1 /* 2 * Copyright 2015 Amazon.com, Inc. or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #ifdef CONFIG_RFS_ACCEL 36 #include <linux/cpu_rmap.h> 37 #endif /* CONFIG_RFS_ACCEL */ 38 #include <linux/ethtool.h> 39 #include <linux/if_vlan.h> 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/moduleparam.h> 43 #include <linux/numa.h> 44 #include <linux/pci.h> 45 #include <linux/utsname.h> 46 #include <linux/version.h> 47 #include <linux/vmalloc.h> 48 #include <net/ip.h> 49 50 #include "ena_netdev.h" 51 #include "ena_pci_id_tbl.h" 52 53 static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n"; 54 55 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 56 MODULE_DESCRIPTION(DEVICE_NAME); 57 MODULE_LICENSE("GPL"); 58 MODULE_VERSION(DRV_MODULE_VERSION); 59 60 /* Time in jiffies before concluding the transmitter is hung. */ 61 #define TX_TIMEOUT (5 * HZ) 62 63 #define ENA_NAPI_BUDGET 64 64 65 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 66 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 67 static int debug = -1; 68 module_param(debug, int, 0); 69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 70 71 static struct ena_aenq_handlers aenq_handlers; 72 73 static struct workqueue_struct *ena_wq; 74 75 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 76 77 static int ena_rss_init_default(struct ena_adapter *adapter); 78 79 static void ena_tx_timeout(struct net_device *dev) 80 { 81 struct ena_adapter *adapter = netdev_priv(dev); 82 83 /* Change the state of the device to trigger reset 84 * Check that we are not in the middle or a trigger already 85 */ 86 87 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 88 return; 89 90 u64_stats_update_begin(&adapter->syncp); 91 adapter->dev_stats.tx_timeout++; 92 u64_stats_update_end(&adapter->syncp); 93 94 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 95 } 96 97 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 98 { 99 int i; 100 101 for (i = 0; i < adapter->num_queues; i++) 102 adapter->rx_ring[i].mtu = mtu; 103 } 104 105 static int ena_change_mtu(struct net_device *dev, int new_mtu) 106 { 107 struct ena_adapter *adapter = netdev_priv(dev); 108 int ret; 109 110 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 111 if (!ret) { 112 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu); 113 update_rx_ring_mtu(adapter, new_mtu); 114 dev->mtu = new_mtu; 115 } else { 116 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 117 new_mtu); 118 } 119 120 return ret; 121 } 122 123 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 124 { 125 #ifdef CONFIG_RFS_ACCEL 126 u32 i; 127 int rc; 128 129 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_queues); 130 if (!adapter->netdev->rx_cpu_rmap) 131 return -ENOMEM; 132 for (i = 0; i < adapter->num_queues; i++) { 133 int irq_idx = ENA_IO_IRQ_IDX(i); 134 135 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 136 pci_irq_vector(adapter->pdev, irq_idx)); 137 if (rc) { 138 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 139 adapter->netdev->rx_cpu_rmap = NULL; 140 return rc; 141 } 142 } 143 #endif /* CONFIG_RFS_ACCEL */ 144 return 0; 145 } 146 147 static void ena_init_io_rings_common(struct ena_adapter *adapter, 148 struct ena_ring *ring, u16 qid) 149 { 150 ring->qid = qid; 151 ring->pdev = adapter->pdev; 152 ring->dev = &adapter->pdev->dev; 153 ring->netdev = adapter->netdev; 154 ring->napi = &adapter->ena_napi[qid].napi; 155 ring->adapter = adapter; 156 ring->ena_dev = adapter->ena_dev; 157 ring->per_napi_packets = 0; 158 ring->per_napi_bytes = 0; 159 ring->cpu = 0; 160 u64_stats_init(&ring->syncp); 161 } 162 163 static void ena_init_io_rings(struct ena_adapter *adapter) 164 { 165 struct ena_com_dev *ena_dev; 166 struct ena_ring *txr, *rxr; 167 int i; 168 169 ena_dev = adapter->ena_dev; 170 171 for (i = 0; i < adapter->num_queues; i++) { 172 txr = &adapter->tx_ring[i]; 173 rxr = &adapter->rx_ring[i]; 174 175 /* TX/RX common ring state */ 176 ena_init_io_rings_common(adapter, txr, i); 177 ena_init_io_rings_common(adapter, rxr, i); 178 179 /* TX specific ring state */ 180 txr->ring_size = adapter->tx_ring_size; 181 txr->tx_max_header_size = ena_dev->tx_max_header_size; 182 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 183 txr->sgl_size = adapter->max_tx_sgl_size; 184 txr->smoothed_interval = 185 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 186 187 /* RX specific ring state */ 188 rxr->ring_size = adapter->rx_ring_size; 189 rxr->rx_copybreak = adapter->rx_copybreak; 190 rxr->sgl_size = adapter->max_rx_sgl_size; 191 rxr->smoothed_interval = 192 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 193 rxr->empty_rx_queue = 0; 194 } 195 } 196 197 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 198 * @adapter: network interface device structure 199 * @qid: queue index 200 * 201 * Return 0 on success, negative on failure 202 */ 203 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 204 { 205 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 206 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 207 int size, i, node; 208 209 if (tx_ring->tx_buffer_info) { 210 netif_err(adapter, ifup, 211 adapter->netdev, "tx_buffer_info info is not NULL"); 212 return -EEXIST; 213 } 214 215 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 216 node = cpu_to_node(ena_irq->cpu); 217 218 tx_ring->tx_buffer_info = vzalloc_node(size, node); 219 if (!tx_ring->tx_buffer_info) { 220 tx_ring->tx_buffer_info = vzalloc(size); 221 if (!tx_ring->tx_buffer_info) 222 return -ENOMEM; 223 } 224 225 size = sizeof(u16) * tx_ring->ring_size; 226 tx_ring->free_tx_ids = vzalloc_node(size, node); 227 if (!tx_ring->free_tx_ids) { 228 tx_ring->free_tx_ids = vzalloc(size); 229 if (!tx_ring->free_tx_ids) { 230 vfree(tx_ring->tx_buffer_info); 231 return -ENOMEM; 232 } 233 } 234 235 /* Req id ring for TX out of order completions */ 236 for (i = 0; i < tx_ring->ring_size; i++) 237 tx_ring->free_tx_ids[i] = i; 238 239 /* Reset tx statistics */ 240 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 241 242 tx_ring->next_to_use = 0; 243 tx_ring->next_to_clean = 0; 244 tx_ring->cpu = ena_irq->cpu; 245 return 0; 246 } 247 248 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 249 * @adapter: network interface device structure 250 * @qid: queue index 251 * 252 * Free all transmit software resources 253 */ 254 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 255 { 256 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 257 258 vfree(tx_ring->tx_buffer_info); 259 tx_ring->tx_buffer_info = NULL; 260 261 vfree(tx_ring->free_tx_ids); 262 tx_ring->free_tx_ids = NULL; 263 } 264 265 /* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues 266 * @adapter: private structure 267 * 268 * Return 0 on success, negative on failure 269 */ 270 static int ena_setup_all_tx_resources(struct ena_adapter *adapter) 271 { 272 int i, rc = 0; 273 274 for (i = 0; i < adapter->num_queues; i++) { 275 rc = ena_setup_tx_resources(adapter, i); 276 if (rc) 277 goto err_setup_tx; 278 } 279 280 return 0; 281 282 err_setup_tx: 283 284 netif_err(adapter, ifup, adapter->netdev, 285 "Tx queue %d: allocation failed\n", i); 286 287 /* rewind the index freeing the rings as we go */ 288 while (i--) 289 ena_free_tx_resources(adapter, i); 290 return rc; 291 } 292 293 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 294 * @adapter: board private structure 295 * 296 * Free all transmit software resources 297 */ 298 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 299 { 300 int i; 301 302 for (i = 0; i < adapter->num_queues; i++) 303 ena_free_tx_resources(adapter, i); 304 } 305 306 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 307 * @adapter: network interface device structure 308 * @qid: queue index 309 * 310 * Returns 0 on success, negative on failure 311 */ 312 static int ena_setup_rx_resources(struct ena_adapter *adapter, 313 u32 qid) 314 { 315 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 316 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 317 int size, node; 318 319 if (rx_ring->rx_buffer_info) { 320 netif_err(adapter, ifup, adapter->netdev, 321 "rx_buffer_info is not NULL"); 322 return -EEXIST; 323 } 324 325 /* alloc extra element so in rx path 326 * we can always prefetch rx_info + 1 327 */ 328 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 329 node = cpu_to_node(ena_irq->cpu); 330 331 rx_ring->rx_buffer_info = vzalloc_node(size, node); 332 if (!rx_ring->rx_buffer_info) { 333 rx_ring->rx_buffer_info = vzalloc(size); 334 if (!rx_ring->rx_buffer_info) 335 return -ENOMEM; 336 } 337 338 /* Reset rx statistics */ 339 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 340 341 rx_ring->next_to_clean = 0; 342 rx_ring->next_to_use = 0; 343 rx_ring->cpu = ena_irq->cpu; 344 345 return 0; 346 } 347 348 /* ena_free_rx_resources - Free I/O Rx Resources 349 * @adapter: network interface device structure 350 * @qid: queue index 351 * 352 * Free all receive software resources 353 */ 354 static void ena_free_rx_resources(struct ena_adapter *adapter, 355 u32 qid) 356 { 357 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 358 359 vfree(rx_ring->rx_buffer_info); 360 rx_ring->rx_buffer_info = NULL; 361 } 362 363 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 364 * @adapter: board private structure 365 * 366 * Return 0 on success, negative on failure 367 */ 368 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 369 { 370 int i, rc = 0; 371 372 for (i = 0; i < adapter->num_queues; i++) { 373 rc = ena_setup_rx_resources(adapter, i); 374 if (rc) 375 goto err_setup_rx; 376 } 377 378 return 0; 379 380 err_setup_rx: 381 382 netif_err(adapter, ifup, adapter->netdev, 383 "Rx queue %d: allocation failed\n", i); 384 385 /* rewind the index freeing the rings as we go */ 386 while (i--) 387 ena_free_rx_resources(adapter, i); 388 return rc; 389 } 390 391 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 392 * @adapter: board private structure 393 * 394 * Free all receive software resources 395 */ 396 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 397 { 398 int i; 399 400 for (i = 0; i < adapter->num_queues; i++) 401 ena_free_rx_resources(adapter, i); 402 } 403 404 static inline int ena_alloc_rx_page(struct ena_ring *rx_ring, 405 struct ena_rx_buffer *rx_info, gfp_t gfp) 406 { 407 struct ena_com_buf *ena_buf; 408 struct page *page; 409 dma_addr_t dma; 410 411 /* if previous allocated page is not used */ 412 if (unlikely(rx_info->page)) 413 return 0; 414 415 page = alloc_page(gfp); 416 if (unlikely(!page)) { 417 u64_stats_update_begin(&rx_ring->syncp); 418 rx_ring->rx_stats.page_alloc_fail++; 419 u64_stats_update_end(&rx_ring->syncp); 420 return -ENOMEM; 421 } 422 423 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, 424 DMA_FROM_DEVICE); 425 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) { 426 u64_stats_update_begin(&rx_ring->syncp); 427 rx_ring->rx_stats.dma_mapping_err++; 428 u64_stats_update_end(&rx_ring->syncp); 429 430 __free_page(page); 431 return -EIO; 432 } 433 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 434 "alloc page %p, rx_info %p\n", page, rx_info); 435 436 rx_info->page = page; 437 rx_info->page_offset = 0; 438 ena_buf = &rx_info->ena_buf; 439 ena_buf->paddr = dma; 440 ena_buf->len = PAGE_SIZE; 441 442 return 0; 443 } 444 445 static void ena_free_rx_page(struct ena_ring *rx_ring, 446 struct ena_rx_buffer *rx_info) 447 { 448 struct page *page = rx_info->page; 449 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 450 451 if (unlikely(!page)) { 452 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 453 "Trying to free unallocated buffer\n"); 454 return; 455 } 456 457 dma_unmap_page(rx_ring->dev, ena_buf->paddr, PAGE_SIZE, 458 DMA_FROM_DEVICE); 459 460 __free_page(page); 461 rx_info->page = NULL; 462 } 463 464 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 465 { 466 u16 next_to_use; 467 u32 i; 468 int rc; 469 470 next_to_use = rx_ring->next_to_use; 471 472 for (i = 0; i < num; i++) { 473 struct ena_rx_buffer *rx_info = 474 &rx_ring->rx_buffer_info[next_to_use]; 