xref: /linux/drivers/net/ethernet/amazon/ena/ena_netdev.c (revision 397692eab35cbbd83681880c6a2dbcdb9fd84386)
1 /*
2  * Copyright 2015 Amazon.com, Inc. or its affiliates.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #ifdef CONFIG_RFS_ACCEL
36 #include <linux/cpu_rmap.h>
37 #endif /* CONFIG_RFS_ACCEL */
38 #include <linux/ethtool.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/numa.h>
42 #include <linux/pci.h>
43 #include <linux/utsname.h>
44 #include <linux/version.h>
45 #include <linux/vmalloc.h>
46 #include <net/ip.h>
47 
48 #include "ena_netdev.h"
49 #include <linux/bpf_trace.h>
50 #include "ena_pci_id_tbl.h"
51 
52 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
53 MODULE_DESCRIPTION(DEVICE_NAME);
54 MODULE_LICENSE("GPL");
55 
56 /* Time in jiffies before concluding the transmitter is hung. */
57 #define TX_TIMEOUT  (5 * HZ)
58 
59 #define ENA_NAPI_BUDGET 64
60 
61 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
62 		NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66 
67 static struct ena_aenq_handlers aenq_handlers;
68 
69 static struct workqueue_struct *ena_wq;
70 
71 MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
72 
73 static int ena_rss_init_default(struct ena_adapter *adapter);
74 static void check_for_admin_com_state(struct ena_adapter *adapter);
75 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
76 static int ena_restore_device(struct ena_adapter *adapter);
77 
78 static void ena_init_io_rings(struct ena_adapter *adapter,
79 			      int first_index, int count);
80 static void ena_init_napi_in_range(struct ena_adapter *adapter, int first_index,
81 				   int count);
82 static void ena_del_napi_in_range(struct ena_adapter *adapter, int first_index,
83 				  int count);
84 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid);
85 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
86 					   int first_index,
87 					   int count);
88 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid);
89 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid);
90 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget);
91 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter);
92 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter);
93 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
94 				      int first_index, int count);
95 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
96 				     int first_index, int count);
97 static int ena_up(struct ena_adapter *adapter);
98 static void ena_down(struct ena_adapter *adapter);
99 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
100 				 struct ena_ring *rx_ring);
101 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
102 				      struct ena_ring *rx_ring);
103 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
104 			      struct ena_tx_buffer *tx_info);
105 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
106 					    int first_index, int count);
107 
108 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue)
109 {
110 	struct ena_adapter *adapter = netdev_priv(dev);
111 
112 	/* Change the state of the device to trigger reset
113 	 * Check that we are not in the middle or a trigger already
114 	 */
115 
116 	if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
117 		return;
118 
119 	adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
120 	u64_stats_update_begin(&adapter->syncp);
121 	adapter->dev_stats.tx_timeout++;
122 	u64_stats_update_end(&adapter->syncp);
123 
124 	netif_err(adapter, tx_err, dev, "Transmit time out\n");
125 }
126 
127 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
128 {
129 	int i;
130 
131 	for (i = 0; i < adapter->num_io_queues; i++)
132 		adapter->rx_ring[i].mtu = mtu;
133 }
134 
135 static int ena_change_mtu(struct net_device *dev, int new_mtu)
136 {
137 	struct ena_adapter *adapter = netdev_priv(dev);
138 	int ret;
139 
140 	ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
141 	if (!ret) {
142 		netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
143 		update_rx_ring_mtu(adapter, new_mtu);
144 		dev->mtu = new_mtu;
145 	} else {
146 		netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
147 			  new_mtu);
148 	}
149 
150 	return ret;
151 }
152 
153 static int ena_xmit_common(struct net_device *dev,
154 			   struct ena_ring *ring,
155 			   struct ena_tx_buffer *tx_info,
156 			   struct ena_com_tx_ctx *ena_tx_ctx,
157 			   u16 next_to_use,
158 			   u32 bytes)
159 {
160 	struct ena_adapter *adapter = netdev_priv(dev);
161 	int rc, nb_hw_desc;
162 
163 	if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq,
164 						ena_tx_ctx))) {
165 		netif_dbg(adapter, tx_queued, dev,
166 			  "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
167 			  ring->qid);
168 		ena_com_write_sq_doorbell(ring->ena_com_io_sq);
169 	}
170 
171 	/* prepare the packet's descriptors to dma engine */
172 	rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx,
173 				&nb_hw_desc);
174 
175 	/* In case there isn't enough space in the queue for the packet,
176 	 * we simply drop it. All other failure reasons of
177 	 * ena_com_prepare_tx() are fatal and therefore require a device reset.
178 	 */
179 	if (unlikely(rc)) {
180 		netif_err(adapter, tx_queued, dev,
181 			  "failed to prepare tx bufs\n");
182 		u64_stats_update_begin(&ring->syncp);
183 		ring->tx_stats.prepare_ctx_err++;
184 		u64_stats_update_end(&ring->syncp);
185 		if (rc != -ENOMEM) {
186 			adapter->reset_reason =
187 				ENA_REGS_RESET_DRIVER_INVALID_STATE;
188 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
189 		}
190 		return rc;
191 	}
192 
193 	u64_stats_update_begin(&ring->syncp);
194 	ring->tx_stats.cnt++;
195 	ring->tx_stats.bytes += bytes;
196 	u64_stats_update_end(&ring->syncp);
197 
198 	tx_info->tx_descs = nb_hw_desc;
199 	tx_info->last_jiffies = jiffies;
200 	tx_info->print_once = 0;
201 
202 	ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
203 						 ring->ring_size);
204 	return 0;
205 }
206 
207 /* This is the XDP napi callback. XDP queues use a separate napi callback
208  * than Rx/Tx queues.
209  */
210 static int ena_xdp_io_poll(struct napi_struct *napi, int budget)
211 {
212 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
213 	u32 xdp_work_done, xdp_budget;
214 	struct ena_ring *xdp_ring;
215 	int napi_comp_call = 0;
216 	int ret;
217 
218 	xdp_ring = ena_napi->xdp_ring;
219 	xdp_ring->first_interrupt = ena_napi->first_interrupt;
220 
221 	xdp_budget = budget;
222 
223 	if (!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags) ||
224 	    test_bit(ENA_FLAG_TRIGGER_RESET, &xdp_ring->adapter->flags)) {
225 		napi_complete_done(napi, 0);
226 		return 0;
227 	}
228 
229 	xdp_work_done = ena_clean_xdp_irq(xdp_ring, xdp_budget);
230 
231 	/* If the device is about to reset or down, avoid unmask
232 	 * the interrupt and return 0 so NAPI won't reschedule
233 	 */
234 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &xdp_ring->adapter->flags))) {
235 		napi_complete_done(napi, 0);
236 		ret = 0;
237 	} else if (xdp_budget > xdp_work_done) {
238 		napi_comp_call = 1;
239 		if (napi_complete_done(napi, xdp_work_done))
240 			ena_unmask_interrupt(xdp_ring, NULL);
241 		ena_update_ring_numa_node(xdp_ring, NULL);
242 		ret = xdp_work_done;
243 	} else {
244 		ret = xdp_budget;
245 	}
246 
247 	u64_stats_update_begin(&xdp_ring->syncp);
248 	xdp_ring->tx_stats.napi_comp += napi_comp_call;
249 	xdp_ring->tx_stats.tx_poll++;
250 	u64_stats_update_end(&xdp_ring->syncp);
251 
252 	return ret;
253 }
254 
255 static int ena_xdp_tx_map_buff(struct ena_ring *xdp_ring,
256 			       struct ena_tx_buffer *tx_info,
257 			       struct xdp_buff *xdp,
258 			       void **push_hdr,
259 			       u32 *push_len)
260 {
261 	struct ena_adapter *adapter = xdp_ring->adapter;
262 	struct ena_com_buf *ena_buf;
263 	dma_addr_t dma = 0;
264 	u32 size;
265 
266 	tx_info->xdpf = convert_to_xdp_frame(xdp);
267 	size = tx_info->xdpf->len;
268 	ena_buf = tx_info->bufs;
269 
270 	/* llq push buffer */
271 	*push_len = min_t(u32, size, xdp_ring->tx_max_header_size);
272 	*push_hdr = tx_info->xdpf->data;
273 
274 	if (size - *push_len > 0) {
275 		dma = dma_map_single(xdp_ring->dev,
276 				     *push_hdr + *push_len,
277 				     size - *push_len,
278 				     DMA_TO_DEVICE);
279 		if (unlikely(dma_mapping_error(xdp_ring->dev, dma)))
280 			goto error_report_dma_error;
281 
282 		tx_info->map_linear_data = 1;
283 		tx_info->num_of_bufs = 1;
284 	}
285 
286 	ena_buf->paddr = dma;
287 	ena_buf->len = size;
288 
289 	return 0;
290 
291 error_report_dma_error:
292 	u64_stats_update_begin(&xdp_ring->syncp);
293 	xdp_ring->tx_stats.dma_mapping_err++;
294 	u64_stats_update_end(&xdp_ring->syncp);
295 	netdev_warn(adapter->netdev, "failed to map xdp buff\n");
296 
297 	xdp_return_frame_rx_napi(tx_info->xdpf);
298 	tx_info->xdpf = NULL;
299 	tx_info->num_of_bufs = 0;
300 
301 	return -EINVAL;
302 }
303 
304 static int ena_xdp_xmit_buff(struct net_device *dev,
305 			     struct xdp_buff *xdp,
306 			     int qid,
307 			     struct ena_rx_buffer *rx_info)
308 {
309 	struct ena_adapter *adapter = netdev_priv(dev);
310 	struct ena_com_tx_ctx ena_tx_ctx = {0};
311 	struct ena_tx_buffer *tx_info;
312 	struct ena_ring *xdp_ring;
313 	u16 next_to_use, req_id;
314 	int rc;
315 	void *push_hdr;
316 	u32 push_len;
317 
318 	xdp_ring = &adapter->tx_ring[qid];
319 	next_to_use = xdp_ring->next_to_use;
320 	req_id = xdp_ring->free_ids[next_to_use];
321 	tx_info = &xdp_ring->tx_buffer_info[req_id];
322 	tx_info->num_of_bufs = 0;
323 	page_ref_inc(rx_info->page);
324 	tx_info->xdp_rx_page = rx_info->page;
325 
326 	rc = ena_xdp_tx_map_buff(xdp_ring, tx_info, xdp, &push_hdr, &push_len);
327 	if (unlikely(rc))
328 		goto error_drop_packet;
329 
330 	ena_tx_ctx.ena_bufs = tx_info->bufs;
331 	ena_tx_ctx.push_header = push_hdr;
332 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
333 	ena_tx_ctx.req_id = req_id;
334 	ena_tx_ctx.header_len = push_len;
335 
336 	rc = ena_xmit_common(dev,
337 			     xdp_ring,
338 			     tx_info,
339 			     &ena_tx_ctx,
340 			     next_to_use,
341 			     xdp->data_end - xdp->data);
342 	if (rc)
343 		goto error_unmap_dma;
344 	/* trigger the dma engine. ena_com_write_sq_doorbell()
345 	 * has a mb
346 	 */
347 	ena_com_write_sq_doorbell(xdp_ring->ena_com_io_sq);
348 	u64_stats_update_begin(&xdp_ring->syncp);
349 	xdp_ring->tx_stats.doorbells++;
350 	u64_stats_update_end(&xdp_ring->syncp);
351 
352 	return NETDEV_TX_OK;
353 
354 error_unmap_dma:
355 	ena_unmap_tx_buff(xdp_ring, tx_info);
356 	tx_info->xdpf = NULL;
357 error_drop_packet:
358 
359 	return NETDEV_TX_OK;
360 }
361 
362 static int ena_xdp_execute(struct ena_ring *rx_ring,
363 			   struct xdp_buff *xdp,
364 			   struct ena_rx_buffer *rx_info)
365 {
366 	struct bpf_prog *xdp_prog;
367 	u32 verdict = XDP_PASS;
368 
369 	rcu_read_lock();
370 	xdp_prog = READ_ONCE(rx_ring->xdp_bpf_prog);
371 
372 	if (!xdp_prog)
373 		goto out;
374 
375 	verdict = bpf_prog_run_xdp(xdp_prog, xdp);
376 
377 	if (verdict == XDP_TX)
378 		ena_xdp_xmit_buff(rx_ring->netdev,
379 				  xdp,
380 				  rx_ring->qid + rx_ring->adapter->num_io_queues,
381 				  rx_info);
382 	else if (unlikely(verdict == XDP_ABORTED))
383 		trace_xdp_exception(rx_ring->netdev, xdp_prog, verdict);
384 	else if (unlikely(verdict > XDP_TX))
385 		bpf_warn_invalid_xdp_action(verdict);
386 out:
387 	rcu_read_unlock();
388 	return verdict;
389 }
390 
391 static void ena_init_all_xdp_queues(struct ena_adapter *adapter)
392 {
393 	adapter->xdp_first_ring = adapter->num_io_queues;
394 	adapter->xdp_num_queues = adapter->num_io_queues;
395 
396 	ena_init_io_rings(adapter,
397 			  adapter->xdp_first_ring,
398 			  adapter->xdp_num_queues);
399 }
400 
401 static int ena_setup_and_create_all_xdp_queues(struct ena_adapter *adapter)
402 {
403 	int rc = 0;
404 
405 	rc = ena_setup_tx_resources_in_range(adapter, adapter->xdp_first_ring,
406 					     adapter->xdp_num_queues);
407 	if (rc)
408 		goto setup_err;
409 
410 	rc = ena_create_io_tx_queues_in_range(adapter,
411 					      adapter->xdp_first_ring,
412 					      adapter->xdp_num_queues);
413 	if (rc)
414 		goto create_err;
415 
416 	return 0;
417 
418 create_err:
419 	ena_free_all_io_tx_resources(adapter);
420 setup_err:
421 	return rc;
422 }
423 
424 /* Provides a way for both kernel and bpf-prog to know
425  * more about the RX-queue a given XDP frame arrived on.
426  */
427 static int ena_xdp_register_rxq_info(struct ena_ring *rx_ring)
428 {
429 	int rc;
430 
431 	rc = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, rx_ring->qid);
432 
433 	if (rc) {
434 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
435 			  "Failed to register xdp rx queue info. RX queue num %d rc: %d\n",
436 			  rx_ring->qid, rc);
437 		goto err;
438 	}
439 
440 	rc = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, MEM_TYPE_PAGE_SHARED,
441 					NULL);
442 
443 	if (rc) {
444 		netif_err(rx_ring->adapter, ifup, rx_ring->netdev,
445 			  "Failed to register xdp rx queue info memory model. RX queue num %d rc: %d\n",
446 			  rx_ring->qid, rc);
447 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
448 	}
449 
450 err:
451 	return rc;
452 }
453 
454 static void ena_xdp_unregister_rxq_info(struct ena_ring *rx_ring)
455 {
456 	xdp_rxq_info_unreg_mem_model(&rx_ring->xdp_rxq);
457 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
458 }
459 
460 void ena_xdp_exchange_program_rx_in_range(struct ena_adapter *adapter,
461 					  struct bpf_prog *prog,
462 					  int first,
463 					  int count)
464 {
465 	struct ena_ring *rx_ring;
466 	int i = 0;
467 
468 	for (i = first; i < count; i++) {
469 		rx_ring = &adapter->rx_ring[i];
470 		xchg(&rx_ring->xdp_bpf_prog, prog);
471 		if (prog) {
472 			ena_xdp_register_rxq_info(rx_ring);
473 			rx_ring->rx_headroom = XDP_PACKET_HEADROOM;
474 		} else {
475 			ena_xdp_unregister_rxq_info(rx_ring);
476 			rx_ring->rx_headroom = 0;
477 		}
478 	}
479 }
480 
481 void ena_xdp_exchange_program(struct ena_adapter *adapter,
482 			      struct bpf_prog *prog)
483 {
484 	struct bpf_prog *old_bpf_prog = xchg(&adapter->xdp_bpf_prog, prog);
485 
486 	ena_xdp_exchange_program_rx_in_range(adapter,
487 					     prog,
488 					     0,
489 					     adapter->num_io_queues);
490 
491 	if (old_bpf_prog)
492 		bpf_prog_put(old_bpf_prog);
493 }
494 
495 static int ena_destroy_and_free_all_xdp_queues(struct ena_adapter *adapter)
496 {
497 	bool was_up;
498 	int rc;
499 
500 	was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
501 
502 	if (was_up)
503 		ena_down(adapter);
504 
505 	adapter->xdp_first_ring = 0;
506 	adapter->xdp_num_queues = 0;
507 	ena_xdp_exchange_program(adapter, NULL);
508 	if (was_up) {
509 		rc = ena_up(adapter);
510 		if (rc)
511 			return rc;
512 	}
513 	return 0;
514 }
515 
516 static int ena_xdp_set(struct net_device *netdev, struct netdev_bpf *bpf)
517 {
518 	struct ena_adapter *adapter = netdev_priv(netdev);
519 	struct bpf_prog *prog = bpf->prog;
520 	struct bpf_prog *old_bpf_prog;
521 	int rc, prev_mtu;
522 	bool is_up;
523 
524 	is_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
525 	rc = ena_xdp_allowed(adapter);
526 	if (rc == ENA_XDP_ALLOWED) {
527 		old_bpf_prog = adapter->xdp_bpf_prog;
528 		if (prog) {
529 			if (!is_up) {
530 				ena_init_all_xdp_queues(adapter);
531 			} else if (!old_bpf_prog) {
532 				ena_down(adapter);
533 				ena_init_all_xdp_queues(adapter);
534 			}
535 			ena_xdp_exchange_program(adapter, prog);
536 
537 			if (is_up && !old_bpf_prog) {
538 				rc = ena_up(adapter);
539 				if (rc)
540 					return rc;
541 			}
542 		} else if (old_bpf_prog) {
543 			rc = ena_destroy_and_free_all_xdp_queues(adapter);
544 			if (rc)
545 				return rc;
546 		}
547 
548 		prev_mtu = netdev->max_mtu;
549 		netdev->max_mtu = prog ? ENA_XDP_MAX_MTU : adapter->max_mtu;
550 
551 		if (!old_bpf_prog)
552 			netif_info(adapter, drv, adapter->netdev,
553 				   "xdp program set, changing the max_mtu from %d to %d",
554 				   prev_mtu, netdev->max_mtu);
555 
556 	} else if (rc == ENA_XDP_CURRENT_MTU_TOO_LARGE) {
557 		netif_err(adapter, drv, adapter->netdev,
558 			  "Failed to set xdp program, the current MTU (%d) is larger than the maximum allowed MTU (%lu) while xdp is on",
559 			  netdev->mtu, ENA_XDP_MAX_MTU);
560 		NL_SET_ERR_MSG_MOD(bpf->extack,
561 				   "Failed to set xdp program, the current MTU is larger than the maximum allowed MTU. Check the dmesg for more info");
562 		return -EINVAL;
563 	} else if (rc == ENA_XDP_NO_ENOUGH_QUEUES) {
564 		netif_err(adapter, drv, adapter->netdev,
565 			  "Failed to set xdp program, the Rx/Tx channel count should be at most half of the maximum allowed channel count. The current queue count (%d), the maximal queue count (%d)\n",
566 			  adapter->num_io_queues, adapter->max_num_io_queues);
567 		NL_SET_ERR_MSG_MOD(bpf->extack,
568 				   "Failed to set xdp program, there is no enough space for allocating XDP queues, Check the dmesg for more info");
569 		return -EINVAL;
570 	}
571 
572 	return 0;
573 }
574 
575 /* This is the main xdp callback, it's used by the kernel to set/unset the xdp
576  * program as well as to query the current xdp program id.
