1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #ifdef CONFIG_RFS_ACCEL 9 #include <linux/cpu_rmap.h> 10 #endif /* CONFIG_RFS_ACCEL */ 11 #include <linux/ethtool.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/numa.h> 15 #include <linux/pci.h> 16 #include <linux/utsname.h> 17 #include <linux/version.h> 18 #include <linux/vmalloc.h> 19 #include <net/ip.h> 20 21 #include "ena_netdev.h" 22 #include "ena_pci_id_tbl.h" 23 #include "ena_xdp.h" 24 25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 26 MODULE_DESCRIPTION(DEVICE_NAME); 27 MODULE_LICENSE("GPL"); 28 29 /* Time in jiffies before concluding the transmitter is hung. */ 30 #define TX_TIMEOUT (5 * HZ) 31 32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus()) 33 34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 35 NETIF_MSG_IFDOWN | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 36 37 static struct ena_aenq_handlers aenq_handlers; 38 39 static struct workqueue_struct *ena_wq; 40 41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 42 43 static int ena_rss_init_default(struct ena_adapter *adapter); 44 static void check_for_admin_com_state(struct ena_adapter *adapter); 45 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful); 46 static int ena_restore_device(struct ena_adapter *adapter); 47 48 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 49 { 50 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 51 struct ena_adapter *adapter = netdev_priv(dev); 52 unsigned int time_since_last_napi, threshold; 53 struct ena_ring *tx_ring; 54 int napi_scheduled; 55 56 if (txqueue >= adapter->num_io_queues) { 57 netdev_err(dev, "TX timeout on invalid queue %u\n", txqueue); 58 goto schedule_reset; 59 } 60 61 threshold = jiffies_to_usecs(dev->watchdog_timeo); 62 tx_ring = &adapter->tx_ring[txqueue]; 63 64 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 65 napi_scheduled = !!(tx_ring->napi->state & NAPIF_STATE_SCHED); 66 67 netdev_err(dev, 68 "TX q %d is paused for too long (threshold %u). Time since last napi %u usec. napi scheduled: %d\n", 69 txqueue, 70 threshold, 71 time_since_last_napi, 72 napi_scheduled); 73 74 if (threshold < time_since_last_napi && napi_scheduled) { 75 netdev_err(dev, 76 "napi handler hasn't been called for a long time but is scheduled\n"); 77 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 78 } 79 schedule_reset: 80 /* Change the state of the device to trigger reset 81 * Check that we are not in the middle or a trigger already 82 */ 83 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 84 return; 85 86 ena_reset_device(adapter, reset_reason); 87 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp); 88 } 89 90 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 91 { 92 int i; 93 94 for (i = 0; i < adapter->num_io_queues; i++) 95 adapter->rx_ring[i].mtu = mtu; 96 } 97 98 static int ena_change_mtu(struct net_device *dev, int new_mtu) 99 { 100 struct ena_adapter *adapter = netdev_priv(dev); 101 int ret; 102 103 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 104 if (!ret) { 105 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); 106 update_rx_ring_mtu(adapter, new_mtu); 107 WRITE_ONCE(dev->mtu, new_mtu); 108 } else { 109 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 110 new_mtu); 111 } 112 113 return ret; 114 } 115 116 int ena_xmit_common(struct ena_adapter *adapter, 117 struct ena_ring *ring, 118 struct ena_tx_buffer *tx_info, 119 struct ena_com_tx_ctx *ena_tx_ctx, 120 u16 next_to_use, 121 u32 bytes) 122 { 123 int rc, nb_hw_desc; 124 125 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 126 ena_tx_ctx))) { 127 netif_dbg(adapter, tx_queued, adapter->netdev, 128 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 129 ring->qid); 130 ena_ring_tx_doorbell(ring); 131 } 132 133 /* prepare the packet's descriptors to dma engine */ 134 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 135 &nb_hw_desc); 136 137 /* In case there isn't enough space in the queue for the packet, 138 * we simply drop it. All other failure reasons of 139 * ena_com_prepare_tx() are fatal and therefore require a device reset. 140 */ 141 if (unlikely(rc)) { 142 netif_err(adapter, tx_queued, adapter->netdev, 143 "Failed to prepare tx bufs\n"); 144 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, &ring->syncp); 145 if (rc != -ENOMEM) 146 ena_reset_device(adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE); 147 return rc; 148 } 149 150 u64_stats_update_begin(&ring->syncp); 151 ring->tx_stats.cnt++; 152 ring->tx_stats.bytes += bytes; 153 u64_stats_update_end(&ring->syncp); 154 155 tx_info->tx_descs = nb_hw_desc; 156 tx_info->total_tx_size = bytes; 157 tx_info->last_jiffies = jiffies; 158 tx_info->print_once = 0; 159 160 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 161 ring->ring_size); 162 return 0; 163 } 164 165 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 166 { 167 #ifdef CONFIG_RFS_ACCEL 168 u32 i; 169 int rc; 170 171 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 172 if (!adapter->netdev->rx_cpu_rmap) 173 return -ENOMEM; 174 for (i = 0; i < adapter->num_io_queues; i++) { 175 int irq_idx = ENA_IO_IRQ_IDX(i); 176 177 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 178 pci_irq_vector(adapter->pdev, irq_idx)); 179 if (rc) { 180 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 181 adapter->netdev->rx_cpu_rmap = NULL; 182 return rc; 183 } 184 } 185 #endif /* CONFIG_RFS_ACCEL */ 186 return 0; 187 } 188 189 static void ena_init_io_rings_common(struct ena_adapter *adapter, 190 struct ena_ring *ring, u16 qid) 191 { 192 ring->qid = qid; 193 ring->pdev = adapter->pdev; 194 ring->dev = &adapter->pdev->dev; 195 ring->netdev = adapter->netdev; 196 ring->napi = &adapter->ena_napi[qid].napi; 197 ring->adapter = adapter; 198 ring->ena_dev = adapter->ena_dev; 199 ring->per_napi_packets = 0; 200 ring->cpu = 0; 201 ring->numa_node = 0; 202 ring->no_interrupt_event_cnt = 0; 203 u64_stats_init(&ring->syncp); 204 } 205 206 void ena_init_io_rings(struct ena_adapter *adapter, 207 int first_index, int count) 208 { 209 struct ena_com_dev *ena_dev; 210 struct ena_ring *txr, *rxr; 211 int i; 212 213 ena_dev = adapter->ena_dev; 214 215 for (i = first_index; i < first_index + count; i++) { 216 txr = &adapter->tx_ring[i]; 217 rxr = &adapter->rx_ring[i]; 218 219 /* TX common ring state */ 220 ena_init_io_rings_common(adapter, txr, i); 221 222 /* TX specific ring state */ 223 txr->ring_size = adapter->requested_tx_ring_size; 224 txr->tx_max_header_size = ena_dev->tx_max_header_size; 225 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 226 txr->sgl_size = adapter->max_tx_sgl_size; 227 txr->smoothed_interval = 228 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 229 txr->disable_meta_caching = adapter->disable_meta_caching; 230 spin_lock_init(&txr->xdp_tx_lock); 231 232 /* Don't init RX queues for xdp queues */ 233 if (!ENA_IS_XDP_INDEX(adapter, i)) { 234 /* RX common ring state */ 235 ena_init_io_rings_common(adapter, rxr, i); 236 237 /* RX specific ring state */ 238 rxr->ring_size = adapter->requested_rx_ring_size; 239 rxr->rx_copybreak = adapter->rx_copybreak; 240 rxr->sgl_size = adapter->max_rx_sgl_size; 241 rxr->smoothed_interval = 242 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 243 rxr->empty_rx_queue = 0; 244 rxr->rx_headroom = NET_SKB_PAD; 245 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 246 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues]; 247 } 248 } 249 } 250 251 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 252 * @adapter: network interface device structure 253 * @qid: queue index 254 * 255 * Return 0 on success, negative on failure 256 */ 257 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 258 { 259 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 260 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 261 int size, i, node; 262 263 if (tx_ring->tx_buffer_info) { 264 netif_err(adapter, ifup, 265 adapter->netdev, "tx_buffer_info info is not NULL"); 266 return -EEXIST; 267 } 268 269 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 270 node = cpu_to_node(ena_irq->cpu); 271 272 tx_ring->tx_buffer_info = vzalloc_node(size, node); 273 if (!tx_ring->tx_buffer_info) { 274 tx_ring->tx_buffer_info = vzalloc(size); 275 if (!tx_ring->tx_buffer_info) 276 goto err_tx_buffer_info; 277 } 278 279 size = sizeof(u16) * tx_ring->ring_size; 280 tx_ring->free_ids = vzalloc_node(size, node); 281 if (!tx_ring->free_ids) { 282 tx_ring->free_ids = vzalloc(size); 283 if (!tx_ring->free_ids) 284 goto err_tx_free_ids; 285 } 286 287 size = tx_ring->tx_max_header_size; 288 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 289 if (!tx_ring->push_buf_intermediate_buf) { 290 tx_ring->push_buf_intermediate_buf = vzalloc(size); 291 if (!tx_ring->push_buf_intermediate_buf) 292 goto err_push_buf_intermediate_buf; 293 } 294 295 /* Req id ring for TX out of order completions */ 296 for (i = 0; i < tx_ring->ring_size; i++) 297 tx_ring->free_ids[i] = i; 298 299 /* Reset tx statistics */ 300 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 301 302 tx_ring->next_to_use = 0; 303 tx_ring->next_to_clean = 0; 304 tx_ring->cpu = ena_irq->cpu; 305 tx_ring->numa_node = node; 306 return 0; 307 308 err_push_buf_intermediate_buf: 309 vfree(tx_ring->free_ids); 310 tx_ring->free_ids = NULL; 311 err_tx_free_ids: 312 vfree(tx_ring->tx_buffer_info); 313 tx_ring->tx_buffer_info = NULL; 314 err_tx_buffer_info: 315 return -ENOMEM; 316 } 317 318 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 319 * @adapter: network interface device structure 320 * @qid: queue index 321 * 322 * Free all transmit software resources 323 */ 324 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 325 { 326 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 327 328 vfree(tx_ring->tx_buffer_info); 329 tx_ring->tx_buffer_info = NULL; 330 331 vfree(tx_ring->free_ids); 332 tx_ring->free_ids = NULL; 333 334 vfree(tx_ring->push_buf_intermediate_buf); 335 tx_ring->push_buf_intermediate_buf = NULL; 336 } 337 338 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 339 int first_index, int count) 340 { 341 int i, rc = 0; 342 343 for (i = first_index; i < first_index + count; i++) { 344 rc = ena_setup_tx_resources(adapter, i); 345 if (rc) 346 goto err_setup_tx; 347 } 348 349 return 0; 350 351 err_setup_tx: 352 353 netif_err(adapter, ifup, adapter->netdev, 354 "Tx queue %d: allocation failed\n", i); 355 356 /* rewind the index freeing the rings as we go */ 357 while (first_index < i--) 358 ena_free_tx_resources(adapter, i); 359 return rc; 360 } 361 362 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 363 int first_index, int count) 364 { 365 int i; 366 367 for (i = first_index; i < first_index + count; i++) 368 ena_free_tx_resources(adapter, i); 369 } 370 371 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 372 * @adapter: board private structure 373 * 374 * Free all transmit software resources 375 */ 376 void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 377 { 378 ena_free_all_io_tx_resources_in_range(adapter, 379 0, 380 adapter->xdp_num_queues + 381 adapter->num_io_queues); 382 } 383 384 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 385 * @adapter: network interface device structure 386 * @qid: queue index 387 * 388 * Returns 0 on success, negative on failure 389 */ 390 static int ena_setup_rx_resources(struct ena_adapter *adapter, 391 u32 qid) 392 { 393 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 394 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 395 int size, node, i; 396 397 if (rx_ring->rx_buffer_info) { 398 netif_err(adapter, ifup, adapter->netdev, 399 "rx_buffer_info is not NULL"); 400 return -EEXIST; 401 } 402 403 /* alloc extra element so in rx path 404 * we can always prefetch rx_info + 1 405 */ 406 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 407 node = cpu_to_node(ena_irq->cpu); 408 409 rx_ring->rx_buffer_info = vzalloc_node(size, node); 410 if (!rx_ring->rx_buffer_info) { 411 rx_ring->rx_buffer_info = vzalloc(size); 412 if (!rx_ring->rx_buffer_info) 413 return -ENOMEM; 414 } 415 416 size = sizeof(u16) * rx_ring->ring_size; 417 rx_ring->free_ids = vzalloc_node(size, node); 418 if (!rx_ring->free_ids) { 419 rx_ring->free_ids = vzalloc(size); 420 if (!rx_ring->free_ids) { 421 vfree(rx_ring->rx_buffer_info); 422 rx_ring->rx_buffer_info = NULL; 423 return -ENOMEM; 424 } 425 } 426 427 /* Req id ring for receiving RX pkts out of order */ 428 for (i = 0; i < rx_ring->ring_size; i++) 429 rx_ring->free_ids[i] = i; 430 431 /* Reset rx statistics */ 432 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 433 434 rx_ring->next_to_clean = 0; 435 rx_ring->next_to_use = 0; 436 rx_ring->cpu = ena_irq->cpu; 437 rx_ring->numa_node = node; 438 439 return 0; 440 } 441 442 /* ena_free_rx_resources - Free I/O Rx Resources 443 * @adapter: network interface device structure 444 * @qid: queue index 445 * 446 * Free all receive software resources 447 */ 448 static void ena_free_rx_resources(struct ena_adapter *adapter, 449 u32 qid) 450 { 451 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 452 453 vfree(rx_ring->rx_buffer_info); 454 rx_ring->rx_buffer_info = NULL; 455 456 vfree(rx_ring->free_ids); 457 rx_ring->free_ids = NULL; 458 } 459 460 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 461 * @adapter: board private structure 462 * 463 * Return 0 on success, negative on failure 464 */ 465 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 466 { 467 int i, rc = 0; 468 469 for (i = 0; i < adapter->num_io_queues; i++) { 470 rc = ena_setup_rx_resources(adapter, i); 471 if (rc) 472 goto err_setup_rx; 473 } 474 475 return 0; 476 477 err_setup_rx: 478 479 netif_err(adapter, ifup, adapter->netdev, 480 "Rx queue %d: allocation failed\n", i); 481 482 /* rewind the index freeing the rings as we go */ 483 while (i--) 484 ena_free_rx_resources(adapter, i); 485 return rc; 486 } 487 488 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 489 * @adapter: board private structure 490 * 491 * Free all receive software resources 492 */ 493 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 494 { 495 int i; 496 497 for (i = 0; i < adapter->num_io_queues; i++) 498 ena_free_rx_resources(adapter, i); 499 } 500 501 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring, 502 dma_addr_t *dma) 503 { 504 struct page *page; 505 506 /* This would allocate the page on the same NUMA node the executing code 507 * is running on. 508 */ 509 page = dev_alloc_page(); 510 if (!page) { 511 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, &rx_ring->syncp); 512 return ERR_PTR(-ENOSPC); 513 } 514 515 /* To enable NIC-side port-mirroring, AKA SPAN port, 516 * we make the buffer readable from the nic as well 517 */ 518 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 519 DMA_BIDIRECTIONAL); 520 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) { 521 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1, 522 &rx_ring->syncp); 523 __free_page(page); 524 return ERR_PTR(-EIO); 525 } 526 527 return page; 528 } 529 530 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring, 531 struct ena_rx_buffer *rx_info) 532 { 533 int headroom = rx_ring->rx_headroom; 534 struct ena_com_buf *ena_buf; 535 struct page *page; 536 dma_addr_t dma; 537 int tailroom; 538 539 /* restore page offset value in case it has been changed by device */ 540 rx_info->buf_offset = headroom; 541 542 /* if previous allocated page is not used */ 543 if (unlikely(rx_info->page)) 544 return 0; 545 546 /* We handle DMA here */ 547 page = ena_alloc_map_page(rx_ring, &dma); 548 if (IS_ERR(page)) 549 return PTR_ERR(page); 550 551 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 552 "Allocate page %p, rx_info %p\n", page, rx_info); 553 554 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 555 556 rx_info->page = page; 557 rx_info->dma_addr = dma; 558 rx_info->page_offset = 0; 559 ena_buf = &rx_info->ena_buf; 560 ena_buf->paddr = dma + headroom; 561 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom; 562 563 return 0; 564 } 565 566 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring, 567 struct ena_rx_buffer *rx_info, 568 unsigned long attrs) 569 { 570 