->irq = irq_tbl[(port_val >> 2) & 3]; 601 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma); 602 } else if (hpJ2405A) { 603 static const char dma_tbl[4] = {3, 5, 6, 7}; 604 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15}; 605 short reset_val = inw(ioaddr+LANCE_RESET); 606 dev->dma = dma_tbl[(reset_val >> 2) & 3]; 607 dev->irq = irq_tbl[(reset_val >> 4) & 7]; 608 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma); 609 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */ 610 short bus_info; 611 outw(8, ioaddr+LANCE_ADDR); 612 bus_info = inw(ioaddr+LANCE_BUS_IF); 613 dev->dma = bus_info & 0x07; 614 dev->irq = (bus_info >> 4) & 0x0F; 615 } else { 616 /* The DMA channel may be passed in PARAM1. */ 617 if (dev->mem_start & 0x07) 618 dev->dma = dev->mem_start & 0x07; 619 } 620 621 if (dev->dma == 0) { 622 /* Read the DMA channel status register, so that we can avoid 623 stuck DMA channels in the DMA detection below. */ 624 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | 625 (inb(DMA2_STAT_REG) & 0xf0); 626 } 627 err = -ENODEV; 628 if (dev->irq >= 2) 629 printk(" assigned IRQ %d", dev->irq); 630 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */ 631 unsigned long irq_mask; 632 633 /* To auto-IRQ we enable the initialization-done and DMA error 634 interrupts. For ISA boards we get a DMA error, but VLB and PCI 635 boards will work. */ 636 irq_mask = probe_irq_on(); 637 638 /* Trigger an initialization just for the interrupt. */ 639 outw(0x0041, ioaddr+LANCE_DATA); 640 641 mdelay(20); 642 dev->irq = probe_irq_off(irq_mask); 643 if (dev->irq) 644 printk(", probed IRQ %d", dev->irq); 645 else { 646 printk(", failed to detect IRQ line.\n"); 647 goto out_tx; 648 } 649 650 /* Check for the initialization done bit, 0x0100, which means 651 that we don't need a DMA channel. */ 652 if (inw(ioaddr+LANCE_DATA) & 0x0100) 653 dev->dma = 4; 654 } 655 656 if (dev->dma == 4) { 657 printk(", no DMA needed.\n"); 658 } else if (dev->dma) { 659 if (request_dma(dev->dma, chipname)) { 660 printk("DMA %d allocation failed.\n", dev->dma); 661 goto out_tx; 662 } else 663 printk(", assigned DMA %d.\n", dev->dma); 664 } else { /* OK, we have to auto-DMA. */ 665 for (i = 0; i < 4; i++) { 666 static const char dmas[] = { 5, 6, 7, 3 }; 667 int dma = dmas[i]; 668 int boguscnt; 669 670 /* Don't enable a permanently busy DMA channel, or the machine 671 will hang. */ 672 if (test_bit(dma, &dma_channels)) 673 continue; 674 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */ 675 if (request_dma(dma, chipname)) 676 continue; 677 678 flags=claim_dma_lock(); 679 set_dma_mode(dma, DMA_MODE_CASCADE); 680 enable_dma(dma); 681 release_dma_lock(flags); 682 683 /* Trigger an initialization. */ 684 outw(0x0001, ioaddr+LANCE_DATA); 685 for (boguscnt = 100; boguscnt > 0; --boguscnt) 686 if (inw(ioaddr+LANCE_DATA) & 0x0900) 687 break; 688 if (inw(ioaddr+LANCE_DATA) & 0x0100) { 689 dev->dma = dma; 690 printk(", DMA %d.\n", dev->dma); 691 break; 692 } else { 693 flags=claim_dma_lock(); 694 disable_dma(dma); 695 release_dma_lock(flags); 696 free_dma(dma); 697 } 698 } 699 if (i == 4) { /* Failure: bail. */ 700 printk("DMA detection failed.\n"); 701 goto out_tx; 702 } 703 } 704 705 if (lance_version == 0 && dev->irq == 0) { 706 /* We may auto-IRQ now that we have a DMA channel. */ 707 /* Trigger an initialization just for the interrupt. */ 708 unsigned long irq_mask; 709 710 irq_mask = probe_irq_on(); 711 outw(0x0041, ioaddr+LANCE_DATA); 712 713 mdelay(40); 714 dev->irq = probe_irq_off(irq_mask); 715 if (dev->irq == 0) { 716 printk(" Failed to detect the 7990 IRQ line.