1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * 4 * Alchemy Au1x00 ethernet driver 5 * 6 * Copyright 2001-2003, 2006 MontaVista Software Inc. 7 * Copyright 2002 TimeSys Corp. 8 * Added ethtool/mii-tool support, 9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> 10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 11 * or riemer@riemer-nt.de: fixed the link beat detection with 12 * ioctls (SIOCGMIIPHY) 13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org> 14 * converted to use linux-2.6.x's PHY framework 15 * 16 * Author: MontaVista Software, Inc. 17 * ppopov@mvista.com or source@mvista.com 18 */ 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/capability.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/module.h> 24 #include <linux/kernel.h> 25 #include <linux/string.h> 26 #include <linux/timer.h> 27 #include <linux/errno.h> 28 #include <linux/in.h> 29 #include <linux/ioport.h> 30 #include <linux/bitops.h> 31 #include <linux/slab.h> 32 #include <linux/interrupt.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/ethtool.h> 36 #include <linux/mii.h> 37 #include <linux/skbuff.h> 38 #include <linux/delay.h> 39 #include <linux/crc32.h> 40 #include <linux/phy.h> 41 #include <linux/platform_device.h> 42 #include <linux/cpu.h> 43 #include <linux/io.h> 44 45 #include <asm/mipsregs.h> 46 #include <asm/irq.h> 47 #include <asm/processor.h> 48 49 #include <au1000.h> 50 #include <au1xxx_eth.h> 51 #include <prom.h> 52 53 #include "au1000_eth.h" 54 55 #ifdef AU1000_ETH_DEBUG 56 static int au1000_debug = 5; 57 #else 58 static int au1000_debug = 3; 59 #endif 60 61 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 62 NETIF_MSG_PROBE | \ 63 NETIF_MSG_LINK) 64 65 #define DRV_NAME "au1000_eth" 66 #define DRV_VERSION "1.7" 67 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" 68 #define DRV_DESC "Au1xxx on-chip Ethernet driver" 69 70 MODULE_AUTHOR(DRV_AUTHOR); 71 MODULE_DESCRIPTION(DRV_DESC); 72 MODULE_LICENSE("GPL"); 73 MODULE_VERSION(DRV_VERSION); 74 75 /* AU1000 MAC registers and bits */ 76 #define MAC_CONTROL 0x0 77 # define MAC_RX_ENABLE (1 << 2) 78 # define MAC_TX_ENABLE (1 << 3) 79 # define MAC_DEF_CHECK (1 << 5) 80 # define MAC_SET_BL(X) (((X) & 0x3) << 6) 81 # define MAC_AUTO_PAD (1 << 8) 82 # define MAC_DISABLE_RETRY (1 << 10) 83 # define MAC_DISABLE_BCAST (1 << 11) 84 # define MAC_LATE_COL (1 << 12) 85 # define MAC_HASH_MODE (1 << 13) 86 # define MAC_HASH_ONLY (1 << 15) 87 # define MAC_PASS_ALL (1 << 16) 88 # define MAC_INVERSE_FILTER (1 << 17) 89 # define MAC_PROMISCUOUS (1 << 18) 90 # define MAC_PASS_ALL_MULTI (1 << 19) 91 # define MAC_FULL_DUPLEX (1 << 20) 92 # define MAC_NORMAL_MODE 0 93 # define MAC_INT_LOOPBACK (1 << 21) 94 # define MAC_EXT_LOOPBACK (1 << 22) 95 # define MAC_DISABLE_RX_OWN (1 << 23) 96 # define MAC_BIG_ENDIAN (1 << 30) 97 # define MAC_RX_ALL (1 << 31) 98 #define MAC_ADDRESS_HIGH 0x4 99 #define MAC_ADDRESS_LOW 0x8 100 #define MAC_MCAST_HIGH 0xC 101 #define MAC_MCAST_LOW 0x10 102 #define MAC_MII_CNTRL 0x14 103 # define MAC_MII_BUSY (1 << 0) 104 # define MAC_MII_READ 0 105 # define MAC_MII_WRITE (1 << 1) 106 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6) 107 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11) 108 #define MAC_MII_DATA 0x18 109 #define MAC_FLOW_CNTRL 0x1C 110 # define MAC_FLOW_CNTRL_BUSY (1 << 0) 111 # define MAC_FLOW_CNTRL_ENABLE (1 << 1) 112 # define MAC_PASS_CONTROL (1 << 2) 113 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16) 114 #define MAC_VLAN1_TAG 0x20 115 #define MAC_VLAN2_TAG 0x24 116 117 /* Ethernet Controller Enable */ 118 # define MAC_EN_CLOCK_ENABLE (1 << 0) 119 # define MAC_EN_RESET0 (1 << 1) 120 # define MAC_EN_TOSS (0 << 2) 121 # define MAC_EN_CACHEABLE (1 << 3) 122 # define MAC_EN_RESET1 (1 << 4) 123 # define MAC_EN_RESET2 (1 << 5) 124 # define MAC_DMA_RESET (1 << 6) 125 126 /* Ethernet Controller DMA Channels */ 127 /* offsets from MAC_TX_RING_ADDR address */ 128 #define MAC_TX_BUFF0_STATUS 0x0 129 # define TX_FRAME_ABORTED (1 << 0) 130 # define TX_JAB_TIMEOUT (1 << 1) 131 # define TX_NO_CARRIER (1 << 2) 132 # define TX_LOSS_CARRIER (1 << 3) 133 # define TX_EXC_DEF (1 << 4) 134 # define TX_LATE_COLL_ABORT (1 << 5) 135 # define TX_EXC_COLL (1 << 6) 136 # define TX_UNDERRUN (1 << 7) 137 # define TX_DEFERRED (1 << 8) 138 # define TX_LATE_COLL (1 << 9) 139 # define TX_COLL_CNT_MASK (0xF << 10) 140 # define TX_PKT_RETRY (1 << 31) 141 #define MAC_TX_BUFF0_ADDR 0x4 142 # define TX_DMA_ENABLE (1 << 0) 143 # define TX_T_DONE (1 << 1) 144 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 145 #define MAC_TX_BUFF0_LEN 0x8 146 #define MAC_TX_BUFF1_STATUS 0x10 147 #define MAC_TX_BUFF1_ADDR 0x14 148 #define MAC_TX_BUFF1_LEN 0x18 149 #define MAC_TX_BUFF2_STATUS 0x20 150 #define MAC_TX_BUFF2_ADDR 0x24 151 #define MAC_TX_BUFF2_LEN 0x28 152 #define MAC_TX_BUFF3_STATUS 0x30 153 #define MAC_TX_BUFF3_ADDR 0x34 154 #define MAC_TX_BUFF3_LEN 0x38 155 156 /* offsets