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL, 571 attrs); 572 } 573 574 static void ena_free_rx_page(struct ena_ring *rx_ring, 575 struct ena_rx_buffer *rx_info) 576 { 577 struct page *page = rx_info->page; 578 579 if (unlikely(!page)) { 580 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 581 "Trying to free unallocated buffer\n"); 582 return; 583 } 584 585 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0); 586 587 __free_page(page); 588 rx_info->page = NULL; 589 } 590 591 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 592 { 593 u16 next_to_use, req_id; 594 u32 i; 595 int rc; 596 597 next_to_use = rx_ring->next_to_use; 598 599 for (i = 0; i < num; i++) { 600 struct ena_rx_buffer *rx_info; 601 602 req_id = rx_ring->free_ids[next_to_use]; 603 604 rx_info = &rx_ring->rx_buffer_info[req_id]; 605 606 rc = ena_alloc_rx_buffer(rx_ring, rx_info); 607 if (unlikely(rc < 0)) { 608 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 609 "Failed to allocate buffer for rx queue %d\n", 610 rx_ring->qid); 611 break; 612 } 613 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 614 &rx_info->ena_buf, 615 req_id); 616 if (unlikely(rc)) { 617 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 618 "Failed to add buffer for rx queue %d\n", 619 rx_ring->qid); 620 break; 621 } 622 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 623 rx_ring->ring_size); 624 } 625 626 if (unlikely(i < num)) { 627 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1, 628 &rx_ring->syncp); 629 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 630 "Refilled rx qid %d with only %d buffers (from %d)\n", 631 rx_ring->qid, i, num); 632 } 633 634 /* ena_com_write_sq_doorbell issues a wmb() */ 635 if (likely(i)) 636 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 637 638 rx_ring->next_to_use = next_to_use; 639 640 return i; 641 } 642 643 static void ena_free_rx_bufs(struct ena_adapter *adapter, 644 u32 qid) 645 { 646 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 647 u32 i; 648 649 for (i = 0; i < rx_ring->ring_size; i++) { 650 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 651 652 if (rx_info->page) 653 ena_free_rx_page(rx_ring, rx_info); 654 } 655 } 656 657 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 658 * @adapter: board private structure 659 */ 660 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 661 { 662 struct ena_ring *rx_ring; 663 int i, rc, bufs_num; 664 665 for (i = 0; i < adapter->num_io_queues; i++) { 666 rx_ring = &adapter->rx_ring[i]; 667 bufs_num = rx_ring->ring_size - 1; 668 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 669 670 if (unlikely(rc != bufs_num)) 671 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 672 "Refilling Queue %d failed. allocated %d buffers from: %d\n", 673 i, rc, bufs_num); 674 } 675 } 676 677 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 678 { 679 int i; 680 681 for (i = 0; i < adapter->num_io_queues; i++) 682 ena_free_rx_bufs(adapter, i); 683 } 684 685 void ena_unmap_tx_buff(struct ena_ring *tx_ring, 686 struct ena_tx_buffer *tx_info) 687 { 688 struct ena_com_buf *ena_buf; 689 u32 cnt; 690 int i; 691 692 ena_buf = tx_info->bufs; 693 cnt = tx_info->num_of_bufs; 694 695 if (unlikely(!cnt)) 696 return; 697 698 if (tx_info->map_linear_data) { 699 dma_unmap_single(tx_ring->dev, 700 dma_unmap_addr(ena_buf, paddr), 701 dma_unmap_len(ena_buf, len), 702 DMA_TO_DEVICE); 703 ena_buf++; 704 cnt--; 705 } 706 707 /* unmap remaining mapped pages */ 708 for (i = 0; i < cnt; i++) { 709 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 710 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 711 ena_buf++; 712 } 713 } 714 715 /* ena_free_tx_bufs - Free Tx Buffers per Queue 716 * @tx_ring: TX ring for which buffers be freed 717 */ 718 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 719 { 720 bool print_once = true; 721 bool is_xdp_ring; 722 u32 i; 723 724 is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid); 725 726 for (i = 0; i < tx_ring->ring_size; i++) { 727 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 728 729 if (!tx_info->skb) 730 continue; 731 732 if (print_once) { 733 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, 734 "Free uncompleted tx skb qid %d idx 0x%x\n", 735 tx_ring->qid, i); 736 print_once = false; 737 } else { 738 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, 739 "Free uncompleted tx skb qid %d idx 0x%x\n", 740 tx_ring->qid, i); 741 } 742 743 ena_unmap_tx_buff(tx_ring, tx_info); 744 745 if (is_xdp_ring) 746 xdp_return_frame(tx_info->xdpf); 747 else 748 dev_kfree_skb_any(tx_info->skb); 749 } 750 751 if (!is_xdp_ring) 752 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 753 tx_ring->qid)); 754 } 755 756 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 757 { 758 struct ena_ring *tx_ring; 759 int i; 760 761 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 762 tx_ring = &adapter->tx_ring[i]; 763 ena_free_tx_bufs(tx_ring); 764 } 765 } 766 767 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 768 { 769 u16 ena_qid; 770 int i; 771 772 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 773 ena_qid = ENA_IO_TXQ_IDX(i); 774 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 775 } 776 } 777 778 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 779 { 780 u16 ena_qid; 781 int i; 782 783 for (i = 0; i < adapter->num_io_queues; i++) { 784 ena_qid = ENA_IO_RXQ_IDX(i); 785 cancel_work_sync(&adapter->ena_napi[i].dim.work); 786 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 787 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 788 } 789 } 790 791 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 792 { 793 ena_destroy_all_tx_queues(adapter); 794 ena_destroy_all_rx_queues(adapter); 795 } 796 797 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 798 struct ena_tx_buffer *tx_info, bool is_xdp) 799 { 800 if (tx_info) 801 netif_err(ring->adapter, 802 tx_done, 803 ring->netdev, 804 "tx_info doesn't have valid %s. qid %u req_id %u", 805 is_xdp ? "xdp frame" : "skb", ring->qid, req_id); 806 else 807 netif_err(ring->adapter, 808 tx_done, 809 ring->netdev, 810 "Invalid req_id %u in qid %u\n", 811 req_id, ring->qid); 812 813 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp); 814 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 815 816 return -EFAULT; 817 } 818 819 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 820 { 821 struct ena_tx_buffer *tx_info; 822 823 tx_info = &tx_ring->tx_buffer_info[req_id]; 824 if (likely(tx_info->skb)) 825 return 0; 826 827 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 828 } 829 830 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 831 { 832 struct netdev_queue *txq; 833 bool above_thresh; 834 u32 tx_bytes = 0; 835 u32 total_done = 0; 836 u16 next_to_clean; 837 u16 req_id; 838 int tx_pkts = 0; 839 int rc; 840 841 next_to_clean = tx_ring->next_to_clean; 842 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 843 844 while (tx_pkts < budget) { 845 struct ena_tx_buffer *tx_info; 846 struct sk_buff *skb; 847 848 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 849 &req_id); 850 if (rc) { 851 if (unlikely(rc == -EINVAL)) 852 handle_invalid_req_id(tx_ring, req_id, NULL, false); 853 break; 854 } 855 856 /* validate that the request id points to a valid skb */ 857 rc = validate_tx_req_id(tx_ring, req_id); 858 if (rc) 859 break; 860 861 tx_info = &tx_ring->tx_buffer_info[req_id]; 862 skb = tx_info->skb; 863 864 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 865 prefetch(&skb->end); 866 867 tx_info->skb = NULL; 868 tx_info->last_jiffies = 0; 869 870 ena_unmap_tx_buff(tx_ring, tx_info); 871 872 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 873 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 874 skb); 875 876 tx_bytes += tx_info->total_tx_size; 877 dev_kfree_skb(skb); 878 tx_pkts++; 879 total_done += tx_info->tx_descs; 880 881 tx_ring->free_ids[next_to_clean] = req_id; 882 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 883 tx_ring->ring_size); 884 } 885 886 tx_ring->next_to_clean = next_to_clean; 887 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 888 889 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 890 891 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 892 "tx_poll: q %d done. total pkts: %d\n", 893 tx_ring->qid, tx_pkts); 894 895 /* need to make the rings circular update visible to 896 * ena_start_xmit() before checking for netif_queue_stopped(). 897 */ 898 smp_mb(); 899 900 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 901 ENA_TX_WAKEUP_THRESH); 902 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 903 __netif_tx_lock(txq, smp_processor_id()); 904 above_thresh = 905 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 906 ENA_TX_WAKEUP_THRESH); 907 if (netif_tx_queue_stopped(txq) && above_thresh && 908 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 909 netif_tx_wake_queue(txq); 910 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 911 &tx_ring->syncp); 912 } 913 __netif_tx_unlock(txq); 914 } 915 916 return tx_pkts; 917 } 918 919 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len) 920 { 921 struct sk_buff *skb; 922 923 if (!first_frag) 924 skb = napi_alloc_skb(rx_ring->napi, len); 925 else 926 skb = napi_build_skb(first_frag, len); 927 928 if (unlikely(!skb)) { 929 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1, 930 &rx_ring->syncp); 931 932 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 933 "Failed to allocate skb. first_frag %s\n", 934 first_frag ? "provided" : "not provided"); 935 } 936 937 return skb; 938 } 939 940 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len, 941 u16 len, int pkt_offset) 942 { 943 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 944 945 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer 946 * for data + headroom + tailroom. 947 */ 948 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) { 949 page_ref_inc(rx_info->page); 950 rx_info->page_offset += buf_len; 951 ena_buf->paddr += buf_len; 952 ena_buf->len -= buf_len; 953 return true; 954 } 955 956 return false; 957 } 958 959 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 960 struct ena_com_rx_buf_info *ena_bufs, 961 u32 descs, 962 u16 *next_to_clean) 963 { 964 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 965 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring); 966 struct ena_rx_buffer *rx_info; 967 struct ena_adapter *adapter; 968 int page_offset, pkt_offset; 969 dma_addr_t pre_reuse_paddr; 970 u16 len, req_id, buf = 0; 971 bool reuse_rx_buf_page; 972 struct sk_buff *skb; 973 void *buf_addr; 974 int buf_offset; 975 u16 buf_len; 976 977 len = ena_bufs[buf].len; 978 req_id = ena_bufs[buf].req_id; 979 980 rx_info = &rx_ring->rx_buffer_info[req_id]; 981 982 if (unlikely(!rx_info->page)) { 983 adapter = rx_ring->adapter; 984 netif_err(adapter, rx_err, rx_ring->netdev, 985 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id); 986 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp); 987 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 988 return NULL; 989 } 990 991 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 992 "rx_info %p page %p\n", 993 rx_info, rx_info->page); 994 995 buf_offset = rx_info->buf_offset; 996 pkt_offset = buf_offset - rx_ring->rx_headroom; 997 page_offset = rx_info->page_offset; 998 buf_addr = page_address(rx_info->page) + page_offset; 999 1000 if (len <= rx_ring->rx_copybreak) { 1001 skb = ena_alloc_skb(rx_ring, NULL, len); 1002 if (unlikely(!skb)) 1003 return NULL; 1004 1005 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len); 1006 dma_sync_single_for_device(rx_ring->dev, 1007 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1008 len, 1009 DMA_FROM_DEVICE); 1010 1011 skb_put(skb, len); 1012 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1013 "RX allocated small packet. len %d.\n", skb->len); 1014 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1015 rx_ring->free_ids[*next_to_clean] = req_id; 1016 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 1017 rx_ring->ring_size); 1018 return skb; 1019 } 1020 1021 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1022 1023 /* If XDP isn't loaded try to reuse part of the RX buffer */ 1024 reuse_rx_buf_page = !is_xdp_loaded && 1025 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1026 1027 if (!reuse_rx_buf_page) 1028 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1029 1030 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len); 1031 if (unlikely(!skb)) 1032 return NULL; 1033 1034 /* Populate skb's linear part */ 1035 skb_reserve(skb, buf_offset); 1036 skb_put(skb, len); 1037 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1038 1039 do { 1040 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1041 "RX skb updated. len %d. data_len %d\n", 1042 skb->len, skb->data_len); 1043 1044 if (!reuse_rx_buf_page) 1045 rx_info->page = NULL; 1046 1047 rx_ring->free_ids[*next_to_clean] = req_id; 1048 *next_to_clean = 1049 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1050 rx_ring->ring_size); 1051 if (likely(--descs == 0)) 1052 break; 1053 1054 buf++; 1055 len = ena_bufs[buf].len; 1056 req_id = ena_bufs[buf].req_id; 1057 1058 rx_info = &rx_ring->rx_buffer_info[req_id]; 1059 1060 /* rx_info->buf_offset includes rx_ring->rx_headroom */ 1061 buf_offset = rx_info->buf_offset; 1062 pkt_offset = buf_offset - rx_ring->rx_headroom; 1063 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1064 page_offset = rx_info->page_offset; 1065 1066 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr); 1067 1068 reuse_rx_buf_page = !is_xdp_loaded && 1069 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1070 1071 dma_sync_single_for_cpu(rx_ring->dev, 1072 pre_reuse_paddr + pkt_offset, 1073 len, 1074 DMA_FROM_DEVICE); 1075 1076 if (!reuse_rx_buf_page) 1077 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1078 1079 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1080 page_offset + buf_offset, len, buf_len); 1081 1082 } while (1); 1083 1084 return skb; 1085 } 1086 1087 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1088 * @adapter: structure containing adapter specific data 1089 * @ena_rx_ctx: received packet context/metadata 1090 * @skb: skb currently being received and modified 1091 */ 1092 static void ena_rx_checksum(struct ena_ring *rx_ring, 1093 struct ena_com_rx_ctx *ena_rx_ctx, 1094 struct sk_buff *skb) 1095 { 1096 /* Rx csum disabled */ 1097 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1098 skb->ip_summed = CHECKSUM_NONE; 1099 return; 1100 } 1101 1102 /* For fragmented packets the checksum isn't valid */ 1103 if (ena_rx_ctx->frag) { 1104 skb->ip_summed = CHECKSUM_NONE; 1105 return; 1106 } 1107 1108 /* if IP and error */ 1109 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1110 (ena_rx_ctx->l3_csum_err))) { 1111 /* ipv4 checksum error */ 1112 skb->ip_summed = CHECKSUM_NONE; 1113 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1114 &rx_ring->syncp); 1115 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1116 "RX IPv4 header checksum error\n"); 1117 return; 1118 } 1119 1120 /* if TCP/UDP */ 1121 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1122 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1123 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1124 /* TCP/UDP checksum error */ 1125 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1126 &rx_ring->syncp); 1127 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1128 "RX L4 checksum error\n"); 1129 skb->ip_summed = CHECKSUM_NONE; 1130 return; 1131 } 1132 1133 if (likely(ena_rx_ctx->l4_csum_checked)) { 1134 skb->ip_summed = CHECKSUM_UNNECESSARY; 1135 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1, 1136 &rx_ring->syncp); 1137 } else { 1138 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1, 1139 &rx_ring->syncp); 1140 skb->ip_summed = CHECKSUM_NONE; 1141 } 1142 } else { 1143 skb->ip_summed = CHECKSUM_NONE; 1144 return; 1145 } 1146 1147 } 1148 1149 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1150 struct ena_com_rx_ctx *ena_rx_ctx, 1151 struct sk_buff *skb) 1152 { 1153 enum pkt_hash_types hash_type; 1154 1155 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1156 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1157 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1158 1159 hash_type = PKT_HASH_TYPE_L4; 1160 else 1161 hash_type = PKT_HASH_TYPE_NONE; 1162 1163 /* Override hash type if the packet is fragmented */ 1164 if (ena_rx_ctx->frag) 1165 hash_type = PKT_HASH_TYPE_NONE; 1166 1167 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1168 } 1169 } 1170 1171 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs) 1172 { 1173 struct ena_rx_buffer *rx_info; 1174 int ret; 1175 1176 /* XDP multi-buffer packets not supported */ 1177 if (unlikely(num_descs > 1)) { 1178 netdev_err_once(rx_ring->adapter->netdev, 1179 "xdp: dropped unsupported multi-buffer packets\n"); 1180 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp); 1181 return ENA_XDP_DROP; 1182 } 1183 1184 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1185 xdp_prepare_buff(xdp, page_address(rx_info->page), 1186 rx_info->buf_offset, 1187 rx_ring->ena_bufs[0].len, false); 1188 1189 ret = ena_xdp_execute(rx_ring, xdp); 1190 1191 /* The xdp program might expand the headers */ 1192 if (ret == ENA_XDP_PASS) { 1193 rx_info->buf_offset = xdp->data - xdp->data_hard_start; 1194 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1195 } 1196 1197 return ret; 1198 } 1199 1200 /* ena_clean_rx_irq - Cleanup RX irq 1201 * @rx_ring: RX ring to clean 1202 * @napi: napi handler 1203 * @budget: how many packets driver is allowed to clean 1204 * 1205 * Returns the number of cleaned buffers. 