1 /* 2 * Copyright 2015 Amazon.com, Inc. or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #ifdef CONFIG_RFS_ACCEL 36 #include <linux/cpu_rmap.h> 37 #endif /* CONFIG_RFS_ACCEL */ 38 #include <linux/ethtool.h> 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/numa.h> 42 #include <linux/pci.h> 43 #include <linux/utsname.h> 44 #include <linux/version.h> 45 #include <linux/vmalloc.h> 46 #include <net/ip.h> 47 48 #include "ena_netdev.h" 49 #include <linux/bpf_trace.h> 50 #include "ena_pci_id_tbl.h" 51 52 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 53 MODULE_DESCRIPTION(DEVICE_NAME); 54 MODULE_LICENSE("GPL"); 55 56 /* Time in jiffies before concluding the transmitter is hung. */ 57 #define TX_TIMEOUT (5 * HZ) 58 59 #define ENA_NAPI_BUDGET 64 60 61 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 62 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 63 static int debug = -1; 64 module_param(debug, int, 0); 65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 66 67 static struct ena_aenq_handlers aenq_handlers; 68 69 static struct workqueue_struct *ena_wq; 70 71 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 72 73 static int ena_rss_init_default(struct ena_adapter *adapter); 74 static void check_for_admin_com_state(struct ena_adapter *adapter); 75 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 76 static int ena_restore_device(struct ena_adapter *adapter); 77 78 static void ena_init_io_rings(struct ena_adapter *adapter, 79 int first_index, int count); 80 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index, 81 int count); 82 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index, 83 int count); 84 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid); 85 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 86 int first_index, 87 int count); 88 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid); 89 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid); 90 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget); 91 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter); 92 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter); 93 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 94 int first_index, int count); 95 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 96 int first_index, int count); 97 static int ena_up(struct ena_adapter *adapter); 98 static void ena_down(struct ena_adapter *adapter); 99 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 100 struct ena_ring *rx_ring); 101 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 102 struct ena_ring *rx_ring); 103 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 104 struct ena_tx_buffer *tx_info); 105 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 106 int first_index, int count); 107 108 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 109 { 110 struct ena_adapter *adapter = netdev_priv(dev); 111 112 /* Change the state of the device to trigger reset 113 * Check that we are not in the middle or a trigger already 114 */ 115 116 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 117 return; 118 119 adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 120 u64_stats_update_begin(&adapter->syncp); 121 adapter->dev_stats.tx_timeout++; 122 u64_stats_update_end(&adapter->syncp); 123 124 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 125 } 126 127 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 128 { 129 int i; 130 131 for (i = 0; i < adapter->num_io_queues; i++) 132 adapter->rx_ring[i].mtu = mtu; 133 } 134 135 static int ena_change_mtu(struct net_device *dev, int new_mtu) 136 { 137 struct ena_adapter *adapter = netdev_priv(dev); 138 int ret; 139 140 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 141 if (!ret) { 142 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu); 143 update_rx_ring_mtu(adapter, new_mtu); 144 dev->mtu = new_mtu; 145 } else { 146 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 147 new_mtu); 148 } 149 150 return ret; 151 } 152 153 static int ena_xmit_common(struct net_device *dev, 154 struct ena_ring *ring, 155 struct ena_tx_buffer *tx_info, 156 struct ena_com_tx_ctx *ena_tx_ctx, 157 u16 next_to_use, 158 u32 bytes) 159 { 160 struct ena_adapter *adapter = netdev_priv(dev); 161 int rc, nb_hw_desc; 162 163 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 164 ena_tx_ctx))) { 165 netif_dbg(adapter, tx_queued, dev, 166 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 167 ring->qid); 168 ena_com_write_sq_doorbell(ring->ena_com_io_sq); 169 } 170 171 /* prepare the packet's descriptors to dma engine */ 172 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 173 &nb_hw_desc); 174 175 /* In case there isn't enough space in the queue for the packet, 176 * we simply drop it. All other failure reasons of 177 * ena_com_prepare_tx() are fatal and therefore require a device reset. 178 */ 179 if (unlikely(rc)) { 180 netif_err(adapter, tx_queued, dev, 181 "failed to prepare tx bufs\n"); 182 u64_stats_update_begin(&ring->syncp); 183 ring->tx_stats.prepare_ctx_err++; 184 u64_stats_update_end(&ring->syncp); 185 if (rc != -ENOMEM) { 186 adapter->reset_reason = 187 ENA_REGS_RESET_DRIVER_INVALID_STATE; 188 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 189 } 190 return rc; 191 } 192 193 u64_stats_update_begin(&ring->syncp); 194 ring->tx_stats.cnt++; 195 ring->tx_stats.bytes += bytes; 196 u64_stats_update_end(&ring->syncp); 197 198 tx_info->tx_descs = nb_hw_desc; 199 tx_info->last_jiffies = jiffies; 200 tx_info->print_once = 0; 201 202 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 203 ring->ring_size); 204 return 0; 205 } 206 207 /* This is the XDP napi callback. XDP queues use a separate napi callback 208 * than Rx/Tx queues. 209 */ 210 static int ena_xdp_io_poll(struct napi_struct *napi, int budget) 211 { 212 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 213 u32 xdp_work_done, xdp_budget; 214 struct ena_ring *xdp_ring; 215 int napi_comp_call = 0; 216 int ret; 217 218 xdp_ring = ena_napi->xdp_ring; 219 xdp_ring->first_interrupt = ena_napi->first_interrupt; 220 221 xdp_budget = budget; 222 223 if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) || 224 test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) { 225 napi_complete_done(napi, 0); 226 return 0; 227 } 228 229 xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget); 230 231 /* If the device is about to reset or down, avoid unmask 232 * the interrupt and return 0 so NAPI won't reschedule 233 */ 234 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) { 235 napi_complete_done(napi, 0); 236 ret = 0; 237 } else if (xdp_budget > xdp_work_done) { 238 napi_comp_call = 1; 239 if (napi_complete_done(napi, xdp_work_done)) 240 ena_unmask_interrupt(xdp_ring, NULL); 241 ena_update_ring_numa_node(xdp_ring, NULL); 242 ret = xdp_work_done; 243 } else { 244 ret = xdp_budget; 245 } 246 247 u64_stats_update_begin(&xdp_ring->syncp); 248 xdp_ring->tx_stats.napi_comp += napi_comp_call; 249 xdp_ring->tx_stats.tx_poll++; 250 u64_stats_update_end(&xdp_ring->syncp); 251 252 return ret; 253 } 254 255 static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring, 256 struct ena_tx_buffer *tx_info, 257 struct xdp_buff *xdp, 258 void **push_hdr, 259 u32 *push_len) 260 { 261 struct ena_adapter *adapter = xdp_ring->adapter; 262 struct ena_com_buf *ena_buf; 263 dma_addr_t dma = 0; 264 u32 size; 265 266 tx_info->xdpf = convert_to_xdp_frame(xdp); 267 size = tx_info->xdpf->len; 268 ena_buf = tx_info->bufs; 269 270 /* llq push buffer */ 271 *push_len = min_t(u32, size, xdp_ring->tx_max_header_size); 272 *push_hdr = tx_info->xdpf->data; 273 274 if (size - *push_len > 0) { 275 dma = dma_map_single(xdp_ring->dev, 276 *push_hdr + *push_len, 277 size - *push_len, 278 DMA_TO_DEVICE); 279 if (unlikely(dma_mapping_error(xdp_ring->dev, dma))) 280 goto error_report_dma_error; 281 282 tx_info->map_linear_data = 1; 283 tx_info->num_of_bufs = 1; 284 } 285 286 ena_buf->paddr = dma; 287 ena_buf->len = size; 288 289 return 0; 290 291 error_report_dma_error: 292 u64_stats_update_begin(&xdp_ring->syncp); 293 xdp_ring->tx_stats.dma_mapping_err++; 294 u64_stats_update_end(&xdp_ring->syncp); 295 netdev_warn(adapter->netdev, "failed to map xdp buff\n"); 296 297 xdp_return_frame_rx_napi(tx_info->xdpf); 298 tx_info->xdpf = NULL; 299 tx_info->num_of_bufs = 0; 300 301 return -EINVAL; 302 } 303 304 static int ena_xdp_xmit_buff(struct net_device *dev, 305 struct xdp_buff *xdp, 306 int qid, 307 struct ena_rx_buffer *rx_info) 308 { 309 struct ena_adapter *adapter = netdev_priv(dev); 310 struct ena_com_tx_ctx ena_tx_ctx = {0}; 311 struct ena_tx_buffer *tx_info; 312 struct ena_ring *xdp_ring; 313 u16 next_to_use, req_id; 314 int rc; 315 void *push_hdr; 316 u32 push_len; 317 318 xdp_ring = &adapter->tx_ring[qid]; 319 next_to_use = xdp_ring->next_to_use; 320 req_id = xdp_ring->free_ids[next_to_use]; 321 tx_info = &xdp_ring->tx_buffer_info[req_id]; 322 tx_info->num_of_bufs = 0; 323 page_ref_inc(rx_info->page); 324 tx_info->xdp_rx_page = rx_info->page; 325 326 rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len); 327 if (unlikely(rc)) 328 goto error_drop_packet; 329 330 ena_tx_ctx.ena_bufs = tx_info->bufs; 331 ena_tx_ctx.push_header = push_hdr; 332 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 333 ena_tx_ctx.req_id = req_id; 334 ena_tx_ctx.header_len = push_len; 335 336 rc = ena_xmit_common(dev, 337 xdp_ring, 338 tx_info, 339 &ena_tx_ctx, 340 next_to_use, 341 xdp->data_end - xdp->data); 342 if (rc) 343 goto error_unmap_dma; 344 /* trigger the dma engine. ena_com_write_sq_doorbell() 345 * has a mb 346 */ 347 ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq); 348 u64_stats_update_begin(&xdp_ring->syncp); 349 xdp_ring->tx_stats.doorbells++; 350 u64_stats_update_end(&xdp_ring->syncp); 351 352 return NETDEV_TX_OK; 353 354 error_unmap_dma: 355 ena_unmap_tx_buff(xdp_ring, tx_info); 356 tx_info->xdpf = NULL; 357 error_drop_packet: 358 359 return NETDEV_TX_OK; 360 } 361 362 static int ena_xdp_execute(struct ena_ring *rx_ring, 363 struct xdp_buff *xdp, 364 struct ena_rx_buffer *rx_info) 365 { 366 struct bpf_prog *xdp_prog; 367 u32 verdict = XDP_PASS; 368 369 rcu_read_lock(); 370 xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog); 371 372 if (!xdp_prog) 373 goto out; 374 375 verdict = bpf_prog_run_xdp(xdp_prog, xdp); 376 377 if (verdict == XDP_TX) 378 ena_xdp_xmit_buff(rx_ring->netdev, 379 xdp, 380 rx_ring->qid + rx_ring->adapter->num_io_queues, 381 rx_info); 382 else if (unlikely(verdict == XDP_ABORTED)) 383 trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict); 384 else if (unlikely(verdict > XDP_TX)) 385 bpf_warn_invalid_xdp_action(verdict); 386 out: 387 rcu_read_unlock(); 388 return verdict; 389 } 390 391 static void ena_init_all_xdp_queues(struct ena_adapter *adapter) 392 { 393 adapter->xdp_first_ring = adapter->num_io_queues; 394 adapter->xdp_num_queues = adapter->num_io_queues; 395 396 ena_init_io_rings(adapter, 397 adapter->xdp_first_ring, 398 adapter->xdp_num_queues); 399 } 400 401 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter) 402 { 403 int rc = 0; 404 405 rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring, 406 adapter->xdp_num_queues); 407 if (rc) 408 goto setup_err; 409 410 rc = ena_create_io_tx_queues_in_range(adapter, 411 adapter->xdp_first_ring, 412 adapter->xdp_num_queues); 413 if (rc) 414 goto create_err; 415 416 return 0; 417 418 create_err: 419 ena_free_all_io_tx_resources(adapter); 420 setup_err: 421 return rc; 422 } 423 424 /* Provides a way for both kernel and bpf-prog to know 425 * more about the RX-queue a given XDP frame arrived on. 426 */ 427 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring) 428 { 429 int rc; 430 431 rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid); 432 433 if (rc) { 434 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 435 "Failed to register xdp rx queue info. RX queue num %d rc: %d\n", 436 rx_ring->qid, rc); 437 goto err; 438 } 439 440 rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, 441 NULL); 442 443 if (rc) { 444 netif_err(rx_ring->adapter, ifup, rx_ring->netdev, 445 "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n", 446 rx_ring->qid, rc); 447 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 448 } 449 450 err: 451 return rc; 452 } 453 454 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring) 455 { 456 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq); 457 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 458 } 459 460 void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter, 461 struct bpf_prog *prog, 462 int first, 463 int count) 464 { 465 struct ena_ring *rx_ring; 466 int i = 0; 467 468 for (i = first; i < count; i++) { 469 rx_ring = &adapter->rx_ring[i]; 470 xchg(&rx_ring->xdp_bpf_prog, prog); 471 if (prog) { 472 ena_xdp_register_rxq_info(rx_ring); 473 rx_ring->rx_headroom = XDP_PACKET_HEADROOM; 474 } else { 475 ena_xdp_unregister_rxq_info(rx_ring); 476 rx_ring->rx_headroom = 0; 477 } 478 } 479 } 480 481 void ena_xdp_exchange_program(struct ena_adapter *adapter, 482 struct bpf_prog *prog) 483 { 484 struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog); 485 486 ena_xdp_exchange_program_rx_in_range(adapter, 487 prog, 488 0, 489 adapter->num_io_queues); 490 491 if (old_bpf_prog) 492 bpf_prog_put(old_bpf_prog); 493 } 494 495 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter) 496 { 497 bool was_up; 498 int rc; 499 500 was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 501 502 if (was_up) 503 ena_down(adapter); 504 505 adapter->xdp_first_ring = 0; 506 adapter->xdp_num_queues = 0; 507 ena_xdp_exchange_program(adapter, NULL); 508 if (was_up) { 509 rc = ena_up(adapter); 510 if (rc) 511 return rc; 512 } 513 return 0; 514 } 515 516 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf) 517 { 518 struct ena_adapter *adapter = netdev_priv(netdev); 519 struct bpf_prog *prog = bpf->prog; 520 struct bpf_prog *old_bpf_prog; 521 int rc, prev_mtu; 522 bool is_up; 523 524 is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 525 rc = ena_xdp_allowed(adapter); 526 if (rc == ENA_XDP_ALLOWED) { 527 old_bpf_prog = adapter->xdp_bpf_prog; 528 if (prog) { 529 if (!is_up) { 530 ena_init_all_xdp_queues(adapter); 531 } else if (!old_bpf_prog) { 532 ena_down(adapter); 533 ena_init_all_xdp_queues(adapter); 534 } 535 ena_xdp_exchange_program(adapter, prog); 536 537 if (is_up && !old_bpf_prog) { 538 rc = ena_up(adapter); 539 if (rc) 540 return rc; 541 } 542 } else if (old_bpf_prog) { 543 rc = ena_destroy_and_free_all_xdp_queues(adapter); 544 if (rc) 545 return rc; 546 } 547 548 prev_mtu = netdev->max_mtu; 549 netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu; 550 551 if (!old_bpf_prog) 552 netif_info(adapter, drv, adapter->netdev, 553 "xdp program set, changing the max_mtu from %d to %d", 554 prev_mtu, netdev->max_mtu); 555 556 } else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) { 557 netif_err(adapter, drv, adapter->netdev, 558 "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on", 559 netdev->mtu, ENA_XDP_MAX_MTU); 560 NL_SET_ERR_MSG_MOD(bpf->extack, 561 "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info"); 562 return -EINVAL; 563 } else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) { 564 netif_err(adapter, drv, adapter->netdev, 565 "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n", 566 adapter->num_io_queues, adapter->max_num_io_queues); 567 NL_SET_ERR_MSG_MOD(bpf->extack, 568 "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info"); 569 return -EINVAL; 570 } 571 572 return 0; 573 } 574 575 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp 576 * program as well as to query the current xdp program id. 577 */ 578 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf) 579 { 580 struct ena_adapter *adapter = netdev_priv(netdev); 581 582 switch (bpf->command) { 583 case XDP_SETUP_PROG: 584 return ena_xdp_set(netdev, bpf); 585 case XDP_QUERY_PROG: 586 bpf->prog_id = adapter->xdp_bpf_prog ? 