1 /* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
2 /*
3 Written/copyright 1993-1998 by Donald Becker.
4
5 Copyright 1993 United States Government as represented by the
6 Director, National Security Agency.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License, incorporated herein by reference.
9
10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 Andrey V. Savochkin:
19 - alignment problem with 1.3.* kernel and some minor changes.
20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
21 - added support for Linux/Alpha, but removed most of it, because
22 it worked only for the PCI chip.
23 - added hook for the 32bit lance driver
24 - added PCnetPCI II (79C970A) to chip table
25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
26 - hopefully fix above so Linux/Alpha can use ISA cards too.
27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
28 v1.12 10/27/97 Module support -djb
29 v1.14 2/3/98 Module support modified, made PCI support optional -djb
30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
31 before unregister_netdev() which caused NULL pointer
32 reference later in the chain (in rtnetlink_fill_ifinfo())
33 -- Mika Kuoppala <miku@iki.fi>
34
35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
36 the 2.1 version of the old driver - Alan Cox
37
38 Get rid of check_region, check kmalloc return in lance_probe1
39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
40
41 Reworked detection, added support for Racal InterLan EtherBlaster cards
42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004
43 */
44
45 static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
46
47 #include <linux/module.h>
48 #include <linux/kernel.h>
49 #include <linux/string.h>
50 #include <linux/delay.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/slab.h>
54 #include <linux/interrupt.h>
55 #include <linux/pci.h>
56 #include <linux/init.h>
57 #include <linux/netdevice.h>
58 #include <linux/etherdevice.h>
59 #include <linux/skbuff.h>
60 #include <linux/mm.h>
61 #include <linux/bitops.h>
62 #include <net/Space.h>
63
64 #include <asm/io.h>
65 #include <asm/dma.h>
66
67 static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
68 static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
69 static int __init do_lance_probe(struct net_device *dev);
70
71
72 static struct card {
73 char id_offset14;
74 char id_offset15;
75 } cards[] = {
76 { //"normal"
77 .id_offset14 = 0x57,
78 .id_offset15 = 0x57,
79 },
80 { //NI6510EB
81 .id_offset14 = 0x52,
82 .id_offset15 = 0x44,
83 },
84 { //Racal InterLan EtherBlaster
85 .id_offset14 = 0x52,
86 .id_offset15 = 0x49,
87 },
88 };
89 #define NUM_CARDS 3
90
91 #ifdef LANCE_DEBUG
92 static int lance_debug = LANCE_DEBUG;
93 #else
94 static int lance_debug = 1;
95 #endif
96
97 /*
98 Theory of Operation
99
100 I. Board Compatibility
101
102 This device driver is designed for the AMD 79C960, the "PCnet-ISA
103 single-chip ethernet controller for ISA". This chip is used in a wide
104 variety of boards from vendors such as Allied Telesis, HP, Kingston,
105 and Boca. This driver is also intended to work with older AMD 7990
106 designs, such as the NE1500 and NE2100, and newer 79C961. For convenience,
107 I use the name LANCE to refer to all of the AMD chips, even though it properly
108 refers only to the original 7990.
109
110 II. Board-specific settings
111
112 The driver is designed to work the boards that use the faster
113 bus-master mode, rather than in shared memory mode. (Only older designs
114 have on-board buffer memory needed to support the slower shared memory mode.)
115
116 Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
117 channel. This driver probes the likely base addresses:
118 {0x300, 0x320, 0x340, 0x360}.
119 After the board is found it generates a DMA-timeout interrupt and uses
120 autoIRQ to find the IRQ line. The DMA channel can be set with the low bits
121 of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is
122 probed for by enabling each free DMA channel in turn and checking if
123 initialization succeeds.
124
125 The HP-J2405A board is an exception: with this board it is easy to read the
126 EEPROM-set values for the base, IRQ, and DMA. (Of course you must already
127 _know_ the base address -- that field is for writing the EEPROM.)
128
129 III. Driver operation
130
131 IIIa. Ring buffers
132 The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes
133 the base and length of the data buffer, along with status bits. The length
134 of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
135 the buffer length (rather than being directly the buffer length) for
136 implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to
137 ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries
138 needlessly uses extra space and reduces the chance that an upper layer will
139 be able to reorder queued Tx packets based on priority. Decreasing the number
140 of entries makes it more difficult to achieve back-to-back packet transmission
141 and increases the chance that Rx ring will overflow. (Consider the worst case
142 of receiving back-to-back minimum-sized packets.)
143
144 The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
145 statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
146 avoid the administrative overhead. For the Rx side this avoids dynamically
147 allocating full-sized buffers "just in case", at the expense of a
148 memory-to-memory data copy for each packet received. For most systems this
149 is a good tradeoff: the Rx buffer will always be in low memory, the copy
150 is inexpensive, and it primes the cache for later packet processing. For Tx
151 the buffers are only used when needed as low-memory bounce buffers.
152
153 IIIB. 16M memory limitations.
154 For the ISA bus master mode all structures used directly by the LANCE,
155 the initialization block, Rx and Tx rings, and data buffers, must be
156 accessible from the ISA bus, i.e. in the lower 16M of real memory.
157 This is a problem for current Linux kernels on >16M machines. The network
158 devices are initialized after memory initialization, and the kernel doles out
159 memory from the top of memory downward. The current solution is to have a
160 special network initialization routine that's called before memory
161 initialization; this will eventually be generalized for all network devices.
162 As mentioned before, low-memory "bounce-buffers" are used when needed.
163
164 IIIC. Synchronization
165 The driver runs as two independent, single-threaded flows of control. One
166 is the send-packet routine, which enforces single-threaded use by the
167 dev->tbusy flag. The other thread is the interrupt handler, which is single
168 threaded by the hardware and other software.
