1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/ethtool.h> 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/numa.h> 12 #include <linux/pci.h> 13 #include <linux/utsname.h> 14 #include <linux/version.h> 15 #include <linux/vmalloc.h> 16 #include <net/ip.h> 17 18 #include "ena_netdev.h" 19 #include "ena_pci_id_tbl.h" 20 #include "ena_xdp.h" 21 22 #include "ena_phc.h" 23 24 #include "ena_devlink.h" 25 26 #include "ena_debugfs.h" 27 28 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 29 MODULE_DESCRIPTION(DEVICE_NAME); 30 MODULE_LICENSE("GPL"); 31 32 /* Time in jiffies before concluding the transmitter is hung. */ 33 #define TX_TIMEOUT (5 * HZ) 34 35 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus()) 36 37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 38 NETIF_MSG_IFDOWN | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 39 40 static struct ena_aenq_handlers aenq_handlers; 41 42 static struct workqueue_struct *ena_wq; 43 44 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 45 46 static int ena_rss_init_default(struct ena_adapter *adapter); 47 static void check_for_admin_com_state(struct ena_adapter *adapter); 48 49 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 50 { 51 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 52 struct ena_adapter *adapter = netdev_priv(dev); 53 unsigned int time_since_last_napi, threshold; 54 struct ena_ring *tx_ring; 55 int napi_scheduled; 56 57 if (txqueue >= adapter->num_io_queues) { 58 netdev_err(dev, "TX timeout on invalid queue %u\n", txqueue); 59 goto schedule_reset; 60 } 61 62 threshold = jiffies_to_usecs(dev->watchdog_timeo); 63 tx_ring = &adapter->tx_ring[txqueue]; 64 65 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 66 napi_scheduled = !!(tx_ring->napi->state & NAPIF_STATE_SCHED); 67 68 netdev_err(dev, 69 "TX q %d is paused for too long (threshold %u). Time since last napi %u usec. napi scheduled: %d\n", 70 txqueue, 71 threshold, 72 time_since_last_napi, 73 napi_scheduled); 74 75 if (threshold < time_since_last_napi && napi_scheduled) { 76 netdev_err(dev, 77 "napi handler hasn't been called for a long time but is scheduled\n"); 78 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 79 } 80 schedule_reset: 81 /* Change the state of the device to trigger reset 82 * Check that we are not in the middle or a trigger already 83 */ 84 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 85 return; 86 87 ena_reset_device(adapter, reset_reason); 88 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp); 89 } 90 91 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 92 { 93 int i; 94 95 for (i = 0; i < adapter->num_io_queues; i++) 96 adapter->rx_ring[i].mtu = mtu; 97 } 98 99 static int ena_change_mtu(struct net_device *dev, int new_mtu) 100 { 101 struct ena_adapter *adapter = netdev_priv(dev); 102 int ret; 103 104 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 105 if (!ret) { 106 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); 107 update_rx_ring_mtu(adapter, new_mtu); 108 WRITE_ONCE(dev->mtu, new_mtu); 109 } else { 110 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 111 new_mtu); 112 } 113 114 return ret; 115 } 116 117 int ena_xmit_common(struct ena_adapter *adapter, 118 struct ena_ring *ring, 119 struct ena_tx_buffer *tx_info, 120 struct ena_com_tx_ctx *ena_tx_ctx, 121 u16 next_to_use, 122 u32 bytes) 123 { 124 int rc, nb_hw_desc; 125 126 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 127 ena_tx_ctx))) { 128 netif_dbg(adapter, tx_queued, adapter->netdev, 129 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 130 ring->qid); 131 ena_ring_tx_doorbell(ring); 132 } 133 134 /* prepare the packet's descriptors to dma engine */ 135 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 136 &nb_hw_desc); 137 138 /* In case there isn't enough space in the queue for the packet, 139 * we simply drop it. All other failure reasons of 140 * ena_com_prepare_tx() are fatal and therefore require a device reset. 141 */ 142 if (unlikely(rc)) { 143 netif_err(adapter, tx_queued, adapter->netdev, 144 "Failed to prepare tx bufs\n"); 145 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, &ring->syncp); 146 if (rc != -ENOMEM) 147 ena_reset_device(adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE); 148 return rc; 149 } 150 151 u64_stats_update_begin(&ring->syncp); 152 ring->tx_stats.cnt++; 153 ring->tx_stats.bytes += bytes; 154 u64_stats_update_end(&ring->syncp); 155 156 tx_info->tx_descs = nb_hw_desc; 157 tx_info->total_tx_size = bytes; 158 tx_info->last_jiffies = jiffies; 159 tx_info->print_once = 0; 160 161 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 162 ring->ring_size); 163 return 0; 164 } 165 166 static void ena_init_io_rings_common(struct ena_adapter *adapter, 167 struct ena_ring *ring, u16 qid) 168 { 169 ring->qid = qid; 170 ring->pdev = adapter->pdev; 171 ring->dev = &adapter->pdev->dev; 172 ring->netdev = adapter->netdev; 173 ring->napi = &adapter->ena_napi[qid].napi; 174 ring->adapter = adapter; 175 ring->ena_dev = adapter->ena_dev; 176 ring->per_napi_packets = 0; 177 ring->cpu = 0; 178 ring->numa_node = 0; 179 ring->no_interrupt_event_cnt = 0; 180 u64_stats_init(&ring->syncp); 181 } 182 183 void ena_init_io_rings(struct ena_adapter *adapter, 184 int first_index, int count) 185 { 186 struct ena_com_dev *ena_dev; 187 struct ena_ring *txr, *rxr; 188 int i; 189 190 ena_dev = adapter->ena_dev; 191 192 for (i = first_index; i < first_index + count; i++) { 193 txr = &adapter->tx_ring[i]; 194 rxr = &adapter->rx_ring[i]; 195 196 /* TX common ring state */ 197 ena_init_io_rings_common(adapter, txr, i); 198 199 /* TX specific ring state */ 200 txr->ring_size = adapter->requested_tx_ring_size; 201 txr->tx_max_header_size = ena_dev->tx_max_header_size; 202 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 203 txr->sgl_size = adapter->max_tx_sgl_size; 204 txr->smoothed_interval = 205 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 206 txr->disable_meta_caching = adapter->disable_meta_caching; 207 spin_lock_init(&txr->xdp_tx_lock); 208 209 /* Don't init RX queues for xdp queues */ 210 if (!ENA_IS_XDP_INDEX(adapter, i)) { 211 /* RX common ring state */ 212 ena_init_io_rings_common(adapter, rxr, i); 213 214 /* RX specific ring state */ 215 rxr->ring_size = adapter->requested_rx_ring_size; 216 rxr->rx_copybreak = adapter->rx_copybreak; 217 rxr->sgl_size = adapter->max_rx_sgl_size; 218 rxr->smoothed_interval = 219 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 220 rxr->empty_rx_queue = 0; 221 rxr->rx_headroom = NET_SKB_PAD; 222 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 223 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues]; 224 } 225 } 226 } 227 228 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 229 * @adapter: network interface device structure 230 * @qid: queue index 231 * 232 * Return 0 on success, negative on failure 233 */ 234 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 235 { 236 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 237 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 238 int size, i, node; 239 240 if (tx_ring->tx_buffer_info) { 241 netif_err(adapter, ifup, 242 adapter->netdev, "tx_buffer_info info is not NULL"); 243 return -EEXIST; 244 } 245 246 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 247 node = cpu_to_node(ena_irq->cpu); 248 249 tx_ring->tx_buffer_info = vzalloc_node(size, node); 250 if (!tx_ring->tx_buffer_info) { 251 tx_ring->tx_buffer_info = vzalloc(size); 252 if (!tx_ring->tx_buffer_info) 253 goto err_tx_buffer_info; 254 } 255 256 size = sizeof(u16) * tx_ring->ring_size; 257 tx_ring->free_ids = vzalloc_node(size, node); 258 if (!tx_ring->free_ids) { 259 tx_ring->free_ids = vzalloc(size); 260 if (!tx_ring->free_ids) 261 goto err_tx_free_ids; 262 } 263 264 size = tx_ring->tx_max_header_size; 265 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 266 if (!tx_ring->push_buf_intermediate_buf) { 267 tx_ring->push_buf_intermediate_buf = vzalloc(size); 268 if (!tx_ring->push_buf_intermediate_buf) 269 goto err_push_buf_intermediate_buf; 270 } 271 272 /* Req id ring for TX out of order completions */ 273 for (i = 0; i < tx_ring->ring_size; i++) 274 tx_ring->free_ids[i] = i; 275 276 /* Reset tx statistics */ 277 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 278 279 tx_ring->next_to_use = 0; 280 tx_ring->next_to_clean = 0; 281 tx_ring->cpu = ena_irq->cpu; 282 tx_ring->numa_node = node; 283 return 0; 284 285 err_push_buf_intermediate_buf: 286 vfree(tx_ring->free_ids); 287 tx_ring->free_ids = NULL; 288 err_tx_free_ids: 289 vfree(tx_ring->tx_buffer_info); 290 tx_ring->tx_buffer_info = NULL; 291 err_tx_buffer_info: 292 return -ENOMEM; 293 } 294 295 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 296 * @adapter: network interface device structure 297 * @qid: queue index 298 * 299 * Free all transmit software resources 300 */ 301 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 302 { 303 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 304 305 vfree(tx_ring->tx_buffer_info); 306 tx_ring->tx_buffer_info = NULL; 307 308 vfree(tx_ring->free_ids); 309 tx_ring->free_ids = NULL; 310 311 vfree(tx_ring->push_buf_intermediate_buf); 312 tx_ring->push_buf_intermediate_buf = NULL; 313 } 314 315 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 316 int first_index, int count) 317 { 318 int i, rc = 0; 319 320 for (i = first_index; i < first_index + count; i++) { 321 rc = ena_setup_tx_resources(adapter, i); 322 if (rc) 323 goto err_setup_tx; 324 } 325 326 return 0; 327 328 err_setup_tx: 329 330 netif_err(adapter, ifup, adapter->netdev, 331 "Tx queue %d: allocation failed\n", i); 332 333 /* rewind the index freeing the rings as we go */ 334 while (first_index < i--) 335 ena_free_tx_resources(adapter, i); 336 return rc; 337 } 338 339 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 340 int first_index, int count) 341 { 342 int i; 343 344 for (i = first_index; i < first_index + count; i++) 345 ena_free_tx_resources(adapter, i); 346 } 347 348 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 349 * @adapter: board private structure 350 * 351 * Free all transmit software resources 352 */ 353 void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 354 { 355 ena_free_all_io_tx_resources_in_range(adapter, 356 0, 357 adapter->xdp_num_queues + 358 adapter->num_io_queues); 359 } 360 361 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 362 * @adapter: network interface device structure 363 * @qid: queue index 364 * 365 * Returns 0 on success, negative on failure 366 */ 367 static int ena_setup_rx_resources(struct ena_adapter *adapter, 368 u32 qid) 369 { 370 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 371 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 372 int size, node, i; 373 374 if (rx_ring->rx_buffer_info) { 375 netif_err(adapter, ifup, adapter->netdev, 376 "rx_buffer_info is not NULL"); 377 return -EEXIST; 378 } 379 380 /* alloc extra element so in rx path 381 * we can always prefetch rx_info + 1 382 */ 383 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 384 node = cpu_to_node(ena_irq->cpu); 385 386 rx_ring->rx_buffer_info = vzalloc_node(size, node); 387 if (!rx_ring->rx_buffer_info) { 388 rx_ring->rx_buffer_info = vzalloc(size); 389 if (!rx_ring->rx_buffer_info) 390 return -ENOMEM; 391 } 392 393 size = sizeof(u16) * rx_ring->ring_size; 394 rx_ring->free_ids = vzalloc_node(size, node); 395 if (!rx_ring->free_ids) { 396 rx_ring->free_ids = vzalloc(size); 397 if (!rx_ring->free_ids) { 398 vfree(rx_ring->rx_buffer_info); 399 rx_ring->rx_buffer_info = NULL; 400 return -ENOMEM; 401 } 402 } 403 404 /* Req id ring for receiving RX pkts out of order */ 405 for (i = 0; i < rx_ring->ring_size; i++) 406 rx_ring->free_ids[i] = i; 407 408 /* Reset rx statistics */ 409 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 410 411 rx_ring->next_to_clean = 0; 412 rx_ring->next_to_use = 0; 413 rx_ring->cpu = ena_irq->cpu; 414 rx_ring->numa_node = node; 415 416 return 0; 417 } 418 419 /* ena_free_rx_resources - Free I/O Rx Resources 420 * @adapter: network interface device structure 421 * @qid: queue index 422 * 423 * Free all receive software resources 424 */ 425 static void ena_free_rx_resources(struct ena_adapter *adapter, 426 u32 qid) 427 { 428 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 429 430 vfree(rx_ring->rx_buffer_info); 431 rx_ring->rx_buffer_info = NULL; 432 433 vfree(rx_ring->free_ids); 434 rx_ring->free_ids = NULL; 435 } 436 437 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 438 * @adapter: board private structure 439 * 440 * Return 0 on success, negative on failure 441 */ 442 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 443 { 444 int i, rc = 0; 445 446 for (i = 0; i < adapter->num_io_queues; i++) { 447 rc = ena_setup_rx_resources(adapter, i); 448 if (rc) 449 goto err_setup_rx; 450 } 451 452 return 0; 453 454 err_setup_rx: 455 456 netif_err(adapter, ifup, adapter->netdev, 457 "Rx queue %d: allocation failed\n", i); 458 459 /* rewind the index freeing the rings as we go */ 460 while (i--) 461 ena_free_rx_resources(adapter, i); 462 return rc; 463 } 464 465 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 466 * @adapter: board private structure 467 * 468 * Free all receive software resources 469 */ 470 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 471 { 472 int i; 473 474 for (i = 0; i < adapter->num_io_queues; i++) 475 ena_free_rx_resources(adapter, i); 476 } 477 478 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring, 479 dma_addr_t *dma) 480 { 481 struct page *page; 482 483 /* This would allocate the page on the same NUMA node the executing code 484 * is running on. 485 */ 486 page = dev_alloc_page(); 487 if (!page) { 488 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, &rx_ring->syncp); 489 return ERR_PTR(-ENOSPC); 490 } 491 492 /* To enable NIC-side port-mirroring, AKA SPAN port, 493 * we make the buffer readable from the nic as well 494 */ 495 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 496 DMA_BIDIRECTIONAL); 497 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) { 498 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1, 499 &rx_ring->syncp); 500 __free_page(page); 501 return ERR_PTR(-EIO); 502 } 503 504 return page; 505 } 506 507 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring, 508 struct ena_rx_buffer *rx_info) 509 { 510 int headroom = rx_ring->rx_headroom; 511 struct ena_com_buf *ena_buf; 512 struct page *page; 513 dma_addr_t dma; 514 int tailroom; 515 516 /* restore page offset value in case it has been changed by device */ 517 rx_info->buf_offset = headroom; 518 519 /* if previous allocated page is not used */ 520 if (unlikely(rx_info->page)) 521 return 0; 522 523 /* We handle DMA here */ 524 page = ena_alloc_map_page(rx_ring, &dma); 525 if (IS_ERR(page)) 526 return PTR_ERR(page); 527 528 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 529 "Allocate page %p, rx_info %p\n", page, rx_info); 530 531 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 532 533 rx_info->page = page; 534 rx_info->dma_addr = dma; 535 rx_info->page_offset = 0; 536 ena_buf = &rx_info->ena_buf; 537 ena_buf->paddr = dma + headroom; 538 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom; 539 540 return 0; 541 } 542 543 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring, 544 struct ena_rx_buffer *rx_info, 545 unsigned long attrs) 546 { 547 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL, 548 attrs); 549 } 550 551 static void ena_free_rx_page(struct ena_ring *rx_ring, 552 struct ena_rx_buffer *rx_info) 553 { 554 struct page *page = rx_info->page; 555 556 if (unlikely(!page)) { 557 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 558 "Trying to free unallocated buffer\n"); 559 return; 560 } 561 562 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0); 563 564 __free_page(page); 565 rx_info->page = NULL; 566 } 567 568 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 569 { 570 u16 next_to_use, req_id; 571 u32 i; 572 int rc; 573 574 next_to_use = rx_ring->next_to_use; 575 576 for (i = 0; i < num; i++) { 577 struct ena_rx_buffer *rx_info; 578 579 req_id = rx_ring->free_ids[next_to_use]; 580 581 rx_info = &rx_ring->rx_buffer_info[req_id]; 