587 adapter->xdp_bpf_prog->aux->id : 0; 588 break; 589 default: 590 return -EINVAL; 591 } 592 return 0; 593 } 594 595 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 596 { 597 #ifdef CONFIG_RFS_ACCEL 598 u32 i; 599 int rc; 600 601 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 602 if (!adapter->netdev->rx_cpu_rmap) 603 return -ENOMEM; 604 for (i = 0; i < adapter->num_io_queues; i++) { 605 int irq_idx = ENA_IO_IRQ_IDX(i); 606 607 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 608 pci_irq_vector(adapter->pdev, irq_idx)); 609 if (rc) { 610 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 611 adapter->netdev->rx_cpu_rmap = NULL; 612 return rc; 613 } 614 } 615 #endif /* CONFIG_RFS_ACCEL */ 616 return 0; 617 } 618 619 static void ena_init_io_rings_common(struct ena_adapter *adapter, 620 struct ena_ring *ring, u16 qid) 621 { 622 ring->qid = qid; 623 ring->pdev = adapter->pdev; 624 ring->dev = &adapter->pdev->dev; 625 ring->netdev = adapter->netdev; 626 ring->napi = &adapter->ena_napi[qid].napi; 627 ring->adapter = adapter; 628 ring->ena_dev = adapter->ena_dev; 629 ring->per_napi_packets = 0; 630 ring->cpu = 0; 631 ring->first_interrupt = false; 632 ring->no_interrupt_event_cnt = 0; 633 u64_stats_init(&ring->syncp); 634 } 635 636 static void ena_init_io_rings(struct ena_adapter *adapter, 637 int first_index, int count) 638 { 639 struct ena_com_dev *ena_dev; 640 struct ena_ring *txr, *rxr; 641 int i; 642 643 ena_dev = adapter->ena_dev; 644 645 for (i = first_index; i < first_index + count; i++) { 646 txr = &adapter->tx_ring[i]; 647 rxr = &adapter->rx_ring[i]; 648 649 /* TX common ring state */ 650 ena_init_io_rings_common(adapter, txr, i); 651 652 /* TX specific ring state */ 653 txr->ring_size = adapter->requested_tx_ring_size; 654 txr->tx_max_header_size = ena_dev->tx_max_header_size; 655 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 656 txr->sgl_size = adapter->max_tx_sgl_size; 657 txr->smoothed_interval = 658 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 659 660 /* Don't init RX queues for xdp queues */ 661 if (!ENA_IS_XDP_INDEX(adapter, i)) { 662 /* RX common ring state */ 663 ena_init_io_rings_common(adapter, rxr, i); 664 665 /* RX specific ring state */ 666 rxr->ring_size = adapter->requested_rx_ring_size; 667 rxr->rx_copybreak = adapter->rx_copybreak; 668 rxr->sgl_size = adapter->max_rx_sgl_size; 669 rxr->smoothed_interval = 670 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 671 rxr->empty_rx_queue = 0; 672 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 673 } 674 } 675 } 676 677 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 678 * @adapter: network interface device structure 679 * @qid: queue index 680 * 681 * Return 0 on success, negative on failure 682 */ 683 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 684 { 685 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 686 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 687 int size, i, node; 688 689 if (tx_ring->tx_buffer_info) { 690 netif_err(adapter, ifup, 691 adapter->netdev, "tx_buffer_info info is not NULL"); 692 return -EEXIST; 693 } 694 695 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 696 node = cpu_to_node(ena_irq->cpu); 697 698 tx_ring->tx_buffer_info = vzalloc_node(size, node); 699 if (!tx_ring->tx_buffer_info) { 700 tx_ring->tx_buffer_info = vzalloc(size); 701 if (!tx_ring->tx_buffer_info) 702 goto err_tx_buffer_info; 703 } 704 705 size = sizeof(u16) * tx_ring->ring_size; 706 tx_ring->free_ids = vzalloc_node(size, node); 707 if (!tx_ring->free_ids) { 708 tx_ring->free_ids = vzalloc(size); 709 if (!tx_ring->free_ids) 710 goto err_tx_free_ids; 711 } 712 713 size = tx_ring->tx_max_header_size; 714 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 715 if (!tx_ring->push_buf_intermediate_buf) { 716 tx_ring->push_buf_intermediate_buf = vzalloc(size); 717 if (!tx_ring->push_buf_intermediate_buf) 718 goto err_push_buf_intermediate_buf; 719 } 720 721 /* Req id ring for TX out of order completions */ 722 for (i = 0; i < tx_ring->ring_size; i++) 723 tx_ring->free_ids[i] = i; 724 725 /* Reset tx statistics */ 726 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 727 728 tx_ring->next_to_use = 0; 729 tx_ring->next_to_clean = 0; 730 tx_ring->cpu = ena_irq->cpu; 731 return 0; 732 733 err_push_buf_intermediate_buf: 734 vfree(tx_ring->free_ids); 735 tx_ring->free_ids = NULL; 736 err_tx_free_ids: 737 vfree(tx_ring->tx_buffer_info); 738 tx_ring->tx_buffer_info = NULL; 739 err_tx_buffer_info: 740 return -ENOMEM; 741 } 742 743 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 744 * @adapter: network interface device structure 745 * @qid: queue index 746 * 747 * Free all transmit software resources 748 */ 749 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 750 { 751 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 752 753 vfree(tx_ring->tx_buffer_info); 754 tx_ring->tx_buffer_info = NULL; 755 756 vfree(tx_ring->free_ids); 757 tx_ring->free_ids = NULL; 758 759 vfree(tx_ring->push_buf_intermediate_buf); 760 tx_ring->push_buf_intermediate_buf = NULL; 761 } 762 763 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 764 int first_index, 765 int count) 766 { 767 int i, rc = 0; 768 769 for (i = first_index; i < first_index + count; i++) { 770 rc = ena_setup_tx_resources(adapter, i); 771 if (rc) 772 goto err_setup_tx; 773 } 774 775 return 0; 776 777 err_setup_tx: 778 779 netif_err(adapter, ifup, adapter->netdev, 780 "Tx queue %d: allocation failed\n", i); 781 782 /* rewind the index freeing the rings as we go */ 783 while (first_index < i--) 784 ena_free_tx_resources(adapter, i); 785 return rc; 786 } 787 788 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 789 int first_index, int count) 790 { 791 int i; 792 793 for (i = first_index; i < first_index + count; i++) 794 ena_free_tx_resources(adapter, i); 795 } 796 797 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 798 * @adapter: board private structure 799 * 800 * Free all transmit software resources 801 */ 802 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 803 { 804 ena_free_all_io_tx_resources_in_range(adapter, 805 0, 806 adapter->xdp_num_queues + 807 adapter->num_io_queues); 808 } 809 810 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id) 811 { 812 if (likely(req_id < rx_ring->ring_size)) 813 return 0; 814 815 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 816 "Invalid rx req_id: %hu\n", req_id); 817 818 u64_stats_update_begin(&rx_ring->syncp); 819 rx_ring->rx_stats.bad_req_id++; 820 u64_stats_update_end(&rx_ring->syncp); 821 822 /* Trigger device reset */ 823 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 824 set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags); 825 return -EFAULT; 826 } 827 828 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 829 * @adapter: network interface device structure 830 * @qid: queue index 831 * 832 * Returns 0 on success, negative on failure 833 */ 834 static int ena_setup_rx_resources(struct ena_adapter *adapter, 835 u32 qid) 836 { 837 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 838 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 839 int size, node, i; 840 841 if (rx_ring->rx_buffer_info) { 842 netif_err(adapter, ifup, adapter->netdev, 843 "rx_buffer_info is not NULL"); 844 return -EEXIST; 845 } 846 847 /* alloc extra element so in rx path 848 * we can always prefetch rx_info + 1 849 */ 850 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 851 node = cpu_to_node(ena_irq->cpu); 852 853 rx_ring->rx_buffer_info = vzalloc_node(size, node); 854 if (!rx_ring->rx_buffer_info) { 855 rx_ring->rx_buffer_info = vzalloc(size); 856 if (!rx_ring->rx_buffer_info) 857 return -ENOMEM; 858 } 859 860 size = sizeof(u16) * rx_ring->ring_size; 861 rx_ring->free_ids = vzalloc_node(size, node); 862 if (!rx_ring->free_ids) { 863 rx_ring->free_ids = vzalloc(size); 864 if (!rx_ring->free_ids) { 865 vfree(rx_ring->rx_buffer_info); 866 rx_ring->rx_buffer_info = NULL; 867 return -ENOMEM; 868 } 869 } 870 871 /* Req id ring for receiving RX pkts out of order */ 872 for (i = 0; i < rx_ring->ring_size; i++) 873 rx_ring->free_ids[i] = i; 874 875 /* Reset rx statistics */ 876 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 877 878 rx_ring->next_to_clean = 0; 879 rx_ring->next_to_use = 0; 880 rx_ring->cpu = ena_irq->cpu; 881 882 return 0; 883 } 884 885 /* ena_free_rx_resources - Free I/O Rx Resources 886 * @adapter: network interface device structure 887 * @qid: queue index 888 * 889 * Free all receive software resources 890 */ 891 static void ena_free_rx_resources(struct ena_adapter *adapter, 892 u32 qid) 893 { 894 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 895 896 vfree(rx_ring->rx_buffer_info); 897 rx_ring->rx_buffer_info = NULL; 898 899 vfree(rx_ring->free_ids); 900 rx_ring->free_ids = NULL; 901 } 902 903 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 904 * @adapter: board private structure 905 * 906 * Return 0 on success, negative on failure 907 */ 908 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 909 { 910 int i, rc = 0; 911 912 for (i = 0; i < adapter->num_io_queues; i++) { 913 rc = ena_setup_rx_resources(adapter, i); 914 if (rc) 915 goto err_setup_rx; 916 } 917 918 return 0; 919 920 err_setup_rx: 921 922 netif_err(adapter, ifup, adapter->netdev, 923 "Rx queue %d: allocation failed\n", i); 924 925 /* rewind the index freeing the rings as we go */ 926 while (i--) 927 ena_free_rx_resources(adapter, i); 928 return rc; 929 } 930 931 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 932 * @adapter: board private structure 933 * 934 * Free all receive software resources 935 */ 936 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 937 { 938 int i; 939 940 for (i = 0; i < adapter->num_io_queues; i++) 941 ena_free_rx_resources(adapter, i); 942 } 943 944 static int ena_alloc_rx_page(struct ena_ring *rx_ring, 945 struct ena_rx_buffer *rx_info, gfp_t gfp) 946 { 947 struct ena_com_buf *ena_buf; 948 struct page *page; 949 dma_addr_t dma; 950 951 /* if previous allocated page is not used */ 952 if (unlikely(rx_info->page)) 953 return 0; 954 955 page = alloc_page(gfp); 956 if (unlikely(!page)) { 957 u64_stats_update_begin(&rx_ring->syncp); 958 rx_ring->rx_stats.page_alloc_fail++; 959 u64_stats_update_end(&rx_ring->syncp); 960 return -ENOMEM; 961 } 962 963 dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 964 DMA_FROM_DEVICE); 965 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) { 966 u64_stats_update_begin(&rx_ring->syncp); 967 rx_ring->rx_stats.dma_mapping_err++; 968 u64_stats_update_end(&rx_ring->syncp); 969 970 __free_page(page); 971 return -EIO; 972 } 973 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 974 "alloc page %p, rx_info %p\n", page, rx_info); 975 976 rx_info->page = page; 977 rx_info->page_offset = 0; 978 ena_buf = &rx_info->ena_buf; 979 ena_buf->paddr = dma + rx_ring->rx_headroom; 980 ena_buf->len = ENA_PAGE_SIZE - rx_ring->rx_headroom; 981 982 return 0; 983 } 984 985 static void ena_free_rx_page(struct ena_ring *rx_ring, 986 struct ena_rx_buffer *rx_info) 987 { 988 struct page *page = rx_info->page; 989 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 990 991 if (unlikely(!page)) { 992 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 993 "Trying to free unallocated buffer\n"); 994 return; 995 } 996 997 dma_unmap_page(rx_ring->dev, 998 ena_buf->paddr - rx_ring->rx_headroom, 999 ENA_PAGE_SIZE, 1000 DMA_FROM_DEVICE); 1001 1002 __free_page(page); 1003 rx_info->page = NULL; 1004 } 1005 1006 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 1007 { 1008 u16 next_to_use, req_id; 1009 u32 i; 1010 int rc; 1011 1012 next_to_use = rx_ring->next_to_use; 1013 1014 for (i = 0; i < num; i++) { 1015 struct ena_rx_buffer *rx_info; 1016 1017 req_id = rx_ring->free_ids[next_to_use]; 1018 1019 rx_info = &rx_ring->rx_buffer_info[req_id]; 1020 1021 rc = ena_alloc_rx_page(rx_ring, rx_info, 1022 GFP_ATOMIC | __GFP_COMP); 1023 if (unlikely(rc < 0)) { 1024 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 1025 "failed to alloc buffer for rx queue %d\n", 1026 rx_ring->qid); 1027 break; 1028 } 1029 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 1030 &rx_info->ena_buf, 1031 req_id); 1032 if (unlikely(rc)) { 1033 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1034 "failed to add buffer for rx queue %d\n", 1035 rx_ring->qid); 1036 break; 1037 } 1038 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 1039 rx_ring->ring_size); 1040 } 1041 1042 if (unlikely(i < num)) { 1043 u64_stats_update_begin(&rx_ring->syncp); 1044 rx_ring->rx_stats.refil_partial++; 1045 u64_stats_update_end(&rx_ring->syncp); 1046 netdev_warn(rx_ring->netdev, 1047 "refilled rx qid %d with only %d buffers (from %d)\n", 1048 rx_ring->qid, i, num); 1049 } 1050 1051 /* ena_com_write_sq_doorbell issues a wmb() */ 1052 if (likely(i)) 1053 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 1054 1055 rx_ring->next_to_use = next_to_use; 1056 1057 return i; 1058 } 1059 1060 static void ena_free_rx_bufs(struct ena_adapter *adapter, 1061 u32 qid) 1062 { 1063 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 1064 u32 i; 1065 1066 for (i = 0; i < rx_ring->ring_size; i++) { 1067 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 1068 1069 if (rx_info->page) 1070 ena_free_rx_page(rx_ring, rx_info); 1071 } 1072 } 1073 1074 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 1075 * @adapter: board private structure 1076 */ 1077 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 1078 { 1079 struct ena_ring *rx_ring; 1080 int i, rc, bufs_num; 1081 1082 for (i = 0; i < adapter->num_io_queues; i++) { 1083 rx_ring = &adapter->rx_ring[i]; 1084 bufs_num = rx_ring->ring_size - 1; 1085 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 1086 1087 if (unlikely(rc != bufs_num)) 1088 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 1089 "refilling Queue %d failed. allocated %d buffers from: %d\n", 1090 i, rc, bufs_num); 1091 } 1092 } 1093 1094 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 1095 { 1096 int i; 1097 1098 for (i = 0; i < adapter->num_io_queues; i++) 1099 ena_free_rx_bufs(adapter, i); 1100 } 1101 1102 static void ena_unmap_tx_buff(struct ena_ring *tx_ring, 1103 struct ena_tx_buffer *tx_info) 1104 { 1105 struct ena_com_buf *ena_buf; 1106 u32 cnt; 1107 int i; 1108 1109 ena_buf = tx_info->bufs; 1110 cnt = tx_info->num_of_bufs; 1111 1112 if (unlikely(!cnt)) 1113 return; 1114 1115 if (tx_info->map_linear_data) { 1116 dma_unmap_single(tx_ring->dev, 1117 dma_unmap_addr(ena_buf, paddr), 1118 dma_unmap_len(ena_buf, len), 1119 DMA_TO_DEVICE); 1120 ena_buf++; 1121 cnt--; 1122 } 1123 1124 /* unmap remaining mapped pages */ 1125 for (i = 0; i < cnt; i++) { 1126 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 1127 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 1128 ena_buf++; 1129 } 1130 } 1131 1132 /* ena_free_tx_bufs - Free Tx Buffers per Queue 1133 * @tx_ring: TX ring for which buffers be freed 1134 */ 1135 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 1136 { 1137 bool print_once = true; 1138 u32 i; 1139 1140 for (i = 0; i < tx_ring->ring_size; i++) { 1141 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 1142 1143 if (!tx_info->skb) 1144 continue; 1145 1146 if (print_once) { 1147 netdev_notice(tx_ring->netdev, 1148 "free uncompleted tx skb qid %d idx 0x%x\n", 1149 tx_ring->qid, i); 1150 print_once = false; 1151 } else { 1152 netdev_dbg(tx_ring->netdev, 1153 "free uncompleted tx skb qid %d idx 0x%x\n", 1154 tx_ring->qid, i); 1155 } 1156 1157 ena_unmap_tx_buff(tx_ring, tx_info); 1158 1159 dev_kfree_skb_any(tx_info->skb); 1160 } 1161 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 1162 tx_ring->qid)); 1163 } 1164 1165 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 1166 { 1167 struct ena_ring *tx_ring; 1168 int i; 1169 1170 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1171 tx_ring = &adapter->tx_ring[i]; 1172 ena_free_tx_bufs(tx_ring); 1173 } 1174 } 1175 1176 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 1177 { 1178 u16 ena_qid; 1179 int i; 1180 1181 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 1182 ena_qid = ENA_IO_TXQ_IDX(i); 1183 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1184 } 1185 } 1186 1187 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 1188 { 1189 u16 ena_qid; 1190 int i; 1191 1192 for (i = 0; i < adapter->num_io_queues; i++) { 1193 ena_qid = ENA_IO_RXQ_IDX(i); 1194 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1195 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 1196 } 1197 } 1198 1199 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 1200 { 1201 ena_destroy_all_tx_queues(adapter); 1202 ena_destroy_all_rx_queues(adapter); 1203 } 1204 1205 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 1206 struct ena_tx_buffer *tx_info, bool is_xdp) 1207 { 1208 if (tx_info) 1209 netif_err(ring->adapter, 1210 tx_done, 1211 ring->netdev, 1212 "tx_info doesn't have valid %s", 1213 is_xdp ? "xdp frame" : "skb"); 1214 else 1215 netif_err(ring->adapter, 1216 tx_done, 1217 ring->netdev, 1218 "Invalid req_id: %hu\n", 1219 req_id); 1220 1221 u64_stats_update_begin(&ring->syncp); 1222 ring->tx_stats.bad_req_id++; 1223 u64_stats_update_end(&ring->syncp); 1224 1225 /* Trigger device reset */ 1226 ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; 1227 set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags); 1228 return -EFAULT; 1229 } 1230 1231 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 1232 { 1233 struct ena_tx_buffer *tx_info = NULL; 1234 1235 if (likely(req_id < tx_ring->ring_size)) { 1236 tx_info = &tx_ring->tx_buffer_info[req_id]; 1237 if (likely(tx_info->skb)) 1238 return 0; 1239 } 1240 1241 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 1242 } 1243 1244 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id) 1245 { 1246 struct ena_tx_buffer *tx_info = NULL; 1247 1248 if (likely(req_id < xdp_ring->ring_size)) { 1249 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1250 if (likely(tx_info->xdpf)) 1251 return 0; 1252 } 1253 1254 return handle_invalid_req_id(xdp_ring, req_id, tx_info, true); 1255 } 1256 1257 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 1258 { 1259 struct netdev_queue *txq; 1260 bool above_thresh; 1261 u32 tx_bytes = 0; 1262 u32 total_done = 0; 1263 u16 next_to_clean; 1264 u16 req_id; 1265 int tx_pkts = 0; 1266 int rc; 1267 1268 next_to_clean = tx_ring->next_to_clean; 1269 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 1270 1271 while (tx_pkts < budget) { 1272 struct ena_tx_buffer *tx_info; 1273 struct sk_buff *skb; 1274 1275 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 1276 &req_id); 1277 if (rc) 1278 break; 1279 1280 rc = validate_tx_req_id(tx_ring, req_id); 1281 if (rc) 1282 break; 1283 1284 tx_info = &tx_ring->tx_buffer_info[req_id]; 1285 skb = tx_info->skb; 1286 1287 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 1288 prefetch(&skb->end); 1289 1290 tx_info->skb = NULL; 1291 tx_info->last_jiffies = 0; 1292 1293 ena_unmap_tx_buff(tx_ring, tx_info); 1294 1295 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1296 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 1297 skb); 1298 1299 tx_bytes += skb->len; 1300 dev_kfree_skb(skb); 1301 tx_pkts++; 1302 total_done += tx_info->tx_descs; 1303 1304 tx_ring->free_ids[next_to_clean] = req_id; 1305 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1306 tx_ring->ring_size); 1307 } 1308 1309 tx_ring->next_to_clean = next_to_clean; 1310 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 1311 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 1312 1313 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 1314 1315 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 1316 "tx_poll: q %d done. total pkts: %d\n", 1317 tx_ring->qid, tx_pkts); 1318 1319 /* need to make the rings circular update visible to 1320 * ena_start_xmit() before checking for netif_queue_stopped(). 1321 */ 1322 smp_mb(); 1323 1324 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1325 ENA_TX_WAKEUP_THRESH); 1326 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 1327 __netif_tx_lock(txq, smp_processor_id()); 1328 above_thresh = 1329 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 1330 ENA_TX_WAKEUP_THRESH); 1331 if (netif_tx_queue_stopped(txq) && above_thresh && 1332 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 1333 netif_tx_wake_queue(txq); 1334 u64_stats_update_begin(&tx_ring->syncp); 1335 tx_ring->tx_stats.queue_wakeup++; 1336 u64_stats_update_end(&tx_ring->syncp); 1337 } 1338 __netif_tx_unlock(txq); 1339 } 1340 1341 return tx_pkts; 1342 } 1343 1344 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags) 1345 { 1346 struct sk_buff *skb; 1347 1348 if (frags) 1349 skb = napi_get_frags(rx_ring->napi); 1350 else 1351 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 1352 rx_ring->rx_copybreak); 1353 1354 if (unlikely(!skb)) { 1355 u64_stats_update_begin(&rx_ring->syncp); 1356 rx_ring->rx_stats.skb_alloc_fail++; 1357 u64_stats_update_end(&rx_ring->syncp); 1358 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1359 "Failed to allocate skb. frags: %d\n", frags); 1360 return NULL; 1361 } 1362 1363 return skb; 1364 } 1365 1366 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 1367 struct ena_com_rx_buf_info *ena_bufs, 1368 u32 descs, 1369 u16 *next_to_clean) 1370 { 1371 struct sk_buff *skb; 1372 struct ena_rx_buffer *rx_info; 1373 u16 len, req_id, buf = 0; 1374 void *va; 1375 int rc; 1376 1377 len = ena_bufs[buf].len; 1378 req_id = ena_bufs[buf].req_id; 1379 1380 rc = validate_rx_req_id(rx_ring, req_id); 1381 if (unlikely(rc < 0)) 1382 return NULL; 1383 1384 rx_info = &rx_ring->rx_buffer_info[req_id]; 1385 1386 if (unlikely(!rx_info->page)) { 1387 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 1388 "Page is NULL\n"); 1389 return NULL; 1390 } 1391 1392 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1393 "rx_info %p page %p\n", 1394 rx_info, rx_info->page); 1395 1396 /* save virt address of first buffer */ 1397 va = page_address(rx_info->page) + rx_info->page_offset; 1398 prefetch(va + NET_IP_ALIGN); 1399 1400 if (len <= rx_ring->rx_copybreak) { 1401 skb = ena_alloc_skb(rx_ring, false); 1402 if (unlikely(!skb)) 1403 return NULL; 1404 1405 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1406 "rx allocated small packet. len %d. data_len %d\n", 1407 skb->len, skb->data_len); 1408 1409 /* sync this buffer for CPU use */ 1410 dma_sync_single_for_cpu(rx_ring->dev, 1411 dma_unmap_addr(&rx_info->ena_buf, paddr), 1412 len, 1413 DMA_FROM_DEVICE); 1414 skb_copy_to_linear_data(skb, va, len); 1415 dma_sync_single_for_device(rx_ring->dev, 1416 dma_unmap_addr(&rx_info->ena_buf, paddr), 1417 len, 1418 DMA_FROM_DEVICE); 1419 1420 skb_put(skb, len); 1421 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1422 rx_ring->free_ids[*next_to_clean] = req_id; 1423 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 1424 rx_ring->ring_size); 1425 return skb; 1426 } 1427 1428 skb = ena_alloc_skb(rx_ring, true); 1429 if (unlikely(!skb)) 1430 return NULL; 1431 1432 do { 1433 dma_unmap_page(rx_ring->dev, 1434 dma_unmap_addr(&rx_info->ena_buf, paddr), 1435 ENA_PAGE_SIZE, DMA_FROM_DEVICE); 1436 1437 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1438 rx_info->page_offset, len, ENA_PAGE_SIZE); 1439 1440 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1441 "rx skb updated. len %d. data_len %d\n", 1442 skb->len, skb->data_len); 1443 1444 rx_info->page = NULL; 1445 1446 rx_ring->free_ids[*next_to_clean] = req_id; 1447 *next_to_clean = 1448 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1449 rx_ring->ring_size); 1450 if (likely(--descs == 0)) 1451 break; 1452 1453 buf++; 1454 len = ena_bufs[buf].len; 1455 req_id = ena_bufs[buf].req_id; 1456 1457 rc = validate_rx_req_id(rx_ring, req_id); 1458 if (unlikely(rc < 0)) 1459 return NULL; 1460 1461 rx_info = &rx_ring->rx_buffer_info[req_id]; 1462 } while (1); 1463 1464 return skb; 1465 } 1466 1467 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1468 * @adapter: structure containing adapter specific data 1469 * @ena_rx_ctx: received packet context/metadata 1470 * @skb: skb currently being received and modified 1471 */ 1472 static void ena_rx_checksum(struct ena_ring *rx_ring, 1473 struct ena_com_rx_ctx *ena_rx_ctx, 1474 struct sk_buff *skb) 1475 { 1476 /* Rx csum disabled */ 1477 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1478 skb->ip_summed = CHECKSUM_NONE; 1479 return; 1480 } 1481 1482 /* For fragmented packets the checksum isn't valid */ 1483 if (ena_rx_ctx->frag) { 1484 skb->ip_summed = CHECKSUM_NONE; 1485 return; 1486 } 1487 1488 /* if IP and error */ 1489 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1490 (ena_rx_ctx->l3_csum_err))) { 1491 /* ipv4 checksum error */ 1492 skb->ip_summed = CHECKSUM_NONE; 1493 u64_stats_update_begin(&rx_ring->syncp); 1494 rx_ring->rx_stats.bad_csum++; 1495 u64_stats_update_end(&rx_ring->syncp); 1496 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1497 "RX IPv4 header checksum error\n"); 1498 return; 1499 } 1500 1501 /* if TCP/UDP */ 1502 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1503 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1504 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1505 /* TCP/UDP checksum error */ 1506 u64_stats_update_begin(&rx_ring->syncp); 1507 rx_ring->rx_stats.bad_csum++; 1508 u64_stats_update_end(&rx_ring->syncp); 1509 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1510 "RX L4 checksum error\n"); 1511 skb->ip_summed = CHECKSUM_NONE; 1512 return; 1513 } 1514 1515 if (likely(ena_rx_ctx->l4_csum_checked)) { 1516 skb->ip_summed = CHECKSUM_UNNECESSARY; 1517 u64_stats_update_begin(&rx_ring->syncp); 1518 rx_ring->rx_stats.csum_good++; 1519 u64_stats_update_end(&rx_ring->syncp); 1520 } else { 1521 u64_stats_update_begin(&rx_ring->syncp); 1522 rx_ring->rx_stats.csum_unchecked++; 1523 u64_stats_update_end(&rx_ring->syncp); 1524 skb->ip_summed = CHECKSUM_NONE; 1525 } 1526 } else { 1527 skb->ip_summed = CHECKSUM_NONE; 1528 return; 1529 } 1530 1531 } 1532 1533 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1534 struct ena_com_rx_ctx *ena_rx_ctx, 1535 struct sk_buff *skb) 1536 { 1537 enum pkt_hash_types hash_type; 1538 1539 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1540 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1541 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1542 1543 hash_type = PKT_HASH_TYPE_L4; 1544 else 1545 hash_type = PKT_HASH_TYPE_NONE; 1546 1547 /* Override hash type if the packet is fragmented */ 1548 if (ena_rx_ctx->frag) 1549 hash_type = PKT_HASH_TYPE_NONE; 1550 1551 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1552 } 1553 } 1554 1555 int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp) 1556 { 1557 struct ena_rx_buffer *rx_info; 1558 int ret; 1559 1560 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1561 xdp->data = page_address(rx_info->page) + 1562 rx_info->page_offset + rx_ring->rx_headroom; 1563 xdp_set_data_meta_invalid(xdp); 1564 xdp->data_hard_start = page_address(rx_info->page); 1565 xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len; 1566 /* If for some reason we received a bigger packet than 1567 * we expect, then we simply drop it 1568 */ 1569 if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU)) 1570 return XDP_DROP; 1571 1572 ret = ena_xdp_execute(rx_ring, xdp, rx_info); 1573 1574 /* The xdp program might expand the headers */ 1575 if (ret == XDP_PASS) { 1576 rx_info->page_offset = xdp->data - xdp->data_hard_start; 1577 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1578 } 1579 1580 return ret; 1581 } 1582 /* ena_clean_rx_irq - Cleanup RX irq 1583 * @rx_ring: RX ring to clean 1584 * @napi: napi handler 1585 * @budget: how many packets driver is allowed to clean 1586 * 1587 * Returns the number of cleaned buffers. 1588 */ 1589 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1590 u32 budget) 1591 { 1592 u16 next_to_clean = rx_ring->next_to_clean; 1593 struct ena_com_rx_ctx ena_rx_ctx; 1594 struct ena_adapter *adapter; 1595 u32 res_budget, work_done; 1596 int rx_copybreak_pkt = 0; 1597 int refill_threshold; 1598 struct sk_buff *skb; 1599 int refill_required; 1600 struct xdp_buff xdp; 1601 int total_len = 0; 1602 int xdp_verdict; 1603 int rc = 0; 1604 int i; 1605 1606 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1607 "%s qid %d\n", __func__, rx_ring->qid); 1608 res_budget = budget; 1609 xdp.rxq = &rx_ring->xdp_rxq; 1610 1611 do { 1612 xdp_verdict = XDP_PASS; 1613 skb = NULL; 1614 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1615 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1616 ena_rx_ctx.descs = 0; 1617 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1618 rx_ring->ena_com_io_sq, 1619 &ena_rx_ctx); 1620 if (unlikely(rc)) 1621 goto error; 1622 1623 if (unlikely(ena_rx_ctx.descs == 0)) 1624 break; 1625 1626 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1627 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1628 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1629 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1630 1631 if (ena_xdp_present_ring(rx_ring)) 1632 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp); 1633 1634 /* allocate skb and fill it */ 1635 if (xdp_verdict == XDP_PASS) 1636 skb = ena_rx_skb(rx_ring, 1637 rx_ring->ena_bufs, 1638 ena_rx_ctx.descs, 1639 &next_to_clean); 1640 1641 if (unlikely(!skb)) { 1642 if (xdp_verdict == XDP_TX) { 1643 ena_free_rx_page(rx_ring, 1644 &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]); 1645 res_budget--; 1646 } 1647 for (i = 0; i < ena_rx_ctx.descs; i++) { 1648 rx_ring->free_ids[next_to_clean] = 1649 rx_ring->ena_bufs[i].req_id; 1650 next_to_clean = 1651 ENA_RX_RING_IDX_NEXT(next_to_clean, 1652 rx_ring->ring_size); 1653 } 1654 if (xdp_verdict == XDP_TX || xdp_verdict == XDP_DROP) 1655 continue; 1656 break; 1657 } 1658 1659 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1660 1661 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1662 1663 skb_record_rx_queue(skb, rx_ring->qid); 1664 1665 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) { 1666 total_len += rx_ring->ena_bufs[0].len; 1667 rx_copybreak_pkt++; 1668 napi_gro_receive(napi, skb); 1669 } else { 1670 total_len += skb->len; 1671 napi_gro_frags(napi); 1672 } 1673 1674 res_budget--; 1675 } while (likely(res_budget)); 1676 1677 work_done = budget - res_budget; 1678 rx_ring->per_napi_packets += work_done; 1679 u64_stats_update_begin(&rx_ring->syncp); 1680 rx_ring->rx_stats.bytes += total_len; 1681 rx_ring->rx_stats.cnt += work_done; 1682 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1683 u64_stats_update_end(&rx_ring->syncp); 1684 1685 rx_ring->next_to_clean = next_to_clean; 1686 1687 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq); 1688 refill_threshold = 1689 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1690 ENA_RX_REFILL_THRESH_PACKET); 1691 1692 /* Optimization, try to batch new rx buffers */ 1693 if (refill_required > refill_threshold) { 1694 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1695 ena_refill_rx_bufs(rx_ring, refill_required); 1696 } 1697 1698 return work_done; 1699 1700 error: 1701 adapter = netdev_priv(rx_ring->netdev); 1702 1703 u64_stats_update_begin(&rx_ring->syncp); 1704 rx_ring->rx_stats.bad_desc_num++; 1705 u64_stats_update_end(&rx_ring->syncp); 1706 1707 /* Too many desc from the device. Trigger reset */ 1708 adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; 1709 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 1710 1711 return 0; 1712 } 1713 1714 static void ena_dim_work(struct work_struct *w) 1715 { 1716 struct dim *dim = container_of(w, struct dim, work); 1717 struct dim_cq_moder cur_moder = 1718 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1719 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1720 1721 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1722 dim->state = DIM_START_MEASURE; 1723 } 1724 1725 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1726 { 1727 struct dim_sample dim_sample; 1728 struct ena_ring *rx_ring = ena_napi->rx_ring; 1729 1730 if (!rx_ring->per_napi_packets) 1731 return; 1732 1733 rx_ring->non_empty_napi_events++; 1734 1735 dim_update_sample(rx_ring->non_empty_napi_events, 1736 rx_ring->rx_stats.cnt, 1737 rx_ring->rx_stats.bytes, 1738 &dim_sample); 1739 1740 net_dim(&ena_napi->dim, dim_sample); 1741 1742 rx_ring->per_napi_packets = 0; 1743 } 1744 1745 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 1746 struct ena_ring *rx_ring) 1747 { 1748 struct ena_eth_io_intr_reg intr_reg; 1749 u32 rx_interval = 0; 1750 /* Rx ring can be NULL when for XDP tx queues which don't have an 1751 * accompanying rx_ring pair. 1752 */ 1753 if (rx_ring) 1754 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1755 rx_ring->smoothed_interval : 1756 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1757 1758 /* Update intr register: rx intr delay, 1759 * tx intr delay and interrupt unmask 1760 */ 1761 ena_com_update_intr_reg(&intr_reg, 1762 rx_interval, 1763 tx_ring->smoothed_interval, 1764 true); 1765 1766 /* It is a shared MSI-X. 1767 * Tx and Rx CQ have pointer to it. 1768 * So we use one of them to reach the intr reg 1769 * The Tx ring is used because the rx_ring is NULL for XDP queues 1770 */ 1771 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1772 } 1773 1774 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1775 struct ena_ring *rx_ring) 1776 { 1777 int cpu = get_cpu(); 1778 int numa_node; 1779 1780 /* Check only one ring since the 2 rings are running on the same cpu */ 1781 if (likely(tx_ring->cpu == cpu)) 1782 goto out; 1783 1784 numa_node = cpu_to_node(cpu); 1785 put_cpu(); 1786 1787 if (numa_node != NUMA_NO_NODE) { 1788 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1789 if (rx_ring) 1790 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1791 numa_node); 1792 } 1793 1794 tx_ring->cpu = cpu; 1795 if (rx_ring) 1796 rx_ring->cpu = cpu; 1797 1798 return; 1799 out: 1800 put_cpu(); 1801 } 1802 1803 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget) 1804 { 1805 u32 total_done = 0; 1806 u16 next_to_clean; 1807 u32 tx_bytes = 0; 1808 int tx_pkts = 0; 1809 u16 req_id; 1810 int rc; 1811 1812 if (unlikely(!xdp_ring)) 1813 return 0; 1814 next_to_clean = xdp_ring->next_to_clean; 1815 1816 while (tx_pkts < budget) { 1817 struct ena_tx_buffer *tx_info; 1818 struct xdp_frame *xdpf; 1819 1820 rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq, 1821 &req_id); 1822 if (rc) 1823 break; 1824 1825 rc = validate_xdp_req_id(xdp_ring, req_id); 1826 if (rc) 1827 break; 1828 1829 tx_info = &xdp_ring->tx_buffer_info[req_id]; 1830 xdpf = tx_info->xdpf; 1831 1832 tx_info->xdpf = NULL; 1833 tx_info->last_jiffies = 0; 1834 ena_unmap_tx_buff(xdp_ring, tx_info); 1835 1836 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 1837 "tx_poll: q %d skb %p completed\n", xdp_ring->qid, 1838 xdpf); 1839 1840 tx_bytes += xdpf->len; 1841 tx_pkts++; 1842 total_done += tx_info->tx_descs; 1843 1844 __free_page(tx_info->xdp_rx_page); 1845 xdp_ring->free_ids[next_to_clean] = req_id; 1846 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 1847 xdp_ring->ring_size); 1848 } 1849 1850 xdp_ring->next_to_clean = next_to_clean; 1851 ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done); 1852 ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq); 1853 1854 netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev, 1855 "tx_poll: q %d done. total pkts: %d\n", 1856 xdp_ring->qid, tx_pkts); 1857 1858 return tx_pkts; 1859 } 1860 1861 static int ena_io_poll(struct napi_struct *napi, int budget) 1862 { 1863 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1864 struct ena_ring *tx_ring, *rx_ring; 1865 int tx_work_done; 1866 int rx_work_done = 0; 1867 int tx_budget; 1868 int napi_comp_call = 0; 1869 int ret; 1870 1871 tx_ring = ena_napi->tx_ring; 1872 rx_ring = ena_napi->rx_ring; 1873 1874 tx_ring->first_interrupt = ena_napi->first_interrupt; 1875 rx_ring->first_interrupt = ena_napi->first_interrupt; 1876 1877 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1878 1879 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1880 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1881 napi_complete_done(napi, 0); 1882 return 0; 1883 } 1884 1885 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1886 /* On netpoll the budget is zero and the handler should only clean the 1887 * tx completions. 