577  */
578 static int ena_xdp(struct net_device *netdev, struct netdev_bpf *bpf)
579 {
580 	struct ena_adapter *adapter = netdev_priv(netdev);
581 
582 	switch (bpf->command) {
583 	case XDP_SETUP_PROG:
584 		return ena_xdp_set(netdev, bpf);
585 	case XDP_QUERY_PROG:
586 		bpf->prog_id = adapter->xdp_bpf_prog ?
587 			adapter->xdp_bpf_prog->aux->id : 0;
588 		break;
589 	default:
590 		return -EINVAL;
591 	}
592 	return 0;
593 }
594 
595 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
596 {
597 #ifdef CONFIG_RFS_ACCEL
598 	u32 i;
599 	int rc;
600 
601 	adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues);
602 	if (!adapter->netdev->rx_cpu_rmap)
603 		return -ENOMEM;
604 	for (i = 0; i < adapter->num_io_queues; i++) {
605 		int irq_idx = ENA_IO_IRQ_IDX(i);
606 
607 		rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
608 				      pci_irq_vector(adapter->pdev, irq_idx));
609 		if (rc) {
610 			free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
611 			adapter->netdev->rx_cpu_rmap = NULL;
612 			return rc;
613 		}
614 	}
615 #endif /* CONFIG_RFS_ACCEL */
616 	return 0;
617 }
618 
619 static void ena_init_io_rings_common(struct ena_adapter *adapter,
620 				     struct ena_ring *ring, u16 qid)
621 {
622 	ring->qid = qid;
623 	ring->pdev = adapter->pdev;
624 	ring->dev = &adapter->pdev->dev;
625 	ring->netdev = adapter->netdev;
626 	ring->napi = &adapter->ena_napi[qid].napi;
627 	ring->adapter = adapter;
628 	ring->ena_dev = adapter->ena_dev;
629 	ring->per_napi_packets = 0;
630 	ring->cpu = 0;
631 	ring->first_interrupt = false;
632 	ring->no_interrupt_event_cnt = 0;
633 	u64_stats_init(&ring->syncp);
634 }
635 
636 static void ena_init_io_rings(struct ena_adapter *adapter,
637 			      int first_index, int count)
638 {
639 	struct ena_com_dev *ena_dev;
640 	struct ena_ring *txr, *rxr;
641 	int i;
642 
643 	ena_dev = adapter->ena_dev;
644 
645 	for (i = first_index; i < first_index + count; i++) {
646 		txr = &adapter->tx_ring[i];
647 		rxr = &adapter->rx_ring[i];
648 
649 		/* TX common ring state */
650 		ena_init_io_rings_common(adapter, txr, i);
651 
652 		/* TX specific ring state */
653 		txr->ring_size = adapter->requested_tx_ring_size;
654 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
655 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
656 		txr->sgl_size = adapter->max_tx_sgl_size;
657 		txr->smoothed_interval =
658 			ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
659 
660 		/* Don't init RX queues for xdp queues */
661 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
662 			/* RX common ring state */
663 			ena_init_io_rings_common(adapter, rxr, i);
664 
665 			/* RX specific ring state */
666 			rxr->ring_size = adapter->requested_rx_ring_size;
667 			rxr->rx_copybreak = adapter->rx_copybreak;
668 			rxr->sgl_size = adapter->max_rx_sgl_size;
669 			rxr->smoothed_interval =
670 				ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
671 			rxr->empty_rx_queue = 0;
672 			adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
673 		}
674 	}
675 }
676 
677 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
678  * @adapter: network interface device structure
679  * @qid: queue index
680  *
681  * Return 0 on success, negative on failure
682  */
683 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
684 {
685 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
686 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
687 	int size, i, node;
688 
689 	if (tx_ring->tx_buffer_info) {
690 		netif_err(adapter, ifup,
691 			  adapter->netdev, "tx_buffer_info info is not NULL");
692 		return -EEXIST;
693 	}
694 
695 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
696 	node = cpu_to_node(ena_irq->cpu);
697 
698 	tx_ring->tx_buffer_info = vzalloc_node(size, node);
699 	if (!tx_ring->tx_buffer_info) {
700 		tx_ring->tx_buffer_info = vzalloc(size);
701 		if (!tx_ring->tx_buffer_info)
702 			goto err_tx_buffer_info;
703 	}
704 
705 	size = sizeof(u16) * tx_ring->ring_size;
706 	tx_ring->free_ids = vzalloc_node(size, node);
707 	if (!tx_ring->free_ids) {
708 		tx_ring->free_ids = vzalloc(size);
709 		if (!tx_ring->free_ids)
710 			goto err_tx_free_ids;
711 	}
712 
713 	size = tx_ring->tx_max_header_size;
714 	tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
715 	if (!tx_ring->push_buf_intermediate_buf) {
716 		tx_ring->push_buf_intermediate_buf = vzalloc(size);
717 		if (!tx_ring->push_buf_intermediate_buf)
718 			goto err_push_buf_intermediate_buf;
719 	}
720 
721 	/* Req id ring for TX out of order completions */
722 	for (i = 0; i < tx_ring->ring_size; i++)
723 		tx_ring->free_ids[i] = i;
724 
725 	/* Reset tx statistics */
726 	memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
727 
728 	tx_ring->next_to_use = 0;
729 	tx_ring->next_to_clean = 0;
730 	tx_ring->cpu = ena_irq->cpu;
731 	return 0;
732 
733 err_push_buf_intermediate_buf:
734 	vfree(tx_ring->free_ids);
735 	tx_ring->free_ids = NULL;
736 err_tx_free_ids:
737 	vfree(tx_ring->tx_buffer_info);
738 	tx_ring->tx_buffer_info = NULL;
739 err_tx_buffer_info:
740 	return -ENOMEM;
741 }
742 
743 /* ena_free_tx_resources - Free I/O Tx Resources per Queue
744  * @adapter: network interface device structure
745  * @qid: queue index
746  *
747  * Free all transmit software resources
748  */
749 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
750 {
751 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
752 
753 	vfree(tx_ring->tx_buffer_info);
754 	tx_ring->tx_buffer_info = NULL;
755 
756 	vfree(tx_ring->free_ids);
757 	tx_ring->free_ids = NULL;
758 
759 	vfree(tx_ring->push_buf_intermediate_buf);
760 	tx_ring->push_buf_intermediate_buf = NULL;
761 }
762 
763 static int ena_setup_tx_resources_in_range(struct ena_adapter *adapter,
764 					   int first_index,
765 					   int count)
766 {
767 	int i, rc = 0;
768 
769 	for (i = first_index; i < first_index + count; i++) {
770 		rc = ena_setup_tx_resources(adapter, i);
771 		if (rc)
772 			goto err_setup_tx;
773 	}
774 
775 	return 0;
776 
777 err_setup_tx:
778 
779 	netif_err(adapter, ifup, adapter->netdev,
780 		  "Tx queue %d: allocation failed\n", i);
781 
782 	/* rewind the index freeing the rings as we go */
783 	while (first_index < i--)
784 		ena_free_tx_resources(adapter, i);
785 	return rc;
786 }
787 
788 static void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter,
789 						  int first_index, int count)
790 {
791 	int i;
792 
793 	for (i = first_index; i < first_index + count; i++)
794 		ena_free_tx_resources(adapter, i);
795 }
796 
797 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
798  * @adapter: board private structure
799  *
800  * Free all transmit software resources
801  */
802 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
803 {
804 	ena_free_all_io_tx_resources_in_range(adapter,
805 					      0,
806 					      adapter->xdp_num_queues +
807 					      adapter->num_io_queues);
808 }
809 
810 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id)
811 {
812 	if (likely(req_id < rx_ring->ring_size))
813 		return 0;
814 
815 	netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
816 		  "Invalid rx req_id: %hu\n", req_id);
817 
818 	u64_stats_update_begin(&rx_ring->syncp);
819 	rx_ring->rx_stats.bad_req_id++;
820 	u64_stats_update_end(&rx_ring->syncp);
821 
822 	/* Trigger device reset */
823 	rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
824 	set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags);
825 	return -EFAULT;
826 }
827 
828 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
829  * @adapter: network interface device structure
830  * @qid: queue index
831  *
832  * Returns 0 on success, negative on failure
833  */
834 static int ena_setup_rx_resources(struct ena_adapter *adapter,
835 				  u32 qid)
836 {
837 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
838 	struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
839 	int size, node, i;
840 
841 	if (rx_ring->rx_buffer_info) {
842 		netif_err(adapter, ifup, adapter->netdev,
843 			  "rx_buffer_info is not NULL");
844 		return -EEXIST;
845 	}
846 
847 	/* alloc extra element so in rx path
848 	 * we can always prefetch rx_info + 1
849 	 */
850 	size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
851 	node = cpu_to_node(ena_irq->cpu);
852 
853 	rx_ring->rx_buffer_info = vzalloc_node(size, node);
854 	if (!rx_ring->rx_buffer_info) {
855 		rx_ring->rx_buffer_info = vzalloc(size);
856 		if (!rx_ring->rx_buffer_info)
857 			return -ENOMEM;
858 	}
859 
860 	size = sizeof(u16) * rx_ring->ring_size;
861 	rx_ring->free_ids = vzalloc_node(size, node);
862 	if (!rx_ring->free_ids) {
863 		rx_ring->free_ids = vzalloc(size);
864 		if (!rx_ring->free_ids) {
865 			vfree(rx_ring->rx_buffer_info);
866 			rx_ring->rx_buffer_info = NULL;
867 			return -ENOMEM;
868 		}
869 	}
870 
871 	/* Req id ring for receiving RX pkts out of order */
872 	for (i = 0; i < rx_ring->ring_size; i++)
873 		rx_ring->free_ids[i] = i;
874 
875 	/* Reset rx statistics */
876 	memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
877 
878 	rx_ring->next_to_clean = 0;
879 	rx_ring->next_to_use = 0;
880 	rx_ring->cpu = ena_irq->cpu;
881 
882 	return 0;
883 }
884 
885 /* ena_free_rx_resources - Free I/O Rx Resources
886  * @adapter: network interface device structure
887  * @qid: queue index
888  *
889  * Free all receive software resources
890  */
891 static void ena_free_rx_resources(struct ena_adapter *adapter,
892 				  u32 qid)
893 {
894 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
895 
896 	vfree(rx_ring->rx_buffer_info);
897 	rx_ring->rx_buffer_info = NULL;
898 
899 	vfree(rx_ring->free_ids);
900 	rx_ring->free_ids = NULL;
901 }
902 
903 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
904  * @adapter: board private structure
905  *
906  * Return 0 on success, negative on failure
907  */
908 static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
909 {
910 	int i, rc = 0;
911 
912 	for (i = 0; i < adapter->num_io_queues; i++) {
913 		rc = ena_setup_rx_resources(adapter, i);
914 		if (rc)
915 			goto err_setup_rx;
916 	}
917 
918 	return 0;
919 
920 err_setup_rx:
921 
922 	netif_err(adapter, ifup, adapter->netdev,
923 		  "Rx queue %d: allocation failed\n", i);
924 
925 	/* rewind the index freeing the rings as we go */
926 	while (i--)
927 		ena_free_rx_resources(adapter, i);
928 	return rc;
929 }
930 
931 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
932  * @adapter: board private structure
933  *
934  * Free all receive software resources
935  */
936 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
937 {
938 	int i;
939 
940 	for (i = 0; i < adapter->num_io_queues; i++)
941 		ena_free_rx_resources(adapter, i);
942 }
943 
944 static int ena_alloc_rx_page(struct ena_ring *rx_ring,
945 				    struct ena_rx_buffer *rx_info, gfp_t gfp)
946 {
947 	struct ena_com_buf *ena_buf;
948 	struct page *page;
949 	dma_addr_t dma;
950 
951 	/* if previous allocated page is not used */
952 	if (unlikely(rx_info->page))
953 		return 0;
954 
955 	page = alloc_page(gfp);
956 	if (unlikely(!page)) {
957 		u64_stats_update_begin(&rx_ring->syncp);
958 		rx_ring->rx_stats.page_alloc_fail++;
959 		u64_stats_update_end(&rx_ring->syncp);
960 		return -ENOMEM;
961 	}
962 
963 	dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
964 			   DMA_FROM_DEVICE);
965 	if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
966 		u64_stats_update_begin(&rx_ring->syncp);
967 		rx_ring->rx_stats.dma_mapping_err++;
968 		u64_stats_update_end(&rx_ring->syncp);
969 
970 		__free_page(page);
971 		return -EIO;
972 	}
973 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
974 		  "alloc page %p, rx_info %p\n", page, rx_info);
975 
976 	rx_info->page = page;
977 	rx_info->page_offset = 0;
978 	ena_buf = &rx_info->ena_buf;
979 	ena_buf->paddr = dma + rx_ring->rx_headroom;
980 	ena_buf->len = ENA_PAGE_SIZE - rx_ring->rx_headroom;
981 
982 	return 0;
983 }
984 
985 static void ena_free_rx_page(struct ena_ring *rx_ring,
986 			     struct ena_rx_buffer *rx_info)
987 {
988 	struct page *page = rx_info->page;
989 	struct ena_com_buf *ena_buf = &rx_info->ena_buf;
990 
991 	if (unlikely(!page)) {
992 		netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
993 			   "Trying to free unallocated buffer\n");
994 		return;
995 	}
996 
997 	dma_unmap_page(rx_ring->dev,
998 		       ena_buf->paddr - rx_ring->rx_headroom,
999 		       ENA_PAGE_SIZE,
1000 		       DMA_FROM_DEVICE);
1001 
1002 	__free_page(page);
1003 	rx_info->page = NULL;
1004 }
1005 
1006 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
1007 {
1008 	u16 next_to_use, req_id;
1009 	u32 i;
1010 	int rc;
1011 
1012 	next_to_use = rx_ring->next_to_use;
1013 
1014 	for (i = 0; i < num; i++) {
1015 		struct ena_rx_buffer *rx_info;
1016 
1017 		req_id = rx_ring->free_ids[next_to_use];
1018 		rc = validate_rx_req_id(rx_ring, req_id);
1019 		if (unlikely(rc < 0))
1020 			break;
1021 
1022 		rx_info = &rx_ring->rx_buffer_info[req_id];
1023 
1024 
1025 		rc = ena_alloc_rx_page(rx_ring, rx_info,
1026 				       GFP_ATOMIC | __GFP_COMP);
1027 		if (unlikely(rc < 0)) {
1028 			netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
1029 				   "failed to alloc buffer for rx queue %d\n",
1030 				   rx_ring->qid);
1031 			break;
1032 		}
1033 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
1034 						&rx_info->ena_buf,
1035 						req_id);
1036 		if (unlikely(rc)) {
1037 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1038 				   "failed to add buffer for rx queue %d\n",
1039 				   rx_ring->qid);
1040 			break;
1041 		}
1042 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
1043 						   rx_ring->ring_size);
1044 	}
1045 
1046 	if (unlikely(i < num)) {
1047 		u64_stats_update_begin(&rx_ring->syncp);
1048 		rx_ring->rx_stats.refil_partial++;
1049 		u64_stats_update_end(&rx_ring->syncp);
1050 		netdev_warn(rx_ring->netdev,
1051 			    "refilled rx qid %d with only %d buffers (from %d)\n",
1052 			    rx_ring->qid, i, num);
1053 	}
1054 
1055 	/* ena_com_write_sq_doorbell issues a wmb() */
1056 	if (likely(i))
1057 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
1058 
1059 	rx_ring->next_to_use = next_to_use;
1060 
1061 	return i;
1062 }
1063 
1064 static void ena_free_rx_bufs(struct ena_adapter *adapter,
1065 			     u32 qid)
1066 {
1067 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
1068 	u32 i;
1069 
1070 	for (i = 0; i < rx_ring->ring_size; i++) {
1071 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
1072 
1073 		if (rx_info->page)
1074 			ena_free_rx_page(rx_ring, rx_info);
1075 	}
1076 }
1077 
1078 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers
1079  * @adapter: board private structure
1080  */
1081 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
1082 {
1083 	struct ena_ring *rx_ring;
1084 	int i, rc, bufs_num;
1085 
1086 	for (i = 0; i < adapter->num_io_queues; i++) {
1087 		rx_ring = &adapter->rx_ring[i];
1088 		bufs_num = rx_ring->ring_size - 1;