169
170 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
171 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
172 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
173 the 'lp->tx_full' flag.
174
175 The interrupt handler has exclusive control over the Rx ring and records stats
176 from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
177 we can't avoid the interrupt overhead by having the Tx routine reap the Tx
178 stats.) After reaping the stats, it marks the queue entry as empty by setting
179 the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
180 tx_full and tbusy flags.
181
182 */
183
184 /* Set the number of Tx and Rx buffers, using Log_2(# buffers).
185 Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
186 That translates to 4 and 4 (16 == 2^^4).
187 This is a compile-time option for efficiency.
188 */
189 #ifndef LANCE_LOG_TX_BUFFERS
190 #define LANCE_LOG_TX_BUFFERS 4
191 #define LANCE_LOG_RX_BUFFERS 4
192 #endif
193
194 #define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
195 #define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
196 #define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
197
198 #define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
199 #define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
200 #define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
201
202 #define PKT_BUF_SZ 1544
203
204 /* Offsets from base I/O address. */
205 #define LANCE_DATA 0x10
206 #define LANCE_ADDR 0x12
207 #define LANCE_RESET 0x14
208 #define LANCE_BUS_IF 0x16
209 #define LANCE_TOTAL_SIZE 0x18
210
211 #define TX_TIMEOUT (HZ/5)
212
213 /* The LANCE Rx and Tx ring descriptors. */
214 struct lance_rx_head {
215 s32 base;
216 s16 buf_length; /* This length is 2s complement (negative)! */
217 s16 msg_length; /* This length is "normal". */
218 };
219
220 struct lance_tx_head {
221 s32 base;
222 s16 length; /* Length is 2s complement (negative)! */
223 s16 misc;
224 };
225
226 /* The LANCE initialization block, described in databook. */
227 struct lance_init_block {
228 u16 mode; /* Pre-set mode (reg. 15) */
229 u8 phys_addr[6]; /* Physical ethernet address */
230 u32 filter[2]; /* Multicast filter (unused). */
231 /* Receive and transmit ring base, along with extra bits. */
232 u32 rx_ring; /* Tx and Rx ring base pointers */
233 u32 tx_ring;
234 };
235
236 struct lance_private {
237 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
238 struct lance_rx_head rx_ring[RX_RING_SIZE];
239 struct lance_tx_head tx_ring[TX_RING_SIZE];
240 struct lance_init_block init_block;
241 const char *name;
242 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
243 struct sk_buff* tx_skbuff[TX_RING_SIZE];
244 /* The addresses of receive-in-place skbuffs. */
245 struct sk_buff* rx_skbuff[RX_RING_SIZE];
246 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */
247 /* Tx low-memory "bounce buffer" address. */
248 char (*tx_bounce_buffs)[PKT_BUF_SZ];
249 int cur_rx, cur_tx; /* The next free ring entry */
250 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
251 int dma;
252 unsigned char chip_version; /* See lance_chip_type. */
253 spinlock_t devlock;
254 };
255
256 #define LANCE_MUST_PAD 0x00000001
257 #define LANCE_ENABLE_AUTOSELECT 0x00000002
258 #define LANCE_MUST_REINIT_RING 0x00000004
259 #define LANCE_MUST_UNRESET 0x00000008
260 #define LANCE_HAS_MISSED_FRAME 0x00000010
261
262 /* A mapping from the chip ID number to the part number and features.
263 These are from the datasheets -- in real life the '970 version
264 reportedly has the same ID as the '965. */
265 static struct lance_chip_type {
266 int id_number;
267 const char *name;
268 int flags;
269 } chip_table[] = {
270 {0x0000, "LANCE 7990", /* Ancient lance chip. */
271 LANCE_MUST_PAD + LANCE_MUST_UNRESET},
272 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */
273 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
274 LANCE_HAS_MISSED_FRAME},
275 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */
276 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
277 LANCE_HAS_MISSED_FRAME},
278 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */
279 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
280 LANCE_HAS_MISSED_FRAME},
281 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
282 it the PCnet32. */
283 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */
284 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
285 LANCE_HAS_MISSED_FRAME},
286 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */
287 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
288 LANCE_HAS_MISSED_FRAME},
289 {0x0, "PCnet (unknown)",
290 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
291 LANCE_HAS_MISSED_FRAME},
292 };
293
294 enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
295
296
297 /* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
298 Assume yes until we know the memory size. */
299 static unsigned char lance_need_isa_bounce_buffers = 1;
300
301 static int lance_open(struct net_device *dev);
302 static void lance_init_ring(struct net_device *dev, gfp_t mode);
303 static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
304 struct net_device *dev);
305 static int lance_rx(struct net_device *dev);
306 static irqreturn_t lance_interrupt(int irq, void *dev_id);
307 static int lance_close(struct net_device *dev);
308 static struct net_device_stats *lance_get_stats(struct net_device *dev);
309 static void set_multicast_list(struct net_device *dev);
310 static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue);
311
312
313
314 #ifdef MODULE
315 #define MAX_CARDS 8 /* Max number of interfaces (cards) per module */
316
317 static struct net_device *dev_lance[MAX_CARDS];
318 static int io[MAX_CARDS];
319 static int dma[MAX_CARDS];
320 static int irq[MAX_CARDS];
321
322 module_param_hw_array(io, int, ioport, NULL, 0);
323 module_param_hw_array(dma, int, dma, NULL, 0);
324 module_param_hw_array(irq, int, irq, NULL, 0);
325 module_param(lance_debug, int, 0);
326 MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required");
327 MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)");
328 MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)");
329 MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)");
330
lance_init_module(void)331 static int __init lance_init_module(void)
332 {
333 struct net_device *dev;
334 int this_dev, found = 0;
335
336 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
337 if (io[this_dev] == 0) {
338 if (this_dev != 0) /* only complain once */
339 break;
340 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
341 return -EPERM;
342 }
343 dev = alloc_etherdev(0);
344 if (!dev)
345 break;
346 dev->irq = irq[this_dev];
347 dev->base_addr = io[this_dev];
348 dev->dma = dma[this_dev];
349 if (do_lance_probe(dev) == 0) {
350 dev_lance[found++] = dev;
351 continue;
352 }
353 free_netdev(dev);
354 break;
355 }
356 if (found != 0)
357 return 0;
358 return -ENXIO;
359 }
360 module_init(lance_init_module);
361
cleanup_card(struct net_device * dev)362 static void cleanup_card(struct net_device *dev)
363 {
364 struct lance_private *lp = dev->ml_priv;
365 if (dev->dma != 4)
366 free_dma(dev->dma);
367 release_region(dev->base_addr, LANCE_TOTAL_SIZE);
368 kfree(lp->tx_bounce_buffs);
369 kfree((void*)lp->rx_buffs);
370 kfree(lp);
371 }
372
lance_cleanup_module(void)373 static void __exit lance_cleanup_module(void)
374 {
375 int this_dev;
376
377 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
378 struct net_device *dev = dev_lance[this_dev];
379 if (dev) {
380 unregister_netdev(dev);
381 cleanup_card(dev);
382 free_netdev(dev);
383 }
384 }
385 }
386 module_exit(lance_cleanup_module);
387 #endif /* MODULE */
388 MODULE_DESCRIPTION("AMD LANCE/PCnet Ethernet driver");
389 MODULE_LICENSE("GPL");
390
391
392 /* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
393 board probes now that kmalloc() can allocate ISA DMA-able regions.
