1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #ifdef CONFIG_RFS_ACCEL 9 #include <linux/cpu_rmap.h> 10 #endif /* CONFIG_RFS_ACCEL */ 11 #include <linux/ethtool.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/numa.h> 15 #include <linux/pci.h> 16 #include <linux/utsname.h> 17 #include <linux/version.h> 18 #include <linux/vmalloc.h> 19 #include <net/ip.h> 20 21 #include "ena_netdev.h" 22 #include "ena_pci_id_tbl.h" 23 #include "ena_xdp.h" 24 25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 26 MODULE_DESCRIPTION(DEVICE_NAME); 27 MODULE_LICENSE("GPL"); 28 29 /* Time in jiffies before concluding the transmitter is hung. */ 30 #define TX_TIMEOUT (5 * HZ) 31 32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus()) 33 34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 35 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 36 37 static struct ena_aenq_handlers aenq_handlers; 38 39 static struct workqueue_struct *ena_wq; 40 41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 42 43 static int ena_rss_init_default(struct ena_adapter *adapter); 44 static void check_for_admin_com_state(struct ena_adapter *adapter); 45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 46 static int ena_restore_device(struct ena_adapter *adapter); 47 48 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 49 { 50 struct ena_adapter *adapter = netdev_priv(dev); 51 52 /* Change the state of the device to trigger reset 53 * Check that we are not in the middle or a trigger already 54 */ 55 56 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 57 return; 58 59 ena_reset_device(adapter, ENA_REGS_RESET_OS_NETDEV_WD); 60 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp); 61 62 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 63 } 64 65 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 66 { 67 int i; 68 69 for (i = 0; i < adapter->num_io_queues; i++) 70 adapter->rx_ring[i].mtu = mtu; 71 } 72 73 static int ena_change_mtu(struct net_device *dev, int new_mtu) 74 { 75 struct ena_adapter *adapter = netdev_priv(dev); 76 int ret; 77 78 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 79 if (!ret) { 80 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); 81 update_rx_ring_mtu(adapter, new_mtu); 82 dev->mtu = new_mtu; 83 } else { 84 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 85 new_mtu); 86 } 87 88 return ret; 89 } 90 91 int ena_xmit_common(struct ena_adapter *adapter, 92 struct ena_ring *ring, 93 struct ena_tx_buffer *tx_info, 94 struct ena_com_tx_ctx *ena_tx_ctx, 95 u16 next_to_use, 96 u32 bytes) 97 { 98 int rc, nb_hw_desc; 99 100 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 101 ena_tx_ctx))) { 102 netif_dbg(adapter, tx_queued, adapter->netdev, 103 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 104 ring->qid); 105 ena_ring_tx_doorbell(ring); 106 } 107 108 /* prepare the packet's descriptors to dma engine */ 109 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 110 &nb_hw_desc); 111 112 /* In case there isn't enough space in the queue for the packet, 113 * we simply drop it. All other failure reasons of 114 * ena_com_prepare_tx() are fatal and therefore require a device reset. 115 */ 116 if (unlikely(rc)) { 117 netif_err(adapter, tx_queued, adapter->netdev, 118 "Failed to prepare tx bufs\n"); 119 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, 120 &ring->syncp); 121 if (rc != -ENOMEM) 122 ena_reset_device(adapter, 123 ENA_REGS_RESET_DRIVER_INVALID_STATE); 124 return rc; 125 } 126 127 u64_stats_update_begin(&ring->syncp); 128 ring->tx_stats.cnt++; 129 ring->tx_stats.bytes += bytes; 130 u64_stats_update_end(&ring->syncp); 131 132 tx_info->tx_descs = nb_hw_desc; 133 tx_info->total_tx_size = bytes; 134 tx_info->last_jiffies = jiffies; 135 tx_info->print_once = 0; 136 137 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 138 ring->ring_size); 139 return 0; 140 } 141 142 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 143 { 144 #ifdef CONFIG_RFS_ACCEL 145 u32 i; 146 int rc; 147 148 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 149 if (!adapter->netdev->rx_cpu_rmap) 150 return -ENOMEM; 151 for (i = 0; i < adapter->num_io_queues; i++) { 152 int irq_idx = ENA_IO_IRQ_IDX(i); 153 154 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 155 pci_irq_vector(adapter->pdev, irq_idx)); 156 if (rc) { 157 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 158 adapter->netdev->rx_cpu_rmap = NULL; 159 return rc; 160 } 161 } 162 #endif /* CONFIG_RFS_ACCEL */ 163 return 0; 164 } 165 166 static void ena_init_io_rings_common(struct ena_adapter *adapter, 167 struct ena_ring *ring, u16 qid) 168 { 169 ring->qid = qid; 170 ring->pdev = adapter->pdev; 171 ring->dev = &adapter->pdev->dev; 172 ring->netdev = adapter->netdev; 173 ring->napi = &adapter->ena_napi[qid].napi; 174 ring->adapter = adapter; 175 ring->ena_dev = adapter->ena_dev; 176 ring->per_napi_packets = 0; 177 ring->cpu = 0; 178 ring->numa_node = 0; 179 ring->no_interrupt_event_cnt = 0; 180 u64_stats_init(&ring->syncp); 181 } 182 183 void ena_init_io_rings(struct ena_adapter *adapter, 184 int first_index, int count) 185 { 186 struct ena_com_dev *ena_dev; 187 struct ena_ring *txr, *rxr; 188 int i; 189 190 ena_dev = adapter->ena_dev; 191 192 for (i = first_index; i < first_index + count; i++) { 193 txr = &adapter->tx_ring[i]; 194 rxr = &adapter->rx_ring[i]; 195 196 /* TX common ring state */ 197 ena_init_io_rings_common(adapter, txr, i); 198 199 /* TX specific ring state */ 200 txr->ring_size = adapter->requested_tx_ring_size; 201 txr->tx_max_header_size = ena_dev->tx_max_header_size; 202 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 203 txr->sgl_size = adapter->max_tx_sgl_size; 204 txr->smoothed_interval = 205 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 206 txr->disable_meta_caching = adapter->disable_meta_caching; 207 spin_lock_init(&txr->xdp_tx_lock); 208 209 /* Don't init RX queues for xdp queues */ 210 if (!ENA_IS_XDP_INDEX(adapter, i)) { 211 /* RX common ring state */ 212 ena_init_io_rings_common(adapter, rxr, i); 213 214 /* RX specific ring state */ 215 rxr->ring_size = adapter->requested_rx_ring_size; 216 rxr->rx_copybreak = adapter->rx_copybreak; 217 rxr->sgl_size = adapter->max_rx_sgl_size; 218 rxr->smoothed_interval = 219 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 220 rxr->empty_rx_queue = 0; 221 rxr->rx_headroom = NET_SKB_PAD; 222 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 223 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues]; 224 } 225 } 226 } 227 228 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 229 * @adapter: network interface device structure 230 * @qid: queue index 231 * 232 * Return 0 on success, negative on failure 233 */ 234 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 235 { 236 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 237 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 238 int size, i, node; 239 240 if (tx_ring->tx_buffer_info) { 241 netif_err(adapter, ifup, 242 adapter->netdev, "tx_buffer_info info is not NULL"); 243 return -EEXIST; 244 } 245 246 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 247 node = cpu_to_node(ena_irq->cpu); 248 249 tx_ring->tx_buffer_info = vzalloc_node(size, node); 250 if (!tx_ring->tx_buffer_info) { 251 tx_ring->tx_buffer_info = vzalloc(size); 252 if (!tx_ring->tx_buffer_info) 253 goto err_tx_buffer_info; 254 } 255 256 size = sizeof(u16) * tx_ring->ring_size; 257 tx_ring->free_ids = vzalloc_node(size, node); 258 if (!tx_ring->free_ids) { 259 tx_ring->free_ids = vzalloc(size); 260 if (!tx_ring->free_ids) 261 goto err_tx_free_ids; 262 } 263 264 size = tx_ring->tx_max_header_size; 265 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 266 if (!tx_ring->push_buf_intermediate_buf) { 267 tx_ring->push_buf_intermediate_buf = vzalloc(size); 268 if (!tx_ring->push_buf_intermediate_buf) 269 goto err_push_buf_intermediate_buf; 270 } 271 272 /* Req id ring for TX out of order completions */ 273 for (i = 0; i < tx_ring->ring_size; i++) 274 tx_ring->free_ids[i] = i; 275 276 /* Reset tx statistics */ 277 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 278 279 tx_ring->next_to_use = 0; 280 tx_ring->next_to_clean = 0; 281 tx_ring->cpu = ena_irq->cpu; 282 tx_ring->numa_node = node; 283 return 0; 284 285 err_push_buf_intermediate_buf: 286 vfree(tx_ring->free_ids); 287 tx_ring->free_ids = NULL; 288 err_tx_free_ids: 289 vfree(tx_ring->tx_buffer_info); 290 tx_ring->tx_buffer_info = NULL; 291 err_tx_buffer_info: 292 return -ENOMEM; 293 } 294 295 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 296 * @adapter: network interface device structure 297 * @qid: queue index 298 * 299 * Free all transmit software resources 300 */ 301 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 302 { 303 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 304 305 vfree(tx_ring->tx_buffer_info); 306 tx_ring->tx_buffer_info = NULL; 307 308 vfree(tx_ring->free_ids); 309 tx_ring->free_ids = NULL; 310 311 vfree(tx_ring->push_buf_intermediate_buf); 312 tx_ring->push_buf_intermediate_buf = NULL; 313 } 314 315 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 316 int first_index, int count) 317 { 318 int i, rc = 0; 319 320 for (i = first_index; i < first_index + count; i++) { 321 rc = ena_setup_tx_resources(adapter, i); 322 if (rc) 323 goto err_setup_tx; 324 } 325 326 return 0; 327 328 err_setup_tx: 329 330 netif_err(adapter, ifup, adapter->netdev, 331 "Tx queue %d: allocation failed\n", i); 332 333 /* rewind the index freeing the rings as we go */ 334 while (first_index < i--) 335 ena_free_tx_resources(adapter, i); 336 return rc; 337 } 338 339 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 340 int first_index, int count) 341 { 342 int i; 343 344 for (i = first_index; i < first_index + count; i++) 345 ena_free_tx_resources(adapter, i); 346 } 347 348 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 349 * @adapter: board private structure 350 * 351 * Free all transmit software resources 352 */ 353 void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 354 { 355 ena_free_all_io_tx_resources_in_range(adapter, 356 0, 357 adapter->xdp_num_queues + 358 adapter->num_io_queues); 359 } 360 361 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 362 * @adapter: network interface device structure 363 * @qid: queue index 364 * 365 * Returns 0 on success, negative on failure 366 */ 367 static int ena_setup_rx_resources(struct ena_adapter *adapter, 368 u32 qid) 369 { 370 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 371 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 372 int size, node, i; 373 374 if (rx_ring->rx_buffer_info) { 375 netif_err(adapter, ifup, adapter->netdev, 376 "rx_buffer_info is not NULL"); 377 return -EEXIST; 378 } 379 380 /* alloc extra element so in rx path 381 * we can always prefetch rx_info + 1 382 */ 383 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 384 node = cpu_to_node(ena_irq->cpu); 385 386 rx_ring->rx_buffer_info = vzalloc_node(size, node); 387 if (!rx_ring->rx_buffer_info) { 388 rx_ring->rx_buffer_info = vzalloc(size); 389 if (!rx_ring->rx_buffer_info) 390 return -ENOMEM; 391 } 392 393 size = sizeof(u16) * rx_ring->ring_size; 394 rx_ring->free_ids = vzalloc_node(size, node); 395 if (!rx_ring->free_ids) { 396 rx_ring->free_ids = vzalloc(size); 397 if (!rx_ring->free_ids) { 398 vfree(rx_ring->rx_buffer_info); 399 rx_ring->rx_buffer_info = NULL; 400 return -ENOMEM; 401 } 402 } 403 404 /* Req id ring for receiving RX pkts out of order */ 405 for (i = 0; i < rx_ring->ring_size; i++) 406 rx_ring->free_ids[i] = i; 407 408 /* Reset rx statistics */ 409 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 410 411 rx_ring->next_to_clean = 0; 412 rx_ring->next_to_use = 0; 413 rx_ring->cpu = ena_irq->cpu; 414 rx_ring->numa_node = node; 415 416 return 0; 417 } 418 419 /* ena_free_rx_resources - Free I/O Rx Resources 420 * @adapter: network interface device structure 421 * @qid: queue index 422 * 423 * Free all receive software resources 424 */ 425 static void ena_free_rx_resources(struct ena_adapter *adapter, 426 u32 qid) 427 { 428 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 429 430 vfree(rx_ring->rx_buffer_info); 431 rx_ring->rx_buffer_info = NULL; 432 433 vfree(rx_ring->free_ids); 434 rx_ring->free_ids = NULL; 435 } 436 437 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 438 * @adapter: board private structure 439 * 440 * Return 0 on success, negative on failure 441 */ 442 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 443 { 444 int i, rc = 0; 445 446 for (i = 0; i < adapter->num_io_queues; i++) { 447 rc = ena_setup_rx_resources(adapter, i); 448 if (rc) 449 goto err_setup_rx; 450 } 451 452 return 0; 453 454 err_setup_rx: 455 456 netif_err(adapter, ifup, adapter->netdev, 457 "Rx queue %d: allocation failed\n", i); 458 459 /* rewind the index freeing the rings as we go */ 460 while (i--) 461 ena_free_rx_resources(adapter, i); 462 return rc; 463 } 464 465 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 466 * @adapter: board private structure 467 * 468 * Free all receive software resources 469 */ 470 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 471 { 472 int i; 473 474 for (i = 0; i < adapter->num_io_queues; i++) 475 ena_free_rx_resources(adapter, i); 476 } 477 478 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring, 479 dma_addr_t *dma) 480 { 481 struct page *page; 482 483 /* This would allocate the page on the same NUMA node the executing code 484 * is running on. 485 */ 486 page = dev_alloc_page(); 487 if (!page) { 488 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, 489 &rx_ring->syncp); 490 return ERR_PTR(-ENOSPC); 491 } 492 493 /* To enable NIC-side port-mirroring, AKA SPAN port, 494 * we make the buffer readable from the nic as well 495 */ 496 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 497 DMA_BIDIRECTIONAL); 498 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) { 499 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1, 500 &rx_ring->syncp); 501 __free_page(page); 502 return ERR_PTR(-EIO); 503 } 504 505 return page; 506 } 507 508 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring, 509 struct ena_rx_buffer *rx_info) 510 { 511 int headroom = rx_ring->rx_headroom; 512 struct ena_com_buf *ena_buf; 513 struct page *page; 514 dma_addr_t dma; 515 int tailroom; 516 517 /* restore page offset value in case it has been changed by device */ 518 rx_info->buf_offset = headroom; 519 520 /* if previous allocated page is not used */ 521 if (unlikely(rx_info->page)) 522 return 0; 523 524 /* We handle DMA here */ 525 page = ena_alloc_map_page(rx_ring, &dma); 526 if (unlikely(IS_ERR(page))) 527 return PTR_ERR(page); 528 529 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 530 "Allocate page %p, rx_info %p\n", page, rx_info); 531 532 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 533 534 rx_info->page = page; 535 rx_info->dma_addr = dma; 536 rx_info->page_offset = 0; 537 ena_buf = &rx_info->ena_buf; 538 ena_buf->paddr = dma + headroom; 539 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom; 540 541 return 0; 542 } 543 544 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring, 545 struct ena_rx_buffer *rx_info, 546 unsigned long attrs) 547 { 548 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, 549 DMA_BIDIRECTIONAL, attrs); 550 } 551 552 static void ena_free_rx_page(struct ena_ring *rx_ring, 553 struct ena_rx_buffer *rx_info) 554 { 555 struct page *page = rx_info->page; 556 557 if (unlikely(!page)) { 558 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 559 "Trying to free unallocated buffer\n"); 560 return; 561 } 562 563 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0); 564 565 __free_page(page); 566 rx_info->page = NULL; 567 } 568 569 