1089 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
1090 
1091 		if (unlikely(rc != bufs_num))
1092 			netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
1093 				   "refilling Queue %d failed. allocated %d buffers from: %d\n",
1094 				   i, rc, bufs_num);
1095 	}
1096 }
1097 
1098 static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
1099 {
1100 	int i;
1101 
1102 	for (i = 0; i < adapter->num_io_queues; i++)
1103 		ena_free_rx_bufs(adapter, i);
1104 }
1105 
1106 static void ena_unmap_tx_buff(struct ena_ring *tx_ring,
1107 			      struct ena_tx_buffer *tx_info)
1108 {
1109 	struct ena_com_buf *ena_buf;
1110 	u32 cnt;
1111 	int i;
1112 
1113 	ena_buf = tx_info->bufs;
1114 	cnt = tx_info->num_of_bufs;
1115 
1116 	if (unlikely(!cnt))
1117 		return;
1118 
1119 	if (tx_info->map_linear_data) {
1120 		dma_unmap_single(tx_ring->dev,
1121 				 dma_unmap_addr(ena_buf, paddr),
1122 				 dma_unmap_len(ena_buf, len),
1123 				 DMA_TO_DEVICE);
1124 		ena_buf++;
1125 		cnt--;
1126 	}
1127 
1128 	/* unmap remaining mapped pages */
1129 	for (i = 0; i < cnt; i++) {
1130 		dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
1131 			       dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
1132 		ena_buf++;
1133 	}
1134 }
1135 
1136 /* ena_free_tx_bufs - Free Tx Buffers per Queue
1137  * @tx_ring: TX ring for which buffers be freed
1138  */
1139 static void ena_free_tx_bufs(struct ena_ring *tx_ring)
1140 {
1141 	bool print_once = true;
1142 	u32 i;
1143 
1144 	for (i = 0; i < tx_ring->ring_size; i++) {
1145 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
1146 
1147 		if (!tx_info->skb)
1148 			continue;
1149 
1150 		if (print_once) {
1151 			netdev_notice(tx_ring->netdev,
1152 				      "free uncompleted tx skb qid %d idx 0x%x\n",
1153 				      tx_ring->qid, i);
1154 			print_once = false;
1155 		} else {
1156 			netdev_dbg(tx_ring->netdev,
1157 				   "free uncompleted tx skb qid %d idx 0x%x\n",
1158 				   tx_ring->qid, i);
1159 		}
1160 
1161 		ena_unmap_tx_buff(tx_ring, tx_info);
1162 
1163 		dev_kfree_skb_any(tx_info->skb);
1164 	}
1165 	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
1166 						  tx_ring->qid));
1167 }
1168 
1169 static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
1170 {
1171 	struct ena_ring *tx_ring;
1172 	int i;
1173 
1174 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1175 		tx_ring = &adapter->tx_ring[i];
1176 		ena_free_tx_bufs(tx_ring);
1177 	}
1178 }
1179 
1180 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
1181 {
1182 	u16 ena_qid;
1183 	int i;
1184 
1185 	for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) {
1186 		ena_qid = ENA_IO_TXQ_IDX(i);
1187 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1188 	}
1189 }
1190 
1191 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
1192 {
1193 	u16 ena_qid;
1194 	int i;
1195 
1196 	for (i = 0; i < adapter->num_io_queues; i++) {
1197 		ena_qid = ENA_IO_RXQ_IDX(i);
1198 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
1199 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
1200 	}
1201 }
1202 
1203 static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
1204 {
1205 	ena_destroy_all_tx_queues(adapter);
1206 	ena_destroy_all_rx_queues(adapter);
1207 }
1208 
1209 static int handle_invalid_req_id(struct ena_ring *ring, u16 req_id,
1210 				 struct ena_tx_buffer *tx_info, bool is_xdp)
1211 {
1212 	if (tx_info)
1213 		netif_err(ring->adapter,
1214 			  tx_done,
1215 			  ring->netdev,
1216 			  "tx_info doesn't have valid %s",
1217 			   is_xdp ? "xdp frame" : "skb");
1218 	else
1219 		netif_err(ring->adapter,
1220 			  tx_done,
1221 			  ring->netdev,
1222 			  "Invalid req_id: %hu\n",
1223 			  req_id);
1224 
1225 	u64_stats_update_begin(&ring->syncp);
1226 	ring->tx_stats.bad_req_id++;
1227 	u64_stats_update_end(&ring->syncp);
1228 
1229 	/* Trigger device reset */
1230 	ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
1231 	set_bit(ENA_FLAG_TRIGGER_RESET, &ring->adapter->flags);
1232 	return -EFAULT;
1233 }
1234 
1235 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
1236 {
1237 	struct ena_tx_buffer *tx_info = NULL;
1238 
1239 	if (likely(req_id < tx_ring->ring_size)) {
1240 		tx_info = &tx_ring->tx_buffer_info[req_id];
1241 		if (likely(tx_info->skb))
1242 			return 0;
1243 	}
1244 
1245 	return handle_invalid_req_id(tx_ring, req_id, tx_info, false);
1246 }
1247 
1248 static int validate_xdp_req_id(struct ena_ring *xdp_ring, u16 req_id)
1249 {
1250 	struct ena_tx_buffer *tx_info = NULL;
1251 
1252 	if (likely(req_id < xdp_ring->ring_size)) {
1253 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1254 		if (likely(tx_info->xdpf))
1255 			return 0;
1256 	}
1257 
1258 	return handle_invalid_req_id(xdp_ring, req_id, tx_info, true);
1259 }
1260 
1261 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
1262 {
1263 	struct netdev_queue *txq;
1264 	bool above_thresh;
1265 	u32 tx_bytes = 0;
1266 	u32 total_done = 0;
1267 	u16 next_to_clean;
1268 	u16 req_id;
1269 	int tx_pkts = 0;
1270 	int rc;
1271 
1272 	next_to_clean = tx_ring->next_to_clean;
1273 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
1274 
1275 	while (tx_pkts < budget) {
1276 		struct ena_tx_buffer *tx_info;
1277 		struct sk_buff *skb;
1278 
1279 		rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
1280 						&req_id);
1281 		if (rc)
1282 			break;
1283 
1284 		rc = validate_tx_req_id(tx_ring, req_id);
1285 		if (rc)
1286 			break;
1287 
1288 		tx_info = &tx_ring->tx_buffer_info[req_id];
1289 		skb = tx_info->skb;
1290 
1291 		/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
1292 		prefetch(&skb->end);
1293 
1294 		tx_info->skb = NULL;
1295 		tx_info->last_jiffies = 0;
1296 
1297 		ena_unmap_tx_buff(tx_ring, tx_info);
1298 
1299 		netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1300 			  "tx_poll: q %d skb %p completed\n", tx_ring->qid,
1301 			  skb);
1302 
1303 		tx_bytes += skb->len;
1304 		dev_kfree_skb(skb);
1305 		tx_pkts++;
1306 		total_done += tx_info->tx_descs;
1307 
1308 		tx_ring->free_ids[next_to_clean] = req_id;
1309 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1310 						     tx_ring->ring_size);
1311 	}
1312 
1313 	tx_ring->next_to_clean = next_to_clean;
1314 	ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
1315 	ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
1316 
1317 	netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1318 
1319 	netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
1320 		  "tx_poll: q %d done. total pkts: %d\n",
1321 		  tx_ring->qid, tx_pkts);
1322 
1323 	/* need to make the rings circular update visible to
1324 	 * ena_start_xmit() before checking for netif_queue_stopped().
1325 	 */
1326 	smp_mb();
1327 
1328 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1329 						    ENA_TX_WAKEUP_THRESH);
1330 	if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
1331 		__netif_tx_lock(txq, smp_processor_id());
1332 		above_thresh =
1333 			ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
1334 						     ENA_TX_WAKEUP_THRESH);
1335 		if (netif_tx_queue_stopped(txq) && above_thresh &&
1336 		    test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
1337 			netif_tx_wake_queue(txq);
1338 			u64_stats_update_begin(&tx_ring->syncp);
1339 			tx_ring->tx_stats.queue_wakeup++;
1340 			u64_stats_update_end(&tx_ring->syncp);
1341 		}
1342 		__netif_tx_unlock(txq);
1343 	}
1344 
1345 	return tx_pkts;
1346 }
1347 
1348 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
1349 {
1350 	struct sk_buff *skb;
1351 
1352 	if (frags)
1353 		skb = napi_get_frags(rx_ring->napi);
1354 	else
1355 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1356 						rx_ring->rx_copybreak);
1357 
1358 	if (unlikely(!skb)) {
1359 		u64_stats_update_begin(&rx_ring->syncp);
1360 		rx_ring->rx_stats.skb_alloc_fail++;
1361 		u64_stats_update_end(&rx_ring->syncp);
1362 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1363 			  "Failed to allocate skb. frags: %d\n", frags);
1364 		return NULL;
1365 	}
1366 
1367 	return skb;
1368 }
1369 
1370 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
1371 				  struct ena_com_rx_buf_info *ena_bufs,
1372 				  u32 descs,
1373 				  u16 *next_to_clean)
1374 {
1375 	struct sk_buff *skb;
1376 	struct ena_rx_buffer *rx_info;
1377 	u16 len, req_id, buf = 0;
1378 	void *va;
1379 
1380 	len = ena_bufs[buf].len;
1381 	req_id = ena_bufs[buf].req_id;
1382 	rx_info = &rx_ring->rx_buffer_info[req_id];
1383 
1384 	if (unlikely(!rx_info->page)) {
1385 		netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
1386 			  "Page is NULL\n");
1387 		return NULL;
1388 	}
1389 
1390 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1391 		  "rx_info %p page %p\n",
1392 		  rx_info, rx_info->page);
1393 
1394 	/* save virt address of first buffer */
1395 	va = page_address(rx_info->page) + rx_info->page_offset;
1396 	prefetch(va + NET_IP_ALIGN);
1397 
1398 	if (len <= rx_ring->rx_copybreak) {
1399 		skb = ena_alloc_skb(rx_ring, false);
1400 		if (unlikely(!skb))
1401 			return NULL;
1402 
1403 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1404 			  "rx allocated small packet. len %d. data_len %d\n",
1405 			  skb->len, skb->data_len);
1406 
1407 		/* sync this buffer for CPU use */
1408 		dma_sync_single_for_cpu(rx_ring->dev,
1409 					dma_unmap_addr(&rx_info->ena_buf, paddr),
1410 					len,
1411 					DMA_FROM_DEVICE);
1412 		skb_copy_to_linear_data(skb, va, len);
1413 		dma_sync_single_for_device(rx_ring->dev,
1414 					   dma_unmap_addr(&rx_info->ena_buf, paddr),
1415 					   len,
1416 					   DMA_FROM_DEVICE);
1417 
1418 		skb_put(skb, len);
1419 		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1420 		rx_ring->free_ids[*next_to_clean] = req_id;
1421 		*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
1422 						     rx_ring->ring_size);
1423 		return skb;
1424 	}
1425 
1426 	skb = ena_alloc_skb(rx_ring, true);
1427 	if (unlikely(!skb))
1428 		return NULL;
1429 
1430 	do {
1431 		dma_unmap_page(rx_ring->dev,
1432 			       dma_unmap_addr(&rx_info->ena_buf, paddr),
1433 			       ENA_PAGE_SIZE, DMA_FROM_DEVICE);
1434 
1435 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
1436 				rx_info->page_offset, len, ENA_PAGE_SIZE);
1437 
1438 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1439 			  "rx skb updated. len %d. data_len %d\n",
1440 			  skb->len, skb->data_len);
1441 
1442 		rx_info->page = NULL;
1443 
1444 		rx_ring->free_ids[*next_to_clean] = req_id;
1445 		*next_to_clean =
1446 			ENA_RX_RING_IDX_NEXT(*next_to_clean,
1447 					     rx_ring->ring_size);
1448 		if (likely(--descs == 0))
1449 			break;
1450 
1451 		buf++;
1452 		len = ena_bufs[buf].len;
1453 		req_id = ena_bufs[buf].req_id;
1454 		rx_info = &rx_ring->rx_buffer_info[req_id];
1455 	} while (1);
1456 
1457 	return skb;
1458 }
1459 
1460 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum
1461  * @adapter: structure containing adapter specific data
1462  * @ena_rx_ctx: received packet context/metadata
1463  * @skb: skb currently being received and modified
1464  */
1465 static void ena_rx_checksum(struct ena_ring *rx_ring,
1466 				   struct ena_com_rx_ctx *ena_rx_ctx,
1467 				   struct sk_buff *skb)
1468 {
1469 	/* Rx csum disabled */
1470 	if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
1471 		skb->ip_summed = CHECKSUM_NONE;
1472 		return;
1473 	}
1474 
1475 	/* For fragmented packets the checksum isn't valid */
1476 	if (ena_rx_ctx->frag) {
1477 		skb->ip_summed = CHECKSUM_NONE;
1478 		return;
1479 	}
1480 
1481 	/* if IP and error */
1482 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
1483 		     (ena_rx_ctx->l3_csum_err))) {
1484 		/* ipv4 checksum error */
1485 		skb->ip_summed = CHECKSUM_NONE;
1486 		u64_stats_update_begin(&rx_ring->syncp);
1487 		rx_ring->rx_stats.bad_csum++;
1488 		u64_stats_update_end(&rx_ring->syncp);
1489 		netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1490 			  "RX IPv4 header checksum error\n");
1491 		return;
1492 	}
1493 
1494 	/* if TCP/UDP */
1495 	if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1496 		   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
1497 		if (unlikely(ena_rx_ctx->l4_csum_err)) {
1498 			/* TCP/UDP checksum error */
1499 			u64_stats_update_begin(&rx_ring->syncp);
1500 			rx_ring->rx_stats.bad_csum++;
1501 			u64_stats_update_end(&rx_ring->syncp);
1502 			netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
1503 				  "RX L4 checksum error\n");
1504 			skb->ip_summed = CHECKSUM_NONE;
1505 			return;
1506 		}
1507 
1508 		if (likely(ena_rx_ctx->l4_csum_checked)) {
1509 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1510 			u64_stats_update_begin(&rx_ring->syncp);
1511 			rx_ring->rx_stats.csum_good++;
1512 			u64_stats_update_end(&rx_ring->syncp);
1513 		} else {
1514 			u64_stats_update_begin(&rx_ring->syncp);
1515 			rx_ring->rx_stats.csum_unchecked++;
1516 			u64_stats_update_end(&rx_ring->syncp);
1517 			skb->ip_summed = CHECKSUM_NONE;
1518 		}
1519 	} else {
1520 		skb->ip_summed = CHECKSUM_NONE;
1521 		return;
1522 	}
1523 
1524 }
1525 
1526 static void ena_set_rx_hash(struct ena_ring *rx_ring,
1527 			    struct ena_com_rx_ctx *ena_rx_ctx,
1528 			    struct sk_buff *skb)
1529 {
1530 	enum pkt_hash_types hash_type;
1531 
1532 	if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
1533 		if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
1534 			   (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
1535 
1536 			hash_type = PKT_HASH_TYPE_L4;
1537 		else
1538 			hash_type = PKT_HASH_TYPE_NONE;
1539 
1540 		/* Override hash type if the packet is fragmented */
1541 		if (ena_rx_ctx->frag)
1542 			hash_type = PKT_HASH_TYPE_NONE;
1543 
1544 		skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
1545 	}
1546 }
1547 
1548 int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp)
1549 {
1550 	struct ena_rx_buffer *rx_info;
1551 	int ret;
1552 
1553 	rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id];
1554 	xdp->data = page_address(rx_info->page) +
1555 		rx_info->page_offset + rx_ring->rx_headroom;
1556 	xdp_set_data_meta_invalid(xdp);
1557 	xdp->data_hard_start = page_address(rx_info->page);
1558 	xdp->data_end = xdp->data + rx_ring->ena_bufs[0].len;
1559 	/* If for some reason we received a bigger packet than
1560 	 * we expect, then we simply drop it
1561 	 */
1562 	if (unlikely(rx_ring->ena_bufs[0].len > ENA_XDP_MAX_MTU))
1563 		return XDP_DROP;
1564 
1565 	ret = ena_xdp_execute(rx_ring, xdp, rx_info);
1566 
1567 	/* The xdp program might expand the headers */
1568 	if (ret == XDP_PASS) {
1569 		rx_info->page_offset = xdp->data - xdp->data_hard_start;
1570 		rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data;
1571 	}
1572 
1573 	return ret;
1574 }
1575 /* ena_clean_rx_irq - Cleanup RX irq
1576  * @rx_ring: RX ring to clean
1577  * @napi: napi handler
1578  * @budget: how many packets driver is allowed to clean
1579  *
1580  * Returns the number of cleaned buffers.