582 583 rc = ena_alloc_rx_buffer(rx_ring, rx_info); 584 if (unlikely(rc < 0)) { 585 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 586 "Failed to allocate buffer for rx queue %d\n", 587 rx_ring->qid); 588 break; 589 } 590 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 591 &rx_info->ena_buf, 592 req_id); 593 if (unlikely(rc)) { 594 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 595 "Failed to add buffer for rx queue %d\n", 596 rx_ring->qid); 597 break; 598 } 599 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 600 rx_ring->ring_size); 601 } 602 603 if (unlikely(i < num)) { 604 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1, 605 &rx_ring->syncp); 606 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 607 "Refilled rx qid %d with only %d buffers (from %d)\n", 608 rx_ring->qid, i, num); 609 } 610 611 /* ena_com_write_sq_doorbell issues a wmb() */ 612 if (likely(i)) 613 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 614 615 rx_ring->next_to_use = next_to_use; 616 617 return i; 618 } 619 620 static void ena_free_rx_bufs(struct ena_adapter *adapter, 621 u32 qid) 622 { 623 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 624 u32 i; 625 626 for (i = 0; i < rx_ring->ring_size; i++) { 627 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 628 629 if (rx_info->page) 630 ena_free_rx_page(rx_ring, rx_info); 631 } 632 } 633 634 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 635 * @adapter: board private structure 636 */ 637 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 638 { 639 struct ena_ring *rx_ring; 640 int i, rc, bufs_num; 641 642 for (i = 0; i < adapter->num_io_queues; i++) { 643 rx_ring = &adapter->rx_ring[i]; 644 bufs_num = rx_ring->ring_size - 1; 645 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 646 647 if (unlikely(rc != bufs_num)) 648 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 649 "Refilling Queue %d failed. allocated %d buffers from: %d\n", 650 i, rc, bufs_num); 651 } 652 } 653 654 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 655 { 656 int i; 657 658 for (i = 0; i < adapter->num_io_queues; i++) 659 ena_free_rx_bufs(adapter, i); 660 } 661 662 void ena_unmap_tx_buff(struct ena_ring *tx_ring, 663 struct ena_tx_buffer *tx_info) 664 { 665 struct ena_com_buf *ena_buf; 666 u32 cnt; 667 int i; 668 669 ena_buf = tx_info->bufs; 670 cnt = tx_info->num_of_bufs; 671 672 if (unlikely(!cnt)) 673 return; 674 675 if (tx_info->map_linear_data) { 676 dma_unmap_single(tx_ring->dev, 677 dma_unmap_addr(ena_buf, paddr), 678 dma_unmap_len(ena_buf, len), 679 DMA_TO_DEVICE); 680 ena_buf++; 681 cnt--; 682 } 683 684 /* unmap remaining mapped pages */ 685 for (i = 0; i < cnt; i++) { 686 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 687 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 688 ena_buf++; 689 } 690 } 691 692 /* ena_free_tx_bufs - Free Tx Buffers per Queue 693 * @tx_ring: TX ring for which buffers be freed 694 */ 695 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 696 { 697 bool print_once = true; 698 bool is_xdp_ring; 699 u32 i; 700 701 is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid); 702 703 for (i = 0; i < tx_ring->ring_size; i++) { 704 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 705 706 if (!tx_info->skb) 707 continue; 708 709 if (print_once) { 710 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, 711 "Free uncompleted tx skb qid %d idx 0x%x\n", 712 tx_ring->qid, i); 713 print_once = false; 714 } else { 715 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, 716 "Free uncompleted tx skb qid %d idx 0x%x\n", 717 tx_ring->qid, i); 718 } 719 720 ena_unmap_tx_buff(tx_ring, tx_info); 721 722 if (is_xdp_ring) 723 xdp_return_frame(tx_info->xdpf); 724 else 725 dev_kfree_skb_any(tx_info->skb); 726 } 727 728 if (!is_xdp_ring) 729 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 730 tx_ring->qid)); 731 } 732 733 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 734 { 735 struct ena_ring *tx_ring; 736 int i; 737 738 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 739 tx_ring = &adapter->tx_ring[i]; 740 ena_free_tx_bufs(tx_ring); 741 } 742 } 743 744 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 745 { 746 u16 ena_qid; 747 int i; 748 749 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 750 ena_qid = ENA_IO_TXQ_IDX(i); 751 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 752 } 753 } 754 755 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 756 { 757 u16 ena_qid; 758 int i; 759 760 for (i = 0; i < adapter->num_io_queues; i++) { 761 ena_qid = ENA_IO_RXQ_IDX(i); 762 cancel_work_sync(&adapter->ena_napi[i].dim.work); 763 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 764 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 765 } 766 } 767 768 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 769 { 770 ena_destroy_all_tx_queues(adapter); 771 ena_destroy_all_rx_queues(adapter); 772 } 773 774 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 775 struct ena_tx_buffer *tx_info, bool is_xdp) 776 { 777 if (tx_info) 778 netif_err(ring->adapter, 779 tx_done, 780 ring->netdev, 781 "tx_info doesn't have valid %s. qid %u req_id %u", 782 is_xdp ? "xdp frame" : "skb", ring->qid, req_id); 783 else 784 netif_err(ring->adapter, 785 tx_done, 786 ring->netdev, 787 "Invalid req_id %u in qid %u\n", 788 req_id, ring->qid); 789 790 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp); 791 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 792 793 return -EFAULT; 794 } 795 796 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 797 { 798 struct ena_tx_buffer *tx_info; 799 800 tx_info = &tx_ring->tx_buffer_info[req_id]; 801 if (likely(tx_info->skb)) 802 return 0; 803 804 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 805 } 806 807 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 808 { 809 struct netdev_queue *txq; 810 bool above_thresh; 811 u32 tx_bytes = 0; 812 u32 total_done = 0; 813 u16 next_to_clean; 814 u16 req_id; 815 int tx_pkts = 0; 816 int rc; 817 818 next_to_clean = tx_ring->next_to_clean; 819 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 820 821 while (tx_pkts < budget) { 822 struct ena_tx_buffer *tx_info; 823 struct sk_buff *skb; 824 825 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 826 &req_id); 827 if (rc) { 828 if (unlikely(rc == -EINVAL)) 829 handle_invalid_req_id(tx_ring, req_id, NULL, false); 830 break; 831 } 832 833 /* validate that the request id points to a valid skb */ 834 rc = validate_tx_req_id(tx_ring, req_id); 835 if (rc) 836 break; 837 838 tx_info = &tx_ring->tx_buffer_info[req_id]; 839 skb = tx_info->skb; 840 841 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 842 prefetch(&skb->end); 843 844 tx_info->skb = NULL; 845 tx_info->last_jiffies = 0; 846 847 ena_unmap_tx_buff(tx_ring, tx_info); 848 849 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 850 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 851 skb); 852 853 tx_bytes += tx_info->total_tx_size; 854 dev_kfree_skb(skb); 855 tx_pkts++; 856 total_done += tx_info->tx_descs; 857 858 tx_ring->free_ids[next_to_clean] = req_id; 859 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 860 tx_ring->ring_size); 861 } 862 863 tx_ring->next_to_clean = next_to_clean; 864 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 865 866 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 867 868 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 869 "tx_poll: q %d done. total pkts: %d\n", 870 tx_ring->qid, tx_pkts); 871 872 /* need to make the rings circular update visible to 873 * ena_start_xmit() before checking for netif_queue_stopped(). 874 */ 875 smp_mb(); 876 877 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 878 ENA_TX_WAKEUP_THRESH); 879 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 880 __netif_tx_lock(txq, smp_processor_id()); 881 above_thresh = 882 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 883 ENA_TX_WAKEUP_THRESH); 884 if (netif_tx_queue_stopped(txq) && above_thresh && 885 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 886 netif_tx_wake_queue(txq); 887 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 888 &tx_ring->syncp); 889 } 890 __netif_tx_unlock(txq); 891 } 892 893 return tx_pkts; 894 } 895 896 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len) 897 { 898 struct sk_buff *skb; 899 900 if (!first_frag) 901 skb = napi_alloc_skb(rx_ring->napi, len); 902 else 903 skb = napi_build_skb(first_frag, len); 904 905 if (unlikely(!skb)) { 906 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1, 907 &rx_ring->syncp); 908 909 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 910 "Failed to allocate skb. first_frag %s\n", 911 first_frag ? "provided" : "not provided"); 912 } 913 914 return skb; 915 } 916 917 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len, 918 u16 len, int pkt_offset) 919 { 920 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 921 922 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer 923 * for data + headroom + tailroom. 924 */ 925 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) { 926 page_ref_inc(rx_info->page); 927 rx_info->page_offset += buf_len; 928 ena_buf->paddr += buf_len; 929 ena_buf->len -= buf_len; 930 return true; 931 } 932 933 return false; 934 } 935 936 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 937 struct ena_com_rx_buf_info *ena_bufs, 938 u32 descs, 939 u16 *next_to_clean) 940 { 941 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 942 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring); 943 struct ena_rx_buffer *rx_info; 944 struct ena_adapter *adapter; 945 int page_offset, pkt_offset; 946 dma_addr_t pre_reuse_paddr; 947 u16 len, req_id, buf = 0; 948 bool reuse_rx_buf_page; 949 struct sk_buff *skb; 950 void *buf_addr; 951 int buf_offset; 952 u16 buf_len; 953 954 len = ena_bufs[buf].len; 955 req_id = ena_bufs[buf].req_id; 956 957 rx_info = &rx_ring->rx_buffer_info[req_id]; 958 959 if (unlikely(!rx_info->page)) { 960 adapter = rx_ring->adapter; 961 netif_err(adapter, rx_err, rx_ring->netdev, 962 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id); 963 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp); 964 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 965 return NULL; 966 } 967 968 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 969 "rx_info %p page %p\n", 970 rx_info, rx_info->page); 971 972 buf_offset = rx_info->buf_offset; 973 pkt_offset = buf_offset - rx_ring->rx_headroom; 974 page_offset = rx_info->page_offset; 975 buf_addr = page_address(rx_info->page) + page_offset; 976 977 if (len <= rx_ring->rx_copybreak) { 978 skb = ena_alloc_skb(rx_ring, NULL, len); 979 if (unlikely(!skb)) 980 return NULL; 981 982 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len); 983 dma_sync_single_for_device(rx_ring->dev, 984 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 985 len, 986 DMA_FROM_DEVICE); 987 988 skb_put(skb, len); 989 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 990 "RX allocated small packet. len %d.\n", skb->len); 991 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 992 rx_ring->free_ids[*next_to_clean] = req_id; 993 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 994 rx_ring->ring_size); 995 return skb; 996 } 997 998 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 999 1000 /* If XDP isn't loaded try to reuse part of the RX buffer */ 1001 reuse_rx_buf_page = !is_xdp_loaded && 1002 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1003 1004 if (!reuse_rx_buf_page) 1005 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1006 1007 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len); 1008 if (unlikely(!skb)) 1009 return NULL; 1010 1011 /* Populate skb's linear part */ 1012 skb_reserve(skb, buf_offset); 1013 skb_put(skb, len); 1014 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1015 1016 do { 1017 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1018 "RX skb updated. len %d. data_len %d\n", 1019 skb->len, skb->data_len); 1020 1021 if (!reuse_rx_buf_page) 1022 rx_info->page = NULL; 1023 1024 rx_ring->free_ids[*next_to_clean] = req_id; 1025 *next_to_clean = 1026 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1027 rx_ring->ring_size); 1028 if (likely(--descs == 0)) 1029 break; 1030 1031 buf++; 1032 len = ena_bufs[buf].len; 1033 req_id = ena_bufs[buf].req_id; 1034 1035 rx_info = &rx_ring->rx_buffer_info[req_id]; 1036 1037 /* rx_info->buf_offset includes rx_ring->rx_headroom */ 1038 buf_offset = rx_info->buf_offset; 1039 pkt_offset = buf_offset - rx_ring->rx_headroom; 1040 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1041 page_offset = rx_info->page_offset; 1042 1043 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr); 1044 1045 reuse_rx_buf_page = !is_xdp_loaded && 1046 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1047 1048 dma_sync_single_for_cpu(rx_ring->dev, 1049 pre_reuse_paddr + pkt_offset, 1050 len, 1051 DMA_FROM_DEVICE); 1052 1053 if (!reuse_rx_buf_page) 1054 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1055 1056 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1057 page_offset + buf_offset, len, buf_len); 1058 1059 } while (1); 1060 1061 return skb; 1062 } 1063 1064 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1065 * @adapter: structure containing adapter specific data 1066 * @ena_rx_ctx: received packet context/metadata 1067 * @skb: skb currently being received and modified 1068 */ 1069 static void ena_rx_checksum(struct ena_ring *rx_ring, 1070 struct ena_com_rx_ctx *ena_rx_ctx, 1071 struct sk_buff *skb) 1072 { 1073 /* Rx csum disabled */ 1074 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1075 skb->ip_summed = CHECKSUM_NONE; 1076 return; 1077 } 1078 1079 /* For fragmented packets the checksum isn't valid */ 1080 if (ena_rx_ctx->frag) { 1081 skb->ip_summed = CHECKSUM_NONE; 1082 return; 1083 } 1084 1085 /* if IP and error */ 1086 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1087 (ena_rx_ctx->l3_csum_err))) { 1088 /* ipv4 checksum error */ 1089 skb->ip_summed = CHECKSUM_NONE; 1090 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1091 &rx_ring->syncp); 1092 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1093 "RX IPv4 header checksum error\n"); 1094 return; 1095 } 1096 1097 /* if TCP/UDP */ 1098 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1099 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1100 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1101 /* TCP/UDP checksum error */ 1102 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1103 &rx_ring->syncp); 1104 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1105 "RX L4 checksum error\n"); 1106 skb->ip_summed = CHECKSUM_NONE; 1107 return; 1108 } 1109 1110 if (likely(ena_rx_ctx->l4_csum_checked)) { 1111 skb->ip_summed = CHECKSUM_UNNECESSARY; 1112 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1, 1113 &rx_ring->syncp); 1114 } else { 1115 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1, 1116 &rx_ring->syncp); 1117 skb->ip_summed = CHECKSUM_NONE; 1118 } 1119 } else { 1120 skb->ip_summed = CHECKSUM_NONE; 1121 return; 1122 } 1123 1124 } 1125 1126 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1127 struct ena_com_rx_ctx *ena_rx_ctx, 1128 struct sk_buff *skb) 1129 { 1130 enum pkt_hash_types hash_type; 1131 1132 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1133 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1134 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1135 1136 hash_type = PKT_HASH_TYPE_L4; 1137 else 1138 hash_type = PKT_HASH_TYPE_NONE; 1139 1140 /* Override hash type if the packet is fragmented */ 1141 if (ena_rx_ctx->frag) 1142 hash_type = PKT_HASH_TYPE_NONE; 1143 1144 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1145 } 1146 } 1147 1148 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs) 1149 { 1150 struct ena_rx_buffer *rx_info; 1151 int ret; 1152 1153 /* XDP multi-buffer packets not supported */ 1154 if (unlikely(num_descs > 1)) { 1155 netdev_err_once(rx_ring->adapter->netdev, 1156 "xdp: dropped unsupported multi-buffer packets\n"); 1157 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp); 1158 return ENA_XDP_DROP; 1159 } 1160 1161 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1162 xdp_prepare_buff(xdp, page_address(rx_info->page), 1163 rx_info->buf_offset, 1164 rx_ring->ena_bufs[0].len, false); 1165 1166 ret = ena_xdp_execute(rx_ring, xdp); 1167 1168 /* The xdp program might expand the headers */ 1169 if (ret == ENA_XDP_PASS) { 1170 rx_info->buf_offset = xdp->data - xdp->data_hard_start; 1171 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1172 } 1173 1174 return ret; 1175 } 1176 1177 /* ena_clean_rx_irq - Cleanup RX irq 1178 * @rx_ring: RX ring to clean 1179 * @napi: napi handler 1180 * @budget: how many packets driver is allowed to clean 1181 * 1182 * Returns the number of cleaned buffers. 