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 570 { 571 u16 next_to_use, req_id; 572 u32 i; 573 int rc; 574 575 next_to_use = rx_ring->next_to_use; 576 577 for (i = 0; i < num; i++) { 578 struct ena_rx_buffer *rx_info; 579 580 req_id = rx_ring->free_ids[next_to_use]; 581 582 rx_info = &rx_ring->rx_buffer_info[req_id]; 583 584 rc = ena_alloc_rx_buffer(rx_ring, rx_info); 585 if (unlikely(rc < 0)) { 586 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 587 "Failed to allocate buffer for rx queue %d\n", 588 rx_ring->qid); 589 break; 590 } 591 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 592 &rx_info->ena_buf, 593 req_id); 594 if (unlikely(rc)) { 595 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 596 "Failed to add buffer for rx queue %d\n", 597 rx_ring->qid); 598 break; 599 } 600 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 601 rx_ring->ring_size); 602 } 603 604 if (unlikely(i < num)) { 605 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1, 606 &rx_ring->syncp); 607 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 608 "Refilled rx qid %d with only %d buffers (from %d)\n", 609 rx_ring->qid, i, num); 610 } 611 612 /* ena_com_write_sq_doorbell issues a wmb() */ 613 if (likely(i)) 614 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 615 616 rx_ring->next_to_use = next_to_use; 617 618 return i; 619 } 620 621 static void ena_free_rx_bufs(struct ena_adapter *adapter, 622 u32 qid) 623 { 624 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 625 u32 i; 626 627 for (i = 0; i < rx_ring->ring_size; i++) { 628 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 629 630 if (rx_info->page) 631 ena_free_rx_page(rx_ring, rx_info); 632 } 633 } 634 635 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 636 * @adapter: board private structure 637 */ 638 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 639 { 640 struct ena_ring *rx_ring; 641 int i, rc, bufs_num; 642 643 for (i = 0; i < adapter->num_io_queues; i++) { 644 rx_ring = &adapter->rx_ring[i]; 645 bufs_num = rx_ring->ring_size - 1; 646 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 647 648 if (unlikely(rc != bufs_num)) 649 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 650 "Refilling Queue %d failed. allocated %d buffers from: %d\n", 651 i, rc, bufs_num); 652 } 653 } 654 655 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 656 { 657 int i; 658 659 for (i = 0; i < adapter->num_io_queues; i++) 660 ena_free_rx_bufs(adapter, i); 661 } 662 663 void ena_unmap_tx_buff(struct ena_ring *tx_ring, 664 struct ena_tx_buffer *tx_info) 665 { 666 struct ena_com_buf *ena_buf; 667 u32 cnt; 668 int i; 669 670 ena_buf = tx_info->bufs; 671 cnt = tx_info->num_of_bufs; 672 673 if (unlikely(!cnt)) 674 return; 675 676 if (tx_info->map_linear_data) { 677 dma_unmap_single(tx_ring->dev, 678 dma_unmap_addr(ena_buf, paddr), 679 dma_unmap_len(ena_buf, len), 680 DMA_TO_DEVICE); 681 ena_buf++; 682 cnt--; 683 } 684 685 /* unmap remaining mapped pages */ 686 for (i = 0; i < cnt; i++) { 687 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 688 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 689 ena_buf++; 690 } 691 } 692 693 /* ena_free_tx_bufs - Free Tx Buffers per Queue 694 * @tx_ring: TX ring for which buffers be freed 695 */ 696 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 697 { 698 bool print_once = true; 699 u32 i; 700 701 for (i = 0; i < tx_ring->ring_size; i++) { 702 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 703 704 if (!tx_info->skb) 705 continue; 706 707 if (print_once) { 708 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, 709 "Free uncompleted tx skb qid %d idx 0x%x\n", 710 tx_ring->qid, i); 711 print_once = false; 712 } else { 713 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, 714 "Free uncompleted tx skb qid %d idx 0x%x\n", 715 tx_ring->qid, i); 716 } 717 718 ena_unmap_tx_buff(tx_ring, tx_info); 719 720 dev_kfree_skb_any(tx_info->skb); 721 } 722 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 723 tx_ring->qid)); 724 } 725 726 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 727 { 728 struct ena_ring *tx_ring; 729 int i; 730 731 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 732 tx_ring = &adapter->tx_ring[i]; 733 ena_free_tx_bufs(tx_ring); 734 } 735 } 736 737 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 738 { 739 u16 ena_qid; 740 int i; 741 742 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 743 ena_qid = ENA_IO_TXQ_IDX(i); 744 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 745 } 746 } 747 748 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 749 { 750 u16 ena_qid; 751 int i; 752 753 for (i = 0; i < adapter->num_io_queues; i++) { 754 ena_qid = ENA_IO_RXQ_IDX(i); 755 cancel_work_sync(&adapter->ena_napi[i].dim.work); 756 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 757 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 758 } 759 } 760 761 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 762 { 763 ena_destroy_all_tx_queues(adapter); 764 ena_destroy_all_rx_queues(adapter); 765 } 766 767 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 768 struct ena_tx_buffer *tx_info, bool is_xdp) 769 { 770 if (tx_info) 771 netif_err(ring->adapter, 772 tx_done, 773 ring->netdev, 774 "tx_info doesn't have valid %s. qid %u req_id %u", 775 is_xdp ? "xdp frame" : "skb", ring->qid, req_id); 776 else 777 netif_err(ring->adapter, 778 tx_done, 779 ring->netdev, 780 "Invalid req_id %u in qid %u\n", 781 req_id, ring->qid); 782 783 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp); 784 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 785 786 return -EFAULT; 787 } 788 789 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 790 { 791 struct ena_tx_buffer *tx_info; 792 793 tx_info = &tx_ring->tx_buffer_info[req_id]; 794 if (likely(tx_info->skb)) 795 return 0; 796 797 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 798 } 799 800 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 801 { 802 struct netdev_queue *txq; 803 bool above_thresh; 804 u32 tx_bytes = 0; 805 u32 total_done = 0; 806 u16 next_to_clean; 807 u16 req_id; 808 int tx_pkts = 0; 809 int rc; 810 811 next_to_clean = tx_ring->next_to_clean; 812 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 813 814 while (tx_pkts < budget) { 815 struct ena_tx_buffer *tx_info; 816 struct sk_buff *skb; 817 818 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 819 &req_id); 820 if (rc) { 821 if (unlikely(rc == -EINVAL)) 822 handle_invalid_req_id(tx_ring, req_id, NULL, 823 false); 824 break; 825 } 826 827 /* validate that the request id points to a valid skb */ 828 rc = validate_tx_req_id(tx_ring, req_id); 829 if (rc) 830 break; 831 832 tx_info = &tx_ring->tx_buffer_info[req_id]; 833 skb = tx_info->skb; 834 835 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 836 prefetch(&skb->end); 837 838 tx_info->skb = NULL; 839 tx_info->last_jiffies = 0; 840 841 ena_unmap_tx_buff(tx_ring, tx_info); 842 843 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 844 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 845 skb); 846 847 tx_bytes += tx_info->total_tx_size; 848 dev_kfree_skb(skb); 849 tx_pkts++; 850 total_done += tx_info->tx_descs; 851 852 tx_ring->free_ids[next_to_clean] = req_id; 853 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 854 tx_ring->ring_size); 855 } 856 857 tx_ring->next_to_clean = next_to_clean; 858 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 859 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 860 861 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 862 863 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 864 "tx_poll: q %d done. total pkts: %d\n", 865 tx_ring->qid, tx_pkts); 866 867 /* need to make the rings circular update visible to 868 * ena_start_xmit() before checking for netif_queue_stopped(). 869 */ 870 smp_mb(); 871 872 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 873 ENA_TX_WAKEUP_THRESH); 874 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 875 __netif_tx_lock(txq, smp_processor_id()); 876 above_thresh = 877 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 878 ENA_TX_WAKEUP_THRESH); 879 if (netif_tx_queue_stopped(txq) && above_thresh && 880 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 881 netif_tx_wake_queue(txq); 882 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 883 &tx_ring->syncp); 884 } 885 __netif_tx_unlock(txq); 886 } 887 888 return tx_pkts; 889 } 890 891 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len) 892 { 893 struct sk_buff *skb; 894 895 if (!first_frag) 896 skb = napi_alloc_skb(rx_ring->napi, len); 897 else 898 skb = napi_build_skb(first_frag, len); 899 900 if (unlikely(!skb)) { 901 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1, 902 &rx_ring->syncp); 903 904 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 905 "Failed to allocate skb. first_frag %s\n", 906 first_frag ? "provided" : "not provided"); 907 } 908 909 return skb; 910 } 911 912 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len, 913 u16 len, int pkt_offset) 914 { 915 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 916 917 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer 918 * for data + headroom + tailroom. 919 */ 920 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) { 921 page_ref_inc(rx_info->page); 922 rx_info->page_offset += buf_len; 923 ena_buf->paddr += buf_len; 924 ena_buf->len -= buf_len; 925 return true; 926 } 927 928 return false; 929 } 930 931 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 932 struct ena_com_rx_buf_info *ena_bufs, 933 u32 descs, 934 u16 *next_to_clean) 935 { 936 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 937 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring); 938 struct ena_rx_buffer *rx_info; 939 struct ena_adapter *adapter; 940 int page_offset, pkt_offset; 941 dma_addr_t pre_reuse_paddr; 942 u16 len, req_id, buf = 0; 943 bool reuse_rx_buf_page; 944 struct sk_buff *skb; 945 void *buf_addr; 946 int buf_offset; 947 u16 buf_len; 948 949 len = ena_bufs[buf].len; 950 req_id = ena_bufs[buf].req_id; 951 952 rx_info = &rx_ring->rx_buffer_info[req_id]; 953 954 if (unlikely(!rx_info->page)) { 955 adapter = rx_ring->adapter; 956 netif_err(adapter, rx_err, rx_ring->netdev, 957 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id); 958 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp); 959 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 960 return NULL; 961 } 962 963 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 964 "rx_info %p page %p\n", 965 rx_info, rx_info->page); 966 967 buf_offset = rx_info->buf_offset; 968 pkt_offset = buf_offset - rx_ring->rx_headroom; 969 page_offset = rx_info->page_offset; 970 buf_addr = page_address(rx_info->page) + page_offset; 971 972 if (len <= rx_ring->rx_copybreak) { 973 skb = ena_alloc_skb(rx_ring, NULL, len); 974 if (unlikely(!skb)) 975 return NULL; 976 977 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len); 978 dma_sync_single_for_device(rx_ring->dev, 979 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 980 len, 981 DMA_FROM_DEVICE); 982 983 skb_put(skb, len); 984 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 985 "RX allocated small packet. len %d.\n", skb->len); 986 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 987 rx_ring->free_ids[*next_to_clean] = req_id; 988 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 989 rx_ring->ring_size); 990 return skb; 991 } 992 993 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 994 995 /* If XDP isn't loaded try to reuse part of the RX buffer */ 996 reuse_rx_buf_page = !is_xdp_loaded && 997 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 998 999 if (!reuse_rx_buf_page) 1000 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1001 1002 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len); 1003 if (unlikely(!skb)) 1004 return NULL; 1005 1006 /* Populate skb's linear part */ 1007 skb_reserve(skb, buf_offset); 1008 skb_put(skb, len); 1009 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1010 1011 do { 1012 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1013 "RX skb updated. len %d. data_len %d\n", 1014 skb->len, skb->data_len); 1015 1016 if (!reuse_rx_buf_page) 1017 rx_info->page = NULL; 1018 1019 rx_ring->free_ids[*next_to_clean] = req_id; 1020 *next_to_clean = 1021 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1022 rx_ring->ring_size); 1023 if (likely(--descs == 0)) 1024 break; 1025 1026 buf++; 1027 len = ena_bufs[buf].len; 1028 req_id = ena_bufs[buf].req_id; 1029 1030 rx_info = &rx_ring->rx_buffer_info[req_id]; 1031 1032 /* rx_info->buf_offset includes rx_ring->rx_headroom */ 1033 buf_offset = rx_info->buf_offset; 1034 pkt_offset = buf_offset - rx_ring->rx_headroom; 1035 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1036 page_offset = rx_info->page_offset; 1037 1038 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr); 1039 1040 reuse_rx_buf_page = !is_xdp_loaded && 1041 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1042 1043 dma_sync_single_for_cpu(rx_ring->dev, 1044 pre_reuse_paddr + pkt_offset, 1045 len, 1046 DMA_FROM_DEVICE); 1047 1048 if (!reuse_rx_buf_page) 1049 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 1050 DMA_ATTR_SKIP_CPU_SYNC); 1051 1052 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1053 page_offset + buf_offset, len, buf_len); 1054 1055 } while (1); 1056 1057 return skb; 1058 } 1059 1060 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1061 * @adapter: structure containing adapter specific data 1062 * @ena_rx_ctx: received packet context/metadata 1063 * @skb: skb currently being received and modified 1064 */ 1065 static void ena_rx_checksum(struct ena_ring *rx_ring, 1066 struct ena_com_rx_ctx *ena_rx_ctx, 1067 struct sk_buff *skb) 1068 { 1069 /* Rx csum disabled */ 1070 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1071 skb->ip_summed = CHECKSUM_NONE; 1072 return; 1073 } 1074 1075 /* For fragmented packets the checksum isn't valid */ 1076 if (ena_rx_ctx->frag) { 1077 skb->ip_summed = CHECKSUM_NONE; 1078 return; 1079 } 1080 1081 /* if IP and error */ 1082 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1083 (ena_rx_ctx->l3_csum_err))) { 1084 /* ipv4 checksum error */ 1085 skb->ip_summed = CHECKSUM_NONE; 1086 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1087 &rx_ring->syncp); 1088 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1089 "RX IPv4 header checksum error\n"); 1090 return; 1091 } 1092 1093 /* if TCP/UDP */ 1094 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1095 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1096 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1097 /* TCP/UDP checksum error */ 1098 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1099 &rx_ring->syncp); 1100 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1101 "RX L4 checksum error\n"); 1102 skb->ip_summed = CHECKSUM_NONE; 1103 return; 1104 } 1105 1106 if (likely(ena_rx_ctx->l4_csum_checked)) { 1107 skb->ip_summed = CHECKSUM_UNNECESSARY; 1108 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1, 1109 &rx_ring->syncp); 1110 } else { 1111 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1, 1112 &rx_ring->syncp); 1113 skb->ip_summed = CHECKSUM_NONE; 1114 } 1115 } else { 1116 skb->ip_summed = CHECKSUM_NONE; 1117 return; 1118 } 1119 1120 } 1121 1122 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1123 struct ena_com_rx_ctx *ena_rx_ctx, 1124 struct sk_buff *skb) 1125 { 1126 enum pkt_hash_types hash_type; 1127 1128 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1129 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1130 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1131 1132 hash_type = PKT_HASH_TYPE_L4; 1133 else 1134 hash_type = PKT_HASH_TYPE_NONE; 1135 1136 /* Override hash type if the packet is fragmented */ 1137 if (ena_rx_ctx->frag) 1138 hash_type = PKT_HASH_TYPE_NONE; 1139 1140 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1141 } 1142 } 1143 1144 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs) 1145 { 1146 struct ena_rx_buffer *rx_info; 1147 int ret; 1148 1149 /* XDP multi-buffer packets not supported */ 1150 if (unlikely(num_descs > 1)) { 1151 netdev_err_once(rx_ring->adapter->netdev, 1152 "xdp: dropped unsupported multi-buffer packets\n"); 1153 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp); 1154 return ENA_XDP_DROP; 1155 } 1156 1157 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1158 xdp_prepare_buff(xdp, page_address(rx_info->page), 1159 rx_info->buf_offset, 1160 rx_ring->ena_bufs[0].len, false); 1161 1162 ret = ena_xdp_execute(rx_ring, xdp); 1163 1164 /* The xdp program might expand the headers */ 1165 if (ret == ENA_XDP_PASS) { 1166 rx_info->buf_offset = xdp->data - xdp->data_hard_start; 1167 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1168 } 1169 1170 return ret; 1171 } 1172 1173 /* ena_clean_rx_irq - Cleanup RX irq 1174 * @rx_ring: RX ring to clean 1175 * @napi: napi handler 1176 * @budget: how many packets driver is allowed to clean 1177 * 1178 * Returns the number of cleaned buffers. 