from MAC_RX_RING_ADDR */ 157 #define MAC_RX_BUFF0_STATUS 0x0 158 # define RX_FRAME_LEN_MASK 0x3fff 159 # define RX_WDOG_TIMER (1 << 14) 160 # define RX_RUNT (1 << 15) 161 # define RX_OVERLEN (1 << 16) 162 # define RX_COLL (1 << 17) 163 # define RX_ETHER (1 << 18) 164 # define RX_MII_ERROR (1 << 19) 165 # define RX_DRIBBLING (1 << 20) 166 # define RX_CRC_ERROR (1 << 21) 167 # define RX_VLAN1 (1 << 22) 168 # define RX_VLAN2 (1 << 23) 169 # define RX_LEN_ERROR (1 << 24) 170 # define RX_CNTRL_FRAME (1 << 25) 171 # define RX_U_CNTRL_FRAME (1 << 26) 172 # define RX_MCAST_FRAME (1 << 27) 173 # define RX_BCAST_FRAME (1 << 28) 174 # define RX_FILTER_FAIL (1 << 29) 175 # define RX_PACKET_FILTER (1 << 30) 176 # define RX_MISSED_FRAME (1 << 31) 177 178 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \ 179 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \ 180 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME) 181 #define MAC_RX_BUFF0_ADDR 0x4 182 # define RX_DMA_ENABLE (1 << 0) 183 # define RX_T_DONE (1 << 1) 184 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3) 185 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0) 186 #define MAC_RX_BUFF1_STATUS 0x10 187 #define MAC_RX_BUFF1_ADDR 0x14 188 #define MAC_RX_BUFF2_STATUS 0x20 189 #define MAC_RX_BUFF2_ADDR 0x24 190 #define MAC_RX_BUFF3_STATUS 0x30 191 #define MAC_RX_BUFF3_ADDR 0x34 192 193 /* 194 * Theory of operation 195 * 196 * The Au1000 MACs use a simple rx and tx descriptor ring scheme. 197 * There are four receive and four transmit descriptors. These 198 * descriptors are not in memory; rather, they are just a set of 199 * hardware registers. 200 * 201 * Since the Au1000 has a coherent data cache, the receive and 202 * transmit buffers are allocated from the KSEG0 segment. The 203 * hardware registers, however, are still mapped at KSEG1 to 204 * make sure there's no out-of-order writes, and that all writes 205 * complete immediately. 206 */ 207 208 /* 209 * board-specific configurations 210 * 211 * PHY detection algorithm 212 * 213 * If phy_static_config is undefined, the PHY setup is 214 * autodetected: 215 * 216 * mii_probe() first searches the current MAC's MII bus for a PHY, 217 * selecting the first (or last, if phy_search_highest_addr is 218 * defined) PHY address not already claimed by another netdev. 219 * 220 * If nothing was found that way when searching for the 2nd ethernet 221 * controller's PHY and phy1_search_mac0 is defined, then 222 * the first MII bus is searched as well for an unclaimed PHY; this is 223 * needed in case of a dual-PHY accessible only through the MAC0's MII 224 * bus. 225 * 226 * Finally, if no PHY is found, then the corresponding ethernet 227 * controller is not registered to the network subsystem. 228 */ 229 230 /* autodetection defaults: phy1_search_mac0 */ 231 232 /* static PHY setup 233 * 234 * most boards PHY setup should be detectable properly with the 235 * autodetection algorithm in mii_probe(), but in some cases (e.g. if 236 * you have a switch attached, or want to use the PHY's interrupt 237 * notification capabilities) you can provide a static PHY 238 * configuration here 239 * 240 * IRQs may only be set, if a PHY address was configured 241 * If a PHY address is given, also a bus id is required to be set 242 * 243 * ps: make sure the used irqs are configured properly in the board 244 * specific irq-map 245 */ 246 247 static void au1000_enable_mac(struct net_device *dev, int force_reset) 248 { 249 unsigned long flags; 250 struct au1000_private *aup = netdev_priv(dev); 251 252 spin_lock_irqsave(&aup->lock, flags); 253 254 if (force_reset || (!aup->mac_enabled)) { 255 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 256 wmb(); /* drain writebuffer */ 257 mdelay(2); 258 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 259 | MAC_EN_CLOCK_ENABLE), aup->enable); 260 wmb(); /* drain writebuffer */ 261 mdelay(2); 262 263 aup->mac_enabled = 1; 264 } 265 266 spin_unlock_irqrestore(&aup->lock, flags); 267 } 268 269 /* 270 * MII operations 271 */ 272 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg) 273 { 274 struct au1000_private *aup = netdev_priv(dev); 275 u32 *const mii_control_reg = &aup->mac->mii_control; 276 u32 *const mii_data_reg = &aup->mac->mii_data; 277 u32 timedout = 20; 278 u32 mii_control; 279 280 while (readl(mii_control_reg) & MAC_MII_BUSY) { 281 mdelay(1); 282 if (--timedout == 0) { 283 netdev_err(dev, "read_MII busy timeout!!\n"); 284 return -1; 285 } 286 } 287 288 mii_control = MAC_SET_MII_SELECT_REG(reg) | 289 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ; 290 291 writel(mii_control, mii_control_reg); 292 293 timedout = 20; 294 while (readl(mii_control_reg) & MAC_MII_BUSY) { 295 mdelay(1); 296 if (--timedout == 0) { 297 netdev_err(dev, "mdio_read busy timeout!!