1581  */
1582 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
1583 			    u32 budget)
1584 {
1585 	u16 next_to_clean = rx_ring->next_to_clean;
1586 	struct ena_com_rx_ctx ena_rx_ctx;
1587 	struct ena_adapter *adapter;
1588 	u32 res_budget, work_done;
1589 	int rx_copybreak_pkt = 0;
1590 	int refill_threshold;
1591 	struct sk_buff *skb;
1592 	int refill_required;
1593 	struct xdp_buff xdp;
1594 	int total_len = 0;
1595 	int xdp_verdict;
1596 	int rc = 0;
1597 	int i;
1598 
1599 	netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1600 		  "%s qid %d\n", __func__, rx_ring->qid);
1601 	res_budget = budget;
1602 	xdp.rxq = &rx_ring->xdp_rxq;
1603 
1604 	do {
1605 		xdp_verdict = XDP_PASS;
1606 		skb = NULL;
1607 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
1608 		ena_rx_ctx.max_bufs = rx_ring->sgl_size;
1609 		ena_rx_ctx.descs = 0;
1610 		rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
1611 				    rx_ring->ena_com_io_sq,
1612 				    &ena_rx_ctx);
1613 		if (unlikely(rc))
1614 			goto error;
1615 
1616 		if (unlikely(ena_rx_ctx.descs == 0))
1617 			break;
1618 
1619 		netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
1620 			  "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
1621 			  rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
1622 			  ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
1623 
1624 		if (ena_xdp_present_ring(rx_ring))
1625 			xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp);
1626 
1627 		/* allocate skb and fill it */
1628 		if (xdp_verdict == XDP_PASS)
1629 			skb = ena_rx_skb(rx_ring,
1630 					 rx_ring->ena_bufs,
1631 					 ena_rx_ctx.descs,
1632 					 &next_to_clean);
1633 
1634 		if (unlikely(!skb)) {
1635 			if (xdp_verdict == XDP_TX) {
1636 				ena_free_rx_page(rx_ring,
1637 						 &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]);
1638 				res_budget--;
1639 			}
1640 			for (i = 0; i < ena_rx_ctx.descs; i++) {
1641 				rx_ring->free_ids[next_to_clean] =
1642 					rx_ring->ena_bufs[i].req_id;
1643 				next_to_clean =
1644 					ENA_RX_RING_IDX_NEXT(next_to_clean,
1645 							     rx_ring->ring_size);
1646 			}
1647 			if (xdp_verdict == XDP_TX || xdp_verdict == XDP_DROP)
1648 				continue;
1649 			break;
1650 		}
1651 
1652 		ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
1653 
1654 		ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
1655 
1656 		skb_record_rx_queue(skb, rx_ring->qid);
1657 
1658 		if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
1659 			total_len += rx_ring->ena_bufs[0].len;
1660 			rx_copybreak_pkt++;
1661 			napi_gro_receive(napi, skb);
1662 		} else {
1663 			total_len += skb->len;
1664 			napi_gro_frags(napi);
1665 		}
1666 
1667 		res_budget--;
1668 	} while (likely(res_budget));
1669 
1670 	work_done = budget - res_budget;
1671 	rx_ring->per_napi_packets += work_done;
1672 	u64_stats_update_begin(&rx_ring->syncp);
1673 	rx_ring->rx_stats.bytes += total_len;
1674 	rx_ring->rx_stats.cnt += work_done;
1675 	rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
1676 	u64_stats_update_end(&rx_ring->syncp);
1677 
1678 	rx_ring->next_to_clean = next_to_clean;
1679 
1680 	refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
1681 	refill_threshold =
1682 		min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
1683 		      ENA_RX_REFILL_THRESH_PACKET);
1684 
1685 	/* Optimization, try to batch new rx buffers */
1686 	if (refill_required > refill_threshold) {
1687 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
1688 		ena_refill_rx_bufs(rx_ring, refill_required);
1689 	}
1690 
1691 	return work_done;
1692 
1693 error:
1694 	adapter = netdev_priv(rx_ring->netdev);
1695 
1696 	u64_stats_update_begin(&rx_ring->syncp);
1697 	rx_ring->rx_stats.bad_desc_num++;
1698 	u64_stats_update_end(&rx_ring->syncp);
1699 
1700 	/* Too many desc from the device. Trigger reset */
1701 	adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
1702 	set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
1703 
1704 	return 0;
1705 }
1706 
1707 static void ena_dim_work(struct work_struct *w)
1708 {
1709 	struct dim *dim = container_of(w, struct dim, work);
1710 	struct dim_cq_moder cur_moder =
1711 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1712 	struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
1713 
1714 	ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
1715 	dim->state = DIM_START_MEASURE;
1716 }
1717 
1718 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
1719 {
1720 	struct dim_sample dim_sample;
1721 	struct ena_ring *rx_ring = ena_napi->rx_ring;
1722 
1723 	if (!rx_ring->per_napi_packets)
1724 		return;
1725 
1726 	rx_ring->non_empty_napi_events++;
1727 
1728 	dim_update_sample(rx_ring->non_empty_napi_events,
1729 			  rx_ring->rx_stats.cnt,
1730 			  rx_ring->rx_stats.bytes,
1731 			  &dim_sample);
1732 
1733 	net_dim(&ena_napi->dim, dim_sample);
1734 
1735 	rx_ring->per_napi_packets = 0;
1736 }
1737 
1738 static void ena_unmask_interrupt(struct ena_ring *tx_ring,
1739 					struct ena_ring *rx_ring)
1740 {
1741 	struct ena_eth_io_intr_reg intr_reg;
1742 	u32 rx_interval = 0;
1743 	/* Rx ring can be NULL when for XDP tx queues which don't have an
1744 	 * accompanying rx_ring pair.
1745 	 */
1746 	if (rx_ring)
1747 		rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
1748 			rx_ring->smoothed_interval :
1749 			ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
1750 
1751 	/* Update intr register: rx intr delay,
1752 	 * tx intr delay and interrupt unmask
1753 	 */
1754 	ena_com_update_intr_reg(&intr_reg,
1755 				rx_interval,
1756 				tx_ring->smoothed_interval,
1757 				true);
1758 
1759 	/* It is a shared MSI-X.
1760 	 * Tx and Rx CQ have pointer to it.
1761 	 * So we use one of them to reach the intr reg
1762 	 * The Tx ring is used because the rx_ring is NULL for XDP queues
1763 	 */
1764 	ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg);
1765 }
1766 
1767 static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
1768 					     struct ena_ring *rx_ring)
1769 {
1770 	int cpu = get_cpu();
1771 	int numa_node;
1772 
1773 	/* Check only one ring since the 2 rings are running on the same cpu */
1774 	if (likely(tx_ring->cpu == cpu))
1775 		goto out;
1776 
1777 	numa_node = cpu_to_node(cpu);
1778 	put_cpu();
1779 
1780 	if (numa_node != NUMA_NO_NODE) {
1781 		ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
1782 		if (rx_ring)
1783 			ena_com_update_numa_node(rx_ring->ena_com_io_cq,
1784 						 numa_node);
1785 	}
1786 
1787 	tx_ring->cpu = cpu;
1788 	if (rx_ring)
1789 		rx_ring->cpu = cpu;
1790 
1791 	return;
1792 out:
1793 	put_cpu();
1794 }
1795 
1796 static int ena_clean_xdp_irq(struct ena_ring *xdp_ring, u32 budget)
1797 {
1798 	u32 total_done = 0;
1799 	u16 next_to_clean;
1800 	u32 tx_bytes = 0;
1801 	int tx_pkts = 0;
1802 	u16 req_id;
1803 	int rc;
1804 
1805 	if (unlikely(!xdp_ring))
1806 		return 0;
1807 	next_to_clean = xdp_ring->next_to_clean;
1808 
1809 	while (tx_pkts < budget) {
1810 		struct ena_tx_buffer *tx_info;
1811 		struct xdp_frame *xdpf;
1812 
1813 		rc = ena_com_tx_comp_req_id_get(xdp_ring->ena_com_io_cq,
1814 						&req_id);
1815 		if (rc)
1816 			break;
1817 
1818 		rc = validate_xdp_req_id(xdp_ring, req_id);
1819 		if (rc)
1820 			break;
1821 
1822 		tx_info = &xdp_ring->tx_buffer_info[req_id];
1823 		xdpf = tx_info->xdpf;
1824 
1825 		tx_info->xdpf = NULL;
1826 		tx_info->last_jiffies = 0;
1827 		ena_unmap_tx_buff(xdp_ring, tx_info);
1828 
1829 		netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1830 			  "tx_poll: q %d skb %p completed\n", xdp_ring->qid,
1831 			  xdpf);
1832 
1833 		tx_bytes += xdpf->len;
1834 		tx_pkts++;
1835 		total_done += tx_info->tx_descs;
1836 
1837 		__free_page(tx_info->xdp_rx_page);
1838 		xdp_ring->free_ids[next_to_clean] = req_id;
1839 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
1840 						     xdp_ring->ring_size);
1841 	}
1842 
1843 	xdp_ring->next_to_clean = next_to_clean;
1844 	ena_com_comp_ack(xdp_ring->ena_com_io_sq, total_done);
1845 	ena_com_update_dev_comp_head(xdp_ring->ena_com_io_cq);
1846 
1847 	netif_dbg(xdp_ring->adapter, tx_done, xdp_ring->netdev,
1848 		  "tx_poll: q %d done. total pkts: %d\n",
1849 		  xdp_ring->qid, tx_pkts);
1850 
1851 	return tx_pkts;
1852 }
1853 
1854 static int ena_io_poll(struct napi_struct *napi, int budget)
1855 {
1856 	struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
1857 	struct ena_ring *tx_ring, *rx_ring;
1858 	int tx_work_done;
1859 	int rx_work_done = 0;
1860 	int tx_budget;
1861 	int napi_comp_call = 0;
1862 	int ret;
1863 
1864 	tx_ring = ena_napi->tx_ring;
1865 	rx_ring = ena_napi->rx_ring;
1866 
1867 	tx_ring->first_interrupt = ena_napi->first_interrupt;
1868 	rx_ring->first_interrupt = ena_napi->first_interrupt;
1869 
1870 	tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
1871 
1872 	if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1873 	    test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
1874 		napi_complete_done(napi, 0);
1875 		return 0;
1876 	}
1877 
1878 	tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
1879 	/* On netpoll the budget is zero and the handler should only clean the
1880 	 * tx completions.
1881 	 */
1882 	if (likely(budget))
1883 		rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
1884 
1885 	/* If the device is about to reset or down, avoid unmask
1886 	 * the interrupt and return 0 so NAPI won't reschedule
1887 	 */
1888 	if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
1889 		     test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
1890 		napi_complete_done(napi, 0);
1891 		ret = 0;
1892 
1893 	} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
1894 		napi_comp_call = 1;
1895 
1896 		/* Update numa and unmask the interrupt only when schedule
1897 		 * from the interrupt context (vs from sk_busy_loop)
1898 		 */
1899 		if (napi_complete_done(napi, rx_work_done)) {
1900 			/* We apply adaptive moderation on Rx path only.
1901 			 * Tx uses static interrupt moderation.
1902 			 */
1903 			if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
1904 				ena_adjust_adaptive_rx_intr_moderation(ena_napi);
1905 
1906 			ena_unmask_interrupt(tx_ring, rx_ring);
1907 		}
1908 
1909 		ena_update_ring_numa_node(tx_ring, rx_ring);
1910 
1911 		ret = rx_work_done;
1912 	} else {
1913 		ret = budget;
1914 	}
1915 
1916 	u64_stats_update_begin(&tx_ring->syncp);
1917 	tx_ring->tx_stats.napi_comp += napi_comp_call;
1918 	tx_ring->tx_stats.tx_poll++;
1919 	u64_stats_update_end(&tx_ring->syncp);
1920 
1921 	return ret;
1922 }
1923 
1924 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
1925 {
1926 	struct ena_adapter *adapter = (struct ena_adapter *)data;
1927 
1928 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
1929 
1930 	/* Don't call the aenq handler before probe is done */
1931 	if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
1932 		ena_com_aenq_intr_handler(adapter->ena_dev, data);
1933 
1934 	return IRQ_HANDLED;
1935 }
1936 
1937 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
1938  * @irq: interrupt number
1939  * @data: pointer to a network interface private napi device structure
1940  */
1941 static irqreturn_t ena_intr_msix_io(int irq, void *data)
1942 {
1943 	struct ena_napi *ena_napi = data;
1944 
1945 	ena_napi->first_interrupt = true;
1946 
1947 	napi_schedule_irqoff(&ena_napi->napi);
1948 
1949 	return IRQ_HANDLED;
1950 }
1951 
1952 /* Reserve a single MSI-X vector for management (admin + aenq).
1953  * plus reserve one vector for each potential io queue.
1954  * the number of potential io queues is the minimum of what the device
1955  * supports and the number of vCPUs.