1179 */ 1180 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1181 u32 budget) 1182 { 1183 u16 next_to_clean = rx_ring->next_to_clean; 1184 struct ena_com_rx_ctx ena_rx_ctx; 1185 struct ena_rx_buffer *rx_info; 1186 struct ena_adapter *adapter; 1187 u32 res_budget, work_done; 1188 int rx_copybreak_pkt = 0; 1189 int refill_threshold; 1190 struct sk_buff *skb; 1191 int refill_required; 1192 struct xdp_buff xdp; 1193 int xdp_flags = 0; 1194 int total_len = 0; 1195 int xdp_verdict; 1196 u8 pkt_offset; 1197 int rc = 0; 1198 int i; 1199 1200 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1201 "%s qid %d\n", __func__, rx_ring->qid); 1202 res_budget = budget; 1203 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq); 1204 1205 do { 1206 xdp_verdict = ENA_XDP_PASS; 1207 skb = NULL; 1208 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1209 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1210 ena_rx_ctx.descs = 0; 1211 ena_rx_ctx.pkt_offset = 0; 1212 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1213 rx_ring->ena_com_io_sq, 1214 &ena_rx_ctx); 1215 if (unlikely(rc)) 1216 goto error; 1217 1218 if (unlikely(ena_rx_ctx.descs == 0)) 1219 break; 1220 1221 /* First descriptor might have an offset set by the device */ 1222 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1223 pkt_offset = ena_rx_ctx.pkt_offset; 1224 rx_info->buf_offset += pkt_offset; 1225 1226 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1227 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1228 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1229 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1230 1231 dma_sync_single_for_cpu(rx_ring->dev, 1232 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1233 rx_ring->ena_bufs[0].len, 1234 DMA_FROM_DEVICE); 1235 1236 if (ena_xdp_present_ring(rx_ring)) 1237 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs); 1238 1239 /* allocate skb and fill it */ 1240 if (xdp_verdict == ENA_XDP_PASS) 1241 skb = ena_rx_skb(rx_ring, 1242 rx_ring->ena_bufs, 1243 ena_rx_ctx.descs, 1244 &next_to_clean); 1245 1246 if (unlikely(!skb)) { 1247 for (i = 0; i < ena_rx_ctx.descs; i++) { 1248 int req_id = rx_ring->ena_bufs[i].req_id; 1249 1250 rx_ring->free_ids[next_to_clean] = req_id; 1251 next_to_clean = 1252 ENA_RX_RING_IDX_NEXT(next_to_clean, 1253 rx_ring->ring_size); 1254 1255 /* Packets was passed for transmission, unmap it 1256 * from RX side. 1257 */ 1258 if (xdp_verdict & ENA_XDP_FORWARDED) { 1259 ena_unmap_rx_buff_attrs(rx_ring, 1260 &rx_ring->rx_buffer_info[req_id], 1261 DMA_ATTR_SKIP_CPU_SYNC); 1262 rx_ring->rx_buffer_info[req_id].page = NULL; 1263 } 1264 } 1265 if (xdp_verdict != ENA_XDP_PASS) { 1266 xdp_flags |= xdp_verdict; 1267 total_len += ena_rx_ctx.ena_bufs[0].len; 1268 res_budget--; 1269 continue; 1270 } 1271 break; 1272 } 1273 1274 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1275 1276 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1277 1278 skb_record_rx_queue(skb, rx_ring->qid); 1279 1280 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) 1281 rx_copybreak_pkt++; 1282 1283 total_len += skb->len; 1284 1285 napi_gro_receive(napi, skb); 1286 1287 res_budget--; 1288 } while (likely(res_budget)); 1289 1290 work_done = budget - res_budget; 1291 rx_ring->per_napi_packets += work_done; 1292 u64_stats_update_begin(&rx_ring->syncp); 1293 rx_ring->rx_stats.bytes += total_len; 1294 rx_ring->rx_stats.cnt += work_done; 1295 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1296 u64_stats_update_end(&rx_ring->syncp); 1297 1298 rx_ring->next_to_clean = next_to_clean; 1299 1300 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1301 refill_threshold = 1302 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1303 ENA_RX_REFILL_THRESH_PACKET); 1304 1305 /* Optimization, try to batch new rx buffers */ 1306 if (refill_required > refill_threshold) { 1307 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1308 ena_refill_rx_bufs(rx_ring, refill_required); 1309 } 1310 1311 if (xdp_flags & ENA_XDP_REDIRECT) 1312 xdp_do_flush(); 1313 1314 return work_done; 1315 1316 error: 1317 if (xdp_flags & ENA_XDP_REDIRECT) 1318 xdp_do_flush(); 1319 1320 adapter = netdev_priv(rx_ring->netdev); 1321 1322 if (rc == -ENOSPC) { 1323 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, 1324 &rx_ring->syncp); 1325 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); 1326 } else { 1327 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, 1328 &rx_ring->syncp); 1329 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1330 } 1331 return 0; 1332 } 1333 1334 static void ena_dim_work(struct work_struct *w) 1335 { 1336 struct dim *dim = container_of(w, struct dim, work); 1337 struct dim_cq_moder cur_moder = 1338 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1339 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1340 1341 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1342 dim->state = DIM_START_MEASURE; 1343 } 1344 1345 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1346 { 1347 struct dim_sample dim_sample; 1348 struct ena_ring *rx_ring = ena_napi->rx_ring; 1349 1350 if (!rx_ring->per_napi_packets) 1351 return; 1352 1353 rx_ring->non_empty_napi_events++; 1354 1355 dim_update_sample(rx_ring->non_empty_napi_events, 1356 rx_ring->rx_stats.cnt, 1357 rx_ring->rx_stats.bytes, 1358 &dim_sample); 1359 1360 net_dim(&ena_napi->dim, dim_sample); 1361 1362 rx_ring->per_napi_packets = 0; 1363 } 1364 1365 void ena_unmask_interrupt(struct ena_ring *tx_ring, 1366 struct ena_ring *rx_ring) 1367 { 1368 u32 rx_interval = tx_ring->smoothed_interval; 1369 struct ena_eth_io_intr_reg intr_reg; 1370 1371 /* Rx ring can be NULL when for XDP tx queues which don't have an 1372 * accompanying rx_ring pair. 1373 */ 1374 if (rx_ring) 1375 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1376 rx_ring->smoothed_interval : 1377 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1378 1379 /* Update intr register: rx intr delay, 1380 * tx intr delay and interrupt unmask 1381 */ 1382 ena_com_update_intr_reg(&intr_reg, 1383 rx_interval, 1384 tx_ring->smoothed_interval, 1385 true); 1386 1387 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1, 1388 &tx_ring->syncp); 1389 1390 /* It is a shared MSI-X. 1391 * Tx and Rx CQ have pointer to it. 1392 * So we use one of them to reach the intr reg 1393 * The Tx ring is used because the rx_ring is NULL for XDP queues 1394 */ 1395 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1396 } 1397 1398 void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1399 struct ena_ring *rx_ring) 1400 { 1401 int cpu = get_cpu(); 1402 int numa_node; 1403 1404 /* Check only one ring since the 2 rings are running on the same cpu */ 1405 if (likely(tx_ring->cpu == cpu)) 1406 goto out; 1407 1408 tx_ring->cpu = cpu; 1409 if (rx_ring) 1410 rx_ring->cpu = cpu; 1411 1412 numa_node = cpu_to_node(cpu); 1413 1414 if (likely(tx_ring->numa_node == numa_node)) 1415 goto out; 1416 1417 put_cpu(); 1418 1419 if (numa_node != NUMA_NO_NODE) { 1420 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1421 tx_ring->numa_node = numa_node; 1422 if (rx_ring) { 1423 rx_ring->numa_node = numa_node; 1424 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1425 numa_node); 1426 } 1427 } 1428 1429 return; 1430 out: 1431 put_cpu(); 1432 } 1433 1434 static int ena_io_poll(struct napi_struct *napi, int budget) 1435 { 1436 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1437 struct ena_ring *tx_ring, *rx_ring; 1438 int tx_work_done; 1439 int rx_work_done = 0; 1440 int tx_budget; 1441 int napi_comp_call = 0; 1442 int ret; 1443 1444 tx_ring = ena_napi->tx_ring; 1445 rx_ring = ena_napi->rx_ring; 1446 1447 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1448 1449 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1450 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1451 napi_complete_done(napi, 0); 1452 return 0; 1453 } 1454 1455 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1456 /* On netpoll the budget is zero and the handler should only clean the 1457 * tx completions. 1458 */ 1459 if (likely(budget)) 1460 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1461 1462 /* If the device is about to reset or down, avoid unmask 1463 * the interrupt and return 0 so NAPI won't reschedule 1464 */ 1465 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1466 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1467 napi_complete_done(napi, 0); 1468 ret = 0; 1469 1470 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1471 napi_comp_call = 1; 1472 1473 /* Update numa and unmask the interrupt only when schedule 1474 * from the interrupt context (vs from sk_busy_loop) 1475 */ 1476 if (napi_complete_done(napi, rx_work_done) && 1477 READ_ONCE(ena_napi->interrupts_masked)) { 1478 smp_rmb(); /* make sure interrupts_masked is read */ 1479 WRITE_ONCE(ena_napi->interrupts_masked, false); 1480 /* We apply adaptive moderation on Rx path only. 1481 * Tx uses static interrupt moderation. 1482 */ 1483 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1484 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1485 1486 ena_update_ring_numa_node(tx_ring, rx_ring); 1487 ena_unmask_interrupt(tx_ring, rx_ring); 1488 } 1489 1490 ret = rx_work_done; 1491 } else { 1492 ret = budget; 1493 } 1494 1495 u64_stats_update_begin(&tx_ring->syncp); 1496 tx_ring->tx_stats.napi_comp += napi_comp_call; 1497 tx_ring->tx_stats.tx_poll++; 1498 u64_stats_update_end(&tx_ring->syncp); 1499 1500 tx_ring->tx_stats.last_napi_jiffies = jiffies; 1501 1502 return ret; 1503 } 1504 1505 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1506 { 1507 struct ena_adapter *adapter = (struct ena_adapter *)data; 1508 1509 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1510 1511 /* Don't call the aenq handler before probe is done */ 1512 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1513 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1514 1515 return IRQ_HANDLED; 1516 } 1517 1518 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1519 * @irq: interrupt number 1520 * @data: pointer to a network interface private napi device structure 1521 */ 1522 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1523 { 1524 struct ena_napi *ena_napi = data; 1525 1526 /* Used to check HW health */ 1527 WRITE_ONCE(ena_napi->first_interrupt, true); 1528 1529 WRITE_ONCE(ena_napi->interrupts_masked, true); 1530 smp_wmb(); /* write interrupts_masked before calling napi */ 1531 1532 napi_schedule_irqoff(&ena_napi->napi); 1533 1534 return IRQ_HANDLED; 1535 } 1536 1537 /* Reserve a single MSI-X vector for management (admin + aenq). 1538 * plus reserve one vector for each potential io queue. 1539 * the number of potential io queues is the minimum of what the device 1540 * supports and the number of vCPUs. 1541 */ 1542 static int ena_enable_msix(struct ena_adapter *adapter) 1543 { 1544 int msix_vecs, irq_cnt; 1545 1546 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1547 netif_err(adapter, probe, adapter->netdev, 1548 "Error, MSI-X is already enabled\n"); 1549 return -EPERM; 1550 } 1551 1552 /* Reserved the max msix vectors we might need */ 1553 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1554 netif_dbg(adapter, probe, adapter->netdev, 1555 "Trying to enable MSI-X, vectors %d\n", msix_vecs); 1556 1557 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1558 msix_vecs, PCI_IRQ_MSIX); 1559 1560 if (irq_cnt < 0) { 1561 netif_err(adapter, probe, adapter->netdev, 1562 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1563 return -ENOSPC; 1564 } 1565 1566 if (irq_cnt != msix_vecs) { 1567 netif_notice(adapter, probe, adapter->netdev, 1568 "Enable only %d MSI-X (out of %d), reduce the number of queues\n", 1569 irq_cnt, msix_vecs); 1570 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1571 } 1572 1573 if (ena_init_rx_cpu_rmap(adapter)) 1574 netif_warn(adapter, probe, adapter->netdev, 1575 "Failed to map IRQs to CPUs\n"); 1576 1577 adapter->msix_vecs = irq_cnt; 1578 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1579 1580 return 0; 1581 } 1582 1583 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1584 { 1585 u32 cpu; 1586 1587 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1588 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1589 pci_name(adapter->pdev)); 1590 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1591 ena_intr_msix_mgmnt; 1592 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1593 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1594 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1595 cpu = cpumask_first(cpu_online_mask); 1596 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1597 cpumask_set_cpu(cpu, 1598 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1599 } 1600 1601 static void ena_setup_io_intr(struct ena_adapter *adapter) 1602 { 1603 struct net_device *netdev; 1604 int irq_idx, i, cpu; 1605 int io_queue_count; 1606 1607 netdev = adapter->netdev; 1608 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1609 1610 for (i = 0; i < io_queue_count; i++) { 1611 irq_idx = ENA_IO_IRQ_IDX(i); 1612 cpu = i % num_online_cpus(); 1613 1614 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1615 "%s-Tx-Rx-%d", netdev->name, i); 1616 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1617 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1618 adapter->irq_tbl[irq_idx].vector = 1619 pci_irq_vector(adapter->pdev, irq_idx); 1620 adapter->irq_tbl[irq_idx].cpu = cpu; 1621 1622 cpumask_set_cpu(cpu, 1623 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1624 } 1625 } 1626 1627 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1628 { 1629 unsigned long flags = 0; 1630 struct ena_irq *irq; 1631 int rc; 1632 1633 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1634 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1635 irq->data); 1636 if (rc) { 1637 netif_err(adapter, probe, adapter->netdev, 1638 "Failed to request admin irq\n"); 1639 return rc; 1640 } 1641 1642 netif_dbg(adapter, probe, adapter->netdev, 1643 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1644 irq->affinity_hint_mask.bits[0], irq->vector); 1645 1646 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1647 1648 return rc; 1649 } 1650 1651 static int ena_request_io_irq(struct ena_adapter *adapter) 1652 { 1653 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1654 unsigned long flags = 0; 1655 struct ena_irq *irq; 1656 int rc = 0, i, k; 1657 1658 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1659 