\n"); 298 return -1; 299 } 300 } 301 return readl(mii_data_reg); 302 } 303 304 static void au1000_mdio_write(struct net_device *dev, int phy_addr, 305 int reg, u16 value) 306 { 307 struct au1000_private *aup = netdev_priv(dev); 308 u32 *const mii_control_reg = &aup->mac->mii_control; 309 u32 *const mii_data_reg = &aup->mac->mii_data; 310 u32 timedout = 20; 311 u32 mii_control; 312 313 while (readl(mii_control_reg) & MAC_MII_BUSY) { 314 mdelay(1); 315 if (--timedout == 0) { 316 netdev_err(dev, "mdio_write busy timeout!!\n"); 317 return; 318 } 319 } 320 321 mii_control = MAC_SET_MII_SELECT_REG(reg) | 322 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE; 323 324 writel(value, mii_data_reg); 325 writel(mii_control, mii_control_reg); 326 } 327 328 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) 329 { 330 struct net_device *const dev = bus->priv; 331 332 /* make sure the MAC associated with this 333 * mii_bus is enabled 334 */ 335 au1000_enable_mac(dev, 0); 336 337 return au1000_mdio_read(dev, phy_addr, regnum); 338 } 339 340 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, 341 u16 value) 342 { 343 struct net_device *const dev = bus->priv; 344 345 /* make sure the MAC associated with this 346 * mii_bus is enabled 347 */ 348 au1000_enable_mac(dev, 0); 349 350 au1000_mdio_write(dev, phy_addr, regnum, value); 351 return 0; 352 } 353 354 static int au1000_mdiobus_reset(struct mii_bus *bus) 355 { 356 struct net_device *const dev = bus->priv; 357 358 /* make sure the MAC associated with this 359 * mii_bus is enabled 360 */ 361 au1000_enable_mac(dev, 0); 362 363 return 0; 364 } 365 366 static void au1000_hard_stop(struct net_device *dev) 367 { 368 struct au1000_private *aup = netdev_priv(dev); 369 u32 reg; 370 371 netif_dbg(aup, drv, dev, "hard stop\n"); 372 373 reg = readl(&aup->mac->control); 374 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); 375 writel(reg, &aup->mac->control); 376 wmb(); /* drain writebuffer */ 377 mdelay(10); 378 } 379 380 static void au1000_enable_rx_tx(struct net_device *dev) 381 { 382 struct au1000_private *aup = netdev_priv(dev); 383 u32 reg; 384 385 netif_dbg(aup, hw, dev, "enable_rx_tx\n"); 386 387 reg = readl(&aup->mac->control); 388 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE); 389 writel(reg, &aup->mac->control); 390 wmb(); /* drain writebuffer */ 391 mdelay(10); 392 } 393 394 static void 395 au1000_adjust_link(struct net_device *dev) 396 { 397 struct au1000_private *aup = netdev_priv(dev); 398 struct phy_device *phydev = dev->phydev; 399 unsigned long flags; 400 u32 reg; 401 402 int status_change = 0; 403 404 BUG_ON(!phydev); 405 406 spin_lock_irqsave(&aup->lock, flags); 407 408 if (phydev->link && (aup->old_speed != phydev->speed)) { 409 /* speed changed */ 410 411 switch (phydev->speed) { 412 case SPEED_10: 413 case SPEED_100: 414 break; 415 default: 416 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n", 417 phydev->speed); 418 break; 419 } 420 421 aup->old_speed = phydev->speed; 422 423 status_change = 1; 424 } 425 426 if (phydev->link && (aup->old_duplex != phydev->duplex)) { 427 /* duplex mode changed */ 428 429 /* switching duplex mode requires to disable rx and tx! */ 430 au1000_hard_stop(dev); 431 432 reg = readl(&aup->mac->control); 433 if (DUPLEX_FULL == phydev->duplex) { 434 reg |= MAC_FULL_DUPLEX; 435 reg &= ~MAC_DISABLE_RX_OWN; 436 } else { 437 reg &= ~MAC_FULL_DUPLEX; 438 reg |= MAC_DISABLE_RX_OWN; 439 } 440 writel(reg, &aup->mac->control); 441 wmb(); /* drain writebuffer */ 442 mdelay(1); 443 444 au1000_enable_rx_tx(dev); 445 aup->old_duplex = phydev->duplex; 446 447 status_change = 1; 448 } 449 450 if (phydev->link != aup->old_link) { 451 /* link state changed */ 452 453 if (!phydev->link) { 454 /* link went down */ 455 aup->old_speed = 0; 456 aup->old_duplex = -1; 457 } 458 459 aup->old_link = phydev->link; 460 status_change = 1; 461 } 462 463 spin_unlock_irqrestore(&aup->lock, flags); 464 465 if (status_change) { 466 if (phydev->link) 467 netdev_info(dev, "link up (%d/%s)\n", 468 phydev->speed, 469 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 470 else 471 netdev_info(dev, "link down\n"); 472 } 473 } 474 475 static int au1000_mii_probe(struct net_device *dev) 476 { 477 struct au1000_private *const aup = netdev_priv(dev); 478 struct phy_device *phydev = NULL; 479 int phy_addr; 480 481 if (aup->phy_static_config) { 482 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1); 483 484 if (aup->phy_addr) 485 phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr); 486 else 487 netdev_info(dev, "using PHY-less setup\n"); 488 return 0; 489 } 490 491 /* find the first (lowest address) PHY 492 * on the current MAC's MII bus 493 */ 494 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) 495 if (mdiobus_get_phy(aup->mii_bus, phy_addr)) { 496 phydev = mdiobus_get_phy(aup->mii_bus, phy_addr); 497 if (!aup->phy_search_highest_addr) 498 /* break out with first one found */ 499 break; 500 } 501 502 if (aup->phy1_search_mac0) { 503 /* try harder to find a PHY */ 504 if (!phydev && (aup->mac_id == 1)) { 505 /* no PHY found, maybe we have a dual PHY? */ 506 dev_info(&dev->dev, ": no PHY found on MAC1, " 507 "let's see if it's attached to MAC0...