\n"); 717 goto out_dma; 718 } 719 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq); 720 } 721 722 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 723 /* Turn on auto-select of media (10baseT or BNC) so that the user 724 can watch the LEDs even if the board isn't opened. */ 725 outw(0x0002, ioaddr+LANCE_ADDR); 726 /* Don't touch 10base2 power bit. */ 727 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 728 } 729 730 if (lance_debug > 0 && did_version++ == 0) 731 printk(version); 732 733 /* The LANCE-specific entries in the device structure. */ 734 dev->netdev_ops = &lance_netdev_ops; 735 dev->watchdog_timeo = TX_TIMEOUT; 736 737 err = register_netdev(dev); 738 if (err) 739 goto out_dma; 740 return 0; 741 out_dma: 742 if (dev->dma != 4) 743 free_dma(dev->dma); 744 out_tx: 745 kfree(lp->tx_bounce_buffs); 746 out_rx: 747 kfree((void*)lp->rx_buffs); 748 out_lp: 749 kfree(lp); 750 return err; 751 } 752 753 754 static int 755 lance_open(struct net_device *dev) 756 { 757 struct lance_private *lp = dev->ml_priv; 758 int ioaddr = dev->base_addr; 759 int i; 760 761 if (dev->irq == 0 || 762 request_irq(dev->irq, lance_interrupt, 0, dev->name, dev)) { 763 return -EAGAIN; 764 } 765 766 /* We used to allocate DMA here, but that was silly. 767 DMA lines can't be shared! We now permanently allocate them. */ 768 769 /* Reset the LANCE */ 770 inw(ioaddr+LANCE_RESET); 771 772 /* The DMA controller is used as a no-operation slave, "cascade mode". */ 773 if (dev->dma != 4) { 774 unsigned long flags=claim_dma_lock(); 775 enable_dma(dev->dma); 776 set_dma_mode(dev->dma, DMA_MODE_CASCADE); 777 release_dma_lock(flags); 778 } 779 780 /* Un-Reset the LANCE, needed only for the NE2100. */ 781 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET) 782 outw(0, ioaddr+LANCE_RESET); 783 784 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) { 785 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */ 786 outw(0x0002, ioaddr+LANCE_ADDR); 787 /* Only touch autoselect bit. */ 788 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF); 789 } 790 791 if (lance_debug > 1) 792 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n", 793 dev->name, dev->irq, dev->dma, 794 (u32) isa_virt_to_bus(lp->tx_ring), 795 (u32) isa_virt_to_bus(lp->rx_ring), 796 (u32) isa_virt_to_bus(&lp->init_block)); 797 798 lance_init_ring(dev, GFP_KERNEL); 799 /* Re-initialize the LANCE, and start it when done. */ 800 outw(0x0001, ioaddr+LANCE_ADDR); 801 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA); 802 outw(0x0002, ioaddr+LANCE_ADDR); 803 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA); 804 805 outw(0x0004, ioaddr+LANCE_ADDR); 806 outw(0x0915, ioaddr+LANCE_DATA); 807 808 outw(0x0000, ioaddr+LANCE_ADDR); 809 outw(0x0001, ioaddr+LANCE_DATA); 810 811 netif_start_queue (dev); 812 813 i = 0; 814 while (i++ < 100) 815 if (inw(ioaddr+LANCE_DATA) & 0x0100) 816 break; 817 /* 818 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton 819 * reports that doing so triggers a bug in the '974. 820 */ 821 outw(0x0042, ioaddr+LANCE_DATA); 822 823 if (lance_debug > 2) 824 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n", 825 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA)); 826 827 return 0; /* Always succeed */ 828 } 829 830 /* The LANCE has been halted for one reason or another (busmaster memory 831 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure, 832 etc.). Modern LANCE variants always reload their ring-buffer 833 configuration when restarted, so we must reinitialize our ring 834 context before restarting. As part of this reinitialization, 835 find all packets still on the Tx ring