1206 */ 1207 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1208 u32 budget) 1209 { 1210 u16 next_to_clean = rx_ring->next_to_clean; 1211 struct ena_com_rx_ctx ena_rx_ctx; 1212 struct ena_rx_buffer *rx_info; 1213 struct ena_adapter *adapter; 1214 u32 res_budget, work_done; 1215 int rx_copybreak_pkt = 0; 1216 int refill_threshold; 1217 struct sk_buff *skb; 1218 int refill_required; 1219 struct xdp_buff xdp; 1220 int xdp_flags = 0; 1221 int total_len = 0; 1222 int xdp_verdict; 1223 u8 pkt_offset; 1224 int rc = 0; 1225 int i; 1226 1227 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1228 "%s qid %d\n", __func__, rx_ring->qid); 1229 res_budget = budget; 1230 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq); 1231 1232 do { 1233 xdp_verdict = ENA_XDP_PASS; 1234 skb = NULL; 1235 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1236 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1237 ena_rx_ctx.descs = 0; 1238 ena_rx_ctx.pkt_offset = 0; 1239 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1240 rx_ring->ena_com_io_sq, 1241 &ena_rx_ctx); 1242 if (unlikely(rc)) 1243 goto error; 1244 1245 if (unlikely(ena_rx_ctx.descs == 0)) 1246 break; 1247 1248 /* First descriptor might have an offset set by the device */ 1249 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1250 pkt_offset = ena_rx_ctx.pkt_offset; 1251 rx_info->buf_offset += pkt_offset; 1252 1253 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1254 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1255 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1256 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1257 1258 dma_sync_single_for_cpu(rx_ring->dev, 1259 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1260 rx_ring->ena_bufs[0].len, 1261 DMA_FROM_DEVICE); 1262 1263 if (ena_xdp_present_ring(rx_ring)) 1264 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs); 1265 1266 /* allocate skb and fill it */ 1267 if (xdp_verdict == ENA_XDP_PASS) 1268 skb = ena_rx_skb(rx_ring, 1269 rx_ring->ena_bufs, 1270 ena_rx_ctx.descs, 1271 &next_to_clean); 1272 1273 if (unlikely(!skb)) { 1274 for (i = 0; i < ena_rx_ctx.descs; i++) { 1275 int req_id = rx_ring->ena_bufs[i].req_id; 1276 1277 rx_ring->free_ids[next_to_clean] = req_id; 1278 next_to_clean = 1279 ENA_RX_RING_IDX_NEXT(next_to_clean, 1280 rx_ring->ring_size); 1281 1282 /* Packets was passed for transmission, unmap it 1283 * from RX side. 1284 */ 1285 if (xdp_verdict & ENA_XDP_FORWARDED) { 1286 ena_unmap_rx_buff_attrs(rx_ring, 1287 &rx_ring->rx_buffer_info[req_id], 1288 DMA_ATTR_SKIP_CPU_SYNC); 1289 rx_ring->rx_buffer_info[req_id].page = NULL; 1290 } 1291 } 1292 if (xdp_verdict != ENA_XDP_PASS) { 1293 xdp_flags |= xdp_verdict; 1294 total_len += ena_rx_ctx.ena_bufs[0].len; 1295 res_budget--; 1296 continue; 1297 } 1298 break; 1299 } 1300 1301 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1302 1303 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1304 1305 skb_record_rx_queue(skb, rx_ring->qid); 1306 1307 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) 1308 rx_copybreak_pkt++; 1309 1310 total_len += skb->len; 1311 1312 napi_gro_receive(napi, skb); 1313 1314 res_budget--; 1315 } while (likely(res_budget)); 1316 1317 work_done = budget - res_budget; 1318 rx_ring->per_napi_packets += work_done; 1319 u64_stats_update_begin(&rx_ring->syncp); 1320 rx_ring->rx_stats.bytes += total_len; 1321 rx_ring->rx_stats.cnt += work_done; 1322 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1323 u64_stats_update_end(&rx_ring->syncp); 1324 1325 rx_ring->next_to_clean = next_to_clean; 1326 1327 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1328 refill_threshold = 1329 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1330 ENA_RX_REFILL_THRESH_PACKET); 1331 1332 /* Optimization, try to batch new rx buffers */ 1333 if (refill_required > refill_threshold) 1334 ena_refill_rx_bufs(rx_ring, refill_required); 1335 1336 if (xdp_flags & ENA_XDP_REDIRECT) 1337 xdp_do_flush(); 1338 1339 return work_done; 1340 1341 error: 1342 if (xdp_flags & ENA_XDP_REDIRECT) 1343 xdp_do_flush(); 1344 1345 adapter = netdev_priv(rx_ring->netdev); 1346 1347 if (rc == -ENOSPC) { 1348 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, &rx_ring->syncp); 1349 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); 1350 } else if (rc == -EFAULT) { 1351 ena_reset_device(adapter, ENA_REGS_RESET_RX_DESCRIPTOR_MALFORMED); 1352 } else { 1353 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, 1354 &rx_ring->syncp); 1355 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1356 } 1357 return 0; 1358 } 1359 1360 static void ena_dim_work(struct work_struct *w) 1361 { 1362 struct dim *dim = container_of(w, struct dim, work); 1363 struct dim_cq_moder cur_moder = 1364 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1365 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1366 1367 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1368 dim->state = DIM_START_MEASURE; 1369 } 1370 1371 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1372 { 1373 struct dim_sample dim_sample; 1374 struct ena_ring *rx_ring = ena_napi->rx_ring; 1375 1376 if (!rx_ring->per_napi_packets) 1377 return; 1378 1379 rx_ring->non_empty_napi_events++; 1380 1381 dim_update_sample(rx_ring->non_empty_napi_events, 1382 rx_ring->rx_stats.cnt, 1383 rx_ring->rx_stats.bytes, 1384 &dim_sample); 1385 1386 net_dim(&ena_napi->dim, &dim_sample); 1387 1388 rx_ring->per_napi_packets = 0; 1389 } 1390 1391 void ena_unmask_interrupt(struct ena_ring *tx_ring, 1392 struct ena_ring *rx_ring) 1393 { 1394 u32 rx_interval = tx_ring->smoothed_interval; 1395 struct ena_eth_io_intr_reg intr_reg; 1396 1397 /* Rx ring can be NULL when for XDP tx queues which don't have an 1398 * accompanying rx_ring pair. 1399 */ 1400 if (rx_ring) 1401 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1402 rx_ring->smoothed_interval : 1403 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1404 1405 /* Update intr register: rx intr delay, 1406 * tx intr delay and interrupt unmask 1407 */ 1408 ena_com_update_intr_reg(&intr_reg, 1409 rx_interval, 1410 tx_ring->smoothed_interval, 1411 true); 1412 1413 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1, 1414 &tx_ring->syncp); 1415 1416 /* It is a shared MSI-X. 1417 * Tx and Rx CQ have pointer to it. 1418 * So we use one of them to reach the intr reg 1419 * The Tx ring is used because the rx_ring is NULL for XDP queues 1420 */ 1421 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1422 } 1423 1424 void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1425 struct ena_ring *rx_ring) 1426 { 1427 int cpu = get_cpu(); 1428 int numa_node; 1429 1430 /* Check only one ring since the 2 rings are running on the same cpu */ 1431 if (likely(tx_ring->cpu == cpu)) 1432 goto out; 1433 1434 tx_ring->cpu = cpu; 1435 if (rx_ring) 1436 rx_ring->cpu = cpu; 1437 1438 numa_node = cpu_to_node(cpu); 1439 1440 if (likely(tx_ring->numa_node == numa_node)) 1441 goto out; 1442 1443 put_cpu(); 1444 1445 if (numa_node != NUMA_NO_NODE) { 1446 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1447 tx_ring->numa_node = numa_node; 1448 if (rx_ring) { 1449 rx_ring->numa_node = numa_node; 1450 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1451 numa_node); 1452 } 1453 } 1454 1455 return; 1456 out: 1457 put_cpu(); 1458 } 1459 1460 static int ena_io_poll(struct napi_struct *napi, int budget) 1461 { 1462 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1463 struct ena_ring *tx_ring, *rx_ring; 1464 int tx_work_done; 1465 int rx_work_done = 0; 1466 int tx_budget; 1467 int napi_comp_call = 0; 1468 int ret; 1469 1470 tx_ring = ena_napi->tx_ring; 1471 rx_ring = ena_napi->rx_ring; 1472 1473 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1474 1475 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1476 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1477 napi_complete_done(napi, 0); 1478 return 0; 1479 } 1480 1481 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1482 /* On netpoll the budget is zero and the handler should only clean the 1483 * tx completions. 1484 */ 1485 if (likely(budget)) 1486 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1487 1488 /* If the device is about to reset or down, avoid unmask 1489 * the interrupt and return 0 so NAPI won't reschedule 1490 */ 1491 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1492 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1493 napi_complete_done(napi, 0); 1494 ret = 0; 1495 1496 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1497 napi_comp_call = 1; 1498 1499 /* Update numa and unmask the interrupt only when schedule 1500 * from the interrupt context (vs from sk_busy_loop) 1501 */ 1502 if (napi_complete_done(napi, rx_work_done) && 1503 READ_ONCE(ena_napi->interrupts_masked)) { 1504 smp_rmb(); /* make sure interrupts_masked is read */ 1505 WRITE_ONCE(ena_napi->interrupts_masked, false); 1506 /* We apply adaptive moderation on Rx path only. 1507 * Tx uses static interrupt moderation. 1508 */ 1509 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1510 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1511 1512 ena_update_ring_numa_node(tx_ring, rx_ring); 1513 ena_unmask_interrupt(tx_ring, rx_ring); 1514 } 1515 1516 ret = rx_work_done; 1517 } else { 1518 ret = budget; 1519 } 1520 1521 u64_stats_update_begin(&tx_ring->syncp); 1522 tx_ring->tx_stats.napi_comp += napi_comp_call; 1523 tx_ring->tx_stats.tx_poll++; 1524 u64_stats_update_end(&tx_ring->syncp); 1525 1526 tx_ring->tx_stats.last_napi_jiffies = jiffies; 1527 1528 return ret; 1529 } 1530 1531 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1532 { 1533 struct ena_adapter *adapter = (struct ena_adapter *)data; 1534 1535 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1536 1537 /* Don't call the aenq handler before probe is done */ 1538 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1539 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1540 1541 return IRQ_HANDLED; 1542 } 1543 1544 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1545 * @irq: interrupt number 1546 * @data: pointer to a network interface private napi device structure 1547 */ 1548 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1549 { 1550 struct ena_napi *ena_napi = data; 1551 1552 /* Used to check HW health */ 1553 WRITE_ONCE(ena_napi->first_interrupt, true); 1554 1555 WRITE_ONCE(ena_napi->interrupts_masked, true); 1556 smp_wmb(); /* write interrupts_masked before calling napi */ 1557 1558 napi_schedule_irqoff(&ena_napi->napi); 1559 1560 return IRQ_HANDLED; 1561 } 1562 1563 /* Reserve a single MSI-X vector for management (admin + aenq). 1564 * plus reserve one vector for each potential io queue. 1565 * the number of potential io queues is the minimum of what the device 1566 * supports and the number of vCPUs. 1567 */ 1568 static int ena_enable_msix(struct ena_adapter *adapter) 1569 { 1570 int msix_vecs, irq_cnt; 1571 1572 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1573 netif_err(adapter, probe, adapter->netdev, 1574 "Error, MSI-X is already enabled\n"); 1575 return -EPERM; 1576 } 1577 1578 /* Reserved the max msix vectors we might need */ 1579 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1580 netif_dbg(adapter, probe, adapter->netdev, 1581 "Trying to enable MSI-X, vectors %d\n", msix_vecs); 1582 1583 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1584 msix_vecs, PCI_IRQ_MSIX); 1585 1586 if (irq_cnt < 0) { 1587 netif_err(adapter, probe, adapter->netdev, 1588 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1589 return -ENOSPC; 1590 } 1591 1592 if (irq_cnt != msix_vecs) { 1593 netif_notice(adapter, probe, adapter->netdev, 1594 "Enable only %d MSI-X (out of %d), reduce the number of queues\n", 1595 irq_cnt, msix_vecs); 1596 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1597 } 1598 1599 if (ena_init_rx_cpu_rmap(adapter)) 1600 netif_warn(adapter, probe, adapter->netdev, 1601 "Failed to map IRQs to CPUs\n"); 1602 1603 adapter->msix_vecs = irq_cnt; 1604 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1605 1606 return 0; 1607 } 1608 1609 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1610 { 1611 u32 cpu; 1612 1613 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1614 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1615 pci_name(adapter->pdev)); 1616 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1617 ena_intr_msix_mgmnt; 1618 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1619 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1620 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1621 cpu = cpumask_first(cpu_online_mask); 1622 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1623 cpumask_set_cpu(cpu, 1624 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1625 } 1626 1627 static void ena_setup_io_intr(struct ena_adapter *adapter) 1628 { 1629 struct net_device *netdev; 1630 int irq_idx, i, cpu; 1631 int io_queue_count; 1632 1633 netdev = adapter->netdev; 1634 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1635 1636 for (i = 0; i < io_queue_count; i++) { 1637 irq_idx = ENA_IO_IRQ_IDX(i); 1638 cpu = i % num_online_cpus(); 1639 1640 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1641 "%s-Tx-Rx-%d", netdev->name, i); 1642 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1643 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1644 adapter->irq_tbl[irq_idx].vector = 1645 pci_irq_vector(adapter->pdev, irq_idx); 1646 adapter->irq_tbl[irq_idx].cpu = cpu; 1647 1648 cpumask_set_cpu(cpu, 1649 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1650 } 1651 } 1652 1653 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1654 { 1655 unsigned long flags = 0; 1656 struct ena_irq *irq; 1657 int rc; 1658 1659 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1660 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1661 irq->data); 1662 if (rc) { 1663 netif_err(adapter, probe, adapter->netdev, 1664 "Failed to request admin irq\n"); 1665 return rc; 1666 } 1667 1668 netif_dbg(adapter, probe, adapter->netdev, 1669 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1670 irq->affinity_hint_mask.bits[0], irq->vector); 1671 1672 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1673 1674 return rc; 1675 } 1676 1677 static int ena_request_io_irq(struct ena_adapter *adapter) 1678 { 1679 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1680 int rc = 0, i, k, irq_idx; 1681 unsigned long flags = 0; 1682 struct ena_irq *irq; 1683 1684 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1685 netif_err(adapter, ifup, adapter->netdev, 1686 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1687 return -EINVAL; 1688 } 1689 1690 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1691 irq = &adapter->irq_tbl[i]; 1692 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1693 irq->data); 1694 if (rc) { 1695 netif_err(adapter, ifup, adapter->netdev, 1696 "Failed to request I/O IRQ. index %d rc %d\n", 1697 i, rc); 1698 goto err; 1699 } 1700 1701 netif_dbg(adapter, ifup, adapter->netdev, 1702 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1703 i, irq->affinity_hint_mask.bits[0], irq->vector); 1704 1705 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1706 } 1707 1708 /* Now that IO IRQs have been successfully allocated map them to the 1709 * corresponding IO NAPI instance. Note that the mgmnt IRQ does not 1710 * have a NAPI, so care must be taken to correctly map IRQs to NAPIs. 