394 This also allows the LANCE driver to be used as a module.
395 */
do_lance_probe(struct net_device * dev)396 static int __init do_lance_probe(struct net_device *dev)
397 {
398 unsigned int *port;
399 int result;
400
401 if (high_memory <= phys_to_virt(16*1024*1024))
402 lance_need_isa_bounce_buffers = 0;
403
404 for (port = lance_portlist; *port; port++) {
405 int ioaddr = *port;
406 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE,
407 "lance-probe");
408
409 if (r) {
410 /* Detect the card with minimal I/O reads */
411 char offset14 = inb(ioaddr + 14);
412 int card;
413 for (card = 0; card < NUM_CARDS; ++card)
414 if (cards[card].id_offset14 == offset14)
415 break;
416 if (card < NUM_CARDS) {/*yes, the first byte matches*/
417 char offset15 = inb(ioaddr + 15);
418 for (card = 0; card < NUM_CARDS; ++card)
419 if ((cards[card].id_offset14 == offset14) &&
420 (cards[card].id_offset15 == offset15))
421 break;
422 }
423 if (card < NUM_CARDS) { /*Signature OK*/
424 result = lance_probe1(dev, ioaddr, 0, 0);
425 if (!result) {
426 struct lance_private *lp = dev->ml_priv;
427 int ver = lp->chip_version;
428
429 r->name = chip_table[ver].name;
430 return 0;
431 }
432 }
433 release_region(ioaddr, LANCE_TOTAL_SIZE);
434 }
435 }
436 return -ENODEV;
437 }
438
439 #ifndef MODULE
lance_probe(int unit)440 struct net_device * __init lance_probe(int unit)
441 {
442 struct net_device *dev = alloc_etherdev(0);
443 int err;
444
445 if (!dev)
446 return ERR_PTR(-ENODEV);
447
448 sprintf(dev->name, "eth%d", unit);
449 netdev_boot_setup_check(dev);
450
451 err = do_lance_probe(dev);
452 if (err)
453 goto out;
454 return dev;
455 out:
456 free_netdev(dev);
457 return ERR_PTR(err);
458 }
459 #endif
460
461 static const struct net_device_ops lance_netdev_ops = {
462 .ndo_open = lance_open,
463 .ndo_start_xmit = lance_start_xmit,
464 .ndo_stop = lance_close,
465 .ndo_get_stats = lance_get_stats,
466 .ndo_set_rx_mode = set_multicast_list,
467 .ndo_tx_timeout = lance_tx_timeout,
468 .ndo_set_mac_address = eth_mac_addr,
469 .ndo_validate_addr = eth_validate_addr,
470 };
471
lance_probe1(struct net_device * dev,int ioaddr,int irq,int options)472 static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
473 {
474 struct lance_private *lp;
475 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */
476 int i, reset_val, lance_version;
477 const char *chipname;
478 /* Flags for specific chips or boards. */
479 unsigned char hpJ2405A = 0; /* HP ISA adaptor */
480 int hp_builtin = 0; /* HP on-board ethernet. */
481 static int did_version; /* Already printed version info. */
482 unsigned long flags;
483 int err = -ENOMEM;
484 void __iomem *bios;
485 u8 addr[ETH_ALEN];
486
487 /* First we look for special cases.