1183 */ 1184 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1185 u32 budget) 1186 { 1187 u16 next_to_clean = rx_ring->next_to_clean; 1188 struct ena_com_rx_ctx ena_rx_ctx; 1189 struct ena_rx_buffer *rx_info; 1190 struct ena_adapter *adapter; 1191 u32 res_budget, work_done; 1192 int rx_copybreak_pkt = 0; 1193 int refill_threshold; 1194 struct sk_buff *skb; 1195 int refill_required; 1196 struct xdp_buff xdp; 1197 int xdp_flags = 0; 1198 int total_len = 0; 1199 int xdp_verdict; 1200 u8 pkt_offset; 1201 int rc = 0; 1202 int i; 1203 1204 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1205 "%s qid %d\n", __func__, rx_ring->qid); 1206 res_budget = budget; 1207 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq); 1208 1209 do { 1210 xdp_verdict = ENA_XDP_PASS; 1211 skb = NULL; 1212 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1213 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1214 ena_rx_ctx.descs = 0; 1215 ena_rx_ctx.pkt_offset = 0; 1216 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1217 rx_ring->ena_com_io_sq, 1218 &ena_rx_ctx); 1219 if (unlikely(rc)) 1220 goto error; 1221 1222 if (unlikely(ena_rx_ctx.descs == 0)) 1223 break; 1224 1225 /* First descriptor might have an offset set by the device */ 1226 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1227 pkt_offset = ena_rx_ctx.pkt_offset; 1228 rx_info->buf_offset += pkt_offset; 1229 1230 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1231 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1232 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1233 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1234 1235 dma_sync_single_for_cpu(rx_ring->dev, 1236 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1237 rx_ring->ena_bufs[0].len, 1238 DMA_FROM_DEVICE); 1239 1240 if (ena_xdp_present_ring(rx_ring)) 1241 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs); 1242 1243 /* allocate skb and fill it */ 1244 if (xdp_verdict == ENA_XDP_PASS) 1245 skb = ena_rx_skb(rx_ring, 1246 rx_ring->ena_bufs, 1247 ena_rx_ctx.descs, 1248 &next_to_clean); 1249 1250 if (unlikely(!skb)) { 1251 for (i = 0; i < ena_rx_ctx.descs; i++) { 1252 int req_id = rx_ring->ena_bufs[i].req_id; 1253 1254 rx_ring->free_ids[next_to_clean] = req_id; 1255 next_to_clean = 1256 ENA_RX_RING_IDX_NEXT(next_to_clean, 1257 rx_ring->ring_size); 1258 1259 /* Packets was passed for transmission, unmap it 1260 * from RX side. 1261 */ 1262 if (xdp_verdict & ENA_XDP_FORWARDED) { 1263 ena_unmap_rx_buff_attrs(rx_ring, 1264 &rx_ring->rx_buffer_info[req_id], 1265 DMA_ATTR_SKIP_CPU_SYNC); 1266 rx_ring->rx_buffer_info[req_id].page = NULL; 1267 } 1268 } 1269 if (xdp_verdict != ENA_XDP_PASS) { 1270 xdp_flags |= xdp_verdict; 1271 total_len += ena_rx_ctx.ena_bufs[0].len; 1272 res_budget--; 1273 continue; 1274 } 1275 break; 1276 } 1277 1278 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1279 1280 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1281 1282 skb_record_rx_queue(skb, rx_ring->qid); 1283 1284 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) 1285 rx_copybreak_pkt++; 1286 1287 total_len += skb->len; 1288 1289 napi_gro_receive(napi, skb); 1290 1291 res_budget--; 1292 } while (likely(res_budget)); 1293 1294 work_done = budget - res_budget; 1295 rx_ring->per_napi_packets += work_done; 1296 u64_stats_update_begin(&rx_ring->syncp); 1297 rx_ring->rx_stats.bytes += total_len; 1298 rx_ring->rx_stats.cnt += work_done; 1299 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1300 u64_stats_update_end(&rx_ring->syncp); 1301 1302 rx_ring->next_to_clean = next_to_clean; 1303 1304 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1305 refill_threshold = 1306 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1307 ENA_RX_REFILL_THRESH_PACKET); 1308 1309 /* Optimization, try to batch new rx buffers */ 1310 if (refill_required > refill_threshold) 1311 ena_refill_rx_bufs(rx_ring, refill_required); 1312 1313 if (xdp_flags & ENA_XDP_REDIRECT) 1314 xdp_do_flush(); 1315 1316 return work_done; 1317 1318 error: 1319 if (xdp_flags & ENA_XDP_REDIRECT) 1320 xdp_do_flush(); 1321 1322 adapter = netdev_priv(rx_ring->netdev); 1323 1324 if (rc == -ENOSPC) { 1325 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, &rx_ring->syncp); 1326 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); 1327 } else if (rc == -EFAULT) { 1328 ena_reset_device(adapter, ENA_REGS_RESET_RX_DESCRIPTOR_MALFORMED); 1329 } else { 1330 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, 1331 &rx_ring->syncp); 1332 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1333 } 1334 return 0; 1335 } 1336 1337 static void ena_dim_work(struct work_struct *w) 1338 { 1339 struct dim *dim = container_of(w, struct dim, work); 1340 struct dim_cq_moder cur_moder = 1341 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1342 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1343 1344 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1345 dim->state = DIM_START_MEASURE; 1346 } 1347 1348 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1349 { 1350 struct dim_sample dim_sample; 1351 struct ena_ring *rx_ring = ena_napi->rx_ring; 1352 1353 if (!rx_ring->per_napi_packets) 1354 return; 1355 1356 rx_ring->non_empty_napi_events++; 1357 1358 dim_update_sample(rx_ring->non_empty_napi_events, 1359 rx_ring->rx_stats.cnt, 1360 rx_ring->rx_stats.bytes, 1361 &dim_sample); 1362 1363 net_dim(&ena_napi->dim, &dim_sample); 1364 1365 rx_ring->per_napi_packets = 0; 1366 } 1367 1368 void ena_unmask_interrupt(struct ena_ring *tx_ring, 1369 struct ena_ring *rx_ring) 1370 { 1371 u32 rx_interval = tx_ring->smoothed_interval; 1372 struct ena_eth_io_intr_reg intr_reg; 1373 1374 /* Rx ring can be NULL when for XDP tx queues which don't have an 1375 * accompanying rx_ring pair. 1376 */ 1377 if (rx_ring) 1378 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1379 rx_ring->smoothed_interval : 1380 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1381 1382 /* Update intr register: rx intr delay, 1383 * tx intr delay and interrupt unmask 1384 */ 1385 ena_com_update_intr_reg(&intr_reg, 1386 rx_interval, 1387 tx_ring->smoothed_interval, 1388 true); 1389 1390 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1, 1391 &tx_ring->syncp); 1392 1393 /* It is a shared MSI-X. 1394 * Tx and Rx CQ have pointer to it. 1395 * So we use one of them to reach the intr reg 1396 * The Tx ring is used because the rx_ring is NULL for XDP queues 1397 */ 1398 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1399 } 1400 1401 void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1402 struct ena_ring *rx_ring) 1403 { 1404 int cpu = get_cpu(); 1405 int numa_node; 1406 1407 /* Check only one ring since the 2 rings are running on the same cpu */ 1408 if (likely(tx_ring->cpu == cpu)) 1409 goto out; 1410 1411 tx_ring->cpu = cpu; 1412 if (rx_ring) 1413 rx_ring->cpu = cpu; 1414 1415 numa_node = cpu_to_node(cpu); 1416 1417 if (likely(tx_ring->numa_node == numa_node)) 1418 goto out; 1419 1420 put_cpu(); 1421 1422 if (numa_node != NUMA_NO_NODE) { 1423 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1424 tx_ring->numa_node = numa_node; 1425 if (rx_ring) { 1426 rx_ring->numa_node = numa_node; 1427 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1428 numa_node); 1429 } 1430 } 1431 1432 return; 1433 out: 1434 put_cpu(); 1435 } 1436 1437 static int ena_io_poll(struct napi_struct *napi, int budget) 1438 { 1439 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1440 struct ena_ring *tx_ring, *rx_ring; 1441 int tx_work_done; 1442 int rx_work_done = 0; 1443 int tx_budget; 1444 int napi_comp_call = 0; 1445 int ret; 1446 1447 tx_ring = ena_napi->tx_ring; 1448 rx_ring = ena_napi->rx_ring; 1449 1450 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1451 1452 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1453 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1454 napi_complete_done(napi, 0); 1455 return 0; 1456 } 1457 1458 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1459 /* On netpoll the budget is zero and the handler should only clean the 1460 * tx completions. 1461 */ 1462 if (likely(budget)) 1463 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1464 1465 /* If the device is about to reset or down, avoid unmask 1466 * the interrupt and return 0 so NAPI won't reschedule 1467 */ 1468 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1469 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1470 napi_complete_done(napi, 0); 1471 ret = 0; 1472 1473 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1474 napi_comp_call = 1; 1475 1476 /* Update numa and unmask the interrupt only when schedule 1477 * from the interrupt context (vs from sk_busy_loop) 1478 */ 1479 if (napi_complete_done(napi, rx_work_done) && 1480 READ_ONCE(ena_napi->interrupts_masked)) { 1481 smp_rmb(); /* make sure interrupts_masked is read */ 1482 WRITE_ONCE(ena_napi->interrupts_masked, false); 1483 /* We apply adaptive moderation on Rx path only. 1484 * Tx uses static interrupt moderation. 1485 */ 1486 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1487 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1488 1489 ena_update_ring_numa_node(tx_ring, rx_ring); 1490 ena_unmask_interrupt(tx_ring, rx_ring); 1491 } 1492 1493 ret = rx_work_done; 1494 } else { 1495 ret = budget; 1496 } 1497 1498 u64_stats_update_begin(&tx_ring->syncp); 1499 tx_ring->tx_stats.napi_comp += napi_comp_call; 1500 tx_ring->tx_stats.tx_poll++; 1501 u64_stats_update_end(&tx_ring->syncp); 1502 1503 tx_ring->tx_stats.last_napi_jiffies = jiffies; 1504 1505 return ret; 1506 } 1507 1508 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1509 { 1510 struct ena_adapter *adapter = (struct ena_adapter *)data; 1511 1512 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1513 1514 /* Don't call the aenq handler before probe is done */ 1515 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1516 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1517 1518 return IRQ_HANDLED; 1519 } 1520 1521 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1522 * @irq: interrupt number 1523 * @data: pointer to a network interface private napi device structure 1524 */ 1525 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1526 { 1527 struct ena_napi *ena_napi = data; 1528 1529 /* Used to check HW health */ 1530 WRITE_ONCE(ena_napi->first_interrupt, true); 1531 1532 WRITE_ONCE(ena_napi->interrupts_masked, true); 1533 smp_wmb(); /* write interrupts_masked before calling napi */ 1534 1535 napi_schedule_irqoff(&ena_napi->napi); 1536 1537 return IRQ_HANDLED; 1538 } 1539 1540 /* Reserve a single MSI-X vector for management (admin + aenq). 1541 * plus reserve one vector for each potential io queue. 1542 * the number of potential io queues is the minimum of what the device 1543 * supports and the number of vCPUs. 1544 */ 1545 static int ena_enable_msix(struct ena_adapter *adapter) 1546 { 1547 int msix_vecs, irq_cnt; 1548 1549 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1550 netif_err(adapter, probe, adapter->netdev, 1551 "Error, MSI-X is already enabled\n"); 1552 return -EPERM; 1553 } 1554 1555 /* Reserved the max msix vectors we might need */ 1556 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1557 netif_dbg(adapter, probe, adapter->netdev, 1558 "Trying to enable MSI-X, vectors %d\n", msix_vecs); 1559 1560 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1561 msix_vecs, PCI_IRQ_MSIX); 1562 1563 if (irq_cnt < 0) { 1564 netif_err(adapter, probe, adapter->netdev, 1565 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1566 return -ENOSPC; 1567 } 1568 1569 if (irq_cnt != msix_vecs) { 1570 netif_notice(adapter, probe, adapter->netdev, 1571 "Enable only %d MSI-X (out of %d), reduce the number of queues\n", 1572 irq_cnt, msix_vecs); 1573 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1574 } 1575 1576 if (netif_enable_cpu_rmap(adapter->netdev, adapter->num_io_queues)) 1577 netif_warn(adapter, probe, adapter->netdev, 1578 "Failed to map IRQs to CPUs\n"); 1579 1580 adapter->msix_vecs = irq_cnt; 1581 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1582 1583 return 0; 1584 } 1585 1586 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1587 { 1588 u32 cpu; 1589 1590 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1591 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1592 pci_name(adapter->pdev)); 1593 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1594 ena_intr_msix_mgmnt; 1595 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1596 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1597 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1598 cpu = cpumask_first(cpu_online_mask); 1599 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1600 cpumask_set_cpu(cpu, 1601 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1602 } 1603 1604 static void ena_setup_io_intr(struct ena_adapter *adapter) 1605 { 1606 struct net_device *netdev; 1607 int irq_idx, i, cpu; 1608 int io_queue_count; 1609 1610 netdev = adapter->netdev; 1611 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1612 1613 for (i = 0; i < io_queue_count; i++) { 1614 irq_idx = ENA_IO_IRQ_IDX(i); 1615 cpu = i % num_online_cpus(); 1616 1617 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1618 "%s-Tx-Rx-%d", netdev->name, i); 1619 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1620 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1621 adapter->irq_tbl[irq_idx].vector = 1622 pci_irq_vector(adapter->pdev, irq_idx); 1623 adapter->irq_tbl[irq_idx].cpu = cpu; 1624 1625 cpumask_set_cpu(cpu, 1626 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1627 } 1628 } 1629 1630 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1631 { 1632 unsigned long flags = 0; 1633 struct ena_irq *irq; 1634 int rc; 1635 1636 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1637 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1638 irq->data); 1639 if (rc) { 1640 netif_err(adapter, probe, adapter->netdev, 1641 "Failed to request admin irq\n"); 1642 return rc; 1643 } 1644 1645 netif_dbg(adapter, probe, adapter->netdev, 1646 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1647 irq->affinity_hint_mask.bits[0], irq->vector); 1648 1649 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1650 1651 return rc; 1652 } 1653 1654 static int ena_request_io_irq(struct ena_adapter *adapter) 1655 { 1656 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1657 int rc = 0, i, k, irq_idx; 1658 unsigned long flags = 0; 1659 struct ena_irq *irq; 1660 1661 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1662 netif_err(adapter, ifup, adapter->netdev, 1663 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1664 return -EINVAL; 1665 } 1666 1667 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1668 irq = &adapter->irq_tbl[i]; 1669 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1670 irq->data); 1671 if (rc) { 1672 netif_err(adapter, ifup, adapter->netdev, 1673 "Failed to request I/O IRQ. index %d rc %d\n", 1674 i, rc); 1675 goto err; 1676 } 1677 1678 netif_dbg(adapter, ifup, adapter->netdev, 1679 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1680 i, irq->affinity_hint_mask.bits[0], irq->vector); 1681 1682 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1683 } 1684 1685 /* Now that IO IRQs have been successfully allocated map them to the 1686 * corresponding IO NAPI instance. Note that the mgmnt IRQ does not 1687 * have a NAPI, so care must be taken to correctly map IRQs to NAPIs. 