1956  */
1957 static int ena_enable_msix(struct ena_adapter *adapter)
1958 {
1959 	int msix_vecs, irq_cnt;
1960 
1961 	if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
1962 		netif_err(adapter, probe, adapter->netdev,
1963 			  "Error, MSI-X is already enabled\n");
1964 		return -EPERM;
1965 	}
1966 
1967 	/* Reserved the max msix vectors we might need */
1968 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->num_io_queues);
1969 	netif_dbg(adapter, probe, adapter->netdev,
1970 		  "trying to enable MSI-X, vectors %d\n", msix_vecs);
1971 
1972 	irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
1973 					msix_vecs, PCI_IRQ_MSIX);
1974 
1975 	if (irq_cnt < 0) {
1976 		netif_err(adapter, probe, adapter->netdev,
1977 			  "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
1978 		return -ENOSPC;
1979 	}
1980 
1981 	if (irq_cnt != msix_vecs) {
1982 		netif_notice(adapter, probe, adapter->netdev,
1983 			     "enable only %d MSI-X (out of %d), reduce the number of queues\n",
1984 			     irq_cnt, msix_vecs);
1985 		adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
1986 	}
1987 
1988 	if (ena_init_rx_cpu_rmap(adapter))
1989 		netif_warn(adapter, probe, adapter->netdev,
1990 			   "Failed to map IRQs to CPUs\n");
1991 
1992 	adapter->msix_vecs = irq_cnt;
1993 	set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
1994 
1995 	return 0;
1996 }
1997 
1998 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
1999 {
2000 	u32 cpu;
2001 
2002 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
2003 		 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
2004 		 pci_name(adapter->pdev));
2005 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
2006 		ena_intr_msix_mgmnt;
2007 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
2008 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
2009 		pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
2010 	cpu = cpumask_first(cpu_online_mask);
2011 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
2012 	cpumask_set_cpu(cpu,
2013 			&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
2014 }
2015 
2016 static void ena_setup_io_intr(struct ena_adapter *adapter)
2017 {
2018 	struct net_device *netdev;
2019 	int irq_idx, i, cpu;
2020 	int io_queue_count;
2021 
2022 	netdev = adapter->netdev;
2023 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2024 
2025 	for (i = 0; i < io_queue_count; i++) {
2026 		irq_idx = ENA_IO_IRQ_IDX(i);
2027 		cpu = i % num_online_cpus();
2028 
2029 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
2030 			 "%s-Tx-Rx-%d", netdev->name, i);
2031 		adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
2032 		adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
2033 		adapter->irq_tbl[irq_idx].vector =
2034 			pci_irq_vector(adapter->pdev, irq_idx);
2035 		adapter->irq_tbl[irq_idx].cpu = cpu;
2036 
2037 		cpumask_set_cpu(cpu,
2038 				&adapter->irq_tbl[irq_idx].affinity_hint_mask);
2039 	}
2040 }
2041 
2042 static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
2043 {
2044 	unsigned long flags = 0;
2045 	struct ena_irq *irq;
2046 	int rc;
2047 
2048 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2049 	rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2050 			 irq->data);
2051 	if (rc) {
2052 		netif_err(adapter, probe, adapter->netdev,
2053 			  "failed to request admin irq\n");
2054 		return rc;
2055 	}
2056 
2057 	netif_dbg(adapter, probe, adapter->netdev,
2058 		  "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
2059 		  irq->affinity_hint_mask.bits[0], irq->vector);
2060 
2061 	irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2062 
2063 	return rc;
2064 }
2065 
2066 static int ena_request_io_irq(struct ena_adapter *adapter)
2067 {
2068 	unsigned long flags = 0;
2069 	struct ena_irq *irq;
2070 	int rc = 0, i, k;
2071 
2072 	if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
2073 		netif_err(adapter, ifup, adapter->netdev,
2074 			  "Failed to request I/O IRQ: MSI-X is not enabled\n");
2075 		return -EINVAL;
2076 	}
2077 
2078 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
2079 		irq = &adapter->irq_tbl[i];
2080 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
2081 				 irq->data);
2082 		if (rc) {
2083 			netif_err(adapter, ifup, adapter->netdev,
2084 				  "Failed to request I/O IRQ. index %d rc %d\n",
2085 				   i, rc);
2086 			goto err;
2087 		}
2088 
2089 		netif_dbg(adapter, ifup, adapter->netdev,
2090 			  "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
2091 			  i, irq->affinity_hint_mask.bits[0], irq->vector);
2092 
2093 		irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
2094 	}
2095 
2096 	return rc;
2097 
2098 err:
2099 	for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
2100 		irq = &adapter->irq_tbl[k];
2101 		free_irq(irq->vector, irq->data);
2102 	}
2103 
2104 	return rc;
2105 }
2106 
2107 static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
2108 {
2109 	struct ena_irq *irq;
2110 
2111 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
2112 	synchronize_irq(irq->vector);
2113 	irq_set_affinity_hint(irq->vector, NULL);
2114 	free_irq(irq->vector, irq->data);
2115 }
2116 
2117 static void ena_free_io_irq(struct ena_adapter *adapter)
2118 {
2119 	struct ena_irq *irq;
2120 	int i;
2121 
2122 #ifdef CONFIG_RFS_ACCEL
2123 	if (adapter->msix_vecs >= 1) {
2124 		free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
2125 		adapter->netdev->rx_cpu_rmap = NULL;
2126 	}
2127 #endif /* CONFIG_RFS_ACCEL */
2128 
2129 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
2130 		irq = &adapter->irq_tbl[i];
2131 		irq_set_affinity_hint(irq->vector, NULL);
2132 		free_irq(irq->vector, irq->data);
2133 	}
2134 }
2135 
2136 static void ena_disable_msix(struct ena_adapter *adapter)
2137 {
2138 	if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
2139 		pci_free_irq_vectors(adapter->pdev);
2140 }
2141 
2142 static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
2143 {
2144 	int i;
2145 
2146 	if (!netif_running(adapter->netdev))
2147 		return;
2148 
2149 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++)
2150 		synchronize_irq(adapter->irq_tbl[i].vector);
2151 }
2152 
2153 static void ena_del_napi_in_range(struct ena_adapter *adapter,
2154 				  int first_index,
2155 				  int count)
2156 {
2157 	int i;
2158 
2159 	for (i = first_index; i < first_index + count; i++) {
2160 		/* Check if napi was initialized before */
2161 		if (!ENA_IS_XDP_INDEX(adapter, i) ||
2162 		    adapter->ena_napi[i].xdp_ring)
2163 			netif_napi_del(&adapter->ena_napi[i].napi);
2164 		else
2165 			WARN_ON(ENA_IS_XDP_INDEX(adapter, i) &&
2166 				adapter->ena_napi[i].xdp_ring);
2167 	}
2168 }
2169 
2170 static void ena_init_napi_in_range(struct ena_adapter *adapter,
2171 				   int first_index, int count)
2172 {
2173 	struct ena_napi *napi = {0};
2174 	int i;
2175 
2176 	for (i = first_index; i < first_index + count; i++) {
2177 		napi = &adapter->ena_napi[i];
2178 
2179 		netif_napi_add(adapter->netdev,
2180 			       &adapter->ena_napi[i].napi,
2181 			       ENA_IS_XDP_INDEX(adapter, i) ? ena_xdp_io_poll : ena_io_poll,
2182 			       ENA_NAPI_BUDGET);
2183 
2184 		if (!ENA_IS_XDP_INDEX(adapter, i)) {
2185 			napi->rx_ring = &adapter->rx_ring[i];
2186 			napi->tx_ring = &adapter->tx_ring[i];
2187 		} else {
2188 			napi->xdp_ring = &adapter->tx_ring[i];
2189 		}
2190 		napi->qid = i;
2191 	}
2192 }
2193 
2194 static void ena_napi_disable_in_range(struct ena_adapter *adapter,
2195 				      int first_index,
2196 				      int count)
2197 {
2198 	int i;
2199 
2200 	for (i = first_index; i < first_index + count; i++)
2201 		napi_disable(&adapter->ena_napi[i].napi);
2202 }
2203 
2204 static void ena_napi_enable_in_range(struct ena_adapter *adapter,
2205 				     int first_index,
2206 				     int count)
2207 {
2208 	int i;
2209 
2210 	for (i = first_index; i < first_index + count; i++)
2211 		napi_enable(&adapter->ena_napi[i].napi);
2212 }
2213 
2214 /* Configure the Rx forwarding */
2215 static int ena_rss_configure(struct ena_adapter *adapter)
2216 {
2217 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2218 	int rc;
2219 
2220 	/* In case the RSS table wasn't initialized by probe */
2221 	if (!ena_dev->rss.tbl_log_size) {
2222 		rc = ena_rss_init_default(adapter);
2223 		if (rc && (rc != -EOPNOTSUPP)) {
2224 			netif_err(adapter, ifup, adapter->netdev,
2225 					"Failed to init RSS rc: %d\n", rc);
2226 			return rc;
2227 		}
2228 	}
2229 
2230 	/* Set indirect table */
2231 	rc = ena_com_indirect_table_set(ena_dev);
2232 	if (unlikely(rc && rc != -EOPNOTSUPP))
2233 		return rc;
2234 
2235 	/* Configure hash function (if supported) */
2236 	rc = ena_com_set_hash_function(ena_dev);
2237 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2238 		return rc;
2239 
2240 	/* Configure hash inputs (if supported) */
2241 	rc = ena_com_set_hash_ctrl(ena_dev);
2242 	if (unlikely(rc && (rc != -EOPNOTSUPP)))
2243 		return rc;
2244 
2245 	return 0;
2246 }
2247 
2248 static int ena_up_complete(struct ena_adapter *adapter)
2249 {
2250 	int rc;
2251 
2252 	rc = ena_rss_configure(adapter);
2253 	if (rc)
2254 		return rc;
2255 
2256 	ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
2257 
2258 	ena_refill_all_rx_bufs(adapter);
2259 
2260 	/* enable transmits */
2261 	netif_tx_start_all_queues(adapter->netdev);
2262 
2263 	ena_napi_enable_in_range(adapter,
2264 				 0,
2265 				 adapter->xdp_num_queues + adapter->num_io_queues);
2266 
2267 	return 0;
2268 }
2269 
2270 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
2271 {
2272 	struct ena_com_create_io_ctx ctx;
2273 	struct ena_com_dev *ena_dev;
2274 	struct ena_ring *tx_ring;
2275 	u32 msix_vector;
2276 	u16 ena_qid;
2277 	int rc;
2278 
2279 	ena_dev = adapter->ena_dev;
2280 
2281 	tx_ring = &adapter->tx_ring[qid];
2282 	msix_vector = ENA_IO_IRQ_IDX(qid);
2283 	ena_qid = ENA_IO_TXQ_IDX(qid);
2284 
2285 	memset(&ctx, 0x0, sizeof(ctx));
2286 
2287 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
2288 	ctx.qid = ena_qid;
2289 	ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
2290 	ctx.msix_vector = msix_vector;
2291 	ctx.queue_size = tx_ring->ring_size;
2292 	ctx.numa_node = cpu_to_node(tx_ring->cpu);
2293 
2294 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2295 	if (rc) {
2296 		netif_err(adapter, ifup, adapter->netdev,
2297 			  "Failed to create I/O TX queue num %d rc: %d\n",
2298 			   qid, rc);
2299 		return rc;
2300 	}
2301 
2302 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2303 				     &tx_ring->ena_com_io_sq,
2304 				     &tx_ring->ena_com_io_cq);
2305 	if (rc) {
2306 		netif_err(adapter, ifup, adapter->netdev,
2307 			  "Failed to get TX queue handlers. TX queue num %d rc: %d\n",
2308 			  qid, rc);
2309 		ena_com_destroy_io_queue(ena_dev, ena_qid);
2310 		return rc;
2311 	}
2312 
2313 	ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
2314 	return rc;
2315 }
2316 
2317 static int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter,
2318 					    int first_index, int count)
2319 {
2320 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2321 	int rc, i;
2322 
2323 	for (i = first_index; i < first_index + count; i++) {
2324 		rc = ena_create_io_tx_queue(adapter, i);
2325 		if (rc)
2326 			goto create_err;
2327 	}
2328 
2329 	return 0;
2330 
2331 create_err:
2332 	while (i-- > first_index)
2333 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
2334 
2335 	return rc;
2336 }
2337 
2338 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
2339 {
2340 	struct ena_com_dev *ena_dev;
2341 	struct ena_com_create_io_ctx ctx;
2342 	struct ena_ring *rx_ring;
2343 	u32 msix_vector;
2344 	u16 ena_qid;
2345 	int rc;
2346 
2347 	ena_dev = adapter->ena_dev;
2348 
2349 	rx_ring = &adapter->rx_ring[qid];
2350 	msix_vector = ENA_IO_IRQ_IDX(qid);
2351 	ena_qid = ENA_IO_RXQ_IDX(qid);
2352 
2353 	memset(&ctx, 0x0, sizeof(ctx));
2354 
2355 	ctx.qid = ena_qid;
2356 	ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
2357 	ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
2358 	ctx.msix_vector = msix_vector;
2359 	ctx.queue_size = rx_ring->ring_size;
2360 	ctx.numa_node = cpu_to_node(rx_ring->cpu);
2361 
2362 	rc = ena_com_create_io_queue(ena_dev, &ctx);
2363 	if (rc) {
2364 		netif_err(adapter, ifup, adapter->netdev,
2365 			  "Failed to create I/O RX queue num %d rc: %d\n",
2366 			  qid, rc);
2367 		return rc;
2368 	}
2369 
2370 	rc = ena_com_get_io_handlers(ena_dev, ena_qid,
2371 				     &rx_ring->ena_com_io_sq,
2372 				     &rx_ring->ena_com_io_cq);
2373 	if (rc) {
2374 		netif_err(adapter, ifup, adapter->netdev,
2375 			  "Failed to get RX queue handlers. RX queue num %d rc: %d\n",
2376 			  qid, rc);
2377 		goto err;
2378 	}
2379 
2380 	ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
2381 
2382 	return rc;
2383 err:
2384 	ena_com_destroy_io_queue(ena_dev, ena_qid);
2385 	return rc;
2386 }
2387 
2388 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
2389 {
2390 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2391 	int rc, i;
2392 
2393 	for (i = 0; i < adapter->num_io_queues; i++) {
2394 		rc = ena_create_io_rx_queue(adapter, i);
2395 		if (rc)
2396 			goto create_err;
2397 		INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
2398 	}
2399 
2400 	return 0;
2401 
2402 create_err:
2403 	while (i--) {
2404 		cancel_work_sync(&adapter->ena_napi[i].dim.work);
2405 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
2406 	}
2407 
2408 	return rc;
2409 }
2410 
2411 static void set_io_rings_size(struct ena_adapter *adapter,
2412 			      int new_tx_size,
2413 			      int new_rx_size)
2414 {
2415 	int i;
2416 
2417 	for (i = 0; i < adapter->num_io_queues; i++) {
2418 		adapter->tx_ring[i].ring_size = new_tx_size;
2419 		adapter->rx_ring[i].ring_size = new_rx_size;
2420 	}
2421 }
2422 
2423 /* This function allows queue allocation to backoff when the system is
2424  * low on memory. If there is not enough memory to allocate io queues
2425  * the driver will try to allocate smaller queues.
2426  *
2427  * The backoff algorithm is as follows:
2428  *  1. Try to allocate TX and RX and if successful.
2429  *  1.1. return success
2430  *
2431  *  2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
2432  *
2433  *  3. If TX or RX is smaller than 256
2434  *  3.1. return failure.
2435  *  4. else
2436  *  4.1. go back to 1.
2437  */
2438 static int create_queues_with_size_backoff(struct ena_adapter *adapter)
2439 {
2440 	int rc, cur_rx_ring_size, cur_tx_ring_size;
2441 	int new_rx_ring_size, new_tx_ring_size;
2442 
2443 	/* current queue sizes might be set to smaller than the requested
2444 	 * ones due to past queue allocation failures.
2445 	 */
2446 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
2447 			adapter->requested_rx_ring_size);
2448 
2449 	while (1) {
2450 		if (ena_xdp_present(adapter)) {
2451 			rc = ena_setup_and_create_all_xdp_queues(adapter);
2452 
2453 			if (rc)
2454 				goto err_setup_tx;
2455 		}
2456 		rc = ena_setup_tx_resources_in_range(adapter,
2457 						     0,
2458 						     adapter->num_io_queues);
2459 		if (rc)
2460 			goto err_setup_tx;
2461 
2462 		rc = ena_create_io_tx_queues_in_range(adapter,
2463 						      0,
2464 						      adapter->num_io_queues);
2465 		if (rc)
2466 			goto err_create_tx_queues;
2467 
2468 		rc = ena_setup_all_rx_resources(adapter);
2469 		if (rc)
2470 			goto err_setup_rx;
2471 
2472 		rc = ena_create_all_io_rx_queues(adapter);
2473 		if (rc)
2474 			goto err_create_rx_queues;
2475 
2476 		return 0;
2477 
2478 err_create_rx_queues:
2479 		ena_free_all_io_rx_resources(adapter);
2480 err_setup_rx:
2481 		ena_destroy_all_tx_queues(adapter);
2482 err_create_tx_queues:
2483 		ena_free_all_io_tx_resources(adapter);
2484 err_setup_tx:
2485 		if (rc != -ENOMEM) {
2486 			netif_err(adapter, ifup, adapter->netdev,
2487 				  "Queue creation failed with error code %d\n",
2488 				   rc);
2489 			return rc;
2490 		}
2491 
2492 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
2493 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
2494 
2495 		netif_err(adapter, ifup, adapter->netdev,
2496 			  "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
2497 			  cur_tx_ring_size, cur_rx_ring_size);
2498 
2499 		new_tx_ring_size = cur_tx_ring_size;
2500 		new_rx_ring_size = cur_rx_ring_size;
2501 
2502 		/* Decrease the size of the larger queue, or
2503 		 * decrease both if they are the same size.