488 Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
489 There are two HP versions, check the BIOS for the configuration port.
490 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
491 */
492 bios = ioremap(0xf00f0, 0x14);
493 if (!bios)
494 return -ENOMEM;
495 if (readw(bios + 0x12) == 0x5048) {
496 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
497 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99;
498 /* We can have boards other than the built-in! Verify this is on-board. */
499 if ((inb(hp_port) & 0xc0) == 0x80 &&
500 ioaddr_table[inb(hp_port) & 3] == ioaddr)
501 hp_builtin = hp_port;
502 }
503 iounmap(bios);
504 /* We also recognize the HP Vectra on-board here, but check below. */
505 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 &&
506 inb(ioaddr+2) == 0x09);
507
508 /* Reset the LANCE. */
509 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
510
511 /* The Un-Reset needed is only needed for the real NE2100, and will
512 confuse the HP board. */
513 if (!hpJ2405A)
514 outw(reset_val, ioaddr+LANCE_RESET);
515
516 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
517 if (inw(ioaddr+LANCE_DATA) != 0x0004)
518 return -ENODEV;
519
520 /* Get the version of the chip. */
521 outw(88, ioaddr+LANCE_ADDR);
522 if (inw(ioaddr+LANCE_ADDR) != 88) {
523 lance_version = 0;
524 } else { /* Good, it's a newer chip. */
525 int chip_version = inw(ioaddr+LANCE_DATA);
526 outw(89, ioaddr+LANCE_ADDR);
527 chip_version |= inw(ioaddr+LANCE_DATA) << 16;
528 if (lance_debug > 2)
529 printk(" LANCE chip version is %#x.\n", chip_version);
530 if ((chip_version & 0xfff) != 0x003)
531 return -ENODEV;
532 chip_version = (chip_version >> 12) & 0xffff;
533 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
534 if (chip_table[lance_version].id_number == chip_version)
535 break;
536 }
537 }
538
539 /* We can't allocate private data from alloc_etherdev() because it must
540 a ISA DMA-able region. */
541 chipname = chip_table[lance_version].name;
542 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr);
543
544 /* There is a 16 byte station address PROM at the base address.
545 The first six bytes are the station address. */
546 for (i = 0; i < 6; i++)
547 addr[i] = inb(ioaddr + i);
548 eth_hw_addr_set(dev, addr);
549 printk("%pM", dev->dev_addr);
550
551 dev->base_addr = ioaddr;
552 /* Make certain the data structures used by the LANCE are aligned and DMAble. */
553
554 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL);
555 if (!lp)
556 return -ENOMEM;
557 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
558 dev->ml_priv = lp;
559 lp->name = chipname;
560 lp->rx_buffs = (unsigned long)kmalloc_array(RX_RING_SIZE, PKT_BUF_SZ,
561 GFP_DMA | GFP_KERNEL);
562 if (!lp->rx_buffs)
563 goto out_lp;
564 if (lance_need_isa_bounce_buffers) {
565 lp->tx_bounce_buffs = kmalloc_array(TX_RING_SIZE, PKT_BUF_SZ,
566 GFP_DMA | GFP_KERNEL);
567 if (!lp->tx_bounce_buffs)
568 goto out_rx;
569 } else
570 lp->tx_bounce_buffs = NULL;
571
572 lp->chip_version = lance_version;
573 spin_lock_init(&lp->devlock);
574
575 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */
576 for (i = 0; i < 6; i++)
577 lp->init_block.phys_addr[i] = dev->dev_addr[i];
578 lp->init_block.filter[0] = 0x00000000;
579 lp->init_block.filter[1] = 0x00000000;
580 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
581 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
582
583 outw(0x0001, ioaddr+LANCE_ADDR);
584 inw(ioaddr+LANCE_ADDR);
585 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
586 outw(0x0002, ioaddr+LANCE_ADDR);
587 inw(ioaddr+LANCE_ADDR);
588 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
589 outw(0x0000, ioaddr+LANCE_ADDR);
590 inw(ioaddr+LANCE_ADDR);
591
592 if (irq) { /* Set iff PCI card. */
593 dev->dma = 4; /* Native bus-master, no DMA channel needed. */
594 dev->irq = irq;
595 } else if (hp_builtin) {
596 static const char dma_tbl[4] = {3, 5, 6, 0};
597 static const char irq_tbl[4] = {3, 4, 5, 9};
598 unsigned char port_val = inb(hp_builtin);
599 dev->dma = dma_tbl[(port_val >> 4) & 3];
600 dev->irq = irq_tbl[(port_val >> 2) & 3];
601 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
602 } else if (hpJ2405A) {
603 static const char dma_tbl[4] = {3, 5, 6, 7};
604 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
605 short reset_val = inw(ioaddr+LANCE_RESET);
606 dev->dma = dma_tbl[(reset_val >> 2) & 3];
607 dev->irq = irq_tbl[(reset_val >> 4) & 7];
608 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
609 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */
610 short bus_info;
611 outw(8, ioaddr+LANCE_ADDR);
612 bus_info = inw(ioaddr+LANCE_BUS_IF);
613 dev->dma = bus_info & 0x07;
614 dev->irq = (bus_info >> 4) & 0x0F;
615 } else {
616 /* The DMA channel may be passed in PARAM1. */
617 if (dev->mem_start & 0x07)
618 dev->dma = dev->mem_start & 0x07;
619 }
620
621 if (dev->dma == 0) {
622 /* Read the DMA channel status register, so that we can avoid
623 stuck DMA channels in the DMA detection below. */
624 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
625 (inb(DMA2_STAT_REG) & 0xf0);
626 }
627 err = -ENODEV;
628 if (dev->irq >= 2)
629 printk(" assigned IRQ %d", dev->irq);
630 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */
631 unsigned long irq_mask;
632
633 /* To auto-IRQ we enable the initialization-done and DMA error