1711 */ 1712 for (i = 0; i < io_queue_count; i++) { 1713 irq_idx = ENA_IO_IRQ_IDX(i); 1714 irq = &adapter->irq_tbl[irq_idx]; 1715 netif_napi_set_irq(&adapter->ena_napi[i].napi, irq->vector); 1716 } 1717 1718 return rc; 1719 1720 err: 1721 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1722 irq = &adapter->irq_tbl[k]; 1723 free_irq(irq->vector, irq->data); 1724 } 1725 1726 return rc; 1727 } 1728 1729 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1730 { 1731 struct ena_irq *irq; 1732 1733 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1734 synchronize_irq(irq->vector); 1735 irq_set_affinity_hint(irq->vector, NULL); 1736 free_irq(irq->vector, irq->data); 1737 } 1738 1739 static void ena_free_io_irq(struct ena_adapter *adapter) 1740 { 1741 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1742 struct ena_irq *irq; 1743 int i; 1744 1745 #ifdef CONFIG_RFS_ACCEL 1746 if (adapter->msix_vecs >= 1) { 1747 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 1748 adapter->netdev->rx_cpu_rmap = NULL; 1749 } 1750 #endif /* CONFIG_RFS_ACCEL */ 1751 1752 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1753 irq = &adapter->irq_tbl[i]; 1754 irq_set_affinity_hint(irq->vector, NULL); 1755 free_irq(irq->vector, irq->data); 1756 } 1757 } 1758 1759 static void ena_disable_msix(struct ena_adapter *adapter) 1760 { 1761 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1762 pci_free_irq_vectors(adapter->pdev); 1763 } 1764 1765 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1766 { 1767 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1768 int i; 1769 1770 if (!netif_running(adapter->netdev)) 1771 return; 1772 1773 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 1774 synchronize_irq(adapter->irq_tbl[i].vector); 1775 } 1776 1777 static void ena_del_napi_in_range(struct ena_adapter *adapter, 1778 int first_index, 1779 int count) 1780 { 1781 int i; 1782 1783 for (i = first_index; i < first_index + count; i++) { 1784 netif_napi_del(&adapter->ena_napi[i].napi); 1785 1786 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 1787 adapter->ena_napi[i].rx_ring); 1788 } 1789 } 1790 1791 static void ena_init_napi_in_range(struct ena_adapter *adapter, 1792 int first_index, int count) 1793 { 1794 int (*napi_handler)(struct napi_struct *napi, int budget); 1795 int i; 1796 1797 for (i = first_index; i < first_index + count; i++) { 1798 struct ena_napi *napi = &adapter->ena_napi[i]; 1799 struct ena_ring *rx_ring, *tx_ring; 1800 1801 memset(napi, 0, sizeof(*napi)); 1802 1803 rx_ring = &adapter->rx_ring[i]; 1804 tx_ring = &adapter->tx_ring[i]; 1805 1806 napi_handler = ena_io_poll; 1807 if (ENA_IS_XDP_INDEX(adapter, i)) 1808 napi_handler = ena_xdp_io_poll; 1809 1810 netif_napi_add(adapter->netdev, &napi->napi, napi_handler); 1811 1812 if (!ENA_IS_XDP_INDEX(adapter, i)) 1813 napi->rx_ring = rx_ring; 1814 1815 napi->tx_ring = tx_ring; 1816 napi->qid = i; 1817 } 1818 } 1819 1820 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 1821 int first_index, 1822 int count) 1823 { 1824 struct napi_struct *napi; 1825 int i; 1826 1827 for (i = first_index; i < first_index + count; i++) { 1828 napi = &adapter->ena_napi[i].napi; 1829 if (!ENA_IS_XDP_INDEX(adapter, i)) { 1830 /* This API is supported for non-XDP queues only */ 1831 netif_queue_set_napi(adapter->netdev, i, 1832 NETDEV_QUEUE_TYPE_TX, NULL); 1833 netif_queue_set_napi(adapter->netdev, i, 1834 NETDEV_QUEUE_TYPE_RX, NULL); 1835 } 1836 napi_disable(napi); 1837 } 1838 } 1839 1840 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 1841 int first_index, 1842 int count) 1843 { 1844 struct napi_struct *napi; 1845 int i; 1846 1847 for (i = first_index; i < first_index + count; i++) { 1848 napi = &adapter->ena_napi[i].napi; 1849 napi_enable(napi); 1850 if (!ENA_IS_XDP_INDEX(adapter, i)) { 1851 /* This API is supported for non-XDP queues only */ 1852 netif_queue_set_napi(adapter->netdev, i, 1853 NETDEV_QUEUE_TYPE_RX, napi); 1854 netif_queue_set_napi(adapter->netdev, i, 1855 NETDEV_QUEUE_TYPE_TX, napi); 1856 } 1857 } 1858 } 1859 1860 /* Configure the Rx forwarding */ 1861 static int ena_rss_configure(struct ena_adapter *adapter) 1862 { 1863 struct ena_com_dev *ena_dev = adapter->ena_dev; 1864 int rc; 1865 1866 /* In case the RSS table wasn't initialized by probe */ 1867 if (!ena_dev->rss.tbl_log_size) { 1868 rc = ena_rss_init_default(adapter); 1869 if (rc && (rc != -EOPNOTSUPP)) { 1870 netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc); 1871 return rc; 1872 } 1873 } 1874 1875 /* Set indirect table */ 1876 rc = ena_com_indirect_table_set(ena_dev); 1877 if (unlikely(rc && rc != -EOPNOTSUPP)) 1878 return rc; 1879 1880 /* Configure hash function (if supported) */ 1881 rc = ena_com_set_hash_function(ena_dev); 1882 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1883 return rc; 1884 1885 /* Configure hash inputs (if supported) */ 1886 rc = ena_com_set_hash_ctrl(ena_dev); 1887 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1888 return rc; 1889 1890 return 0; 1891 } 1892 1893 static int ena_up_complete(struct ena_adapter *adapter) 1894 { 1895 int rc; 1896 1897 rc = ena_rss_configure(adapter); 1898 if (rc) 1899 return rc; 1900 1901 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1902 1903 ena_refill_all_rx_bufs(adapter); 1904 1905 /* enable transmits */ 1906 netif_tx_start_all_queues(adapter->netdev); 1907 1908 ena_napi_enable_in_range(adapter, 1909 0, 1910 adapter->xdp_num_queues + adapter->num_io_queues); 1911 1912 return 0; 1913 } 1914 1915 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1916 { 1917 struct ena_com_create_io_ctx ctx; 1918 struct ena_com_dev *ena_dev; 1919 struct ena_ring *tx_ring; 1920 u32 msix_vector; 1921 u16 ena_qid; 1922 int rc; 1923 1924 ena_dev = adapter->ena_dev; 1925 1926 tx_ring = &adapter->tx_ring[qid]; 1927 msix_vector = ENA_IO_IRQ_IDX(qid); 1928 ena_qid = ENA_IO_TXQ_IDX(qid); 1929 1930 memset(&ctx, 0x0, sizeof(ctx)); 1931 1932 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1933 ctx.qid = ena_qid; 1934 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1935 ctx.msix_vector = msix_vector; 1936 ctx.queue_size = tx_ring->ring_size; 1937 ctx.numa_node = tx_ring->numa_node; 1938 1939 rc = ena_com_create_io_queue(ena_dev, &ctx); 1940 if (rc) { 1941 netif_err(adapter, ifup, adapter->netdev, 1942 "Failed to create I/O TX queue num %d rc: %d\n", 1943 qid, rc); 1944 return rc; 1945 } 1946 1947 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1948 &tx_ring->ena_com_io_sq, 1949 &tx_ring->ena_com_io_cq); 1950 if (rc) { 1951 netif_err(adapter, ifup, adapter->netdev, 1952 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1953 qid, rc); 1954 ena_com_destroy_io_queue(ena_dev, ena_qid); 1955 return rc; 1956 } 1957 1958 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1959 return rc; 1960 } 1961 1962 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 1963 int first_index, int count) 1964 { 1965 struct ena_com_dev *ena_dev = adapter->ena_dev; 1966 int rc, i; 1967 1968 for (i = first_index; i < first_index + count; i++) { 1969 rc = ena_create_io_tx_queue(adapter, i); 1970 if (rc) 1971 goto create_err; 1972 } 1973 1974 return 0; 1975 1976 create_err: 1977 while (i-- > first_index) 1978 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1979 1980 return rc; 1981 } 1982 1983 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1984 { 1985 struct ena_com_dev *ena_dev; 1986 struct ena_com_create_io_ctx ctx; 1987 struct ena_ring *rx_ring; 1988 u32 msix_vector; 1989 u16 ena_qid; 1990 int rc; 1991 1992 ena_dev = adapter->ena_dev; 1993 1994 rx_ring = &adapter->rx_ring[qid]; 1995 msix_vector = ENA_IO_IRQ_IDX(qid); 1996 ena_qid = ENA_IO_RXQ_IDX(qid); 1997 1998 memset(&ctx, 0x0, sizeof(ctx)); 1999 2000 ctx.qid = ena_qid; 2001 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 2002 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2003 ctx.msix_vector = msix_vector; 2004 ctx.queue_size = rx_ring->ring_size; 2005 ctx.numa_node = rx_ring->numa_node; 2006 2007 rc = ena_com_create_io_queue(ena_dev, &ctx); 2008 if (rc) { 2009 netif_err(adapter, ifup, adapter->netdev, 2010 "Failed to create I/O RX queue num %d rc: %d\n", 2011 qid, rc); 2012 return rc; 2013 } 2014 2015 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 2016 &rx_ring->ena_com_io_sq, 2017 &rx_ring->ena_com_io_cq); 2018 if (rc) { 2019 netif_err(adapter, ifup, adapter->netdev, 2020 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 2021 qid, rc); 2022 goto err; 2023 } 2024 2025 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 2026 2027 return rc; 2028 err: 2029 ena_com_destroy_io_queue(ena_dev, ena_qid); 2030 return rc; 2031 } 2032 2033 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2034 { 2035 struct ena_com_dev *ena_dev = adapter->ena_dev; 2036 int rc, i; 2037 2038 for (i = 0; i < adapter->num_io_queues; i++) { 2039 rc = ena_create_io_rx_queue(adapter, i); 2040 if (rc) 2041 goto create_err; 2042 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2043 2044 ena_xdp_register_rxq_info(&adapter->rx_ring[i]); 2045 } 2046 2047 return 0; 2048 2049 create_err: 2050 while (i--) { 2051 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 2052 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2053 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2054 } 2055 2056 return rc; 2057 } 2058 2059 static void set_io_rings_size(struct ena_adapter *adapter, 2060 int new_tx_size, 2061 int new_rx_size) 2062 { 2063 int i; 2064 2065 for (i = 0; i < adapter->num_io_queues; i++) { 2066 adapter->tx_ring[i].ring_size = new_tx_size; 2067 adapter->rx_ring[i].ring_size = new_rx_size; 2068 } 2069 } 2070 2071 /* This function allows queue allocation to backoff when the system is 2072 * low on memory. If there is not enough memory to allocate io queues 2073 * the driver will try to allocate smaller queues. 2074 * 2075 * The backoff algorithm is as follows: 2076 * 1. Try to allocate TX and RX and if successful. 2077 * 1.1. return success 2078 * 2079 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2080 * 2081 * 3. If TX or RX is smaller than 256 2082 * 3.1. return failure. 2083 * 4. else 2084 * 4.1. go back to 1. 2085 */ 2086 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2087 { 2088 int rc, cur_rx_ring_size, cur_tx_ring_size; 2089 int new_rx_ring_size, new_tx_ring_size; 2090 2091 /* current queue sizes might be set to smaller than the requested 2092 * ones due to past queue allocation failures. 2093 */ 2094 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2095 adapter->requested_rx_ring_size); 2096 2097 while (1) { 2098 if (ena_xdp_present(adapter)) { 2099 rc = ena_setup_and_create_all_xdp_queues(adapter); 2100 2101 if (rc) 2102 goto err_setup_tx; 2103 } 2104 rc = ena_setup_tx_resources_in_range(adapter, 2105 0, 2106 adapter->num_io_queues); 2107 if (rc) 2108 goto err_setup_tx; 2109 2110 rc = ena_create_io_tx_queues_in_range(adapter, 2111 0, 2112 adapter->num_io_queues); 2113 if (rc) 2114 goto err_create_tx_queues; 2115 2116 rc = ena_setup_all_rx_resources(adapter); 2117 if (rc) 2118 goto err_setup_rx; 2119 2120 rc = ena_create_all_io_rx_queues(adapter); 2121 if (rc) 2122 goto err_create_rx_queues; 2123 2124 return 0; 2125 2126 err_create_rx_queues: 2127 ena_free_all_io_rx_resources(adapter); 2128 err_setup_rx: 2129 ena_destroy_all_tx_queues(adapter); 2130 err_create_tx_queues: 2131 ena_free_all_io_tx_resources(adapter); 2132 err_setup_tx: 2133 if (rc != -ENOMEM) { 2134 netif_err(adapter, ifup, adapter->netdev, 2135 "Queue creation failed with error code %d\n", 2136 rc); 2137 return rc; 2138 } 2139 2140 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2141 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2142 2143 netif_err(adapter, ifup, adapter->netdev, 2144 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2145 cur_tx_ring_size, cur_rx_ring_size); 2146 2147 new_tx_ring_size = cur_tx_ring_size; 2148 new_rx_ring_size = cur_rx_ring_size; 2149 2150 /* Decrease the size of the larger queue, or 2151 * decrease both if they are the same size. 2152 */ 2153 if (cur_rx_ring_size <= cur_tx_ring_size) 2154 new_tx_ring_size = cur_tx_ring_size / 2; 2155 if (cur_rx_ring_size >= cur_tx_ring_size) 2156 new_rx_ring_size = cur_rx_ring_size / 2; 2157 2158 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2159 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2160 netif_err(adapter, ifup, adapter->netdev, 2161 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2162 ENA_MIN_RING_SIZE); 2163 return rc; 2164 } 2165 2166 netif_err(adapter, ifup, adapter->netdev, 2167 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2168 new_tx_ring_size, 2169 new_rx_ring_size); 2170 2171 set_io_rings_size(adapter, new_tx_ring_size, 2172 new_rx_ring_size); 2173 } 2174 } 2175 2176 int ena_up(struct ena_adapter *adapter) 2177 { 2178 int io_queue_count, rc, i; 2179 2180 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 2181 2182 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2183 ena_setup_io_intr(adapter); 2184 2185 /* napi poll functions should be initialized before running 2186 * request_irq(), to handle a rare condition where there is a pending 2187 * interrupt, causing the ISR to fire immediately while the poll 2188 * function wasn't set yet, causing a null dereference 2189 */ 2190 ena_init_napi_in_range(adapter, 0, io_queue_count); 2191 2192 /* Enabling DIM needs to happen before enabling IRQs since DIM 2193 * is run from napi routine 2194 */ 2195 if (ena_com_interrupt_moderation_supported(adapter->ena_dev)) 2196 ena_com_enable_adaptive_moderation(adapter->ena_dev); 2197 2198 rc = ena_request_io_irq(adapter); 2199 if (rc) 2200 goto err_req_irq; 2201 2202 rc = create_queues_with_size_backoff(adapter); 2203 if (rc) 2204 goto err_create_queues_with_backoff; 2205 2206 rc = ena_up_complete(adapter); 2207 if (rc) 2208 goto err_up; 2209 2210 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2211 netif_carrier_on(adapter->netdev); 2212 2213 ena_increase_stat(&adapter->dev_stats.interface_up, 1, 2214 &adapter->syncp); 2215 2216 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2217 2218 /* Enable completion queues interrupt */ 2219 for (i = 0; i < adapter->num_io_queues; i++) 2220 ena_unmask_interrupt(&adapter->tx_ring[i], 2221 &adapter->rx_ring[i]); 2222 2223 /* schedule napi in case we had pending packets 2224 * from the last time we disable napi 2225 */ 2226 for (i = 0; i < io_queue_count; i++) 2227 napi_schedule(&adapter->ena_napi[i].napi); 2228 2229 return rc; 2230 2231 err_up: 2232 ena_destroy_all_tx_queues(adapter); 2233 ena_free_all_io_tx_resources(adapter); 2234 ena_destroy_all_rx_queues(adapter); 2235 ena_free_all_io_rx_resources(adapter); 2236 err_create_queues_with_backoff: 2237 ena_free_io_irq(adapter); 2238 err_req_irq: 2239 ena_del_napi_in_range(adapter, 0, io_queue_count); 2240 2241 return rc; 2242 } 2243 2244 void ena_down(struct ena_adapter *adapter) 2245 { 2246 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2247 2248 netif_dbg(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2249 2250 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2251 2252 ena_increase_stat(&adapter->dev_stats.interface_down, 1, 2253 &adapter->syncp); 2254 2255 netif_carrier_off(adapter->netdev); 2256 netif_tx_disable(adapter->netdev); 2257 2258 /* After this point the napi handler won't enable the tx queue */ 2259 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2260 2261 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2262 int rc; 2263 2264 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2265 if (rc) 2266 netif_err(adapter, ifdown, adapter->netdev, 2267 "Device reset failed\n"); 2268 /* stop submitting admin commands on a device that was reset */ 2269 ena_com_set_admin_running_state(adapter->ena_dev, false); 2270 } 2271 2272 ena_destroy_all_io_queues(adapter); 2273 2274 ena_disable_io_intr_sync(adapter); 2275 ena_free_io_irq(adapter); 2276 ena_del_napi_in_range(adapter, 0, io_queue_count); 2277 2278 ena_free_all_tx_bufs(adapter); 2279 ena_free_all_rx_bufs(adapter); 2280 ena_free_all_io_tx_resources(adapter); 2281 ena_free_all_io_rx_resources(adapter); 2282 } 2283 2284 /* ena_open - Called when a network interface is made active 2285 * @netdev: network interface device structure 2286 * 2287 * Returns 0 on success, negative value on failure 2288 * 2289 * The open entry point is called when a network interface is made 2290 * active by the system (IFF_UP). At this point all resources needed 2291 * for transmit and receive operations are allocated, the interrupt 2292 * handler is registered with the OS, the watchdog timer is started, 2293 * and the stack is notified that the interface is ready. 