and pretend that they had been 836 sent (in effect, drop the packets on the floor) - the higher-level 837 protocols will time out and retransmit. It'd be better to shuffle 838 these skbs to a temp list and then actually re-Tx them after 839 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com 840 */ 841 842 static void 843 lance_purge_ring(struct net_device *dev) 844 { 845 struct lance_private *lp = dev->ml_priv; 846 int i; 847 848 /* Free all the skbuffs in the Rx and Tx queues. */ 849 for (i = 0; i < RX_RING_SIZE; i++) { 850 struct sk_buff *skb = lp->rx_skbuff[i]; 851 lp->rx_skbuff[i] = NULL; 852 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */ 853 if (skb) 854 dev_kfree_skb_any(skb); 855 } 856 for (i = 0; i < TX_RING_SIZE; i++) { 857 if (lp->tx_skbuff[i]) { 858 dev_kfree_skb_any(lp->tx_skbuff[i]); 859 lp->tx_skbuff[i] = NULL; 860 } 861 } 862 } 863 864 865 /* Initialize the LANCE Rx and Tx rings. */ 866 static void 867 lance_init_ring(struct net_device *dev, gfp_t gfp) 868 { 869 struct lance_private *lp = dev->ml_priv; 870 int i; 871 872 lp->cur_rx = lp->cur_tx = 0; 873 lp->dirty_rx = lp->dirty_tx = 0; 874 875 for (i = 0; i < RX_RING_SIZE; i++) { 876 struct sk_buff *skb; 877 void *rx_buff; 878 879 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp); 880 lp->rx_skbuff[i] = skb; 881 if (skb) 882 rx_buff = skb->data; 883 else 884 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp); 885 if (!rx_buff) 886 lp->rx_ring[i].base = 0; 887 else 888 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000; 889 lp->rx_ring[i].buf_length = -PKT_BUF_SZ; 890 } 891 /* The Tx buffer address is filled in as needed, but we do need to clear 892 the upper ownership bit. */ 893 for (i = 0; i < TX_RING_SIZE; i++) { 894 lp->tx_skbuff[i] = NULL; 895 lp->tx_ring[i].base = 0; 896 } 897 898 lp->init_block.mode = 0x0000; 899 for (i = 0; i < 6; i++) 900 lp->init_block.phys_addr[i] = dev->dev_addr[i]; 901 lp->init_block.filter[0] = 0x00000000; 902 lp->init_block.filter[1] = 0x00000000; 903 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS; 904 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS; 905 } 906 907 static void 908 lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit) 909 { 910 struct lance_private *lp = dev->ml_priv; 911 912 if (must_reinit || 913 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) { 914 lance_purge_ring(dev); 915 lance_init_ring(dev, GFP_ATOMIC); 916 } 917 outw(0x0000, dev->base_addr + LANCE_ADDR); 918 outw(csr0_bits, dev->base_addr + LANCE_DATA); 919 } 920 921 922 static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue) 923 { 924 struct lance_private *lp = (struct lance_private *) dev->ml_priv; 925 int ioaddr = dev->base_addr; 926 927 outw (0, ioaddr + LANCE_ADDR); 928 printk ("%s: transmit timed out, status %4.4x, resetting.\n", 929 dev->name, inw (ioaddr + LANCE_DATA)); 930 outw (0x0004, ioaddr + LANCE_DATA); 931 dev->stats.tx_errors++; 932 #ifndef final_version 933 if (lance_debug > 3) { 934 int i; 935 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.", 936 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "", 937 lp->cur_rx); 938 for (i = 0; i < RX_RING_SIZE; i++) 939 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 940 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length, 941 lp->rx_ring[i].msg_length); 942 for (i = 0; i < TX_RING_SIZE; i++) 943 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ", 944 lp->tx_ring[i].base, -lp->tx_ring[i].length, 945 lp->tx_ring[i].misc); 946 printk ("\n"); 947 } 948 #endif 949 lance_restart (dev, 0x0043, 1); 950 951 netif_trans_update(dev); /* prevent tx