634 interrupts. For ISA boards we get a DMA error, but VLB and PCI
635 boards will work. */
636 irq_mask = probe_irq_on();
637
638 /* Trigger an initialization just for the interrupt. */
639 outw(0x0041, ioaddr+LANCE_DATA);
640
641 mdelay(20);
642 dev->irq = probe_irq_off(irq_mask);
643 if (dev->irq)
644 printk(", probed IRQ %d", dev->irq);
645 else {
646 printk(", failed to detect IRQ line.\n");
647 goto out_tx;
648 }
649
650 /* Check for the initialization done bit, 0x0100, which means
651 that we don't need a DMA channel. */
652 if (inw(ioaddr+LANCE_DATA) & 0x0100)
653 dev->dma = 4;
654 }
655
656 if (dev->dma == 4) {
657 printk(", no DMA needed.\n");
658 } else if (dev->dma) {
659 if (request_dma(dev->dma, chipname)) {
660 printk("DMA %d allocation failed.\n", dev->dma);
661 goto out_tx;
662 } else
663 printk(", assigned DMA %d.\n", dev->dma);
664 } else { /* OK, we have to auto-DMA. */
665 for (i = 0; i < 4; i++) {
666 static const char dmas[] = { 5, 6, 7, 3 };
667 int dma = dmas[i];
668 int boguscnt;
669
670 /* Don't enable a permanently busy DMA channel, or the machine
671 will hang. */
672 if (test_bit(dma, &dma_channels))
673 continue;
674 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
675 if (request_dma(dma, chipname))
676 continue;
677
678 flags=claim_dma_lock();
679 set_dma_mode(dma, DMA_MODE_CASCADE);
680 enable_dma(dma);
681 release_dma_lock(flags);
682
683 /* Trigger an initialization. */
684 outw(0x0001, ioaddr+LANCE_DATA);
685 for (boguscnt = 100; boguscnt > 0; --boguscnt)
686 if (inw(ioaddr+LANCE_DATA) & 0x0900)
687 break;
688 if (inw(ioaddr+LANCE_DATA) & 0x0100) {
689 dev->dma = dma;
690 printk(", DMA %d.\n", dev->dma);
691 break;
692 } else {
693 flags=claim_dma_lock();
694 disable_dma(dma);
695 release_dma_lock(flags);
696 free_dma(dma);
697 }
698 }
699 if (i == 4) { /* Failure: bail. */
700 printk("DMA detection failed.\n");
701 goto out_tx;
702 }
703 }
704
705 if (lance_version == 0 && dev->irq == 0) {
706 /* We may auto-IRQ now that we have a DMA channel. */
707 /* Trigger an initialization just for the interrupt. */
708 unsigned long irq_mask;
709
710 irq_mask = probe_irq_on();
711 outw(0x0041, ioaddr+LANCE_DATA);
712
713 mdelay(40);
714 dev->irq = probe_irq_off(irq_mask);
715 if (dev->irq == 0) {
716 printk(" Failed to detect the 7990 IRQ line.\n");
717 goto out_dma;
718 }
719 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq);
720 }
721
722 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
723 /* Turn on auto-select of media (10baseT or BNC) so that the user
724 can watch the LEDs even if the board isn't opened. */
725 outw(0x0002, ioaddr+LANCE_ADDR);
726 /* Don't touch 10base2 power bit. */
727 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
728 }
729
730 if (lance_debug > 0 && did_version++ == 0)
731 printk(version);
732
733 /* The LANCE-specific entries in the device structure. */
734 dev->netdev_ops = &lance_netdev_ops;
735 dev->watchdog_timeo = TX_TIMEOUT;
736
737 err = register_netdev(dev);
738 if (err)
739 goto out_dma;
740 return 0;
741 out_dma:
742 if (dev->dma != 4)
743 free_dma(dev->dma);
744 out_tx:
745 kfree(lp->tx_bounce_buffs);
746 out_rx:
747 kfree((void*)lp->rx_buffs);
748 out_lp:
749 kfree(lp);
750 return err;
751 }
752
753
754 static int
lance_open(struct net_device * dev)755 lance_open(struct net_device *dev)
756 {
757 struct lance_private *lp = dev->ml_priv;
758 int ioaddr = dev->base_addr;
759 int i;
760
761 if (dev->irq == 0 ||
762 request_irq(dev->irq, lance_interrupt, 0, dev->name, dev)) {
763 return -EAGAIN;
764 }
765
766 /* We used to allocate DMA here, but that was silly.
767 DMA lines can't be shared! We now permanently allocate them. */
768
769 /* Reset the LANCE */
770 inw(ioaddr+LANCE_RESET);
771
772 /* The DMA controller is used as a no-operation slave, "cascade mode". */
773 if (dev->dma != 4) {
774 unsigned long flags=claim_dma_lock();
775 enable_dma(dev->dma);
776 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
777 release_dma_lock(flags);
778 }
779
780 /* Un-Reset the LANCE, needed only for the NE2100. */
781 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
782 outw(0, ioaddr+LANCE_RESET);
783
784 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
785 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
786 outw(0x0002, ioaddr+LANCE_ADDR);
787 /* Only touch autoselect bit. */
788 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
789 }
790
791 if (lance_debug > 1)
792 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
793 dev->name, dev->irq, dev->dma,
794 (u32) isa_virt_to_bus(lp->tx_ring),
795 (u32) isa_virt_to_bus(lp->rx_ring),
796 (u32) isa_virt_to_bus(&lp->init_block));
797
798 lance_init_ring(dev, GFP_KERNEL);
799 /* Re-initialize the LANCE, and start it when done. */
800 outw(0x0001, ioaddr+LANCE_ADDR);
801 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
802 outw(0x0002, ioaddr+LANCE_ADDR);
803 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
804
805 outw(0x0004, ioaddr+LANCE_ADDR);
806 outw(0x0915, ioaddr+LANCE_DATA);
807
808 outw(0x0000, ioaddr+LANCE_ADDR);
809 outw(0x0001, ioaddr+LANCE_DATA);
810
811 netif_start_queue (dev);
812
813 i = 0;
814 while (i++ < 100)
815 if (inw(ioaddr+LANCE_DATA) & 0x0100)
816 break;
817 /*
818 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
819 * reports that doing so triggers a bug in the '974.