1688 */ 1689 for (i = 0; i < io_queue_count; i++) { 1690 irq_idx = ENA_IO_IRQ_IDX(i); 1691 irq = &adapter->irq_tbl[irq_idx]; 1692 netif_napi_set_irq(&adapter->ena_napi[i].napi, irq->vector); 1693 } 1694 1695 return rc; 1696 1697 err: 1698 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1699 irq = &adapter->irq_tbl[k]; 1700 free_irq(irq->vector, irq->data); 1701 } 1702 1703 return rc; 1704 } 1705 1706 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1707 { 1708 struct ena_irq *irq; 1709 1710 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1711 synchronize_irq(irq->vector); 1712 irq_set_affinity_hint(irq->vector, NULL); 1713 free_irq(irq->vector, irq->data); 1714 } 1715 1716 static void ena_free_io_irq(struct ena_adapter *adapter) 1717 { 1718 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1719 struct ena_irq *irq; 1720 int i; 1721 1722 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1723 struct ena_napi *ena_napi; 1724 1725 irq = &adapter->irq_tbl[i]; 1726 irq_set_affinity_hint(irq->vector, NULL); 1727 ena_napi = irq->data; 1728 netif_napi_set_irq(&ena_napi->napi, -1); 1729 free_irq(irq->vector, irq->data); 1730 } 1731 } 1732 1733 static void ena_disable_msix(struct ena_adapter *adapter) 1734 { 1735 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1736 pci_free_irq_vectors(adapter->pdev); 1737 } 1738 1739 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1740 { 1741 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1742 int i; 1743 1744 if (!netif_running(adapter->netdev)) 1745 return; 1746 1747 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 1748 synchronize_irq(adapter->irq_tbl[i].vector); 1749 } 1750 1751 static void ena_del_napi_in_range(struct ena_adapter *adapter, 1752 int first_index, 1753 int count) 1754 { 1755 int i; 1756 1757 for (i = first_index; i < first_index + count; i++) { 1758 netif_napi_del(&adapter->ena_napi[i].napi); 1759 1760 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 1761 adapter->ena_napi[i].rx_ring); 1762 } 1763 } 1764 1765 static void ena_init_napi_in_range(struct ena_adapter *adapter, 1766 int first_index, int count) 1767 { 1768 int (*napi_handler)(struct napi_struct *napi, int budget); 1769 int i; 1770 1771 for (i = first_index; i < first_index + count; i++) { 1772 struct ena_napi *napi = &adapter->ena_napi[i]; 1773 struct ena_ring *rx_ring, *tx_ring; 1774 1775 memset(napi, 0, sizeof(*napi)); 1776 1777 rx_ring = &adapter->rx_ring[i]; 1778 tx_ring = &adapter->tx_ring[i]; 1779 1780 napi_handler = ena_io_poll; 1781 if (ENA_IS_XDP_INDEX(adapter, i)) 1782 napi_handler = ena_xdp_io_poll; 1783 1784 netif_napi_add_config(adapter->netdev, &napi->napi, napi_handler, i); 1785 1786 if (!ENA_IS_XDP_INDEX(adapter, i)) 1787 napi->rx_ring = rx_ring; 1788 1789 napi->tx_ring = tx_ring; 1790 napi->qid = i; 1791 } 1792 } 1793 1794 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 1795 int first_index, 1796 int count) 1797 { 1798 struct napi_struct *napi; 1799 int i; 1800 1801 for (i = first_index; i < first_index + count; i++) { 1802 napi = &adapter->ena_napi[i].napi; 1803 if (!ENA_IS_XDP_INDEX(adapter, i)) { 1804 /* This API is supported for non-XDP queues only */ 1805 netif_queue_set_napi(adapter->netdev, i, 1806 NETDEV_QUEUE_TYPE_TX, NULL); 1807 netif_queue_set_napi(adapter->netdev, i, 1808 NETDEV_QUEUE_TYPE_RX, NULL); 1809 } 1810 napi_disable(napi); 1811 } 1812 } 1813 1814 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 1815 int first_index, 1816 int count) 1817 { 1818 struct napi_struct *napi; 1819 int i; 1820 1821 for (i = first_index; i < first_index + count; i++) { 1822 napi = &adapter->ena_napi[i].napi; 1823 napi_enable(napi); 1824 if (!ENA_IS_XDP_INDEX(adapter, i)) { 1825 /* This API is supported for non-XDP queues only */ 1826 netif_queue_set_napi(adapter->netdev, i, 1827 NETDEV_QUEUE_TYPE_RX, napi); 1828 netif_queue_set_napi(adapter->netdev, i, 1829 NETDEV_QUEUE_TYPE_TX, napi); 1830 } 1831 } 1832 } 1833 1834 /* Configure the Rx forwarding */ 1835 static int ena_rss_configure(struct ena_adapter *adapter) 1836 { 1837 struct ena_com_dev *ena_dev = adapter->ena_dev; 1838 int rc; 1839 1840 /* In case the RSS table wasn't initialized by probe */ 1841 if (!ena_dev->rss.tbl_log_size) { 1842 rc = ena_rss_init_default(adapter); 1843 if (rc && (rc != -EOPNOTSUPP)) { 1844 netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc); 1845 return rc; 1846 } 1847 } 1848 1849 /* Set indirect table */ 1850 rc = ena_com_indirect_table_set(ena_dev); 1851 if (unlikely(rc && rc != -EOPNOTSUPP)) 1852 return rc; 1853 1854 /* Configure hash function (if supported) */ 1855 rc = ena_com_set_hash_function(ena_dev); 1856 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1857 return rc; 1858 1859 /* Configure hash inputs (if supported) */ 1860 rc = ena_com_set_hash_ctrl(ena_dev); 1861 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1862 return rc; 1863 1864 return 0; 1865 } 1866 1867 static int ena_up_complete(struct ena_adapter *adapter) 1868 { 1869 int rc; 1870 1871 rc = ena_rss_configure(adapter); 1872 if (rc) 1873 return rc; 1874 1875 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1876 1877 ena_refill_all_rx_bufs(adapter); 1878 1879 /* enable transmits */ 1880 netif_tx_start_all_queues(adapter->netdev); 1881 1882 ena_napi_enable_in_range(adapter, 1883 0, 1884 adapter->xdp_num_queues + adapter->num_io_queues); 1885 1886 return 0; 1887 } 1888 1889 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1890 { 1891 struct ena_com_create_io_ctx ctx; 1892 struct ena_com_dev *ena_dev; 1893 struct ena_ring *tx_ring; 1894 u32 msix_vector; 1895 u16 ena_qid; 1896 int rc; 1897 1898 ena_dev = adapter->ena_dev; 1899 1900 tx_ring = &adapter->tx_ring[qid]; 1901 msix_vector = ENA_IO_IRQ_IDX(qid); 1902 ena_qid = ENA_IO_TXQ_IDX(qid); 1903 1904 memset(&ctx, 0x0, sizeof(ctx)); 1905 1906 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1907 ctx.qid = ena_qid; 1908 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1909 ctx.msix_vector = msix_vector; 1910 ctx.queue_size = tx_ring->ring_size; 1911 ctx.numa_node = tx_ring->numa_node; 1912 1913 rc = ena_com_create_io_queue(ena_dev, &ctx); 1914 if (rc) { 1915 netif_err(adapter, ifup, adapter->netdev, 1916 "Failed to create I/O TX queue num %d rc: %d\n", 1917 qid, rc); 1918 return rc; 1919 } 1920 1921 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1922 &tx_ring->ena_com_io_sq, 1923 &tx_ring->ena_com_io_cq); 1924 if (rc) { 1925 netif_err(adapter, ifup, adapter->netdev, 1926 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1927 qid, rc); 1928 ena_com_destroy_io_queue(ena_dev, ena_qid); 1929 return rc; 1930 } 1931 1932 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1933 return rc; 1934 } 1935 1936 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 1937 int first_index, int count) 1938 { 1939 struct ena_com_dev *ena_dev = adapter->ena_dev; 1940 int rc, i; 1941 1942 for (i = first_index; i < first_index + count; i++) { 1943 rc = ena_create_io_tx_queue(adapter, i); 1944 if (rc) 1945 goto create_err; 1946 } 1947 1948 return 0; 1949 1950 create_err: 1951 while (i-- > first_index) 1952 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1953 1954 return rc; 1955 } 1956 1957 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1958 { 1959 struct ena_com_dev *ena_dev; 1960 struct ena_com_create_io_ctx ctx; 1961 struct ena_ring *rx_ring; 1962 u32 msix_vector; 1963 u16 ena_qid; 1964 int rc; 1965 1966 ena_dev = adapter->ena_dev; 1967 1968 rx_ring = &adapter->rx_ring[qid]; 1969 msix_vector = ENA_IO_IRQ_IDX(qid); 1970 ena_qid = ENA_IO_RXQ_IDX(qid); 1971 1972 memset(&ctx, 0x0, sizeof(ctx)); 1973 1974 ctx.qid = ena_qid; 1975 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1976 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1977 ctx.msix_vector = msix_vector; 1978 ctx.queue_size = rx_ring->ring_size; 1979 ctx.numa_node = rx_ring->numa_node; 1980 1981 rc = ena_com_create_io_queue(ena_dev, &ctx); 1982 if (rc) { 1983 netif_err(adapter, ifup, adapter->netdev, 1984 "Failed to create I/O RX queue num %d rc: %d\n", 1985 qid, rc); 1986 return rc; 1987 } 1988 1989 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1990 &rx_ring->ena_com_io_sq, 1991 &rx_ring->ena_com_io_cq); 1992 if (rc) { 1993 netif_err(adapter, ifup, adapter->netdev, 1994 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1995 qid, rc); 1996 goto err; 1997 } 1998 1999 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 2000 2001 return rc; 2002 err: 2003 ena_com_destroy_io_queue(ena_dev, ena_qid); 2004 return rc; 2005 } 2006 2007 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2008 { 2009 struct ena_com_dev *ena_dev = adapter->ena_dev; 2010 int rc, i; 2011 2012 for (i = 0; i < adapter->num_io_queues; i++) { 2013 rc = ena_create_io_rx_queue(adapter, i); 2014 if (rc) 2015 goto create_err; 2016 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2017 2018 ena_xdp_register_rxq_info(&adapter->rx_ring[i]); 2019 } 2020 2021 return 0; 2022 2023 create_err: 2024 while (i--) { 2025 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 2026 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2027 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2028 } 2029 2030 return rc; 2031 } 2032 2033 static void set_io_rings_size(struct ena_adapter *adapter, 2034 int new_tx_size, 2035 int new_rx_size) 2036 { 2037 int i; 2038 2039 for (i = 0; i < adapter->num_io_queues; i++) { 2040 adapter->tx_ring[i].ring_size = new_tx_size; 2041 adapter->rx_ring[i].ring_size = new_rx_size; 2042 } 2043 } 2044 2045 /* This function allows queue allocation to backoff when the system is 2046 * low on memory. If there is not enough memory to allocate io queues 2047 * the driver will try to allocate smaller queues. 2048 * 2049 * The backoff algorithm is as follows: 2050 * 1. Try to allocate TX and RX and if successful. 2051 * 1.1. return success 2052 * 2053 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2054 * 2055 * 3. If TX or RX is smaller than 256 2056 * 3.1. return failure. 2057 * 4. else 2058 * 4.1. go back to 1. 2059 */ 2060 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2061 { 2062 int rc, cur_rx_ring_size, cur_tx_ring_size; 2063 int new_rx_ring_size, new_tx_ring_size; 2064 2065 /* current queue sizes might be set to smaller than the requested 2066 * ones due to past queue allocation failures. 2067 */ 2068 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2069 adapter->requested_rx_ring_size); 2070 2071 while (1) { 2072 if (ena_xdp_present(adapter)) { 2073 rc = ena_setup_and_create_all_xdp_queues(adapter); 2074 2075 if (rc) 2076 goto err_setup_tx; 2077 } 2078 rc = ena_setup_tx_resources_in_range(adapter, 2079 0, 2080 adapter->num_io_queues); 2081 if (rc) 2082 goto err_setup_tx; 2083 2084 rc = ena_create_io_tx_queues_in_range(adapter, 2085 0, 2086 adapter->num_io_queues); 2087 if (rc) 2088 goto err_create_tx_queues; 2089 2090 rc = ena_setup_all_rx_resources(adapter); 2091 if (rc) 2092 goto err_setup_rx; 2093 2094 rc = ena_create_all_io_rx_queues(adapter); 2095 if (rc) 2096 goto err_create_rx_queues; 2097 2098 return 0; 2099 2100 err_create_rx_queues: 2101 ena_free_all_io_rx_resources(adapter); 2102 err_setup_rx: 2103 ena_destroy_all_tx_queues(adapter); 2104 err_create_tx_queues: 2105 ena_free_all_io_tx_resources(adapter); 2106 err_setup_tx: 2107 if (rc != -ENOMEM) { 2108 netif_err(adapter, ifup, adapter->netdev, 2109 "Queue creation failed with error code %d\n", 2110 rc); 2111 return rc; 2112 } 2113 2114 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2115 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2116 2117 netif_err(adapter, ifup, adapter->netdev, 2118 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2119 cur_tx_ring_size, cur_rx_ring_size); 2120 2121 new_tx_ring_size = cur_tx_ring_size; 2122 new_rx_ring_size = cur_rx_ring_size; 2123 2124 /* Decrease the size of the larger queue, or 2125 * decrease both if they are the same size. 2126 */ 2127 if (cur_rx_ring_size <= cur_tx_ring_size) 2128 new_tx_ring_size = cur_tx_ring_size / 2; 2129 if (cur_rx_ring_size >= cur_tx_ring_size) 2130 new_rx_ring_size = cur_rx_ring_size / 2; 2131 2132 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2133 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2134 netif_err(adapter, ifup, adapter->netdev, 2135 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2136 ENA_MIN_RING_SIZE); 2137 return rc; 2138 } 2139 2140 netif_err(adapter, ifup, adapter->netdev, 2141 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2142 new_tx_ring_size, 2143 new_rx_ring_size); 2144 2145 set_io_rings_size(adapter, new_tx_ring_size, 2146 new_rx_ring_size); 2147 } 2148 } 2149 2150 int ena_up(struct ena_adapter *adapter) 2151 { 2152 int io_queue_count, rc, i; 2153 2154 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 2155 2156 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2157 ena_setup_io_intr(adapter); 2158 2159 /* napi poll functions should be initialized before running 2160 * request_irq(), to handle a rare condition where there is a pending 2161 * interrupt, causing the ISR to fire immediately while the poll 2162 * function wasn't set yet, causing a null dereference 2163 */ 2164 ena_init_napi_in_range(adapter, 0, io_queue_count); 2165 2166 /* Enabling DIM needs to happen before enabling IRQs since DIM 2167 * is run from napi routine 2168 */ 2169 if (ena_com_interrupt_moderation_supported(adapter->ena_dev)) 2170 ena_com_enable_adaptive_moderation(adapter->ena_dev); 2171 2172 rc = ena_request_io_irq(adapter); 2173 if (rc) 2174 goto err_req_irq; 2175 2176 rc = create_queues_with_size_backoff(adapter); 2177 if (rc) 2178 goto err_create_queues_with_backoff; 2179 2180 rc = ena_up_complete(adapter); 2181 if (rc) 2182 goto err_up; 2183 2184 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2185 netif_carrier_on(adapter->netdev); 2186 2187 ena_increase_stat(&adapter->dev_stats.interface_up, 1, 2188 &adapter->syncp); 2189 2190 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2191 2192 /* Enable completion queues interrupt */ 2193 for (i = 0; i < adapter->num_io_queues; i++) 2194 ena_unmask_interrupt(&adapter->tx_ring[i], 2195 &adapter->rx_ring[i]); 2196 2197 /* schedule napi in case we had pending packets 2198 * from the last time we disable napi 2199 */ 2200 for (i = 0; i < io_queue_count; i++) 2201 napi_schedule(&adapter->ena_napi[i].napi); 2202 2203 return rc; 2204 2205 err_up: 2206 ena_destroy_all_tx_queues(adapter); 2207 ena_free_all_io_tx_resources(adapter); 2208 ena_destroy_all_rx_queues(adapter); 2209 ena_free_all_io_rx_resources(adapter); 2210 err_create_queues_with_backoff: 2211 ena_free_io_irq(adapter); 2212 err_req_irq: 2213 ena_del_napi_in_range(adapter, 0, io_queue_count); 2214 2215 return rc; 2216 } 2217 2218 void ena_down(struct ena_adapter *adapter) 2219 { 2220 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2221 2222 netif_dbg(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2223 2224 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2225 2226 ena_increase_stat(&adapter->dev_stats.interface_down, 1, 2227 &adapter->syncp); 2228 2229 netif_carrier_off(adapter->netdev); 2230 netif_tx_disable(adapter->netdev); 2231 2232 /* After this point the napi handler won't enable the tx queue */ 2233 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2234 2235 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2236 int rc; 2237 2238 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2239 if (rc) 2240 netif_err(adapter, ifdown, adapter->netdev, 2241 "Device reset failed\n"); 2242 /* stop submitting admin commands on a device that was reset */ 2243 ena_com_set_admin_running_state(adapter->ena_dev, false); 2244 } 2245 2246 ena_destroy_all_io_queues(adapter); 2247 2248 ena_disable_io_intr_sync(adapter); 2249 ena_free_io_irq(adapter); 2250 ena_del_napi_in_range(adapter, 0, io_queue_count); 2251 2252 ena_free_all_tx_bufs(adapter); 2253 ena_free_all_rx_bufs(adapter); 2254 ena_free_all_io_tx_resources(adapter); 2255 ena_free_all_io_rx_resources(adapter); 2256 } 2257 2258 /* ena_open - Called when a network interface is made active 2259 * @netdev: network interface device structure 2260 * 2261 * Returns 0 on success, negative value on failure 2262 * 2263 * The open entry point is called when a network interface is made 2264 * active by the system (IFF_UP). At this point all resources needed 2265 * for transmit and receive operations are allocated, the interrupt 2266 * handler is registered with the OS, the watchdog timer is started, 2267 * and the stack is notified that the interface is ready. 