\n"); 508 509 /* find the first (lowest address) non-attached 510 * PHY on the MAC0 MII bus 511 */ 512 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { 513 struct phy_device *const tmp_phydev = 514 mdiobus_get_phy(aup->mii_bus, 515 phy_addr); 516 517 if (aup->mac_id == 1) 518 break; 519 520 /* no PHY here... */ 521 if (!tmp_phydev) 522 continue; 523 524 /* already claimed by MAC0 */ 525 if (tmp_phydev->attached_dev) 526 continue; 527 528 phydev = tmp_phydev; 529 break; /* found it */ 530 } 531 } 532 } 533 534 if (!phydev) { 535 netdev_err(dev, "no PHY found\n"); 536 return -1; 537 } 538 539 /* now we are supposed to have a proper phydev, to attach to... */ 540 BUG_ON(phydev->attached_dev); 541 542 phydev = phy_connect(dev, phydev_name(phydev), 543 &au1000_adjust_link, PHY_INTERFACE_MODE_MII); 544 545 if (IS_ERR(phydev)) { 546 netdev_err(dev, "Could not attach to PHY\n"); 547 return PTR_ERR(phydev); 548 } 549 550 phy_set_max_speed(phydev, SPEED_100); 551 552 aup->old_link = 0; 553 aup->old_speed = 0; 554 aup->old_duplex = -1; 555 556 phy_attached_info(phydev); 557 558 return 0; 559 } 560 561 562 /* 563 * Buffer allocation/deallocation routines. The buffer descriptor returned 564 * has the virtual and dma address of a buffer suitable for 565 * both, receive and transmit operations. 566 */ 567 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup) 568 { 569 struct db_dest *pDB; 570 pDB = aup->pDBfree; 571 572 if (pDB) 573 aup->pDBfree = pDB->pnext; 574 575 return pDB; 576 } 577 578 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB) 579 { 580 struct db_dest *pDBfree = aup->pDBfree; 581 if (pDBfree) 582 pDBfree->pnext = pDB; 583 aup->pDBfree = pDB; 584 } 585 586 static void au1000_reset_mac_unlocked(struct net_device *dev) 587 { 588 struct au1000_private *const aup = netdev_priv(dev); 589 int i; 590 591 au1000_hard_stop(dev); 592 593 writel(MAC_EN_CLOCK_ENABLE, aup->enable); 594 wmb(); /* drain writebuffer */ 595 mdelay(2); 596 writel(0, aup->enable); 597 wmb(); /* drain writebuffer */ 598 mdelay(2); 599 600 aup->tx_full = 0; 601 for (i = 0; i < NUM_RX_DMA; i++) { 602 /* reset control bits */ 603 aup->rx_dma_ring[i]->buff_stat &= ~0xf; 604 } 605 for (i = 0; i < NUM_TX_DMA; i++) { 606 /* reset control bits */ 607 aup->tx_dma_ring[i]->buff_stat &= ~0xf; 608 } 609 610 aup->mac_enabled = 0; 611 612 } 613 614 static void au1000_reset_mac(struct net_device *dev) 615 { 616 struct au1000_private *const aup = netdev_priv(dev); 617 unsigned long flags; 618 619 netif_dbg(aup, hw, dev, "reset mac, aup %x\n", 620 (unsigned)aup); 621 622 spin_lock_irqsave(&aup->lock, flags); 623 624 au1000_reset_mac_unlocked(dev); 625 626 spin_unlock_irqrestore(&aup->lock, flags); 627 } 628 629 /* 630 * Setup the receive and transmit "rings". These pointers are the addresses 631 * of the rx and tx MAC DMA registers so they are fixed by the hardware -- 632 * these are not descriptors sitting in memory. 633 */ 634 static void 635 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base) 636 { 637 int i; 638 639 for (i = 0; i < NUM_RX_DMA; i++) { 640 aup->rx_dma_ring[i] = (struct rx_dma *) 641 (tx_base + 0x100 + sizeof(struct rx_dma) * i); 642 } 643 for (i = 0; i < NUM_TX_DMA; i++) { 644 aup->tx_dma_ring[i] = (struct tx_dma *) 645 (tx_base + sizeof(struct tx_dma) * i); 646 } 647 } 648 649 /* 650 * ethtool operations 651 */ 652 653 static void 654 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 655 { 656 struct au1000_private *aup = netdev_priv(dev); 657 658 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 659 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 660 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME, 661 aup->mac_id); 662 } 663 664 static void au1000_set_msglevel(struct net_device *dev, u32 value) 665 { 666 struct au1000_private *aup = netdev_priv(dev); 667 aup->msg_enable = value; 668 } 669 670 static u32 au1000_get_msglevel(struct net_device *dev) 671 { 672 struct au1000_private *aup = netdev_priv(dev); 673 return aup->msg_enable; 674 } 675 676 static const struct ethtool_ops au1000_ethtool_ops = { 677 .get_drvinfo = au1000_get_drvinfo, 678 .get_link = ethtool_op_get_link, 679 .get_msglevel = au1000_get_msglevel, 680 .set_msglevel = au1000_set_msglevel, 681 .get_link_ksettings = phy_ethtool_get_link_ksettings, 682 .set_link_ksettings = phy_ethtool_set_link_ksettings, 683 }; 684 685 686 /* 687 * Initialize the interface. 688 * 689 * When the device powers up, the clocks are disabled and the 690 * mac is in reset state. When the interface is closed, we 691 * do the same -- reset the device and disable the clocks to 692 * conserve power. Thus, whenever au1000_init() is called, 693 * the device should already be in reset state. 