820 */
821 outw(0x0042, ioaddr+LANCE_DATA);
822
823 if (lance_debug > 2)
824 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
825 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
826
827 return 0; /* Always succeed */
828 }
829
830 /* The LANCE has been halted for one reason or another (busmaster memory
831 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
832 etc.). Modern LANCE variants always reload their ring-buffer
833 configuration when restarted, so we must reinitialize our ring
834 context before restarting. As part of this reinitialization,
835 find all packets still on the Tx ring and pretend that they had been
836 sent (in effect, drop the packets on the floor) - the higher-level
837 protocols will time out and retransmit. It'd be better to shuffle
838 these skbs to a temp list and then actually re-Tx them after
839 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
840 */
841
842 static void
lance_purge_ring(struct net_device * dev)843 lance_purge_ring(struct net_device *dev)
844 {
845 struct lance_private *lp = dev->ml_priv;
846 int i;
847
848 /* Free all the skbuffs in the Rx and Tx queues. */
849 for (i = 0; i < RX_RING_SIZE; i++) {
850 struct sk_buff *skb = lp->rx_skbuff[i];
851 lp->rx_skbuff[i] = NULL;
852 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */
853 if (skb)
854 dev_kfree_skb_any(skb);
855 }
856 for (i = 0; i < TX_RING_SIZE; i++) {
857 if (lp->tx_skbuff[i]) {
858 dev_kfree_skb_any(lp->tx_skbuff[i]);
859 lp->tx_skbuff[i] = NULL;
860 }
861 }
862 }
863
864
865 /* Initialize the LANCE Rx and Tx rings. */
866 static void
lance_init_ring(struct net_device * dev,gfp_t gfp)867 lance_init_ring(struct net_device *dev, gfp_t gfp)
868 {
869 struct lance_private *lp = dev->ml_priv;
870 int i;
871
872 lp->cur_rx = lp->cur_tx = 0;
873 lp->dirty_rx = lp->dirty_tx = 0;
874
875 for (i = 0; i < RX_RING_SIZE; i++) {
876 struct sk_buff *skb;
877 void *rx_buff;
878
879 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
880 lp->rx_skbuff[i] = skb;
881 if (skb)
882 rx_buff = skb->data;
883 else
884 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
885 if (!rx_buff)
886 lp->rx_ring[i].base = 0;
887 else
888 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000;
889 lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
890 }
891 /* The Tx buffer address is filled in as needed, but we do need to clear
892 the upper ownership bit. */
893 for (i = 0; i < TX_RING_SIZE; i++) {
894 lp->tx_skbuff[i] = NULL;
895 lp->tx_ring[i].base = 0;
896 }
897
898 lp->init_block.mode = 0x0000;
899 for (i = 0; i < 6; i++)
900 lp->init_block.phys_addr[i] = dev->dev_addr[i];
901 lp->init_block.filter[0] = 0x00000000;
902 lp->init_block.filter[1] = 0x00000000;
903 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
904 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
905 }
906
907 static void
lance_restart(struct net_device * dev,unsigned int csr0_bits,int must_reinit)908 lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
909 {
910 struct lance_private *lp = dev->ml_priv;
911
912 if (must_reinit ||
913 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
914 lance_purge_ring(dev);
915 lance_init_ring(dev, GFP_ATOMIC);
916 }
917 outw(0x0000, dev->base_addr + LANCE_ADDR);
918 outw(csr0_bits, dev->base_addr + LANCE_DATA);
919 }
920
921
lance_tx_timeout(struct net_device * dev,unsigned int txqueue)922 static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue)
923 {
924 struct lance_private *lp = (struct lance_private *) dev->ml_priv;
925 int ioaddr = dev->base_addr;
926
927 outw (0, ioaddr + LANCE_ADDR);
928 printk ("%s: transmit timed out, status %4.4x, resetting.\n",
929 dev->name, inw (ioaddr + LANCE_DATA));
930 outw (0x0004, ioaddr + LANCE_DATA);
931 dev->stats.tx_errors++;
932 #ifndef final_version
933 if (lance_debug > 3) {
934 int i;
935 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
936 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
937 lp->cur_rx);
938 for (i = 0; i < RX_RING_SIZE; i++)
939 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
940 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
941 lp->rx_ring[i].msg_length);
942 for (i = 0; i < TX_RING_SIZE; i++)
943 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
944 lp->tx_ring[i].base, -lp->tx_ring[i].length,
945 lp->tx_ring[i].misc);
946 printk ("\n");
947 }
948 #endif
949 lance_restart (dev, 0x0043, 1);
950
951 netif_trans_update(dev); /* prevent tx timeout */
952 netif_wake_queue (dev);
953 }
954
955
lance_start_xmit(struct sk_buff * skb,struct net_device * dev)956 static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
957 struct net_device *dev)
958 {
959 struct lance_private *lp = dev->ml_priv;
960 int ioaddr = dev->base_addr;
961 int entry;
962 unsigned long flags;
963
964 spin_lock_irqsave(&lp->devlock, flags);
965
966 if (lance_debug > 3) {
967 outw(0x0000, ioaddr+LANCE_ADDR);
968 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
969 inw(ioaddr+LANCE_DATA));
970 outw(0x0000, ioaddr+LANCE_DATA);
971 }
972
973 /* Fill in a Tx ring entry */
974
975 /* Mask to ring buffer boundary. */
976 entry = lp->cur_tx & TX_RING_MOD_MASK;
977