netif_err(adapter, ifup, adapter->netdev, 1660 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1661 return -EINVAL; 1662 } 1663 1664 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1665 irq = &adapter->irq_tbl[i]; 1666 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1667 irq->data); 1668 if (rc) { 1669 netif_err(adapter, ifup, adapter->netdev, 1670 "Failed to request I/O IRQ. index %d rc %d\n", 1671 i, rc); 1672 goto err; 1673 } 1674 1675 netif_dbg(adapter, ifup, adapter->netdev, 1676 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1677 i, irq->affinity_hint_mask.bits[0], irq->vector); 1678 1679 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1680 } 1681 1682 return rc; 1683 1684 err: 1685 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1686 irq = &adapter->irq_tbl[k]; 1687 free_irq(irq->vector, irq->data); 1688 } 1689 1690 return rc; 1691 } 1692 1693 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1694 { 1695 struct ena_irq *irq; 1696 1697 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1698 synchronize_irq(irq->vector); 1699 irq_set_affinity_hint(irq->vector, NULL); 1700 free_irq(irq->vector, irq->data); 1701 } 1702 1703 static void ena_free_io_irq(struct ena_adapter *adapter) 1704 { 1705 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1706 struct ena_irq *irq; 1707 int i; 1708 1709 #ifdef CONFIG_RFS_ACCEL 1710 if (adapter->msix_vecs >= 1) { 1711 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 1712 adapter->netdev->rx_cpu_rmap = NULL; 1713 } 1714 #endif /* CONFIG_RFS_ACCEL */ 1715 1716 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1717 irq = &adapter->irq_tbl[i]; 1718 irq_set_affinity_hint(irq->vector, NULL); 1719 free_irq(irq->vector, irq->data); 1720 } 1721 } 1722 1723 static void ena_disable_msix(struct ena_adapter *adapter) 1724 { 1725 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1726 pci_free_irq_vectors(adapter->pdev); 1727 } 1728 1729 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1730 { 1731 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1732 int i; 1733 1734 if (!netif_running(adapter->netdev)) 1735 return; 1736 1737 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 1738 synchronize_irq(adapter->irq_tbl[i].vector); 1739 } 1740 1741 static void ena_del_napi_in_range(struct ena_adapter *adapter, 1742 int first_index, 1743 int count) 1744 { 1745 int i; 1746 1747 for (i = first_index; i < first_index + count; i++) { 1748 netif_napi_del(&adapter->ena_napi[i].napi); 1749 1750 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 1751 adapter->ena_napi[i].rx_ring); 1752 } 1753 } 1754 1755 static void ena_init_napi_in_range(struct ena_adapter *adapter, 1756 int first_index, int count) 1757 { 1758 int (*napi_handler)(struct napi_struct *napi, int budget); 1759 int i; 1760 1761 for (i = first_index; i < first_index + count; i++) { 1762 struct ena_napi *napi = &adapter->ena_napi[i]; 1763 struct ena_ring *rx_ring, *tx_ring; 1764 1765 memset(napi, 0, sizeof(*napi)); 1766 1767 rx_ring = &adapter->rx_ring[i]; 1768 tx_ring = &adapter->tx_ring[i]; 1769 1770 napi_handler = ena_io_poll; 1771 if (ENA_IS_XDP_INDEX(adapter, i)) 1772 napi_handler = ena_xdp_io_poll; 1773 1774 netif_napi_add(adapter->netdev, &napi->napi, napi_handler); 1775 1776 if (!ENA_IS_XDP_INDEX(adapter, i)) 1777 napi->rx_ring = rx_ring; 1778 1779 napi->tx_ring = tx_ring; 1780 napi->qid = i; 1781 } 1782 } 1783 1784 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 1785 int first_index, 1786 int count) 1787 { 1788 int i; 1789 1790 for (i = first_index; i < first_index + count; i++) 1791 napi_disable(&adapter->ena_napi[i].napi); 1792 } 1793 1794 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 1795 int first_index, 1796 int count) 1797 { 1798 int i; 1799 1800 for (i = first_index; i < first_index + count; i++) 1801 napi_enable(&adapter->ena_napi[i].napi); 1802 } 1803 1804 /* Configure the Rx forwarding */ 1805 static int ena_rss_configure(struct ena_adapter *adapter) 1806 { 1807 struct ena_com_dev *ena_dev = adapter->ena_dev; 1808 int rc; 1809 1810 /* In case the RSS table wasn't initialized by probe */ 1811 if (!ena_dev->rss.tbl_log_size) { 1812 rc = ena_rss_init_default(adapter); 1813 if (rc && (rc != -EOPNOTSUPP)) { 1814 netif_err(adapter, ifup, adapter->netdev, 1815 "Failed to init RSS rc: %d\n", rc); 1816 return rc; 1817 } 1818 } 1819 1820 /* Set indirect table */ 1821 rc = ena_com_indirect_table_set(ena_dev); 1822 if (unlikely(rc && rc != -EOPNOTSUPP)) 1823 return rc; 1824 1825 /* Configure hash function (if supported) */ 1826 rc = ena_com_set_hash_function(ena_dev); 1827 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1828 return rc; 1829 1830 /* Configure hash inputs (if supported) */ 1831 rc = ena_com_set_hash_ctrl(ena_dev); 1832 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1833 return rc; 1834 1835 return 0; 1836 } 1837 1838 static int ena_up_complete(struct ena_adapter *adapter) 1839 { 1840 int rc; 1841 1842 rc = ena_rss_configure(adapter); 1843 if (rc) 1844 return rc; 1845 1846 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1847 1848 ena_refill_all_rx_bufs(adapter); 1849 1850 /* enable transmits */ 1851 netif_tx_start_all_queues(adapter->netdev); 1852 1853 ena_napi_enable_in_range(adapter, 1854 0, 1855 adapter->xdp_num_queues + adapter->num_io_queues); 1856 1857 return 0; 1858 } 1859 1860 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1861 { 1862 struct ena_com_create_io_ctx ctx; 1863 struct ena_com_dev *ena_dev; 1864 struct ena_ring *tx_ring; 1865 u32 msix_vector; 1866 u16 ena_qid; 1867 int rc; 1868 1869 ena_dev = adapter->ena_dev; 1870 1871 tx_ring = &adapter->tx_ring[qid]; 1872 msix_vector = ENA_IO_IRQ_IDX(qid); 1873 ena_qid = ENA_IO_TXQ_IDX(qid); 1874 1875 memset(&ctx, 0x0, sizeof(ctx)); 1876 1877 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1878 ctx.qid = ena_qid; 1879 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1880 ctx.msix_vector = msix_vector; 1881 ctx.queue_size = tx_ring->ring_size; 1882 ctx.numa_node = tx_ring->numa_node; 1883 1884 rc = ena_com_create_io_queue(ena_dev, &ctx); 1885 if (rc) { 1886 netif_err(adapter, ifup, adapter->netdev, 1887 "Failed to create I/O TX queue num %d rc: %d\n", 1888 qid, rc); 1889 return rc; 1890 } 1891 1892 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1893 &tx_ring->ena_com_io_sq, 1894 &tx_ring->ena_com_io_cq); 1895 if (rc) { 1896 netif_err(adapter, ifup, adapter->netdev, 1897 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1898 qid, rc); 1899 ena_com_destroy_io_queue(ena_dev, ena_qid); 1900 return rc; 1901 } 1902 1903 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1904 return rc; 1905 } 1906 1907 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 1908 int first_index, int count) 1909 { 1910 struct ena_com_dev *ena_dev = adapter->ena_dev; 1911 int rc, i; 1912 1913 for (i = first_index; i < first_index + count; i++) { 1914 rc = ena_create_io_tx_queue(adapter, i); 1915 if (rc) 1916 goto create_err; 1917 } 1918 1919 return 0; 1920 1921 create_err: 1922 while (i-- > first_index) 1923 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1924 1925 return rc; 1926 } 1927 1928 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1929 { 1930 struct ena_com_dev *ena_dev; 1931 struct ena_com_create_io_ctx ctx; 1932 struct ena_ring *rx_ring; 1933 u32 msix_vector; 1934 u16 ena_qid; 1935 int rc; 1936 1937 ena_dev = adapter->ena_dev; 1938 1939 rx_ring = &adapter->rx_ring[qid]; 1940 msix_vector = ENA_IO_IRQ_IDX(qid); 1941 ena_qid = ENA_IO_RXQ_IDX(qid); 1942 1943 memset(&ctx, 0x0, sizeof(ctx)); 1944 1945 ctx.qid = ena_qid; 1946 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1947 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1948 ctx.msix_vector = msix_vector; 1949 ctx.queue_size = rx_ring->ring_size; 1950 ctx.numa_node = rx_ring->numa_node; 1951 1952 rc = ena_com_create_io_queue(ena_dev, &ctx); 1953 if (rc) { 1954 netif_err(adapter, ifup, adapter->netdev, 1955 "Failed to create I/O RX queue num %d rc: %d\n", 1956 qid, rc); 1957 return rc; 1958 } 1959 1960 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1961 &rx_ring->ena_com_io_sq, 1962 &rx_ring->ena_com_io_cq); 1963 if (rc) { 1964 netif_err(adapter, ifup, adapter->netdev, 1965 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1966 qid, rc); 1967 goto err; 1968 } 1969 1970 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 1971 1972 return rc; 1973 err: 1974 ena_com_destroy_io_queue(ena_dev, ena_qid); 1975 return rc; 1976 } 1977 1978 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 1979 { 1980 struct ena_com_dev *ena_dev = adapter->ena_dev; 1981 int rc, i; 1982 1983 for (i = 0; i < adapter->num_io_queues; i++) { 1984 rc = ena_create_io_rx_queue(adapter, i); 1985 if (rc) 1986 goto create_err; 1987 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 1988 1989 ena_xdp_register_rxq_info(&adapter->rx_ring[i]); 1990 } 1991 1992 return 0; 1993 1994 create_err: 1995 while (i--) { 1996 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 1997 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1998 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 1999 } 2000 2001 return rc; 2002 } 2003 2004 static void set_io_rings_size(struct ena_adapter *adapter, 2005 int new_tx_size, 2006 int new_rx_size) 2007 { 2008 int i; 2009 2010 for (i = 0; i < adapter->num_io_queues; i++) { 2011 adapter->tx_ring[i].ring_size = new_tx_size; 2012 adapter->rx_ring[i].ring_size = new_rx_size; 2013 } 2014 } 2015 2016 /* This function allows queue allocation to backoff when the system is 2017 * low on memory. If there is not enough memory to allocate io queues 2018 * the driver will try to allocate smaller queues. 2019 * 2020 * The backoff algorithm is as follows: 2021 * 1. Try to allocate TX and RX and if successful. 2022 * 1.1. return success 2023 * 2024 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2025 * 2026 * 3. If TX or RX is smaller than 256 2027 * 3.1. return failure. 2028 * 4. else 2029 * 4.1. go back to 1. 2030 */ 2031 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2032 { 2033 int rc, cur_rx_ring_size, cur_tx_ring_size; 2034 int new_rx_ring_size, new_tx_ring_size; 2035 2036 /* current queue sizes might be set to smaller than the requested 2037 * ones due to past queue allocation failures. 2038 */ 2039 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2040 adapter->requested_rx_ring_size); 2041 2042 while (1) { 2043 if (ena_xdp_present(adapter)) { 2044 rc = ena_setup_and_create_all_xdp_queues(adapter); 2045 2046 if (rc) 2047 goto err_setup_tx; 2048 } 2049 rc = ena_setup_tx_resources_in_range(adapter, 2050 0, 2051 adapter->num_io_queues); 2052 if (rc) 2053 goto err_setup_tx; 2054 2055 rc = ena_create_io_tx_queues_in_range(adapter, 2056 0, 2057 adapter->num_io_queues); 2058 if (rc) 2059 goto err_create_tx_queues; 2060 2061 rc = ena_setup_all_rx_resources(adapter); 2062 if (rc) 2063 goto err_setup_rx; 2064 2065 rc = ena_create_all_io_rx_queues(adapter); 2066 if (rc) 2067 goto err_create_rx_queues; 2068 2069 return 0; 2070 2071 err_create_rx_queues: 2072 ena_free_all_io_rx_resources(adapter); 2073 err_setup_rx: 2074 ena_destroy_all_tx_queues(adapter); 2075 err_create_tx_queues: 2076 ena_free_all_io_tx_resources(adapter); 2077 err_setup_tx: 2078 if (rc != -ENOMEM) { 2079 netif_err(adapter, ifup, adapter->netdev, 2080 "Queue creation failed with error code %d\n", 2081 rc); 2082 return rc; 2083 } 2084 2085 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2086 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2087 2088 netif_err(adapter, ifup, adapter->netdev, 2089 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2090 cur_tx_ring_size, cur_rx_ring_size); 2091 2092 new_tx_ring_size = cur_tx_ring_size; 2093 new_rx_ring_size = cur_rx_ring_size; 2094 2095 /* Decrease the size of the larger queue, or 2096 * decrease both if they are the same size. 2097 */ 2098 if (cur_rx_ring_size <= cur_tx_ring_size) 2099 new_tx_ring_size = cur_tx_ring_size / 2; 2100 if (cur_rx_ring_size >= cur_tx_ring_size) 2101 new_rx_ring_size = cur_rx_ring_size / 2; 2102 2103 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2104 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2105 netif_err(adapter, ifup, adapter->netdev, 2106 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2107 ENA_MIN_RING_SIZE); 2108 return rc; 2109 } 2110 2111 netif_err(adapter, ifup, adapter->netdev, 2112 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2113 new_tx_ring_size, 2114 new_rx_ring_size); 2115 2116 set_io_rings_size(adapter, new_tx_ring_size, 2117 new_rx_ring_size); 2118 } 2119 } 2120 2121 int ena_up(struct ena_adapter *adapter) 2122 { 2123 int io_queue_count, rc, i; 2124 2125 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 2126 2127 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2128 ena_setup_io_intr(adapter); 2129 2130 /* napi poll functions should be initialized before running 2131 * request_irq(), to handle a rare condition where there is a pending 2132 * interrupt, causing the ISR to fire immediately while the poll 2133 * function wasn't set yet, causing a null dereference 2134 */ 2135 ena_init_napi_in_range(adapter, 0, io_queue_count); 2136 2137 rc = ena_request_io_irq(adapter); 2138 if (rc) 2139 goto err_req_irq; 2140 2141 rc = create_queues_with_size_backoff(adapter); 2142 if (rc) 2143 goto err_create_queues_with_backoff; 2144 2145 rc = ena_up_complete(adapter); 2146 if (rc) 2147 goto err_up; 2148 2149 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2150 netif_carrier_on(adapter->netdev); 2151 2152 ena_increase_stat(&adapter->dev_stats.interface_up, 1, 2153 &adapter->syncp); 2154 2155 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2156 2157 /* Enable completion queues interrupt */ 2158 for (i = 0; i < adapter->num_io_queues; i++) 2159 ena_unmask_interrupt(&adapter->tx_ring[i], 2160 &adapter->rx_ring[i]); 2161 2162 /* schedule napi in case we had pending packets 2163 * from the last time we disable napi 2164 */ 2165 for (i = 0; i < io_queue_count; i++) 2166 napi_schedule(&adapter->ena_napi[i].napi); 2167 2168 return rc; 2169 2170 err_up: 2171 ena_destroy_all_tx_queues(adapter); 2172 ena_free_all_io_tx_resources(adapter); 2173 ena_destroy_all_rx_queues(adapter); 2174 ena_free_all_io_rx_resources(adapter); 2175 err_create_queues_with_backoff: 2176 ena_free_io_irq(adapter); 2177 err_req_irq: 2178 ena_del_napi_in_range(adapter, 0, io_queue_count); 2179 2180 return rc; 2181 } 2182 2183 void ena_down(struct ena_adapter *adapter) 2184 { 2185 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2186 2187 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2188 2189 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2190 2191 ena_increase_stat(&adapter->dev_stats.interface_down, 1, 2192 &adapter->syncp); 2193 2194 netif_carrier_off(adapter->netdev); 2195 netif_tx_disable(adapter->netdev); 2196 2197 /* After this point the napi handler won't enable the tx queue */ 2198 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2199 2200 /* After destroy the queue there won't be any new interrupts */ 2201 2202 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2203 int rc; 2204 2205 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2206 if (rc) 2207 netif_err(adapter, ifdown, adapter->netdev, 2208 "Device reset failed\n"); 2209 /* stop submitting admin commands on a device that was reset */ 2210 ena_com_set_admin_running_state(adapter->ena_dev, false); 2211 } 2212 2213 ena_destroy_all_io_queues(adapter); 2214 2215 ena_disable_io_intr_sync(adapter); 2216 ena_free_io_irq(adapter); 2217 ena_del_napi_in_range(adapter, 0, io_queue_count); 2218 2219 ena_free_all_tx_bufs(adapter); 2220 ena_free_all_rx_bufs(adapter); 2221 ena_free_all_io_tx_resources(adapter); 2222 ena_free_all_io_rx_resources(adapter); 2223 } 2224 2225 /* ena_open - Called when a network interface is made active 2226 * @netdev: network interface device structure 2227 * 2228 * Returns 0 on success, negative value on failure 2229 * 2230 * The open entry point is called when a network interface is made 2231 * active by the system (IFF_UP). At this point all resources needed 2232 * for transmit and receive operations are allocated, the interrupt 2233 * handler is registered with the OS, the watchdog timer is started, 2234 * and the stack is notified that the interface is ready. 