475 476 rc = ena_alloc_rx_page(rx_ring, rx_info, 477 __GFP_COLD | GFP_ATOMIC | __GFP_COMP); 478 if (unlikely(rc < 0)) { 479 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 480 "failed to alloc buffer for rx queue %d\n", 481 rx_ring->qid); 482 break; 483 } 484 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 485 &rx_info->ena_buf, 486 next_to_use); 487 if (unlikely(rc)) { 488 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 489 "failed to add buffer for rx queue %d\n", 490 rx_ring->qid); 491 break; 492 } 493 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 494 rx_ring->ring_size); 495 } 496 497 if (unlikely(i < num)) { 498 u64_stats_update_begin(&rx_ring->syncp); 499 rx_ring->rx_stats.refil_partial++; 500 u64_stats_update_end(&rx_ring->syncp); 501 netdev_warn(rx_ring->netdev, 502 "refilled rx qid %d with only %d buffers (from %d)\n", 503 rx_ring->qid, i, num); 504 } 505 506 if (likely(i)) { 507 /* Add memory barrier to make sure the desc were written before 508 * issue a doorbell 509 */ 510 wmb(); 511 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 512 } 513 514 rx_ring->next_to_use = next_to_use; 515 516 return i; 517 } 518 519 static void ena_free_rx_bufs(struct ena_adapter *adapter, 520 u32 qid) 521 { 522 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 523 u32 i; 524 525 for (i = 0; i < rx_ring->ring_size; i++) { 526 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 527 528 if (rx_info->page) 529 ena_free_rx_page(rx_ring, rx_info); 530 } 531 } 532 533 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 534 * @adapter: board private structure 535 * 536 */ 537 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 538 { 539 struct ena_ring *rx_ring; 540 int i, rc, bufs_num; 541 542 for (i = 0; i < adapter->num_queues; i++) { 543 rx_ring = &adapter->rx_ring[i]; 544 bufs_num = rx_ring->ring_size - 1; 545 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 546 547 if (unlikely(rc != bufs_num)) 548 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 549 "refilling Queue %d failed. allocated %d buffers from: %d\n", 550 i, rc, bufs_num); 551 } 552 } 553 554 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 555 { 556 int i; 557 558 for (i = 0; i < adapter->num_queues; i++) 559 ena_free_rx_bufs(adapter, i); 560 } 561 562 /* ena_free_tx_bufs - Free Tx Buffers per Queue 563 * @tx_ring: TX ring for which buffers be freed 564 */ 565 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 566 { 567 bool print_once = true; 568 u32 i; 569 570 for (i = 0; i < tx_ring->ring_size; i++) { 571 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 572 struct ena_com_buf *ena_buf; 573 int nr_frags; 574 int j; 575 576 if (!tx_info->skb) 577 continue; 578 579 if (print_once) { 580 netdev_notice(tx_ring->netdev, 581 "free uncompleted tx skb qid %d idx 0x%x\n", 582 tx_ring->qid, i); 583 print_once = false; 584 } else { 585 netdev_dbg(tx_ring->netdev, 586 "free uncompleted tx skb qid %d idx 0x%x\n", 587 tx_ring->qid, i); 588 } 589 590 ena_buf = tx_info->bufs; 591 dma_unmap_single(tx_ring->dev, 592 ena_buf->paddr, 593 ena_buf->len, 594 DMA_TO_DEVICE); 595 596 /* unmap remaining mapped pages */ 597 nr_frags = tx_info->num_of_bufs - 1; 598 for (j = 0; j < nr_frags; j++) { 599 ena_buf++; 600 dma_unmap_page(tx_ring->dev, 601 ena_buf->paddr, 602 ena_buf->len, 603 DMA_TO_DEVICE); 604 } 605 606 dev_kfree_skb_any(tx_info->skb); 607 } 608 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 609 tx_ring->qid)); 610 } 611 612 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 613 { 614 struct ena_ring *tx_ring; 615 int i; 616 617 for (i = 0; i < adapter->num_queues; i++) { 618 tx_ring = &adapter->tx_ring[i]; 619 ena_free_tx_bufs(tx_ring); 620 } 621 } 622 623 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 624 { 625 u16 ena_qid; 626 int i; 627 628 for (i = 0; i < adapter->num_queues; i++) { 629 ena_qid = ENA_IO_TXQ_IDX(i); 630 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 631 } 632 } 633 634 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 635 { 636 u16 ena_qid; 637 int i; 638 639 for (i = 0; i < adapter->num_queues; i++) { 640 ena_qid = ENA_IO_RXQ_IDX(i); 641 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 642 } 643 } 644 645 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 646 { 647 ena_destroy_all_tx_queues(adapter); 648 ena_destroy_all_rx_queues(adapter); 649 } 650 651 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 652 { 653 struct ena_tx_buffer *tx_info = NULL; 654 655 if (likely(req_id < tx_ring->ring_size)) { 656 tx_info = &tx_ring->tx_buffer_info[req_id]; 657 if (likely(tx_info->skb)) 658 return 0; 659 } 660 661 if (tx_info) 662 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev, 663 "tx_info doesn't have valid skb\n"); 664 else 665 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev, 666 "Invalid req_id: %hu\n", req_id); 667 668 u64_stats_update_begin(&tx_ring->syncp); 669 tx_ring->tx_stats.bad_req_id++; 670 u64_stats_update_end(&tx_ring->syncp); 671 672 /* Trigger device reset */ 673 set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags); 674 return -EFAULT; 675 } 676 677 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 678 { 679 struct netdev_queue *txq; 680 bool above_thresh; 681 u32 tx_bytes = 0; 682 u32 total_done = 0; 683 u16 next_to_clean; 684 u16 req_id; 685 int tx_pkts = 0; 686 int rc; 687 688 next_to_clean = tx_ring->next_to_clean; 689 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 690 691 while (tx_pkts < budget) { 692 struct ena_tx_buffer *tx_info; 693 struct sk_buff *skb; 694 struct ena_com_buf *ena_buf; 695 int i, nr_frags; 696 697 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 698 &req_id); 699 if (rc) 700 break; 701 702 rc = validate_tx_req_id(tx_ring, req_id); 703 if (rc) 704 break; 705 706 tx_info = &tx_ring->tx_buffer_info[req_id]; 707 skb = tx_info->skb; 708 709 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 710 prefetch(&skb->end); 711 712 tx_info->skb = NULL; 713 tx_info->last_jiffies = 0; 714 715 if (likely(tx_info->num_of_bufs != 0)) { 716 ena_buf = tx_info->bufs; 717 718 dma_unmap_single(tx_ring->dev, 719 dma_unmap_addr(ena_buf, paddr), 720 dma_unmap_len(ena_buf, len), 721 DMA_TO_DEVICE); 722 723 /* unmap remaining mapped pages */ 724 nr_frags = tx_info->num_of_bufs - 1; 725 for (i = 0; i < nr_frags; i++) { 726 ena_buf++; 727 dma_unmap_page(tx_ring->dev, 728 dma_unmap_addr(ena_buf, paddr), 729 dma_unmap_len(ena_buf, len), 730 DMA_TO_DEVICE); 731 } 732 } 733 734 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 735 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 736 skb); 737 738 tx_bytes += skb->len; 739 dev_kfree_skb(skb); 740 tx_pkts++; 741 total_done += tx_info->tx_descs; 742 743 tx_ring->free_tx_ids[next_to_clean] = req_id; 744 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 745 tx_ring->ring_size); 746 } 747 748 tx_ring->next_to_clean = next_to_clean; 749 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 750 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 751 752 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 753 754 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 755 "tx_poll: q %d done. total pkts: %d\n", 756 tx_ring->qid, tx_pkts); 757 758 /* need to make the rings circular update visible to 759 * ena_start_xmit() before checking for netif_queue_stopped(). 760 */ 761 smp_mb(); 762 763 above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) > 764 ENA_TX_WAKEUP_THRESH; 765 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 766 __netif_tx_lock(txq, smp_processor_id()); 767 above_thresh = ena_com_sq_empty_space(tx_ring->ena_com_io_sq) > 768 ENA_TX_WAKEUP_THRESH; 769 if (netif_tx_queue_stopped(txq) && above_thresh) { 770 netif_tx_wake_queue(txq); 771 u64_stats_update_begin(&tx_ring->syncp); 772 tx_ring->tx_stats.queue_wakeup++; 773 u64_stats_update_end(&tx_ring->syncp); 774 } 775 __netif_tx_unlock(txq); 776 } 777 778 tx_ring->per_napi_bytes += tx_bytes; 779 tx_ring->per_napi_packets += tx_pkts; 780 781 return tx_pkts; 782 } 783 784 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 785 struct ena_com_rx_buf_info *ena_bufs, 786 u32 descs, 787 u16 *next_to_clean) 788 { 789 struct sk_buff *skb; 790 struct ena_rx_buffer *rx_info = 791 &rx_ring->rx_buffer_info[*next_to_clean]; 792 u32 len; 793 u32 buf = 0; 794 void *va; 795 796 len = ena_bufs[0].len; 797 if (unlikely(!rx_info->page)) { 798 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 799 "Page is NULL\n"); 800 return NULL; 801 } 802 803 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 804 "rx_info %p page %p\n", 805 rx_info, rx_info->page); 806 807 /* save virt address of first buffer */ 808 va = page_address(rx_info->page) + rx_info->page_offset; 809 prefetch(va + NET_IP_ALIGN); 810 811 if (len <= rx_ring->rx_copybreak) { 812 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 813 rx_ring->rx_copybreak); 814 if (unlikely(!skb)) { 815 u64_stats_update_begin(&rx_ring->syncp); 816 rx_ring->rx_stats.skb_alloc_fail++; 817 u64_stats_update_end(&rx_ring->syncp); 818 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 819 "Failed to allocate skb\n"); 820 return NULL; 821 } 822 823 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 824 "rx allocated small packet. len %d. data_len %d\n", 825 skb->len, skb->data_len); 826 827 /* sync this buffer for CPU use */ 828 dma_sync_single_for_cpu(rx_ring->dev, 829 dma_unmap_addr(&rx_info->ena_buf, paddr), 830 len, 831 DMA_FROM_DEVICE); 832 skb_copy_to_linear_data(skb, va, len); 833 dma_sync_single_for_device(rx_ring->dev, 834 dma_unmap_addr(&rx_info->ena_buf, paddr), 835 len, 836 DMA_FROM_DEVICE); 837 838 skb_put(skb, len); 839 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 840 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 841 rx_ring->ring_size); 842 return skb; 843 } 844 845 skb = napi_get_frags(rx_ring->napi); 846 if (unlikely(!skb)) { 847 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 848 "Failed allocating skb\n"); 849 u64_stats_update_begin(&rx_ring->syncp); 850 rx_ring->rx_stats.skb_alloc_fail++; 851 u64_stats_update_end(&rx_ring->syncp); 852 return NULL; 853 } 854 855 do { 856 dma_unmap_page(rx_ring->dev, 857 dma_unmap_addr(&rx_info->ena_buf, paddr), 858 PAGE_SIZE, DMA_FROM_DEVICE); 859 860 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 861 rx_info->page_offset, len, PAGE_SIZE); 862 863 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 864 "rx skb updated. len %d. data_len %d\n", 865 skb->len, skb->data_len); 866 867 rx_info->page = NULL; 868 *next_to_clean = 869 ENA_RX_RING_IDX_NEXT(*next_to_clean, 870 rx_ring->ring_size); 871 if (likely(--descs == 0)) 872 break; 873 rx_info = &rx_ring->rx_buffer_info[*next_to_clean]; 874 len = ena_bufs[++buf].len; 875 } while (1); 876 877 return skb; 878 } 879 880 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 881 * @adapter: structure containing adapter specific data 882 * @ena_rx_ctx: received packet context/metadata 883 * @skb: skb currently being received and modified 884 */ 885 static inline void ena_rx_checksum(struct ena_ring *rx_ring, 886 struct ena_com_rx_ctx *ena_rx_ctx, 887 struct sk_buff *skb) 888 { 889 /* Rx csum disabled */ 890 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 891 skb->ip_summed = CHECKSUM_NONE; 892 return; 893 } 894 895 /* For fragmented packets the checksum isn't valid */ 896 if (ena_rx_ctx->frag) { 897 skb->ip_summed = CHECKSUM_NONE; 898 return; 899 } 900 901 /* if IP and error */ 902 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 903 (ena_rx_ctx->l3_csum_err))) { 904 /* ipv4 checksum error */ 905 skb->ip_summed = CHECKSUM_NONE; 906 u64_stats_update_begin(&rx_ring->syncp); 907 rx_ring->rx_stats.bad_csum++; 908 u64_stats_update_end(&rx_ring->syncp); 909 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 910 "RX IPv4 header checksum error\n"); 911 return; 912 } 913 914 /* if TCP/UDP */ 915 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 916 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 917 if (unlikely(ena_rx_ctx->l4_csum_err)) { 918 /* TCP/UDP checksum error */ 919 u64_stats_update_begin(&rx_ring->syncp); 920 rx_ring->rx_stats.bad_csum++; 921 u64_stats_update_end(&rx_ring->syncp); 922 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 923 "RX L4 checksum error\n"); 924 skb->ip_summed = CHECKSUM_NONE; 925 return; 926 } 927 928 skb->ip_summed = CHECKSUM_UNNECESSARY; 929 } 930 } 931 932 static void ena_set_rx_hash(struct ena_ring *rx_ring, 933 struct ena_com_rx_ctx *ena_rx_ctx, 934 struct sk_buff *skb) 935 { 936 enum pkt_hash_types hash_type; 937 938 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 939 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 940 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 941 942 hash_type = PKT_HASH_TYPE_L4; 943 else 944 hash_type = PKT_HASH_TYPE_NONE; 945 946 /* Override hash type if the packet is fragmented */ 947 if (ena_rx_ctx->frag) 948 hash_type = PKT_HASH_TYPE_NONE; 949 950 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 951 } 952 } 953 954 /* ena_clean_rx_irq - Cleanup RX irq 955 * @rx_ring: RX ring to clean 956 * @napi: napi handler 957 * @budget: how many packets driver is allowed to clean 958 * 959 * Returns the number of cleaned buffers. 