978 /* Caution: the write order is important here, set the base address
979 with the "ownership" bits last. */
980
981 /* The old LANCE chips doesn't automatically pad buffers to min. size. */
982 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
983 if (skb->len < ETH_ZLEN) {
984 if (skb_padto(skb, ETH_ZLEN))
985 goto out;
986 lp->tx_ring[entry].length = -ETH_ZLEN;
987 }
988 else
989 lp->tx_ring[entry].length = -skb->len;
990 } else
991 lp->tx_ring[entry].length = -skb->len;
992
993 lp->tx_ring[entry].misc = 0x0000;
994
995 dev->stats.tx_bytes += skb->len;
996
997 /* If any part of this buffer is >16M we must copy it to a low-memory
998 buffer. */
999 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) {
1000 if (lance_debug > 5)
1001 printk("%s: bouncing a high-memory packet (%#x).\n",
1002 dev->name, (u32)isa_virt_to_bus(skb->data));
1003 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len);
1004 lp->tx_ring[entry].base =
1005 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
1006 dev_consume_skb_irq(skb);
1007 } else {
1008 lp->tx_skbuff[entry] = skb;
1009 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
1010 }
1011 lp->cur_tx++;
1012
1013 /* Trigger an immediate send poll. */
1014 outw(0x0000, ioaddr+LANCE_ADDR);
1015 outw(0x0048, ioaddr+LANCE_DATA);
1016
1017 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
1018 netif_stop_queue(dev);
1019
1020 out:
1021 spin_unlock_irqrestore(&lp->devlock, flags);
1022 return NETDEV_TX_OK;
1023 }
1024
1025 /* The LANCE interrupt handler. */
lance_interrupt(int irq,void * dev_id)1026 static irqreturn_t lance_interrupt(int irq, void *dev_id)
1027 {
1028 struct net_device *dev = dev_id;
1029 struct lance_private *lp;
1030 int csr0, ioaddr, boguscnt=10;
1031 int must_restart;
1032
1033 ioaddr = dev->base_addr;
1034 lp = dev->ml_priv;
1035
1036 spin_lock (&lp->devlock);
1037
1038 outw(0x00, dev->base_addr + LANCE_ADDR);
1039 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 &&
1040 --boguscnt >= 0) {
1041 /* Acknowledge all of the current interrupt sources ASAP. */
1042 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
1043
1044 must_restart = 0;
1045
1046 if (lance_debug > 5)
1047 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
1048 dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
1049
1050 if (csr0 & 0x0400) /* Rx interrupt */
1051 lance_rx(dev);
1052
1053 if (csr0 & 0x0200) { /* Tx-done interrupt */
1054 int dirty_tx = lp->dirty_tx;
1055
1056 while (dirty_tx < lp->cur_tx) {
1057 int entry = dirty_tx & TX_RING_MOD_MASK;
1058 int status = lp->tx_ring[entry].base;
1059
1060 if (status < 0)
1061 break; /* It still hasn't been Txed */
1062
1063 lp->tx_ring[entry].base = 0;
1064
1065 if (status & 0x40000000) {
1066 /* There was an major error, log it. */
1067 int err_status = lp->tx_ring[entry].misc;
1068 dev->stats.tx_errors++;
1069 if (err_status & 0x0400)
1070 dev->stats.tx_aborted_errors++;
1071 if (err_status & 0x0800)
1072 dev->stats.tx_carrier_errors++;
1073 if (err_status & 0x1000)
1074 dev->stats.tx_window_errors++;
1075 if (err_status & 0x4000) {
1076 /* Ackk! On FIFO errors the Tx unit is turned off! */
1077 dev->stats.tx_fifo_errors++;
1078 /* Remove this verbosity later! */
1079 printk("%s: Tx FIFO error! Status %4.4x.\n",
1080 dev->name, csr0);
1081 /* Restart the chip. */
1082 must_restart = 1;
1083 }
1084 } else {
1085 if (status & 0x18000000)
1086 dev->stats.collisions++;
1087 dev->stats.tx_packets++;
1088 }
1089
1090 /* We must free the original skb if it's not a data-only copy
1091 in the bounce buffer. */
1092 if (lp->tx_skbuff[entry]) {
1093 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1094 lp->tx_skbuff[entry] = NULL;
1095 }
1096 dirty_tx++;
1097 }
1098
1099 #ifndef final_version
1100 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
1101 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
1102 dirty_tx, lp->cur_tx,
1103 netif_queue_stopped(dev) ? "yes" : "no");
1104 dirty_tx += TX_RING_SIZE;
1105 }
1106 #endif
1107
1108 /* if the ring is no longer full, accept more packets */
1109 if (netif_queue_stopped(dev) &&
1110 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
1111 netif_wake_queue (dev);
1112
1113 lp->dirty_tx = dirty_tx;
1114 }
1115
1116 /* Log misc errors. */
1117 if (csr0 & 0x4000)
1118 dev->stats.tx_errors++; /* Tx babble. */
1119 if (csr0 & 0x1000)
1120 dev->stats.rx_errors++; /* Missed a Rx frame. */
1121 if (csr0 & 0x0800) {
1122 printk("%s: Bus master arbitration failure, status %4.4x.\n",
1123 dev->name, csr0);
1124 /* Restart the chip. */
1125 must_restart = 1;
1126 }
1127
1128 if (must_restart) {
1129 /* stop the chip to clear the error condition, then restart */
1130 outw(0x0000, dev->base_addr + LANCE_ADDR);
1131 outw(0x0004, dev->base_addr + LANCE_DATA);
1132 lance_restart(dev, 0x0002, 0);
1133 }
1134 }
1135
1136 /* Clear any other interrupt, and set interrupt enable. */
1137 outw(0x0000, dev->base_addr + LANCE_ADDR);
1138 outw(0x7940, dev->base_addr + LANCE_DATA);
1139
1140 if (lance_debug > 4)
1141 printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
1142 dev->name, inw(ioaddr + LANCE_ADDR),
1143 inw(dev->base_addr + LANCE_DATA));
1144
1145 spin_unlock (&lp->devlock);