2294 */ 2295 static int ena_open(struct net_device *netdev) 2296 { 2297 struct ena_adapter *adapter = netdev_priv(netdev); 2298 int rc; 2299 2300 /* Notify the stack of the actual queue counts. */ 2301 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2302 if (rc) { 2303 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2304 return rc; 2305 } 2306 2307 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2308 if (rc) { 2309 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2310 return rc; 2311 } 2312 2313 rc = ena_up(adapter); 2314 if (rc) 2315 return rc; 2316 2317 return rc; 2318 } 2319 2320 /* ena_close - Disables a network interface 2321 * @netdev: network interface device structure 2322 * 2323 * Returns 0, this is not allowed to fail 2324 * 2325 * The close entry point is called when an interface is de-activated 2326 * by the OS. The hardware is still under the drivers control, but 2327 * needs to be disabled. A global MAC reset is issued to stop the 2328 * hardware, and all transmit and receive resources are freed. 2329 */ 2330 static int ena_close(struct net_device *netdev) 2331 { 2332 struct ena_adapter *adapter = netdev_priv(netdev); 2333 2334 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2335 2336 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2337 return 0; 2338 2339 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2340 ena_down(adapter); 2341 2342 /* Check for device status and issue reset if needed*/ 2343 check_for_admin_com_state(adapter); 2344 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2345 netif_err(adapter, ifdown, adapter->netdev, 2346 "Destroy failure, restarting device\n"); 2347 ena_dump_stats_to_dmesg(adapter); 2348 /* rtnl lock already obtained in dev_ioctl() layer */ 2349 ena_destroy_device(adapter, false); 2350 ena_restore_device(adapter); 2351 } 2352 2353 return 0; 2354 } 2355 2356 int ena_update_queue_params(struct ena_adapter *adapter, 2357 u32 new_tx_size, 2358 u32 new_rx_size, 2359 u32 new_llq_header_len) 2360 { 2361 bool dev_was_up, large_llq_changed = false; 2362 int rc = 0; 2363 2364 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2365 ena_close(adapter->netdev); 2366 adapter->requested_tx_ring_size = new_tx_size; 2367 adapter->requested_rx_ring_size = new_rx_size; 2368 ena_init_io_rings(adapter, 2369 0, 2370 adapter->xdp_num_queues + 2371 adapter->num_io_queues); 2372 2373 large_llq_changed = adapter->ena_dev->tx_mem_queue_type == 2374 ENA_ADMIN_PLACEMENT_POLICY_DEV; 2375 large_llq_changed &= 2376 new_llq_header_len != adapter->ena_dev->tx_max_header_size; 2377 2378 /* a check that the configuration is valid is done by caller */ 2379 if (large_llq_changed) { 2380 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled; 2381 2382 ena_destroy_device(adapter, false); 2383 rc = ena_restore_device(adapter); 2384 } 2385 2386 return dev_was_up && !rc ? ena_up(adapter) : rc; 2387 } 2388 2389 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak) 2390 { 2391 struct ena_ring *rx_ring; 2392 int i; 2393 2394 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE)) 2395 return -EINVAL; 2396 2397 adapter->rx_copybreak = rx_copybreak; 2398 2399 for (i = 0; i < adapter->num_io_queues; i++) { 2400 rx_ring = &adapter->rx_ring[i]; 2401 rx_ring->rx_copybreak = rx_copybreak; 2402 } 2403 2404 return 0; 2405 } 2406 2407 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2408 { 2409 struct ena_com_dev *ena_dev = adapter->ena_dev; 2410 int prev_channel_count; 2411 bool dev_was_up; 2412 2413 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2414 ena_close(adapter->netdev); 2415 prev_channel_count = adapter->num_io_queues; 2416 adapter->num_io_queues = new_channel_count; 2417 if (ena_xdp_present(adapter) && 2418 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2419 adapter->xdp_first_ring = new_channel_count; 2420 adapter->xdp_num_queues = new_channel_count; 2421 if (prev_channel_count > new_channel_count) 2422 ena_xdp_exchange_program_rx_in_range(adapter, 2423 NULL, 2424 new_channel_count, 2425 prev_channel_count); 2426 else 2427 ena_xdp_exchange_program_rx_in_range(adapter, 2428 adapter->xdp_bpf_prog, 2429 prev_channel_count, 2430 new_channel_count); 2431 } 2432 2433 /* We need to destroy the rss table so that the indirection 2434 * table will be reinitialized by ena_up() 2435 */ 2436 ena_com_rss_destroy(ena_dev); 2437 ena_init_io_rings(adapter, 2438 0, 2439 adapter->xdp_num_queues + 2440 adapter->num_io_queues); 2441 return dev_was_up ? ena_open(adapter->netdev) : 0; 2442 } 2443 2444 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2445 struct sk_buff *skb, 2446 bool disable_meta_caching) 2447 { 2448 u32 mss = skb_shinfo(skb)->gso_size; 2449 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2450 u8 l4_protocol = 0; 2451 2452 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2453 ena_tx_ctx->l4_csum_enable = 1; 2454 if (mss) { 2455 ena_tx_ctx->tso_enable = 1; 2456 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2457 ena_tx_ctx->l4_csum_partial = 0; 2458 } else { 2459 ena_tx_ctx->tso_enable = 0; 2460 ena_meta->l4_hdr_len = 0; 2461 ena_tx_ctx->l4_csum_partial = 1; 2462 } 2463 2464 switch (ip_hdr(skb)->version) { 2465 case IPVERSION: 2466 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2467 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2468 ena_tx_ctx->df = 1; 2469 if (mss) 2470 ena_tx_ctx->l3_csum_enable = 1; 2471 l4_protocol = ip_hdr(skb)->protocol; 2472 break; 2473 case 6: 2474 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2475 l4_protocol = ipv6_hdr(skb)->nexthdr; 2476 break; 2477 default: 2478 break; 2479 } 2480 2481 if (l4_protocol == IPPROTO_TCP) 2482 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2483 else 2484 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2485 2486 ena_meta->mss = mss; 2487 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2488 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2489 ena_tx_ctx->meta_valid = 1; 2490 } else if (disable_meta_caching) { 2491 memset(ena_meta, 0, sizeof(*ena_meta)); 2492 ena_tx_ctx->meta_valid = 1; 2493 } else { 2494 ena_tx_ctx->meta_valid = 0; 2495 } 2496 } 2497 2498 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2499 struct sk_buff *skb) 2500 { 2501 int num_frags, header_len, rc; 2502 2503 num_frags = skb_shinfo(skb)->nr_frags; 2504 header_len = skb_headlen(skb); 2505 2506 if (num_frags < tx_ring->sgl_size) 2507 return 0; 2508 2509 if ((num_frags == tx_ring->sgl_size) && 2510 (header_len < tx_ring->tx_max_header_size)) 2511 return 0; 2512 2513 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp); 2514 2515 rc = skb_linearize(skb); 2516 if (unlikely(rc)) { 2517 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1, 2518 &tx_ring->syncp); 2519 } 2520 2521 return rc; 2522 } 2523 2524 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2525 struct ena_tx_buffer *tx_info, 2526 struct sk_buff *skb, 2527 void **push_hdr, 2528 u16 *header_len) 2529 { 2530 struct ena_adapter *adapter = tx_ring->adapter; 2531 struct ena_com_buf *ena_buf; 2532 dma_addr_t dma; 2533 u32 skb_head_len, frag_len, last_frag; 2534 u16 push_len = 0; 2535 u16 delta = 0; 2536 int i = 0; 2537 2538 skb_head_len = skb_headlen(skb); 2539 tx_info->skb = skb; 2540 ena_buf = tx_info->bufs; 2541 2542 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2543 /* When the device is LLQ mode, the driver will copy 2544 * the header into the device memory space. 2545 * the ena_com layer assume the header is in a linear 2546 * memory space. 2547 * This assumption might be wrong since part of the header 2548 * can be in the fragmented buffers. 2549 * Use skb_header_pointer to make sure the header is in a 2550 * linear memory space. 2551 */ 2552 2553 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2554 *push_hdr = skb_header_pointer(skb, 0, push_len, 2555 tx_ring->push_buf_intermediate_buf); 2556 *header_len = push_len; 2557 if (unlikely(skb->data != *push_hdr)) { 2558 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1, 2559 &tx_ring->syncp); 2560 2561 delta = push_len - skb_head_len; 2562 } 2563 } else { 2564 *push_hdr = NULL; 2565 *header_len = min_t(u32, skb_head_len, 2566 tx_ring->tx_max_header_size); 2567 } 2568 2569 netif_dbg(adapter, tx_queued, adapter->netdev, 2570 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2571 *push_hdr, push_len); 2572 2573 if (skb_head_len > push_len) { 2574 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2575 skb_head_len - push_len, DMA_TO_DEVICE); 2576 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2577 goto error_report_dma_error; 2578 2579 ena_buf->paddr = dma; 2580 ena_buf->len = skb_head_len - push_len; 2581 2582 ena_buf++; 2583 tx_info->num_of_bufs++; 2584 tx_info->map_linear_data = 1; 2585 } else { 2586 tx_info->map_linear_data = 0; 2587 } 2588 2589 last_frag = skb_shinfo(skb)->nr_frags; 2590 2591 for (i = 0; i < last_frag; i++) { 2592 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2593 2594 frag_len = skb_frag_size(frag); 2595 2596 if (unlikely(delta >= frag_len)) { 2597 delta -= frag_len; 2598 continue; 2599 } 2600 2601 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2602 frag_len - delta, DMA_TO_DEVICE); 2603 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2604 goto error_report_dma_error; 2605 2606 ena_buf->paddr = dma; 2607 ena_buf->len = frag_len - delta; 2608 ena_buf++; 2609 tx_info->num_of_bufs++; 2610 delta = 0; 2611 } 2612 2613 return 0; 2614 2615 error_report_dma_error: 2616 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1, 2617 &tx_ring->syncp); 2618 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); 2619 2620 tx_info->skb = NULL; 2621 2622 tx_info->num_of_bufs += i; 2623 ena_unmap_tx_buff(tx_ring, tx_info); 2624 2625 return -EINVAL; 2626 } 2627 2628 /* Called with netif_tx_lock. */ 2629 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2630 { 2631 struct ena_adapter *adapter = netdev_priv(dev); 2632 struct ena_tx_buffer *tx_info; 2633 struct ena_com_tx_ctx ena_tx_ctx; 2634 struct ena_ring *tx_ring; 2635 struct netdev_queue *txq; 2636 void *push_hdr; 2637 u16 next_to_use, req_id, header_len; 2638 int qid, rc; 2639 2640 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2641 /* Determine which tx ring we will be placed on */ 2642 qid = skb_get_queue_mapping(skb); 2643 tx_ring = &adapter->tx_ring[qid]; 2644 txq = netdev_get_tx_queue(dev, qid); 2645 2646 rc = ena_check_and_linearize_skb(tx_ring, skb); 2647 if (unlikely(rc)) 2648 goto error_drop_packet; 2649 2650 next_to_use = tx_ring->next_to_use; 2651 req_id = tx_ring->free_ids[next_to_use]; 2652 tx_info = &tx_ring->tx_buffer_info[req_id]; 2653 tx_info->num_of_bufs = 0; 2654 2655 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2656 2657 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2658 if (unlikely(rc)) 2659 goto error_drop_packet; 2660 2661 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2662 ena_tx_ctx.ena_bufs = tx_info->bufs; 2663 ena_tx_ctx.push_header = push_hdr; 2664 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2665 ena_tx_ctx.req_id = req_id; 2666 ena_tx_ctx.header_len = header_len; 2667 2668 /* set flags and meta data */ 2669 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 2670 2671 rc = ena_xmit_common(adapter, 2672 tx_ring, 2673 tx_info, 2674 &ena_tx_ctx, 2675 next_to_use, 2676 skb->len); 2677 if (rc) 2678 goto error_unmap_dma; 2679 2680 netdev_tx_sent_queue(txq, skb->len); 2681 2682 /* stop the queue when no more space available, the packet can have up 2683 * to sgl_size + 2. one for the meta descriptor and one for header 2684 * (if the header is larger than tx_max_header_size). 2685 */ 2686 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2687 tx_ring->sgl_size + 2))) { 2688 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2689 __func__, qid); 2690 2691 netif_tx_stop_queue(txq); 2692 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1, 2693 &tx_ring->syncp); 2694 2695 /* There is a rare condition where this function decide to 2696 * stop the queue but meanwhile clean_tx_irq updates 2697 * next_to_completion and terminates. 2698 * The queue will remain stopped forever. 2699 * To solve this issue add a mb() to make sure that 2700 * netif_tx_stop_queue() write is vissible before checking if 2701 * there is additional space in the queue. 2702 */ 2703 smp_mb(); 2704 2705 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2706 ENA_TX_WAKEUP_THRESH)) { 2707 netif_tx_wake_queue(txq); 2708 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 2709 &tx_ring->syncp); 2710 } 2711 } 2712 2713 skb_tx_timestamp(skb); 2714 2715 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) 2716 /* trigger the dma engine. ena_ring_tx_doorbell() 2717 * calls a memory barrier inside it. 2718 */ 2719 ena_ring_tx_doorbell(tx_ring); 2720 2721 return NETDEV_TX_OK; 2722 2723 error_unmap_dma: 2724 ena_unmap_tx_buff(tx_ring, tx_info); 2725 tx_info->skb = NULL; 2726 2727 error_drop_packet: 2728 dev_kfree_skb(skb); 2729 return NETDEV_TX_OK; 2730 } 2731 2732 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 2733 { 2734 struct device *dev = &pdev->dev; 2735 struct ena_admin_host_info *host_info; 2736 ssize_t ret; 2737 int rc; 2738 2739 /* Allocate only the host info */ 2740 rc = ena_com_allocate_host_info(ena_dev); 2741 if (rc) { 2742 dev_err(dev, "Cannot allocate host info\n"); 2743 return; 2744 } 2745 2746 host_info = ena_dev->host_attr.host_info; 2747 2748 host_info->bdf = pci_dev_id(pdev); 2749 host_info->os_type = ENA_ADMIN_OS_LINUX; 2750 host_info->kernel_ver = LINUX_VERSION_CODE; 2751 ret = strscpy(host_info->kernel_ver_str, utsname()->version, 2752 sizeof(host_info->kernel_ver_str)); 2753 if (ret < 0) 2754 dev_dbg(dev, 2755 "kernel version string will be truncated, status = %zd\n", ret); 2756 2757 host_info->os_dist = 0; 2758 ret = strscpy(host_info->os_dist_str, utsname()->release, 2759 sizeof(host_info->os_dist_str)); 2760 if (ret < 0) 2761 dev_dbg(dev, 2762 "OS distribution string will be truncated, status = %zd\n", ret); 2763 2764 host_info->driver_version = 2765 (DRV_MODULE_GEN_MAJOR) | 2766 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2767 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2768 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2769 host_info->num_cpus = num_online_cpus(); 2770 2771 host_info->driver_supported_features = 2772 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 2773 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 2774 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 2775 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK | 2776 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK; 2777 2778 rc = ena_com_set_host_attributes(ena_dev); 2779 if (rc) { 2780 if (rc == -EOPNOTSUPP) 2781 dev_warn(dev, "Cannot set host attributes\n"); 2782 else 2783 dev_err(dev, "Cannot set host attributes\n"); 2784 2785 goto err; 2786 } 2787 2788 return; 2789 2790 err: 2791 ena_com_delete_host_info(ena_dev); 2792 } 2793 2794 static void ena_config_debug_area(struct ena_adapter *adapter) 2795 { 2796 u32 debug_area_size; 2797 int