694 */ 695 static int au1000_init(struct net_device *dev) 696 { 697 struct au1000_private *aup = netdev_priv(dev); 698 unsigned long flags; 699 int i; 700 u32 control; 701 702 netif_dbg(aup, hw, dev, "au1000_init\n"); 703 704 /* bring the device out of reset */ 705 au1000_enable_mac(dev, 1); 706 707 spin_lock_irqsave(&aup->lock, flags); 708 709 writel(0, &aup->mac->control); 710 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; 711 aup->tx_tail = aup->tx_head; 712 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; 713 714 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4], 715 &aup->mac->mac_addr_high); 716 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | 717 dev->dev_addr[1]<<8 | dev->dev_addr[0], 718 &aup->mac->mac_addr_low); 719 720 721 for (i = 0; i < NUM_RX_DMA; i++) 722 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; 723 724 wmb(); /* drain writebuffer */ 725 726 control = MAC_RX_ENABLE | MAC_TX_ENABLE; 727 #ifndef CONFIG_CPU_LITTLE_ENDIAN 728 control |= MAC_BIG_ENDIAN; 729 #endif 730 if (dev->phydev) { 731 if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex)) 732 control |= MAC_FULL_DUPLEX; 733 else 734 control |= MAC_DISABLE_RX_OWN; 735 } else { /* PHY-less op, assume full-duplex */ 736 control |= MAC_FULL_DUPLEX; 737 } 738 739 writel(control, &aup->mac->control); 740 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */ 741 wmb(); /* drain writebuffer */ 742 743 spin_unlock_irqrestore(&aup->lock, flags); 744 return 0; 745 } 746 747 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status) 748 { 749 struct net_device_stats *ps = &dev->stats; 750 751 ps->rx_packets++; 752 if (status & RX_MCAST_FRAME) 753 ps->multicast++; 754 755 if (status & RX_ERROR) { 756 ps->rx_errors++; 757 if (status & RX_MISSED_FRAME) 758 ps->rx_missed_errors++; 759 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR)) 760 ps->rx_length_errors++; 761 if (status & RX_CRC_ERROR) 762 ps->rx_crc_errors++; 763 if (status & RX_COLL) 764 ps->collisions++; 765 } else 766 ps->rx_bytes += status & RX_FRAME_LEN_MASK; 767 768 } 769 770 /* 771 * Au1000 receive routine. 772 */ 773 static int au1000_rx(struct net_device *dev) 774 { 775 struct au1000_private *aup = netdev_priv(dev); 776 struct sk_buff *skb; 777 struct rx_dma *prxd; 778 u32 buff_stat, status; 779 struct db_dest *pDB; 780 u32 frmlen; 781 782 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head); 783 784 prxd = aup->rx_dma_ring[aup->rx_head]; 785 buff_stat = prxd->buff_stat; 786 while (buff_stat & RX_T_DONE) { 787 status = prxd->status; 788 pDB = aup->rx_db_inuse[aup->rx_head]; 789 au1000_update_rx_stats(dev, status); 790 if (!(status & RX_ERROR)) { 791 792 /* good frame */ 793 frmlen = (status & RX_FRAME_LEN_MASK); 794 frmlen -= 4; /* Remove FCS */ 795 skb = netdev_alloc_skb(dev, frmlen + 2); 796 if (skb == NULL) { 797 dev->stats.rx_dropped++; 798 continue; 799 } 800 skb_reserve(skb, 2); /* 16 byte IP header align */ 801 skb_copy_to_linear_data(skb, 802 (unsigned char *)pDB->vaddr, frmlen); 803 skb_put(skb, frmlen); 804 skb->protocol = eth_type_trans(skb, dev); 805 netif_rx(skb); /* pass the packet to upper layers */ 806 } else { 807 if (au1000_debug > 4) { 808 pr_err("rx_error(s):"); 809 if (status & RX_MISSED_FRAME) 810 pr_cont(" miss"); 811 if (status & RX_WDOG_TIMER) 812 pr_cont(" wdog"); 813 if (status & RX_RUNT) 814 pr_cont(" runt"); 815 if (status & RX_OVERLEN) 816 pr_cont(" overlen"); 817 if (status & RX_COLL) 818 pr_cont(" coll"); 819 if (status & RX_MII_ERROR) 820 pr_cont(" mii error"); 821 if (status & RX_CRC_ERROR) 822 pr_cont(" crc error"); 823 if (status & RX_LEN_ERROR) 824 pr_cont(" len error"); 825 if (status & RX_U_CNTRL_FRAME) 826 pr_cont(" u control frame"); 827 pr_cont("\n"); 828 } 829 } 830 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); 831 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); 832 wmb(); /* drain writebuffer */ 833 834 /* next descriptor */ 835 prxd = aup->rx_dma_ring[aup->rx_head]; 836 buff_stat = prxd->buff_stat; 837 } 838 return 0; 839 } 840 841 static void au1000_update_tx_stats(struct net_device *dev, u32 status) 842 { 843 struct net_device_stats *ps = &dev->stats; 844 845 if (status & TX_FRAME_ABORTED) { 846 if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) { 847 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { 848 /* any other tx errors are only valid 849 * in half duplex mode 850 */ 851 ps->tx_errors++; 852 ps->tx_aborted_errors++; 853 } 854 } else { 855 ps->tx_errors++; 856 ps->tx_aborted_errors++; 857 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) 858 ps->tx_carrier_errors++; 859 } 860 } 861 } 862 863 /* 864 * Called from the interrupt service routine to acknowledge 865 * the TX DONE bits. This is a must if the irq is setup as 866 * edge triggered. 