1888 */ 1889 if (likely(budget)) 1890 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1891 1892 /* If the device is about to reset or down, avoid unmask 1893 * the interrupt and return 0 so NAPI won't reschedule 1894 */ 1895 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1896 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1897 napi_complete_done(napi, 0); 1898 ret = 0; 1899 1900 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1901 napi_comp_call = 1; 1902 1903 /* Update numa and unmask the interrupt only when schedule 1904 * from the interrupt context (vs from sk_busy_loop) 1905 */ 1906 if (napi_complete_done(napi, rx_work_done)) { 1907 /* We apply adaptive moderation on Rx path only. 1908 * Tx uses static interrupt moderation. 1909 */ 1910 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1911 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1912 1913 ena_unmask_interrupt(tx_ring, rx_ring); 1914 } 1915 1916 ena_update_ring_numa_node(tx_ring, rx_ring); 1917 1918 ret = rx_work_done; 1919 } else { 1920 ret = budget; 1921 } 1922 1923 u64_stats_update_begin(&tx_ring->syncp); 1924 tx_ring->tx_stats.napi_comp += napi_comp_call; 1925 tx_ring->tx_stats.tx_poll++; 1926 u64_stats_update_end(&tx_ring->syncp); 1927 1928 return ret; 1929 } 1930 1931 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1932 { 1933 struct ena_adapter *adapter = (struct ena_adapter *)data; 1934 1935 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1936 1937 /* Don't call the aenq handler before probe is done */ 1938 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1939 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1940 1941 return IRQ_HANDLED; 1942 } 1943 1944 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1945 * @irq: interrupt number 1946 * @data: pointer to a network interface private napi device structure 1947 */ 1948 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1949 { 1950 struct ena_napi *ena_napi = data; 1951 1952 ena_napi->first_interrupt = true; 1953 1954 napi_schedule_irqoff(&ena_napi->napi); 1955 1956 return IRQ_HANDLED; 1957 } 1958 1959 /* Reserve a single MSI-X vector for management (admin + aenq). 1960 * plus reserve one vector for each potential io queue. 1961 * the number of potential io queues is the minimum of what the device 1962 * supports and the number of vCPUs. 1963 */ 1964 static int ena_enable_msix(struct ena_adapter *adapter) 1965 { 1966 int msix_vecs, irq_cnt; 1967 1968 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1969 netif_err(adapter, probe, adapter->netdev, 1970 "Error, MSI-X is already enabled\n"); 1971 return -EPERM; 1972 } 1973 1974 /* Reserved the max msix vectors we might need */ 1975 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1976 netif_dbg(adapter, probe, adapter->netdev, 1977 "trying to enable MSI-X, vectors %d\n", msix_vecs); 1978 1979 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1980 msix_vecs, PCI_IRQ_MSIX); 1981 1982 if (irq_cnt < 0) { 1983 netif_err(adapter, probe, adapter->netdev, 1984 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1985 return -ENOSPC; 1986 } 1987 1988 if (irq_cnt != msix_vecs) { 1989 netif_notice(adapter, probe, adapter->netdev, 1990 "enable only %d MSI-X (out of %d), reduce the number of queues\n", 1991 irq_cnt, msix_vecs); 1992 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1993 } 1994 1995 if (ena_init_rx_cpu_rmap(adapter)) 1996 netif_warn(adapter, probe, adapter->netdev, 1997 "Failed to map IRQs to CPUs\n"); 1998 1999 adapter->msix_vecs = irq_cnt; 2000 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 2001 2002 return 0; 2003 } 2004 2005 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 2006 { 2007 u32 cpu; 2008 2009 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 2010 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 2011 pci_name(adapter->pdev)); 2012 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 2013 ena_intr_msix_mgmnt; 2014 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 2015 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 2016 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 2017 cpu = cpumask_first(cpu_online_mask); 2018 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 2019 cpumask_set_cpu(cpu, 2020 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 2021 } 2022 2023 static void ena_setup_io_intr(struct ena_adapter *adapter) 2024 { 2025 struct net_device *netdev; 2026 int irq_idx, i, cpu; 2027 int io_queue_count; 2028 2029 netdev = adapter->netdev; 2030 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2031 2032 for (i = 0; i < io_queue_count; i++) { 2033 irq_idx = ENA_IO_IRQ_IDX(i); 2034 cpu = i % num_online_cpus(); 2035 2036 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 2037 "%s-Tx-Rx-%d", netdev->name, i); 2038 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 2039 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 2040 adapter->irq_tbl[irq_idx].vector = 2041 pci_irq_vector(adapter->pdev, irq_idx); 2042 adapter->irq_tbl[irq_idx].cpu = cpu; 2043 2044 cpumask_set_cpu(cpu, 2045 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 2046 } 2047 } 2048 2049 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 2050 { 2051 unsigned long flags = 0; 2052 struct ena_irq *irq; 2053 int rc; 2054 2055 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2056 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2057 irq->data); 2058 if (rc) { 2059 netif_err(adapter, probe, adapter->netdev, 2060 "failed to request admin irq\n"); 2061 return rc; 2062 } 2063 2064 netif_dbg(adapter, probe, adapter->netdev, 2065 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 2066 irq->affinity_hint_mask.bits[0], irq->vector); 2067 2068 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2069 2070 return rc; 2071 } 2072 2073 static int ena_request_io_irq(struct ena_adapter *adapter) 2074 { 2075 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2076 unsigned long flags = 0; 2077 struct ena_irq *irq; 2078 int rc = 0, i, k; 2079 2080 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 2081 netif_err(adapter, ifup, adapter->netdev, 2082 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 2083 return -EINVAL; 2084 } 2085 2086 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2087 irq = &adapter->irq_tbl[i]; 2088 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 2089 irq->data); 2090 if (rc) { 2091 netif_err(adapter, ifup, adapter->netdev, 2092 "Failed to request I/O IRQ. index %d rc %d\n", 2093 i, rc); 2094 goto err; 2095 } 2096 2097 netif_dbg(adapter, ifup, adapter->netdev, 2098 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 2099 i, irq->affinity_hint_mask.bits[0], irq->vector); 2100 2101 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 2102 } 2103 2104 return rc; 2105 2106 err: 2107 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 2108 irq = &adapter->irq_tbl[k]; 2109 free_irq(irq->vector, irq->data); 2110 } 2111 2112 return rc; 2113 } 2114 2115 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 2116 { 2117 struct ena_irq *irq; 2118 2119 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 2120 synchronize_irq(irq->vector); 2121 irq_set_affinity_hint(irq->vector, NULL); 2122 free_irq(irq->vector, irq->data); 2123 } 2124 2125 static void ena_free_io_irq(struct ena_adapter *adapter) 2126 { 2127 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2128 struct ena_irq *irq; 2129 int i; 2130 2131 #ifdef CONFIG_RFS_ACCEL 2132 if (adapter->msix_vecs >= 1) { 2133 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 2134 adapter->netdev->rx_cpu_rmap = NULL; 2135 } 2136 #endif /* CONFIG_RFS_ACCEL */ 2137 2138 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 2139 irq = &adapter->irq_tbl[i]; 2140 irq_set_affinity_hint(irq->vector, NULL); 2141 free_irq(irq->vector, irq->data); 2142 } 2143 } 2144 2145 static void ena_disable_msix(struct ena_adapter *adapter) 2146 { 2147 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 2148 pci_free_irq_vectors(adapter->pdev); 2149 } 2150 2151 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 2152 { 2153 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2154 int i; 2155 2156 if (!netif_running(adapter->netdev)) 2157 return; 2158 2159 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 2160 synchronize_irq(adapter->irq_tbl[i].vector); 2161 } 2162 2163 static void ena_del_napi_in_range(struct ena_adapter *adapter, 2164 int first_index, 2165 int count) 2166 { 2167 int i; 2168 2169 for (i = first_index; i < first_index + count; i++) { 2170 /* Check if napi was initialized before */ 2171 if (!ENA_IS_XDP_INDEX(adapter, i) || 2172 adapter->ena_napi[i].xdp_ring) 2173 netif_napi_del(&adapter->ena_napi[i].napi); 2174 else 2175 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 2176 adapter->ena_napi[i].xdp_ring); 2177 } 2178 } 2179 2180 static void ena_init_napi_in_range(struct ena_adapter *adapter, 2181 int first_index, int count) 2182 { 2183 struct ena_napi *napi = {0}; 2184 int i; 2185 2186 for (i = first_index; i < first_index + count; i++) { 2187 napi = &adapter->ena_napi[i]; 2188 2189 netif_napi_add(adapter->netdev, 2190 &adapter->ena_napi[i].napi, 2191 ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll, 2192 ENA_NAPI_BUDGET); 2193 2194 if (!ENA_IS_XDP_INDEX(adapter, i)) { 2195 napi->rx_ring = &adapter->rx_ring[i]; 2196 napi->tx_ring = &adapter->tx_ring[i]; 2197 } else { 2198 napi->xdp_ring = &adapter->tx_ring[i]; 2199 } 2200 napi->qid = i; 2201 } 2202 } 2203 2204 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 2205 int first_index, 2206 int count) 2207 { 2208 int i; 2209 2210 for (i = first_index; i < first_index + count; i++) 2211 napi_disable(&adapter->ena_napi[i].napi); 2212 } 2213 2214 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 2215 int first_index, 2216 int count) 2217 { 2218 int i; 2219 2220 for (i = first_index; i < first_index + count; i++) 2221 napi_enable(&adapter->ena_napi[i].napi); 2222 } 2223 2224 /* Configure the Rx forwarding */ 2225 static int ena_rss_configure(struct ena_adapter *adapter) 2226 { 2227 struct ena_com_dev *ena_dev = adapter->ena_dev; 2228 int rc; 2229 2230 /* In case the RSS table wasn't initialized by probe */ 2231 if (!ena_dev->rss.tbl_log_size) { 2232 rc = ena_rss_init_default(adapter); 2233 if (rc && (rc != -EOPNOTSUPP)) { 2234 netif_err(adapter, ifup, adapter->netdev, 2235 "Failed to init RSS rc: %d\n", rc); 2236 return rc; 2237 } 2238 } 2239 2240 /* Set indirect table */ 2241 rc = ena_com_indirect_table_set(ena_dev); 2242 if (unlikely(rc && rc != -EOPNOTSUPP)) 2243 return rc; 2244 2245 /* Configure hash function (if supported) */ 2246 rc = ena_com_set_hash_function(ena_dev); 2247 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2248 return rc; 2249 2250 /* Configure hash inputs (if supported) */ 2251 rc = ena_com_set_hash_ctrl(ena_dev); 2252 if (unlikely(rc && (rc != -EOPNOTSUPP))) 2253 return rc; 2254 2255 return 0; 2256 } 2257 2258 static int ena_up_complete(struct ena_adapter *adapter) 2259 { 2260 int rc; 2261 2262 rc = ena_rss_configure(adapter); 2263 if (rc) 2264 return rc; 2265 2266 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 2267 2268 ena_refill_all_rx_bufs(adapter); 2269 2270 /* enable transmits */ 2271 netif_tx_start_all_queues(adapter->netdev); 2272 2273 ena_napi_enable_in_range(adapter, 2274 0, 2275 adapter->xdp_num_queues + adapter->num_io_queues); 2276 2277 return 0; 2278 } 2279 2280 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 2281 { 2282 struct ena_com_create_io_ctx ctx; 2283 struct ena_com_dev *ena_dev; 2284 struct ena_ring *tx_ring; 2285 u32 msix_vector; 2286 u16 ena_qid; 2287 int rc; 2288 2289 ena_dev = adapter->ena_dev; 2290 2291 tx_ring = &adapter->tx_ring[qid]; 2292 msix_vector = ENA_IO_IRQ_IDX(qid); 2293 ena_qid = ENA_IO_TXQ_IDX(qid); 2294 2295 memset(&ctx, 0x0, sizeof(ctx)); 2296 2297 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 2298 ctx.qid = ena_qid; 2299 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 2300 ctx.msix_vector = msix_vector; 2301 ctx.queue_size = tx_ring->ring_size; 2302 ctx.numa_node = cpu_to_node(tx_ring->cpu); 2303 2304 rc = ena_com_create_io_queue(ena_dev, &ctx); 2305 if (rc) { 2306 netif_err(adapter, ifup, adapter->netdev, 2307 "Failed to create I/O TX queue num %d rc: %d\n", 2308 qid, rc); 2309 return rc; 2310 } 2311 2312 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2313 &tx_ring->ena_com_io_sq, 2314 &tx_ring->ena_com_io_cq); 2315 if (rc) { 2316 netif_err(adapter, ifup, adapter->netdev, 2317 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 2318 qid, rc); 2319 ena_com_destroy_io_queue(ena_dev, ena_qid); 2320 return rc; 2321 } 2322 2323 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 2324 return rc; 2325 } 2326 2327 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 2328 int first_index, int count) 2329 { 2330 struct ena_com_dev *ena_dev = adapter->ena_dev; 2331 int rc, i; 2332 2333 for (i = first_index; i < first_index + count; i++) { 2334 rc = ena_create_io_tx_queue(adapter, i); 2335 if (rc) 2336 goto create_err; 2337 } 2338 2339 return 0; 2340 2341 create_err: 2342 while (i-- > first_index) 2343 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 2344 2345 return rc; 2346 } 2347 2348 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 2349 { 2350 struct ena_com_dev *ena_dev; 2351 struct ena_com_create_io_ctx ctx; 2352 struct ena_ring *rx_ring; 2353 u32 msix_vector; 2354 u16 ena_qid; 2355 int rc; 2356 2357 ena_dev = adapter->ena_dev; 2358 2359 rx_ring = &adapter->rx_ring[qid]; 2360 msix_vector = ENA_IO_IRQ_IDX(qid); 2361 ena_qid = ENA_IO_RXQ_IDX(qid); 2362 2363 memset(&ctx, 0x0, sizeof(ctx)); 2364 2365 ctx.qid = ena_qid; 2366 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 2367 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2368 ctx.msix_vector = msix_vector; 2369 ctx.queue_size = rx_ring->ring_size; 2370 ctx.numa_node = cpu_to_node(rx_ring->cpu); 2371 2372 rc = ena_com_create_io_queue(ena_dev, &ctx); 2373 if (rc) { 2374 netif_err(adapter, ifup, adapter->netdev, 2375 "Failed to create I/O RX queue num %d rc: %d\n", 2376 qid, rc); 2377 return rc; 2378 } 2379 2380 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2381 &rx_ring->ena_com_io_sq, 2382 &rx_ring->ena_com_io_cq); 2383 if (rc) { 2384 netif_err(adapter, ifup, adapter->netdev, 2385 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 2386 qid, rc); 2387 goto err; 2388 } 2389 2390 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 2391 2392 return rc; 2393 err: 2394 ena_com_destroy_io_queue(ena_dev, ena_qid); 2395 return rc; 2396 } 2397 2398 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2399 { 2400 struct ena_com_dev *ena_dev = adapter->ena_dev; 2401 int rc, i; 2402 2403 for (i = 0; i < adapter->num_io_queues; i++) { 2404 rc = ena_create_io_rx_queue(adapter, i); 2405 if (rc) 2406 goto create_err; 2407 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2408 } 2409 2410 return 0; 2411 2412 create_err: 2413 while (i--) { 2414 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2415 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2416 } 2417 2418 return rc; 2419 } 2420 2421 static void set_io_rings_size(struct ena_adapter *adapter, 2422 int new_tx_size, 2423 int new_rx_size) 2424 { 2425 int i; 2426 2427 for (i = 0; i < adapter->num_io_queues; i++) { 2428 adapter->tx_ring[i].ring_size = new_tx_size; 2429 adapter->rx_ring[i].ring_size = new_rx_size; 2430 } 2431 } 2432 2433 /* This function allows queue allocation to backoff when the system is 2434 * low on memory. If there is not enough memory to allocate io queues 2435 * the driver will try to allocate smaller queues. 