timeout */ 952 netif_wake_queue (dev); 953 } 954 955 956 static netdev_tx_t lance_start_xmit(struct sk_buff *skb, 957 struct net_device *dev) 958 { 959 struct lance_private *lp = dev->ml_priv; 960 int ioaddr = dev->base_addr; 961 int entry; 962 unsigned long flags; 963 964 spin_lock_irqsave(&lp->devlock, flags); 965 966 if (lance_debug > 3) { 967 outw(0x0000, ioaddr+LANCE_ADDR); 968 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name, 969 inw(ioaddr+LANCE_DATA)); 970 outw(0x0000, ioaddr+LANCE_DATA); 971 } 972 973 /* Fill in a Tx ring entry */ 974 975 /* Mask to ring buffer boundary. */ 976 entry = lp->cur_tx & TX_RING_MOD_MASK; 977 978 /* Caution: the write order is important here, set the base address 979 with the "ownership" bits last. */ 980 981 /* The old LANCE chips doesn't automatically pad buffers to min. size. */ 982 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) { 983 if (skb->len < ETH_ZLEN) { 984 if (skb_padto(skb, ETH_ZLEN)) 985 goto out; 986 lp->tx_ring[entry].length = -ETH_ZLEN; 987 } 988 else 989 lp->tx_ring[entry].length = -skb->len; 990 } else 991 lp->tx_ring[entry].length = -skb->len; 992 993 lp->tx_ring[entry].misc = 0x0000; 994 995 dev->stats.tx_bytes += skb->len; 996 997 /* If any part of this buffer is >16M we must copy it to a low-memory 998 buffer. */ 999 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) { 1000 if (lance_debug > 5) 1001 printk("%s: bouncing a high-memory packet (%#x).\n", 1002 dev->name, (u32)isa_virt_to_bus(skb->data)); 1003 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len); 1004 lp->tx_ring[entry].base = 1005 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000; 1006 dev_consume_skb_irq(skb); 1007 } else { 1008 lp->tx_skbuff[entry] = skb; 1009 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000; 1010 } 1011 lp->cur_tx++; 1012 1013 /* Trigger an immediate send poll. */ 1014 outw(0x0000, ioaddr+LANCE_ADDR); 1015 outw(0x0048, ioaddr+LANCE_DATA); 1016 1017 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE) 1018 netif_stop_queue(dev); 1019 1020 out: 1021 spin_unlock_irqrestore(&lp->devlock, flags); 1022 return NETDEV_TX_OK; 1023 } 1024 1025 /* The LANCE interrupt handler. */ 1026 static irqreturn_t lance_interrupt(int irq, void *dev_id) 1027 { 1028 struct net_device *dev = dev_id; 1029 struct lance_private *lp; 1030 int csr0, ioaddr, boguscnt=10; 1031 int must_restart; 1032 1033 ioaddr = dev->base_addr; 1034 lp = dev->ml_priv; 1035 1036 spin_lock (&lp->devlock); 1037 1038 outw(0x00, dev->base_addr + LANCE_ADDR); 1039 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 && 1040 --boguscnt >= 0) { 1041 /* Acknowledge all of the current interrupt sources ASAP. */ 1042 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA); 1043 1044 must_restart = 0; 1045 1046 if (lance_debug > 5) 1047 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n", 1048 dev->name, csr0, inw(dev->base_addr + LANCE_DATA)); 1049 1050 if (csr0 & 0x0400) /* Rx interrupt */ 1051 lance_rx(dev); 1052 1053 if (csr0 & 0x0200) { /* Tx-done interrupt */ 1054 int dirty_tx = lp->dirty_tx; 1055 1056 while (dirty_tx < lp->cur_tx) { 1057 int entry = dirty_tx & TX_RING_MOD_MASK; 1058 int status = lp->tx_ring[entry].base; 1059 1060 if (status < 0) 1061 break; /* It still hasn't been Txed */ 1062 1063 lp->tx_ring[entry].base = 0; 1064 1065 if (status & 0x40000000) { 1066 /* There was an major error, log it. */ 1067 int err_status = lp->tx_ring[entry].misc; 1068 dev->stats.tx_errors++; 1069 if (err_status & 0x0400) 1070 dev->stats.tx_aborted_errors++; 1071 if (err_status & 0x0800) 1072 dev->stats.tx_carrier_errors++; 1073 if (err_status & 0x1000) 1074 dev->stats.tx_window_errors++; 1075 if (err_status & 0x4000) { 1076 /* Ackk! On FIFO errors the Tx unit is turned off! */ 1077 dev->stats.tx_fifo_errors++; 1078 /* Remove this verbosity later! */ 1079 printk("%s: Tx FIFO error! Status %4.4x.