2235 */ 2236 static int ena_open(struct net_device *netdev) 2237 { 2238 struct ena_adapter *adapter = netdev_priv(netdev); 2239 int rc; 2240 2241 /* Notify the stack of the actual queue counts. */ 2242 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2243 if (rc) { 2244 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2245 return rc; 2246 } 2247 2248 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2249 if (rc) { 2250 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2251 return rc; 2252 } 2253 2254 rc = ena_up(adapter); 2255 if (rc) 2256 return rc; 2257 2258 return rc; 2259 } 2260 2261 /* ena_close - Disables a network interface 2262 * @netdev: network interface device structure 2263 * 2264 * Returns 0, this is not allowed to fail 2265 * 2266 * The close entry point is called when an interface is de-activated 2267 * by the OS. The hardware is still under the drivers control, but 2268 * needs to be disabled. A global MAC reset is issued to stop the 2269 * hardware, and all transmit and receive resources are freed. 2270 */ 2271 static int ena_close(struct net_device *netdev) 2272 { 2273 struct ena_adapter *adapter = netdev_priv(netdev); 2274 2275 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2276 2277 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2278 return 0; 2279 2280 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2281 ena_down(adapter); 2282 2283 /* Check for device status and issue reset if needed*/ 2284 check_for_admin_com_state(adapter); 2285 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2286 netif_err(adapter, ifdown, adapter->netdev, 2287 "Destroy failure, restarting device\n"); 2288 ena_dump_stats_to_dmesg(adapter); 2289 /* rtnl lock already obtained in dev_ioctl() layer */ 2290 ena_destroy_device(adapter, false); 2291 ena_restore_device(adapter); 2292 } 2293 2294 return 0; 2295 } 2296 2297 int ena_update_queue_params(struct ena_adapter *adapter, 2298 u32 new_tx_size, 2299 u32 new_rx_size, 2300 u32 new_llq_header_len) 2301 { 2302 bool dev_was_up, large_llq_changed = false; 2303 int rc = 0; 2304 2305 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2306 ena_close(adapter->netdev); 2307 adapter->requested_tx_ring_size = new_tx_size; 2308 adapter->requested_rx_ring_size = new_rx_size; 2309 ena_init_io_rings(adapter, 2310 0, 2311 adapter->xdp_num_queues + 2312 adapter->num_io_queues); 2313 2314 large_llq_changed = adapter->ena_dev->tx_mem_queue_type == 2315 ENA_ADMIN_PLACEMENT_POLICY_DEV; 2316 large_llq_changed &= 2317 new_llq_header_len != adapter->ena_dev->tx_max_header_size; 2318 2319 /* a check that the configuration is valid is done by caller */ 2320 if (large_llq_changed) { 2321 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled; 2322 2323 ena_destroy_device(adapter, false); 2324 rc = ena_restore_device(adapter); 2325 } 2326 2327 return dev_was_up && !rc ? ena_up(adapter) : rc; 2328 } 2329 2330 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak) 2331 { 2332 struct ena_ring *rx_ring; 2333 int i; 2334 2335 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE)) 2336 return -EINVAL; 2337 2338 adapter->rx_copybreak = rx_copybreak; 2339 2340 for (i = 0; i < adapter->num_io_queues; i++) { 2341 rx_ring = &adapter->rx_ring[i]; 2342 rx_ring->rx_copybreak = rx_copybreak; 2343 } 2344 2345 return 0; 2346 } 2347 2348 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2349 { 2350 struct ena_com_dev *ena_dev = adapter->ena_dev; 2351 int prev_channel_count; 2352 bool dev_was_up; 2353 2354 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2355 ena_close(adapter->netdev); 2356 prev_channel_count = adapter->num_io_queues; 2357 adapter->num_io_queues = new_channel_count; 2358 if (ena_xdp_present(adapter) && 2359 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2360 adapter->xdp_first_ring = new_channel_count; 2361 adapter->xdp_num_queues = new_channel_count; 2362 if (prev_channel_count > new_channel_count) 2363 ena_xdp_exchange_program_rx_in_range(adapter, 2364 NULL, 2365 new_channel_count, 2366 prev_channel_count); 2367 else 2368 ena_xdp_exchange_program_rx_in_range(adapter, 2369 adapter->xdp_bpf_prog, 2370 prev_channel_count, 2371 new_channel_count); 2372 } 2373 2374 /* We need to destroy the rss table so that the indirection 2375 * table will be reinitialized by ena_up() 2376 */ 2377 ena_com_rss_destroy(ena_dev); 2378 ena_init_io_rings(adapter, 2379 0, 2380 adapter->xdp_num_queues + 2381 adapter->num_io_queues); 2382 return dev_was_up ? ena_open(adapter->netdev) : 0; 2383 } 2384 2385 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2386 struct sk_buff *skb, 2387 bool disable_meta_caching) 2388 { 2389 u32 mss = skb_shinfo(skb)->gso_size; 2390 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2391 u8 l4_protocol = 0; 2392 2393 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2394 ena_tx_ctx->l4_csum_enable = 1; 2395 if (mss) { 2396 ena_tx_ctx->tso_enable = 1; 2397 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2398 ena_tx_ctx->l4_csum_partial = 0; 2399 } else { 2400 ena_tx_ctx->tso_enable = 0; 2401 ena_meta->l4_hdr_len = 0; 2402 ena_tx_ctx->l4_csum_partial = 1; 2403 } 2404 2405 switch (ip_hdr(skb)->version) { 2406 case IPVERSION: 2407 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2408 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2409 ena_tx_ctx->df = 1; 2410 if (mss) 2411 ena_tx_ctx->l3_csum_enable = 1; 2412 l4_protocol = ip_hdr(skb)->protocol; 2413 break; 2414 case 6: 2415 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2416 l4_protocol = ipv6_hdr(skb)->nexthdr; 2417 break; 2418 default: 2419 break; 2420 } 2421 2422 if (l4_protocol == IPPROTO_TCP) 2423 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2424 else 2425 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2426 2427 ena_meta->mss = mss; 2428 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2429 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2430 ena_tx_ctx->meta_valid = 1; 2431 } else if (disable_meta_caching) { 2432 memset(ena_meta, 0, sizeof(*ena_meta)); 2433 ena_tx_ctx->meta_valid = 1; 2434 } else { 2435 ena_tx_ctx->meta_valid = 0; 2436 } 2437 } 2438 2439 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2440 struct sk_buff *skb) 2441 { 2442 int num_frags, header_len, rc; 2443 2444 num_frags = skb_shinfo(skb)->nr_frags; 2445 header_len = skb_headlen(skb); 2446 2447 if (num_frags < tx_ring->sgl_size) 2448 return 0; 2449 2450 if ((num_frags == tx_ring->sgl_size) && 2451 (header_len < tx_ring->tx_max_header_size)) 2452 return 0; 2453 2454 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp); 2455 2456 rc = skb_linearize(skb); 2457 if (unlikely(rc)) { 2458 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1, 2459 &tx_ring->syncp); 2460 } 2461 2462 return rc; 2463 } 2464 2465 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2466 struct ena_tx_buffer *tx_info, 2467 struct sk_buff *skb, 2468 void **push_hdr, 2469 u16 *header_len) 2470 { 2471 struct ena_adapter *adapter = tx_ring->adapter; 2472 struct ena_com_buf *ena_buf; 2473 dma_addr_t dma; 2474 u32 skb_head_len, frag_len, last_frag; 2475 u16 push_len = 0; 2476 u16 delta = 0; 2477 int i = 0; 2478 2479 skb_head_len = skb_headlen(skb); 2480 tx_info->skb = skb; 2481 ena_buf = tx_info->bufs; 2482 2483 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2484 /* When the device is LLQ mode, the driver will copy 2485 * the header into the device memory space. 2486 * the ena_com layer assume the header is in a linear 2487 * memory space. 2488 * This assumption might be wrong since part of the header 2489 * can be in the fragmented buffers. 2490 * Use skb_header_pointer to make sure the header is in a 2491 * linear memory space. 2492 */ 2493 2494 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2495 *push_hdr = skb_header_pointer(skb, 0, push_len, 2496 tx_ring->push_buf_intermediate_buf); 2497 *header_len = push_len; 2498 if (unlikely(skb->data != *push_hdr)) { 2499 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1, 2500 &tx_ring->syncp); 2501 2502 delta = push_len - skb_head_len; 2503 } 2504 } else { 2505 *push_hdr = NULL; 2506 *header_len = min_t(u32, skb_head_len, 2507 tx_ring->tx_max_header_size); 2508 } 2509 2510 netif_dbg(adapter, tx_queued, adapter->netdev, 2511 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2512 *push_hdr, push_len); 2513 2514 if (skb_head_len > push_len) { 2515 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2516 skb_head_len - push_len, DMA_TO_DEVICE); 2517 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2518 goto error_report_dma_error; 2519 2520 ena_buf->paddr = dma; 2521 ena_buf->len = skb_head_len - push_len; 2522 2523 ena_buf++; 2524 tx_info->num_of_bufs++; 2525 tx_info->map_linear_data = 1; 2526 } else { 2527 tx_info->map_linear_data = 0; 2528 } 2529 2530 last_frag = skb_shinfo(skb)->nr_frags; 2531 2532 for (i = 0; i < last_frag; i++) { 2533 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2534 2535 frag_len = skb_frag_size(frag); 2536 2537 if (unlikely(delta >= frag_len)) { 2538 delta -= frag_len; 2539 continue; 2540 } 2541 2542 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2543 frag_len - delta, DMA_TO_DEVICE); 2544 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2545 goto error_report_dma_error; 2546 2547 ena_buf->paddr = dma; 2548 ena_buf->len = frag_len - delta; 2549 ena_buf++; 2550 tx_info->num_of_bufs++; 2551 delta = 0; 2552 } 2553 2554 return 0; 2555 2556 error_report_dma_error: 2557 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1, 2558 &tx_ring->syncp); 2559 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); 2560 2561 tx_info->skb = NULL; 2562 2563 tx_info->num_of_bufs += i; 2564 ena_unmap_tx_buff(tx_ring, tx_info); 2565 2566 return -EINVAL; 2567 } 2568 2569 /* Called with netif_tx_lock. */ 2570 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2571 { 2572 struct ena_adapter *adapter = netdev_priv(dev); 2573 struct ena_tx_buffer *tx_info; 2574 struct ena_com_tx_ctx ena_tx_ctx; 2575 struct ena_ring *tx_ring; 2576 struct netdev_queue *txq; 2577 void *push_hdr; 2578 u16 next_to_use, req_id, header_len; 2579 int qid, rc; 2580 2581 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2582 /* Determine which tx ring we will be placed on */ 2583 qid = skb_get_queue_mapping(skb); 2584 tx_ring = &adapter->tx_ring[qid]; 2585 txq = netdev_get_tx_queue(dev, qid); 2586 2587 rc = ena_check_and_linearize_skb(tx_ring, skb); 2588 if (unlikely(rc)) 2589 goto error_drop_packet; 2590 2591 skb_tx_timestamp(skb); 2592 2593 next_to_use = tx_ring->next_to_use; 2594 req_id = tx_ring->free_ids[next_to_use]; 2595 tx_info = &tx_ring->tx_buffer_info[req_id]; 2596 tx_info->num_of_bufs = 0; 2597 2598 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2599 2600 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2601 if (unlikely(rc)) 2602 goto error_drop_packet; 2603 2604 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2605 ena_tx_ctx.ena_bufs = tx_info->bufs; 2606 ena_tx_ctx.push_header = push_hdr; 2607 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2608 ena_tx_ctx.req_id = req_id; 2609 ena_tx_ctx.header_len = header_len; 2610 2611 /* set flags and meta data */ 2612 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 2613 2614 rc = ena_xmit_common(adapter, 2615 tx_ring, 2616 tx_info, 2617 &ena_tx_ctx, 2618 next_to_use, 2619 skb->len); 2620 if (rc) 2621 goto error_unmap_dma; 2622 2623 netdev_tx_sent_queue(txq, skb->len); 2624 2625 /* stop the queue when no more space available, the packet can have up 2626 * to sgl_size + 2. one for the meta descriptor and one for header 2627 * (if the header is larger than tx_max_header_size). 2628 */ 2629 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2630 tx_ring->sgl_size + 2))) { 2631 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2632 __func__, qid); 2633 2634 netif_tx_stop_queue(txq); 2635 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1, 2636 &tx_ring->syncp); 2637 2638 /* There is a rare condition where this function decide to 2639 * stop the queue but meanwhile clean_tx_irq updates 2640 * next_to_completion and terminates. 2641 * The queue will remain stopped forever. 2642 * To solve this issue add a mb() to make sure that 2643 * netif_tx_stop_queue() write is vissible before checking if 2644 * there is additional space in the queue. 2645 */ 2646 smp_mb(); 2647 2648 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2649 ENA_TX_WAKEUP_THRESH)) { 2650 netif_tx_wake_queue(txq); 2651 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 2652 &tx_ring->syncp); 2653 } 2654 } 2655 2656 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) 2657 /* trigger the dma engine. ena_ring_tx_doorbell() 2658 * calls a memory barrier inside it. 2659 */ 2660 ena_ring_tx_doorbell(tx_ring); 2661 2662 return NETDEV_TX_OK; 2663 2664 error_unmap_dma: 2665 ena_unmap_tx_buff(tx_ring, tx_info); 2666 tx_info->skb = NULL; 2667 2668 error_drop_packet: 2669 dev_kfree_skb(skb); 2670 return NETDEV_TX_OK; 2671 } 2672 2673 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 2674 struct net_device *sb_dev) 2675 { 2676 u16 qid; 2677 /* we suspect that this is good for in--kernel network services that 2678 * want to loop incoming skb rx to tx in normal user generated traffic, 2679 * most probably we will not get to this 2680 */ 2681 if (skb_rx_queue_recorded(skb)) 2682 qid = skb_get_rx_queue(skb); 2683 else 2684 qid = netdev_pick_tx(dev, skb, NULL); 2685 2686 return qid; 2687 } 2688 2689 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 2690 { 2691 struct device *dev = &pdev->dev; 2692 struct ena_admin_host_info *host_info; 2693 int rc; 2694 2695 /* Allocate only the host info */ 2696 rc = ena_com_allocate_host_info(ena_dev); 2697 if (rc) { 2698 dev_err(dev, "Cannot allocate host info\n"); 2699 return; 2700 } 2701 2702 host_info = ena_dev->host_attr.host_info; 2703 2704 host_info->bdf = pci_dev_id(pdev); 2705 host_info->os_type = ENA_ADMIN_OS_LINUX; 2706 host_info->kernel_ver = LINUX_VERSION_CODE; 2707 strscpy(host_info->kernel_ver_str, utsname()->version, 2708 sizeof(host_info->kernel_ver_str) - 1); 2709 host_info->os_dist = 0; 2710 strscpy(host_info->os_dist_str, utsname()->release, 2711 sizeof(host_info->os_dist_str)); 2712 host_info->driver_version = 2713 (DRV_MODULE_GEN_MAJOR) | 2714 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2715 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2716 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2717 host_info->num_cpus = num_online_cpus(); 2718 2719 host_info->driver_supported_features = 2720 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 2721 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 2722 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 2723 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK | 2724 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK; 2725 2726 rc = ena_com_set_host_attributes(ena_dev); 2727 if (rc) { 2728 if (rc == -EOPNOTSUPP) 2729 dev_warn(dev, "Cannot set host attributes\n"); 2730 else 2731 dev_err(dev, "Cannot set host attributes\n"); 2732 2733 goto err; 2734 } 2735 2736 return; 2737 2738 err: 2739 ena_com_delete_host_info(ena_dev); 2740 } 2741 2742 static void