2436 * 2437 * The backoff algorithm is as follows: 2438 * 1. Try to allocate TX and RX and if successful. 2439 * 1.1. return success 2440 * 2441 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2442 * 2443 * 3. If TX or RX is smaller than 256 2444 * 3.1. return failure. 2445 * 4. else 2446 * 4.1. go back to 1. 2447 */ 2448 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2449 { 2450 int rc, cur_rx_ring_size, cur_tx_ring_size; 2451 int new_rx_ring_size, new_tx_ring_size; 2452 2453 /* current queue sizes might be set to smaller than the requested 2454 * ones due to past queue allocation failures. 2455 */ 2456 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2457 adapter->requested_rx_ring_size); 2458 2459 while (1) { 2460 if (ena_xdp_present(adapter)) { 2461 rc = ena_setup_and_create_all_xdp_queues(adapter); 2462 2463 if (rc) 2464 goto err_setup_tx; 2465 } 2466 rc = ena_setup_tx_resources_in_range(adapter, 2467 0, 2468 adapter->num_io_queues); 2469 if (rc) 2470 goto err_setup_tx; 2471 2472 rc = ena_create_io_tx_queues_in_range(adapter, 2473 0, 2474 adapter->num_io_queues); 2475 if (rc) 2476 goto err_create_tx_queues; 2477 2478 rc = ena_setup_all_rx_resources(adapter); 2479 if (rc) 2480 goto err_setup_rx; 2481 2482 rc = ena_create_all_io_rx_queues(adapter); 2483 if (rc) 2484 goto err_create_rx_queues; 2485 2486 return 0; 2487 2488 err_create_rx_queues: 2489 ena_free_all_io_rx_resources(adapter); 2490 err_setup_rx: 2491 ena_destroy_all_tx_queues(adapter); 2492 err_create_tx_queues: 2493 ena_free_all_io_tx_resources(adapter); 2494 err_setup_tx: 2495 if (rc != -ENOMEM) { 2496 netif_err(adapter, ifup, adapter->netdev, 2497 "Queue creation failed with error code %d\n", 2498 rc); 2499 return rc; 2500 } 2501 2502 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2503 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2504 2505 netif_err(adapter, ifup, adapter->netdev, 2506 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2507 cur_tx_ring_size, cur_rx_ring_size); 2508 2509 new_tx_ring_size = cur_tx_ring_size; 2510 new_rx_ring_size = cur_rx_ring_size; 2511 2512 /* Decrease the size of the larger queue, or 2513 * decrease both if they are the same size. 2514 */ 2515 if (cur_rx_ring_size <= cur_tx_ring_size) 2516 new_tx_ring_size = cur_tx_ring_size / 2; 2517 if (cur_rx_ring_size >= cur_tx_ring_size) 2518 new_rx_ring_size = cur_rx_ring_size / 2; 2519 2520 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2521 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2522 netif_err(adapter, ifup, adapter->netdev, 2523 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2524 ENA_MIN_RING_SIZE); 2525 return rc; 2526 } 2527 2528 netif_err(adapter, ifup, adapter->netdev, 2529 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2530 new_tx_ring_size, 2531 new_rx_ring_size); 2532 2533 set_io_rings_size(adapter, new_tx_ring_size, 2534 new_rx_ring_size); 2535 } 2536 } 2537 2538 static int ena_up(struct ena_adapter *adapter) 2539 { 2540 int io_queue_count, rc, i; 2541 2542 netdev_dbg(adapter->netdev, "%s\n", __func__); 2543 2544 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2545 ena_setup_io_intr(adapter); 2546 2547 /* napi poll functions should be initialized before running 2548 * request_irq(), to handle a rare condition where there is a pending 2549 * interrupt, causing the ISR to fire immediately while the poll 2550 * function wasn't set yet, causing a null dereference 2551 */ 2552 ena_init_napi_in_range(adapter, 0, io_queue_count); 2553 2554 rc = ena_request_io_irq(adapter); 2555 if (rc) 2556 goto err_req_irq; 2557 2558 rc = create_queues_with_size_backoff(adapter); 2559 if (rc) 2560 goto err_create_queues_with_backoff; 2561 2562 rc = ena_up_complete(adapter); 2563 if (rc) 2564 goto err_up; 2565 2566 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2567 netif_carrier_on(adapter->netdev); 2568 2569 u64_stats_update_begin(&adapter->syncp); 2570 adapter->dev_stats.interface_up++; 2571 u64_stats_update_end(&adapter->syncp); 2572 2573 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2574 2575 /* Enable completion queues interrupt */ 2576 for (i = 0; i < adapter->num_io_queues; i++) 2577 ena_unmask_interrupt(&adapter->tx_ring[i], 2578 &adapter->rx_ring[i]); 2579 2580 /* schedule napi in case we had pending packets 2581 * from the last time we disable napi 2582 */ 2583 for (i = 0; i < io_queue_count; i++) 2584 napi_schedule(&adapter->ena_napi[i].napi); 2585 2586 return rc; 2587 2588 err_up: 2589 ena_destroy_all_tx_queues(adapter); 2590 ena_free_all_io_tx_resources(adapter); 2591 ena_destroy_all_rx_queues(adapter); 2592 ena_free_all_io_rx_resources(adapter); 2593 err_create_queues_with_backoff: 2594 ena_free_io_irq(adapter); 2595 err_req_irq: 2596 ena_del_napi_in_range(adapter, 0, io_queue_count); 2597 2598 return rc; 2599 } 2600 2601 static void ena_down(struct ena_adapter *adapter) 2602 { 2603 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2604 2605 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2606 2607 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2608 2609 u64_stats_update_begin(&adapter->syncp); 2610 adapter->dev_stats.interface_down++; 2611 u64_stats_update_end(&adapter->syncp); 2612 2613 netif_carrier_off(adapter->netdev); 2614 netif_tx_disable(adapter->netdev); 2615 2616 /* After this point the napi handler won't enable the tx queue */ 2617 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2618 2619 /* After destroy the queue there won't be any new interrupts */ 2620 2621 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2622 int rc; 2623 2624 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2625 if (rc) 2626 dev_err(&adapter->pdev->dev, "Device reset failed\n"); 2627 /* stop submitting admin commands on a device that was reset */ 2628 ena_com_set_admin_running_state(adapter->ena_dev, false); 2629 } 2630 2631 ena_destroy_all_io_queues(adapter); 2632 2633 ena_disable_io_intr_sync(adapter); 2634 ena_free_io_irq(adapter); 2635 ena_del_napi_in_range(adapter, 0, io_queue_count); 2636 2637 ena_free_all_tx_bufs(adapter); 2638 ena_free_all_rx_bufs(adapter); 2639 ena_free_all_io_tx_resources(adapter); 2640 ena_free_all_io_rx_resources(adapter); 2641 } 2642 2643 /* ena_open - Called when a network interface is made active 2644 * @netdev: network interface device structure 2645 * 2646 * Returns 0 on success, negative value on failure 2647 * 2648 * The open entry point is called when a network interface is made 2649 * active by the system (IFF_UP). At this point all resources needed 2650 * for transmit and receive operations are allocated, the interrupt 2651 * handler is registered with the OS, the watchdog timer is started, 2652 * and the stack is notified that the interface is ready. 2653 */ 2654 static int ena_open(struct net_device *netdev) 2655 { 2656 struct ena_adapter *adapter = netdev_priv(netdev); 2657 int rc; 2658 2659 /* Notify the stack of the actual queue counts. */ 2660 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2661 if (rc) { 2662 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2663 return rc; 2664 } 2665 2666 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2667 if (rc) { 2668 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2669 return rc; 2670 } 2671 2672 rc = ena_up(adapter); 2673 if (rc) 2674 return rc; 2675 2676 return rc; 2677 } 2678 2679 /* ena_close - Disables a network interface 2680 * @netdev: network interface device structure 2681 * 2682 * Returns 0, this is not allowed to fail 2683 * 2684 * The close entry point is called when an interface is de-activated 2685 * by the OS. The hardware is still under the drivers control, but 2686 * needs to be disabled. A global MAC reset is issued to stop the 2687 * hardware, and all transmit and receive resources are freed. 2688 */ 2689 static int ena_close(struct net_device *netdev) 2690 { 2691 struct ena_adapter *adapter = netdev_priv(netdev); 2692 2693 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2694 2695 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2696 return 0; 2697 2698 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2699 ena_down(adapter); 2700 2701 /* Check for device status and issue reset if needed*/ 2702 check_for_admin_com_state(adapter); 2703 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2704 netif_err(adapter, ifdown, adapter->netdev, 2705 "Destroy failure, restarting device\n"); 2706 ena_dump_stats_to_dmesg(adapter); 2707 /* rtnl lock already obtained in dev_ioctl() layer */ 2708 ena_destroy_device(adapter, false); 2709 ena_restore_device(adapter); 2710 } 2711 2712 return 0; 2713 } 2714 2715 int ena_update_queue_sizes(struct ena_adapter *adapter, 2716 u32 new_tx_size, 2717 u32 new_rx_size) 2718 { 2719 bool dev_was_up; 2720 2721 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2722 ena_close(adapter->netdev); 2723 adapter->requested_tx_ring_size = new_tx_size; 2724 adapter->requested_rx_ring_size = new_rx_size; 2725 ena_init_io_rings(adapter, 2726 0, 2727 adapter->xdp_num_queues + 2728 adapter->num_io_queues); 2729 return dev_was_up ? ena_up(adapter) : 0; 2730 } 2731 2732 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2733 { 2734 struct ena_com_dev *ena_dev = adapter->ena_dev; 2735 int prev_channel_count; 2736 bool dev_was_up; 2737 2738 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2739 ena_close(adapter->netdev); 2740 prev_channel_count = adapter->num_io_queues; 2741 adapter->num_io_queues = new_channel_count; 2742 if (ena_xdp_present(adapter) && 2743 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2744 adapter->xdp_first_ring = new_channel_count; 2745 adapter->xdp_num_queues = new_channel_count; 2746 if (prev_channel_count > new_channel_count) 2747 ena_xdp_exchange_program_rx_in_range(adapter, 2748 NULL, 2749 new_channel_count, 2750 prev_channel_count); 2751 else 2752 ena_xdp_exchange_program_rx_in_range(adapter, 2753 adapter->xdp_bpf_prog, 2754 prev_channel_count, 2755 new_channel_count); 2756 } 2757 2758 /* We need to destroy the rss table so that the indirection 2759 * table will be reinitialized by ena_up() 2760 */ 2761 ena_com_rss_destroy(ena_dev); 2762 ena_init_io_rings(adapter, 2763 0, 2764 adapter->xdp_num_queues + 2765 adapter->num_io_queues); 2766 return dev_was_up ? ena_open(adapter->netdev) : 0; 2767 } 2768 2769 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb) 2770 { 2771 u32 mss = skb_shinfo(skb)->gso_size; 2772 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2773 u8 l4_protocol = 0; 2774 2775 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2776 ena_tx_ctx->l4_csum_enable = 1; 2777 if (mss) { 2778 ena_tx_ctx->tso_enable = 1; 2779 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2780 ena_tx_ctx->l4_csum_partial = 0; 2781 } else { 2782 ena_tx_ctx->tso_enable = 0; 2783 ena_meta->l4_hdr_len = 0; 2784 ena_tx_ctx->l4_csum_partial = 1; 2785 } 2786 2787 switch (ip_hdr(skb)->version) { 2788 case IPVERSION: 2789 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2790 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2791 ena_tx_ctx->df = 1; 2792 if (mss) 2793 ena_tx_ctx->l3_csum_enable = 1; 2794 l4_protocol = ip_hdr(skb)->protocol; 2795 break; 2796 case 6: 2797 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2798 l4_protocol = ipv6_hdr(skb)->nexthdr; 2799 break; 2800 default: 2801 break; 2802 } 2803 2804 if (l4_protocol == IPPROTO_TCP) 2805 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2806 else 2807 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2808 2809 ena_meta->mss = mss; 2810 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2811 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2812 ena_tx_ctx->meta_valid = 1; 2813 2814 } else { 2815 ena_tx_ctx->meta_valid = 0; 2816 } 2817 } 2818 2819 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2820 struct sk_buff *skb) 2821 { 2822 int num_frags, header_len, rc; 2823 2824 num_frags = skb_shinfo(skb)->nr_frags; 2825 header_len = skb_headlen(skb); 2826 2827 if (num_frags < tx_ring->sgl_size) 2828 return 0; 2829 2830 if ((num_frags == tx_ring->sgl_size) && 2831 (header_len < tx_ring->tx_max_header_size)) 2832 return 0; 2833 2834 u64_stats_update_begin(&tx_ring->syncp); 2835 tx_ring->tx_stats.linearize++; 2836 u64_stats_update_end(&tx_ring->syncp); 2837 2838 rc = skb_linearize(skb); 2839 if (unlikely(rc)) { 2840 u64_stats_update_begin(&tx_ring->syncp); 2841 tx_ring->tx_stats.linearize_failed++; 2842 u64_stats_update_end(&tx_ring->syncp); 2843 } 2844 2845 return rc; 2846 } 2847 2848 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2849 struct ena_tx_buffer *tx_info, 2850 struct sk_buff *skb, 2851 void **push_hdr, 2852 u16 *header_len) 2853 { 2854 struct ena_adapter *adapter = tx_ring->adapter; 2855 struct ena_com_buf *ena_buf; 2856 dma_addr_t dma; 2857 u32 skb_head_len, frag_len, last_frag; 2858 u16 push_len = 0; 2859 u16 delta = 0; 2860 int i = 0; 2861 2862 skb_head_len = skb_headlen(skb); 2863 tx_info->skb = skb; 2864 ena_buf = tx_info->bufs; 2865 2866 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2867 /* When the device is LLQ mode, the driver will copy 2868 * the header into the device memory space. 2869 * the ena_com layer assume the header is in a linear 2870 * memory space. 2871 * This assumption might be wrong since part of the header 2872 * can be in the fragmented buffers. 2873 * Use skb_header_pointer to make sure the header is in a 2874 * linear memory space. 2875 */ 2876 2877 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2878 *push_hdr = skb_header_pointer(skb, 0, push_len, 2879 tx_ring->push_buf_intermediate_buf); 2880 *header_len = push_len; 2881 if (unlikely(skb->data != *push_hdr)) { 2882 u64_stats_update_begin(&tx_ring->syncp); 2883 tx_ring->tx_stats.llq_buffer_copy++; 2884 u64_stats_update_end(&tx_ring->syncp); 2885 2886 delta = push_len - skb_head_len; 2887 } 2888 } else { 2889 *push_hdr = NULL; 2890 *header_len = min_t(u32, skb_head_len, 2891 tx_ring->tx_max_header_size); 2892 } 2893 2894 netif_dbg(adapter, tx_queued, adapter->netdev, 2895 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2896 *push_hdr, push_len); 2897 2898 if (skb_head_len > push_len) { 2899 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2900 skb_head_len - push_len, DMA_TO_DEVICE); 2901 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2902 goto error_report_dma_error; 2903 2904 ena_buf->paddr = dma; 2905 ena_buf->len = skb_head_len - push_len; 2906 2907 ena_buf++; 2908 tx_info->num_of_bufs++; 2909 tx_info->map_linear_data = 1; 2910 } else { 2911 tx_info->map_linear_data = 0; 2912 } 2913 2914 last_frag = skb_shinfo(skb)->nr_frags; 2915 2916 for (i = 0; i < last_frag; i++) { 2917 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2918 2919 frag_len = skb_frag_size(frag); 2920 2921 if (unlikely(delta >= frag_len)) { 2922 delta -= frag_len; 2923 continue; 2924 } 2925 2926 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2927 frag_len - delta, DMA_TO_DEVICE); 2928 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2929 goto error_report_dma_error; 2930 2931 ena_buf->paddr = dma; 2932 ena_buf->len = frag_len - delta; 2933 ena_buf++; 2934 tx_info->num_of_bufs++; 2935 delta = 0; 2936 } 2937 2938 return 0; 2939 2940 error_report_dma_error: 2941 u64_stats_update_begin(&tx_ring->syncp); 2942 tx_ring->tx_stats.dma_mapping_err++; 2943 u64_stats_update_end(&tx_ring->syncp); 2944 netdev_warn(adapter->netdev, "failed to map skb\n"); 2945 2946 tx_info->skb = NULL; 2947 2948 tx_info->num_of_bufs += i; 2949 ena_unmap_tx_buff(tx_ring, tx_info); 2950 2951 return -EINVAL; 2952 } 2953 2954 /* Called with netif_tx_lock. */ 2955 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2956 { 2957 struct ena_adapter *adapter = netdev_priv(dev); 2958 struct ena_tx_buffer *tx_info; 2959 struct ena_com_tx_ctx ena_tx_ctx; 2960 struct ena_ring *tx_ring; 2961 struct netdev_queue *txq; 2962 void *push_hdr; 2963 u16 next_to_use, req_id, header_len; 2964 int qid, rc; 2965 2966 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2967 /* Determine which tx ring we will be placed on */ 2968 qid = skb_get_queue_mapping(skb); 2969 tx_ring = &adapter->tx_ring[qid]; 2970 txq = netdev_get_tx_queue(dev, qid); 2971 2972 rc = ena_check_and_linearize_skb(tx_ring, skb); 2973 if (unlikely(rc)) 2974 goto error_drop_packet; 2975 2976 skb_tx_timestamp(skb); 2977 2978 next_to_use = tx_ring->next_to_use; 2979 req_id = tx_ring->free_ids[next_to_use]; 2980 tx_info = &tx_ring->tx_buffer_info[req_id]; 2981 tx_info->num_of_bufs = 0; 2982 2983 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2984 2985 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2986 if (unlikely(rc)) 2987 goto error_drop_packet; 2988 2989 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2990 ena_tx_ctx.ena_bufs = tx_info->bufs; 2991 ena_tx_ctx.push_header = push_hdr; 2992 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2993 ena_tx_ctx.req_id = req_id; 2994 ena_tx_ctx.header_len = header_len; 2995 2996 /* set flags and meta data */ 2997 ena_tx_csum(&ena_tx_ctx, skb); 2998 2999 rc = ena_xmit_common(dev, 3000 tx_ring, 3001 tx_info, 3002 &ena_tx_ctx, 3003 next_to_use, 3004 skb->len); 3005 if (rc) 3006 goto error_unmap_dma; 3007 3008 netdev_tx_sent_queue(txq, skb->len); 3009 3010 /* stop the queue when no more space available, the packet can have up 3011 * to sgl_size + 2. one for the meta descriptor and one for header 3012 * (if the header is larger than tx_max_header_size). 