960 */ 961 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 962 u32 budget) 963 { 964 u16 next_to_clean = rx_ring->next_to_clean; 965 u32 res_budget, work_done; 966 967 struct ena_com_rx_ctx ena_rx_ctx; 968 struct ena_adapter *adapter; 969 struct sk_buff *skb; 970 int refill_required; 971 int refill_threshold; 972 int rc = 0; 973 int total_len = 0; 974 int rx_copybreak_pkt = 0; 975 976 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 977 "%s qid %d\n", __func__, rx_ring->qid); 978 res_budget = budget; 979 980 do { 981 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 982 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 983 ena_rx_ctx.descs = 0; 984 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 985 rx_ring->ena_com_io_sq, 986 &ena_rx_ctx); 987 if (unlikely(rc)) 988 goto error; 989 990 if (unlikely(ena_rx_ctx.descs == 0)) 991 break; 992 993 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 994 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 995 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 996 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 997 998 /* allocate skb and fill it */ 999 skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs, 1000 &next_to_clean); 1001 1002 /* exit if we failed to retrieve a buffer */ 1003 if (unlikely(!skb)) { 1004 next_to_clean = ENA_RX_RING_IDX_ADD(next_to_clean, 1005 ena_rx_ctx.descs, 1006 rx_ring->ring_size); 1007 break; 1008 } 1009 1010 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1011 1012 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1013 1014 skb_record_rx_queue(skb, rx_ring->qid); 1015 1016 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) { 1017 total_len += rx_ring->ena_bufs[0].len; 1018 rx_copybreak_pkt++; 1019 napi_gro_receive(napi, skb); 1020 } else { 1021 total_len += skb->len; 1022 napi_gro_frags(napi); 1023 } 1024 1025 res_budget--; 1026 } while (likely(res_budget)); 1027 1028 work_done = budget - res_budget; 1029 rx_ring->per_napi_bytes += total_len; 1030 rx_ring->per_napi_packets += work_done; 1031 u64_stats_update_begin(&rx_ring->syncp); 1032 rx_ring->rx_stats.bytes += total_len; 1033 rx_ring->rx_stats.cnt += work_done; 1034 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1035 u64_stats_update_end(&rx_ring->syncp); 1036 1037 rx_ring->next_to_clean = next_to_clean; 1038 1039 refill_required = ena_com_sq_empty_space(rx_ring->ena_com_io_sq); 1040 refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER; 1041 1042 /* Optimization, try to batch new rx buffers */ 1043 if (refill_required > refill_threshold) { 1044 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1045 ena_refill_rx_bufs(rx_ring, refill_required); 1046 } 1047 1048 return work_done; 1049 1050 error: 1051 adapter = netdev_priv(rx_ring->netdev); 1052 1053 u64_stats_update_begin(&rx_ring->syncp); 1054 rx_ring->rx_stats.bad_desc_num++; 1055 u64_stats_update_end(&rx_ring->syncp); 1056 1057 /* Too many desc from the device. Trigger reset */ 1058 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 1059 1060 return 0; 1061 } 1062 1063 inline void ena_adjust_intr_moderation(struct ena_ring *rx_ring, 1064 struct ena_ring *tx_ring) 1065 { 1066 /* We apply adaptive moderation on Rx path only. 1067 * Tx uses static interrupt moderation. 1068 */ 1069 ena_com_calculate_interrupt_delay(rx_ring->ena_dev, 1070 rx_ring->per_napi_packets, 1071 rx_ring->per_napi_bytes, 1072 &rx_ring->smoothed_interval, 1073 &rx_ring->moder_tbl_idx); 1074 1075 /* Reset per napi packets/bytes */ 1076 tx_ring->per_napi_packets = 0; 1077 tx_ring->per_napi_bytes = 0; 1078 rx_ring->per_napi_packets = 0; 1079 rx_ring->per_napi_bytes = 0; 1080 } 1081 1082 static inline void ena_unmask_interrupt(struct ena_ring *tx_ring, 1083 struct ena_ring *rx_ring) 1084 { 1085 struct ena_eth_io_intr_reg intr_reg; 1086 1087 /* Update intr register: rx intr delay, 1088 * tx intr delay and interrupt unmask 1089 */ 1090 ena_com_update_intr_reg(&intr_reg, 1091 rx_ring->smoothed_interval, 1092 tx_ring->smoothed_interval, 1093 true); 1094 1095 /* It is a shared MSI-X. 1096 * Tx and Rx CQ have pointer to it. 1097 * So we use one of them to reach the intr reg 1098 */ 1099 ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg); 1100 } 1101 1102 static inline void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1103 struct ena_ring *rx_ring) 1104 { 1105 int cpu = get_cpu(); 1106 int numa_node; 1107 1108 /* Check only one ring since the 2 rings are running on the same cpu */ 1109 if (likely(tx_ring->cpu == cpu)) 1110 goto out; 1111 1112 numa_node = cpu_to_node(cpu); 1113 put_cpu(); 1114 1115 if (numa_node != NUMA_NO_NODE) { 1116 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1117 ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node); 1118 } 1119 1120 tx_ring->cpu = cpu; 1121 rx_ring->cpu = cpu; 1122 1123 return; 1124 out: 1125 put_cpu(); 1126 } 1127 1128 static int ena_io_poll(struct napi_struct *napi, int budget) 1129 { 1130 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1131 struct ena_ring *tx_ring, *rx_ring; 1132 1133 u32 tx_work_done; 1134 u32 rx_work_done; 1135 int tx_budget; 1136 int napi_comp_call = 0; 1137 int ret; 1138 1139 tx_ring = ena_napi->tx_ring; 1140 rx_ring = ena_napi->rx_ring; 1141 1142 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1143 1144 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1145 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1146 napi_complete_done(napi, 0); 1147 return 0; 1148 } 1149 1150 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1151 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1152 1153 /* If the device is about to reset or down, avoid unmask 1154 * the interrupt and return 0 so NAPI won't reschedule 1155 */ 1156 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1157 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1158 napi_complete_done(napi, 0); 1159 ret = 0; 1160 1161 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1162 napi_comp_call = 1; 1163 1164 /* Update numa and unmask the interrupt only when schedule 1165 * from the interrupt context (vs from sk_busy_loop) 1166 */ 1167 if (napi_complete_done(napi, rx_work_done)) { 1168 /* Tx and Rx share the same interrupt vector */ 1169 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1170 ena_adjust_intr_moderation(rx_ring, tx_ring); 1171 1172 ena_unmask_interrupt(tx_ring, rx_ring); 1173 } 1174 1175 ena_update_ring_numa_node(tx_ring, rx_ring); 1176 1177 ret = rx_work_done; 1178 } else { 1179 ret = budget; 1180 } 1181 1182 u64_stats_update_begin(&tx_ring->syncp); 1183 tx_ring->tx_stats.napi_comp += napi_comp_call; 1184 tx_ring->tx_stats.tx_poll++; 1185 u64_stats_update_end(&tx_ring->syncp); 1186 1187 return ret; 1188 } 1189 1190 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1191 { 1192 struct ena_adapter *adapter = (struct ena_adapter *)data; 1193 1194 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1195 1196 /* Don't call the aenq handler before probe is done */ 1197 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1198 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1199 1200 return IRQ_HANDLED; 1201 } 1202 1203 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1204 * @irq: interrupt number 1205 * @data: pointer to a network interface private napi device structure 1206 */ 1207 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1208 { 1209 struct ena_napi *ena_napi = data; 1210 1211 napi_schedule(&ena_napi->napi); 1212 1213 return IRQ_HANDLED; 1214 } 1215 1216 static int ena_enable_msix(struct ena_adapter *adapter, int num_queues) 1217 { 1218 int msix_vecs, rc; 1219 1220 /* Reserved the max msix vectors we might need */ 1221 msix_vecs = ENA_MAX_MSIX_VEC(num_queues); 1222 1223 netif_dbg(adapter, probe, adapter->netdev, 1224 "trying to enable MSI-X, vectors %d\n", msix_vecs); 1225 1226 rc = pci_alloc_irq_vectors(adapter->pdev, msix_vecs, msix_vecs, 1227 PCI_IRQ_MSIX); 1228 if (rc < 0) { 1229 netif_err(adapter, probe, adapter->netdev, 1230 "Failed to enable MSI-X, vectors %d rc %d\n", 1231 msix_vecs, rc); 1232 return -ENOSPC; 1233 } 1234 1235 netif_dbg(adapter, probe, adapter->netdev, "enable MSI-X, vectors %d\n", 1236 msix_vecs); 1237 1238 if (msix_vecs >= 1) { 1239 if (ena_init_rx_cpu_rmap(adapter)) 1240 netif_warn(adapter, probe, adapter->netdev, 1241 "Failed to map IRQs to CPUs\n"); 1242 } 1243 1244 adapter->msix_vecs = msix_vecs; 1245 1246 return 0; 1247 } 1248 1249 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1250 { 1251 u32 cpu; 1252 1253 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1254 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1255 pci_name(adapter->pdev)); 1256 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1257 ena_intr_msix_mgmnt; 1258 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1259 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1260 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1261 cpu = cpumask_first(cpu_online_mask); 1262 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1263 cpumask_set_cpu(cpu, 1264 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1265 } 1266 1267 static void ena_setup_io_intr(struct ena_adapter *adapter) 1268 { 1269 struct net_device *netdev; 1270 int irq_idx, i, cpu; 1271 1272 netdev = adapter->netdev; 1273 1274 for (i = 0; i < adapter->num_queues; i++) { 1275 irq_idx = ENA_IO_IRQ_IDX(i); 1276 cpu = i % num_online_cpus(); 1277 1278 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1279 "%s-Tx-Rx-%d", netdev->name, i); 1280 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1281 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1282 adapter->irq_tbl[irq_idx].vector = 1283 pci_irq_vector(adapter->pdev, irq_idx); 1284 adapter->irq_tbl[irq_idx].cpu = cpu; 1285 1286 cpumask_set_cpu(cpu, 1287 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1288 } 1289 } 1290 1291 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1292 { 1293 unsigned long flags = 0; 1294 struct ena_irq *irq; 1295 int rc; 1296 1297 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1298 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1299 irq->data); 1300 if (rc) { 1301 netif_err(adapter, probe, adapter->netdev, 1302 "failed to request admin irq\n"); 1303 return rc; 1304 } 1305 1306 netif_dbg(adapter, probe, adapter->netdev, 1307 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1308 irq->affinity_hint_mask.bits[0], irq->vector); 1309 1310 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1311 1312 return rc; 1313 } 1314 1315 static int ena_request_io_irq(struct ena_adapter *adapter) 1316 { 1317 unsigned long flags = 0; 1318 struct ena_irq *irq; 1319 int rc = 0, i, k; 1320 1321 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 1322 irq = &adapter->irq_tbl[i]; 1323 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1324 