2504 		 */
2505 		if (cur_rx_ring_size <= cur_tx_ring_size)
2506 			new_tx_ring_size = cur_tx_ring_size / 2;
2507 		if (cur_rx_ring_size >= cur_tx_ring_size)
2508 			new_rx_ring_size = cur_rx_ring_size / 2;
2509 
2510 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
2511 				new_rx_ring_size < ENA_MIN_RING_SIZE) {
2512 			netif_err(adapter, ifup, adapter->netdev,
2513 				  "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
2514 				  ENA_MIN_RING_SIZE);
2515 			return rc;
2516 		}
2517 
2518 		netif_err(adapter, ifup, adapter->netdev,
2519 			  "Retrying queue creation with sizes TX=%d, RX=%d\n",
2520 			  new_tx_ring_size,
2521 			  new_rx_ring_size);
2522 
2523 		set_io_rings_size(adapter, new_tx_ring_size,
2524 				  new_rx_ring_size);
2525 	}
2526 }
2527 
2528 static int ena_up(struct ena_adapter *adapter)
2529 {
2530 	int io_queue_count, rc, i;
2531 
2532 	netdev_dbg(adapter->netdev, "%s\n", __func__);
2533 
2534 	io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2535 	ena_setup_io_intr(adapter);
2536 
2537 	/* napi poll functions should be initialized before running
2538 	 * request_irq(), to handle a rare condition where there is a pending
2539 	 * interrupt, causing the ISR to fire immediately while the poll
2540 	 * function wasn't set yet, causing a null dereference
2541 	 */
2542 	ena_init_napi_in_range(adapter, 0, io_queue_count);
2543 
2544 	rc = ena_request_io_irq(adapter);
2545 	if (rc)
2546 		goto err_req_irq;
2547 
2548 	rc = create_queues_with_size_backoff(adapter);
2549 	if (rc)
2550 		goto err_create_queues_with_backoff;
2551 
2552 	rc = ena_up_complete(adapter);
2553 	if (rc)
2554 		goto err_up;
2555 
2556 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
2557 		netif_carrier_on(adapter->netdev);
2558 
2559 	u64_stats_update_begin(&adapter->syncp);
2560 	adapter->dev_stats.interface_up++;
2561 	u64_stats_update_end(&adapter->syncp);
2562 
2563 	set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2564 
2565 	/* Enable completion queues interrupt */
2566 	for (i = 0; i < adapter->num_io_queues; i++)
2567 		ena_unmask_interrupt(&adapter->tx_ring[i],
2568 				     &adapter->rx_ring[i]);
2569 
2570 	/* schedule napi in case we had pending packets
2571 	 * from the last time we disable napi
2572 	 */
2573 	for (i = 0; i < io_queue_count; i++)
2574 		napi_schedule(&adapter->ena_napi[i].napi);
2575 
2576 	return rc;
2577 
2578 err_up:
2579 	ena_destroy_all_tx_queues(adapter);
2580 	ena_free_all_io_tx_resources(adapter);
2581 	ena_destroy_all_rx_queues(adapter);
2582 	ena_free_all_io_rx_resources(adapter);
2583 err_create_queues_with_backoff:
2584 	ena_free_io_irq(adapter);
2585 err_req_irq:
2586 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2587 
2588 	return rc;
2589 }
2590 
2591 static void ena_down(struct ena_adapter *adapter)
2592 {
2593 	int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues;
2594 
2595 	netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
2596 
2597 	clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2598 
2599 	u64_stats_update_begin(&adapter->syncp);
2600 	adapter->dev_stats.interface_down++;
2601 	u64_stats_update_end(&adapter->syncp);
2602 
2603 	netif_carrier_off(adapter->netdev);
2604 	netif_tx_disable(adapter->netdev);
2605 
2606 	/* After this point the napi handler won't enable the tx queue */
2607 	ena_napi_disable_in_range(adapter, 0, io_queue_count);
2608 
2609 	/* After destroy the queue there won't be any new interrupts */
2610 
2611 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
2612 		int rc;
2613 
2614 		rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
2615 		if (rc)
2616 			dev_err(&adapter->pdev->dev, "Device reset failed\n");
2617 		/* stop submitting admin commands on a device that was reset */
2618 		ena_com_set_admin_running_state(adapter->ena_dev, false);
2619 	}
2620 
2621 	ena_destroy_all_io_queues(adapter);
2622 
2623 	ena_disable_io_intr_sync(adapter);
2624 	ena_free_io_irq(adapter);
2625 	ena_del_napi_in_range(adapter, 0, io_queue_count);
2626 
2627 	ena_free_all_tx_bufs(adapter);
2628 	ena_free_all_rx_bufs(adapter);
2629 	ena_free_all_io_tx_resources(adapter);
2630 	ena_free_all_io_rx_resources(adapter);
2631 }
2632 
2633 /* ena_open - Called when a network interface is made active
2634  * @netdev: network interface device structure
2635  *
2636  * Returns 0 on success, negative value on failure
2637  *
2638  * The open entry point is called when a network interface is made
2639  * active by the system (IFF_UP).  At this point all resources needed
2640  * for transmit and receive operations are allocated, the interrupt
2641  * handler is registered with the OS, the watchdog timer is started,
2642  * and the stack is notified that the interface is ready.
2643  */
2644 static int ena_open(struct net_device *netdev)
2645 {
2646 	struct ena_adapter *adapter = netdev_priv(netdev);
2647 	int rc;
2648 
2649 	/* Notify the stack of the actual queue counts. */
2650 	rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues);
2651 	if (rc) {
2652 		netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
2653 		return rc;
2654 	}
2655 
2656 	rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues);
2657 	if (rc) {
2658 		netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
2659 		return rc;
2660 	}
2661 
2662 	rc = ena_up(adapter);
2663 	if (rc)
2664 		return rc;
2665 
2666 	return rc;
2667 }
2668 
2669 /* ena_close - Disables a network interface
2670  * @netdev: network interface device structure
2671  *
2672  * Returns 0, this is not allowed to fail
2673  *
2674  * The close entry point is called when an interface is de-activated
2675  * by the OS.  The hardware is still under the drivers control, but
2676  * needs to be disabled.  A global MAC reset is issued to stop the
2677  * hardware, and all transmit and receive resources are freed.
2678  */
2679 static int ena_close(struct net_device *netdev)
2680 {
2681 	struct ena_adapter *adapter = netdev_priv(netdev);
2682 
2683 	netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
2684 
2685 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
2686 		return 0;
2687 
2688 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
2689 		ena_down(adapter);
2690 
2691 	/* Check for device status and issue reset if needed*/
2692 	check_for_admin_com_state(adapter);
2693 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
2694 		netif_err(adapter, ifdown, adapter->netdev,
2695 			  "Destroy failure, restarting device\n");
2696 		ena_dump_stats_to_dmesg(adapter);
2697 		/* rtnl lock already obtained in dev_ioctl() layer */
2698 		ena_destroy_device(adapter, false);
2699 		ena_restore_device(adapter);
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 int ena_update_queue_sizes(struct ena_adapter *adapter,
2706 			   u32 new_tx_size,
2707 			   u32 new_rx_size)
2708 {
2709 	bool dev_was_up;
2710 
2711 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2712 	ena_close(adapter->netdev);
2713 	adapter->requested_tx_ring_size = new_tx_size;
2714 	adapter->requested_rx_ring_size = new_rx_size;
2715 	ena_init_io_rings(adapter,
2716 			  0,
2717 			  adapter->xdp_num_queues +
2718 			  adapter->num_io_queues);
2719 	return dev_was_up ? ena_up(adapter) : 0;
2720 }
2721 
2722 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count)
2723 {
2724 	struct ena_com_dev *ena_dev = adapter->ena_dev;
2725 	int prev_channel_count;
2726 	bool dev_was_up;
2727 
2728 	dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
2729 	ena_close(adapter->netdev);
2730 	prev_channel_count = adapter->num_io_queues;
2731 	adapter->num_io_queues = new_channel_count;
2732 	if (ena_xdp_present(adapter) &&
2733 	    ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) {
2734 		adapter->xdp_first_ring = new_channel_count;
2735 		adapter->xdp_num_queues = new_channel_count;
2736 		if (prev_channel_count > new_channel_count)
2737 			ena_xdp_exchange_program_rx_in_range(adapter,
2738 							     NULL,
2739 							     new_channel_count,
2740 							     prev_channel_count);
2741 		else
2742 			ena_xdp_exchange_program_rx_in_range(adapter,
2743 							     adapter->xdp_bpf_prog,
2744 							     prev_channel_count,
2745 							     new_channel_count);
2746 	}
2747 
2748 	/* We need to destroy the rss table so that the indirection
2749 	 * table will be reinitialized by ena_up()
2750 	 */
2751 	ena_com_rss_destroy(ena_dev);
2752 	ena_init_io_rings(adapter,
2753 			  0,
2754 			  adapter->xdp_num_queues +
2755 			  adapter->num_io_queues);
2756 	return dev_was_up ? ena_open(adapter->netdev) : 0;
2757 }
2758 
2759 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
2760 {
2761 	u32 mss = skb_shinfo(skb)->gso_size;
2762 	struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
2763 	u8 l4_protocol = 0;
2764 
2765 	if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
2766 		ena_tx_ctx->l4_csum_enable = 1;
2767 		if (mss) {
2768 			ena_tx_ctx->tso_enable = 1;
2769 			ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
2770 			ena_tx_ctx->l4_csum_partial = 0;
2771 		} else {
2772 			ena_tx_ctx->tso_enable = 0;
2773 			ena_meta->l4_hdr_len = 0;
2774 			ena_tx_ctx->l4_csum_partial = 1;
2775 		}
2776 
2777 		switch (ip_hdr(skb)->version) {
2778 		case IPVERSION:
2779 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
2780 			if (ip_hdr(skb)->frag_off & htons(IP_DF))
2781 				ena_tx_ctx->df = 1;
2782 			if (mss)
2783 				ena_tx_ctx->l3_csum_enable = 1;
2784 			l4_protocol = ip_hdr(skb)->protocol;
2785 			break;
2786 		case 6:
2787 			ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
2788 			l4_protocol = ipv6_hdr(skb)->nexthdr;
2789 			break;
2790 		default:
2791 			break;
2792 		}
2793 
2794 		if (l4_protocol == IPPROTO_TCP)
2795 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
2796 		else
2797 			ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
2798 
2799 		ena_meta->mss = mss;
2800 		ena_meta->l3_hdr_len = skb_network_header_len(skb);
2801 		ena_meta->l3_hdr_offset = skb_network_offset(skb);
2802 		ena_tx_ctx->meta_valid = 1;
2803 
2804 	} else {
2805 		ena_tx_ctx->meta_valid = 0;
2806 	}
2807 }
2808 
2809 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
2810 				       struct sk_buff *skb)
2811 {
2812 	int num_frags, header_len, rc;
2813 
2814 	num_frags = skb_shinfo(skb)->nr_frags;
2815 	header_len = skb_headlen(skb);
2816 
2817 	if (num_frags < tx_ring->sgl_size)
2818 		return 0;
2819 
2820 	if ((num_frags == tx_ring->sgl_size) &&
2821 	    (header_len < tx_ring->tx_max_header_size))
2822 		return 0;
2823 
2824 	u64_stats_update_begin(&tx_ring->syncp);
2825 	tx_ring->tx_stats.linearize++;
2826 	u64_stats_update_end(&tx_ring->syncp);
2827 
2828 	rc = skb_linearize(skb);
2829 	if (unlikely(rc)) {
2830 		u64_stats_update_begin(&tx_ring->syncp);
2831 		tx_ring->tx_stats.linearize_failed++;
2832 		u64_stats_update_end(&tx_ring->syncp);
2833 	}
2834 
2835 	return rc;
2836 }
2837 
2838 static int ena_tx_map_skb(struct ena_ring *tx_ring,
2839 			  struct ena_tx_buffer *tx_info,
2840 			  struct sk_buff *skb,
2841 			  void **push_hdr,
2842 			  u16 *header_len)
2843 {
2844 	struct ena_adapter *adapter = tx_ring->adapter;
2845 	struct ena_com_buf *ena_buf;
2846 	dma_addr_t dma;
2847 	u32 skb_head_len, frag_len, last_frag;
2848 	u16 push_len = 0;
2849 	u16 delta = 0;
2850 	int i = 0;
2851 
2852 	skb_head_len = skb_headlen(skb);
2853 	tx_info->skb = skb;
2854 	ena_buf = tx_info->bufs;
2855 
2856 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2857 		/* When the device is LLQ mode, the driver will copy
2858 		 * the header into the device memory space.
2859 		 * the ena_com layer assume the header is in a linear
2860 		 * memory space.
2861 		 * This assumption might be wrong since part of the header
2862 		 * can be in the fragmented buffers.
2863 		 * Use skb_header_pointer to make sure the header is in a
2864 		 * linear memory space.
2865 		 */
2866 
2867 		push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
2868 		*push_hdr = skb_header_pointer(skb, 0, push_len,
2869 					       tx_ring->push_buf_intermediate_buf);
2870 		*header_len = push_len;
2871 		if (unlikely(skb->data != *push_hdr)) {
2872 			u64_stats_update_begin(&tx_ring->syncp);
2873 			tx_ring->tx_stats.llq_buffer_copy++;
2874 			u64_stats_update_end(&tx_ring->syncp);
2875 
2876 			delta = push_len - skb_head_len;
2877 		}
2878 	} else {
2879 		*push_hdr = NULL;
2880 		*header_len = min_t(u32, skb_head_len,
2881 				    tx_ring->tx_max_header_size);
2882 	}
2883 
2884 	netif_dbg(adapter, tx_queued, adapter->netdev,
2885 		  "skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
2886 		  *push_hdr, push_len);
2887 
2888 	if (skb_head_len > push_len) {
2889 		dma = dma_map_single(tx_ring->dev, skb->data + push_len,
2890 				     skb_head_len - push_len, DMA_TO_DEVICE);
2891 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2892 			goto error_report_dma_error;
2893 
2894 		ena_buf->paddr = dma;
2895 		ena_buf->len = skb_head_len - push_len;
2896 
2897 		ena_buf++;
2898 		tx_info->num_of_bufs++;
2899 		tx_info->map_linear_data = 1;
2900 	} else {
2901 		tx_info->map_linear_data = 0;
2902 	}
2903 
2904 	last_frag = skb_shinfo(skb)->nr_frags;
2905 
2906 	for (i = 0; i < last_frag; i++) {
2907 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2908 
2909 		frag_len = skb_frag_size(frag);
2910 
2911 		if (unlikely(delta >= frag_len)) {
2912 			delta -= frag_len;
2913 			continue;
2914 		}
2915 
2916 		dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
2917 				       frag_len - delta, DMA_TO_DEVICE);
2918 		if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
2919 			goto error_report_dma_error;
2920 
2921 		ena_buf->paddr = dma;
2922 		ena_buf->len = frag_len - delta;
2923 		ena_buf++;
2924 		tx_info->num_of_bufs++;
2925 		delta = 0;
2926 	}
2927 
2928 	return 0;
2929 
2930 error_report_dma_error:
2931 	u64_stats_update_begin(&tx_ring->syncp);
2932 	tx_ring->tx_stats.dma_mapping_err++;
2933 	u64_stats_update_end(&tx_ring->syncp);
2934 	netdev_warn(adapter->netdev, "failed to map skb\n");
2935 
2936 	tx_info->skb = NULL;
2937 
2938 	tx_info->num_of_bufs += i;
2939 	ena_unmap_tx_buff(tx_ring, tx_info);
2940 
2941 	return -EINVAL;
2942 }
2943 
2944 /* Called with netif_tx_lock. */
2945 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
2946 {
2947 	struct ena_adapter *adapter = netdev_priv(dev);
2948 	struct ena_tx_buffer *tx_info;
2949 	struct ena_com_tx_ctx ena_tx_ctx;
2950 	struct ena_ring *tx_ring;
2951 	struct netdev_queue *txq;
2952 	void *push_hdr;
2953 	u16 next_to_use, req_id, header_len;
2954 	int qid, rc;
2955 
2956 	netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
2957 	/*  Determine which tx ring we will be placed on */
2958 	qid = skb_get_queue_mapping(skb);
2959 	tx_ring = &adapter->tx_ring[qid];
2960 	txq = netdev_get_tx_queue(dev, qid);
2961 
2962 	rc = ena_check_and_linearize_skb(tx_ring, skb);
2963 	if (unlikely(rc))
2964 		goto error_drop_packet;
2965 
2966 	skb_tx_timestamp(skb);
2967 
2968 	next_to_use = tx_ring->next_to_use;
2969 	req_id = tx_ring->free_ids[next_to_use];
2970 	tx_info = &tx_ring->tx_buffer_info[req_id];
2971 	tx_info->num_of_bufs = 0;
2972 
2973 	WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
2974 
2975 	rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
2976 	if (unlikely(rc))
2977 		goto error_drop_packet;
2978 
2979 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
2980 	ena_tx_ctx.ena_bufs = tx_info->bufs;
2981 	ena_tx_ctx.push_header = push_hdr;
2982 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2983 	ena_tx_ctx.req_id = req_id;
2984 	ena_tx_ctx.header_len = header_len;
2985 
2986 	/* set flags and meta data */
2987 	ena_tx_csum(&ena_tx_ctx, skb);
2988 
2989 	rc = ena_xmit_common(dev,
2990 			     tx_ring,
2991 			     tx_info,
2992 			     &ena_tx_ctx,
2993 			     next_to_use,
2994 			     skb->len);
2995 	if (rc)
2996 		goto error_unmap_dma;
2997 
2998 	netdev_tx_sent_queue(txq, skb->len);
2999 
3000 	/* stop the queue when no more space available, the packet can have up
3001 	 * to sgl_size + 2. one for the meta descriptor and one for header
3002 	 * (if the header is larger than tx_max_header_size).