867 */ 868 static void au1000_tx_ack(struct net_device *dev) 869 { 870 struct au1000_private *aup = netdev_priv(dev); 871 struct tx_dma *ptxd; 872 873 ptxd = aup->tx_dma_ring[aup->tx_tail]; 874 875 while (ptxd->buff_stat & TX_T_DONE) { 876 au1000_update_tx_stats(dev, ptxd->status); 877 ptxd->buff_stat &= ~TX_T_DONE; 878 ptxd->len = 0; 879 wmb(); /* drain writebuffer */ 880 881 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); 882 ptxd = aup->tx_dma_ring[aup->tx_tail]; 883 884 if (aup->tx_full) { 885 aup->tx_full = 0; 886 netif_wake_queue(dev); 887 } 888 } 889 } 890 891 /* 892 * Au1000 interrupt service routine. 893 */ 894 static irqreturn_t au1000_interrupt(int irq, void *dev_id) 895 { 896 struct net_device *dev = dev_id; 897 898 /* Handle RX interrupts first to minimize chance of overrun */ 899 900 au1000_rx(dev); 901 au1000_tx_ack(dev); 902 return IRQ_RETVAL(1); 903 } 904 905 static int au1000_open(struct net_device *dev) 906 { 907 int retval; 908 struct au1000_private *aup = netdev_priv(dev); 909 910 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev); 911 912 retval = request_irq(dev->irq, au1000_interrupt, 0, 913 dev->name, dev); 914 if (retval) { 915 netdev_err(dev, "unable to get IRQ %d\n", dev->irq); 916 return retval; 917 } 918 919 retval = au1000_init(dev); 920 if (retval) { 921 netdev_err(dev, "error in au1000_init\n"); 922 free_irq(dev->irq, dev); 923 return retval; 924 } 925 926 if (dev->phydev) 927 phy_start(dev->phydev); 928 929 netif_start_queue(dev); 930 931 netif_dbg(aup, drv, dev, "open: Initialization done.\n"); 932 933 return 0; 934 } 935 936 static int au1000_close(struct net_device *dev) 937 { 938 unsigned long flags; 939 struct au1000_private *const aup = netdev_priv(dev); 940 941 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev); 942 943 if (dev->phydev) 944 phy_stop(dev->phydev); 945 946 spin_lock_irqsave(&aup->lock, flags); 947 948 au1000_reset_mac_unlocked(dev); 949 950 /* stop the device */ 951 netif_stop_queue(dev); 952 953 /* disable the interrupt */ 954 free_irq(dev->irq, dev); 955 spin_unlock_irqrestore(&aup->lock, flags); 956 957 return 0; 958 } 959 960 /* 961 * Au1000 transmit routine. 962 */ 963 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev) 964 { 965 struct au1000_private *aup = netdev_priv(dev); 966 struct net_device_stats *ps = &dev->stats; 967 struct tx_dma *ptxd; 968 u32 buff_stat; 969 struct db_dest *pDB; 970 int i; 971 972 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n", 973 (unsigned)aup, skb->len, 974 skb->data, aup->tx_head); 975 976 ptxd = aup->tx_dma_ring[aup->tx_head]; 977 buff_stat = ptxd->buff_stat; 978 if (buff_stat & TX_DMA_ENABLE) { 979 /* We've wrapped around and the transmitter is still busy */ 980 netif_stop_queue(dev); 981 aup->tx_full = 1; 982 return NETDEV_TX_BUSY; 983 } else if (buff_stat & TX_T_DONE) { 984 au1000_update_tx_stats(dev, ptxd->status); 985 ptxd->len = 0; 986 } 987 988 if (aup->tx_full) { 989 aup->tx_full = 0; 990 netif_wake_queue(dev); 991 } 992 993 pDB = aup->tx_db_inuse[aup->tx_head]; 994 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); 995 if (skb->len < ETH_ZLEN) { 996 for (i = skb->len; i < ETH_ZLEN; i++) 997 ((char *)pDB->vaddr)[i] = 0; 998 999 ptxd->len = ETH_ZLEN; 1000 } else 1001 ptxd->len = skb->len; 1002 1003 ps->tx_packets++; 1004 ps->tx_bytes += ptxd->len; 1005 1006 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; 1007 wmb(); /* drain writebuffer */ 1008 dev_kfree_skb(skb); 1009 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); 1010 return NETDEV_TX_OK; 1011 } 1012 1013 /* 1014 * The Tx ring has been full longer than the watchdog timeout 1015 * value. The transmitter must be hung? 1016 */ 1017 static void au1000_tx_timeout(struct net_device *dev) 1018 { 1019 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev); 1020 au1000_reset_mac(dev); 1021 au1000_init(dev); 1022 netif_trans_update(dev); /* prevent tx timeout */ 1023 netif_wake_queue(dev); 1024 } 1025 1026 static void au1000_multicast_list(struct net_device *dev) 1027 { 1028 struct au1000_private *aup = netdev_priv(dev); 1029 u32 reg; 1030 1031 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags); 1032 reg = readl(&aup->mac->control); 1033 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1034 reg |= MAC_PROMISCUOUS; 1035 } else if ((dev->flags & IFF_ALLMULTI) || 1036 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) { 1037 reg |= MAC_PASS_ALL_MULTI; 1038 reg &= ~MAC_PROMISCUOUS; 1039 netdev_info(dev, "Pass all multicast\n"); 1040 } else { 1041 struct netdev_hw_addr *ha; 1042 u32 mc_filter[2]; /* Multicast hash filter */ 1043 1044 mc_filter[1] = mc_filter[0] = 0; 1045 netdev_for_each_mc_addr(ha, dev) 1046 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26, 1047 (long *)mc_filter); 1048 writel(mc_filter[1], &aup->mac->multi_hash_high); 1049 writel(mc_filter[0], &aup->mac->multi_hash_low); 1050 reg &= ~MAC_PROMISCUOUS; 1051 reg |= MAC_HASH_MODE; 1052 } 1053 writel(reg, &aup->mac->control); 1054 } 1055 1056 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1057 { 1058 if (!netif_running(dev)) 1059 return -EINVAL; 1060 1061 if (!dev->phydev) 1062 return -EINVAL; /* PHY not controllable */ 1063 1064 return phy_mii_ioctl(dev->phydev, rq, cmd); 1065 } 1066 1067 static const struct net_device_ops au1000_netdev_ops = { 1068 .ndo_open = au1000_open, 1069 .ndo_stop = au1000_close, 1070 .ndo_start_xmit = au1000_tx, 1071 .ndo_set_rx_mode = au1000_multicast_list, 1072 .ndo_do_ioctl = au1000_ioctl, 1073 .ndo_tx_timeout = au1000_tx_timeout, 1074 .ndo_set_mac_address = eth_mac_addr, 1075 .ndo_validate_addr = eth_validate_addr, 1076 }; 1077 1078 static int au1000_probe(struct platform_device *pdev) 1079 { 1080 struct au1000_private *aup = NULL; 1081 struct au1000_eth_platform_data *pd; 1082 struct net_device *dev = NULL; 1083 struct db_dest *pDB, *pDBfree; 1084 int irq, i, err = 0; 1085 struct resource *base, *macen, *macdma; 1086 1087 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1088 if (!base) { 1089 dev_err(&pdev->dev, "failed to retrieve base register\n"); 1090 err = -ENODEV; 1091 goto out; 1092 } 1093 1094 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1095 if (!macen) { 1096 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n"); 1097 err = -ENODEV; 1098 goto out; 1099 } 1100 1101 irq = platform_get_irq(pdev, 0); 1102 if (irq < 0) { 1103 dev_err(&pdev->dev, "failed to retrieve IRQ\n"); 1104 err = -ENODEV; 1105 goto out; 1106 } 1107 1108 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1109 if (!macdma) { 1110 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n"); 1111 err = -ENODEV; 1112 goto out; 1113 } 1114 1115 if (!request_mem_region(base->start, resource_size(base), 1116 pdev->name)) { 1117 dev_err(&pdev->dev, "failed to request memory region for base registers\n"); 1118 err = -ENXIO; 1119 goto out; 1120 } 1121 1122 if (!request_mem_region(macen->start, resource_size(macen), 1123 pdev->name)) { 1124 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n"); 1125 err = -ENXIO; 1126 goto err_request; 1127 } 1128 1129 if (!request_mem_region(macdma->start, resource_size(macdma), 1130 pdev->name)) { 1131 dev_err(&pdev->dev, "failed to request MACDMA memory region\n"); 1132 err = -ENXIO; 1133 goto err_macdma; 1134 } 1135 1136 dev = alloc_etherdev(sizeof(struct au1000_private)); 1137 if (!dev) { 1138 err = -ENOMEM; 1139 goto err_alloc; 1140 } 1141 1142 SET_NETDEV_DEV(dev, &pdev->dev); 1143 platform_set_drvdata(pdev, dev); 1144 aup = netdev_priv(dev); 1145 1146 spin_lock_init(&aup->lock); 1147 aup->msg_enable = (au1000_debug < 4 ? 1148 AU1000_DEF_MSG_ENABLE : au1000_debug); 1149 1150 /* Allocate the data buffers 1151 * Snooping works fine with eth on all au1xxx 1152 */ 1153 aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE * 1154 (NUM_TX_BUFFS + NUM_RX_BUFFS), 1155 &aup->dma_addr, 0, 1156 DMA_ATTR_NON_CONSISTENT); 1157 if (!aup->vaddr) { 1158 dev_err(&pdev->dev, "failed to allocate data buffers\n"); 1159 err = -ENOMEM; 1160 goto err_vaddr; 1161 } 1162 1163 /* aup->mac is the base address of the MAC's registers */ 1164 aup->mac = (struct mac_reg *) 1165 ioremap_nocache(base->start, resource_size(base)); 1166 if (!aup->mac) { 1167 dev_err(&pdev->dev, "failed to ioremap MAC registers\n"); 1168 err = -ENXIO; 1169 goto err_remap1; 1170 } 1171 1172 /* Setup some variables for quick register address access */ 1173 aup->enable = (u32 *)ioremap_nocache(macen->start, 1174 resource_size(macen)); 1175 if (!aup->enable) { 1176 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n"); 1177 err = -ENXIO; 1178 goto err_remap2; 1179 } 1180 aup->mac_id = pdev->id; 1181 1182 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma)); 1183 if (!aup->macdma) { 1184 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n"); 1185 err = -ENXIO; 1186 goto err_remap3; 1187 } 1188 1189 au1000_setup_hw_rings(aup, aup->macdma); 1190 1191 writel(0, aup->enable); 1192 aup->mac_enabled = 0; 1193 1194 pd = dev_get_platdata(&pdev->dev); 1195 if (!pd) { 1196 dev_info(&pdev->dev, "no platform_data passed," 1197 " PHY search on MAC0\n"); 1198 aup->phy1_search_mac0 = 1; 1199 } else { 1200 if (is_valid_ether_addr(pd->mac)) { 1201 memcpy(dev->dev_addr, pd->mac, ETH_ALEN); 1202 } else { 1203 /* Set a random MAC since no valid provided by platform_data. */ 1204 eth_hw_addr_random(dev); 1205 } 1206 1207 aup->phy_static_config = pd->phy_static_config; 1208 aup->phy_search_highest_addr = pd->phy_search_highest_addr; 1209 aup->phy1_search_mac0 = pd->phy1_search_mac0; 1210 aup->phy_addr = pd->phy_addr; 1211 aup->phy_busid = pd->phy_busid; 1212 aup->phy_irq = pd->phy_irq; 1213 } 1214 1215 if (aup->phy_busid > 0) { 1216 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n"); 1217 err = -ENODEV; 1218 goto err_mdiobus_alloc; 1219 } 1220 1221 aup->mii_bus = mdiobus_alloc(); 1222 if (aup->mii_bus == NULL) { 1223 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n"); 1224 err = -ENOMEM; 1225 goto err_mdiobus_alloc; 1226 } 1227 1228 aup->mii_bus->priv = dev; 1229 aup->mii_bus->read = au1000_mdiobus_read; 1230 aup->mii_bus->write = au1000_mdiobus_write; 1231 