ena_config_debug_area(struct ena_adapter *adapter) 2743 { 2744 u32 debug_area_size; 2745 int rc, ss_count; 2746 2747 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2748 if (ss_count <= 0) { 2749 netif_err(adapter, drv, adapter->netdev, 2750 "SS count is negative\n"); 2751 return; 2752 } 2753 2754 /* allocate 32 bytes for each string and 64bit for the value */ 2755 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2756 2757 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2758 if (rc) { 2759 netif_err(adapter, drv, adapter->netdev, 2760 "Cannot allocate debug area\n"); 2761 return; 2762 } 2763 2764 rc = ena_com_set_host_attributes(adapter->ena_dev); 2765 if (rc) { 2766 if (rc == -EOPNOTSUPP) 2767 netif_warn(adapter, drv, adapter->netdev, 2768 "Cannot set host attributes\n"); 2769 else 2770 netif_err(adapter, drv, adapter->netdev, 2771 "Cannot set host attributes\n"); 2772 goto err; 2773 } 2774 2775 return; 2776 err: 2777 ena_com_delete_debug_area(adapter->ena_dev); 2778 } 2779 2780 int ena_update_hw_stats(struct ena_adapter *adapter) 2781 { 2782 int rc; 2783 2784 rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats); 2785 if (rc) { 2786 netdev_err(adapter->netdev, "Failed to get ENI stats\n"); 2787 return rc; 2788 } 2789 2790 return 0; 2791 } 2792 2793 static void ena_get_stats64(struct net_device *netdev, 2794 struct rtnl_link_stats64 *stats) 2795 { 2796 struct ena_adapter *adapter = netdev_priv(netdev); 2797 struct ena_ring *rx_ring, *tx_ring; 2798 u64 total_xdp_rx_drops = 0; 2799 unsigned int start; 2800 u64 rx_drops; 2801 u64 tx_drops; 2802 int i; 2803 2804 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2805 return; 2806 2807 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 2808 u64 bytes, packets, xdp_rx_drops; 2809 2810 tx_ring = &adapter->tx_ring[i]; 2811 2812 do { 2813 start = u64_stats_fetch_begin(&tx_ring->syncp); 2814 packets = tx_ring->tx_stats.cnt; 2815 bytes = tx_ring->tx_stats.bytes; 2816 } while (u64_stats_fetch_retry(&tx_ring->syncp, start)); 2817 2818 stats->tx_packets += packets; 2819 stats->tx_bytes += bytes; 2820 2821 /* In XDP there isn't an RX queue counterpart */ 2822 if (ENA_IS_XDP_INDEX(adapter, i)) 2823 continue; 2824 2825 rx_ring = &adapter->rx_ring[i]; 2826 2827 do { 2828 start = u64_stats_fetch_begin(&rx_ring->syncp); 2829 packets = rx_ring->rx_stats.cnt; 2830 bytes = rx_ring->rx_stats.bytes; 2831 xdp_rx_drops = rx_ring->rx_stats.xdp_drop; 2832 } while (u64_stats_fetch_retry(&rx_ring->syncp, start)); 2833 2834 stats->rx_packets += packets; 2835 stats->rx_bytes += bytes; 2836 total_xdp_rx_drops += xdp_rx_drops; 2837 } 2838 2839 do { 2840 start = u64_stats_fetch_begin(&adapter->syncp); 2841 rx_drops = adapter->dev_stats.rx_drops; 2842 tx_drops = adapter->dev_stats.tx_drops; 2843 } while (u64_stats_fetch_retry(&adapter->syncp, start)); 2844 2845 stats->rx_dropped = rx_drops + total_xdp_rx_drops; 2846 stats->tx_dropped = tx_drops; 2847 2848 stats->multicast = 0; 2849 stats->collisions = 0; 2850 2851 stats->rx_length_errors = 0; 2852 stats->rx_crc_errors = 0; 2853 stats->rx_frame_errors = 0; 2854 stats->rx_fifo_errors = 0; 2855 stats->rx_missed_errors = 0; 2856 stats->tx_window_errors = 0; 2857 2858 stats->rx_errors = 0; 2859 stats->tx_errors = 0; 2860 } 2861 2862 static const struct net_device_ops ena_netdev_ops = { 2863 .ndo_open = ena_open, 2864 .ndo_stop = ena_close, 2865 .ndo_start_xmit = ena_start_xmit, 2866 .ndo_select_queue = ena_select_queue, 2867 .ndo_get_stats64 = ena_get_stats64, 2868 .ndo_tx_timeout = ena_tx_timeout, 2869 .ndo_change_mtu = ena_change_mtu, 2870 .ndo_set_mac_address = NULL, 2871 .ndo_validate_addr = eth_validate_addr, 2872 .ndo_bpf = ena_xdp, 2873 .ndo_xdp_xmit = ena_xdp_xmit, 2874 }; 2875 2876 static void ena_calc_io_queue_size(struct ena_adapter *adapter, 2877 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2878 { 2879 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq; 2880 struct ena_com_dev *ena_dev = adapter->ena_dev; 2881 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 2882 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 2883 u32 max_tx_queue_size; 2884 u32 max_rx_queue_size; 2885 2886 /* If this function is called after driver load, the ring sizes have already 2887 * been configured. Take it into account when recalculating ring size. 2888 */ 2889 if (adapter->tx_ring->ring_size) 2890 tx_queue_size = adapter->tx_ring->ring_size; 2891 2892 if (adapter->rx_ring->ring_size) 2893 rx_queue_size = adapter->rx_ring->ring_size; 2894 2895 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 2896 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 2897 &get_feat_ctx->max_queue_ext.max_queue_ext; 2898 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 2899 max_queue_ext->max_rx_sq_depth); 2900 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 2901 2902 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2903 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2904 llq->max_llq_depth); 2905 else 2906 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2907 max_queue_ext->max_tx_sq_depth); 2908 2909 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2910 max_queue_ext->max_per_packet_tx_descs); 2911 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2912 max_queue_ext->max_per_packet_rx_descs); 2913 } else { 2914 struct ena_admin_queue_feature_desc *max_queues = 2915 &get_feat_ctx->max_queues; 2916 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 2917 max_queues->max_sq_depth); 2918 max_tx_queue_size = max_queues->max_cq_depth; 2919 2920 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2921 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2922 llq->max_llq_depth); 2923 else 2924 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2925 max_queues->max_sq_depth); 2926 2927 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2928 max_queues->max_packet_tx_descs); 2929 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2930 max_queues->max_packet_rx_descs); 2931 } 2932 2933 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 2934 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 2935 2936 /* When forcing large headers, we multiply the entry size by 2, and therefore divide 2937 * the queue size by 2, leaving the amount of memory used by the queues unchanged. 2938 */ 2939 if (adapter->large_llq_header_enabled) { 2940 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 2941 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2942 max_tx_queue_size /= 2; 2943 dev_info(&adapter->pdev->dev, 2944 "Forcing large headers and decreasing maximum TX queue size to %d\n", 2945 max_tx_queue_size); 2946 } else { 2947 dev_err(&adapter->pdev->dev, 2948 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 2949 2950 adapter->large_llq_header_enabled = false; 2951 } 2952 } 2953 2954 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 2955 max_tx_queue_size); 2956 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 2957 max_rx_queue_size); 2958 2959 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 2960 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 2961 2962 adapter->max_tx_ring_size = max_tx_queue_size; 2963 adapter->max_rx_ring_size = max_rx_queue_size; 2964 adapter->requested_tx_ring_size = tx_queue_size; 2965 adapter->requested_rx_ring_size = rx_queue_size; 2966 } 2967 2968 static int ena_device_validate_params(struct ena_adapter *adapter, 2969 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2970 { 2971 struct net_device *netdev = adapter->netdev; 2972 int rc; 2973 2974 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 2975 adapter->mac_addr); 2976 if (!rc) { 2977 netif_err(adapter, drv, netdev, 2978 "Error, mac address are different\n"); 2979 return -EINVAL; 2980 } 2981 2982 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 2983 netif_err(adapter, drv, netdev, 2984 "Error, device max mtu is smaller than netdev MTU\n"); 2985 return -EINVAL; 2986 } 2987 2988 return 0; 2989 } 2990 2991 static void set_default_llq_configurations(struct ena_adapter *adapter, 2992 struct ena_llq_configurations *llq_config, 2993 struct ena_admin_feature_llq_desc *llq) 2994 { 2995 struct ena_com_dev *ena_dev = adapter->ena_dev; 2996 2997 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 2998 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 2999 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3000 3001 adapter->large_llq_header_supported = 3002 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ)); 3003 adapter->large_llq_header_supported &= 3004 !!(llq->entry_size_ctrl_supported & 3005 ENA_ADMIN_LIST_ENTRY_SIZE_256B); 3006 3007 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 3008 adapter->large_llq_header_enabled) { 3009 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; 3010 llq_config->llq_ring_entry_size_value = 256; 3011 } else { 3012 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3013 llq_config->llq_ring_entry_size_value = 128; 3014 } 3015 } 3016 3017 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3018 struct ena_com_dev *ena_dev, 3019 struct ena_admin_feature_llq_desc *llq, 3020 struct ena_llq_configurations *llq_default_configurations) 3021 { 3022 int rc; 3023 u32 llq_feature_mask; 3024 3025 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3026 if (!(ena_dev->supported_features & llq_feature_mask)) { 3027 dev_warn(&pdev->dev, 3028 "LLQ is not supported Fallback to host mode policy.\n"); 3029 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3030 return 0; 3031 } 3032 3033 if (!ena_dev->mem_bar) { 3034 netdev_err(ena_dev->net_device, 3035 "LLQ is advertised as supported but device doesn't expose mem bar\n"); 3036 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3037 return 0; 3038 } 3039 3040 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3041 if (unlikely(rc)) { 3042 dev_err(&pdev->dev, 3043 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3044 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3045 } 3046 3047 return 0; 3048 } 3049 3050 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3051 int bars) 3052 { 3053 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3054 3055 if (!has_mem_bar) 3056 return 0; 3057 3058 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3059 pci_resource_start(pdev, ENA_MEM_BAR), 3060 pci_resource_len(pdev, ENA_MEM_BAR)); 3061 3062 if (!ena_dev->mem_bar) 3063 return -EFAULT; 3064 3065 return 0; 3066 } 3067 3068 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev, 3069 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3070 bool *wd_state) 3071 { 3072 struct ena_com_dev *ena_dev = adapter->ena_dev; 3073 struct ena_llq_configurations llq_config; 3074 struct device *dev = &pdev->dev; 3075 bool readless_supported; 3076 u32 aenq_groups; 3077 int dma_width; 3078 int rc; 3079 3080 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3081 if (rc) { 3082 dev_err(dev, "Failed to init mmio read less\n"); 3083 return rc; 3084 } 3085 3086 /* The PCIe configuration space revision id indicate if mmio reg 3087 * read is disabled 3088 */ 3089 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3090 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3091 3092 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3093 if (rc) { 3094 dev_err(dev, "Can not reset device\n"); 3095 goto err_mmio_read_less; 3096 } 3097 3098 rc = ena_com_validate_version(ena_dev); 3099 if (rc) { 3100 dev_err(dev, "Device version is too low\n"); 3101 goto err_mmio_read_less; 3102 } 3103 3104 dma_width = ena_com_get_dma_width(ena_dev); 3105 if (dma_width < 0) { 3106 dev_err(dev, "Invalid dma width value %d", dma_width); 3107 rc = dma_width; 3108 goto err_mmio_read_less; 3109 } 3110 3111 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); 3112 if (rc) { 3113 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); 3114 goto err_mmio_read_less; 3115 } 3116 3117 /* ENA admin level init */ 3118 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3119 if (rc) { 3120 dev_err(dev, 3121 "Can not initialize ena admin queue with device\n"); 3122 goto err_mmio_read_less; 3123 } 3124 3125 /* To enable the msix interrupts the driver needs to know the number 3126 * of queues. So the driver uses polling mode to retrieve this 3127 * information 3128 */ 3129 ena_com_set_admin_polling_mode(ena_dev, true); 3130 3131 ena_config_host_info(ena_dev, pdev); 3132 3133 /* Get Device Attributes*/ 3134 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3135 if (rc) { 3136 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3137 goto err_admin_init; 3138 } 3139 3140 /* Try to turn all the available aenq groups */ 3141 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3142 BIT(ENA_ADMIN_FATAL_ERROR) | 3143 BIT(ENA_ADMIN_WARNING) | 3144 BIT(ENA_ADMIN_NOTIFICATION) | 3145 BIT(ENA_ADMIN_KEEP_ALIVE); 3146 3147 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3148 3149 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3150 if (rc) { 3151 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3152 goto err_admin_init; 3153 } 3154 3155 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3156 3157 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq); 3158 3159 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3160 &llq_config); 3161 if (rc) { 3162 dev_err(dev, "ENA device init failed\n"); 3163 goto err_admin_init; 3164 } 3165 3166 ena_calc_io_queue_size(adapter, get_feat_ctx); 3167 3168 return 0; 3169 3170 err_admin_init: 3171 ena_com_delete_host_info(ena_dev); 3172 ena_com_admin_destroy(ena_dev); 3173 err_mmio_read_less: 3174 ena_com_mmio_reg_read_request_destroy(ena_dev); 3175 3176 return rc; 3177 } 3178 3179 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3180 { 3181 struct ena_com_dev *ena_dev = adapter->ena_dev; 3182 struct device *dev = &adapter->pdev->dev; 3183 int rc; 3184 3185 rc = ena_enable_msix(adapter); 3186 if (rc) { 3187 dev_err(dev, "Can not reserve msix vectors\n"); 3188 return rc; 3189 } 3190 3191 ena_setup_mgmnt_intr(adapter); 3192 3193 rc = ena_request_mgmnt_irq(adapter); 3194 if (rc) { 3195 dev_err(dev, "Can not setup management interrupts\n"); 3196 goto err_disable_msix; 3197 } 3198 3199 ena_com_set_admin_polling_mode(ena_dev, false); 3200 3201 ena_com_admin_aenq_enable(ena_dev); 3202 3203 return 0; 3204 3205 err_disable_msix: 3206 ena_disable_msix(adapter); 3207 3208 return rc; 3209 } 3210 3211 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3212 { 3213 struct net_device *netdev = adapter->netdev; 3214 struct ena_com_dev *ena_dev = adapter->ena_dev; 3215 bool dev_up; 3216 3217 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3218 return; 3219 3220 netif_carrier_off(netdev); 3221 3222 del_timer_sync(&adapter->timer_service); 3223 3224 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3225 adapter->dev_up_before_reset = dev_up; 3226 if (!graceful) 3227 ena_com_set_admin_running_state(ena_dev, false); 3228 3229 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3230 ena_down(adapter); 3231 3232 /* Stop the device from sending AENQ events (in case reset flag is set 3233 * and device is up, ena_down() already reset the device. 