3013 */ 3014 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3015 tx_ring->sgl_size + 2))) { 3016 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 3017 __func__, qid); 3018 3019 netif_tx_stop_queue(txq); 3020 u64_stats_update_begin(&tx_ring->syncp); 3021 tx_ring->tx_stats.queue_stop++; 3022 u64_stats_update_end(&tx_ring->syncp); 3023 3024 /* There is a rare condition where this function decide to 3025 * stop the queue but meanwhile clean_tx_irq updates 3026 * next_to_completion and terminates. 3027 * The queue will remain stopped forever. 3028 * To solve this issue add a mb() to make sure that 3029 * netif_tx_stop_queue() write is vissible before checking if 3030 * there is additional space in the queue. 3031 */ 3032 smp_mb(); 3033 3034 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 3035 ENA_TX_WAKEUP_THRESH)) { 3036 netif_tx_wake_queue(txq); 3037 u64_stats_update_begin(&tx_ring->syncp); 3038 tx_ring->tx_stats.queue_wakeup++; 3039 u64_stats_update_end(&tx_ring->syncp); 3040 } 3041 } 3042 3043 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) { 3044 /* trigger the dma engine. ena_com_write_sq_doorbell() 3045 * has a mb 3046 */ 3047 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 3048 u64_stats_update_begin(&tx_ring->syncp); 3049 tx_ring->tx_stats.doorbells++; 3050 u64_stats_update_end(&tx_ring->syncp); 3051 } 3052 3053 return NETDEV_TX_OK; 3054 3055 error_unmap_dma: 3056 ena_unmap_tx_buff(tx_ring, tx_info); 3057 tx_info->skb = NULL; 3058 3059 error_drop_packet: 3060 dev_kfree_skb(skb); 3061 return NETDEV_TX_OK; 3062 } 3063 3064 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 3065 struct net_device *sb_dev) 3066 { 3067 u16 qid; 3068 /* we suspect that this is good for in--kernel network services that 3069 * want to loop incoming skb rx to tx in normal user generated traffic, 3070 * most probably we will not get to this 3071 */ 3072 if (skb_rx_queue_recorded(skb)) 3073 qid = skb_get_rx_queue(skb); 3074 else 3075 qid = netdev_pick_tx(dev, skb, NULL); 3076 3077 return qid; 3078 } 3079 3080 static void ena_config_host_info(struct ena_com_dev *ena_dev, 3081 struct pci_dev *pdev) 3082 { 3083 struct ena_admin_host_info *host_info; 3084 int rc; 3085 3086 /* Allocate only the host info */ 3087 rc = ena_com_allocate_host_info(ena_dev); 3088 if (rc) { 3089 pr_err("Cannot allocate host info\n"); 3090 return; 3091 } 3092 3093 host_info = ena_dev->host_attr.host_info; 3094 3095 host_info->bdf = (pdev->bus->number << 8) | pdev->devfn; 3096 host_info->os_type = ENA_ADMIN_OS_LINUX; 3097 host_info->kernel_ver = LINUX_VERSION_CODE; 3098 strlcpy(host_info->kernel_ver_str, utsname()->version, 3099 sizeof(host_info->kernel_ver_str) - 1); 3100 host_info->os_dist = 0; 3101 strncpy(host_info->os_dist_str, utsname()->release, 3102 sizeof(host_info->os_dist_str) - 1); 3103 host_info->driver_version = 3104 (DRV_MODULE_GEN_MAJOR) | 3105 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 3106 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 3107 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 3108 host_info->num_cpus = num_online_cpus(); 3109 3110 host_info->driver_supported_features = 3111 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK; 3112 3113 rc = ena_com_set_host_attributes(ena_dev); 3114 if (rc) { 3115 if (rc == -EOPNOTSUPP) 3116 pr_warn("Cannot set host attributes\n"); 3117 else 3118 pr_err("Cannot set host attributes\n"); 3119 3120 goto err; 3121 } 3122 3123 return; 3124 3125 err: 3126 ena_com_delete_host_info(ena_dev); 3127 } 3128 3129 static void ena_config_debug_area(struct ena_adapter *adapter) 3130 { 3131 u32 debug_area_size; 3132 int rc, ss_count; 3133 3134 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 3135 if (ss_count <= 0) { 3136 netif_err(adapter, drv, adapter->netdev, 3137 "SS count is negative\n"); 3138 return; 3139 } 3140 3141 /* allocate 32 bytes for each string and 64bit for the value */ 3142 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 3143 3144 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 3145 if (rc) { 3146 pr_err("Cannot allocate debug area\n"); 3147 return; 3148 } 3149 3150 rc = ena_com_set_host_attributes(adapter->ena_dev); 3151 if (rc) { 3152 if (rc == -EOPNOTSUPP) 3153 netif_warn(adapter, drv, adapter->netdev, 3154 "Cannot set host attributes\n"); 3155 else 3156 netif_err(adapter, drv, adapter->netdev, 3157 "Cannot set host attributes\n"); 3158 goto err; 3159 } 3160 3161 return; 3162 err: 3163 ena_com_delete_debug_area(adapter->ena_dev); 3164 } 3165 3166 static void ena_get_stats64(struct net_device *netdev, 3167 struct rtnl_link_stats64 *stats) 3168 { 3169 struct ena_adapter *adapter = netdev_priv(netdev); 3170 struct ena_ring *rx_ring, *tx_ring; 3171 unsigned int start; 3172 u64 rx_drops; 3173 int i; 3174 3175 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3176 return; 3177 3178 for (i = 0; i < adapter->num_io_queues; i++) { 3179 u64 bytes, packets; 3180 3181 tx_ring = &adapter->tx_ring[i]; 3182 3183 do { 3184 start = u64_stats_fetch_begin_irq(&tx_ring->syncp); 3185 packets = tx_ring->tx_stats.cnt; 3186 bytes = tx_ring->tx_stats.bytes; 3187 } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); 3188 3189 stats->tx_packets += packets; 3190 stats->tx_bytes += bytes; 3191 3192 rx_ring = &adapter->rx_ring[i]; 3193 3194 do { 3195 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 3196 packets = rx_ring->rx_stats.cnt; 3197 bytes = rx_ring->rx_stats.bytes; 3198 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 3199 3200 stats->rx_packets += packets; 3201 stats->rx_bytes += bytes; 3202 } 3203 3204 do { 3205 start = u64_stats_fetch_begin_irq(&adapter->syncp); 3206 rx_drops = adapter->dev_stats.rx_drops; 3207 } while (u64_stats_fetch_retry_irq(&adapter->syncp, start)); 3208 3209 stats->rx_dropped = rx_drops; 3210 3211 stats->multicast = 0; 3212 stats->collisions = 0; 3213 3214 stats->rx_length_errors = 0; 3215 stats->rx_crc_errors = 0; 3216 stats->rx_frame_errors = 0; 3217 stats->rx_fifo_errors = 0; 3218 stats->rx_missed_errors = 0; 3219 stats->tx_window_errors = 0; 3220 3221 stats->rx_errors = 0; 3222 stats->tx_errors = 0; 3223 } 3224 3225 static const struct net_device_ops ena_netdev_ops = { 3226 .ndo_open = ena_open, 3227 .ndo_stop = ena_close, 3228 .ndo_start_xmit = ena_start_xmit, 3229 .ndo_select_queue = ena_select_queue, 3230 .ndo_get_stats64 = ena_get_stats64, 3231 .ndo_tx_timeout = ena_tx_timeout, 3232 .ndo_change_mtu = ena_change_mtu, 3233 .ndo_set_mac_address = NULL, 3234 .ndo_validate_addr = eth_validate_addr, 3235 .ndo_bpf = ena_xdp, 3236 }; 3237 3238 static int ena_device_validate_params(struct ena_adapter *adapter, 3239 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3240 { 3241 struct net_device *netdev = adapter->netdev; 3242 int rc; 3243 3244 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 3245 adapter->mac_addr); 3246 if (!rc) { 3247 netif_err(adapter, drv, netdev, 3248 "Error, mac address are different\n"); 3249 return -EINVAL; 3250 } 3251 3252 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 3253 netif_err(adapter, drv, netdev, 3254 "Error, device max mtu is smaller than netdev MTU\n"); 3255 return -EINVAL; 3256 } 3257 3258 return 0; 3259 } 3260 3261 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, 3262 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3263 bool *wd_state) 3264 { 3265 struct device *dev = &pdev->dev; 3266 bool readless_supported; 3267 u32 aenq_groups; 3268 int dma_width; 3269 int rc; 3270 3271 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3272 if (rc) { 3273 dev_err(dev, "failed to init mmio read less\n"); 3274 return rc; 3275 } 3276 3277 /* The PCIe configuration space revision id indicate if mmio reg 3278 * read is disabled 3279 */ 3280 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3281 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3282 3283 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3284 if (rc) { 3285 dev_err(dev, "Can not reset device\n"); 3286 goto err_mmio_read_less; 3287 } 3288 3289 rc = ena_com_validate_version(ena_dev); 3290 if (rc) { 3291 dev_err(dev, "device version is too low\n"); 3292 goto err_mmio_read_less; 3293 } 3294 3295 dma_width = ena_com_get_dma_width(ena_dev); 3296 if (dma_width < 0) { 3297 dev_err(dev, "Invalid dma width value %d", dma_width); 3298 rc = dma_width; 3299 goto err_mmio_read_less; 3300 } 3301 3302 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 3303 if (rc) { 3304 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc); 3305 goto err_mmio_read_less; 3306 } 3307 3308 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 3309 if (rc) { 3310 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n", 3311 rc); 3312 goto err_mmio_read_less; 3313 } 3314 3315 /* ENA admin level init */ 3316 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3317 if (rc) { 3318 dev_err(dev, 3319 "Can not initialize ena admin queue with device\n"); 3320 goto err_mmio_read_less; 3321 } 3322 3323 /* To enable the msix interrupts the driver needs to know the number 3324 * of queues. So the driver uses polling mode to retrieve this 3325 * information 3326 */ 3327 ena_com_set_admin_polling_mode(ena_dev, true); 3328 3329 ena_config_host_info(ena_dev, pdev); 3330 3331 /* Get Device Attributes*/ 3332 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3333 if (rc) { 3334 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3335 goto err_admin_init; 3336 } 3337 3338 /* Try to turn all the available aenq groups */ 3339 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3340 BIT(ENA_ADMIN_FATAL_ERROR) | 3341 BIT(ENA_ADMIN_WARNING) | 3342 BIT(ENA_ADMIN_NOTIFICATION) | 3343 BIT(ENA_ADMIN_KEEP_ALIVE); 3344 3345 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3346 3347 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3348 if (rc) { 3349 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3350 goto err_admin_init; 3351 } 3352 3353 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3354 3355 return 0; 3356 3357 err_admin_init: 3358 ena_com_delete_host_info(ena_dev); 3359 ena_com_admin_destroy(ena_dev); 3360 err_mmio_read_less: 3361 ena_com_mmio_reg_read_request_destroy(ena_dev); 3362 3363 return rc; 3364 } 3365 3366 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3367 { 3368 struct ena_com_dev *ena_dev = adapter->ena_dev; 3369 struct device *dev = &adapter->pdev->dev; 3370 int rc; 3371 3372 rc = ena_enable_msix(adapter); 3373 if (rc) { 3374 dev_err(dev, "Can not reserve msix vectors\n"); 3375 return rc; 3376 } 3377 3378 ena_setup_mgmnt_intr(adapter); 3379 3380 rc = ena_request_mgmnt_irq(adapter); 3381 if (rc) { 3382 dev_err(dev, "Can not setup management interrupts\n"); 3383 goto err_disable_msix; 3384 } 3385 3386 ena_com_set_admin_polling_mode(ena_dev, false); 3387 3388 ena_com_admin_aenq_enable(ena_dev); 3389 3390 return 0; 3391 3392 err_disable_msix: 3393 ena_disable_msix(adapter); 3394 3395 return rc; 3396 } 3397 3398 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3399 { 3400 struct net_device *netdev = adapter->netdev; 3401 struct ena_com_dev *ena_dev = adapter->ena_dev; 3402 bool dev_up; 3403 3404 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3405 return; 3406 3407 netif_carrier_off(netdev); 3408 3409 del_timer_sync(&adapter->timer_service); 3410 3411 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3412 adapter->dev_up_before_reset = dev_up; 3413 if (!graceful) 3414 ena_com_set_admin_running_state(ena_dev, false); 3415 3416 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3417 ena_down(adapter); 3418 3419 /* Stop the device from sending AENQ events (in case reset flag is set 3420 * and device is up, ena_down() already reset the device. 3421 */ 3422 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3423 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3424 3425 ena_free_mgmnt_irq(adapter); 3426 3427 ena_disable_msix(adapter); 3428 3429 ena_com_abort_admin_commands(ena_dev); 3430 3431 ena_com_wait_for_abort_completion(ena_dev); 3432 3433 ena_com_admin_destroy(ena_dev); 3434 3435 ena_com_mmio_reg_read_request_destroy(ena_dev); 3436 3437 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3438 3439 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3440 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3441 } 3442 3443 static int ena_restore_device(struct ena_adapter *adapter) 3444 { 3445 struct ena_com_dev_get_features_ctx get_feat_ctx; 3446 struct ena_com_dev *ena_dev = adapter->ena_dev; 3447 struct pci_dev *pdev = adapter->pdev; 3448 bool wd_state; 3449 int rc; 3450 3451 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3452 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state); 3453 if (rc) { 3454 dev_err(&pdev->dev, "Can not initialize device\n"); 3455 goto err; 3456 } 3457 adapter->wd_state = wd_state; 3458 3459 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3460 if (rc) { 3461 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3462 goto err_device_destroy; 3463 } 3464 3465 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3466 if (rc) { 3467 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3468 goto err_device_destroy; 3469 } 3470 /* If the interface was up before the reset bring it up */ 3471 if (adapter->dev_up_before_reset) { 3472 rc = ena_up(adapter); 3473 if (rc) { 3474 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3475 goto err_disable_msix; 3476 } 3477 } 3478 3479 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3480 3481 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3482 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3483 netif_carrier_on(adapter->netdev); 3484 3485 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3486 dev_err(&pdev->dev, "Device reset completed successfully\n"); 3487 adapter->last_keep_alive_jiffies = jiffies; 3488 3489 return rc; 3490 err_disable_msix: 3491 ena_free_mgmnt_irq(adapter); 3492 ena_disable_msix(adapter); 3493 err_device_destroy: 3494 ena_com_abort_admin_commands(ena_dev); 3495 ena_com_wait_for_abort_completion(ena_dev); 3496 ena_com_admin_destroy(ena_dev); 3497 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3498 ena_com_mmio_reg_read_request_destroy(ena_dev); 3499 err: 3500 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3501 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3502 dev_err(&pdev->dev, 3503 "Reset attempt failed. Can not reset the device\n"); 3504 3505 return rc; 3506 } 3507 3508 static void ena_fw_reset_device(struct work_struct *work) 3509 { 3510 struct ena_adapter *adapter = 3511 container_of(work, struct ena_adapter, reset_task); 3512 struct pci_dev *pdev = adapter->pdev; 3513 3514 if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3515 dev_err(&pdev->dev, 3516 "device reset schedule while reset bit is off\n"); 3517 return; 3518 } 3519 rtnl_lock(); 3520 ena_destroy_device(adapter, false); 3521 ena_restore_device(adapter); 3522 rtnl_unlock(); 3523 } 3524 3525 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3526 struct ena_ring *rx_ring) 3527 { 3528 if (likely(rx_ring->first_interrupt)) 3529 return 0; 3530 3531 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3532 return 0; 3533 3534 rx_ring->no_interrupt_event_cnt++; 3535 3536 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3537 netif_err(adapter, rx_err, adapter->netdev, 3538 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3539 rx_ring->qid); 3540 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 3541 smp_mb__before_atomic(); 3542 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3543 return -EIO; 3544 } 3545 3546 return 0; 3547 } 3548 3549 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3550 struct ena_ring *tx_ring) 3551 { 3552 struct ena_tx_buffer *tx_buf; 3553 unsigned long last_jiffies; 3554 u32 missed_tx = 0; 3555 int i, rc = 0; 3556 3557 for (i = 0; i < tx_ring->ring_size; i++) { 3558 tx_buf = &tx_ring->tx_buffer_info[i]; 3559 last_jiffies = tx_buf->last_jiffies; 3560 3561 if (last_jiffies == 0) 3562 /* no pending Tx at this location */ 3563 continue; 3564 3565 if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies + 3566 2 * adapter->missing_tx_completion_to))) { 3567 /* If after graceful period interrupt is still not 3568 * received, we schedule a reset 3569 */ 3570 netif_err(adapter, tx_err, adapter->netdev, 3571 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3572 tx_ring->qid); 3573 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 3574 smp_mb__before_atomic(); 3575 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3576 return -EIO; 3577 } 3578 3579 if (unlikely(time_is_before_jiffies(last_jiffies + 3580 adapter->missing_tx_completion_to))) { 3581 if (!tx_buf->print_once) 3582 netif_notice(adapter, tx_err, adapter->netdev, 3583 "Found a Tx that wasn't completed on time, qid %d, index %d.