2268 */ 2269 static int ena_open(struct net_device *netdev) 2270 { 2271 struct ena_adapter *adapter = netdev_priv(netdev); 2272 int rc; 2273 2274 /* Notify the stack of the actual queue counts. */ 2275 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2276 if (rc) { 2277 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2278 return rc; 2279 } 2280 2281 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2282 if (rc) { 2283 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2284 return rc; 2285 } 2286 2287 rc = ena_up(adapter); 2288 if (rc) 2289 return rc; 2290 2291 return rc; 2292 } 2293 2294 /* ena_close - Disables a network interface 2295 * @netdev: network interface device structure 2296 * 2297 * Returns 0, this is not allowed to fail 2298 * 2299 * The close entry point is called when an interface is de-activated 2300 * by the OS. The hardware is still under the drivers control, but 2301 * needs to be disabled. A global MAC reset is issued to stop the 2302 * hardware, and all transmit and receive resources are freed. 2303 */ 2304 static int ena_close(struct net_device *netdev) 2305 { 2306 struct ena_adapter *adapter = netdev_priv(netdev); 2307 2308 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2309 2310 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2311 return 0; 2312 2313 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2314 ena_down(adapter); 2315 2316 /* Check for device status and issue reset if needed*/ 2317 check_for_admin_com_state(adapter); 2318 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2319 netif_err(adapter, ifdown, adapter->netdev, 2320 "Destroy failure, restarting device\n"); 2321 ena_dump_stats_to_dmesg(adapter); 2322 /* rtnl lock already obtained in dev_ioctl() layer */ 2323 ena_destroy_device(adapter, false); 2324 ena_restore_device(adapter); 2325 } 2326 2327 return 0; 2328 } 2329 2330 int ena_update_queue_params(struct ena_adapter *adapter, 2331 u32 new_tx_size, 2332 u32 new_rx_size, 2333 u32 new_llq_header_len) 2334 { 2335 bool dev_was_up, large_llq_changed = false; 2336 int rc = 0; 2337 2338 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2339 ena_close(adapter->netdev); 2340 adapter->requested_tx_ring_size = new_tx_size; 2341 adapter->requested_rx_ring_size = new_rx_size; 2342 ena_init_io_rings(adapter, 2343 0, 2344 adapter->xdp_num_queues + 2345 adapter->num_io_queues); 2346 2347 large_llq_changed = adapter->ena_dev->tx_mem_queue_type == 2348 ENA_ADMIN_PLACEMENT_POLICY_DEV; 2349 large_llq_changed &= 2350 new_llq_header_len != adapter->ena_dev->tx_max_header_size; 2351 2352 /* a check that the configuration is valid is done by caller */ 2353 if (large_llq_changed) { 2354 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled; 2355 2356 ena_destroy_device(adapter, false); 2357 rc = ena_restore_device(adapter); 2358 } 2359 2360 return dev_was_up && !rc ? ena_up(adapter) : rc; 2361 } 2362 2363 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak) 2364 { 2365 struct ena_ring *rx_ring; 2366 int i; 2367 2368 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE)) 2369 return -EINVAL; 2370 2371 adapter->rx_copybreak = rx_copybreak; 2372 2373 for (i = 0; i < adapter->num_io_queues; i++) { 2374 rx_ring = &adapter->rx_ring[i]; 2375 rx_ring->rx_copybreak = rx_copybreak; 2376 } 2377 2378 return 0; 2379 } 2380 2381 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2382 { 2383 struct ena_com_dev *ena_dev = adapter->ena_dev; 2384 int prev_channel_count; 2385 bool dev_was_up; 2386 2387 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2388 ena_close(adapter->netdev); 2389 prev_channel_count = adapter->num_io_queues; 2390 adapter->num_io_queues = new_channel_count; 2391 if (ena_xdp_present(adapter) && 2392 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2393 adapter->xdp_first_ring = new_channel_count; 2394 adapter->xdp_num_queues = new_channel_count; 2395 if (prev_channel_count > new_channel_count) 2396 ena_xdp_exchange_program_rx_in_range(adapter, 2397 NULL, 2398 new_channel_count, 2399 prev_channel_count); 2400 else 2401 ena_xdp_exchange_program_rx_in_range(adapter, 2402 adapter->xdp_bpf_prog, 2403 prev_channel_count, 2404 new_channel_count); 2405 } 2406 2407 /* We need to destroy the rss table so that the indirection 2408 * table will be reinitialized by ena_up() 2409 */ 2410 ena_com_rss_destroy(ena_dev); 2411 ena_init_io_rings(adapter, 2412 0, 2413 adapter->xdp_num_queues + 2414 adapter->num_io_queues); 2415 return dev_was_up ? ena_open(adapter->netdev) : 0; 2416 } 2417 2418 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2419 struct sk_buff *skb, 2420 bool disable_meta_caching) 2421 { 2422 u32 mss = skb_shinfo(skb)->gso_size; 2423 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2424 u8 l4_protocol = 0; 2425 2426 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2427 ena_tx_ctx->l4_csum_enable = 1; 2428 if (mss) { 2429 ena_tx_ctx->tso_enable = 1; 2430 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2431 ena_tx_ctx->l4_csum_partial = 0; 2432 } else { 2433 ena_tx_ctx->tso_enable = 0; 2434 ena_meta->l4_hdr_len = 0; 2435 ena_tx_ctx->l4_csum_partial = 1; 2436 } 2437 2438 switch (ip_hdr(skb)->version) { 2439 case IPVERSION: 2440 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2441 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2442 ena_tx_ctx->df = 1; 2443 if (mss) 2444 ena_tx_ctx->l3_csum_enable = 1; 2445 l4_protocol = ip_hdr(skb)->protocol; 2446 break; 2447 case 6: 2448 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2449 l4_protocol = ipv6_hdr(skb)->nexthdr; 2450 break; 2451 default: 2452 break; 2453 } 2454 2455 if (l4_protocol == IPPROTO_TCP) 2456 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2457 else 2458 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2459 2460 ena_meta->mss = mss; 2461 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2462 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2463 ena_tx_ctx->meta_valid = 1; 2464 } else if (disable_meta_caching) { 2465 memset(ena_meta, 0, sizeof(*ena_meta)); 2466 ena_tx_ctx->meta_valid = 1; 2467 } else { 2468 ena_tx_ctx->meta_valid = 0; 2469 } 2470 } 2471 2472 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2473 struct sk_buff *skb) 2474 { 2475 int num_frags, header_len, rc; 2476 2477 num_frags = skb_shinfo(skb)->nr_frags; 2478 header_len = skb_headlen(skb); 2479 2480 if (num_frags < tx_ring->sgl_size) 2481 return 0; 2482 2483 if ((num_frags == tx_ring->sgl_size) && 2484 (header_len < tx_ring->tx_max_header_size)) 2485 return 0; 2486 2487 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp); 2488 2489 rc = skb_linearize(skb); 2490 if (unlikely(rc)) { 2491 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1, 2492 &tx_ring->syncp); 2493 } 2494 2495 return rc; 2496 } 2497 2498 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2499 struct ena_tx_buffer *tx_info, 2500 struct sk_buff *skb, 2501 void **push_hdr, 2502 u16 *header_len) 2503 { 2504 struct ena_adapter *adapter = tx_ring->adapter; 2505 struct ena_com_buf *ena_buf; 2506 dma_addr_t dma; 2507 u32 skb_head_len, frag_len, last_frag; 2508 u16 push_len = 0; 2509 u16 delta = 0; 2510 int i = 0; 2511 2512 skb_head_len = skb_headlen(skb); 2513 tx_info->skb = skb; 2514 ena_buf = tx_info->bufs; 2515 2516 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2517 /* When the device is LLQ mode, the driver will copy 2518 * the header into the device memory space. 2519 * the ena_com layer assume the header is in a linear 2520 * memory space. 2521 * This assumption might be wrong since part of the header 2522 * can be in the fragmented buffers. 2523 * Use skb_header_pointer to make sure the header is in a 2524 * linear memory space. 2525 */ 2526 2527 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2528 *push_hdr = skb_header_pointer(skb, 0, push_len, 2529 tx_ring->push_buf_intermediate_buf); 2530 *header_len = push_len; 2531 if (unlikely(skb->data != *push_hdr)) { 2532 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1, 2533 &tx_ring->syncp); 2534 2535 delta = push_len - skb_head_len; 2536 } 2537 } else { 2538 *push_hdr = NULL; 2539 *header_len = min_t(u32, skb_head_len, 2540 tx_ring->tx_max_header_size); 2541 } 2542 2543 netif_dbg(adapter, tx_queued, adapter->netdev, 2544 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2545 *push_hdr, push_len); 2546 2547 if (skb_head_len > push_len) { 2548 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2549 skb_head_len - push_len, DMA_TO_DEVICE); 2550 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2551 goto error_report_dma_error; 2552 2553 ena_buf->paddr = dma; 2554 ena_buf->len = skb_head_len - push_len; 2555 2556 ena_buf++; 2557 tx_info->num_of_bufs++; 2558 tx_info->map_linear_data = 1; 2559 } else { 2560 tx_info->map_linear_data = 0; 2561 } 2562 2563 last_frag = skb_shinfo(skb)->nr_frags; 2564 2565 for (i = 0; i < last_frag; i++) { 2566 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2567 2568 frag_len = skb_frag_size(frag); 2569 2570 if (unlikely(delta >= frag_len)) { 2571 delta -= frag_len; 2572 continue; 2573 } 2574 2575 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2576 frag_len - delta, DMA_TO_DEVICE); 2577 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2578 goto error_report_dma_error; 2579 2580 ena_buf->paddr = dma; 2581 ena_buf->len = frag_len - delta; 2582 ena_buf++; 2583 tx_info->num_of_bufs++; 2584 delta = 0; 2585 } 2586 2587 return 0; 2588 2589 error_report_dma_error: 2590 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1, 2591 &tx_ring->syncp); 2592 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); 2593 2594 tx_info->skb = NULL; 2595 2596 tx_info->num_of_bufs += i; 2597 ena_unmap_tx_buff(tx_ring, tx_info); 2598 2599 return -EINVAL; 2600 } 2601 2602 /* Called with netif_tx_lock. */ 2603 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2604 { 2605 struct ena_adapter *adapter = netdev_priv(dev); 2606 struct ena_tx_buffer *tx_info; 2607 struct ena_com_tx_ctx ena_tx_ctx; 2608 struct ena_ring *tx_ring; 2609 struct netdev_queue *txq; 2610 void *push_hdr; 2611 u16 next_to_use, req_id, header_len; 2612 int qid, rc; 2613 2614 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2615 /* Determine which tx ring we will be placed on */ 2616 qid = skb_get_queue_mapping(skb); 2617 tx_ring = &adapter->tx_ring[qid]; 2618 txq = netdev_get_tx_queue(dev, qid); 2619 2620 rc = ena_check_and_linearize_skb(tx_ring, skb); 2621 if (unlikely(rc)) 2622 goto error_drop_packet; 2623 2624 next_to_use = tx_ring->next_to_use; 2625 req_id = tx_ring->free_ids[next_to_use]; 2626 tx_info = &tx_ring->tx_buffer_info[req_id]; 2627 tx_info->num_of_bufs = 0; 2628 2629 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2630 2631 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2632 if (unlikely(rc)) 2633 goto error_drop_packet; 2634 2635 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2636 ena_tx_ctx.ena_bufs = tx_info->bufs; 2637 ena_tx_ctx.push_header = push_hdr; 2638 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2639 ena_tx_ctx.req_id = req_id; 2640 ena_tx_ctx.header_len = header_len; 2641 2642 /* set flags and meta data */ 2643 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 2644 2645 rc = ena_xmit_common(adapter, 2646 tx_ring, 2647 tx_info, 2648 &ena_tx_ctx, 2649 next_to_use, 2650 skb->len); 2651 if (rc) 2652 goto error_unmap_dma; 2653 2654 netdev_tx_sent_queue(txq, skb->len); 2655 2656 /* stop the queue when no more space available, the packet can have up 2657 * to sgl_size + 2. one for the meta descriptor and one for header 2658 * (if the header is larger than tx_max_header_size). 2659 */ 2660 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2661 tx_ring->sgl_size + 2))) { 2662 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2663 __func__, qid); 2664 2665 netif_tx_stop_queue(txq); 2666 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1, 2667 &tx_ring->syncp); 2668 2669 /* There is a rare condition where this function decide to 2670 * stop the queue but meanwhile clean_tx_irq updates 2671 * next_to_completion and terminates. 2672 * The queue will remain stopped forever. 2673 * To solve this issue add a mb() to make sure that 2674 * netif_tx_stop_queue() write is vissible before checking if 2675 * there is additional space in the queue. 2676 */ 2677 smp_mb(); 2678 2679 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2680 ENA_TX_WAKEUP_THRESH)) { 2681 netif_tx_wake_queue(txq); 2682 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 2683 &tx_ring->syncp); 2684 } 2685 } 2686 2687 skb_tx_timestamp(skb); 2688 2689 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) 2690 /* trigger the dma engine. ena_ring_tx_doorbell() 2691 * calls a memory barrier inside it. 2692 */ 2693 ena_ring_tx_doorbell(tx_ring); 2694 2695 return NETDEV_TX_OK; 2696 2697 error_unmap_dma: 2698 ena_unmap_tx_buff(tx_ring, tx_info); 2699 tx_info->skb = NULL; 2700 2701 error_drop_packet: 2702 dev_kfree_skb(skb); 2703 return NETDEV_TX_OK; 2704 } 2705 2706 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 2707 { 2708 struct device *dev = &pdev->dev; 2709 struct ena_admin_host_info *host_info; 2710 ssize_t ret; 2711 int rc; 2712 2713 /* Allocate only the host info */ 2714 rc = ena_com_allocate_host_info(ena_dev); 2715 if (rc) { 2716 dev_err(dev, "Cannot allocate host info\n"); 2717 return; 2718 } 2719 2720 host_info = ena_dev->host_attr.host_info; 2721 2722 host_info->bdf = pci_dev_id(pdev); 2723 host_info->os_type = ENA_ADMIN_OS_LINUX; 2724 host_info->kernel_ver = LINUX_VERSION_CODE; 2725 ret = strscpy(host_info->kernel_ver_str, utsname()->version, 2726 sizeof(host_info->kernel_ver_str)); 2727 if (ret < 0) 2728 dev_dbg(dev, 2729 "kernel version string will be truncated, status = %zd\n", ret); 2730 2731 host_info->os_dist = 0; 2732 ret = strscpy(host_info->os_dist_str, utsname()->release, 2733 sizeof(host_info->os_dist_str)); 2734 if (ret < 0) 2735 dev_dbg(dev, 2736 "OS distribution string will be truncated, status = %zd\n", ret); 2737 2738 host_info->driver_version = 2739 (DRV_MODULE_GEN_MAJOR) | 2740 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2741 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2742 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2743 host_info->num_cpus = num_online_cpus(); 2744 2745 host_info->driver_supported_features = 2746 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 2747 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 2748 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 2749 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK | 2750 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK | 2751 ENA_ADMIN_HOST_INFO_PHC_MASK; 2752 2753 rc = ena_com_set_host_attributes(ena_dev); 2754 if (rc) { 2755 if (rc == -EOPNOTSUPP) 2756 dev_warn(dev, "Cannot set host attributes\n"); 2757 else 2758 dev_err(dev, "Cannot set host attributes\n"); 2759 2760 goto err; 2761 } 2762 2763 return; 2764 2765 err: 2766 ena_com_delete_host_info(ena_dev); 2767 } 2768 2769 static void ena_config_debug_area(struct ena_adapter *adapter) 2770 { 2771 u32 debug_area_size; 2772 int rc, ss_count; 2773 2774 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2775 if (ss_count <= 0) { 2776 netif_err(adapter, drv, adapter->netdev, 2777 "SS count is negative\n"); 2778 return; 2779 } 2780 2781 /* allocate 32 bytes for each string and 64bit for the value */ 2782 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2783 2784 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2785 if (rc) { 2786 netif_err(adapter, drv, adapter->netdev, 2787 "Cannot allocate debug area\n"); 2788 return; 2789 } 2790 2791 rc = ena_com_set_host_attributes(adapter->ena_dev); 2792 if (rc) { 2793 if (rc == -EOPNOTSUPP) 2794 netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n"); 2795 else 2796 netif_err(adapter, drv, adapter->netdev, 2797 "Cannot set host attributes\n"); 2798 goto err; 2799 } 2800 2801 return; 2802 err: 2803 ena_com_delete_debug_area(adapter->ena_dev); 2804 } 2805 2806 static void ena_get_stats64(struct net_device *netdev, 2807 struct