irq->data); 1325 if (rc) { 1326 netif_err(adapter, ifup, adapter->netdev, 1327 "Failed to request I/O IRQ. index %d rc %d\n", 1328 i, rc); 1329 goto err; 1330 } 1331 1332 netif_dbg(adapter, ifup, adapter->netdev, 1333 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1334 i, irq->affinity_hint_mask.bits[0], irq->vector); 1335 1336 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1337 } 1338 1339 return rc; 1340 1341 err: 1342 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1343 irq = &adapter->irq_tbl[k]; 1344 free_irq(irq->vector, irq->data); 1345 } 1346 1347 return rc; 1348 } 1349 1350 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1351 { 1352 struct ena_irq *irq; 1353 1354 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1355 synchronize_irq(irq->vector); 1356 irq_set_affinity_hint(irq->vector, NULL); 1357 free_irq(irq->vector, irq->data); 1358 } 1359 1360 static void ena_free_io_irq(struct ena_adapter *adapter) 1361 { 1362 struct ena_irq *irq; 1363 int i; 1364 1365 #ifdef CONFIG_RFS_ACCEL 1366 if (adapter->msix_vecs >= 1) { 1367 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 1368 adapter->netdev->rx_cpu_rmap = NULL; 1369 } 1370 #endif /* CONFIG_RFS_ACCEL */ 1371 1372 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 1373 irq = &adapter->irq_tbl[i]; 1374 irq_set_affinity_hint(irq->vector, NULL); 1375 free_irq(irq->vector, irq->data); 1376 } 1377 } 1378 1379 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1380 { 1381 int i; 1382 1383 if (!netif_running(adapter->netdev)) 1384 return; 1385 1386 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) 1387 synchronize_irq(adapter->irq_tbl[i].vector); 1388 } 1389 1390 static void ena_del_napi(struct ena_adapter *adapter) 1391 { 1392 int i; 1393 1394 for (i = 0; i < adapter->num_queues; i++) 1395 netif_napi_del(&adapter->ena_napi[i].napi); 1396 } 1397 1398 static void ena_init_napi(struct ena_adapter *adapter) 1399 { 1400 struct ena_napi *napi; 1401 int i; 1402 1403 for (i = 0; i < adapter->num_queues; i++) { 1404 napi = &adapter->ena_napi[i]; 1405 1406 netif_napi_add(adapter->netdev, 1407 &adapter->ena_napi[i].napi, 1408 ena_io_poll, 1409 ENA_NAPI_BUDGET); 1410 napi->rx_ring = &adapter->rx_ring[i]; 1411 napi->tx_ring = &adapter->tx_ring[i]; 1412 napi->qid = i; 1413 } 1414 } 1415 1416 static void ena_napi_disable_all(struct ena_adapter *adapter) 1417 { 1418 int i; 1419 1420 for (i = 0; i < adapter->num_queues; i++) 1421 napi_disable(&adapter->ena_napi[i].napi); 1422 } 1423 1424 static void ena_napi_enable_all(struct ena_adapter *adapter) 1425 { 1426 int i; 1427 1428 for (i = 0; i < adapter->num_queues; i++) 1429 napi_enable(&adapter->ena_napi[i].napi); 1430 } 1431 1432 static void ena_restore_ethtool_params(struct ena_adapter *adapter) 1433 { 1434 adapter->tx_usecs = 0; 1435 adapter->rx_usecs = 0; 1436 adapter->tx_frames = 1; 1437 adapter->rx_frames = 1; 1438 } 1439 1440 /* Configure the Rx forwarding */ 1441 static int ena_rss_configure(struct ena_adapter *adapter) 1442 { 1443 struct ena_com_dev *ena_dev = adapter->ena_dev; 1444 int rc; 1445 1446 /* In case the RSS table wasn't initialized by probe */ 1447 if (!ena_dev->rss.tbl_log_size) { 1448 rc = ena_rss_init_default(adapter); 1449 if (rc && (rc != -EPERM)) { 1450 netif_err(adapter, ifup, adapter->netdev, 1451 "Failed to init RSS rc: %d\n", rc); 1452 return rc; 1453 } 1454 } 1455 1456 /* Set indirect table */ 1457 rc = ena_com_indirect_table_set(ena_dev); 1458 if (unlikely(rc && rc != -EPERM)) 1459 return rc; 1460 1461 /* Configure hash function (if supported) */ 1462 rc = ena_com_set_hash_function(ena_dev); 1463 if (unlikely(rc && (rc != -EPERM))) 1464 return rc; 1465 1466 /* Configure hash inputs (if supported) */ 1467 rc = ena_com_set_hash_ctrl(ena_dev); 1468 if (unlikely(rc && (rc != -EPERM))) 1469 return rc; 1470 1471 return 0; 1472 } 1473 1474 static int ena_up_complete(struct ena_adapter *adapter) 1475 { 1476 int rc, i; 1477 1478 rc = ena_rss_configure(adapter); 1479 if (rc) 1480 return rc; 1481 1482 ena_init_napi(adapter); 1483 1484 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1485 1486 ena_refill_all_rx_bufs(adapter); 1487 1488 /* enable transmits */ 1489 netif_tx_start_all_queues(adapter->netdev); 1490 1491 ena_restore_ethtool_params(adapter); 1492 1493 ena_napi_enable_all(adapter); 1494 1495 /* Enable completion queues interrupt */ 1496 for (i = 0; i < adapter->num_queues; i++) 1497 ena_unmask_interrupt(&adapter->tx_ring[i], 1498 &adapter->rx_ring[i]); 1499 1500 /* schedule napi in case we had pending packets 1501 * from the last time we disable napi 1502 */ 1503 for (i = 0; i < adapter->num_queues; i++) 1504 napi_schedule(&adapter->ena_napi[i].napi); 1505 1506 return 0; 1507 } 1508 1509 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1510 { 1511 struct ena_com_create_io_ctx ctx = { 0 }; 1512 struct ena_com_dev *ena_dev; 1513 struct ena_ring *tx_ring; 1514 u32 msix_vector; 1515 u16 ena_qid; 1516 int rc; 1517 1518 ena_dev = adapter->ena_dev; 1519 1520 tx_ring = &adapter->tx_ring[qid]; 1521 msix_vector = ENA_IO_IRQ_IDX(qid); 1522 ena_qid = ENA_IO_TXQ_IDX(qid); 1523 1524 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1525 ctx.qid = ena_qid; 1526 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1527 ctx.msix_vector = msix_vector; 1528 ctx.queue_size = adapter->tx_ring_size; 1529 ctx.numa_node = cpu_to_node(tx_ring->cpu); 1530 1531 rc = ena_com_create_io_queue(ena_dev, &ctx); 1532 if (rc) { 1533 netif_err(adapter, ifup, adapter->netdev, 1534 "Failed to create I/O TX queue num %d rc: %d\n", 1535 qid, rc); 1536 return rc; 1537 } 1538 1539 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1540 &tx_ring->ena_com_io_sq, 1541 &tx_ring->ena_com_io_cq); 1542 if (rc) { 1543 netif_err(adapter, ifup, adapter->netdev, 1544 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1545 qid, rc); 1546 ena_com_destroy_io_queue(ena_dev, ena_qid); 1547 return rc; 1548 } 1549 1550 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1551 return rc; 1552 } 1553 1554 static int ena_create_all_io_tx_queues(struct ena_adapter *adapter) 1555 { 1556 struct ena_com_dev *ena_dev = adapter->ena_dev; 1557 int rc, i; 1558 1559 for (i = 0; i < adapter->num_queues; i++) { 1560 rc = ena_create_io_tx_queue(adapter, i); 1561 if (rc) 1562 goto create_err; 1563 } 1564 1565 return 0; 1566 1567 create_err: 1568 while (i--) 1569 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1570 1571 return rc; 1572 } 1573 1574 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1575 { 1576 struct ena_com_dev *ena_dev; 1577 struct ena_com_create_io_ctx ctx = { 0 }; 1578 struct ena_ring *rx_ring; 1579 u32 msix_vector; 1580 u16 ena_qid; 1581 int rc; 1582 1583 ena_dev = adapter->ena_dev; 1584 1585 rx_ring = &adapter->rx_ring[qid]; 1586 msix_vector = ENA_IO_IRQ_IDX(qid); 1587 ena_qid = ENA_IO_RXQ_IDX(qid); 1588 1589 ctx.qid = ena_qid; 1590 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1591 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1592 ctx.msix_vector = msix_vector; 1593 ctx.queue_size = adapter->rx_ring_size; 1594 ctx.numa_node = cpu_to_node(rx_ring->cpu); 1595 1596 rc = ena_com_create_io_queue(ena_dev, &ctx); 1597 if (rc) { 1598 netif_err(adapter, ifup, adapter->netdev, 1599 "Failed to create I/O RX queue num %d rc: %d\n", 1600 qid, rc); 1601 return rc; 1602 } 1603 1604 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1605 &rx_ring->ena_com_io_sq, 1606 &rx_ring->ena_com_io_cq); 1607 if (rc) { 1608 netif_err(adapter, ifup, adapter->netdev, 1609 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1610 qid, rc); 1611 ena_com_destroy_io_queue(ena_dev, ena_qid); 1612 return rc; 1613 } 1614 1615 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 1616 1617 return rc; 1618 } 1619 1620 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 1621 { 1622 struct ena_com_dev *ena_dev = adapter->ena_dev; 1623 int rc, i; 1624 1625 for (i = 0; i < adapter->num_queues; i++) { 1626 rc = ena_create_io_rx_queue(adapter, i); 1627 if (rc) 1628 goto create_err; 1629 } 1630 1631 return 0; 1632 1633 create_err: 1634 while (i--) 1635 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 1636 1637 return rc; 1638 } 1639 1640 static int ena_up(struct ena_adapter *adapter) 1641 { 1642 int rc; 1643 1644 netdev_dbg(adapter->netdev, "%s\n", __func__); 1645 1646 ena_setup_io_intr(adapter); 1647 1648 rc = ena_request_io_irq(adapter); 1649 if (rc) 1650 goto err_req_irq; 1651 1652 /* allocate transmit descriptors */ 1653 rc = ena_setup_all_tx_resources(adapter); 1654 if (rc) 1655 goto err_setup_tx; 1656 1657 /* allocate receive descriptors */ 1658 rc = ena_setup_all_rx_resources(adapter); 1659 if (rc) 1660 goto err_setup_rx; 1661 1662 /* Create TX queues */ 1663 rc = ena_create_all_io_tx_queues(adapter); 1664 if (rc) 1665 goto err_create_tx_queues; 1666 1667 /* Create RX queues */ 1668 rc = ena_create_all_io_rx_queues(adapter); 1669 if (rc) 1670 goto err_create_rx_queues; 1671 1672 rc = ena_up_complete(adapter); 1673 if (rc) 1674 goto err_up; 1675 1676 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 1677 netif_carrier_on(adapter->netdev); 1678 1679 u64_stats_update_begin(&adapter->syncp); 1680 adapter->dev_stats.interface_up++; 1681 u64_stats_update_end(&adapter->syncp); 1682 1683 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 1684 1685 return rc; 1686 1687 err_up: 1688 ena_destroy_all_rx_queues(adapter); 1689 err_create_rx_queues: 1690 ena_destroy_all_tx_queues(adapter); 1691 err_create_tx_queues: 1692 ena_free_all_io_rx_resources(adapter); 1693 err_setup_rx: 1694 ena_free_all_io_tx_resources(adapter); 1695 err_setup_tx: 1696 ena_free_io_irq(adapter); 1697 err_req_irq: 1698 1699 return rc; 1700 } 1701 1702 static void ena_down(struct ena_adapter *adapter) 1703 { 1704 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 1705 1706 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 1707 1708 u64_stats_update_begin(&adapter->syncp); 1709 adapter->dev_stats.interface_down++; 1710 u64_stats_update_end(&adapter->syncp); 1711 1712 netif_carrier_off(adapter->netdev); 1713 netif_tx_disable(adapter->netdev); 1714 1715 /* After this point the napi handler won't enable the tx queue */ 1716 ena_napi_disable_all(adapter); 1717 1718 /* After destroy the queue there won't be any new interrupts */ 1719 1720 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 1721 int rc; 1722 1723 rc = ena_com_dev_reset(adapter->ena_dev); 1724 if (rc) 1725 dev_err(&adapter->pdev->dev, "Device reset failed\n"); 1726 } 1727 1728 ena_destroy_all_io_queues(adapter); 1729 1730 ena_disable_io_intr_sync(adapter); 1731 ena_free_io_irq(adapter); 1732 ena_del_napi(adapter); 1733 1734 ena_free_all_tx_bufs(adapter); 1735 ena_free_all_rx_bufs(adapter); 1736 ena_free_all_io_tx_resources(adapter); 1737 ena_free_all_io_rx_resources(adapter); 1738 } 1739 1740 /* ena_open - Called when a network interface is made active 1741 * @netdev: network interface device structure 1742 * 1743 * Returns 0 on success, negative value on failure 1744 * 1745 * The open entry point is called when a network interface is made 1746 * active by the system (IFF_UP). At this point all resources needed 1747 * for transmit and receive operations are allocated, the interrupt 1748 * handler is registered with the OS, the watchdog timer is started, 1749 * and the stack is notified that the interface is ready. 1750 */ 1751 static int ena_open(struct net_device *netdev) 1752 { 1753 struct ena_adapter *adapter = netdev_priv(netdev); 1754 int rc; 1755 1756 /* Notify the stack of the actual queue counts. */ 1757 rc = netif_set_real_num_tx_queues(netdev, adapter->num_queues); 1758 if (rc) { 1759 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 1760 return rc; 1761 } 1762 1763 rc = netif_set_real_num_rx_queues(netdev, adapter->num_queues); 1764 if (rc) { 1765 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 1766 return rc; 1767 } 1768 1769 rc = ena_up(adapter); 1770 if (rc) 1771 return rc; 1772 1773 return rc; 1774 } 1775 1776 /* ena_close - Disables a network interface 1777 * @netdev: network interface device structure 1778 * 1779 * Returns 0, this is not allowed to fail 1780 * 1781 * The close entry point is called when an interface is de-activated 1782 * by the OS. The hardware is still under the drivers control, but 1783 * needs to be disabled. A global MAC reset is issued to stop the 1784 * hardware, and all transmit and receive resources are freed. 