\n", 1080 dev->name, csr0); 1081 /* Restart the chip. */ 1082 must_restart = 1; 1083 } 1084 } else { 1085 if (status & 0x18000000) 1086 dev->stats.collisions++; 1087 dev->stats.tx_packets++; 1088 } 1089 1090 /* We must free the original skb if it's not a data-only copy 1091 in the bounce buffer. */ 1092 if (lp->tx_skbuff[entry]) { 1093 dev_consume_skb_irq(lp->tx_skbuff[entry]); 1094 lp->tx_skbuff[entry] = NULL; 1095 } 1096 dirty_tx++; 1097 } 1098 1099 #ifndef final_version 1100 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) { 1101 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n", 1102 dirty_tx, lp->cur_tx, 1103 netif_queue_stopped(dev) ? "yes" : "no"); 1104 dirty_tx += TX_RING_SIZE; 1105 } 1106 #endif 1107 1108 /* if the ring is no longer full, accept more packets */ 1109 if (netif_queue_stopped(dev) && 1110 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2) 1111 netif_wake_queue (dev); 1112 1113 lp->dirty_tx = dirty_tx; 1114 } 1115 1116 /* Log misc errors. */ 1117 if (csr0 & 0x4000) 1118 dev->stats.tx_errors++; /* Tx babble. */ 1119 if (csr0 & 0x1000) 1120 dev->stats.rx_errors++; /* Missed a Rx frame. */ 1121 if (csr0 & 0x0800) { 1122 printk("%s: Bus master arbitration failure, status %4.4x.\n", 1123 dev->name, csr0); 1124 /* Restart the chip. */ 1125 must_restart = 1; 1126 } 1127 1128 if (must_restart) { 1129 /* stop the chip to clear the error condition, then restart */ 1130 outw(0x0000, dev->base_addr + LANCE_ADDR); 1131 outw(0x0004, dev->base_addr + LANCE_DATA); 1132 lance_restart(dev, 0x0002, 0); 1133 } 1134 } 1135 1136 /* Clear any other interrupt, and set interrupt enable. */ 1137 outw(0x0000, dev->base_addr + LANCE_ADDR); 1138 outw(0x7940, dev->base_addr + LANCE_DATA); 1139 1140 if (lance_debug > 4) 1141 printk("%s: exiting interrupt, csr%d=%#4.4x.\n", 1142 dev->name, inw(ioaddr + LANCE_ADDR), 1143 inw(dev->base_addr + LANCE_DATA)); 1144 1145 spin_unlock (&lp->devlock); 1146 return IRQ_HANDLED; 1147 } 1148 1149 static int 1150 lance_rx(struct net_device *dev) 1151 { 1152 struct lance_private *lp = dev->ml_priv; 1153 int entry = lp->cur_rx & RX_RING_MOD_MASK; 1154 int i; 1155 1156 /* If we own the next entry, it's a new packet. Send it up. */ 1157 while (lp->rx_ring[entry].base >= 0) { 1158 int status = lp->rx_ring[entry].base >> 24; 1159 1160 if (status != 0x03) { /* There was an error. */ 1161 /* There is a tricky error noted by John Murphy, 1162 <murf@perftech.com> to Russ Nelson: Even with full-sized 1163 buffers it's possible for a jabber packet to use two 1164 buffers, with only the last correctly noting the error. */ 1165 if (status & 0x01) /* Only count a general error at the */ 1166 dev->stats.rx_errors++; /* end of a packet.*/ 1167 if (status & 0x20) 1168 dev->stats.rx_frame_errors++; 1169 if (status & 0x10) 1170 dev->stats.rx_over_errors++; 1171 if (status & 0x08) 1172 dev->stats.rx_crc_errors++; 1173 if (status & 0x04) 1174 dev->stats.rx_fifo_errors++; 1175 lp->rx_ring[entry].base &= 0x03ffffff; 1176 } 1177 else 1178 { 1179 /* Malloc up new buffer, compatible with net3. */ 1180 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4; 1181 struct sk_buff *skb; 1182 1183 if(pkt_len<60) 1184 { 1185 printk("%s: Runt packet!\n",dev->name); 1186 dev->stats.rx_errors++; 1187 } 1188 else 1189 { 1190 skb = dev_alloc_skb(pkt_len+2); 1191 if (!skb) 1192 { 1193 printk("%s: Memory squeeze, deferring packet.