rtnl_link_stats64 *stats) 2808 { 2809 struct ena_adapter *adapter = netdev_priv(netdev); 2810 struct ena_ring *rx_ring, *tx_ring; 2811 u64 total_xdp_rx_drops = 0; 2812 unsigned int start; 2813 u64 rx_drops; 2814 u64 tx_drops; 2815 int i; 2816 2817 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2818 return; 2819 2820 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 2821 u64 bytes, packets, xdp_rx_drops; 2822 2823 tx_ring = &adapter->tx_ring[i]; 2824 2825 do { 2826 start = u64_stats_fetch_begin(&tx_ring->syncp); 2827 packets = tx_ring->tx_stats.cnt; 2828 bytes = tx_ring->tx_stats.bytes; 2829 } while (u64_stats_fetch_retry(&tx_ring->syncp, start)); 2830 2831 stats->tx_packets += packets; 2832 stats->tx_bytes += bytes; 2833 2834 /* In XDP there isn't an RX queue counterpart */ 2835 if (ENA_IS_XDP_INDEX(adapter, i)) 2836 continue; 2837 2838 rx_ring = &adapter->rx_ring[i]; 2839 2840 do { 2841 start = u64_stats_fetch_begin(&rx_ring->syncp); 2842 packets = rx_ring->rx_stats.cnt; 2843 bytes = rx_ring->rx_stats.bytes; 2844 xdp_rx_drops = rx_ring->rx_stats.xdp_drop; 2845 } while (u64_stats_fetch_retry(&rx_ring->syncp, start)); 2846 2847 stats->rx_packets += packets; 2848 stats->rx_bytes += bytes; 2849 total_xdp_rx_drops += xdp_rx_drops; 2850 } 2851 2852 do { 2853 start = u64_stats_fetch_begin(&adapter->syncp); 2854 rx_drops = adapter->dev_stats.rx_drops; 2855 tx_drops = adapter->dev_stats.tx_drops; 2856 } while (u64_stats_fetch_retry(&adapter->syncp, start)); 2857 2858 stats->rx_dropped = rx_drops + total_xdp_rx_drops; 2859 stats->tx_dropped = tx_drops; 2860 2861 stats->multicast = 0; 2862 stats->collisions = 0; 2863 2864 stats->rx_length_errors = 0; 2865 stats->rx_crc_errors = 0; 2866 stats->rx_frame_errors = 0; 2867 stats->rx_fifo_errors = 0; 2868 stats->rx_missed_errors = 0; 2869 stats->tx_window_errors = 0; 2870 2871 stats->rx_errors = 0; 2872 stats->tx_errors = 0; 2873 } 2874 2875 static const struct net_device_ops ena_netdev_ops = { 2876 .ndo_open = ena_open, 2877 .ndo_stop = ena_close, 2878 .ndo_start_xmit = ena_start_xmit, 2879 .ndo_get_stats64 = ena_get_stats64, 2880 .ndo_tx_timeout = ena_tx_timeout, 2881 .ndo_change_mtu = ena_change_mtu, 2882 .ndo_validate_addr = eth_validate_addr, 2883 .ndo_bpf = ena_xdp, 2884 .ndo_xdp_xmit = ena_xdp_xmit, 2885 }; 2886 2887 static int ena_calc_io_queue_size(struct ena_adapter *adapter, 2888 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2889 { 2890 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq; 2891 struct ena_com_dev *ena_dev = adapter->ena_dev; 2892 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 2893 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 2894 u32 max_tx_queue_size; 2895 u32 max_rx_queue_size; 2896 2897 /* If this function is called after driver load, the ring sizes have already 2898 * been configured. Take it into account when recalculating ring size. 2899 */ 2900 if (adapter->tx_ring->ring_size) 2901 tx_queue_size = adapter->tx_ring->ring_size; 2902 2903 if (adapter->rx_ring->ring_size) 2904 rx_queue_size = adapter->rx_ring->ring_size; 2905 2906 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 2907 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 2908 &get_feat_ctx->max_queue_ext.max_queue_ext; 2909 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 2910 max_queue_ext->max_rx_sq_depth); 2911 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 2912 2913 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2914 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2915 llq->max_llq_depth); 2916 else 2917 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2918 max_queue_ext->max_tx_sq_depth); 2919 2920 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2921 max_queue_ext->max_per_packet_tx_descs); 2922 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2923 max_queue_ext->max_per_packet_rx_descs); 2924 } else { 2925 struct ena_admin_queue_feature_desc *max_queues = 2926 &get_feat_ctx->max_queues; 2927 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 2928 max_queues->max_sq_depth); 2929 max_tx_queue_size = max_queues->max_cq_depth; 2930 2931 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2932 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2933 llq->max_llq_depth); 2934 else 2935 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2936 max_queues->max_sq_depth); 2937 2938 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2939 max_queues->max_packet_tx_descs); 2940 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2941 max_queues->max_packet_rx_descs); 2942 } 2943 2944 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 2945 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 2946 2947 if (max_tx_queue_size < ENA_MIN_RING_SIZE) { 2948 netdev_err(adapter->netdev, "Device max TX queue size: %d < minimum: %d\n", 2949 max_tx_queue_size, ENA_MIN_RING_SIZE); 2950 return -EINVAL; 2951 } 2952 2953 if (max_rx_queue_size < ENA_MIN_RING_SIZE) { 2954 netdev_err(adapter->netdev, "Device max RX queue size: %d < minimum: %d\n", 2955 max_rx_queue_size, ENA_MIN_RING_SIZE); 2956 return -EINVAL; 2957 } 2958 2959 /* When forcing large headers, we multiply the entry size by 2, and therefore divide 2960 * the queue size by 2, leaving the amount of memory used by the queues unchanged. 2961 */ 2962 if (adapter->large_llq_header_enabled) { 2963 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 2964 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2965 max_tx_queue_size /= 2; 2966 dev_info(&adapter->pdev->dev, 2967 "Forcing large headers and decreasing maximum TX queue size to %d\n", 2968 max_tx_queue_size); 2969 } else { 2970 dev_err(&adapter->pdev->dev, 2971 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 2972 2973 adapter->large_llq_header_enabled = false; 2974 } 2975 } 2976 2977 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 2978 max_tx_queue_size); 2979 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 2980 max_rx_queue_size); 2981 2982 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 2983 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 2984 2985 adapter->max_tx_ring_size = max_tx_queue_size; 2986 adapter->max_rx_ring_size = max_rx_queue_size; 2987 adapter->requested_tx_ring_size = tx_queue_size; 2988 adapter->requested_rx_ring_size = rx_queue_size; 2989 2990 return 0; 2991 } 2992 2993 static int ena_device_validate_params(struct ena_adapter *adapter, 2994 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2995 { 2996 struct net_device *netdev = adapter->netdev; 2997 int rc; 2998 2999 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 3000 adapter->mac_addr); 3001 if (!rc) { 3002 netif_err(adapter, drv, netdev, 3003 "Error, mac address are different\n"); 3004 return -EINVAL; 3005 } 3006 3007 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 3008 netif_err(adapter, drv, netdev, 3009 "Error, device max mtu is smaller than netdev MTU\n"); 3010 return -EINVAL; 3011 } 3012 3013 return 0; 3014 } 3015 3016 static void set_default_llq_configurations(struct ena_adapter *adapter, 3017 struct ena_llq_configurations *llq_config, 3018 struct ena_admin_feature_llq_desc *llq) 3019 { 3020 struct ena_com_dev *ena_dev = adapter->ena_dev; 3021 3022 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3023 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3024 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3025 3026 adapter->large_llq_header_supported = 3027 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ)); 3028 adapter->large_llq_header_supported &= 3029 !!(llq->entry_size_ctrl_supported & 3030 ENA_ADMIN_LIST_ENTRY_SIZE_256B); 3031 3032 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 3033 adapter->large_llq_header_enabled) { 3034 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; 3035 llq_config->llq_ring_entry_size_value = 256; 3036 } else { 3037 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3038 llq_config->llq_ring_entry_size_value = 128; 3039 } 3040 } 3041 3042 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3043 struct ena_com_dev *ena_dev, 3044 struct ena_admin_feature_llq_desc *llq, 3045 struct ena_llq_configurations *llq_default_configurations) 3046 { 3047 int rc; 3048 u32 llq_feature_mask; 3049 3050 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3051 if (!(ena_dev->supported_features & llq_feature_mask)) { 3052 dev_warn(&pdev->dev, 3053 "LLQ is not supported Fallback to host mode policy.\n"); 3054 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3055 return 0; 3056 } 3057 3058 if (!ena_dev->mem_bar) { 3059 netdev_err(ena_dev->net_device, 3060 "LLQ is advertised as supported but device doesn't expose mem bar\n"); 3061 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3062 return 0; 3063 } 3064 3065 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3066 if (unlikely(rc)) { 3067 dev_err(&pdev->dev, 3068 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3069 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3070 } 3071 3072 return 0; 3073 } 3074 3075 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3076 int bars) 3077 { 3078 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3079 3080 if (!has_mem_bar) 3081 return 0; 3082 3083 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3084 pci_resource_start(pdev, ENA_MEM_BAR), 3085 pci_resource_len(pdev, ENA_MEM_BAR)); 3086 3087 if (!ena_dev->mem_bar) 3088 return -EFAULT; 3089 3090 return 0; 3091 } 3092 3093 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev, 3094 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3095 bool *wd_state) 3096 { 3097 struct ena_com_dev *ena_dev = adapter->ena_dev; 3098 struct net_device *netdev = adapter->netdev; 3099 struct ena_llq_configurations llq_config; 3100 struct device *dev = &pdev->dev; 3101 bool readless_supported; 3102 u32 aenq_groups; 3103 int dma_width; 3104 int rc; 3105 3106 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3107 if (rc) { 3108 dev_err(dev, "Failed to init mmio read less\n"); 3109 return rc; 3110 } 3111 3112 /* The PCIe configuration space revision id indicate if mmio reg 3113 * read is disabled 3114 */ 3115 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3116 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3117 3118 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3119 if (rc) { 3120 dev_err(dev, "Can not reset device\n"); 3121 goto err_mmio_read_less; 3122 } 3123 3124 rc = ena_com_validate_version(ena_dev); 3125 if (rc) { 3126 dev_err(dev, "Device version is too low\n"); 3127 goto err_mmio_read_less; 3128 } 3129 3130 dma_width = ena_com_get_dma_width(ena_dev); 3131 if (dma_width < 0) { 3132 dev_err(dev, "Invalid dma width value %d", dma_width); 3133 rc = dma_width; 3134 goto err_mmio_read_less; 3135 } 3136 3137 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); 3138 if (rc) { 3139 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); 3140 goto err_mmio_read_less; 3141 } 3142 3143 ena_devlink_params_get(adapter->devlink); 3144 3145 /* ENA admin level init */ 3146 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3147 if (rc) { 3148 dev_err(dev, 3149 "Can not initialize ena admin queue with device\n"); 3150 goto err_mmio_read_less; 3151 } 3152 3153 /* To enable the msix interrupts the driver needs to know the number 3154 * of queues. So the driver uses polling mode to retrieve this 3155 * information 3156 */ 3157 ena_com_set_admin_polling_mode(ena_dev, true); 3158 3159 ena_config_host_info(ena_dev, pdev); 3160 3161 /* Get Device Attributes*/ 3162 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3163 if (rc) { 3164 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3165 goto err_admin_init; 3166 } 3167 3168 /* Try to turn all the available aenq groups */ 3169 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3170 BIT(ENA_ADMIN_FATAL_ERROR) | 3171 BIT(ENA_ADMIN_WARNING) | 3172 BIT(ENA_ADMIN_NOTIFICATION) | 3173 BIT(ENA_ADMIN_KEEP_ALIVE); 3174 3175 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3176 3177 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3178 if (rc) { 3179 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3180 goto err_admin_init; 3181 } 3182 3183 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3184 3185 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq); 3186 3187 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3188 &llq_config); 3189 if (rc) { 3190 netdev_err(netdev, "Cannot set queues placement policy rc= %d\n", rc); 3191 goto err_admin_init; 3192 } 3193 3194 rc = ena_calc_io_queue_size(adapter, get_feat_ctx); 3195 if (unlikely(rc)) 3196 goto err_admin_init; 3197 3198 rc = ena_phc_init(adapter); 3199 if (unlikely(rc && (rc != -EOPNOTSUPP))) 3200 netdev_err(netdev, "Failed initializing PHC, error: %d\n", rc); 3201 3202 return 0; 3203 3204 err_admin_init: 3205 ena_com_abort_admin_commands(ena_dev); 3206 ena_com_wait_for_abort_completion(ena_dev); 3207 ena_com_delete_host_info(ena_dev); 3208 ena_com_admin_destroy(ena_dev); 3209 err_mmio_read_less: 3210 ena_com_mmio_reg_read_request_destroy(ena_dev); 3211 3212 return rc; 3213 } 3214 3215 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3216 { 3217 struct ena_com_dev *ena_dev = adapter->ena_dev; 3218 struct device *dev = &adapter->pdev->dev; 3219 int rc; 3220 3221 rc = ena_enable_msix(adapter); 3222 if (rc) { 3223 dev_err(dev, "Can not reserve msix vectors\n"); 3224 return rc; 3225 } 3226 3227 ena_setup_mgmnt_intr(adapter); 3228 3229 rc = ena_request_mgmnt_irq(adapter); 3230 if (rc) { 3231 dev_err(dev, "Can not setup management interrupts\n"); 3232 goto err_disable_msix; 3233 } 3234 3235 ena_com_set_admin_polling_mode(ena_dev, false); 3236 3237 ena_com_admin_aenq_enable(ena_dev); 3238 3239 return 0; 3240 3241 err_disable_msix: 3242 ena_disable_msix(adapter); 3243 3244 return rc; 3245 } 3246 3247 int ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3248 { 3249 struct net_device *netdev = adapter->netdev; 3250 struct ena_com_dev *ena_dev = adapter->ena_dev; 3251 bool dev_up; 3252 int rc = 0; 3253 3254 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3255 return 0; 3256 3257 netif_carrier_off(netdev); 3258 3259 timer_delete_sync(&adapter->timer_service); 3260 3261 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3262 adapter->dev_up_before_reset = dev_up; 3263 if (!graceful) 3264 ena_com_set_admin_running_state(ena_dev, false); 3265 3266 if (dev_up) 3267 ena_down(adapter); 3268 3269 /* Stop the device from sending AENQ events (in case reset flag is set 3270 * and device is up, ena_down() already reset the device. 