1785 */ 1786 static int ena_close(struct net_device *netdev) 1787 { 1788 struct ena_adapter *adapter = netdev_priv(netdev); 1789 1790 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 1791 1792 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 1793 ena_down(adapter); 1794 1795 return 0; 1796 } 1797 1798 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb) 1799 { 1800 u32 mss = skb_shinfo(skb)->gso_size; 1801 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 1802 u8 l4_protocol = 0; 1803 1804 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 1805 ena_tx_ctx->l4_csum_enable = 1; 1806 if (mss) { 1807 ena_tx_ctx->tso_enable = 1; 1808 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 1809 ena_tx_ctx->l4_csum_partial = 0; 1810 } else { 1811 ena_tx_ctx->tso_enable = 0; 1812 ena_meta->l4_hdr_len = 0; 1813 ena_tx_ctx->l4_csum_partial = 1; 1814 } 1815 1816 switch (ip_hdr(skb)->version) { 1817 case IPVERSION: 1818 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 1819 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 1820 ena_tx_ctx->df = 1; 1821 if (mss) 1822 ena_tx_ctx->l3_csum_enable = 1; 1823 l4_protocol = ip_hdr(skb)->protocol; 1824 break; 1825 case 6: 1826 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 1827 l4_protocol = ipv6_hdr(skb)->nexthdr; 1828 break; 1829 default: 1830 break; 1831 } 1832 1833 if (l4_protocol == IPPROTO_TCP) 1834 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 1835 else 1836 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 1837 1838 ena_meta->mss = mss; 1839 ena_meta->l3_hdr_len = skb_network_header_len(skb); 1840 ena_meta->l3_hdr_offset = skb_network_offset(skb); 1841 ena_tx_ctx->meta_valid = 1; 1842 1843 } else { 1844 ena_tx_ctx->meta_valid = 0; 1845 } 1846 } 1847 1848 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 1849 struct sk_buff *skb) 1850 { 1851 int num_frags, header_len, rc; 1852 1853 num_frags = skb_shinfo(skb)->nr_frags; 1854 header_len = skb_headlen(skb); 1855 1856 if (num_frags < tx_ring->sgl_size) 1857 return 0; 1858 1859 if ((num_frags == tx_ring->sgl_size) && 1860 (header_len < tx_ring->tx_max_header_size)) 1861 return 0; 1862 1863 u64_stats_update_begin(&tx_ring->syncp); 1864 tx_ring->tx_stats.linearize++; 1865 u64_stats_update_end(&tx_ring->syncp); 1866 1867 rc = skb_linearize(skb); 1868 if (unlikely(rc)) { 1869 u64_stats_update_begin(&tx_ring->syncp); 1870 tx_ring->tx_stats.linearize_failed++; 1871 u64_stats_update_end(&tx_ring->syncp); 1872 } 1873 1874 return rc; 1875 } 1876 1877 /* Called with netif_tx_lock. */ 1878 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 1879 { 1880 struct ena_adapter *adapter = netdev_priv(dev); 1881 struct ena_tx_buffer *tx_info; 1882 struct ena_com_tx_ctx ena_tx_ctx; 1883 struct ena_ring *tx_ring; 1884 struct netdev_queue *txq; 1885 struct ena_com_buf *ena_buf; 1886 void *push_hdr; 1887 u32 len, last_frag; 1888 u16 next_to_use; 1889 u16 req_id; 1890 u16 push_len; 1891 u16 header_len; 1892 dma_addr_t dma; 1893 int qid, rc, nb_hw_desc; 1894 int i = -1; 1895 1896 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 1897 /* Determine which tx ring we will be placed on */ 1898 qid = skb_get_queue_mapping(skb); 1899 tx_ring = &adapter->tx_ring[qid]; 1900 txq = netdev_get_tx_queue(dev, qid); 1901 1902 rc = ena_check_and_linearize_skb(tx_ring, skb); 1903 if (unlikely(rc)) 1904 goto error_drop_packet; 1905 1906 skb_tx_timestamp(skb); 1907 len = skb_headlen(skb); 1908 1909 next_to_use = tx_ring->next_to_use; 1910 req_id = tx_ring->free_tx_ids[next_to_use]; 1911 tx_info = &tx_ring->tx_buffer_info[req_id]; 1912 tx_info->num_of_bufs = 0; 1913 1914 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 1915 ena_buf = tx_info->bufs; 1916 tx_info->skb = skb; 1917 1918 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 1919 /* prepared the push buffer */ 1920 push_len = min_t(u32, len, tx_ring->tx_max_header_size); 1921 header_len = push_len; 1922 push_hdr = skb->data; 1923 } else { 1924 push_len = 0; 1925 header_len = min_t(u32, len, tx_ring->tx_max_header_size); 1926 push_hdr = NULL; 1927 } 1928 1929 netif_dbg(adapter, tx_queued, dev, 1930 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 1931 push_hdr, push_len); 1932 1933 if (len > push_len) { 1934 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 1935 len - push_len, DMA_TO_DEVICE); 1936 if (dma_mapping_error(tx_ring->dev, dma)) 1937 goto error_report_dma_error; 1938 1939 ena_buf->paddr = dma; 1940 ena_buf->len = len - push_len; 1941 1942 ena_buf++; 1943 tx_info->num_of_bufs++; 1944 } 1945 1946 last_frag = skb_shinfo(skb)->nr_frags; 1947 1948 for (i = 0; i < last_frag; i++) { 1949 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1950 1951 len = skb_frag_size(frag); 1952 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len, 1953 DMA_TO_DEVICE); 1954 if (dma_mapping_error(tx_ring->dev, dma)) 1955 goto error_report_dma_error; 1956 1957 ena_buf->paddr = dma; 1958 ena_buf->len = len; 1959 ena_buf++; 1960 } 1961 1962 tx_info->num_of_bufs += last_frag; 1963 1964 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 1965 ena_tx_ctx.ena_bufs = tx_info->bufs; 1966 ena_tx_ctx.push_header = push_hdr; 1967 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 1968 ena_tx_ctx.req_id = req_id; 1969 ena_tx_ctx.header_len = header_len; 1970 1971 /* set flags and meta data */ 1972 ena_tx_csum(&ena_tx_ctx, skb); 1973 1974 /* prepare the packet's descriptors to dma engine */ 1975 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx, 1976 &nb_hw_desc); 1977 1978 if (unlikely(rc)) { 1979 netif_err(adapter, tx_queued, dev, 1980 "failed to prepare tx bufs\n"); 1981 u64_stats_update_begin(&tx_ring->syncp); 1982 tx_ring->tx_stats.queue_stop++; 1983 tx_ring->tx_stats.prepare_ctx_err++; 1984 u64_stats_update_end(&tx_ring->syncp); 1985 netif_tx_stop_queue(txq); 1986 goto error_unmap_dma; 1987 } 1988 1989 netdev_tx_sent_queue(txq, skb->len); 1990 1991 u64_stats_update_begin(&tx_ring->syncp); 1992 tx_ring->tx_stats.cnt++; 1993 tx_ring->tx_stats.bytes += skb->len; 1994 u64_stats_update_end(&tx_ring->syncp); 1995 1996 tx_info->tx_descs = nb_hw_desc; 1997 tx_info->last_jiffies = jiffies; 1998 tx_info->print_once = 0; 1999 2000 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 2001 tx_ring->ring_size); 2002 2003 /* This WMB is aimed to: 2004 * 1 - perform smp barrier before reading next_to_completion 2005 * 2 - make sure the desc were written before trigger DB 2006 */ 2007 wmb(); 2008 2009 /* stop the queue when no more space available, the packet can have up 2010 * to sgl_size + 2. one for the meta descriptor and one for header 2011 * (if the header is larger than tx_max_header_size). 2012 */ 2013 if (unlikely(ena_com_sq_empty_space(tx_ring->ena_com_io_sq) < 2014 (tx_ring->sgl_size + 2))) { 2015 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2016 __func__, qid); 2017 2018 netif_tx_stop_queue(txq); 2019 u64_stats_update_begin(&tx_ring->syncp); 2020 tx_ring->tx_stats.queue_stop++; 2021 u64_stats_update_end(&tx_ring->syncp); 2022 2023 /* There is a rare condition where this function decide to 2024 * stop the queue but meanwhile clean_tx_irq updates 2025 * next_to_completion and terminates. 2026 * The queue will remain stopped forever. 2027 * To solve this issue this function perform rmb, check 2028 * the wakeup condition and wake up the queue if needed. 2029 */ 2030 smp_rmb(); 2031 2032 if (ena_com_sq_empty_space(tx_ring->ena_com_io_sq) 2033 > ENA_TX_WAKEUP_THRESH) { 2034 netif_tx_wake_queue(txq); 2035 u64_stats_update_begin(&tx_ring->syncp); 2036 tx_ring->tx_stats.queue_wakeup++; 2037 u64_stats_update_end(&tx_ring->syncp); 2038 } 2039 } 2040 2041 if (netif_xmit_stopped(txq) || !skb->xmit_more) { 2042 /* trigger the dma engine */ 2043 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 2044 u64_stats_update_begin(&tx_ring->syncp); 2045 tx_ring->tx_stats.doorbells++; 2046 u64_stats_update_end(&tx_ring->syncp); 2047 } 2048 2049 return NETDEV_TX_OK; 2050 2051 error_report_dma_error: 2052 u64_stats_update_begin(&tx_ring->syncp); 2053 tx_ring->tx_stats.dma_mapping_err++; 2054 u64_stats_update_end(&tx_ring->syncp); 2055 netdev_warn(adapter->netdev, "failed to map skb\n"); 2056 2057 tx_info->skb = NULL; 2058 2059 error_unmap_dma: 2060 if (i >= 0) { 2061 /* save value of frag that failed */ 2062 last_frag = i; 2063 2064 /* start back at beginning and unmap skb */ 2065 tx_info->skb = NULL; 2066 ena_buf = tx_info->bufs; 2067 dma_unmap_single(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 2068 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 2069 2070 /* unmap remaining mapped pages */ 2071 for (i = 0; i < last_frag; i++) { 2072 ena_buf++; 2073 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 2074 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 2075 } 2076 } 2077 2078 error_drop_packet: 2079 2080 dev_kfree_skb(skb); 2081 return NETDEV_TX_OK; 2082 } 2083 2084 #ifdef CONFIG_NET_POLL_CONTROLLER 2085 static void ena_netpoll(struct net_device *netdev) 2086 { 2087 struct ena_adapter *adapter = netdev_priv(netdev); 2088 int i; 2089 2090 /* Dont schedule NAPI if the driver is in the middle of reset 2091 * or netdev is down. 2092 */ 2093 2094 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags) || 2095 test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 2096 return; 2097 2098 for (i = 0; i < adapter->num_queues; i++) 2099 napi_schedule(&adapter->ena_napi[i].napi); 2100 } 2101 #endif /* CONFIG_NET_POLL_CONTROLLER */ 2102 2103 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 2104 void *accel_priv, select_queue_fallback_t fallback) 2105 { 2106 u16 qid; 2107 /* we suspect that this is good for in--kernel network services that 2108 * want to loop incoming skb rx to tx in normal user generated traffic, 2109 * most probably we will not get to this 2110 */ 2111 if (skb_rx_queue_recorded(skb)) 2112 qid = skb_get_rx_queue(skb); 2113 else 2114 qid = fallback(dev, skb); 2115 2116 return qid; 2117 } 2118 2119 static void ena_config_host_info(struct ena_com_dev *ena_dev) 2120 { 2121 struct ena_admin_host_info *host_info; 2122 int rc; 2123 2124 /* Allocate only the host info */ 2125 rc = ena_com_allocate_host_info(ena_dev); 2126 if (rc) { 2127 pr_err("Cannot allocate host info\n"); 2128 return; 2129 } 2130 2131 host_info = ena_dev->host_attr.host_info; 2132 2133 host_info->os_type = ENA_ADMIN_OS_LINUX; 2134 host_info->kernel_ver = LINUX_VERSION_CODE; 2135 strncpy(host_info->kernel_ver_str, utsname()->version, 2136 sizeof(host_info->kernel_ver_str) - 1); 2137 host_info->os_dist = 0; 2138 strncpy(host_info->os_dist_str, utsname()->release, 2139 sizeof(host_info->os_dist_str) - 1); 2140 host_info->driver_version = 2141 (DRV_MODULE_VER_MAJOR) | 2142 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2143 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); 2144 2145 rc = ena_com_set_host_attributes(ena_dev); 2146 if (rc) { 2147 if (rc == -EPERM) 2148 pr_warn("Cannot set host attributes\n"); 2149 else 2150 pr_err("Cannot set host attributes\n"); 2151 2152 goto err; 2153 } 2154 2155 return; 2156 2157 err: 2158 ena_com_delete_host_info(ena_dev); 2159 } 2160 2161 static void ena_config_debug_area(struct ena_adapter *adapter) 2162 { 2163 u32 debug_area_size; 2164 int rc, ss_count; 2165 2166 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2167 if (ss_count <= 0) { 2168 netif_err(adapter, drv, adapter->netdev, 2169 "SS count is negative\n"); 2170 return; 2171 } 2172 2173 /* allocate 32 bytes for each string and 64bit for the value */ 2174 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2175 2176 