3003 	 */
3004 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3005 						   tx_ring->sgl_size + 2))) {
3006 		netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
3007 			  __func__, qid);
3008 
3009 		netif_tx_stop_queue(txq);
3010 		u64_stats_update_begin(&tx_ring->syncp);
3011 		tx_ring->tx_stats.queue_stop++;
3012 		u64_stats_update_end(&tx_ring->syncp);
3013 
3014 		/* There is a rare condition where this function decide to
3015 		 * stop the queue but meanwhile clean_tx_irq updates
3016 		 * next_to_completion and terminates.
3017 		 * The queue will remain stopped forever.
3018 		 * To solve this issue add a mb() to make sure that
3019 		 * netif_tx_stop_queue() write is vissible before checking if
3020 		 * there is additional space in the queue.
3021 		 */
3022 		smp_mb();
3023 
3024 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
3025 						 ENA_TX_WAKEUP_THRESH)) {
3026 			netif_tx_wake_queue(txq);
3027 			u64_stats_update_begin(&tx_ring->syncp);
3028 			tx_ring->tx_stats.queue_wakeup++;
3029 			u64_stats_update_end(&tx_ring->syncp);
3030 		}
3031 	}
3032 
3033 	if (netif_xmit_stopped(txq) || !netdev_xmit_more()) {
3034 		/* trigger the dma engine. ena_com_write_sq_doorbell()
3035 		 * has a mb
3036 		 */
3037 		ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
3038 		u64_stats_update_begin(&tx_ring->syncp);
3039 		tx_ring->tx_stats.doorbells++;
3040 		u64_stats_update_end(&tx_ring->syncp);
3041 	}
3042 
3043 	return NETDEV_TX_OK;
3044 
3045 error_unmap_dma:
3046 	ena_unmap_tx_buff(tx_ring, tx_info);
3047 	tx_info->skb = NULL;
3048 
3049 error_drop_packet:
3050 	dev_kfree_skb(skb);
3051 	return NETDEV_TX_OK;
3052 }
3053 
3054 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
3055 			    struct net_device *sb_dev)
3056 {
3057 	u16 qid;
3058 	/* we suspect that this is good for in--kernel network services that
3059 	 * want to loop incoming skb rx to tx in normal user generated traffic,
3060 	 * most probably we will not get to this
3061 	 */
3062 	if (skb_rx_queue_recorded(skb))
3063 		qid = skb_get_rx_queue(skb);
3064 	else
3065 		qid = netdev_pick_tx(dev, skb, NULL);
3066 
3067 	return qid;
3068 }
3069 
3070 static void ena_config_host_info(struct ena_com_dev *ena_dev,
3071 				 struct pci_dev *pdev)
3072 {
3073 	struct ena_admin_host_info *host_info;
3074 	int rc;
3075 
3076 	/* Allocate only the host info */
3077 	rc = ena_com_allocate_host_info(ena_dev);
3078 	if (rc) {
3079 		pr_err("Cannot allocate host info\n");
3080 		return;
3081 	}
3082 
3083 	host_info = ena_dev->host_attr.host_info;
3084 
3085 	host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
3086 	host_info->os_type = ENA_ADMIN_OS_LINUX;
3087 	host_info->kernel_ver = LINUX_VERSION_CODE;
3088 	strlcpy(host_info->kernel_ver_str, utsname()->version,
3089 		sizeof(host_info->kernel_ver_str) - 1);
3090 	host_info->os_dist = 0;
3091 	strncpy(host_info->os_dist_str, utsname()->release,
3092 		sizeof(host_info->os_dist_str) - 1);
3093 	host_info->driver_version =
3094 		(DRV_MODULE_GEN_MAJOR) |
3095 		(DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
3096 		(DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
3097 		("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
3098 	host_info->num_cpus = num_online_cpus();
3099 
3100 	host_info->driver_supported_features =
3101 		ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK;
3102 
3103 	rc = ena_com_set_host_attributes(ena_dev);
3104 	if (rc) {
3105 		if (rc == -EOPNOTSUPP)
3106 			pr_warn("Cannot set host attributes\n");
3107 		else
3108 			pr_err("Cannot set host attributes\n");
3109 
3110 		goto err;
3111 	}
3112 
3113 	return;
3114 
3115 err:
3116 	ena_com_delete_host_info(ena_dev);
3117 }
3118 
3119 static void ena_config_debug_area(struct ena_adapter *adapter)
3120 {
3121 	u32 debug_area_size;
3122 	int rc, ss_count;
3123 
3124 	ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
3125 	if (ss_count <= 0) {
3126 		netif_err(adapter, drv, adapter->netdev,
3127 			  "SS count is negative\n");
3128 		return;
3129 	}
3130 
3131 	/* allocate 32 bytes for each string and 64bit for the value */
3132 	debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
3133 
3134 	rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
3135 	if (rc) {
3136 		pr_err("Cannot allocate debug area\n");
3137 		return;
3138 	}
3139 
3140 	rc = ena_com_set_host_attributes(adapter->ena_dev);
3141 	if (rc) {
3142 		if (rc == -EOPNOTSUPP)
3143 			netif_warn(adapter, drv, adapter->netdev,
3144 				   "Cannot set host attributes\n");
3145 		else
3146 			netif_err(adapter, drv, adapter->netdev,
3147 				  "Cannot set host attributes\n");
3148 		goto err;
3149 	}
3150 
3151 	return;
3152 err:
3153 	ena_com_delete_debug_area(adapter->ena_dev);
3154 }
3155 
3156 static void ena_get_stats64(struct net_device *netdev,
3157 			    struct rtnl_link_stats64 *stats)
3158 {
3159 	struct ena_adapter *adapter = netdev_priv(netdev);
3160 	struct ena_ring *rx_ring, *tx_ring;
3161 	unsigned int start;
3162 	u64 rx_drops;
3163 	int i;
3164 
3165 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3166 		return;
3167 
3168 	for (i = 0; i < adapter->num_io_queues; i++) {
3169 		u64 bytes, packets;
3170 
3171 		tx_ring = &adapter->tx_ring[i];
3172 
3173 		do {
3174 			start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
3175 			packets = tx_ring->tx_stats.cnt;
3176 			bytes = tx_ring->tx_stats.bytes;
3177 		} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
3178 
3179 		stats->tx_packets += packets;
3180 		stats->tx_bytes += bytes;
3181 
3182 		rx_ring = &adapter->rx_ring[i];
3183 
3184 		do {
3185 			start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
3186 			packets = rx_ring->rx_stats.cnt;
3187 			bytes = rx_ring->rx_stats.bytes;
3188 		} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
3189 
3190 		stats->rx_packets += packets;
3191 		stats->rx_bytes += bytes;
3192 	}
3193 
3194 	do {
3195 		start = u64_stats_fetch_begin_irq(&adapter->syncp);
3196 		rx_drops = adapter->dev_stats.rx_drops;
3197 	} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
3198 
3199 	stats->rx_dropped = rx_drops;
3200 
3201 	stats->multicast = 0;
3202 	stats->collisions = 0;
3203 
3204 	stats->rx_length_errors = 0;
3205 	stats->rx_crc_errors = 0;
3206 	stats->rx_frame_errors = 0;
3207 	stats->rx_fifo_errors = 0;
3208 	stats->rx_missed_errors = 0;
3209 	stats->tx_window_errors = 0;
3210 
3211 	stats->rx_errors = 0;
3212 	stats->tx_errors = 0;
3213 }
3214 
3215 static const struct net_device_ops ena_netdev_ops = {
3216 	.ndo_open		= ena_open,
3217 	.ndo_stop		= ena_close,
3218 	.ndo_start_xmit		= ena_start_xmit,
3219 	.ndo_select_queue	= ena_select_queue,
3220 	.ndo_get_stats64	= ena_get_stats64,
3221 	.ndo_tx_timeout		= ena_tx_timeout,
3222 	.ndo_change_mtu		= ena_change_mtu,
3223 	.ndo_set_mac_address	= NULL,
3224 	.ndo_validate_addr	= eth_validate_addr,
3225 	.ndo_bpf		= ena_xdp,
3226 };
3227 
3228 static int ena_device_validate_params(struct ena_adapter *adapter,
3229 				      struct ena_com_dev_get_features_ctx *get_feat_ctx)
3230 {
3231 	struct net_device *netdev = adapter->netdev;
3232 	int rc;
3233 
3234 	rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
3235 			      adapter->mac_addr);
3236 	if (!rc) {
3237 		netif_err(adapter, drv, netdev,
3238 			  "Error, mac address are different\n");
3239 		return -EINVAL;
3240 	}
3241 
3242 	if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
3243 		netif_err(adapter, drv, netdev,
3244 			  "Error, device max mtu is smaller than netdev MTU\n");
3245 		return -EINVAL;
3246 	}
3247 
3248 	return 0;
3249 }
3250 
3251 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
3252 			   struct ena_com_dev_get_features_ctx *get_feat_ctx,
3253 			   bool *wd_state)
3254 {
3255 	struct device *dev = &pdev->dev;
3256 	bool readless_supported;
3257 	u32 aenq_groups;
3258 	int dma_width;
3259 	int rc;
3260 
3261 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
3262 	if (rc) {
3263 		dev_err(dev, "failed to init mmio read less\n");
3264 		return rc;
3265 	}
3266 
3267 	/* The PCIe configuration space revision id indicate if mmio reg
3268 	 * read is disabled
3269 	 */
3270 	readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
3271 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
3272 
3273 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
3274 	if (rc) {
3275 		dev_err(dev, "Can not reset device\n");
3276 		goto err_mmio_read_less;
3277 	}
3278 
3279 	rc = ena_com_validate_version(ena_dev);
3280 	if (rc) {
3281 		dev_err(dev, "device version is too low\n");
3282 		goto err_mmio_read_less;
3283 	}
3284 
3285 	dma_width = ena_com_get_dma_width(ena_dev);
3286 	if (dma_width < 0) {
3287 		dev_err(dev, "Invalid dma width value %d", dma_width);
3288 		rc = dma_width;
3289 		goto err_mmio_read_less;
3290 	}
3291 
3292 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
3293 	if (rc) {
3294 		dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
3295 		goto err_mmio_read_less;
3296 	}
3297 
3298 	rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
3299 	if (rc) {
3300 		dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
3301 			rc);
3302 		goto err_mmio_read_less;
3303 	}
3304 
3305 	/* ENA admin level init */
3306 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
3307 	if (rc) {
3308 		dev_err(dev,
3309 			"Can not initialize ena admin queue with device\n");
3310 		goto err_mmio_read_less;
3311 	}
3312 
3313 	/* To enable the msix interrupts the driver needs to know the number
3314 	 * of queues. So the driver uses polling mode to retrieve this
3315 	 * information
3316 	 */
3317 	ena_com_set_admin_polling_mode(ena_dev, true);
3318 
3319 	ena_config_host_info(ena_dev, pdev);
3320 
3321 	/* Get Device Attributes*/
3322 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
3323 	if (rc) {
3324 		dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
3325 		goto err_admin_init;
3326 	}
3327 
3328 	/* Try to turn all the available aenq groups */
3329 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
3330 		BIT(ENA_ADMIN_FATAL_ERROR) |
3331 		BIT(ENA_ADMIN_WARNING) |
3332 		BIT(ENA_ADMIN_NOTIFICATION) |
3333 		BIT(ENA_ADMIN_KEEP_ALIVE);
3334 
3335 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
3336 
3337 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
3338 	if (rc) {
3339 		dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
3340 		goto err_admin_init;
3341 	}
3342 
3343 	*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
3344 
3345 	return 0;
3346 
3347 err_admin_init:
3348 	ena_com_delete_host_info(ena_dev);
3349 	ena_com_admin_destroy(ena_dev);
3350 err_mmio_read_less:
3351 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3352 
3353 	return rc;
3354 }
3355 
3356 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
3357 {
3358 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3359 	struct device *dev = &adapter->pdev->dev;
3360 	int rc;
3361 
3362 	rc = ena_enable_msix(adapter);
3363 	if (rc) {
3364 		dev_err(dev, "Can not reserve msix vectors\n");
3365 		return rc;
3366 	}
3367 
3368 	ena_setup_mgmnt_intr(adapter);
3369 
3370 	rc = ena_request_mgmnt_irq(adapter);
3371 	if (rc) {
3372 		dev_err(dev, "Can not setup management interrupts\n");
3373 		goto err_disable_msix;
3374 	}
3375 
3376 	ena_com_set_admin_polling_mode(ena_dev, false);
3377 
3378 	ena_com_admin_aenq_enable(ena_dev);
3379 
3380 	return 0;
3381 
3382 err_disable_msix:
3383 	ena_disable_msix(adapter);
3384 
3385 	return rc;
3386 }
3387 
3388 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
3389 {
3390 	struct net_device *netdev = adapter->netdev;
3391 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3392 	bool dev_up;
3393 
3394 	if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
3395 		return;
3396 
3397 	netif_carrier_off(netdev);
3398 
3399 	del_timer_sync(&adapter->timer_service);
3400 
3401 	dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
3402 	adapter->dev_up_before_reset = dev_up;
3403 	if (!graceful)
3404 		ena_com_set_admin_running_state(ena_dev, false);
3405 
3406 	if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3407 		ena_down(adapter);
3408 
3409 	/* Stop the device from sending AENQ events (in case reset flag is set
3410 	 *  and device is up, ena_down() already reset the device.
3411 	 */
3412 	if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
3413 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
3414 
3415 	ena_free_mgmnt_irq(adapter);
3416 
3417 	ena_disable_msix(adapter);
3418 
3419 	ena_com_abort_admin_commands(ena_dev);
3420 
3421 	ena_com_wait_for_abort_completion(ena_dev);
3422 
3423 	ena_com_admin_destroy(ena_dev);
3424 
3425 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3426 
3427 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
3428 
3429 	clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3430 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3431 }
3432 
3433 static int ena_restore_device(struct ena_adapter *adapter)
3434 {
3435 	struct ena_com_dev_get_features_ctx get_feat_ctx;
3436 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3437 	struct pci_dev *pdev = adapter->pdev;
3438 	bool wd_state;
3439 	int rc;
3440 
3441 	set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3442 	rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
3443 	if (rc) {
3444 		dev_err(&pdev->dev, "Can not initialize device\n");
3445 		goto err;
3446 	}
3447 	adapter->wd_state = wd_state;
3448 
3449 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
3450 	if (rc) {
3451 		dev_err(&pdev->dev, "Validation of device parameters failed\n");
3452 		goto err_device_destroy;
3453 	}
3454 
3455 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
3456 	if (rc) {
3457 		dev_err(&pdev->dev, "Enable MSI-X failed\n");
3458 		goto err_device_destroy;
3459 	}
3460 	/* If the interface was up before the reset bring it up */
3461 	if (adapter->dev_up_before_reset) {
3462 		rc = ena_up(adapter);
3463 		if (rc) {
3464 			dev_err(&pdev->dev, "Failed to create I/O queues\n");
3465 			goto err_disable_msix;
3466 		}
3467 	}
3468 
3469 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3470 
3471 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3472 	if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
3473 		netif_carrier_on(adapter->netdev);
3474 
3475 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3476 	dev_err(&pdev->dev, "Device reset completed successfully\n");
3477 
3478 	return rc;
3479 err_disable_msix:
3480 	ena_free_mgmnt_irq(adapter);
3481 	ena_disable_msix(adapter);
3482 err_device_destroy:
3483 	ena_com_abort_admin_commands(ena_dev);
3484 	ena_com_wait_for_abort_completion(ena_dev);
3485 	ena_com_admin_destroy(ena_dev);
3486 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
3487 	ena_com_mmio_reg_read_request_destroy(ena_dev);
3488 err:
3489 	clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
3490 	clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
3491 	dev_err(&pdev->dev,
3492 		"Reset attempt failed. Can not reset the device\n");
3493 
3494 	return rc;
3495 }
3496 
3497 static void ena_fw_reset_device(struct work_struct *work)
3498 {
3499 	struct ena_adapter *adapter =
3500 		container_of(work, struct ena_adapter, reset_task);
3501 	struct pci_dev *pdev = adapter->pdev;
3502 
3503 	if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3504 		dev_err(&pdev->dev,
3505 			"device reset schedule while reset bit is off\n");
3506 		return;
3507 	}
3508 	rtnl_lock();
3509 	ena_destroy_device(adapter, false);
3510 	ena_restore_device(adapter);
3511 	rtnl_unlock();
3512 }
3513 
3514 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
3515 					struct ena_ring *rx_ring)
3516 {
3517 	if (likely(rx_ring->first_interrupt))
3518 		return 0;
3519 
3520 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
3521 		return 0;
3522 
3523 	rx_ring->no_interrupt_event_cnt++;
3524 
3525 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
3526 		netif_err(adapter, rx_err, adapter->netdev,
3527 			  "Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
3528 			  rx_ring->qid);
3529 		adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3530 		smp_mb__before_atomic();
3531 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3532 		return -EIO;
3533 	}
3534 
3535 	return 0;
3536 }
3537 
3538 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
3539 					  struct ena_ring *tx_ring)
3540 {
3541 	struct ena_tx_buffer *tx_buf;
3542 	unsigned long last_jiffies;
3543 	u32 missed_tx = 0;
3544 	int i, rc = 0;
3545 
3546 	for (i = 0; i < tx_ring->ring_size; i++) {
3547 		tx_buf = &tx_ring->tx_buffer_info[i];
3548 		last_jiffies = tx_buf->last_jiffies;
3549 
3550 		if (last_jiffies == 0)
3551 			/* no pending Tx at this location */
3552 			continue;
3553 
3554 		if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
3555 			     2 * adapter->missing_tx_completion_to))) {
3556 			/* If after graceful period interrupt is still not
3557 			 * received, we schedule a reset
3558 			 */
3559 			netif_err(adapter, tx_err, adapter->netdev,
3560 				  "Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
3561 				  tx_ring->qid);
3562 			adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
3563 			smp_mb__before_atomic();
3564 			set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3565 			return -EIO;
3566 		}
3567 
3568 		if (unlikely(time_is_before_jiffies(last_jiffies +
3569 				adapter->missing_tx_completion_to))) {
3570 			if (!tx_buf->print_once)
3571 				netif_notice(adapter, tx_err, adapter->netdev,
3572 					     "Found a Tx that wasn't completed on time, qid %d, index %d.\n",
3573 					     tx_ring->qid, i);
3574 
3575 			tx_buf->print_once = 1;
3576 			missed_tx++;
3577 		}
3578 	}
3579 
3580 	if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
3581 		netif_err(adapter, tx_err, adapter->netdev,
3582 			  "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
3583 			  missed_tx,
3584 			  adapter->missing_tx_completion_threshold);
3585 		adapter->reset_reason =
3586 			ENA_REGS_RESET_MISS_TX_CMPL;
3587 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3588 		rc = -EIO;
3589 	}
3590 
3591 	u64_stats_update_begin(&tx_ring->syncp);
3592 	tx_ring->tx_stats.missed_tx = missed_tx;
3593 	u64_stats_update_end(&tx_ring->syncp);
3594 
3595 	return rc;
3596 }
3597 
3598 static void check_for_missing_completions(struct ena_adapter *adapter)
3599 {
3600 	struct ena_ring *tx_ring;
3601 	struct ena_ring *rx_ring;
3602 	int i, budget, rc;
3603 	int io_queue_count;
3604 
3605 	io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues;
3606 	/* Make sure the driver doesn't turn the device in other process */
3607 	smp_rmb();
3608 
3609 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3610 		return;
3611 
3612 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3613 		return;
3614 
3615 	if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
3616 		return;
3617 
3618 	budget = ENA_MONITORED_TX_QUEUES;
3619 
3620 	for (i = adapter->last_monitored_tx_qid; i < io_queue_count; i++) {
3621 		tx_ring = &adapter->tx_ring[i];
3622 		rx_ring = &adapter->rx_ring[i];
3623 
3624 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
3625 		if (unlikely(rc))
3626 			return;
3627 
3628 		rc =  !ENA_IS_XDP_INDEX(adapter, i) ?