3271 */ 3272 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3273 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3274 3275 ena_free_mgmnt_irq(adapter); 3276 3277 ena_disable_msix(adapter); 3278 3279 ena_com_abort_admin_commands(ena_dev); 3280 3281 ena_com_wait_for_abort_completion(ena_dev); 3282 3283 ena_com_admin_destroy(ena_dev); 3284 3285 ena_phc_destroy(adapter); 3286 3287 ena_com_mmio_reg_read_request_destroy(ena_dev); 3288 3289 /* return reset reason to default value */ 3290 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3291 3292 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3293 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3294 3295 return rc; 3296 } 3297 3298 int ena_restore_device(struct ena_adapter *adapter) 3299 { 3300 struct ena_com_dev_get_features_ctx get_feat_ctx; 3301 struct ena_com_dev *ena_dev = adapter->ena_dev; 3302 struct pci_dev *pdev = adapter->pdev; 3303 struct ena_ring *txr; 3304 int rc, count, i; 3305 bool wd_state; 3306 3307 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3308 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state); 3309 if (rc) { 3310 dev_err(&pdev->dev, "Can not initialize device\n"); 3311 goto err; 3312 } 3313 adapter->wd_state = wd_state; 3314 3315 count = adapter->xdp_num_queues + adapter->num_io_queues; 3316 for (i = 0 ; i < count; i++) { 3317 txr = &adapter->tx_ring[i]; 3318 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 3319 txr->tx_max_header_size = ena_dev->tx_max_header_size; 3320 } 3321 3322 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3323 if (rc) { 3324 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3325 goto err_device_destroy; 3326 } 3327 3328 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3329 if (rc) { 3330 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3331 goto err_device_destroy; 3332 } 3333 /* If the interface was up before the reset bring it up */ 3334 if (adapter->dev_up_before_reset) { 3335 rc = ena_up(adapter); 3336 if (rc) { 3337 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3338 goto err_disable_msix; 3339 } 3340 } 3341 3342 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3343 3344 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3345 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3346 netif_carrier_on(adapter->netdev); 3347 3348 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3349 adapter->last_keep_alive_jiffies = jiffies; 3350 3351 return rc; 3352 err_disable_msix: 3353 ena_free_mgmnt_irq(adapter); 3354 ena_disable_msix(adapter); 3355 err_device_destroy: 3356 ena_com_abort_admin_commands(ena_dev); 3357 ena_com_wait_for_abort_completion(ena_dev); 3358 ena_com_admin_destroy(ena_dev); 3359 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3360 ena_phc_destroy(adapter); 3361 ena_com_mmio_reg_read_request_destroy(ena_dev); 3362 err: 3363 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3364 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3365 dev_err(&pdev->dev, 3366 "Reset attempt failed. Can not reset the device\n"); 3367 3368 return rc; 3369 } 3370 3371 static void ena_fw_reset_device(struct work_struct *work) 3372 { 3373 int rc = 0; 3374 3375 struct ena_adapter *adapter = 3376 container_of(work, struct ena_adapter, reset_task); 3377 3378 rtnl_lock(); 3379 3380 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3381 rc |= ena_destroy_device(adapter, false); 3382 rc |= ena_restore_device(adapter); 3383 adapter->dev_stats.reset_fail += !!rc; 3384 3385 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n"); 3386 } 3387 3388 rtnl_unlock(); 3389 } 3390 3391 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3392 struct ena_ring *rx_ring) 3393 { 3394 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi); 3395 3396 if (likely(READ_ONCE(ena_napi->first_interrupt))) 3397 return 0; 3398 3399 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3400 return 0; 3401 3402 rx_ring->no_interrupt_event_cnt++; 3403 3404 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3405 netif_err(adapter, rx_err, adapter->netdev, 3406 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3407 rx_ring->qid); 3408 3409 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3410 return -EIO; 3411 } 3412 3413 return 0; 3414 } 3415 3416 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3417 struct ena_ring *tx_ring) 3418 { 3419 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi); 3420 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_MISS_TX_CMPL; 3421 unsigned int time_since_last_napi; 3422 unsigned int missing_tx_comp_to; 3423 bool is_tx_comp_time_expired; 3424 struct ena_tx_buffer *tx_buf; 3425 unsigned long last_jiffies; 3426 int napi_scheduled; 3427 u32 missed_tx = 0; 3428 int i, rc = 0; 3429 3430 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to); 3431 3432 for (i = 0; i < tx_ring->ring_size; i++) { 3433 tx_buf = &tx_ring->tx_buffer_info[i]; 3434 last_jiffies = tx_buf->last_jiffies; 3435 3436 if (last_jiffies == 0) 3437 /* no pending Tx at this location */ 3438 continue; 3439 3440 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3441 2 * adapter->missing_tx_completion_to); 3442 3443 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) { 3444 /* If after graceful period interrupt is still not 3445 * received, we schedule a reset 3446 */ 3447 netif_err(adapter, tx_err, adapter->netdev, 3448 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3449 tx_ring->qid); 3450 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3451 return -EIO; 3452 } 3453 3454 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3455 adapter->missing_tx_completion_to); 3456 3457 if (unlikely(is_tx_comp_time_expired)) { 3458 time_since_last_napi = 3459 jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 3460 napi_scheduled = !!(ena_napi->napi.state & NAPIF_STATE_SCHED); 3461 3462 if (missing_tx_comp_to < time_since_last_napi && napi_scheduled) { 3463 /* We suspect napi isn't called because the 3464 * bottom half is not run. Require a bigger 3465 * timeout for these cases 3466 */ 3467 if (!time_is_before_jiffies(last_jiffies + 3468 2 * adapter->missing_tx_completion_to)) 3469 continue; 3470 3471 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 3472 } 3473 3474 missed_tx++; 3475 3476 if (tx_buf->print_once) 3477 continue; 3478 3479 netif_notice(adapter, tx_err, adapter->netdev, 3480 "TX hasn't completed, qid %d, index %d. %u usecs from last napi execution, napi scheduled: %d\n", 3481 tx_ring->qid, i, time_since_last_napi, napi_scheduled); 3482 3483 tx_buf->print_once = 1; 3484 } 3485 } 3486 3487 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3488 netif_err(adapter, tx_err, adapter->netdev, 3489 "Lost TX completions are above the threshold (%d > %d). Completion transmission timeout: %u.\n", 3490 missed_tx, 3491 adapter->missing_tx_completion_threshold, 3492 missing_tx_comp_to); 3493 netif_err(adapter, tx_err, adapter->netdev, 3494 "Resetting the device\n"); 3495 3496 ena_reset_device(adapter, reset_reason); 3497 rc = -EIO; 3498 } 3499 3500 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx, 3501 &tx_ring->syncp); 3502 3503 return rc; 3504 } 3505 3506 static void check_for_missing_completions(struct ena_adapter *adapter) 3507 { 3508 struct ena_ring *tx_ring; 3509 struct ena_ring *rx_ring; 3510 int qid, budget, rc; 3511 int io_queue_count; 3512 3513 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3514 3515 /* Make sure the driver doesn't turn the device in other process */ 3516 smp_rmb(); 3517 3518 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3519 return; 3520 3521 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3522 return; 3523 3524 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3525 return; 3526 3527 budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES); 3528 3529 qid = adapter->last_monitored_tx_qid; 3530 3531 while (budget) { 3532 qid = (qid + 1) % io_queue_count; 3533 3534 tx_ring = &adapter->tx_ring[qid]; 3535 rx_ring = &adapter->rx_ring[qid]; 3536 3537 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3538 if (unlikely(rc)) 3539 return; 3540 3541 rc = !ENA_IS_XDP_INDEX(adapter, qid) ? 3542 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3543 if (unlikely(rc)) 3544 return; 3545 3546 budget--; 3547 } 3548 3549 adapter->last_monitored_tx_qid = qid; 3550 } 3551 3552 /* trigger napi schedule after 2 consecutive detections */ 3553 #define EMPTY_RX_REFILL 2 3554 /* For the rare case where the device runs out of Rx descriptors and the 3555 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3556 * for example). 3557 * This case will lead to a deadlock: 3558 * The device won't send interrupts since all the new Rx packets will be dropped 3559 * The napi handler won't allocate new Rx descriptors so the device will be 3560 * able to send new packets. 3561 * 3562 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3563 * It is recommended to have at least 512MB, with a minimum of 128MB for 3564 * constrained environment). 3565 * 3566 * When such a situation is detected - Reschedule napi 3567 */ 3568 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3569 { 3570 struct ena_ring *rx_ring; 3571 int i, refill_required; 3572 3573 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3574 return; 3575 3576 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3577 return; 3578 3579 for (i = 0; i < adapter->num_io_queues; i++) { 3580 rx_ring = &adapter->rx_ring[i]; 3581 3582 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3583 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3584 rx_ring->empty_rx_queue++; 3585 3586 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3587 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1, 3588 &rx_ring->syncp); 3589 3590 netif_err(adapter, drv, adapter->netdev, 3591 "Trigger refill for ring %d\n", i); 3592 3593 napi_schedule(rx_ring->napi); 3594 rx_ring->empty_rx_queue = 0; 3595 } 3596 } else { 3597 rx_ring->empty_rx_queue = 0; 3598 } 3599 } 3600 } 3601 3602 /* Check for keep alive expiration */ 3603 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3604 { 3605 unsigned long keep_alive_expired; 3606 3607 if (!adapter->wd_state) 3608 return; 3609 3610 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3611 return; 3612 3613 keep_alive_expired = adapter->last_keep_alive_jiffies + 3614 adapter->keep_alive_timeout; 3615 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3616 netif_err(adapter, drv, adapter->netdev, 3617 "Keep alive watchdog timeout.\n"); 3618 ena_increase_stat(&adapter->dev_stats.wd_expired, 1, 3619 &adapter->syncp); 3620 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); 3621 } 3622 } 3623 3624 static void check_for_admin_com_state(struct ena_adapter *adapter) 3625 { 3626 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3627 netif_err(adapter, drv, adapter->netdev, 3628 "ENA admin queue is not in running state!\n"); 3629 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1, 3630 &adapter->syncp); 3631 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO); 3632 } 3633 } 3634 3635 static void ena_update_hints(struct ena_adapter *adapter, 3636 struct ena_admin_ena_hw_hints *hints) 3637 { 3638 struct net_device *netdev = adapter->netdev; 3639 3640 if (hints->admin_completion_tx_timeout) 3641 adapter->ena_dev->admin_queue.completion_timeout = 3642 hints->admin_completion_tx_timeout * 1000; 3643 3644 if (hints->mmio_read_timeout) 3645 /* convert to usec */ 3646 adapter->ena_dev->mmio_read.reg_read_to = 3647 hints->mmio_read_timeout * 1000; 3648 3649 if (hints->missed_tx_completion_count_threshold_to_reset) 3650 adapter->missing_tx_completion_threshold = 3651 hints->missed_tx_completion_count_threshold_to_reset; 3652 3653 if (hints->missing_tx_completion_timeout) { 3654 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3655 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3656 else 3657 adapter->missing_tx_completion_to = 3658 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3659 } 3660 3661 if (hints->netdev_wd_timeout) 3662 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3663 3664 if (hints->driver_watchdog_timeout) { 3665 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3666 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3667 else 3668 adapter->keep_alive_timeout = 3669 msecs_to_jiffies(hints->driver_watchdog_timeout); 3670 } 3671 } 3672 3673 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3674 struct net_device *netdev) 3675 { 3676 host_info->supported_network_features[0] = 3677 netdev->features & GENMASK_ULL(31, 0); 3678 host_info->supported_network_features[1] = 3679 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3680 } 3681 3682 static void ena_timer_service(struct timer_list *t) 3683 { 3684 struct ena_adapter *adapter = timer_container_of(adapter, t, 3685 timer_service); 3686 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3687 struct ena_admin_host_info *host_info = 3688 adapter->ena_dev->host_attr.host_info; 3689 3690 check_for_missing_keep_alive(adapter); 3691 3692 check_for_admin_com_state(adapter); 3693 3694 check_for_missing_completions(adapter); 3695 3696 check_for_empty_rx_ring(adapter); 3697 3698 if (debug_area) 3699 ena_dump_stats_to_buf(adapter, debug_area); 3700 3701 if (host_info) 3702 ena_update_host_info(host_info, adapter->netdev); 3703 3704 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3705 netif_err(adapter, drv, adapter->netdev, 3706 "Trigger reset is on\n"); 3707 ena_dump_stats_to_dmesg(adapter); 3708 queue_work(ena_wq, &adapter->reset_task); 3709 return; 3710 } 3711 3712 /* Reset the timer */ 3713 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3714 } 3715 3716 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3717 struct ena_com_dev *ena_dev, 3718 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3719 { 3720 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3721 3722 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3723 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3724 &get_feat_ctx->max_queue_ext.max_queue_ext; 3725 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3726 max_queue_ext->max_rx_cq_num); 3727 3728 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3729 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3730 } else { 3731 struct ena_admin_queue_feature_desc *max_queues = 3732 &get_feat_ctx->max_queues; 3733 io_tx_sq_num = max_queues->max_sq_num; 3734 io_tx_cq_num = max_queues->max_cq_num; 3735 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3736 } 3737 3738 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3739 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3740 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3741 3742 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3743 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3744 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3745 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3746 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */ 3747 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3748 3749 return max_num_io_queues; 3750 } 3751 3752 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3753 struct net_device *netdev) 3754 { 3755 netdev_features_t dev_features = 0; 3756 3757 /* Set offload features */ 3758 if (feat->offload.tx & 3759 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3760 dev_features |= NETIF_F_IP_CSUM; 3761 3762 if (feat->offload.tx & 3763 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3764 dev_features |= NETIF_F_IPV6_CSUM; 3765 3766 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3767 dev_features |= NETIF_F_TSO; 3768 3769 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3770 dev_features |= NETIF_F_TSO6; 3771 3772 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3773 dev_features |= NETIF_F_TSO_ECN; 3774 3775 if (feat->offload.rx_supported & 3776 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3777 dev_features |= NETIF_F_RXCSUM; 3778 3779 if (feat->offload.rx_supported & 3780 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3781 dev_features |= NETIF_F_RXCSUM; 3782 3783 netdev->features = 3784 dev_features | 3785 NETIF_F_SG | 3786 NETIF_F_RXHASH | 3787 NETIF_F_HIGHDMA; 3788 3789 netdev->hw_features |= netdev->features; 3790 netdev->vlan_features |= netdev->features; 3791 } 3792 3793 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3794 struct ena_com_dev_get_features_ctx *feat) 3795 { 3796 struct net_device *netdev = adapter->netdev; 3797 3798 /* Copy mac address */ 3799 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3800 eth_hw_addr_random(netdev); 3801 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3802 } else { 3803 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3804 eth_hw_addr_set(netdev, adapter->mac_addr); 3805 } 3806 3807 /* Set offload features */ 3808 ena_set_dev_offloads(feat, netdev); 3809 3810 adapter->max_mtu = feat->dev_attr.max_mtu; 3811 netdev->max_mtu = adapter->max_mtu; 3812 netdev->min_mtu = ENA_MIN_MTU; 3813 } 3814 3815 static int ena_rss_init_default(struct ena_adapter *adapter) 3816 { 3817 struct ena_com_dev *ena_dev = adapter->ena_dev; 3818 struct device *dev = &adapter->pdev->dev; 3819 int rc, i; 3820 u32 val; 3821 3822 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3823 if (unlikely(rc)) { 3824 dev_err(dev, "Cannot init indirect table\n"); 3825 goto err_rss_init; 3826 } 3827 3828 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3829 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3830 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3831 ENA_IO_RXQ_IDX(val)); 3832 if (unlikely(rc)) { 3833 dev_err(dev, "Cannot fill indirect table\n"); 3834 goto err_fill_indir; 3835 } 3836 } 3837 3838 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE, 3839 0xFFFFFFFF); 3840 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3841 dev_err(dev, "Cannot fill hash function\n"); 3842 goto err_fill_indir; 3843 } 3844 3845 rc = ena_com_set_default_hash_ctrl(ena_dev); 3846 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3847 dev_err(dev, "Cannot fill hash control\n"); 3848 goto err_fill_indir; 3849 } 3850 3851 return 0; 3852 3853 err_fill_indir: 3854 ena_com_rss_destroy(ena_dev); 3855 err_rss_init: 3856 3857 return rc; 3858 } 3859 3860 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3861 { 3862 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3863 3864 pci_release_selected_regions(pdev, release_bars); 3865 } 3866 3867 /* ena_probe - Device Initialization Routine 3868 * @pdev: PCI device information struct 3869 * @ent: entry in ena_pci_tbl 3870 * 3871 * Returns 0 on success, negative on failure 3872 * 3873 * ena_probe initializes an adapter identified by a pci_dev structure. 