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2177 if (rc) { 2178 pr_err("Cannot allocate debug area\n"); 2179 return; 2180 } 2181 2182 rc = ena_com_set_host_attributes(adapter->ena_dev); 2183 if (rc) { 2184 if (rc == -EPERM) 2185 netif_warn(adapter, drv, adapter->netdev, 2186 "Cannot set host attributes\n"); 2187 else 2188 netif_err(adapter, drv, adapter->netdev, 2189 "Cannot set host attributes\n"); 2190 goto err; 2191 } 2192 2193 return; 2194 err: 2195 ena_com_delete_debug_area(adapter->ena_dev); 2196 } 2197 2198 static void ena_get_stats64(struct net_device *netdev, 2199 struct rtnl_link_stats64 *stats) 2200 { 2201 struct ena_adapter *adapter = netdev_priv(netdev); 2202 struct ena_ring *rx_ring, *tx_ring; 2203 unsigned int start; 2204 u64 rx_drops; 2205 int i; 2206 2207 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2208 return; 2209 2210 for (i = 0; i < adapter->num_queues; i++) { 2211 u64 bytes, packets; 2212 2213 tx_ring = &adapter->tx_ring[i]; 2214 2215 do { 2216 start = u64_stats_fetch_begin_irq(&tx_ring->syncp); 2217 packets = tx_ring->tx_stats.cnt; 2218 bytes = tx_ring->tx_stats.bytes; 2219 } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); 2220 2221 stats->tx_packets += packets; 2222 stats->tx_bytes += bytes; 2223 2224 rx_ring = &adapter->rx_ring[i]; 2225 2226 do { 2227 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 2228 packets = rx_ring->rx_stats.cnt; 2229 bytes = rx_ring->rx_stats.bytes; 2230 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 2231 2232 stats->rx_packets += packets; 2233 stats->rx_bytes += bytes; 2234 } 2235 2236 do { 2237 start = u64_stats_fetch_begin_irq(&adapter->syncp); 2238 rx_drops = adapter->dev_stats.rx_drops; 2239 } while (u64_stats_fetch_retry_irq(&adapter->syncp, start)); 2240 2241 stats->rx_dropped = rx_drops; 2242 2243 stats->multicast = 0; 2244 stats->collisions = 0; 2245 2246 stats->rx_length_errors = 0; 2247 stats->rx_crc_errors = 0; 2248 stats->rx_frame_errors = 0; 2249 stats->rx_fifo_errors = 0; 2250 stats->rx_missed_errors = 0; 2251 stats->tx_window_errors = 0; 2252 2253 stats->rx_errors = 0; 2254 stats->tx_errors = 0; 2255 } 2256 2257 static const struct net_device_ops ena_netdev_ops = { 2258 .ndo_open = ena_open, 2259 .ndo_stop = ena_close, 2260 .ndo_start_xmit = ena_start_xmit, 2261 .ndo_select_queue = ena_select_queue, 2262 .ndo_get_stats64 = ena_get_stats64, 2263 .ndo_tx_timeout = ena_tx_timeout, 2264 .ndo_change_mtu = ena_change_mtu, 2265 .ndo_set_mac_address = NULL, 2266 .ndo_validate_addr = eth_validate_addr, 2267 #ifdef CONFIG_NET_POLL_CONTROLLER 2268 .ndo_poll_controller = ena_netpoll, 2269 #endif /* CONFIG_NET_POLL_CONTROLLER */ 2270 }; 2271 2272 static void ena_device_io_suspend(struct work_struct *work) 2273 { 2274 struct ena_adapter *adapter = 2275 container_of(work, struct ena_adapter, suspend_io_task); 2276 struct net_device *netdev = adapter->netdev; 2277 2278 /* ena_napi_disable_all disables only the IO handling. 2279 * We are still subject to AENQ keep alive watchdog. 2280 */ 2281 u64_stats_update_begin(&adapter->syncp); 2282 adapter->dev_stats.io_suspend++; 2283 u64_stats_update_begin(&adapter->syncp); 2284 ena_napi_disable_all(adapter); 2285 netif_tx_lock(netdev); 2286 netif_device_detach(netdev); 2287 netif_tx_unlock(netdev); 2288 } 2289 2290 static void ena_device_io_resume(struct work_struct *work) 2291 { 2292 struct ena_adapter *adapter = 2293 container_of(work, struct ena_adapter, resume_io_task); 2294 struct net_device *netdev = adapter->netdev; 2295 2296 u64_stats_update_begin(&adapter->syncp); 2297 adapter->dev_stats.io_resume++; 2298 u64_stats_update_end(&adapter->syncp); 2299 2300 netif_device_attach(netdev); 2301 ena_napi_enable_all(adapter); 2302 } 2303 2304 static int ena_device_validate_params(struct ena_adapter *adapter, 2305 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2306 { 2307 struct net_device *netdev = adapter->netdev; 2308 int rc; 2309 2310 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 2311 adapter->mac_addr); 2312 if (!rc) { 2313 netif_err(adapter, drv, netdev, 2314 "Error, mac address are different\n"); 2315 return -EINVAL; 2316 } 2317 2318 if ((get_feat_ctx->max_queues.max_cq_num < adapter->num_queues) || 2319 (get_feat_ctx->max_queues.max_sq_num < adapter->num_queues)) { 2320 netif_err(adapter, drv, netdev, 2321 "Error, device doesn't support enough queues\n"); 2322 return -EINVAL; 2323 } 2324 2325 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 2326 netif_err(adapter, drv, netdev, 2327 "Error, device max mtu is smaller than netdev MTU\n"); 2328 return -EINVAL; 2329 } 2330 2331 return 0; 2332 } 2333 2334 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, 2335 struct ena_com_dev_get_features_ctx *get_feat_ctx, 2336 bool *wd_state) 2337 { 2338 struct device *dev = &pdev->dev; 2339 bool readless_supported; 2340 u32 aenq_groups; 2341 int dma_width; 2342 int rc; 2343 2344 rc = ena_com_mmio_reg_read_request_init(ena_dev); 2345 if (rc) { 2346 dev_err(dev, "failed to init mmio read less\n"); 2347 return rc; 2348 } 2349 2350 /* The PCIe configuration space revision id indicate if mmio reg 2351 * read is disabled 2352 */ 2353 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 2354 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 2355 2356 rc = ena_com_dev_reset(ena_dev); 2357 if (rc) { 2358 dev_err(dev, "Can not reset device\n"); 2359 goto err_mmio_read_less; 2360 } 2361 2362 rc = ena_com_validate_version(ena_dev); 2363 if (rc) { 2364 dev_err(dev, "device version is too low\n"); 2365 goto err_mmio_read_less; 2366 } 2367 2368 dma_width = ena_com_get_dma_width(ena_dev); 2369 if (dma_width < 0) { 2370 dev_err(dev, "Invalid dma width value %d", dma_width); 2371 rc = dma_width; 2372 goto err_mmio_read_less; 2373 } 2374 2375 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 2376 if (rc) { 2377 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc); 2378 goto err_mmio_read_less; 2379 } 2380 2381 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 2382 if (rc) { 2383 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n", 2384 rc); 2385 goto err_mmio_read_less; 2386 } 2387 2388 /* ENA admin level init */ 2389 rc = ena_com_admin_init(ena_dev, &aenq_handlers, true); 2390 if (rc) { 2391 dev_err(dev, 2392 "Can not initialize ena admin queue with device\n"); 2393 goto err_mmio_read_less; 2394 } 2395 2396 /* To enable the msix interrupts the driver needs to know the number 2397 * of queues. So the driver uses polling mode to retrieve this 2398 * information 2399 */ 2400 ena_com_set_admin_polling_mode(ena_dev, true); 2401 2402 ena_config_host_info(ena_dev); 2403 2404 /* Get Device Attributes*/ 2405 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 2406 if (rc) { 2407 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 2408 goto err_admin_init; 2409 } 2410 2411 /* Try to turn all the available aenq groups */ 2412 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 2413 BIT(ENA_ADMIN_FATAL_ERROR) | 2414 BIT(ENA_ADMIN_WARNING) | 2415 BIT(ENA_ADMIN_NOTIFICATION) | 2416 BIT(ENA_ADMIN_KEEP_ALIVE); 2417 2418 aenq_groups &= get_feat_ctx->aenq.supported_groups; 2419 2420 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 2421 if (rc) { 2422 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 2423 goto err_admin_init; 2424 } 2425 2426 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 2427 2428 return 0; 2429 2430 err_admin_init: 2431 ena_com_delete_host_info(ena_dev); 2432 ena_com_admin_destroy(ena_dev); 2433 err_mmio_read_less: 2434 ena_com_mmio_reg_read_request_destroy(ena_dev); 2435 2436 return rc; 2437 } 2438 2439 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter, 2440 int io_vectors) 2441 { 2442 struct ena_com_dev *ena_dev = adapter->ena_dev; 2443 struct device *dev = &adapter->pdev->dev; 2444 int rc; 2445 2446 rc = ena_enable_msix(adapter, io_vectors); 2447 if (rc) { 2448 dev_err(dev, "Can not reserve msix vectors\n"); 2449 return rc; 2450 } 2451 2452 ena_setup_mgmnt_intr(adapter); 2453 2454 rc = ena_request_mgmnt_irq(adapter); 2455 if (rc) { 2456 dev_err(dev, "Can not setup management interrupts\n"); 2457 goto err_disable_msix; 2458 } 2459 2460 ena_com_set_admin_polling_mode(ena_dev, false); 2461 2462 ena_com_admin_aenq_enable(ena_dev); 2463 2464 return 0; 2465 2466 err_disable_msix: 2467 pci_free_irq_vectors(adapter->pdev); 2468 return rc; 2469 } 2470 2471 static void ena_fw_reset_device(struct work_struct *work) 2472 { 2473 struct ena_com_dev_get_features_ctx get_feat_ctx; 2474 struct ena_adapter *adapter = 2475 container_of(work, struct ena_adapter, reset_task); 2476 struct net_device *netdev = adapter->netdev; 2477 struct ena_com_dev *ena_dev = adapter->ena_dev; 2478 struct pci_dev *pdev = adapter->pdev; 2479 bool dev_up, wd_state; 2480 int rc; 2481 2482 if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2483 dev_err(&pdev->dev, 2484 "device reset schedule while reset bit is off\n"); 2485 return; 2486 } 2487 2488 netif_carrier_off(netdev); 2489 2490 del_timer_sync(&adapter->timer_service); 2491 2492 rtnl_lock(); 2493 2494 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2495 ena_com_set_admin_running_state(ena_dev, false); 2496 2497 /* After calling ena_close the tx queues and the napi 2498 * are disabled so no one can interfere or touch the 2499 * data structures 2500 */ 2501 ena_close(netdev); 2502 2503 ena_free_mgmnt_irq(adapter); 2504 2505 pci_free_irq_vectors(adapter->pdev); 2506 2507 ena_com_abort_admin_commands(ena_dev); 2508 2509 ena_com_wait_for_abort_completion(ena_dev); 2510 2511 ena_com_admin_destroy(ena_dev); 2512 2513 ena_com_mmio_reg_read_request_destroy(ena_dev); 2514 2515 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2516 2517 /* Finish with the destroy part. Start the init part */ 2518 2519 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state); 2520 if (rc) { 2521 dev_err(&pdev->dev, "Can not initialize device\n"); 2522 goto err; 2523 } 2524 adapter->wd_state = wd_state; 2525 2526 rc = ena_device_validate_params(adapter, &get_feat_ctx); 2527 if (rc) { 2528 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 2529 goto err_device_destroy; 2530 } 2531 2532 rc = ena_enable_msix_and_set_admin_interrupts(adapter, 2533 adapter->num_queues); 2534 if (rc) { 2535 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 2536 goto err_device_destroy; 2537 } 2538 /* If the interface was up before the reset bring it up */ 2539 if (dev_up) { 2540 rc = ena_up(adapter); 2541 if (rc) { 2542 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 2543 goto err_disable_msix; 2544 } 2545 } 2546 2547 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 2548 2549 rtnl_unlock(); 2550 2551 dev_err(&pdev->dev, "Device reset completed successfully\n"); 2552 2553 return; 2554 err_disable_msix: 2555 ena_free_mgmnt_irq(adapter); 2556 pci_free_irq_vectors(adapter->pdev); 2557 err_device_destroy: 2558 ena_com_admin_destroy(ena_dev); 2559 err: 2560 rtnl_unlock(); 2561 2562 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 2563 2564 dev_err(&pdev->dev, 2565 "Reset attempt failed. Can not reset the device\n"); 2566 } 2567 2568 static int check_missing_comp_in_queue(struct ena_adapter *adapter, 2569 struct ena_ring *tx_ring) 2570 { 2571 struct ena_tx_buffer *tx_buf; 2572 unsigned long last_jiffies; 2573 u32 missed_tx = 0; 2574 int i; 2575 2576 for (i = 0; i < tx_ring->ring_size; i++) { 2577 tx_buf = &tx_ring->tx_buffer_info[i]; 2578 last_jiffies = tx_buf->last_jiffies; 2579 if (unlikely(last_jiffies && 2580 time_is_before_jiffies(last_jiffies + TX_TIMEOUT))) { 2581 if (!tx_buf->print_once) 2582 netif_notice(adapter, tx_err, adapter->netdev, 2583 "Found a Tx that wasn't completed on time, qid %d, index %d.