\n", dev->name); 1194 for (i=0; i < RX_RING_SIZE; i++) 1195 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0) 1196 break; 1197 1198 if (i > RX_RING_SIZE -2) 1199 { 1200 dev->stats.rx_dropped++; 1201 lp->rx_ring[entry].base |= 0x80000000; 1202 lp->cur_rx++; 1203 } 1204 break; 1205 } 1206 skb_reserve(skb,2); /* 16 byte align */ 1207 skb_put(skb,pkt_len); /* Make room */ 1208 skb_copy_to_linear_data(skb, 1209 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)), 1210 pkt_len); 1211 skb->protocol=eth_type_trans(skb,dev); 1212 netif_rx(skb); 1213 dev->stats.rx_packets++; 1214 dev->stats.rx_bytes += pkt_len; 1215 } 1216 } 1217 /* The docs say that the buffer length isn't touched, but Andrew Boyd 1218 of QNX reports that some revs of the 79C965 clear it. */ 1219 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ; 1220 lp->rx_ring[entry].base |= 0x80000000; 1221 entry = (++lp->cur_rx) & RX_RING_MOD_MASK; 1222 } 1223 1224 /* We should check that at least two ring entries are free. If not, 1225 we should free one and mark stats->rx_dropped++. */ 1226 1227 return 0; 1228 } 1229 1230 static int 1231 lance_close(struct net_device *dev) 1232 { 1233 int ioaddr = dev->base_addr; 1234 struct lance_private *lp = dev->ml_priv; 1235 1236 netif_stop_queue (dev); 1237 1238 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1239 outw(112, ioaddr+LANCE_ADDR); 1240 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1241 } 1242 outw(0, ioaddr+LANCE_ADDR); 1243 1244 if (lance_debug > 1) 1245 printk("%s: Shutting down ethercard, status was %2.2x.\n", 1246 dev->name, inw(ioaddr+LANCE_DATA)); 1247 1248 /* We stop the LANCE here -- it occasionally polls 1249 memory if we don't. */ 1250 outw(0x0004, ioaddr+LANCE_DATA); 1251 1252 if (dev->dma != 4) 1253 { 1254 unsigned long flags=claim_dma_lock(); 1255 disable_dma(dev->dma); 1256 release_dma_lock(flags); 1257 } 1258 free_irq(dev->irq, dev); 1259 1260 lance_purge_ring(dev); 1261 1262 return 0; 1263 } 1264 1265 static struct net_device_stats *lance_get_stats(struct net_device *dev) 1266 { 1267 struct lance_private *lp = dev->ml_priv; 1268 1269 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) { 1270 short ioaddr = dev->base_addr; 1271 short saved_addr; 1272 unsigned long flags; 1273 1274 spin_lock_irqsave(&lp->devlock, flags); 1275 saved_addr = inw(ioaddr+LANCE_ADDR); 1276 outw(112, ioaddr+LANCE_ADDR); 1277 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA); 1278 outw(saved_addr, ioaddr+LANCE_ADDR); 1279 spin_unlock_irqrestore(&lp->devlock, flags); 1280 } 1281 1282 return &dev->stats; 1283 } 1284 1285 /* Set or clear the multicast filter for this adaptor. 1286 */ 1287 1288 static void set_multicast_list(struct net_device *dev) 1289 { 1290 short ioaddr = dev->base_addr; 1291 1292 outw(0, ioaddr+LANCE_ADDR); 1293 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */ 1294 1295 if (dev->flags&IFF_PROMISC) { 1296 outw(15, ioaddr+LANCE_ADDR); 1297 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */ 1298 } else { 1299 short multicast_table[4]; 1300 int i; 1301 int num_addrs=netdev_mc_count(dev); 1302 if(dev->flags&IFF_ALLMULTI) 1303 num_addrs=1; 1304 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */ 1305 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table)); 1306 for (i = 0; i < 4; i++) { 1307 outw(8 + i, ioaddr+LANCE_ADDR); 1308 outw(multicast_table[i], ioaddr+LANCE_DATA); 1309 } 1310 outw(15, ioaddr+LANCE_ADDR); 1311 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */ 1312 } 1313 1314 lance_restart(dev, 0x0142, 0); /* Resume normal operation */ 1315 1316 } 1317 1318