aup->mii_bus->reset = au1000_mdiobus_reset; 1232 aup->mii_bus->name = "au1000_eth_mii"; 1233 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 1234 pdev->name, aup->mac_id); 1235 1236 /* if known, set corresponding PHY IRQs */ 1237 if (aup->phy_static_config) 1238 if (aup->phy_irq && aup->phy_busid == aup->mac_id) 1239 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq; 1240 1241 err = mdiobus_register(aup->mii_bus); 1242 if (err) { 1243 dev_err(&pdev->dev, "failed to register MDIO bus\n"); 1244 goto err_mdiobus_reg; 1245 } 1246 1247 err = au1000_mii_probe(dev); 1248 if (err != 0) 1249 goto err_out; 1250 1251 pDBfree = NULL; 1252 /* setup the data buffer descriptors and attach a buffer to each one */ 1253 pDB = aup->db; 1254 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { 1255 pDB->pnext = pDBfree; 1256 pDBfree = pDB; 1257 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); 1258 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); 1259 pDB++; 1260 } 1261 aup->pDBfree = pDBfree; 1262 1263 err = -ENODEV; 1264 for (i = 0; i < NUM_RX_DMA; i++) { 1265 pDB = au1000_GetFreeDB(aup); 1266 if (!pDB) 1267 goto err_out; 1268 1269 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1270 aup->rx_db_inuse[i] = pDB; 1271 } 1272 1273 err = -ENODEV; 1274 for (i = 0; i < NUM_TX_DMA; i++) { 1275 pDB = au1000_GetFreeDB(aup); 1276 if (!pDB) 1277 goto err_out; 1278 1279 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; 1280 aup->tx_dma_ring[i]->len = 0; 1281 aup->tx_db_inuse[i] = pDB; 1282 } 1283 1284 dev->base_addr = base->start; 1285 dev->irq = irq; 1286 dev->netdev_ops = &au1000_netdev_ops; 1287 dev->ethtool_ops = &au1000_ethtool_ops; 1288 dev->watchdog_timeo = ETH_TX_TIMEOUT; 1289 1290 /* 1291 * The boot code uses the ethernet controller, so reset it to start 1292 * fresh. au1000_init() expects that the device is in reset state. 1293 */ 1294 au1000_reset_mac(dev); 1295 1296 err = register_netdev(dev); 1297 if (err) { 1298 netdev_err(dev, "Cannot register net device, aborting.\n"); 1299 goto err_out; 1300 } 1301 1302 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n", 1303 (unsigned long)base->start, irq); 1304 1305 pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); 1306 1307 return 0; 1308 1309 err_out: 1310 if (aup->mii_bus != NULL) 1311 mdiobus_unregister(aup->mii_bus); 1312 1313 /* here we should have a valid dev plus aup-> register addresses 1314 * so we can reset the mac properly. 1315 */ 1316 au1000_reset_mac(dev); 1317 1318 for (i = 0; i < NUM_RX_DMA; i++) { 1319 if (aup->rx_db_inuse[i]) 1320 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1321 } 1322 for (i = 0; i < NUM_TX_DMA; i++) { 1323 if (aup->tx_db_inuse[i]) 1324 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1325 } 1326 err_mdiobus_reg: 1327 mdiobus_free(aup->mii_bus); 1328 err_mdiobus_alloc: 1329 iounmap(aup->macdma); 1330 err_remap3: 1331 iounmap(aup->enable); 1332 err_remap2: 1333 iounmap(aup->mac); 1334 err_remap1: 1335 dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1336 (void *)aup->vaddr, aup->dma_addr, 1337 DMA_ATTR_NON_CONSISTENT); 1338 err_vaddr: 1339 free_netdev(dev); 1340 err_alloc: 1341 release_mem_region(macdma->start, resource_size(macdma)); 1342 err_macdma: 1343 release_mem_region(macen->start, resource_size(macen)); 1344 err_request: 1345 release_mem_region(base->start, resource_size(base)); 1346 out: 1347 return err; 1348 } 1349 1350 static int au1000_remove(struct platform_device *pdev) 1351 { 1352 struct net_device *dev = platform_get_drvdata(pdev); 1353 struct au1000_private *aup = netdev_priv(dev); 1354 int i; 1355 struct resource *base, *macen; 1356 1357 unregister_netdev(dev); 1358 mdiobus_unregister(aup->mii_bus); 1359 mdiobus_free(aup->mii_bus); 1360 1361 for (i = 0; i < NUM_RX_DMA; i++) 1362 if (aup->rx_db_inuse[i]) 1363 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]); 1364 1365 for (i = 0; i < NUM_TX_DMA; i++) 1366 if (aup->tx_db_inuse[i]) 1367 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]); 1368 1369 dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS), 1370 (void *)aup->vaddr, aup->dma_addr, 1371 DMA_ATTR_NON_CONSISTENT); 1372 1373 iounmap(aup->macdma); 1374 iounmap(aup->mac); 1375 iounmap(aup->enable); 1376 1377 base = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1378 release_mem_region(base->start, resource_size(base)); 1379 1380 base = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1381 release_mem_region(base->start, resource_size(base)); 1382 1383 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1384 release_mem_region(macen->start, resource_size(macen)); 1385 1386 free_netdev(dev); 1387 1388 return 0; 1389 } 1390 1391 static struct platform_driver au1000_eth_driver = { 1392 .probe = au1000_probe, 1393 .remove = au1000_remove, 1394 .driver = { 1395 .name = "au1000-eth", 1396 }, 1397 }; 1398 1399 module_platform_driver(au1000_eth_driver); 1400 1401 MODULE_ALIAS("platform:au1000-eth"); 1402