\n", 2584 tx_ring->qid, i); 2585 2586 tx_buf->print_once = 1; 2587 missed_tx++; 2588 2589 if (unlikely(missed_tx > MAX_NUM_OF_TIMEOUTED_PACKETS)) { 2590 netif_err(adapter, tx_err, adapter->netdev, 2591 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 2592 missed_tx, MAX_NUM_OF_TIMEOUTED_PACKETS); 2593 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2594 return -EIO; 2595 } 2596 } 2597 } 2598 2599 return 0; 2600 } 2601 2602 static void check_for_missing_tx_completions(struct ena_adapter *adapter) 2603 { 2604 struct ena_ring *tx_ring; 2605 int i, budget, rc; 2606 2607 /* Make sure the driver doesn't turn the device in other process */ 2608 smp_rmb(); 2609 2610 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2611 return; 2612 2613 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 2614 return; 2615 2616 budget = ENA_MONITORED_TX_QUEUES; 2617 2618 for (i = adapter->last_monitored_tx_qid; i < adapter->num_queues; i++) { 2619 tx_ring = &adapter->tx_ring[i]; 2620 2621 rc = check_missing_comp_in_queue(adapter, tx_ring); 2622 if (unlikely(rc)) 2623 return; 2624 2625 budget--; 2626 if (!budget) 2627 break; 2628 } 2629 2630 adapter->last_monitored_tx_qid = i % adapter->num_queues; 2631 } 2632 2633 /* trigger napi schedule after 2 consecutive detections */ 2634 #define EMPTY_RX_REFILL 2 2635 /* For the rare case where the device runs out of Rx descriptors and the 2636 * napi handler failed to refill new Rx descriptors (due to a lack of memory 2637 * for example). 2638 * This case will lead to a deadlock: 2639 * The device won't send interrupts since all the new Rx packets will be dropped 2640 * The napi handler won't allocate new Rx descriptors so the device will be 2641 * able to send new packets. 2642 * 2643 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 2644 * It is recommended to have at least 512MB, with a minimum of 128MB for 2645 * constrained environment). 2646 * 2647 * When such a situation is detected - Reschedule napi 2648 */ 2649 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 2650 { 2651 struct ena_ring *rx_ring; 2652 int i, refill_required; 2653 2654 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2655 return; 2656 2657 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 2658 return; 2659 2660 for (i = 0; i < adapter->num_queues; i++) { 2661 rx_ring = &adapter->rx_ring[i]; 2662 2663 refill_required = 2664 ena_com_sq_empty_space(rx_ring->ena_com_io_sq); 2665 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 2666 rx_ring->empty_rx_queue++; 2667 2668 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 2669 u64_stats_update_begin(&rx_ring->syncp); 2670 rx_ring->rx_stats.empty_rx_ring++; 2671 u64_stats_update_end(&rx_ring->syncp); 2672 2673 netif_err(adapter, drv, adapter->netdev, 2674 "trigger refill for ring %d\n", i); 2675 2676 napi_schedule(rx_ring->napi); 2677 rx_ring->empty_rx_queue = 0; 2678 } 2679 } else { 2680 rx_ring->empty_rx_queue = 0; 2681 } 2682 } 2683 } 2684 2685 /* Check for keep alive expiration */ 2686 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 2687 { 2688 unsigned long keep_alive_expired; 2689 2690 if (!adapter->wd_state) 2691 return; 2692 2693 keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies 2694 + ENA_DEVICE_KALIVE_TIMEOUT); 2695 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 2696 netif_err(adapter, drv, adapter->netdev, 2697 "Keep alive watchdog timeout.\n"); 2698 u64_stats_update_begin(&adapter->syncp); 2699 adapter->dev_stats.wd_expired++; 2700 u64_stats_update_end(&adapter->syncp); 2701 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2702 } 2703 } 2704 2705 static void check_for_admin_com_state(struct ena_adapter *adapter) 2706 { 2707 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 2708 netif_err(adapter, drv, adapter->netdev, 2709 "ENA admin queue is not in running state!\n"); 2710 u64_stats_update_begin(&adapter->syncp); 2711 adapter->dev_stats.admin_q_pause++; 2712 u64_stats_update_end(&adapter->syncp); 2713 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2714 } 2715 } 2716 2717 static void ena_update_host_info(struct ena_admin_host_info *host_info, 2718 struct net_device *netdev) 2719 { 2720 host_info->supported_network_features[0] = 2721 netdev->features & GENMASK_ULL(31, 0); 2722 host_info->supported_network_features[1] = 2723 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 2724 } 2725 2726 static void ena_timer_service(unsigned long data) 2727 { 2728 struct ena_adapter *adapter = (struct ena_adapter *)data; 2729 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 2730 struct ena_admin_host_info *host_info = 2731 adapter->ena_dev->host_attr.host_info; 2732 2733 check_for_missing_keep_alive(adapter); 2734 2735 check_for_admin_com_state(adapter); 2736 2737 check_for_missing_tx_completions(adapter); 2738 2739 check_for_empty_rx_ring(adapter); 2740 2741 if (debug_area) 2742 ena_dump_stats_to_buf(adapter, debug_area); 2743 2744 if (host_info) 2745 ena_update_host_info(host_info, adapter->netdev); 2746 2747 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2748 netif_err(adapter, drv, adapter->netdev, 2749 "Trigger reset is on\n"); 2750 ena_dump_stats_to_dmesg(adapter); 2751 queue_work(ena_wq, &adapter->reset_task); 2752 return; 2753 } 2754 2755 /* Reset the timer */ 2756 mod_timer(&adapter->timer_service, jiffies + HZ); 2757 } 2758 2759 static int ena_calc_io_queue_num(struct pci_dev *pdev, 2760 struct ena_com_dev *ena_dev, 2761 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2762 { 2763 int io_sq_num, io_queue_num; 2764 2765 /* In case of LLQ use the llq number in the get feature cmd */ 2766 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2767 io_sq_num = get_feat_ctx->max_queues.max_llq_num; 2768 2769 if (io_sq_num == 0) { 2770 dev_err(&pdev->dev, 2771 "Trying to use LLQ but llq_num is 0. Fall back into regular queues\n"); 2772 2773 ena_dev->tx_mem_queue_type = 2774 ENA_ADMIN_PLACEMENT_POLICY_HOST; 2775 io_sq_num = get_feat_ctx->max_queues.max_sq_num; 2776 } 2777 } else { 2778 io_sq_num = get_feat_ctx->max_queues.max_sq_num; 2779 } 2780 2781 io_queue_num = min_t(int, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 2782 io_queue_num = min_t(int, io_queue_num, io_sq_num); 2783 io_queue_num = min_t(int, io_queue_num, 2784 get_feat_ctx->max_queues.max_cq_num); 2785 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */ 2786 io_queue_num = min_t(int, io_queue_num, pci_msix_vec_count(pdev) - 1); 2787 if (unlikely(!io_queue_num)) { 2788 dev_err(&pdev->dev, "The device doesn't have io queues\n"); 2789 return -EFAULT; 2790 } 2791 2792 return io_queue_num; 2793 } 2794 2795 static void ena_set_push_mode(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 2796 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2797 { 2798 bool has_mem_bar; 2799 2800 has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR); 2801 2802 /* Enable push mode if device supports LLQ */ 2803 if (has_mem_bar && (get_feat_ctx->max_queues.max_llq_num > 0)) 2804 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_DEV; 2805 else 2806 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 2807 } 2808 2809 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 2810 struct net_device *netdev) 2811 { 2812 netdev_features_t dev_features = 0; 2813 2814 /* Set offload features */ 2815 if (feat->offload.tx & 2816 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 2817 dev_features |= NETIF_F_IP_CSUM; 2818 2819 if (feat->offload.tx & 2820 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 2821 dev_features |= NETIF_F_IPV6_CSUM; 2822 2823 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 2824 dev_features |= NETIF_F_TSO; 2825 2826 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 2827 dev_features |= NETIF_F_TSO6; 2828 2829 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 2830 dev_features |= NETIF_F_TSO_ECN; 2831 2832 if (feat->offload.rx_supported & 2833 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 2834 dev_features |= NETIF_F_RXCSUM; 2835 2836 if (feat->offload.rx_supported & 2837 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 2838 dev_features |= NETIF_F_RXCSUM; 2839 2840 netdev->features = 2841 dev_features | 2842 NETIF_F_SG | 2843 NETIF_F_RXHASH | 2844 NETIF_F_HIGHDMA; 2845 2846 netdev->hw_features |= netdev->features; 2847 netdev->vlan_features |= netdev->features; 2848 } 2849 2850 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 2851 struct ena_com_dev_get_features_ctx *feat) 2852 { 2853 struct net_device *netdev = adapter->netdev; 2854 2855 /* Copy mac address */ 2856 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 2857 eth_hw_addr_random(netdev); 2858 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 2859 } else { 2860 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 2861 ether_addr_copy(netdev->dev_addr, adapter->mac_addr); 2862 } 2863 2864 /* Set offload features */ 2865 ena_set_dev_offloads(feat, netdev); 2866 2867 adapter->max_mtu = feat->dev_attr.max_mtu; 2868 netdev->max_mtu = adapter->max_mtu; 2869 netdev->min_mtu = ENA_MIN_MTU; 2870 } 2871 2872 static int ena_rss_init_default(struct ena_adapter *adapter) 2873 { 2874 struct ena_com_dev *ena_dev = adapter->ena_dev; 2875 struct device *dev = &adapter->pdev->dev; 2876 int rc, i; 2877 u32 val; 2878 2879 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 2880 if (unlikely(rc)) { 2881 dev_err(dev, "Cannot init indirect table\n"); 2882 goto err_rss_init; 2883 } 2884 2885 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 2886 val = ethtool_rxfh_indir_default(i, adapter->num_queues); 2887 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 2888 ENA_IO_RXQ_IDX(val)); 2889 if (unlikely(rc && (rc != -EPERM))) { 2890 dev_err(dev, "Cannot fill indirect table\n"); 2891 goto err_fill_indir; 2892 } 2893 } 2894 2895 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, 2896 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 2897 if (unlikely(rc && (rc != -EPERM))) { 2898 dev_err(dev, "Cannot fill hash function\n"); 2899 goto err_fill_indir; 2900 } 2901 2902 rc = ena_com_set_default_hash_ctrl(ena_dev); 2903 if (unlikely(rc && (rc != -EPERM))) { 2904 dev_err(dev, "Cannot fill hash control\n"); 2905 goto err_fill_indir; 2906 } 2907 2908 return 0; 2909 2910 err_fill_indir: 2911 ena_com_rss_destroy(ena_dev); 2912 err_rss_init: 2913 2914 return rc; 2915 } 2916 2917 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 2918 { 2919 int release_bars; 2920 2921 if (ena_dev->mem_bar) 2922 devm_iounmap(&pdev->dev, ena_dev->mem_bar); 2923 2924 devm_iounmap(&pdev->dev, ena_dev->reg_bar); 2925 2926 release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 2927 pci_release_selected_regions(pdev, release_bars); 2928 } 2929 2930 static int ena_calc_queue_size(struct pci_dev *pdev, 2931 struct ena_com_dev *ena_dev, 2932 u16 *max_tx_sgl_size, 2933 u16 *max_rx_sgl_size, 2934 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2935 { 2936 u32 queue_size = ENA_DEFAULT_RING_SIZE; 2937 2938 queue_size = min_t(u32, queue_size, 2939 get_feat_ctx->max_queues.max_cq_depth); 2940 queue_size = min_t(u32, queue_size, 2941 get_feat_ctx->max_queues.max_sq_depth); 2942 2943 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2944 queue_size = min_t(u32, queue_size, 2945 get_feat_ctx->max_queues.max_llq_depth); 2946 2947 queue_size = rounddown_pow_of_two(queue_size); 2948 2949 if (unlikely(!queue_size)) { 2950 dev_err(&pdev->dev, "Invalid queue size\n"); 2951 return -EFAULT; 2952 } 2953 2954 *max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2955 get_feat_ctx->max_queues.max_packet_tx_descs); 2956 *max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2957 get_feat_ctx->max_queues.max_packet_rx_descs); 2958 2959 return queue_size; 2960 } 2961 2962 /* ena_probe - Device Initialization Routine 2963 * @pdev: PCI device information struct 2964 * @ent: entry in ena_pci_tbl 2965 * 2966 * Returns 0 on success, negative on failure 2967 * 2968 * ena_probe initializes an adapter identified by a pci_dev structure. 2969 * The OS initialization, configuring of the adapter private structure, 2970 * and a hardware reset occur. 