3234 */ 3235 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3236 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3237 3238 ena_free_mgmnt_irq(adapter); 3239 3240 ena_disable_msix(adapter); 3241 3242 ena_com_abort_admin_commands(ena_dev); 3243 3244 ena_com_wait_for_abort_completion(ena_dev); 3245 3246 ena_com_admin_destroy(ena_dev); 3247 3248 ena_com_mmio_reg_read_request_destroy(ena_dev); 3249 3250 /* return reset reason to default value */ 3251 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3252 3253 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3254 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3255 } 3256 3257 static int ena_restore_device(struct ena_adapter *adapter) 3258 { 3259 struct ena_com_dev_get_features_ctx get_feat_ctx; 3260 struct ena_com_dev *ena_dev = adapter->ena_dev; 3261 struct pci_dev *pdev = adapter->pdev; 3262 struct ena_ring *txr; 3263 int rc, count, i; 3264 bool wd_state; 3265 3266 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3267 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state); 3268 if (rc) { 3269 dev_err(&pdev->dev, "Can not initialize device\n"); 3270 goto err; 3271 } 3272 adapter->wd_state = wd_state; 3273 3274 count = adapter->xdp_num_queues + adapter->num_io_queues; 3275 for (i = 0 ; i < count; i++) { 3276 txr = &adapter->tx_ring[i]; 3277 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 3278 txr->tx_max_header_size = ena_dev->tx_max_header_size; 3279 } 3280 3281 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3282 if (rc) { 3283 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3284 goto err_device_destroy; 3285 } 3286 3287 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3288 if (rc) { 3289 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3290 goto err_device_destroy; 3291 } 3292 /* If the interface was up before the reset bring it up */ 3293 if (adapter->dev_up_before_reset) { 3294 rc = ena_up(adapter); 3295 if (rc) { 3296 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3297 goto err_disable_msix; 3298 } 3299 } 3300 3301 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3302 3303 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3304 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3305 netif_carrier_on(adapter->netdev); 3306 3307 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3308 adapter->last_keep_alive_jiffies = jiffies; 3309 3310 return rc; 3311 err_disable_msix: 3312 ena_free_mgmnt_irq(adapter); 3313 ena_disable_msix(adapter); 3314 err_device_destroy: 3315 ena_com_abort_admin_commands(ena_dev); 3316 ena_com_wait_for_abort_completion(ena_dev); 3317 ena_com_admin_destroy(ena_dev); 3318 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3319 ena_com_mmio_reg_read_request_destroy(ena_dev); 3320 err: 3321 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3322 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3323 dev_err(&pdev->dev, 3324 "Reset attempt failed. Can not reset the device\n"); 3325 3326 return rc; 3327 } 3328 3329 static void ena_fw_reset_device(struct work_struct *work) 3330 { 3331 struct ena_adapter *adapter = 3332 container_of(work, struct ena_adapter, reset_task); 3333 3334 rtnl_lock(); 3335 3336 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3337 ena_destroy_device(adapter, false); 3338 ena_restore_device(adapter); 3339 3340 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n"); 3341 } 3342 3343 rtnl_unlock(); 3344 } 3345 3346 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3347 struct ena_ring *rx_ring) 3348 { 3349 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi); 3350 3351 if (likely(READ_ONCE(ena_napi->first_interrupt))) 3352 return 0; 3353 3354 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3355 return 0; 3356 3357 rx_ring->no_interrupt_event_cnt++; 3358 3359 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3360 netif_err(adapter, rx_err, adapter->netdev, 3361 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3362 rx_ring->qid); 3363 3364 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3365 return -EIO; 3366 } 3367 3368 return 0; 3369 } 3370 3371 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3372 struct ena_ring *tx_ring) 3373 { 3374 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi); 3375 unsigned int time_since_last_napi; 3376 unsigned int missing_tx_comp_to; 3377 bool is_tx_comp_time_expired; 3378 struct ena_tx_buffer *tx_buf; 3379 unsigned long last_jiffies; 3380 u32 missed_tx = 0; 3381 int i, rc = 0; 3382 3383 for (i = 0; i < tx_ring->ring_size; i++) { 3384 tx_buf = &tx_ring->tx_buffer_info[i]; 3385 last_jiffies = tx_buf->last_jiffies; 3386 3387 if (last_jiffies == 0) 3388 /* no pending Tx at this location */ 3389 continue; 3390 3391 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3392 2 * adapter->missing_tx_completion_to); 3393 3394 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) { 3395 /* If after graceful period interrupt is still not 3396 * received, we schedule a reset 3397 */ 3398 netif_err(adapter, tx_err, adapter->netdev, 3399 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3400 tx_ring->qid); 3401 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3402 return -EIO; 3403 } 3404 3405 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3406 adapter->missing_tx_completion_to); 3407 3408 if (unlikely(is_tx_comp_time_expired)) { 3409 if (!tx_buf->print_once) { 3410 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 3411 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to); 3412 netif_notice(adapter, tx_err, adapter->netdev, 3413 "Found a Tx that wasn't completed on time, qid %d, index %d. %u usecs have passed since last napi execution. Missing Tx timeout value %u msecs\n", 3414 tx_ring->qid, i, time_since_last_napi, missing_tx_comp_to); 3415 } 3416 3417 tx_buf->print_once = 1; 3418 missed_tx++; 3419 } 3420 } 3421 3422 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3423 netif_err(adapter, tx_err, adapter->netdev, 3424 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 3425 missed_tx, 3426 adapter->missing_tx_completion_threshold); 3427 ena_reset_device(adapter, ENA_REGS_RESET_MISS_TX_CMPL); 3428 rc = -EIO; 3429 } 3430 3431 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx, 3432 &tx_ring->syncp); 3433 3434 return rc; 3435 } 3436 3437 static void check_for_missing_completions(struct ena_adapter *adapter) 3438 { 3439 struct ena_ring *tx_ring; 3440 struct ena_ring *rx_ring; 3441 int i, budget, rc; 3442 int io_queue_count; 3443 3444 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3445 /* Make sure the driver doesn't turn the device in other process */ 3446 smp_rmb(); 3447 3448 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3449 return; 3450 3451 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3452 return; 3453 3454 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3455 return; 3456 3457 budget = ENA_MONITORED_TX_QUEUES; 3458 3459 for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) { 3460 tx_ring = &adapter->tx_ring[i]; 3461 rx_ring = &adapter->rx_ring[i]; 3462 3463 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3464 if (unlikely(rc)) 3465 return; 3466 3467 rc = !ENA_IS_XDP_INDEX(adapter, i) ? 3468 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3469 if (unlikely(rc)) 3470 return; 3471 3472 budget--; 3473 if (!budget) 3474 break; 3475 } 3476 3477 adapter->last_monitored_tx_qid = i % io_queue_count; 3478 } 3479 3480 /* trigger napi schedule after 2 consecutive detections */ 3481 #define EMPTY_RX_REFILL 2 3482 /* For the rare case where the device runs out of Rx descriptors and the 3483 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3484 * for example). 3485 * This case will lead to a deadlock: 3486 * The device won't send interrupts since all the new Rx packets will be dropped 3487 * The napi handler won't allocate new Rx descriptors so the device will be 3488 * able to send new packets. 3489 * 3490 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3491 * It is recommended to have at least 512MB, with a minimum of 128MB for 3492 * constrained environment). 3493 * 3494 * When such a situation is detected - Reschedule napi 3495 */ 3496 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3497 { 3498 struct ena_ring *rx_ring; 3499 int i, refill_required; 3500 3501 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3502 return; 3503 3504 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3505 return; 3506 3507 for (i = 0; i < adapter->num_io_queues; i++) { 3508 rx_ring = &adapter->rx_ring[i]; 3509 3510 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3511 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3512 rx_ring->empty_rx_queue++; 3513 3514 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3515 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1, 3516 &rx_ring->syncp); 3517 3518 netif_err(adapter, drv, adapter->netdev, 3519 "Trigger refill for ring %d\n", i); 3520 3521 napi_schedule(rx_ring->napi); 3522 rx_ring->empty_rx_queue = 0; 3523 } 3524 } else { 3525 rx_ring->empty_rx_queue = 0; 3526 } 3527 } 3528 } 3529 3530 /* Check for keep alive expiration */ 3531 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3532 { 3533 unsigned long keep_alive_expired; 3534 3535 if (!adapter->wd_state) 3536 return; 3537 3538 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3539 return; 3540 3541 keep_alive_expired = adapter->last_keep_alive_jiffies + 3542 adapter->keep_alive_timeout; 3543 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3544 netif_err(adapter, drv, adapter->netdev, 3545 "Keep alive watchdog timeout.\n"); 3546 ena_increase_stat(&adapter->dev_stats.wd_expired, 1, 3547 &adapter->syncp); 3548 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); 3549 } 3550 } 3551 3552 static void check_for_admin_com_state(struct ena_adapter *adapter) 3553 { 3554 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3555 netif_err(adapter, drv, adapter->netdev, 3556 "ENA admin queue is not in running state!\n"); 3557 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1, 3558 &adapter->syncp); 3559 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO); 3560 } 3561 } 3562 3563 static void ena_update_hints(struct ena_adapter *adapter, 3564 struct ena_admin_ena_hw_hints *hints) 3565 { 3566 struct net_device *netdev = adapter->netdev; 3567 3568 if (hints->admin_completion_tx_timeout) 3569 adapter->ena_dev->admin_queue.completion_timeout = 3570 hints->admin_completion_tx_timeout * 1000; 3571 3572 if (hints->mmio_read_timeout) 3573 /* convert to usec */ 3574 adapter->ena_dev->mmio_read.reg_read_to = 3575 hints->mmio_read_timeout * 1000; 3576 3577 if (hints->missed_tx_completion_count_threshold_to_reset) 3578 adapter->missing_tx_completion_threshold = 3579 hints->missed_tx_completion_count_threshold_to_reset; 3580 3581 if (hints->missing_tx_completion_timeout) { 3582 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3583 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3584 else 3585 adapter->missing_tx_completion_to = 3586 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3587 } 3588 3589 if (hints->netdev_wd_timeout) 3590 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3591 3592 if (hints->driver_watchdog_timeout) { 3593 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3594 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3595 else 3596 adapter->keep_alive_timeout = 3597 msecs_to_jiffies(hints->driver_watchdog_timeout); 3598 } 3599 } 3600 3601 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3602 struct net_device *netdev) 3603 { 3604 host_info->supported_network_features[0] = 3605 netdev->features & GENMASK_ULL(31, 0); 3606 host_info->supported_network_features[1] = 3607 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3608 } 3609 3610 static void ena_timer_service(struct timer_list *t) 3611 { 3612 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3613 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3614 struct ena_admin_host_info *host_info = 3615 adapter->ena_dev->host_attr.host_info; 3616 3617 check_for_missing_keep_alive(adapter); 3618 3619 check_for_admin_com_state(adapter); 3620 3621 check_for_missing_completions(adapter); 3622 3623 check_for_empty_rx_ring(adapter); 3624 3625 if (debug_area) 3626 ena_dump_stats_to_buf(adapter, debug_area); 3627 3628 if (host_info) 3629 ena_update_host_info(host_info, adapter->netdev); 3630 3631 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3632 netif_err(adapter, drv, adapter->netdev, 3633 "Trigger reset is on\n"); 3634 ena_dump_stats_to_dmesg(adapter); 3635 queue_work(ena_wq, &adapter->reset_task); 3636 return; 3637 } 3638 3639 /* Reset the timer */ 3640 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3641 } 3642 3643 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3644 struct ena_com_dev *ena_dev, 3645 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3646 { 3647 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3648 3649 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3650 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3651 &get_feat_ctx->max_queue_ext.max_queue_ext; 3652 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3653 max_queue_ext->max_rx_cq_num); 3654 3655 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3656 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3657 } else { 3658 struct ena_admin_queue_feature_desc *max_queues = 3659 &get_feat_ctx->max_queues; 3660 io_tx_sq_num = max_queues->max_sq_num; 3661 io_tx_cq_num = max_queues->max_cq_num; 3662 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3663 } 3664 3665 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3666 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3667 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3668 3669 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3670 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3671 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3672 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3673 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */ 3674 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3675 3676 return max_num_io_queues; 3677 } 3678 3679 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3680 struct net_device *netdev) 3681 { 3682 netdev_features_t dev_features = 0; 3683 3684 /* Set offload features */ 3685 if (feat->offload.tx & 3686 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3687 dev_features |= NETIF_F_IP_CSUM; 3688 3689 if (feat->offload.tx & 3690 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3691 dev_features |= NETIF_F_IPV6_CSUM; 3692 3693 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3694 dev_features |= NETIF_F_TSO; 3695 3696 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3697 dev_features |= NETIF_F_TSO6; 3698 3699 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3700 dev_features |= NETIF_F_TSO_ECN; 3701 3702 if (feat->offload.rx_supported & 3703 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3704 dev_features |= NETIF_F_RXCSUM; 3705 3706 if (feat->offload.rx_supported & 3707 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3708 dev_features |= NETIF_F_RXCSUM; 3709 3710 netdev->features = 3711 dev_features | 3712 NETIF_F_SG | 3713 NETIF_F_RXHASH | 3714 NETIF_F_HIGHDMA; 3715 3716 netdev->hw_features |= netdev->features; 3717 netdev->vlan_features |= netdev->features; 3718 } 3719 3720 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3721 struct ena_com_dev_get_features_ctx *feat) 3722 { 3723 struct net_device *netdev = adapter->netdev; 3724 3725 /* Copy mac address */ 3726 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3727 eth_hw_addr_random(netdev); 3728 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3729 } else { 3730 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3731 eth_hw_addr_set(netdev, adapter->mac_addr); 3732 } 3733 3734 /* Set offload features */ 3735 ena_set_dev_offloads(feat, netdev); 3736 3737 adapter->max_mtu = feat->dev_attr.max_mtu; 3738 netdev->max_mtu = adapter->max_mtu; 3739 netdev->min_mtu = ENA_MIN_MTU; 3740 } 3741 3742 static int ena_rss_init_default(struct ena_adapter *adapter) 3743 { 3744 struct ena_com_dev *ena_dev = adapter->ena_dev; 3745 struct device *dev = &adapter->pdev->dev; 3746 int rc, i; 3747 u32 val; 3748 3749 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3750 if (unlikely(rc)) { 3751 dev_err(dev, "Cannot init indirect table\n"); 3752 goto err_rss_init; 3753 } 3754 3755 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3756 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3757 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3758 ENA_IO_RXQ_IDX(val)); 3759 if (unlikely(rc)) { 3760 dev_err(dev, "Cannot fill indirect table\n"); 3761 goto err_fill_indir; 3762 } 3763 } 3764 3765 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, 3766 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 3767 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3768 dev_err(dev, "Cannot fill hash function\n"); 3769 goto err_fill_indir; 3770 } 3771 3772 rc = ena_com_set_default_hash_ctrl(ena_dev); 3773 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3774 dev_err(dev, "Cannot fill hash control\n"); 3775 goto err_fill_indir; 3776 } 3777 3778 return 0; 3779 3780 err_fill_indir: 3781 ena_com_rss_destroy(ena_dev); 3782 err_rss_init: 3783 3784 return rc; 3785 } 3786 3787 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3788 { 3789 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3790 3791 pci_release_selected_regions(pdev, release_bars); 3792 } 3793 3794 /* ena_probe - Device Initialization Routine 3795 * @pdev: PCI device information struct 3796 * @ent: entry in ena_pci_tbl 3797 * 3798 * Returns 0 on success, negative on failure 3799 * 3800 * ena_probe initializes an adapter identified by a pci_dev structure. 