\n", 3584 tx_ring->qid, i); 3585 3586 tx_buf->print_once = 1; 3587 missed_tx++; 3588 } 3589 } 3590 3591 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3592 netif_err(adapter, tx_err, adapter->netdev, 3593 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 3594 missed_tx, 3595 adapter->missing_tx_completion_threshold); 3596 adapter->reset_reason = 3597 ENA_REGS_RESET_MISS_TX_CMPL; 3598 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3599 rc = -EIO; 3600 } 3601 3602 u64_stats_update_begin(&tx_ring->syncp); 3603 tx_ring->tx_stats.missed_tx = missed_tx; 3604 u64_stats_update_end(&tx_ring->syncp); 3605 3606 return rc; 3607 } 3608 3609 static void check_for_missing_completions(struct ena_adapter *adapter) 3610 { 3611 struct ena_ring *tx_ring; 3612 struct ena_ring *rx_ring; 3613 int i, budget, rc; 3614 int io_queue_count; 3615 3616 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3617 /* Make sure the driver doesn't turn the device in other process */ 3618 smp_rmb(); 3619 3620 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3621 return; 3622 3623 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3624 return; 3625 3626 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3627 return; 3628 3629 budget = ENA_MONITORED_TX_QUEUES; 3630 3631 for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) { 3632 tx_ring = &adapter->tx_ring[i]; 3633 rx_ring = &adapter->rx_ring[i]; 3634 3635 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3636 if (unlikely(rc)) 3637 return; 3638 3639 rc = !ENA_IS_XDP_INDEX(adapter, i) ? 3640 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3641 if (unlikely(rc)) 3642 return; 3643 3644 budget--; 3645 if (!budget) 3646 break; 3647 } 3648 3649 adapter->last_monitored_tx_qid = i % io_queue_count; 3650 } 3651 3652 /* trigger napi schedule after 2 consecutive detections */ 3653 #define EMPTY_RX_REFILL 2 3654 /* For the rare case where the device runs out of Rx descriptors and the 3655 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3656 * for example). 3657 * This case will lead to a deadlock: 3658 * The device won't send interrupts since all the new Rx packets will be dropped 3659 * The napi handler won't allocate new Rx descriptors so the device will be 3660 * able to send new packets. 3661 * 3662 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3663 * It is recommended to have at least 512MB, with a minimum of 128MB for 3664 * constrained environment). 3665 * 3666 * When such a situation is detected - Reschedule napi 3667 */ 3668 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3669 { 3670 struct ena_ring *rx_ring; 3671 int i, refill_required; 3672 3673 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3674 return; 3675 3676 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3677 return; 3678 3679 for (i = 0; i < adapter->num_io_queues; i++) { 3680 rx_ring = &adapter->rx_ring[i]; 3681 3682 refill_required = 3683 ena_com_free_desc(rx_ring->ena_com_io_sq); 3684 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3685 rx_ring->empty_rx_queue++; 3686 3687 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3688 u64_stats_update_begin(&rx_ring->syncp); 3689 rx_ring->rx_stats.empty_rx_ring++; 3690 u64_stats_update_end(&rx_ring->syncp); 3691 3692 netif_err(adapter, drv, adapter->netdev, 3693 "trigger refill for ring %d\n", i); 3694 3695 napi_schedule(rx_ring->napi); 3696 rx_ring->empty_rx_queue = 0; 3697 } 3698 } else { 3699 rx_ring->empty_rx_queue = 0; 3700 } 3701 } 3702 } 3703 3704 /* Check for keep alive expiration */ 3705 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3706 { 3707 unsigned long keep_alive_expired; 3708 3709 if (!adapter->wd_state) 3710 return; 3711 3712 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3713 return; 3714 3715 keep_alive_expired = adapter->last_keep_alive_jiffies + 3716 adapter->keep_alive_timeout; 3717 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3718 netif_err(adapter, drv, adapter->netdev, 3719 "Keep alive watchdog timeout.\n"); 3720 u64_stats_update_begin(&adapter->syncp); 3721 adapter->dev_stats.wd_expired++; 3722 u64_stats_update_end(&adapter->syncp); 3723 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; 3724 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3725 } 3726 } 3727 3728 static void check_for_admin_com_state(struct ena_adapter *adapter) 3729 { 3730 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3731 netif_err(adapter, drv, adapter->netdev, 3732 "ENA admin queue is not in running state!\n"); 3733 u64_stats_update_begin(&adapter->syncp); 3734 adapter->dev_stats.admin_q_pause++; 3735 u64_stats_update_end(&adapter->syncp); 3736 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; 3737 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3738 } 3739 } 3740 3741 static void ena_update_hints(struct ena_adapter *adapter, 3742 struct ena_admin_ena_hw_hints *hints) 3743 { 3744 struct net_device *netdev = adapter->netdev; 3745 3746 if (hints->admin_completion_tx_timeout) 3747 adapter->ena_dev->admin_queue.completion_timeout = 3748 hints->admin_completion_tx_timeout * 1000; 3749 3750 if (hints->mmio_read_timeout) 3751 /* convert to usec */ 3752 adapter->ena_dev->mmio_read.reg_read_to = 3753 hints->mmio_read_timeout * 1000; 3754 3755 if (hints->missed_tx_completion_count_threshold_to_reset) 3756 adapter->missing_tx_completion_threshold = 3757 hints->missed_tx_completion_count_threshold_to_reset; 3758 3759 if (hints->missing_tx_completion_timeout) { 3760 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3761 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3762 else 3763 adapter->missing_tx_completion_to = 3764 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3765 } 3766 3767 if (hints->netdev_wd_timeout) 3768 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3769 3770 if (hints->driver_watchdog_timeout) { 3771 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3772 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3773 else 3774 adapter->keep_alive_timeout = 3775 msecs_to_jiffies(hints->driver_watchdog_timeout); 3776 } 3777 } 3778 3779 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3780 struct net_device *netdev) 3781 { 3782 host_info->supported_network_features[0] = 3783 netdev->features & GENMASK_ULL(31, 0); 3784 host_info->supported_network_features[1] = 3785 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3786 } 3787 3788 static void ena_timer_service(struct timer_list *t) 3789 { 3790 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3791 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3792 struct ena_admin_host_info *host_info = 3793 adapter->ena_dev->host_attr.host_info; 3794 3795 check_for_missing_keep_alive(adapter); 3796 3797 check_for_admin_com_state(adapter); 3798 3799 check_for_missing_completions(adapter); 3800 3801 check_for_empty_rx_ring(adapter); 3802 3803 if (debug_area) 3804 ena_dump_stats_to_buf(adapter, debug_area); 3805 3806 if (host_info) 3807 ena_update_host_info(host_info, adapter->netdev); 3808 3809 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3810 netif_err(adapter, drv, adapter->netdev, 3811 "Trigger reset is on\n"); 3812 ena_dump_stats_to_dmesg(adapter); 3813 queue_work(ena_wq, &adapter->reset_task); 3814 return; 3815 } 3816 3817 /* Reset the timer */ 3818 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3819 } 3820 3821 static int ena_calc_max_io_queue_num(struct pci_dev *pdev, 3822 struct ena_com_dev *ena_dev, 3823 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3824 { 3825 int io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3826 3827 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3828 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3829 &get_feat_ctx->max_queue_ext.max_queue_ext; 3830 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3831 max_queue_ext->max_rx_cq_num); 3832 3833 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3834 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3835 } else { 3836 struct ena_admin_queue_feature_desc *max_queues = 3837 &get_feat_ctx->max_queues; 3838 io_tx_sq_num = max_queues->max_sq_num; 3839 io_tx_cq_num = max_queues->max_cq_num; 3840 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3841 } 3842 3843 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3844 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3845 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3846 3847 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3848 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3849 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3850 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3851 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */ 3852 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3853 if (unlikely(!max_num_io_queues)) { 3854 dev_err(&pdev->dev, "The device doesn't have io queues\n"); 3855 return -EFAULT; 3856 } 3857 3858 return max_num_io_queues; 3859 } 3860 3861 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3862 struct ena_com_dev *ena_dev, 3863 struct ena_admin_feature_llq_desc *llq, 3864 struct ena_llq_configurations *llq_default_configurations) 3865 { 3866 bool has_mem_bar; 3867 int rc; 3868 u32 llq_feature_mask; 3869 3870 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3871 if (!(ena_dev->supported_features & llq_feature_mask)) { 3872 dev_err(&pdev->dev, 3873 "LLQ is not supported Fallback to host mode policy.\n"); 3874 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3875 return 0; 3876 } 3877 3878 has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR); 3879 3880 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3881 if (unlikely(rc)) { 3882 dev_err(&pdev->dev, 3883 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3884 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3885 return 0; 3886 } 3887 3888 /* Nothing to config, exit */ 3889 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 3890 return 0; 3891 3892 if (!has_mem_bar) { 3893 dev_err(&pdev->dev, 3894 "ENA device does not expose LLQ bar. Fallback to host mode policy.\n"); 3895 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3896 return 0; 3897 } 3898 3899 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3900 pci_resource_start(pdev, ENA_MEM_BAR), 3901 pci_resource_len(pdev, ENA_MEM_BAR)); 3902 3903 if (!ena_dev->mem_bar) 3904 return -EFAULT; 3905 3906 return 0; 3907 } 3908 3909 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3910 struct net_device *netdev) 3911 { 3912 netdev_features_t dev_features = 0; 3913 3914 /* Set offload features */ 3915 if (feat->offload.tx & 3916 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3917 dev_features |= NETIF_F_IP_CSUM; 3918 3919 if (feat->offload.tx & 3920 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3921 dev_features |= NETIF_F_IPV6_CSUM; 3922 3923 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3924 dev_features |= NETIF_F_TSO; 3925 3926 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3927 dev_features |= NETIF_F_TSO6; 3928 3929 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3930 dev_features |= NETIF_F_TSO_ECN; 3931 3932 if (feat->offload.rx_supported & 3933 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3934 dev_features |= NETIF_F_RXCSUM; 3935 3936 if (feat->offload.rx_supported & 3937 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3938 dev_features |= NETIF_F_RXCSUM; 3939 3940 netdev->features = 3941 dev_features | 3942 NETIF_F_SG | 3943 NETIF_F_RXHASH | 3944 NETIF_F_HIGHDMA; 3945 3946 netdev->hw_features |= netdev->features; 3947 netdev->vlan_features |= netdev->features; 3948 } 3949 3950 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3951 struct ena_com_dev_get_features_ctx *feat) 3952 { 3953 struct net_device *netdev = adapter->netdev; 3954 3955 /* Copy mac address */ 3956 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3957 eth_hw_addr_random(netdev); 3958 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3959 } else { 3960 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3961 ether_addr_copy(netdev->dev_addr, adapter->mac_addr); 3962 } 3963 3964 /* Set offload features */ 3965 ena_set_dev_offloads(feat, netdev); 3966 3967 adapter->max_mtu = feat->dev_attr.max_mtu; 3968 netdev->max_mtu = adapter->max_mtu; 3969 netdev->min_mtu = ENA_MIN_MTU; 3970 } 3971 3972 static int ena_rss_init_default(struct ena_adapter *adapter) 3973 { 3974 struct ena_com_dev *ena_dev = adapter->ena_dev; 3975 struct device *dev = &adapter->pdev->dev; 3976 int rc, i; 3977 u32 val; 3978 3979 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3980 if (unlikely(rc)) { 3981 dev_err(dev, "Cannot init indirect table\n"); 3982 goto err_rss_init; 3983 } 3984 3985 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3986 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3987 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3988 ENA_IO_RXQ_IDX(val)); 3989 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3990 dev_err(dev, "Cannot fill indirect table\n"); 3991 goto err_fill_indir; 3992 } 3993 } 3994 3995 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, 3996 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 3997 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3998 dev_err(dev, "Cannot fill hash function\n"); 3999 goto err_fill_indir; 4000 } 4001 4002 rc = ena_com_set_default_hash_ctrl(ena_dev); 4003 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 4004 dev_err(dev, "Cannot fill hash control\n"); 4005 goto err_fill_indir; 4006 } 4007 4008 return 0; 4009 4010 err_fill_indir: 4011 ena_com_rss_destroy(ena_dev); 4012 err_rss_init: 4013 4014 return rc; 4015 } 4016 4017 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 4018 { 4019 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4020 4021 pci_release_selected_regions(pdev, release_bars); 4022 } 4023 4024 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config) 4025 { 4026 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 4027 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 4028 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 4029 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 4030 llq_config->llq_ring_entry_size_value = 128; 4031 } 4032 4033 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx) 4034 { 4035 struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; 4036 struct ena_com_dev *ena_dev = ctx->ena_dev; 4037 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 4038 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 4039 u32 max_tx_queue_size; 4040 u32 max_rx_queue_size; 4041 4042 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 4043 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 4044 &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; 4045 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 4046 max_queue_ext->max_rx_sq_depth); 4047 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 4048 4049 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4050 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4051 llq->max_llq_depth); 4052 else 4053 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4054 max_queue_ext->max_tx_sq_depth); 4055 4056 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4057 max_queue_ext->max_per_packet_tx_descs); 4058 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4059 max_queue_ext->max_per_packet_rx_descs); 4060 } else { 4061 struct ena_admin_queue_feature_desc *max_queues = 4062 &ctx->get_feat_ctx->max_queues; 4063 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 4064 max_queues->max_sq_depth); 4065 max_tx_queue_size = max_queues->max_cq_depth; 4066 4067 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4068 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4069 llq->max_llq_depth); 4070 else 4071 max_tx_queue_size = min_t(u32, max_tx_queue_size, 4072 max_queues->max_sq_depth); 4073 4074 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4075 max_queues->max_packet_tx_descs); 4076 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 4077 max_queues->max_packet_rx_descs); 4078 } 4079 4080 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 4081 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 4082 4083 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 4084 max_tx_queue_size); 4085 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 4086 max_rx_queue_size); 4087 4088 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 4089 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 4090 4091 ctx->max_tx_queue_size = max_tx_queue_size; 4092 ctx->max_rx_queue_size = max_rx_queue_size; 4093 ctx->tx_queue_size = tx_queue_size; 4094 ctx->rx_queue_size = rx_queue_size; 4095 4096 return 0; 4097 } 4098 4099 /* ena_probe - Device Initialization Routine 4100 * @pdev: PCI device information struct 4101 * @ent: entry in ena_pci_tbl 4102 * 4103 * Returns 0 on success, negative on failure 4104 * 4105 * ena_probe initializes an adapter identified by a pci_dev structure. 