2971 */ 2972 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2973 { 2974 struct ena_com_dev_get_features_ctx get_feat_ctx; 2975 static int version_printed; 2976 struct net_device *netdev; 2977 struct ena_adapter *adapter; 2978 struct ena_com_dev *ena_dev = NULL; 2979 static int adapters_found; 2980 int io_queue_num, bars, rc; 2981 int queue_size; 2982 u16 tx_sgl_size = 0; 2983 u16 rx_sgl_size = 0; 2984 bool wd_state; 2985 2986 dev_dbg(&pdev->dev, "%s\n", __func__); 2987 2988 if (version_printed++ == 0) 2989 dev_info(&pdev->dev, "%s", version); 2990 2991 rc = pci_enable_device_mem(pdev); 2992 if (rc) { 2993 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 2994 return rc; 2995 } 2996 2997 pci_set_master(pdev); 2998 2999 ena_dev = vzalloc(sizeof(*ena_dev)); 3000 if (!ena_dev) { 3001 rc = -ENOMEM; 3002 goto err_disable_device; 3003 } 3004 3005 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3006 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3007 if (rc) { 3008 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3009 rc); 3010 goto err_free_ena_dev; 3011 } 3012 3013 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3014 pci_resource_start(pdev, ENA_REG_BAR), 3015 pci_resource_len(pdev, ENA_REG_BAR)); 3016 if (!ena_dev->reg_bar) { 3017 dev_err(&pdev->dev, "failed to remap regs bar\n"); 3018 rc = -EFAULT; 3019 goto err_free_region; 3020 } 3021 3022 ena_dev->dmadev = &pdev->dev; 3023 3024 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); 3025 if (rc) { 3026 dev_err(&pdev->dev, "ena device init failed\n"); 3027 if (rc == -ETIME) 3028 rc = -EPROBE_DEFER; 3029 goto err_free_region; 3030 } 3031 3032 ena_set_push_mode(pdev, ena_dev, &get_feat_ctx); 3033 3034 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 3035 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3036 pci_resource_start(pdev, ENA_MEM_BAR), 3037 pci_resource_len(pdev, ENA_MEM_BAR)); 3038 if (!ena_dev->mem_bar) { 3039 rc = -EFAULT; 3040 goto err_device_destroy; 3041 } 3042 } 3043 3044 /* initial Tx interrupt delay, Assumes 1 usec granularity. 3045 * Updated during device initialization with the real granularity 3046 */ 3047 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3048 io_queue_num = ena_calc_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3049 queue_size = ena_calc_queue_size(pdev, ena_dev, &tx_sgl_size, 3050 &rx_sgl_size, &get_feat_ctx); 3051 if ((queue_size <= 0) || (io_queue_num <= 0)) { 3052 rc = -EFAULT; 3053 goto err_device_destroy; 3054 } 3055 3056 dev_info(&pdev->dev, "creating %d io queues. queue size: %d\n", 3057 io_queue_num, queue_size); 3058 3059 /* dev zeroed in init_etherdev */ 3060 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), io_queue_num); 3061 if (!netdev) { 3062 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3063 rc = -ENOMEM; 3064 goto err_device_destroy; 3065 } 3066 3067 SET_NETDEV_DEV(netdev, &pdev->dev); 3068 3069 adapter = netdev_priv(netdev); 3070 pci_set_drvdata(pdev, adapter); 3071 3072 adapter->ena_dev = ena_dev; 3073 adapter->netdev = netdev; 3074 adapter->pdev = pdev; 3075 3076 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3077 3078 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3079 3080 adapter->tx_ring_size = queue_size; 3081 adapter->rx_ring_size = queue_size; 3082 3083 adapter->max_tx_sgl_size = tx_sgl_size; 3084 adapter->max_rx_sgl_size = rx_sgl_size; 3085 3086 adapter->num_queues = io_queue_num; 3087 adapter->last_monitored_tx_qid = 0; 3088 3089 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 3090 adapter->wd_state = wd_state; 3091 3092 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 3093 3094 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 3095 if (rc) { 3096 dev_err(&pdev->dev, 3097 "Failed to query interrupt moderation feature\n"); 3098 goto err_netdev_destroy; 3099 } 3100 ena_init_io_rings(adapter); 3101 3102 netdev->netdev_ops = &ena_netdev_ops; 3103 netdev->watchdog_timeo = TX_TIMEOUT; 3104 ena_set_ethtool_ops(netdev); 3105 3106 netdev->priv_flags |= IFF_UNICAST_FLT; 3107 3108 u64_stats_init(&adapter->syncp); 3109 3110 rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num); 3111 if (rc) { 3112 dev_err(&pdev->dev, 3113 "Failed to enable and set the admin interrupts\n"); 3114 goto err_worker_destroy; 3115 } 3116 rc = ena_rss_init_default(adapter); 3117 if (rc && (rc != -EPERM)) { 3118 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 3119 goto err_free_msix; 3120 } 3121 3122 ena_config_debug_area(adapter); 3123 3124 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 3125 3126 netif_carrier_off(netdev); 3127 3128 rc = register_netdev(netdev); 3129 if (rc) { 3130 dev_err(&pdev->dev, "Cannot register net device\n"); 3131 goto err_rss; 3132 } 3133 3134 INIT_WORK(&adapter->suspend_io_task, ena_device_io_suspend); 3135 INIT_WORK(&adapter->resume_io_task, ena_device_io_resume); 3136 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 3137 3138 adapter->last_keep_alive_jiffies = jiffies; 3139 3140 setup_timer(&adapter->timer_service, ena_timer_service, 3141 (unsigned long)adapter); 3142 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3143 3144 dev_info(&pdev->dev, "%s found at mem %lx, mac addr %pM Queues %d\n", 3145 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 3146 netdev->dev_addr, io_queue_num); 3147 3148 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3149 3150 adapters_found++; 3151 3152 return 0; 3153 3154 err_rss: 3155 ena_com_delete_debug_area(ena_dev); 3156 ena_com_rss_destroy(ena_dev); 3157 err_free_msix: 3158 ena_com_dev_reset(ena_dev); 3159 ena_free_mgmnt_irq(adapter); 3160 pci_free_irq_vectors(adapter->pdev); 3161 err_worker_destroy: 3162 ena_com_destroy_interrupt_moderation(ena_dev); 3163 del_timer(&adapter->timer_service); 3164 cancel_work_sync(&adapter->suspend_io_task); 3165 cancel_work_sync(&adapter->resume_io_task); 3166 err_netdev_destroy: 3167 free_netdev(netdev); 3168 err_device_destroy: 3169 ena_com_delete_host_info(ena_dev); 3170 ena_com_admin_destroy(ena_dev); 3171 err_free_region: 3172 ena_release_bars(ena_dev, pdev); 3173 err_free_ena_dev: 3174 vfree(ena_dev); 3175 err_disable_device: 3176 pci_disable_device(pdev); 3177 return rc; 3178 } 3179 3180 /*****************************************************************************/ 3181 static int ena_sriov_configure(struct pci_dev *dev, int numvfs) 3182 { 3183 int rc; 3184 3185 if (numvfs > 0) { 3186 rc = pci_enable_sriov(dev, numvfs); 3187 if (rc != 0) { 3188 dev_err(&dev->dev, 3189 "pci_enable_sriov failed to enable: %d vfs with the error: %d\n", 3190 numvfs, rc); 3191 return rc; 3192 } 3193 3194 return numvfs; 3195 } 3196 3197 if (numvfs == 0) { 3198 pci_disable_sriov(dev); 3199 return 0; 3200 } 3201 3202 return -EINVAL; 3203 } 3204 3205 /*****************************************************************************/ 3206 /*****************************************************************************/ 3207 3208 /* ena_remove - Device Removal Routine 3209 * @pdev: PCI device information struct 3210 * 3211 * ena_remove is called by the PCI subsystem to alert the driver 3212 * that it should release a PCI device. 3213 */ 3214 static void ena_remove(struct pci_dev *pdev) 3215 { 3216 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3217 struct ena_com_dev *ena_dev; 3218 struct net_device *netdev; 3219 3220 ena_dev = adapter->ena_dev; 3221 netdev = adapter->netdev; 3222 3223 #ifdef CONFIG_RFS_ACCEL 3224 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 3225 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 3226 netdev->rx_cpu_rmap = NULL; 3227 } 3228 #endif /* CONFIG_RFS_ACCEL */ 3229 3230 unregister_netdev(netdev); 3231 del_timer_sync(&adapter->timer_service); 3232 3233 cancel_work_sync(&adapter->reset_task); 3234 3235 cancel_work_sync(&adapter->suspend_io_task); 3236 3237 cancel_work_sync(&adapter->resume_io_task); 3238 3239 /* Reset the device only if the device is running. */ 3240 if (test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3241 ena_com_dev_reset(ena_dev); 3242 3243 ena_free_mgmnt_irq(adapter); 3244 3245 pci_free_irq_vectors(adapter->pdev); 3246 3247 free_netdev(netdev); 3248 3249 ena_com_mmio_reg_read_request_destroy(ena_dev); 3250 3251 ena_com_abort_admin_commands(ena_dev); 3252 3253 ena_com_wait_for_abort_completion(ena_dev); 3254 3255 ena_com_admin_destroy(ena_dev); 3256 3257 ena_com_rss_destroy(ena_dev); 3258 3259 ena_com_delete_debug_area(ena_dev); 3260 3261 ena_com_delete_host_info(ena_dev); 3262 3263 ena_release_bars(ena_dev, pdev); 3264 3265 pci_disable_device(pdev); 3266 3267 ena_com_destroy_interrupt_moderation(ena_dev); 3268 3269 vfree(ena_dev); 3270 } 3271 3272 static struct pci_driver ena_pci_driver = { 3273 .name = DRV_MODULE_NAME, 3274 .id_table = ena_pci_tbl, 3275 .probe = ena_probe, 3276 .remove = ena_remove, 3277 .sriov_configure = ena_sriov_configure, 3278 }; 3279 3280 static int __init ena_init(void) 3281 { 3282 pr_info("%s", version); 3283 3284 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 3285 if (!ena_wq) { 3286 pr_err("Failed to create workqueue\n"); 3287 return -ENOMEM; 3288 } 3289 3290 return pci_register_driver(&ena_pci_driver); 3291 } 3292 3293 static void __exit ena_cleanup(void) 3294 { 3295 pci_unregister_driver(&ena_pci_driver); 3296 3297 if (ena_wq) { 3298 destroy_workqueue(ena_wq); 3299 ena_wq = NULL; 3300 } 3301 } 3302 3303 /****************************************************************************** 3304 ******************************** AENQ Handlers ******************************* 3305 *****************************************************************************/ 3306 /* ena_update_on_link_change: 3307 * Notify the network interface about the change in link status 3308 */ 3309 static void ena_update_on_link_change(void *adapter_data, 3310 struct ena_admin_aenq_entry *aenq_e) 3311 { 3312 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3313 struct ena_admin_aenq_link_change_desc *aenq_desc = 3314 (struct ena_admin_aenq_link_change_desc *)aenq_e; 3315 int status = aenq_desc->flags & 3316 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 3317 3318 if (status) { 3319 netdev_dbg(adapter->netdev, "%s\n", __func__); 3320 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 3321 netif_carrier_on(adapter->netdev); 3322 } else { 3323 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 3324 netif_carrier_off(adapter->netdev); 3325 } 3326 } 3327 3328 static void ena_keep_alive_wd(void *adapter_data, 3329 struct ena_admin_aenq_entry *aenq_e) 3330 { 3331 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3332 3333 adapter->last_keep_alive_jiffies = jiffies; 3334 } 3335 3336 static void ena_notification(void *adapter_data, 3337 struct ena_admin_aenq_entry *aenq_e) 3338 { 3339 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3340 3341 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 3342 "Invalid group(%x) expected %x\n", 3343 aenq_e->aenq_common_desc.group, 3344 ENA_ADMIN_NOTIFICATION); 3345 3346 switch (aenq_e->aenq_common_desc.syndrom) { 3347 case ENA_ADMIN_SUSPEND: 3348 /* Suspend just the IO queues. 3349 * We deliberately don't suspend admin so the timer and 3350 * the keep_alive events should remain. 3351 */ 3352 queue_work(ena_wq, &adapter->suspend_io_task); 3353 break; 3354 case ENA_ADMIN_RESUME: 3355 queue_work(ena_wq, &adapter->resume_io_task); 3356 break; 3357 default: 3358 netif_err(adapter, drv, adapter->netdev, 3359 "Invalid aenq notification link state %d\n", 3360 aenq_e->aenq_common_desc.syndrom); 3361 } 3362 } 3363 3364 /* This handler will called for unknown event group or unimplemented handlers*/ 3365 static void unimplemented_aenq_handler(void *data, 3366 struct ena_admin_aenq_entry *aenq_e) 3367 { 3368 struct ena_adapter *adapter = (struct ena_adapter *)data; 3369 3370 netif_err(adapter, drv, adapter->netdev, 3371 "Unknown event was received or event with unimplemented handler\n"); 3372 } 3373 3374 static struct ena_aenq_handlers aenq_handlers = { 3375 .handlers = { 3376 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 3377 [ENA_ADMIN_NOTIFICATION] = ena_notification, 3378 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 3379 }, 3380 .unimplemented_handler = unimplemented_aenq_handler 3381 }; 3382 3383 module_init(ena_init); 3384 module_exit(ena_cleanup); 3385