3801 * The OS initialization, configuring of the adapter private structure, 3802 * and a hardware reset occur. 3803 */ 3804 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3805 { 3806 struct ena_com_dev_get_features_ctx get_feat_ctx; 3807 struct ena_com_dev *ena_dev = NULL; 3808 struct ena_adapter *adapter; 3809 struct net_device *netdev; 3810 static int adapters_found; 3811 u32 max_num_io_queues; 3812 bool wd_state; 3813 int bars, rc; 3814 3815 dev_dbg(&pdev->dev, "%s\n", __func__); 3816 3817 rc = pci_enable_device_mem(pdev); 3818 if (rc) { 3819 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3820 return rc; 3821 } 3822 3823 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); 3824 if (rc) { 3825 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); 3826 goto err_disable_device; 3827 } 3828 3829 pci_set_master(pdev); 3830 3831 ena_dev = vzalloc(sizeof(*ena_dev)); 3832 if (!ena_dev) { 3833 rc = -ENOMEM; 3834 goto err_disable_device; 3835 } 3836 3837 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3838 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3839 if (rc) { 3840 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3841 rc); 3842 goto err_free_ena_dev; 3843 } 3844 3845 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3846 pci_resource_start(pdev, ENA_REG_BAR), 3847 pci_resource_len(pdev, ENA_REG_BAR)); 3848 if (!ena_dev->reg_bar) { 3849 dev_err(&pdev->dev, "Failed to remap regs bar\n"); 3850 rc = -EFAULT; 3851 goto err_free_region; 3852 } 3853 3854 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 3855 3856 ena_dev->dmadev = &pdev->dev; 3857 3858 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS); 3859 if (!netdev) { 3860 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3861 rc = -ENOMEM; 3862 goto err_free_region; 3863 } 3864 3865 SET_NETDEV_DEV(netdev, &pdev->dev); 3866 adapter = netdev_priv(netdev); 3867 adapter->ena_dev = ena_dev; 3868 adapter->netdev = netdev; 3869 adapter->pdev = pdev; 3870 adapter->msg_enable = DEFAULT_MSG_ENABLE; 3871 3872 ena_dev->net_device = netdev; 3873 3874 pci_set_drvdata(pdev, adapter); 3875 3876 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 3877 if (rc) { 3878 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n"); 3879 goto err_netdev_destroy; 3880 } 3881 3882 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state); 3883 if (rc) { 3884 dev_err(&pdev->dev, "ENA device init failed\n"); 3885 if (rc == -ETIME) 3886 rc = -EPROBE_DEFER; 3887 goto err_netdev_destroy; 3888 } 3889 3890 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 3891 * Updated during device initialization with the real granularity 3892 */ 3893 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3894 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3895 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3896 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3897 if (unlikely(!max_num_io_queues)) { 3898 rc = -EFAULT; 3899 goto err_device_destroy; 3900 } 3901 3902 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3903 3904 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3905 3906 adapter->num_io_queues = max_num_io_queues; 3907 adapter->max_num_io_queues = max_num_io_queues; 3908 adapter->last_monitored_tx_qid = 0; 3909 3910 adapter->xdp_first_ring = 0; 3911 adapter->xdp_num_queues = 0; 3912 3913 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 3914 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3915 adapter->disable_meta_caching = 3916 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 3917 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 3918 3919 adapter->wd_state = wd_state; 3920 3921 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 3922 3923 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 3924 if (rc) { 3925 dev_err(&pdev->dev, 3926 "Failed to query interrupt moderation feature\n"); 3927 goto err_device_destroy; 3928 } 3929 3930 ena_init_io_rings(adapter, 3931 0, 3932 adapter->xdp_num_queues + 3933 adapter->num_io_queues); 3934 3935 netdev->netdev_ops = &ena_netdev_ops; 3936 netdev->watchdog_timeo = TX_TIMEOUT; 3937 ena_set_ethtool_ops(netdev); 3938 3939 netdev->priv_flags |= IFF_UNICAST_FLT; 3940 3941 u64_stats_init(&adapter->syncp); 3942 3943 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3944 if (rc) { 3945 dev_err(&pdev->dev, 3946 "Failed to enable and set the admin interrupts\n"); 3947 goto err_worker_destroy; 3948 } 3949 rc = ena_rss_init_default(adapter); 3950 if (rc && (rc != -EOPNOTSUPP)) { 3951 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 3952 goto err_free_msix; 3953 } 3954 3955 ena_config_debug_area(adapter); 3956 3957 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues)) 3958 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 3959 NETDEV_XDP_ACT_REDIRECT; 3960 3961 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 3962 3963 netif_carrier_off(netdev); 3964 3965 rc = register_netdev(netdev); 3966 if (rc) { 3967 dev_err(&pdev->dev, "Cannot register net device\n"); 3968 goto err_rss; 3969 } 3970 3971 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 3972 3973 adapter->last_keep_alive_jiffies = jiffies; 3974 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 3975 adapter->missing_tx_completion_to = TX_TIMEOUT; 3976 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 3977 3978 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 3979 3980 timer_setup(&adapter->timer_service, ena_timer_service, 0); 3981 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3982 3983 dev_info(&pdev->dev, 3984 "%s found at mem %lx, mac addr %pM\n", 3985 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 3986 netdev->dev_addr); 3987 3988 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3989 3990 adapters_found++; 3991 3992 return 0; 3993 3994 err_rss: 3995 ena_com_delete_debug_area(ena_dev); 3996 ena_com_rss_destroy(ena_dev); 3997 err_free_msix: 3998 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 3999 /* stop submitting admin commands on a device that was reset */ 4000 ena_com_set_admin_running_state(ena_dev, false); 4001 ena_free_mgmnt_irq(adapter); 4002 ena_disable_msix(adapter); 4003 err_worker_destroy: 4004 del_timer(&adapter->timer_service); 4005 err_device_destroy: 4006 ena_com_delete_host_info(ena_dev); 4007 ena_com_admin_destroy(ena_dev); 4008 err_netdev_destroy: 4009 free_netdev(netdev); 4010 err_free_region: 4011 ena_release_bars(ena_dev, pdev); 4012 err_free_ena_dev: 4013 vfree(ena_dev); 4014 err_disable_device: 4015 pci_disable_device(pdev); 4016 return rc; 4017 } 4018 4019 /*****************************************************************************/ 4020 4021 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4022 * @pdev: PCI device information struct 4023 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4024 * 4025 * __ena_shutoff is a helper routine that does the real work on shutdown and 4026 * removal paths; the difference between those paths is with regards to whether 4027 * dettach or unregister the netdevice. 4028 */ 4029 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4030 { 4031 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4032 struct ena_com_dev *ena_dev; 4033 struct net_device *netdev; 4034 4035 ena_dev = adapter->ena_dev; 4036 netdev = adapter->netdev; 4037 4038 #ifdef CONFIG_RFS_ACCEL 4039 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4040 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4041 netdev->rx_cpu_rmap = NULL; 4042 } 4043 #endif /* CONFIG_RFS_ACCEL */ 4044 4045 /* Make sure timer and reset routine won't be called after 4046 * freeing device resources. 4047 */ 4048 del_timer_sync(&adapter->timer_service); 4049 cancel_work_sync(&adapter->reset_task); 4050 4051 rtnl_lock(); /* lock released inside the below if-else block */ 4052 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4053 ena_destroy_device(adapter, true); 4054 4055 if (shutdown) { 4056 netif_device_detach(netdev); 4057 dev_close(netdev); 4058 rtnl_unlock(); 4059 } else { 4060 rtnl_unlock(); 4061 unregister_netdev(netdev); 4062 free_netdev(netdev); 4063 } 4064 4065 ena_com_rss_destroy(ena_dev); 4066 4067 ena_com_delete_debug_area(ena_dev); 4068 4069 ena_com_delete_host_info(ena_dev); 4070 4071 ena_release_bars(ena_dev, pdev); 4072 4073 pci_disable_device(pdev); 4074 4075 vfree(ena_dev); 4076 } 4077 4078 /* ena_remove - Device Removal Routine 4079 * @pdev: PCI device information struct 4080 * 4081 * ena_remove is called by the PCI subsystem to alert the driver 4082 * that it should release a PCI device. 4083 */ 4084 4085 static void ena_remove(struct pci_dev *pdev) 4086 { 4087 __ena_shutoff(pdev, false); 4088 } 4089 4090 /* ena_shutdown - Device Shutdown Routine 4091 * @pdev: PCI device information struct 4092 * 4093 * ena_shutdown is called by the PCI subsystem to alert the driver that 4094 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4095 */ 4096 4097 static void ena_shutdown(struct pci_dev *pdev) 4098 { 4099 __ena_shutoff(pdev, true); 4100 } 4101 4102 /* ena_suspend - PM suspend callback 4103 * @dev_d: Device information struct 4104 */ 4105 static int __maybe_unused ena_suspend(struct device *dev_d) 4106 { 4107 struct pci_dev *pdev = to_pci_dev(dev_d); 4108 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4109 4110 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp); 4111 4112 rtnl_lock(); 4113 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4114 dev_err(&pdev->dev, 4115 "Ignoring device reset request as the device is being suspended\n"); 4116 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4117 } 4118 ena_destroy_device(adapter, true); 4119 rtnl_unlock(); 4120 return 0; 4121 } 4122 4123 /* ena_resume - PM resume callback 4124 * @dev_d: Device information struct 4125 */ 4126 static int __maybe_unused ena_resume(struct device *dev_d) 4127 { 4128 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4129 int rc; 4130 4131 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp); 4132 4133 rtnl_lock(); 4134 rc = ena_restore_device(adapter); 4135 rtnl_unlock(); 4136 return rc; 4137 } 4138 4139 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4140 4141 static struct pci_driver ena_pci_driver = { 4142 .name = DRV_MODULE_NAME, 4143 .id_table = ena_pci_tbl, 4144 .probe = ena_probe, 4145 .remove = ena_remove, 4146 .shutdown = ena_shutdown, 4147 .driver.pm = &ena_pm_ops, 4148 .sriov_configure = pci_sriov_configure_simple, 4149 }; 4150 4151 static int __init ena_init(void) 4152 { 4153 int ret; 4154 4155 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4156 if (!ena_wq) { 4157 pr_err("Failed to create workqueue\n"); 4158 return -ENOMEM; 4159 } 4160 4161 ret = pci_register_driver(&ena_pci_driver); 4162 if (ret) 4163 destroy_workqueue(ena_wq); 4164 4165 return ret; 4166 } 4167 4168 static void __exit ena_cleanup(void) 4169 { 4170 pci_unregister_driver(&ena_pci_driver); 4171 4172 if (ena_wq) { 4173 destroy_workqueue(ena_wq); 4174 ena_wq = NULL; 4175 } 4176 } 4177 4178 /****************************************************************************** 4179 ******************************** AENQ Handlers ******************************* 4180 *****************************************************************************/ 4181 /* ena_update_on_link_change: 4182 * Notify the network interface about the change in link status 4183 */ 4184 static void ena_update_on_link_change(void *adapter_data, 4185 struct ena_admin_aenq_entry *aenq_e) 4186 { 4187 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4188 struct ena_admin_aenq_link_change_desc *aenq_desc = 4189 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4190 int status = aenq_desc->flags & 4191 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4192 4193 if (status) { 4194 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 4195 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4196 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4197 netif_carrier_on(adapter->netdev); 4198 } else { 4199 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4200 netif_carrier_off(adapter->netdev); 4201 } 4202 } 4203 4204 static void ena_keep_alive_wd(void *adapter_data, 4205 struct ena_admin_aenq_entry *aenq_e) 4206 { 4207 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4208 struct ena_admin_aenq_keep_alive_desc *desc; 4209 u64 rx_drops; 4210 u64 tx_drops; 4211 4212 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4213 adapter->last_keep_alive_jiffies = jiffies; 4214 4215 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4216 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4217 4218 u64_stats_update_begin(&adapter->syncp); 4219 /* These stats are accumulated by the device, so the counters indicate 4220 * all drops since last reset. 4221 */ 4222 adapter->dev_stats.rx_drops = rx_drops; 4223 adapter->dev_stats.tx_drops = tx_drops; 4224 u64_stats_update_end(&adapter->syncp); 4225 } 4226 4227 static void ena_notification(void *adapter_data, 4228 struct ena_admin_aenq_entry *aenq_e) 4229 { 4230 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4231 struct ena_admin_ena_hw_hints *hints; 4232 4233 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4234 "Invalid group(%x) expected %x\n", 4235 aenq_e->aenq_common_desc.group, 4236 ENA_ADMIN_NOTIFICATION); 4237 4238 switch (aenq_e->aenq_common_desc.syndrome) { 4239 case ENA_ADMIN_UPDATE_HINTS: 4240 hints = (struct ena_admin_ena_hw_hints *) 4241 (&aenq_e->inline_data_w4); 4242 ena_update_hints(adapter, hints); 4243 break; 4244 default: 4245 netif_err(adapter, drv, adapter->netdev, 4246 "Invalid aenq notification link state %d\n", 4247 aenq_e->aenq_common_desc.syndrome); 4248 } 4249 } 4250 4251 /* This handler will called for unknown event group or unimplemented handlers*/ 4252 static void unimplemented_aenq_handler(void *data, 4253 struct ena_admin_aenq_entry *aenq_e) 4254 { 4255 struct ena_adapter *adapter = (struct ena_adapter *)data; 4256 4257 netif_err(adapter, drv, adapter->netdev, 4258 "Unknown event was received or event with unimplemented handler\n"); 4259 } 4260 4261 static struct ena_aenq_handlers aenq_handlers = { 4262 .handlers = { 4263 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4264 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4265 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4266 }, 4267 .unimplemented_handler = unimplemented_aenq_handler 4268 }; 4269 4270 module_init(ena_init); 4271 module_exit(ena_cleanup); 4272