rc, ss_count; 2798 2799 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2800 if (ss_count <= 0) { 2801 netif_err(adapter, drv, adapter->netdev, 2802 "SS count is negative\n"); 2803 return; 2804 } 2805 2806 /* allocate 32 bytes for each string and 64bit for the value */ 2807 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2808 2809 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2810 if (rc) { 2811 netif_err(adapter, drv, adapter->netdev, 2812 "Cannot allocate debug area\n"); 2813 return; 2814 } 2815 2816 rc = ena_com_set_host_attributes(adapter->ena_dev); 2817 if (rc) { 2818 if (rc == -EOPNOTSUPP) 2819 netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n"); 2820 else 2821 netif_err(adapter, drv, adapter->netdev, 2822 "Cannot set host attributes\n"); 2823 goto err; 2824 } 2825 2826 return; 2827 err: 2828 ena_com_delete_debug_area(adapter->ena_dev); 2829 } 2830 2831 static void ena_get_stats64(struct net_device *netdev, 2832 struct rtnl_link_stats64 *stats) 2833 { 2834 struct ena_adapter *adapter = netdev_priv(netdev); 2835 struct ena_ring *rx_ring, *tx_ring; 2836 u64 total_xdp_rx_drops = 0; 2837 unsigned int start; 2838 u64 rx_drops; 2839 u64 tx_drops; 2840 int i; 2841 2842 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2843 return; 2844 2845 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 2846 u64 bytes, packets, xdp_rx_drops; 2847 2848 tx_ring = &adapter->tx_ring[i]; 2849 2850 do { 2851 start = u64_stats_fetch_begin(&tx_ring->syncp); 2852 packets = tx_ring->tx_stats.cnt; 2853 bytes = tx_ring->tx_stats.bytes; 2854 } while (u64_stats_fetch_retry(&tx_ring->syncp, start)); 2855 2856 stats->tx_packets += packets; 2857 stats->tx_bytes += bytes; 2858 2859 /* In XDP there isn't an RX queue counterpart */ 2860 if (ENA_IS_XDP_INDEX(adapter, i)) 2861 continue; 2862 2863 rx_ring = &adapter->rx_ring[i]; 2864 2865 do { 2866 start = u64_stats_fetch_begin(&rx_ring->syncp); 2867 packets = rx_ring->rx_stats.cnt; 2868 bytes = rx_ring->rx_stats.bytes; 2869 xdp_rx_drops = rx_ring->rx_stats.xdp_drop; 2870 } while (u64_stats_fetch_retry(&rx_ring->syncp, start)); 2871 2872 stats->rx_packets += packets; 2873 stats->rx_bytes += bytes; 2874 total_xdp_rx_drops += xdp_rx_drops; 2875 } 2876 2877 do { 2878 start = u64_stats_fetch_begin(&adapter->syncp); 2879 rx_drops = adapter->dev_stats.rx_drops; 2880 tx_drops = adapter->dev_stats.tx_drops; 2881 } while (u64_stats_fetch_retry(&adapter->syncp, start)); 2882 2883 stats->rx_dropped = rx_drops + total_xdp_rx_drops; 2884 stats->tx_dropped = tx_drops; 2885 2886 stats->multicast = 0; 2887 stats->collisions = 0; 2888 2889 stats->rx_length_errors = 0; 2890 stats->rx_crc_errors = 0; 2891 stats->rx_frame_errors = 0; 2892 stats->rx_fifo_errors = 0; 2893 stats->rx_missed_errors = 0; 2894 stats->tx_window_errors = 0; 2895 2896 stats->rx_errors = 0; 2897 stats->tx_errors = 0; 2898 } 2899 2900 static const struct net_device_ops ena_netdev_ops = { 2901 .ndo_open = ena_open, 2902 .ndo_stop = ena_close, 2903 .ndo_start_xmit = ena_start_xmit, 2904 .ndo_get_stats64 = ena_get_stats64, 2905 .ndo_tx_timeout = ena_tx_timeout, 2906 .ndo_change_mtu = ena_change_mtu, 2907 .ndo_validate_addr = eth_validate_addr, 2908 .ndo_bpf = ena_xdp, 2909 .ndo_xdp_xmit = ena_xdp_xmit, 2910 }; 2911 2912 static int ena_calc_io_queue_size(struct ena_adapter *adapter, 2913 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2914 { 2915 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq; 2916 struct ena_com_dev *ena_dev = adapter->ena_dev; 2917 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 2918 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 2919 u32 max_tx_queue_size; 2920 u32 max_rx_queue_size; 2921 2922 /* If this function is called after driver load, the ring sizes have already 2923 * been configured. Take it into account when recalculating ring size. 2924 */ 2925 if (adapter->tx_ring->ring_size) 2926 tx_queue_size = adapter->tx_ring->ring_size; 2927 2928 if (adapter->rx_ring->ring_size) 2929 rx_queue_size = adapter->rx_ring->ring_size; 2930 2931 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 2932 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 2933 &get_feat_ctx->max_queue_ext.max_queue_ext; 2934 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 2935 max_queue_ext->max_rx_sq_depth); 2936 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 2937 2938 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2939 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2940 llq->max_llq_depth); 2941 else 2942 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2943 max_queue_ext->max_tx_sq_depth); 2944 2945 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2946 max_queue_ext->max_per_packet_tx_descs); 2947 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2948 max_queue_ext->max_per_packet_rx_descs); 2949 } else { 2950 struct ena_admin_queue_feature_desc *max_queues = 2951 &get_feat_ctx->max_queues; 2952 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 2953 max_queues->max_sq_depth); 2954 max_tx_queue_size = max_queues->max_cq_depth; 2955 2956 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2957 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2958 llq->max_llq_depth); 2959 else 2960 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2961 max_queues->max_sq_depth); 2962 2963 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2964 max_queues->max_packet_tx_descs); 2965 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2966 max_queues->max_packet_rx_descs); 2967 } 2968 2969 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 2970 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 2971 2972 if (max_tx_queue_size < ENA_MIN_RING_SIZE) { 2973 netdev_err(adapter->netdev, "Device max TX queue size: %d < minimum: %d\n", 2974 max_tx_queue_size, ENA_MIN_RING_SIZE); 2975 return -EINVAL; 2976 } 2977 2978 if (max_rx_queue_size < ENA_MIN_RING_SIZE) { 2979 netdev_err(adapter->netdev, "Device max RX queue size: %d < minimum: %d\n", 2980 max_rx_queue_size, ENA_MIN_RING_SIZE); 2981 return -EINVAL; 2982 } 2983 2984 /* When forcing large headers, we multiply the entry size by 2, and therefore divide 2985 * the queue size by 2, leaving the amount of memory used by the queues unchanged. 2986 */ 2987 if (adapter->large_llq_header_enabled) { 2988 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 2989 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2990 max_tx_queue_size /= 2; 2991 dev_info(&adapter->pdev->dev, 2992 "Forcing large headers and decreasing maximum TX queue size to %d\n", 2993 max_tx_queue_size); 2994 } else { 2995 dev_err(&adapter->pdev->dev, 2996 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 2997 2998 adapter->large_llq_header_enabled = false; 2999 } 3000 } 3001 3002 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 3003 max_tx_queue_size); 3004 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 3005 max_rx_queue_size); 3006 3007 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 3008 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 3009 3010 adapter->max_tx_ring_size = max_tx_queue_size; 3011 adapter->max_rx_ring_size = max_rx_queue_size; 3012 adapter->requested_tx_ring_size = tx_queue_size; 3013 adapter->requested_rx_ring_size = rx_queue_size; 3014 3015 return 0; 3016 } 3017 3018 static int ena_device_validate_params(struct ena_adapter *adapter, 3019 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3020 { 3021 struct net_device *netdev = adapter->netdev; 3022 int rc; 3023 3024 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 3025 adapter->mac_addr); 3026 if (!rc) { 3027 netif_err(adapter, drv, netdev, 3028 "Error, mac address are different\n"); 3029 return -EINVAL; 3030 } 3031 3032 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 3033 netif_err(adapter, drv, netdev, 3034 "Error, device max mtu is smaller than netdev MTU\n"); 3035 return -EINVAL; 3036 } 3037 3038 return 0; 3039 } 3040 3041 static void set_default_llq_configurations(struct ena_adapter *adapter, 3042 struct ena_llq_configurations *llq_config, 3043 struct ena_admin_feature_llq_desc *llq) 3044 { 3045 struct ena_com_dev *ena_dev = adapter->ena_dev; 3046 3047 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3048 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3049 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3050 3051 adapter->large_llq_header_supported = 3052 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ)); 3053 adapter->large_llq_header_supported &= 3054 !!(llq->entry_size_ctrl_supported & 3055 ENA_ADMIN_LIST_ENTRY_SIZE_256B); 3056 3057 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 3058 adapter->large_llq_header_enabled) { 3059 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; 3060 llq_config->llq_ring_entry_size_value = 256; 3061 } else { 3062 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3063 llq_config->llq_ring_entry_size_value = 128; 3064 } 3065 } 3066 3067 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3068 struct ena_com_dev *ena_dev, 3069 struct ena_admin_feature_llq_desc *llq, 3070 struct ena_llq_configurations *llq_default_configurations) 3071 { 3072 int rc; 3073 u32 llq_feature_mask; 3074 3075 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3076 if (!(ena_dev->supported_features & llq_feature_mask)) { 3077 dev_warn(&pdev->dev, 3078 "LLQ is not supported Fallback to host mode policy.\n"); 3079 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3080 return 0; 3081 } 3082 3083 if (!ena_dev->mem_bar) { 3084 netdev_err(ena_dev->net_device, 3085 "LLQ is advertised as supported but device doesn't expose mem bar\n"); 3086 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3087 return 0; 3088 } 3089 3090 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3091 if (unlikely(rc)) { 3092 dev_err(&pdev->dev, 3093 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3094 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3095 } 3096 3097 return 0; 3098 } 3099 3100 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3101 int bars) 3102 { 3103 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3104 3105 if (!has_mem_bar) 3106 return 0; 3107 3108 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3109 pci_resource_start(pdev, ENA_MEM_BAR), 3110 pci_resource_len(pdev, ENA_MEM_BAR)); 3111 3112 if (!ena_dev->mem_bar) 3113 return -EFAULT; 3114 3115 return 0; 3116 } 3117 3118 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev, 3119 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3120 bool *wd_state) 3121 { 3122 struct ena_com_dev *ena_dev = adapter->ena_dev; 3123 struct net_device *netdev = adapter->netdev; 3124 struct ena_llq_configurations llq_config; 3125 struct device *dev = &pdev->dev; 3126 bool readless_supported; 3127 u32 aenq_groups; 3128 int dma_width; 3129 int rc; 3130 3131 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3132 if (rc) { 3133 dev_err(dev, "Failed to init mmio read less\n"); 3134 return rc; 3135 } 3136 3137 /* The PCIe configuration space revision id indicate if mmio reg 3138 * read is disabled 3139 */ 3140 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3141 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3142 3143 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3144 if (rc) { 3145 dev_err(dev, "Can not reset device\n"); 3146 goto err_mmio_read_less; 3147 } 3148 3149 rc = ena_com_validate_version(ena_dev); 3150 if (rc) { 3151 dev_err(dev, "Device version is too low\n"); 3152 goto err_mmio_read_less; 3153 } 3154 3155 dma_width = ena_com_get_dma_width(ena_dev); 3156 if (dma_width < 0) { 3157 dev_err(dev, "Invalid dma width value %d", dma_width); 3158 rc = dma_width; 3159 goto err_mmio_read_less; 3160 } 3161 3162 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); 3163 if (rc) { 3164 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); 3165 goto err_mmio_read_less; 3166 } 3167 3168 /* ENA admin level init */ 3169 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3170 if (rc) { 3171 dev_err(dev, 3172 "Can not initialize ena admin queue with device\n"); 3173 goto err_mmio_read_less; 3174 } 3175 3176 /* To enable the msix interrupts the driver needs to know the number 3177 * of queues. So the driver uses polling mode to retrieve this 3178 * information 3179 */ 3180 ena_com_set_admin_polling_mode(ena_dev, true); 3181 3182 ena_config_host_info(ena_dev, pdev); 3183 3184 /* Get Device Attributes*/ 3185 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3186 if (rc) { 3187 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3188 goto err_admin_init; 3189 } 3190 3191 /* Try to turn all the available aenq groups */ 3192 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3193 BIT(ENA_ADMIN_FATAL_ERROR) | 3194 BIT(ENA_ADMIN_WARNING) | 3195 BIT(ENA_ADMIN_NOTIFICATION) | 3196 BIT(ENA_ADMIN_KEEP_ALIVE); 3197 3198 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3199 3200 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3201 if (rc) { 3202 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3203 goto err_admin_init; 3204 } 3205 3206 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3207 3208 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq); 3209 3210 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3211 &llq_config); 3212 if (rc) { 3213 netdev_err(netdev, "Cannot set queues placement policy rc= %d\n", rc); 3214 goto err_admin_init; 3215 } 3216 3217 rc = ena_calc_io_queue_size(adapter, get_feat_ctx); 3218 if (unlikely(rc)) 3219 goto err_admin_init; 3220 3221 return 0; 3222 3223 err_admin_init: 3224 ena_com_abort_admin_commands(ena_dev); 3225 ena_com_wait_for_abort_completion(ena_dev); 3226 ena_com_delete_host_info(ena_dev); 3227 ena_com_admin_destroy(ena_dev); 3228 err_mmio_read_less: 3229 ena_com_mmio_reg_read_request_destroy(ena_dev); 3230 3231 return rc; 3232 } 3233 3234 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3235 { 3236 struct ena_com_dev *ena_dev = adapter->ena_dev; 3237 struct device *dev = &adapter->pdev->dev; 3238 int rc; 3239 3240 rc = ena_enable_msix(adapter); 3241 if (rc) { 3242 dev_err(dev, "Can not reserve msix vectors\n"); 3243 return rc; 3244 } 3245 3246 ena_setup_mgmnt_intr(adapter); 3247 3248 rc = ena_request_mgmnt_irq(adapter); 3249 if (rc) { 3250 dev_err(dev, "Can not setup management interrupts\n"); 3251 goto err_disable_msix; 3252 } 3253 3254 ena_com_set_admin_polling_mode(ena_dev, false); 3255 3256 ena_com_admin_aenq_enable(ena_dev); 3257 3258 return 0; 3259 3260 err_disable_msix: 3261 ena_disable_msix(adapter); 3262 3263 return rc; 3264 } 3265 3266 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3267 { 3268 struct net_device *netdev = adapter->netdev; 3269 struct ena_com_dev *ena_dev = adapter->ena_dev; 3270 bool dev_up; 3271 int rc = 0; 3272 3273 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3274 return 0; 3275 3276 netif_carrier_off(netdev); 3277 3278 del_timer_sync(&adapter->timer_service); 3279 3280 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3281 adapter->dev_up_before_reset = dev_up; 3282 if (!graceful) 3283 ena_com_set_admin_running_state(ena_dev, false); 3284 3285 if (dev_up) 3286 ena_down(adapter); 3287 3288 /* Stop the device from sending AENQ events (in case reset flag is set 3289 * and device is up, ena_down() already reset the device. 