1146 return IRQ_HANDLED;
1147 }
1148
1149 static int
lance_rx(struct net_device * dev)1150 lance_rx(struct net_device *dev)
1151 {
1152 struct lance_private *lp = dev->ml_priv;
1153 int entry = lp->cur_rx & RX_RING_MOD_MASK;
1154 int i;
1155
1156 /* If we own the next entry, it's a new packet. Send it up. */
1157 while (lp->rx_ring[entry].base >= 0) {
1158 int status = lp->rx_ring[entry].base >> 24;
1159
1160 if (status != 0x03) { /* There was an error. */
1161 /* There is a tricky error noted by John Murphy,
1162 <murf@perftech.com> to Russ Nelson: Even with full-sized
1163 buffers it's possible for a jabber packet to use two
1164 buffers, with only the last correctly noting the error. */
1165 if (status & 0x01) /* Only count a general error at the */
1166 dev->stats.rx_errors++; /* end of a packet.*/
1167 if (status & 0x20)
1168 dev->stats.rx_frame_errors++;
1169 if (status & 0x10)
1170 dev->stats.rx_over_errors++;
1171 if (status & 0x08)
1172 dev->stats.rx_crc_errors++;
1173 if (status & 0x04)
1174 dev->stats.rx_fifo_errors++;
1175 lp->rx_ring[entry].base &= 0x03ffffff;
1176 }
1177 else
1178 {
1179 /* Malloc up new buffer, compatible with net3. */
1180 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
1181 struct sk_buff *skb;
1182
1183 if(pkt_len<60)
1184 {
1185 printk("%s: Runt packet!\n",dev->name);
1186 dev->stats.rx_errors++;
1187 }
1188 else
1189 {
1190 skb = dev_alloc_skb(pkt_len+2);
1191 if (!skb)
1192 {
1193 printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1194 for (i=0; i < RX_RING_SIZE; i++)
1195 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1196 break;
1197
1198 if (i > RX_RING_SIZE -2)
1199 {
1200 dev->stats.rx_dropped++;
1201 lp->rx_ring[entry].base |= 0x80000000;
1202 lp->cur_rx++;
1203 }
1204 break;
1205 }
1206 skb_reserve(skb,2); /* 16 byte align */
1207 skb_put(skb,pkt_len); /* Make room */
1208 skb_copy_to_linear_data(skb,
1209 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
1210 pkt_len);
1211 skb->protocol=eth_type_trans(skb,dev);
1212 netif_rx(skb);
1213 dev->stats.rx_packets++;
1214 dev->stats.rx_bytes += pkt_len;
1215 }
1216 }
1217 /* The docs say that the buffer length isn't touched, but Andrew Boyd
1218 of QNX reports that some revs of the 79C965 clear it. */
1219 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
1220 lp->rx_ring[entry].base |= 0x80000000;
1221 entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
1222 }
1223
1224 /* We should check that at least two ring entries are free. If not,
1225 we should free one and mark stats->rx_dropped++. */
1226
1227 return 0;
1228 }
1229
1230 static int
lance_close(struct net_device * dev)1231 lance_close(struct net_device *dev)
1232 {
1233 int ioaddr = dev->base_addr;
1234 struct lance_private *lp = dev->ml_priv;
1235
1236 netif_stop_queue (dev);
1237
1238 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1239 outw(112, ioaddr+LANCE_ADDR);
1240 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1241 }
1242 outw(0, ioaddr+LANCE_ADDR);
1243
1244 if (lance_debug > 1)
1245 printk("%s: Shutting down ethercard, status was %2.2x.\n",
1246 dev->name, inw(ioaddr+LANCE_DATA));
1247
1248 /* We stop the LANCE here -- it occasionally polls
1249 memory if we don't. */
1250 outw(0x0004, ioaddr+LANCE_DATA);
1251
1252 if (dev->dma != 4)
1253 {
1254 unsigned long flags=claim_dma_lock();
1255 disable_dma(dev->dma);
1256 release_dma_lock(flags);
1257 }
1258 free_irq(dev->irq, dev);
1259
1260 lance_purge_ring(dev);
1261
1262 return 0;
1263 }
1264
lance_get_stats(struct net_device * dev)1265 static struct net_device_stats *lance_get_stats(struct net_device *dev)
1266 {
1267 struct lance_private *lp = dev->ml_priv;
1268
1269 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1270 short ioaddr = dev->base_addr;
1271 short saved_addr;
1272 unsigned long flags;
1273
1274 spin_lock_irqsave(&lp->devlock, flags);
1275 saved_addr = inw(ioaddr+LANCE_ADDR);
1276 outw(112, ioaddr+LANCE_ADDR);
1277 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1278 outw(saved_addr, ioaddr+LANCE_ADDR);
1279 spin_unlock_irqrestore(&lp->devlock, flags);
1280 }
1281
1282 return &dev->stats;
1283 }
1284
1285 /* Set or clear the multicast filter for this adaptor.
1286 */
1287
set_multicast_list(struct net_device * dev)1288 static void set_multicast_list(struct net_device *dev)
1289 {
1290 short ioaddr = dev->base_addr;
1291
1292 outw(0, ioaddr+LANCE_ADDR);
1293 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */
1294
1295 if (dev->flags&IFF_PROMISC) {
1296 outw(15, ioaddr+LANCE_ADDR);
1297 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1298 } else {
1299 short multicast_table[4];
1300 int i;
1301 int num_addrs=netdev_mc_count(dev);
1302 if(dev->flags&IFF_ALLMULTI)
1303 num_addrs=1;
1304 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
1305 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1306 for (i = 0; i < 4; i++) {
1307 outw(8 + i, ioaddr+LANCE_ADDR);
1308 outw(multicast_table[i], ioaddr+LANCE_DATA);
1309 }
1310 outw(15, ioaddr+LANCE_ADDR);
1311 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
1312 }
1313
1314 lance_restart(dev, 0x0142, 0); /* Resume normal operation */
1315
1316 }
1317
1318