4106 * The OS initialization, configuring of the adapter private structure, 4107 * and a hardware reset occur. 4108 */ 4109 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4110 { 4111 struct ena_com_dev_get_features_ctx get_feat_ctx; 4112 struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; 4113 struct ena_llq_configurations llq_config; 4114 struct ena_com_dev *ena_dev = NULL; 4115 struct ena_adapter *adapter; 4116 struct net_device *netdev; 4117 static int adapters_found; 4118 u32 max_num_io_queues; 4119 char *queue_type_str; 4120 bool wd_state; 4121 int bars, rc; 4122 4123 dev_dbg(&pdev->dev, "%s\n", __func__); 4124 4125 rc = pci_enable_device_mem(pdev); 4126 if (rc) { 4127 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 4128 return rc; 4129 } 4130 4131 pci_set_master(pdev); 4132 4133 ena_dev = vzalloc(sizeof(*ena_dev)); 4134 if (!ena_dev) { 4135 rc = -ENOMEM; 4136 goto err_disable_device; 4137 } 4138 4139 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 4140 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 4141 if (rc) { 4142 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 4143 rc); 4144 goto err_free_ena_dev; 4145 } 4146 4147 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 4148 pci_resource_start(pdev, ENA_REG_BAR), 4149 pci_resource_len(pdev, ENA_REG_BAR)); 4150 if (!ena_dev->reg_bar) { 4151 dev_err(&pdev->dev, "failed to remap regs bar\n"); 4152 rc = -EFAULT; 4153 goto err_free_region; 4154 } 4155 4156 ena_dev->dmadev = &pdev->dev; 4157 4158 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); 4159 if (rc) { 4160 dev_err(&pdev->dev, "ena device init failed\n"); 4161 if (rc == -ETIME) 4162 rc = -EPROBE_DEFER; 4163 goto err_free_region; 4164 } 4165 4166 set_default_llq_configurations(&llq_config); 4167 4168 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq, 4169 &llq_config); 4170 if (rc) { 4171 dev_err(&pdev->dev, "ena device init failed\n"); 4172 goto err_device_destroy; 4173 } 4174 4175 calc_queue_ctx.ena_dev = ena_dev; 4176 calc_queue_ctx.get_feat_ctx = &get_feat_ctx; 4177 calc_queue_ctx.pdev = pdev; 4178 4179 /* Initial Tx and RX interrupt delay. Assumes 1 usec granularity. 4180 * Updated during device initialization with the real granularity 4181 */ 4182 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 4183 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 4184 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 4185 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 4186 rc = ena_calc_io_queue_size(&calc_queue_ctx); 4187 if (rc || !max_num_io_queues) { 4188 rc = -EFAULT; 4189 goto err_device_destroy; 4190 } 4191 4192 /* dev zeroed in init_etherdev */ 4193 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues); 4194 if (!netdev) { 4195 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 4196 rc = -ENOMEM; 4197 goto err_device_destroy; 4198 } 4199 4200 SET_NETDEV_DEV(netdev, &pdev->dev); 4201 4202 adapter = netdev_priv(netdev); 4203 pci_set_drvdata(pdev, adapter); 4204 4205 adapter->ena_dev = ena_dev; 4206 adapter->netdev = netdev; 4207 adapter->pdev = pdev; 4208 4209 ena_set_conf_feat_params(adapter, &get_feat_ctx); 4210 4211 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4212 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 4213 4214 adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size; 4215 adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size; 4216 adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; 4217 adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; 4218 adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; 4219 adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; 4220 4221 adapter->num_io_queues = max_num_io_queues; 4222 adapter->max_num_io_queues = max_num_io_queues; 4223 4224 adapter->xdp_first_ring = 0; 4225 adapter->xdp_num_queues = 0; 4226 4227 adapter->last_monitored_tx_qid = 0; 4228 4229 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 4230 adapter->wd_state = wd_state; 4231 4232 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 4233 4234 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 4235 if (rc) { 4236 dev_err(&pdev->dev, 4237 "Failed to query interrupt moderation feature\n"); 4238 goto err_netdev_destroy; 4239 } 4240 ena_init_io_rings(adapter, 4241 0, 4242 adapter->xdp_num_queues + 4243 adapter->num_io_queues); 4244 4245 netdev->netdev_ops = &ena_netdev_ops; 4246 netdev->watchdog_timeo = TX_TIMEOUT; 4247 ena_set_ethtool_ops(netdev); 4248 4249 netdev->priv_flags |= IFF_UNICAST_FLT; 4250 4251 u64_stats_init(&adapter->syncp); 4252 4253 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 4254 if (rc) { 4255 dev_err(&pdev->dev, 4256 "Failed to enable and set the admin interrupts\n"); 4257 goto err_worker_destroy; 4258 } 4259 rc = ena_rss_init_default(adapter); 4260 if (rc && (rc != -EOPNOTSUPP)) { 4261 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4262 goto err_free_msix; 4263 } 4264 4265 ena_config_debug_area(adapter); 4266 4267 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4268 4269 netif_carrier_off(netdev); 4270 4271 rc = register_netdev(netdev); 4272 if (rc) { 4273 dev_err(&pdev->dev, "Cannot register net device\n"); 4274 goto err_rss; 4275 } 4276 4277 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4278 4279 adapter->last_keep_alive_jiffies = jiffies; 4280 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4281 adapter->missing_tx_completion_to = TX_TIMEOUT; 4282 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4283 4284 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4285 4286 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4287 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4288 4289 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 4290 queue_type_str = "Regular"; 4291 else 4292 queue_type_str = "Low Latency"; 4293 4294 dev_info(&pdev->dev, 4295 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n", 4296 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4297 netdev->dev_addr, queue_type_str); 4298 4299 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4300 4301 adapters_found++; 4302 4303 return 0; 4304 4305 err_rss: 4306 ena_com_delete_debug_area(ena_dev); 4307 ena_com_rss_destroy(ena_dev); 4308 err_free_msix: 4309 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4310 /* stop submitting admin commands on a device that was reset */ 4311 ena_com_set_admin_running_state(ena_dev, false); 4312 ena_free_mgmnt_irq(adapter); 4313 ena_disable_msix(adapter); 4314 err_worker_destroy: 4315 del_timer(&adapter->timer_service); 4316 err_netdev_destroy: 4317 free_netdev(netdev); 4318 err_device_destroy: 4319 ena_com_delete_host_info(ena_dev); 4320 ena_com_admin_destroy(ena_dev); 4321 err_free_region: 4322 ena_release_bars(ena_dev, pdev); 4323 err_free_ena_dev: 4324 vfree(ena_dev); 4325 err_disable_device: 4326 pci_disable_device(pdev); 4327 return rc; 4328 } 4329 4330 /*****************************************************************************/ 4331 4332 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4333 * @pdev: PCI device information struct 4334 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4335 * 4336 * __ena_shutoff is a helper routine that does the real work on shutdown and 4337 * removal paths; the difference between those paths is with regards to whether 4338 * dettach or unregister the netdevice. 4339 */ 4340 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4341 { 4342 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4343 struct ena_com_dev *ena_dev; 4344 struct net_device *netdev; 4345 4346 ena_dev = adapter->ena_dev; 4347 netdev = adapter->netdev; 4348 4349 #ifdef CONFIG_RFS_ACCEL 4350 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4351 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4352 netdev->rx_cpu_rmap = NULL; 4353 } 4354 #endif /* CONFIG_RFS_ACCEL */ 4355 del_timer_sync(&adapter->timer_service); 4356 4357 cancel_work_sync(&adapter->reset_task); 4358 4359 rtnl_lock(); /* lock released inside the below if-else block */ 4360 ena_destroy_device(adapter, true); 4361 if (shutdown) { 4362 netif_device_detach(netdev); 4363 dev_close(netdev); 4364 rtnl_unlock(); 4365 } else { 4366 rtnl_unlock(); 4367 unregister_netdev(netdev); 4368 free_netdev(netdev); 4369 } 4370 4371 ena_com_rss_destroy(ena_dev); 4372 4373 ena_com_delete_debug_area(ena_dev); 4374 4375 ena_com_delete_host_info(ena_dev); 4376 4377 ena_release_bars(ena_dev, pdev); 4378 4379 pci_disable_device(pdev); 4380 4381 vfree(ena_dev); 4382 } 4383 4384 /* ena_remove - Device Removal Routine 4385 * @pdev: PCI device information struct 4386 * 4387 * ena_remove is called by the PCI subsystem to alert the driver 4388 * that it should release a PCI device. 4389 */ 4390 4391 static void ena_remove(struct pci_dev *pdev) 4392 { 4393 __ena_shutoff(pdev, false); 4394 } 4395 4396 /* ena_shutdown - Device Shutdown Routine 4397 * @pdev: PCI device information struct 4398 * 4399 * ena_shutdown is called by the PCI subsystem to alert the driver that 4400 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4401 */ 4402 4403 static void ena_shutdown(struct pci_dev *pdev) 4404 { 4405 __ena_shutoff(pdev, true); 4406 } 4407 4408 #ifdef CONFIG_PM 4409 /* ena_suspend - PM suspend callback 4410 * @pdev: PCI device information struct 4411 * @state:power state 4412 */ 4413 static int ena_suspend(struct pci_dev *pdev, pm_message_t state) 4414 { 4415 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4416 4417 u64_stats_update_begin(&adapter->syncp); 4418 adapter->dev_stats.suspend++; 4419 u64_stats_update_end(&adapter->syncp); 4420 4421 rtnl_lock(); 4422 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4423 dev_err(&pdev->dev, 4424 "ignoring device reset request as the device is being suspended\n"); 4425 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4426 } 4427 ena_destroy_device(adapter, true); 4428 rtnl_unlock(); 4429 return 0; 4430 } 4431 4432 /* ena_resume - PM resume callback 4433 * @pdev: PCI device information struct 4434 * 4435 */ 4436 static int ena_resume(struct pci_dev *pdev) 4437 { 4438 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4439 int rc; 4440 4441 u64_stats_update_begin(&adapter->syncp); 4442 adapter->dev_stats.resume++; 4443 u64_stats_update_end(&adapter->syncp); 4444 4445 rtnl_lock(); 4446 rc = ena_restore_device(adapter); 4447 rtnl_unlock(); 4448 return rc; 4449 } 4450 #endif 4451 4452 static struct pci_driver ena_pci_driver = { 4453 .name = DRV_MODULE_NAME, 4454 .id_table = ena_pci_tbl, 4455 .probe = ena_probe, 4456 .remove = ena_remove, 4457 .shutdown = ena_shutdown, 4458 #ifdef CONFIG_PM 4459 .suspend = ena_suspend, 4460 .resume = ena_resume, 4461 #endif 4462 .sriov_configure = pci_sriov_configure_simple, 4463 }; 4464 4465 static int __init ena_init(void) 4466 { 4467 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4468 if (!ena_wq) { 4469 pr_err("Failed to create workqueue\n"); 4470 return -ENOMEM; 4471 } 4472 4473 return pci_register_driver(&ena_pci_driver); 4474 } 4475 4476 static void __exit ena_cleanup(void) 4477 { 4478 pci_unregister_driver(&ena_pci_driver); 4479 4480 if (ena_wq) { 4481 destroy_workqueue(ena_wq); 4482 ena_wq = NULL; 4483 } 4484 } 4485 4486 /****************************************************************************** 4487 ******************************** AENQ Handlers ******************************* 4488 *****************************************************************************/ 4489 /* ena_update_on_link_change: 4490 * Notify the network interface about the change in link status 4491 */ 4492 static void ena_update_on_link_change(void *adapter_data, 4493 struct ena_admin_aenq_entry *aenq_e) 4494 { 4495 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4496 struct ena_admin_aenq_link_change_desc *aenq_desc = 4497 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4498 int status = aenq_desc->flags & 4499 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4500 4501 if (status) { 4502 netdev_dbg(adapter->netdev, "%s\n", __func__); 4503 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4504 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4505 netif_carrier_on(adapter->netdev); 4506 } else { 4507 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4508 netif_carrier_off(adapter->netdev); 4509 } 4510 } 4511 4512 static void ena_keep_alive_wd(void *adapter_data, 4513 struct ena_admin_aenq_entry *aenq_e) 4514 { 4515 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4516 struct ena_admin_aenq_keep_alive_desc *desc; 4517 u64 rx_drops; 4518 4519 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4520 adapter->last_keep_alive_jiffies = jiffies; 4521 4522 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4523 4524 u64_stats_update_begin(&adapter->syncp); 4525 adapter->dev_stats.rx_drops = rx_drops; 4526 u64_stats_update_end(&adapter->syncp); 4527 } 4528 4529 static void ena_notification(void *adapter_data, 4530 struct ena_admin_aenq_entry *aenq_e) 4531 { 4532 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4533 struct ena_admin_ena_hw_hints *hints; 4534 4535 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4536 "Invalid group(%x) expected %x\n", 4537 aenq_e->aenq_common_desc.group, 4538 ENA_ADMIN_NOTIFICATION); 4539 4540 switch (aenq_e->aenq_common_desc.syndrom) { 4541 case ENA_ADMIN_UPDATE_HINTS: 4542 hints = (struct ena_admin_ena_hw_hints *) 4543 (&aenq_e->inline_data_w4); 4544 ena_update_hints(adapter, hints); 4545 break; 4546 default: 4547 netif_err(adapter, drv, adapter->netdev, 4548 "Invalid aenq notification link state %d\n", 4549 aenq_e->aenq_common_desc.syndrom); 4550 } 4551 } 4552 4553 /* This handler will called for unknown event group or unimplemented handlers*/ 4554 static void unimplemented_aenq_handler(void *data, 4555 struct ena_admin_aenq_entry *aenq_e) 4556 { 4557 struct ena_adapter *adapter = (struct ena_adapter *)data; 4558 4559 netif_err(adapter, drv, adapter->netdev, 4560 "Unknown event was received or event with unimplemented handler\n"); 4561 } 4562 4563 static struct ena_aenq_handlers aenq_handlers = { 4564 .handlers = { 4565 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4566 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4567 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4568 }, 4569 .unimplemented_handler = unimplemented_aenq_handler 4570 }; 4571 4572 module_init(ena_init); 4573 module_exit(ena_cleanup); 4574