3290 */ 3291 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3292 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3293 3294 ena_free_mgmnt_irq(adapter); 3295 3296 ena_disable_msix(adapter); 3297 3298 ena_com_abort_admin_commands(ena_dev); 3299 3300 ena_com_wait_for_abort_completion(ena_dev); 3301 3302 ena_com_admin_destroy(ena_dev); 3303 3304 ena_com_mmio_reg_read_request_destroy(ena_dev); 3305 3306 /* return reset reason to default value */ 3307 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3308 3309 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3310 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3311 3312 return rc; 3313 } 3314 3315 static int ena_restore_device(struct ena_adapter *adapter) 3316 { 3317 struct ena_com_dev_get_features_ctx get_feat_ctx; 3318 struct ena_com_dev *ena_dev = adapter->ena_dev; 3319 struct pci_dev *pdev = adapter->pdev; 3320 struct ena_ring *txr; 3321 int rc, count, i; 3322 bool wd_state; 3323 3324 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3325 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state); 3326 if (rc) { 3327 dev_err(&pdev->dev, "Can not initialize device\n"); 3328 goto err; 3329 } 3330 adapter->wd_state = wd_state; 3331 3332 count = adapter->xdp_num_queues + adapter->num_io_queues; 3333 for (i = 0 ; i < count; i++) { 3334 txr = &adapter->tx_ring[i]; 3335 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 3336 txr->tx_max_header_size = ena_dev->tx_max_header_size; 3337 } 3338 3339 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3340 if (rc) { 3341 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3342 goto err_device_destroy; 3343 } 3344 3345 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3346 if (rc) { 3347 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3348 goto err_device_destroy; 3349 } 3350 /* If the interface was up before the reset bring it up */ 3351 if (adapter->dev_up_before_reset) { 3352 rc = ena_up(adapter); 3353 if (rc) { 3354 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3355 goto err_disable_msix; 3356 } 3357 } 3358 3359 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3360 3361 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3362 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3363 netif_carrier_on(adapter->netdev); 3364 3365 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3366 adapter->last_keep_alive_jiffies = jiffies; 3367 3368 return rc; 3369 err_disable_msix: 3370 ena_free_mgmnt_irq(adapter); 3371 ena_disable_msix(adapter); 3372 err_device_destroy: 3373 ena_com_abort_admin_commands(ena_dev); 3374 ena_com_wait_for_abort_completion(ena_dev); 3375 ena_com_admin_destroy(ena_dev); 3376 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3377 ena_com_mmio_reg_read_request_destroy(ena_dev); 3378 err: 3379 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3380 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3381 dev_err(&pdev->dev, 3382 "Reset attempt failed. Can not reset the device\n"); 3383 3384 return rc; 3385 } 3386 3387 static void ena_fw_reset_device(struct work_struct *work) 3388 { 3389 int rc = 0; 3390 3391 struct ena_adapter *adapter = 3392 container_of(work, struct ena_adapter, reset_task); 3393 3394 rtnl_lock(); 3395 3396 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3397 rc |= ena_destroy_device(adapter, false); 3398 rc |= ena_restore_device(adapter); 3399 adapter->dev_stats.reset_fail += !!rc; 3400 3401 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n"); 3402 } 3403 3404 rtnl_unlock(); 3405 } 3406 3407 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3408 struct ena_ring *rx_ring) 3409 { 3410 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi); 3411 3412 if (likely(READ_ONCE(ena_napi->first_interrupt))) 3413 return 0; 3414 3415 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3416 return 0; 3417 3418 rx_ring->no_interrupt_event_cnt++; 3419 3420 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3421 netif_err(adapter, rx_err, adapter->netdev, 3422 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3423 rx_ring->qid); 3424 3425 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3426 return -EIO; 3427 } 3428 3429 return 0; 3430 } 3431 3432 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3433 struct ena_ring *tx_ring) 3434 { 3435 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi); 3436 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_MISS_TX_CMPL; 3437 unsigned int time_since_last_napi; 3438 unsigned int missing_tx_comp_to; 3439 bool is_tx_comp_time_expired; 3440 struct ena_tx_buffer *tx_buf; 3441 unsigned long last_jiffies; 3442 int napi_scheduled; 3443 u32 missed_tx = 0; 3444 int i, rc = 0; 3445 3446 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to); 3447 3448 for (i = 0; i < tx_ring->ring_size; i++) { 3449 tx_buf = &tx_ring->tx_buffer_info[i]; 3450 last_jiffies = tx_buf->last_jiffies; 3451 3452 if (last_jiffies == 0) 3453 /* no pending Tx at this location */ 3454 continue; 3455 3456 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3457 2 * adapter->missing_tx_completion_to); 3458 3459 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) { 3460 /* If after graceful period interrupt is still not 3461 * received, we schedule a reset 3462 */ 3463 netif_err(adapter, tx_err, adapter->netdev, 3464 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3465 tx_ring->qid); 3466 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3467 return -EIO; 3468 } 3469 3470 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3471 adapter->missing_tx_completion_to); 3472 3473 if (unlikely(is_tx_comp_time_expired)) { 3474 time_since_last_napi = 3475 jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 3476 napi_scheduled = !!(ena_napi->napi.state & NAPIF_STATE_SCHED); 3477 3478 if (missing_tx_comp_to < time_since_last_napi && napi_scheduled) { 3479 /* We suspect napi isn't called because the 3480 * bottom half is not run. Require a bigger 3481 * timeout for these cases 3482 */ 3483 if (!time_is_before_jiffies(last_jiffies + 3484 2 * adapter->missing_tx_completion_to)) 3485 continue; 3486 3487 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 3488 } 3489 3490 missed_tx++; 3491 3492 if (tx_buf->print_once) 3493 continue; 3494 3495 netif_notice(adapter, tx_err, adapter->netdev, 3496 "TX hasn't completed, qid %d, index %d. %u usecs from last napi execution, napi scheduled: %d\n", 3497 tx_ring->qid, i, time_since_last_napi, napi_scheduled); 3498 3499 tx_buf->print_once = 1; 3500 } 3501 } 3502 3503 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3504 netif_err(adapter, tx_err, adapter->netdev, 3505 "Lost TX completions are above the threshold (%d > %d). Completion transmission timeout: %u.\n", 3506 missed_tx, 3507 adapter->missing_tx_completion_threshold, 3508 missing_tx_comp_to); 3509 netif_err(adapter, tx_err, adapter->netdev, 3510 "Resetting the device\n"); 3511 3512 ena_reset_device(adapter, reset_reason); 3513 rc = -EIO; 3514 } 3515 3516 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx, 3517 &tx_ring->syncp); 3518 3519 return rc; 3520 } 3521 3522 static void check_for_missing_completions(struct ena_adapter *adapter) 3523 { 3524 struct ena_ring *tx_ring; 3525 struct ena_ring *rx_ring; 3526 int qid, budget, rc; 3527 int io_queue_count; 3528 3529 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3530 3531 /* Make sure the driver doesn't turn the device in other process */ 3532 smp_rmb(); 3533 3534 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3535 return; 3536 3537 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3538 return; 3539 3540 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3541 return; 3542 3543 budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES); 3544 3545 qid = adapter->last_monitored_tx_qid; 3546 3547 while (budget) { 3548 qid = (qid + 1) % io_queue_count; 3549 3550 tx_ring = &adapter->tx_ring[qid]; 3551 rx_ring = &adapter->rx_ring[qid]; 3552 3553 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3554 if (unlikely(rc)) 3555 return; 3556 3557 rc = !ENA_IS_XDP_INDEX(adapter, qid) ? 3558 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3559 if (unlikely(rc)) 3560 return; 3561 3562 budget--; 3563 } 3564 3565 adapter->last_monitored_tx_qid = qid; 3566 } 3567 3568 /* trigger napi schedule after 2 consecutive detections */ 3569 #define EMPTY_RX_REFILL 2 3570 /* For the rare case where the device runs out of Rx descriptors and the 3571 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3572 * for example). 3573 * This case will lead to a deadlock: 3574 * The device won't send interrupts since all the new Rx packets will be dropped 3575 * The napi handler won't allocate new Rx descriptors so the device will be 3576 * able to send new packets. 3577 * 3578 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3579 * It is recommended to have at least 512MB, with a minimum of 128MB for 3580 * constrained environment). 3581 * 3582 * When such a situation is detected - Reschedule napi 3583 */ 3584 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3585 { 3586 struct ena_ring *rx_ring; 3587 int i, refill_required; 3588 3589 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3590 return; 3591 3592 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3593 return; 3594 3595 for (i = 0; i < adapter->num_io_queues; i++) { 3596 rx_ring = &adapter->rx_ring[i]; 3597 3598 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3599 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3600 rx_ring->empty_rx_queue++; 3601 3602 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3603 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1, 3604 &rx_ring->syncp); 3605 3606 netif_err(adapter, drv, adapter->netdev, 3607 "Trigger refill for ring %d\n", i); 3608 3609 napi_schedule(rx_ring->napi); 3610 rx_ring->empty_rx_queue = 0; 3611 } 3612 } else { 3613 rx_ring->empty_rx_queue = 0; 3614 } 3615 } 3616 } 3617 3618 /* Check for keep alive expiration */ 3619 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3620 { 3621 unsigned long keep_alive_expired; 3622 3623 if (!adapter->wd_state) 3624 return; 3625 3626 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3627 return; 3628 3629 keep_alive_expired = adapter->last_keep_alive_jiffies + 3630 adapter->keep_alive_timeout; 3631 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3632 netif_err(adapter, drv, adapter->netdev, 3633 "Keep alive watchdog timeout.\n"); 3634 ena_increase_stat(&adapter->dev_stats.wd_expired, 1, 3635 &adapter->syncp); 3636 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); 3637 } 3638 } 3639 3640 static void check_for_admin_com_state(struct ena_adapter *adapter) 3641 { 3642 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3643 netif_err(adapter, drv, adapter->netdev, 3644 "ENA admin queue is not in running state!\n"); 3645 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1, 3646 &adapter->syncp); 3647 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO); 3648 } 3649 } 3650 3651 static void ena_update_hints(struct ena_adapter *adapter, 3652 struct ena_admin_ena_hw_hints *hints) 3653 { 3654 struct net_device *netdev = adapter->netdev; 3655 3656 if (hints->admin_completion_tx_timeout) 3657 adapter->ena_dev->admin_queue.completion_timeout = 3658 hints->admin_completion_tx_timeout * 1000; 3659 3660 if (hints->mmio_read_timeout) 3661 /* convert to usec */ 3662 adapter->ena_dev->mmio_read.reg_read_to = 3663 hints->mmio_read_timeout * 1000; 3664 3665 if (hints->missed_tx_completion_count_threshold_to_reset) 3666 adapter->missing_tx_completion_threshold = 3667 hints->missed_tx_completion_count_threshold_to_reset; 3668 3669 if (hints->missing_tx_completion_timeout) { 3670 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3671 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3672 else 3673 adapter->missing_tx_completion_to = 3674 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3675 } 3676 3677 if (hints->netdev_wd_timeout) 3678 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3679 3680 if (hints->driver_watchdog_timeout) { 3681 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3682 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3683 else 3684 adapter->keep_alive_timeout = 3685 msecs_to_jiffies(hints->driver_watchdog_timeout); 3686 } 3687 } 3688 3689 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3690 struct net_device *netdev) 3691 { 3692 host_info->supported_network_features[0] = 3693 netdev->features & GENMASK_ULL(31, 0); 3694 host_info->supported_network_features[1] = 3695 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3696 } 3697 3698 static void ena_timer_service(struct timer_list *t) 3699 { 3700 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3701 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3702 struct ena_admin_host_info *host_info = 3703 adapter->ena_dev->host_attr.host_info; 3704 3705 check_for_missing_keep_alive(adapter); 3706 3707 check_for_admin_com_state(adapter); 3708 3709 check_for_missing_completions(adapter); 3710 3711 check_for_empty_rx_ring(adapter); 3712 3713 if (debug_area) 3714 ena_dump_stats_to_buf(adapter, debug_area); 3715 3716 if (host_info) 3717 ena_update_host_info(host_info, adapter->netdev); 3718 3719 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3720 netif_err(adapter, drv, adapter->netdev, 3721 "Trigger reset is on\n"); 3722 ena_dump_stats_to_dmesg(adapter); 3723 queue_work(ena_wq, &adapter->reset_task); 3724 return; 3725 } 3726 3727 /* Reset the timer */ 3728 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3729 } 3730 3731 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3732 struct ena_com_dev *ena_dev, 3733 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3734 { 3735 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3736 3737 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3738 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3739 &get_feat_ctx->max_queue_ext.max_queue_ext; 3740 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3741 max_queue_ext->max_rx_cq_num); 3742 3743 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3744 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3745 } else { 3746 struct ena_admin_queue_feature_desc *max_queues = 3747 &get_feat_ctx->max_queues; 3748 io_tx_sq_num = max_queues->max_sq_num; 3749 io_tx_cq_num = max_queues->max_cq_num; 3750 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3751 } 3752 3753 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3754 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3755 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3756 3757 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3758 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3759 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3760 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3761 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */ 3762 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3763 3764 return max_num_io_queues; 3765 } 3766 3767 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3768 struct net_device *netdev) 3769 { 3770 netdev_features_t dev_features = 0; 3771 3772 /* Set offload features */ 3773 if (feat->offload.tx & 3774 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3775 dev_features |= NETIF_F_IP_CSUM; 3776 3777 if (feat->offload.tx & 3778 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3779 dev_features |= NETIF_F_IPV6_CSUM; 3780 3781 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3782 dev_features |= NETIF_F_TSO; 3783 3784 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3785 dev_features |= NETIF_F_TSO6; 3786 3787 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3788 dev_features |= NETIF_F_TSO_ECN; 3789 3790 if (feat->offload.rx_supported & 3791 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3792 dev_features |= NETIF_F_RXCSUM; 3793 3794 if (feat->offload.rx_supported & 3795 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3796 dev_features |= NETIF_F_RXCSUM; 3797 3798 netdev->features = 3799 dev_features | 3800 NETIF_F_SG | 3801 NETIF_F_RXHASH | 3802 NETIF_F_HIGHDMA; 3803 3804 netdev->hw_features |= netdev->features; 3805 netdev->vlan_features |= netdev->features; 3806 } 3807 3808 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3809 struct ena_com_dev_get_features_ctx *feat) 3810 { 3811 struct net_device *netdev = adapter->netdev; 3812 3813 /* Copy mac address */ 3814 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3815 eth_hw_addr_random(netdev); 3816 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3817 } else { 3818 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3819 eth_hw_addr_set(netdev, adapter->mac_addr); 3820 } 3821 3822 /* Set offload features */ 3823 ena_set_dev_offloads(feat, netdev); 3824 3825 adapter->max_mtu = feat->dev_attr.max_mtu; 3826 netdev->max_mtu = adapter->max_mtu; 3827 netdev->min_mtu = ENA_MIN_MTU; 3828 } 3829 3830 static int ena_rss_init_default(struct ena_adapter *adapter) 3831 { 3832 struct ena_com_dev *ena_dev = adapter->ena_dev; 3833 struct device *dev = &adapter->pdev->dev; 3834 int rc, i; 3835 u32 val; 3836 3837 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3838 if (unlikely(rc)) { 3839 dev_err(dev, "Cannot init indirect table\n"); 3840 goto err_rss_init; 3841 } 3842 3843 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3844 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3845 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3846 ENA_IO_RXQ_IDX(val)); 3847 if (unlikely(rc)) { 3848 dev_err(dev, "Cannot fill indirect table\n"); 3849 goto err_fill_indir; 3850 } 3851 } 3852 3853 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE, 3854 0xFFFFFFFF); 3855 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3856 dev_err(dev, "Cannot fill hash function\n"); 3857 goto err_fill_indir; 3858 } 3859 3860 rc = ena_com_set_default_hash_ctrl(ena_dev); 3861 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3862 dev_err(dev, "Cannot fill hash control\n"); 3863 goto err_fill_indir; 3864 } 3865 3866 return 0; 3867 3868 err_fill_indir: 3869 ena_com_rss_destroy(ena_dev); 3870 err_rss_init: 3871 3872 return rc; 3873 } 3874 3875 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3876 { 3877 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3878 3879 pci_release_selected_regions(pdev, release_bars); 3880 } 3881 3882 /* ena_probe - Device Initialization Routine 3883 * @pdev: PCI device information struct 3884 * @ent: entry in ena_pci_tbl 3885 * 3886 * Returns 0 on success, negative on failure 3887 * 3888 * ena_probe initializes an adapter identified by a pci_dev structure. 