3874 * The OS initialization, configuring of the adapter private structure, 3875 * and a hardware reset occur. 3876 */ 3877 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3878 { 3879 struct ena_com_dev_get_features_ctx get_feat_ctx; 3880 struct ena_com_dev *ena_dev = NULL; 3881 struct ena_adapter *adapter; 3882 struct net_device *netdev; 3883 static int adapters_found; 3884 struct devlink *devlink; 3885 u32 max_num_io_queues; 3886 bool wd_state; 3887 int bars, rc; 3888 3889 dev_dbg(&pdev->dev, "%s\n", __func__); 3890 3891 rc = pci_enable_device_mem(pdev); 3892 if (rc) { 3893 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3894 return rc; 3895 } 3896 3897 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); 3898 if (rc) { 3899 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); 3900 goto err_disable_device; 3901 } 3902 3903 pci_set_master(pdev); 3904 3905 ena_dev = vzalloc(sizeof(*ena_dev)); 3906 if (!ena_dev) { 3907 rc = -ENOMEM; 3908 goto err_disable_device; 3909 } 3910 3911 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3912 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3913 if (rc) { 3914 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3915 rc); 3916 goto err_free_ena_dev; 3917 } 3918 3919 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3920 pci_resource_start(pdev, ENA_REG_BAR), 3921 pci_resource_len(pdev, ENA_REG_BAR)); 3922 if (!ena_dev->reg_bar) { 3923 dev_err(&pdev->dev, "Failed to remap regs bar\n"); 3924 rc = -EFAULT; 3925 goto err_free_region; 3926 } 3927 3928 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 3929 3930 ena_dev->dmadev = &pdev->dev; 3931 3932 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS); 3933 if (!netdev) { 3934 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3935 rc = -ENOMEM; 3936 goto err_free_region; 3937 } 3938 3939 SET_NETDEV_DEV(netdev, &pdev->dev); 3940 adapter = netdev_priv(netdev); 3941 adapter->ena_dev = ena_dev; 3942 adapter->netdev = netdev; 3943 adapter->pdev = pdev; 3944 adapter->msg_enable = DEFAULT_MSG_ENABLE; 3945 3946 ena_dev->net_device = netdev; 3947 3948 pci_set_drvdata(pdev, adapter); 3949 3950 rc = ena_phc_alloc(adapter); 3951 if (rc) { 3952 netdev_err(netdev, "ena_phc_alloc failed\n"); 3953 goto err_netdev_destroy; 3954 } 3955 3956 rc = ena_com_allocate_customer_metrics_buffer(ena_dev); 3957 if (rc) { 3958 netdev_err(netdev, "ena_com_allocate_customer_metrics_buffer failed\n"); 3959 goto err_free_phc; 3960 } 3961 3962 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 3963 if (rc) { 3964 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n"); 3965 goto err_metrics_destroy; 3966 } 3967 3968 /* Need to do this before ena_device_init */ 3969 devlink = ena_devlink_alloc(adapter); 3970 if (!devlink) { 3971 netdev_err(netdev, "ena_devlink_alloc failed\n"); 3972 rc = -ENOMEM; 3973 goto err_metrics_destroy; 3974 } 3975 3976 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state); 3977 if (rc) { 3978 dev_err(&pdev->dev, "ENA device init failed\n"); 3979 if (rc == -ETIME) 3980 rc = -EPROBE_DEFER; 3981 goto ena_devlink_destroy; 3982 } 3983 3984 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 3985 * Updated during device initialization with the real granularity 3986 */ 3987 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3988 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3989 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3990 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3991 if (unlikely(!max_num_io_queues)) { 3992 rc = -EFAULT; 3993 goto err_device_destroy; 3994 } 3995 3996 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3997 3998 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3999 4000 adapter->num_io_queues = max_num_io_queues; 4001 adapter->max_num_io_queues = max_num_io_queues; 4002 adapter->last_monitored_tx_qid = 0; 4003 4004 adapter->xdp_first_ring = 0; 4005 adapter->xdp_num_queues = 0; 4006 4007 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 4008 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4009 adapter->disable_meta_caching = 4010 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 4011 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 4012 4013 adapter->wd_state = wd_state; 4014 4015 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 4016 4017 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 4018 if (rc) { 4019 dev_err(&pdev->dev, 4020 "Failed to query interrupt moderation feature\n"); 4021 goto err_device_destroy; 4022 } 4023 4024 ena_init_io_rings(adapter, 4025 0, 4026 adapter->xdp_num_queues + 4027 adapter->num_io_queues); 4028 4029 netdev->netdev_ops = &ena_netdev_ops; 4030 netdev->watchdog_timeo = TX_TIMEOUT; 4031 ena_set_ethtool_ops(netdev); 4032 4033 netdev->priv_flags |= IFF_UNICAST_FLT; 4034 4035 u64_stats_init(&adapter->syncp); 4036 4037 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 4038 if (rc) { 4039 dev_err(&pdev->dev, 4040 "Failed to enable and set the admin interrupts\n"); 4041 goto err_worker_destroy; 4042 } 4043 rc = ena_rss_init_default(adapter); 4044 if (rc && (rc != -EOPNOTSUPP)) { 4045 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4046 goto err_free_msix; 4047 } 4048 4049 ena_config_debug_area(adapter); 4050 4051 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues)) 4052 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 4053 NETDEV_XDP_ACT_REDIRECT; 4054 4055 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4056 4057 netif_carrier_off(netdev); 4058 4059 rc = register_netdev(netdev); 4060 if (rc) { 4061 dev_err(&pdev->dev, "Cannot register net device\n"); 4062 goto err_rss; 4063 } 4064 4065 ena_debugfs_init(netdev); 4066 4067 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4068 4069 adapter->last_keep_alive_jiffies = jiffies; 4070 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4071 adapter->missing_tx_completion_to = TX_TIMEOUT; 4072 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4073 4074 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4075 4076 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4077 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4078 4079 dev_info(&pdev->dev, 4080 "%s found at mem %lx, mac addr %pM\n", 4081 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4082 netdev->dev_addr); 4083 4084 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4085 4086 adapters_found++; 4087 4088 /* From this point, the devlink device is visible to users. 4089 * Perform the registration last to ensure that all the resources 4090 * are available and that the netdevice is registered. 4091 */ 4092 ena_devlink_register(devlink, &pdev->dev); 4093 4094 return 0; 4095 4096 err_rss: 4097 ena_com_delete_debug_area(ena_dev); 4098 ena_com_rss_destroy(ena_dev); 4099 err_free_msix: 4100 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4101 /* stop submitting admin commands on a device that was reset */ 4102 ena_com_set_admin_running_state(ena_dev, false); 4103 ena_free_mgmnt_irq(adapter); 4104 ena_disable_msix(adapter); 4105 err_worker_destroy: 4106 timer_delete(&adapter->timer_service); 4107 err_device_destroy: 4108 ena_com_delete_host_info(ena_dev); 4109 ena_com_admin_destroy(ena_dev); 4110 ena_devlink_destroy: 4111 ena_devlink_free(devlink); 4112 err_metrics_destroy: 4113 ena_com_delete_customer_metrics_buffer(ena_dev); 4114 err_free_phc: 4115 ena_phc_free(adapter); 4116 err_netdev_destroy: 4117 free_netdev(netdev); 4118 err_free_region: 4119 ena_release_bars(ena_dev, pdev); 4120 err_free_ena_dev: 4121 vfree(ena_dev); 4122 err_disable_device: 4123 pci_disable_device(pdev); 4124 return rc; 4125 } 4126 4127 /*****************************************************************************/ 4128 4129 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4130 * @pdev: PCI device information struct 4131 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4132 * 4133 * __ena_shutoff is a helper routine that does the real work on shutdown and 4134 * removal paths; the difference between those paths is with regards to whether 4135 * dettach or unregister the netdevice. 4136 */ 4137 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4138 { 4139 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4140 struct ena_com_dev *ena_dev; 4141 struct net_device *netdev; 4142 4143 ena_dev = adapter->ena_dev; 4144 netdev = adapter->netdev; 4145 4146 ena_debugfs_terminate(netdev); 4147 4148 /* Make sure timer and reset routine won't be called after 4149 * freeing device resources. 4150 */ 4151 timer_delete_sync(&adapter->timer_service); 4152 cancel_work_sync(&adapter->reset_task); 4153 4154 rtnl_lock(); /* lock released inside the below if-else block */ 4155 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4156 ena_destroy_device(adapter, true); 4157 4158 ena_phc_free(adapter); 4159 4160 ena_devlink_unregister(adapter->devlink); 4161 ena_devlink_free(adapter->devlink); 4162 4163 if (shutdown) { 4164 netif_device_detach(netdev); 4165 dev_close(netdev); 4166 rtnl_unlock(); 4167 } else { 4168 rtnl_unlock(); 4169 unregister_netdev(netdev); 4170 free_netdev(netdev); 4171 } 4172 4173 ena_com_rss_destroy(ena_dev); 4174 4175 ena_com_delete_debug_area(ena_dev); 4176 4177 ena_com_delete_host_info(ena_dev); 4178 4179 ena_com_delete_customer_metrics_buffer(ena_dev); 4180 4181 ena_release_bars(ena_dev, pdev); 4182 4183 pci_disable_device(pdev); 4184 4185 vfree(ena_dev); 4186 } 4187 4188 /* ena_remove - Device Removal Routine 4189 * @pdev: PCI device information struct 4190 * 4191 * ena_remove is called by the PCI subsystem to alert the driver 4192 * that it should release a PCI device. 4193 */ 4194 4195 static void ena_remove(struct pci_dev *pdev) 4196 { 4197 __ena_shutoff(pdev, false); 4198 } 4199 4200 /* ena_shutdown - Device Shutdown Routine 4201 * @pdev: PCI device information struct 4202 * 4203 * ena_shutdown is called by the PCI subsystem to alert the driver that 4204 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4205 */ 4206 4207 static void ena_shutdown(struct pci_dev *pdev) 4208 { 4209 __ena_shutoff(pdev, true); 4210 } 4211 4212 /* ena_suspend - PM suspend callback 4213 * @dev_d: Device information struct 4214 */ 4215 static int __maybe_unused ena_suspend(struct device *dev_d) 4216 { 4217 struct pci_dev *pdev = to_pci_dev(dev_d); 4218 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4219 4220 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp); 4221 4222 rtnl_lock(); 4223 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4224 dev_err(&pdev->dev, 4225 "Ignoring device reset request as the device is being suspended\n"); 4226 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4227 } 4228 ena_destroy_device(adapter, true); 4229 rtnl_unlock(); 4230 return 0; 4231 } 4232 4233 /* ena_resume - PM resume callback 4234 * @dev_d: Device information struct 4235 */ 4236 static int __maybe_unused ena_resume(struct device *dev_d) 4237 { 4238 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4239 int rc; 4240 4241 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp); 4242 4243 rtnl_lock(); 4244 rc = ena_restore_device(adapter); 4245 rtnl_unlock(); 4246 return rc; 4247 } 4248 4249 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4250 4251 static struct pci_driver ena_pci_driver = { 4252 .name = DRV_MODULE_NAME, 4253 .id_table = ena_pci_tbl, 4254 .probe = ena_probe, 4255 .remove = ena_remove, 4256 .shutdown = ena_shutdown, 4257 .driver.pm = &ena_pm_ops, 4258 .sriov_configure = pci_sriov_configure_simple, 4259 }; 4260 4261 static int __init ena_init(void) 4262 { 4263 int ret; 4264 4265 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4266 if (!ena_wq) { 4267 pr_err("Failed to create workqueue\n"); 4268 return -ENOMEM; 4269 } 4270 4271 ret = pci_register_driver(&ena_pci_driver); 4272 if (ret) 4273 destroy_workqueue(ena_wq); 4274 4275 return ret; 4276 } 4277 4278 static void __exit ena_cleanup(void) 4279 { 4280 pci_unregister_driver(&ena_pci_driver); 4281 4282 if (ena_wq) { 4283 destroy_workqueue(ena_wq); 4284 ena_wq = NULL; 4285 } 4286 } 4287 4288 /****************************************************************************** 4289 ******************************** AENQ Handlers ******************************* 4290 *****************************************************************************/ 4291 /* ena_update_on_link_change: 4292 * Notify the network interface about the change in link status 4293 */ 4294 static void ena_update_on_link_change(void *adapter_data, 4295 struct ena_admin_aenq_entry *aenq_e) 4296 { 4297 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4298 struct ena_admin_aenq_link_change_desc *aenq_desc = 4299 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4300 int status = aenq_desc->flags & 4301 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4302 4303 if (status) { 4304 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 4305 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4306 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4307 netif_carrier_on(adapter->netdev); 4308 } else { 4309 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4310 netif_carrier_off(adapter->netdev); 4311 } 4312 } 4313 4314 static void ena_keep_alive_wd(void *adapter_data, 4315 struct ena_admin_aenq_entry *aenq_e) 4316 { 4317 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4318 struct ena_admin_aenq_keep_alive_desc *desc; 4319 u64 rx_drops; 4320 u64 tx_drops; 4321 4322 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4323 adapter->last_keep_alive_jiffies = jiffies; 4324 4325 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4326 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4327 4328 u64_stats_update_begin(&adapter->syncp); 4329 /* These stats are accumulated by the device, so the counters indicate 4330 * all drops since last reset. 4331 */ 4332 adapter->dev_stats.rx_drops = rx_drops; 4333 adapter->dev_stats.tx_drops = tx_drops; 4334 u64_stats_update_end(&adapter->syncp); 4335 } 4336 4337 static void ena_notification(void *adapter_data, 4338 struct ena_admin_aenq_entry *aenq_e) 4339 { 4340 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4341 struct ena_admin_ena_hw_hints *hints; 4342 4343 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4344 "Invalid group(%x) expected %x\n", 4345 aenq_e->aenq_common_desc.group, 4346 ENA_ADMIN_NOTIFICATION); 4347 4348 switch (aenq_e->aenq_common_desc.syndrome) { 4349 case ENA_ADMIN_UPDATE_HINTS: 4350 hints = (struct ena_admin_ena_hw_hints *) 4351 (&aenq_e->inline_data_w4); 4352 ena_update_hints(adapter, hints); 4353 break; 4354 default: 4355 netif_err(adapter, drv, adapter->netdev, 4356 "Invalid aenq notification link state %d\n", 4357 aenq_e->aenq_common_desc.syndrome); 4358 } 4359 } 4360 4361 /* This handler will called for unknown event group or unimplemented handlers*/ 4362 static void unimplemented_aenq_handler(void *data, 4363 struct ena_admin_aenq_entry *aenq_e) 4364 { 4365 struct ena_adapter *adapter = (struct ena_adapter *)data; 4366 4367 netif_err(adapter, drv, adapter->netdev, 4368 "Unknown event was received or event with unimplemented handler\n"); 4369 } 4370 4371 static struct ena_aenq_handlers aenq_handlers = { 4372 .handlers = { 4373 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4374 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4375 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4376 }, 4377 .unimplemented_handler = unimplemented_aenq_handler 4378 }; 4379 4380 module_init(ena_init); 4381 module_exit(ena_cleanup); 4382