3889 * The OS initialization, configuring of the adapter private structure, 3890 * and a hardware reset occur. 3891 */ 3892 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3893 { 3894 struct ena_com_dev_get_features_ctx get_feat_ctx; 3895 struct ena_com_dev *ena_dev = NULL; 3896 struct ena_adapter *adapter; 3897 struct net_device *netdev; 3898 static int adapters_found; 3899 u32 max_num_io_queues; 3900 bool wd_state; 3901 int bars, rc; 3902 3903 dev_dbg(&pdev->dev, "%s\n", __func__); 3904 3905 rc = pci_enable_device_mem(pdev); 3906 if (rc) { 3907 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3908 return rc; 3909 } 3910 3911 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); 3912 if (rc) { 3913 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); 3914 goto err_disable_device; 3915 } 3916 3917 pci_set_master(pdev); 3918 3919 ena_dev = vzalloc(sizeof(*ena_dev)); 3920 if (!ena_dev) { 3921 rc = -ENOMEM; 3922 goto err_disable_device; 3923 } 3924 3925 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3926 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3927 if (rc) { 3928 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3929 rc); 3930 goto err_free_ena_dev; 3931 } 3932 3933 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3934 pci_resource_start(pdev, ENA_REG_BAR), 3935 pci_resource_len(pdev, ENA_REG_BAR)); 3936 if (!ena_dev->reg_bar) { 3937 dev_err(&pdev->dev, "Failed to remap regs bar\n"); 3938 rc = -EFAULT; 3939 goto err_free_region; 3940 } 3941 3942 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 3943 3944 ena_dev->dmadev = &pdev->dev; 3945 3946 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS); 3947 if (!netdev) { 3948 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3949 rc = -ENOMEM; 3950 goto err_free_region; 3951 } 3952 3953 SET_NETDEV_DEV(netdev, &pdev->dev); 3954 adapter = netdev_priv(netdev); 3955 adapter->ena_dev = ena_dev; 3956 adapter->netdev = netdev; 3957 adapter->pdev = pdev; 3958 adapter->msg_enable = DEFAULT_MSG_ENABLE; 3959 3960 ena_dev->net_device = netdev; 3961 3962 pci_set_drvdata(pdev, adapter); 3963 3964 rc = ena_com_allocate_customer_metrics_buffer(ena_dev); 3965 if (rc) { 3966 netdev_err(netdev, "ena_com_allocate_customer_metrics_buffer failed\n"); 3967 goto err_netdev_destroy; 3968 } 3969 3970 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 3971 if (rc) { 3972 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n"); 3973 goto err_metrics_destroy; 3974 } 3975 3976 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state); 3977 if (rc) { 3978 dev_err(&pdev->dev, "ENA device init failed\n"); 3979 if (rc == -ETIME) 3980 rc = -EPROBE_DEFER; 3981 goto err_metrics_destroy; 3982 } 3983 3984 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 3985 * Updated during device initialization with the real granularity 3986 */ 3987 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3988 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3989 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3990 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3991 if (unlikely(!max_num_io_queues)) { 3992 rc = -EFAULT; 3993 goto err_device_destroy; 3994 } 3995 3996 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3997 3998 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3999 4000 adapter->num_io_queues = max_num_io_queues; 4001 adapter->max_num_io_queues = max_num_io_queues; 4002 adapter->last_monitored_tx_qid = 0; 4003 4004 adapter->xdp_first_ring = 0; 4005 adapter->xdp_num_queues = 0; 4006 4007 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 4008 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 4009 adapter->disable_meta_caching = 4010 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 4011 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 4012 4013 adapter->wd_state = wd_state; 4014 4015 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 4016 4017 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 4018 if (rc) { 4019 dev_err(&pdev->dev, 4020 "Failed to query interrupt moderation feature\n"); 4021 goto err_device_destroy; 4022 } 4023 4024 ena_init_io_rings(adapter, 4025 0, 4026 adapter->xdp_num_queues + 4027 adapter->num_io_queues); 4028 4029 netdev->netdev_ops = &ena_netdev_ops; 4030 netdev->watchdog_timeo = TX_TIMEOUT; 4031 ena_set_ethtool_ops(netdev); 4032 4033 netdev->priv_flags |= IFF_UNICAST_FLT; 4034 4035 u64_stats_init(&adapter->syncp); 4036 4037 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 4038 if (rc) { 4039 dev_err(&pdev->dev, 4040 "Failed to enable and set the admin interrupts\n"); 4041 goto err_worker_destroy; 4042 } 4043 rc = ena_rss_init_default(adapter); 4044 if (rc && (rc != -EOPNOTSUPP)) { 4045 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4046 goto err_free_msix; 4047 } 4048 4049 ena_config_debug_area(adapter); 4050 4051 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues)) 4052 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 4053 NETDEV_XDP_ACT_REDIRECT; 4054 4055 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4056 4057 netif_carrier_off(netdev); 4058 4059 rc = register_netdev(netdev); 4060 if (rc) { 4061 dev_err(&pdev->dev, "Cannot register net device\n"); 4062 goto err_rss; 4063 } 4064 4065 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4066 4067 adapter->last_keep_alive_jiffies = jiffies; 4068 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4069 adapter->missing_tx_completion_to = TX_TIMEOUT; 4070 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4071 4072 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4073 4074 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4075 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4076 4077 dev_info(&pdev->dev, 4078 "%s found at mem %lx, mac addr %pM\n", 4079 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4080 netdev->dev_addr); 4081 4082 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4083 4084 adapters_found++; 4085 4086 return 0; 4087 4088 err_rss: 4089 ena_com_delete_debug_area(ena_dev); 4090 ena_com_rss_destroy(ena_dev); 4091 err_free_msix: 4092 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4093 /* stop submitting admin commands on a device that was reset */ 4094 ena_com_set_admin_running_state(ena_dev, false); 4095 ena_free_mgmnt_irq(adapter); 4096 ena_disable_msix(adapter); 4097 err_worker_destroy: 4098 del_timer(&adapter->timer_service); 4099 err_device_destroy: 4100 ena_com_delete_host_info(ena_dev); 4101 ena_com_admin_destroy(ena_dev); 4102 err_metrics_destroy: 4103 ena_com_delete_customer_metrics_buffer(ena_dev); 4104 err_netdev_destroy: 4105 free_netdev(netdev); 4106 err_free_region: 4107 ena_release_bars(ena_dev, pdev); 4108 err_free_ena_dev: 4109 vfree(ena_dev); 4110 err_disable_device: 4111 pci_disable_device(pdev); 4112 return rc; 4113 } 4114 4115 /*****************************************************************************/ 4116 4117 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4118 * @pdev: PCI device information struct 4119 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4120 * 4121 * __ena_shutoff is a helper routine that does the real work on shutdown and 4122 * removal paths; the difference between those paths is with regards to whether 4123 * dettach or unregister the netdevice. 4124 */ 4125 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4126 { 4127 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4128 struct ena_com_dev *ena_dev; 4129 struct net_device *netdev; 4130 4131 ena_dev = adapter->ena_dev; 4132 netdev = adapter->netdev; 4133 4134 #ifdef CONFIG_RFS_ACCEL 4135 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4136 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4137 netdev->rx_cpu_rmap = NULL; 4138 } 4139 4140 #endif /* CONFIG_RFS_ACCEL */ 4141 /* Make sure timer and reset routine won't be called after 4142 * freeing device resources. 4143 */ 4144 del_timer_sync(&adapter->timer_service); 4145 cancel_work_sync(&adapter->reset_task); 4146 4147 rtnl_lock(); /* lock released inside the below if-else block */ 4148 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4149 ena_destroy_device(adapter, true); 4150 4151 if (shutdown) { 4152 netif_device_detach(netdev); 4153 dev_close(netdev); 4154 rtnl_unlock(); 4155 } else { 4156 rtnl_unlock(); 4157 unregister_netdev(netdev); 4158 free_netdev(netdev); 4159 } 4160 4161 ena_com_rss_destroy(ena_dev); 4162 4163 ena_com_delete_debug_area(ena_dev); 4164 4165 ena_com_delete_host_info(ena_dev); 4166 4167 ena_com_delete_customer_metrics_buffer(ena_dev); 4168 4169 ena_release_bars(ena_dev, pdev); 4170 4171 pci_disable_device(pdev); 4172 4173 vfree(ena_dev); 4174 } 4175 4176 /* ena_remove - Device Removal Routine 4177 * @pdev: PCI device information struct 4178 * 4179 * ena_remove is called by the PCI subsystem to alert the driver 4180 * that it should release a PCI device. 4181 */ 4182 4183 static void ena_remove(struct pci_dev *pdev) 4184 { 4185 __ena_shutoff(pdev, false); 4186 } 4187 4188 /* ena_shutdown - Device Shutdown Routine 4189 * @pdev: PCI device information struct 4190 * 4191 * ena_shutdown is called by the PCI subsystem to alert the driver that 4192 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4193 */ 4194 4195 static void ena_shutdown(struct pci_dev *pdev) 4196 { 4197 __ena_shutoff(pdev, true); 4198 } 4199 4200 /* ena_suspend - PM suspend callback 4201 * @dev_d: Device information struct 4202 */ 4203 static int __maybe_unused ena_suspend(struct device *dev_d) 4204 { 4205 struct pci_dev *pdev = to_pci_dev(dev_d); 4206 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4207 4208 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp); 4209 4210 rtnl_lock(); 4211 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4212 dev_err(&pdev->dev, 4213 "Ignoring device reset request as the device is being suspended\n"); 4214 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4215 } 4216 ena_destroy_device(adapter, true); 4217 rtnl_unlock(); 4218 return 0; 4219 } 4220 4221 /* ena_resume - PM resume callback 4222 * @dev_d: Device information struct 4223 */ 4224 static int __maybe_unused ena_resume(struct device *dev_d) 4225 { 4226 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4227 int rc; 4228 4229 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp); 4230 4231 rtnl_lock(); 4232 rc = ena_restore_device(adapter); 4233 rtnl_unlock(); 4234 return rc; 4235 } 4236 4237 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4238 4239 static struct pci_driver ena_pci_driver = { 4240 .name = DRV_MODULE_NAME, 4241 .id_table = ena_pci_tbl, 4242 .probe = ena_probe, 4243 .remove = ena_remove, 4244 .shutdown = ena_shutdown, 4245 .driver.pm = &ena_pm_ops, 4246 .sriov_configure = pci_sriov_configure_simple, 4247 }; 4248 4249 static int __init ena_init(void) 4250 { 4251 int ret; 4252 4253 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4254 if (!ena_wq) { 4255 pr_err("Failed to create workqueue\n"); 4256 return -ENOMEM; 4257 } 4258 4259 ret = pci_register_driver(&ena_pci_driver); 4260 if (ret) 4261 destroy_workqueue(ena_wq); 4262 4263 return ret; 4264 } 4265 4266 static void __exit ena_cleanup(void) 4267 { 4268 pci_unregister_driver(&ena_pci_driver); 4269 4270 if (ena_wq) { 4271 destroy_workqueue(ena_wq); 4272 ena_wq = NULL; 4273 } 4274 } 4275 4276 /****************************************************************************** 4277 ******************************** AENQ Handlers ******************************* 4278 *****************************************************************************/ 4279 /* ena_update_on_link_change: 4280 * Notify the network interface about the change in link status 4281 */ 4282 static void ena_update_on_link_change(void *adapter_data, 4283 struct ena_admin_aenq_entry *aenq_e) 4284 { 4285 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4286 struct ena_admin_aenq_link_change_desc *aenq_desc = 4287 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4288 int status = aenq_desc->flags & 4289 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4290 4291 if (status) { 4292 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 4293 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4294 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4295 netif_carrier_on(adapter->netdev); 4296 } else { 4297 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4298 netif_carrier_off(adapter->netdev); 4299 } 4300 } 4301 4302 static void ena_keep_alive_wd(void *adapter_data, 4303 struct ena_admin_aenq_entry *aenq_e) 4304 { 4305 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4306 struct ena_admin_aenq_keep_alive_desc *desc; 4307 u64 rx_drops; 4308 u64 tx_drops; 4309 4310 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4311 adapter->last_keep_alive_jiffies = jiffies; 4312 4313 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4314 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4315 4316 u64_stats_update_begin(&adapter->syncp); 4317 /* These stats are accumulated by the device, so the counters indicate 4318 * all drops since last reset. 4319 */ 4320 adapter->dev_stats.rx_drops = rx_drops; 4321 adapter->dev_stats.tx_drops = tx_drops; 4322 u64_stats_update_end(&adapter->syncp); 4323 } 4324 4325 static void ena_notification(void *adapter_data, 4326 struct ena_admin_aenq_entry *aenq_e) 4327 { 4328 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4329 struct ena_admin_ena_hw_hints *hints; 4330 4331 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4332 "Invalid group(%x) expected %x\n", 4333 aenq_e->aenq_common_desc.group, 4334 ENA_ADMIN_NOTIFICATION); 4335 4336 switch (aenq_e->aenq_common_desc.syndrome) { 4337 case ENA_ADMIN_UPDATE_HINTS: 4338 hints = (struct ena_admin_ena_hw_hints *) 4339 (&aenq_e->inline_data_w4); 4340 ena_update_hints(adapter, hints); 4341 break; 4342 default: 4343 netif_err(adapter, drv, adapter->netdev, 4344 "Invalid aenq notification link state %d\n", 4345 aenq_e->aenq_common_desc.syndrome); 4346 } 4347 } 4348 4349 /* This handler will called for unknown event group or unimplemented handlers*/ 4350 static void unimplemented_aenq_handler(void *data, 4351 struct ena_admin_aenq_entry *aenq_e) 4352 { 4353 struct ena_adapter *adapter = (struct ena_adapter *)data; 4354 4355 netif_err(adapter, drv, adapter->netdev, 4356 "Unknown event was received or event with unimplemented handler\n"); 4357 } 4358 4359 static struct ena_aenq_handlers aenq_handlers = { 4360 .handlers = { 4361 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4362 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4363 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4364 }, 4365 .unimplemented_handler = unimplemented_aenq_handler 4366 }; 4367 4368 module_init(ena_init); 4369 module_exit(ena_cleanup); 4370