3629 			check_for_rx_interrupt_queue(adapter, rx_ring) : 0;
3630 		if (unlikely(rc))
3631 			return;
3632 
3633 		budget--;
3634 		if (!budget)
3635 			break;
3636 	}
3637 
3638 	adapter->last_monitored_tx_qid = i % io_queue_count;
3639 }
3640 
3641 /* trigger napi schedule after 2 consecutive detections */
3642 #define EMPTY_RX_REFILL 2
3643 /* For the rare case where the device runs out of Rx descriptors and the
3644  * napi handler failed to refill new Rx descriptors (due to a lack of memory
3645  * for example).
3646  * This case will lead to a deadlock:
3647  * The device won't send interrupts since all the new Rx packets will be dropped
3648  * The napi handler won't allocate new Rx descriptors so the device will be
3649  * able to send new packets.
3650  *
3651  * This scenario can happen when the kernel's vm.min_free_kbytes is too small.
3652  * It is recommended to have at least 512MB, with a minimum of 128MB for
3653  * constrained environment).
3654  *
3655  * When such a situation is detected - Reschedule napi
3656  */
3657 static void check_for_empty_rx_ring(struct ena_adapter *adapter)
3658 {
3659 	struct ena_ring *rx_ring;
3660 	int i, refill_required;
3661 
3662 	if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
3663 		return;
3664 
3665 	if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
3666 		return;
3667 
3668 	for (i = 0; i < adapter->num_io_queues; i++) {
3669 		rx_ring = &adapter->rx_ring[i];
3670 
3671 		refill_required =
3672 			ena_com_free_desc(rx_ring->ena_com_io_sq);
3673 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
3674 			rx_ring->empty_rx_queue++;
3675 
3676 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
3677 				u64_stats_update_begin(&rx_ring->syncp);
3678 				rx_ring->rx_stats.empty_rx_ring++;
3679 				u64_stats_update_end(&rx_ring->syncp);
3680 
3681 				netif_err(adapter, drv, adapter->netdev,
3682 					  "trigger refill for ring %d\n", i);
3683 
3684 				napi_schedule(rx_ring->napi);
3685 				rx_ring->empty_rx_queue = 0;
3686 			}
3687 		} else {
3688 			rx_ring->empty_rx_queue = 0;
3689 		}
3690 	}
3691 }
3692 
3693 /* Check for keep alive expiration */
3694 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
3695 {
3696 	unsigned long keep_alive_expired;
3697 
3698 	if (!adapter->wd_state)
3699 		return;
3700 
3701 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3702 		return;
3703 
3704 	keep_alive_expired = adapter->last_keep_alive_jiffies +
3705 			     adapter->keep_alive_timeout;
3706 	if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
3707 		netif_err(adapter, drv, adapter->netdev,
3708 			  "Keep alive watchdog timeout.\n");
3709 		u64_stats_update_begin(&adapter->syncp);
3710 		adapter->dev_stats.wd_expired++;
3711 		u64_stats_update_end(&adapter->syncp);
3712 		adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
3713 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3714 	}
3715 }
3716 
3717 static void check_for_admin_com_state(struct ena_adapter *adapter)
3718 {
3719 	if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
3720 		netif_err(adapter, drv, adapter->netdev,
3721 			  "ENA admin queue is not in running state!\n");
3722 		u64_stats_update_begin(&adapter->syncp);
3723 		adapter->dev_stats.admin_q_pause++;
3724 		u64_stats_update_end(&adapter->syncp);
3725 		adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
3726 		set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
3727 	}
3728 }
3729 
3730 static void ena_update_hints(struct ena_adapter *adapter,
3731 			     struct ena_admin_ena_hw_hints *hints)
3732 {
3733 	struct net_device *netdev = adapter->netdev;
3734 
3735 	if (hints->admin_completion_tx_timeout)
3736 		adapter->ena_dev->admin_queue.completion_timeout =
3737 			hints->admin_completion_tx_timeout * 1000;
3738 
3739 	if (hints->mmio_read_timeout)
3740 		/* convert to usec */
3741 		adapter->ena_dev->mmio_read.reg_read_to =
3742 			hints->mmio_read_timeout * 1000;
3743 
3744 	if (hints->missed_tx_completion_count_threshold_to_reset)
3745 		adapter->missing_tx_completion_threshold =
3746 			hints->missed_tx_completion_count_threshold_to_reset;
3747 
3748 	if (hints->missing_tx_completion_timeout) {
3749 		if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3750 			adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
3751 		else
3752 			adapter->missing_tx_completion_to =
3753 				msecs_to_jiffies(hints->missing_tx_completion_timeout);
3754 	}
3755 
3756 	if (hints->netdev_wd_timeout)
3757 		netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
3758 
3759 	if (hints->driver_watchdog_timeout) {
3760 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
3761 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
3762 		else
3763 			adapter->keep_alive_timeout =
3764 				msecs_to_jiffies(hints->driver_watchdog_timeout);
3765 	}
3766 }
3767 
3768 static void ena_update_host_info(struct ena_admin_host_info *host_info,
3769 				 struct net_device *netdev)
3770 {
3771 	host_info->supported_network_features[0] =
3772 		netdev->features & GENMASK_ULL(31, 0);
3773 	host_info->supported_network_features[1] =
3774 		(netdev->features & GENMASK_ULL(63, 32)) >> 32;
3775 }
3776 
3777 static void ena_timer_service(struct timer_list *t)
3778 {
3779 	struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
3780 	u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
3781 	struct ena_admin_host_info *host_info =
3782 		adapter->ena_dev->host_attr.host_info;
3783 
3784 	check_for_missing_keep_alive(adapter);
3785 
3786 	check_for_admin_com_state(adapter);
3787 
3788 	check_for_missing_completions(adapter);
3789 
3790 	check_for_empty_rx_ring(adapter);
3791 
3792 	if (debug_area)
3793 		ena_dump_stats_to_buf(adapter, debug_area);
3794 
3795 	if (host_info)
3796 		ena_update_host_info(host_info, adapter->netdev);
3797 
3798 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
3799 		netif_err(adapter, drv, adapter->netdev,
3800 			  "Trigger reset is on\n");
3801 		ena_dump_stats_to_dmesg(adapter);
3802 		queue_work(ena_wq, &adapter->reset_task);
3803 		return;
3804 	}
3805 
3806 	/* Reset the timer */
3807 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
3808 }
3809 
3810 static int ena_calc_max_io_queue_num(struct pci_dev *pdev,
3811 				     struct ena_com_dev *ena_dev,
3812 				     struct ena_com_dev_get_features_ctx *get_feat_ctx)
3813 {
3814 	int io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
3815 
3816 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
3817 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
3818 			&get_feat_ctx->max_queue_ext.max_queue_ext;
3819 		io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num,
3820 				  max_queue_ext->max_rx_cq_num);
3821 
3822 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
3823 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
3824 	} else {
3825 		struct ena_admin_queue_feature_desc *max_queues =
3826 			&get_feat_ctx->max_queues;
3827 		io_tx_sq_num = max_queues->max_sq_num;
3828 		io_tx_cq_num = max_queues->max_cq_num;
3829 		io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num);
3830 	}
3831 
3832 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
3833 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
3834 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
3835 
3836 	max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
3837 	max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num);
3838 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num);
3839 	max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num);
3840 	/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
3841 	max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1);
3842 	if (unlikely(!max_num_io_queues)) {
3843 		dev_err(&pdev->dev, "The device doesn't have io queues\n");
3844 		return -EFAULT;
3845 	}
3846 
3847 	return max_num_io_queues;
3848 }
3849 
3850 static int ena_set_queues_placement_policy(struct pci_dev *pdev,
3851 					   struct ena_com_dev *ena_dev,
3852 					   struct ena_admin_feature_llq_desc *llq,
3853 					   struct ena_llq_configurations *llq_default_configurations)
3854 {
3855 	bool has_mem_bar;
3856 	int rc;
3857 	u32 llq_feature_mask;
3858 
3859 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
3860 	if (!(ena_dev->supported_features & llq_feature_mask)) {
3861 		dev_err(&pdev->dev,
3862 			"LLQ is not supported Fallback to host mode policy.\n");
3863 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3864 		return 0;
3865 	}
3866 
3867 	has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
3868 
3869 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
3870 	if (unlikely(rc)) {
3871 		dev_err(&pdev->dev,
3872 			"Failed to configure the device mode.  Fallback to host mode policy.\n");
3873 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3874 		return 0;
3875 	}
3876 
3877 	/* Nothing to config, exit */
3878 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
3879 		return 0;
3880 
3881 	if (!has_mem_bar) {
3882 		dev_err(&pdev->dev,
3883 			"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
3884 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
3885 		return 0;
3886 	}
3887 
3888 	ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
3889 					   pci_resource_start(pdev, ENA_MEM_BAR),
3890 					   pci_resource_len(pdev, ENA_MEM_BAR));
3891 
3892 	if (!ena_dev->mem_bar)
3893 		return -EFAULT;
3894 
3895 	return 0;
3896 }
3897 
3898 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
3899 				 struct net_device *netdev)
3900 {
3901 	netdev_features_t dev_features = 0;
3902 
3903 	/* Set offload features */
3904 	if (feat->offload.tx &
3905 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
3906 		dev_features |= NETIF_F_IP_CSUM;
3907 
3908 	if (feat->offload.tx &
3909 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
3910 		dev_features |= NETIF_F_IPV6_CSUM;
3911 
3912 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
3913 		dev_features |= NETIF_F_TSO;
3914 
3915 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
3916 		dev_features |= NETIF_F_TSO6;
3917 
3918 	if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
3919 		dev_features |= NETIF_F_TSO_ECN;
3920 
3921 	if (feat->offload.rx_supported &
3922 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
3923 		dev_features |= NETIF_F_RXCSUM;
3924 
3925 	if (feat->offload.rx_supported &
3926 		ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
3927 		dev_features |= NETIF_F_RXCSUM;
3928 
3929 	netdev->features =
3930 		dev_features |
3931 		NETIF_F_SG |
3932 		NETIF_F_RXHASH |
3933 		NETIF_F_HIGHDMA;
3934 
3935 	netdev->hw_features |= netdev->features;
3936 	netdev->vlan_features |= netdev->features;
3937 }
3938 
3939 static void ena_set_conf_feat_params(struct ena_adapter *adapter,
3940 				     struct ena_com_dev_get_features_ctx *feat)
3941 {
3942 	struct net_device *netdev = adapter->netdev;
3943 
3944 	/* Copy mac address */
3945 	if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
3946 		eth_hw_addr_random(netdev);
3947 		ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
3948 	} else {
3949 		ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
3950 		ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
3951 	}
3952 
3953 	/* Set offload features */
3954 	ena_set_dev_offloads(feat, netdev);
3955 
3956 	adapter->max_mtu = feat->dev_attr.max_mtu;
3957 	netdev->max_mtu = adapter->max_mtu;
3958 	netdev->min_mtu = ENA_MIN_MTU;
3959 }
3960 
3961 static int ena_rss_init_default(struct ena_adapter *adapter)
3962 {
3963 	struct ena_com_dev *ena_dev = adapter->ena_dev;
3964 	struct device *dev = &adapter->pdev->dev;
3965 	int rc, i;
3966 	u32 val;
3967 
3968 	rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
3969 	if (unlikely(rc)) {
3970 		dev_err(dev, "Cannot init indirect table\n");
3971 		goto err_rss_init;
3972 	}
3973 
3974 	for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
3975 		val = ethtool_rxfh_indir_default(i, adapter->num_io_queues);
3976 		rc = ena_com_indirect_table_fill_entry(ena_dev, i,
3977 						       ENA_IO_RXQ_IDX(val));
3978 		if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3979 			dev_err(dev, "Cannot fill indirect table\n");
3980 			goto err_fill_indir;
3981 		}
3982 	}
3983 
3984 	rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
3985 					ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
3986 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3987 		dev_err(dev, "Cannot fill hash function\n");
3988 		goto err_fill_indir;
3989 	}
3990 
3991 	rc = ena_com_set_default_hash_ctrl(ena_dev);
3992 	if (unlikely(rc && (rc != -EOPNOTSUPP))) {
3993 		dev_err(dev, "Cannot fill hash control\n");
3994 		goto err_fill_indir;
3995 	}
3996 
3997 	return 0;
3998 
3999 err_fill_indir:
4000 	ena_com_rss_destroy(ena_dev);
4001 err_rss_init:
4002 
4003 	return rc;
4004 }
4005 
4006 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
4007 {
4008 	int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4009 
4010 	pci_release_selected_regions(pdev, release_bars);
4011 }
4012 
4013 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
4014 {
4015 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
4016 	llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
4017 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
4018 	llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
4019 	llq_config->llq_ring_entry_size_value = 128;
4020 }
4021 
4022 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)
4023 {
4024 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
4025 	struct ena_com_dev *ena_dev = ctx->ena_dev;
4026 	u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
4027 	u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
4028 	u32 max_tx_queue_size;
4029 	u32 max_rx_queue_size;
4030 
4031 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
4032 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
4033 			&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
4034 		max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
4035 					  max_queue_ext->max_rx_sq_depth);
4036 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
4037 
4038 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4039 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4040 						  llq->max_llq_depth);
4041 		else
4042 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4043 						  max_queue_ext->max_tx_sq_depth);
4044 
4045 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4046 					     max_queue_ext->max_per_packet_tx_descs);
4047 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4048 					     max_queue_ext->max_per_packet_rx_descs);
4049 	} else {
4050 		struct ena_admin_queue_feature_desc *max_queues =
4051 			&ctx->get_feat_ctx->max_queues;
4052 		max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
4053 					  max_queues->max_sq_depth);
4054 		max_tx_queue_size = max_queues->max_cq_depth;
4055 
4056 		if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
4057 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4058 						  llq->max_llq_depth);
4059 		else
4060 			max_tx_queue_size = min_t(u32, max_tx_queue_size,
4061 						  max_queues->max_sq_depth);
4062 
4063 		ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4064 					     max_queues->max_packet_tx_descs);
4065 		ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
4066 					     max_queues->max_packet_rx_descs);
4067 	}
4068 
4069 	max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
4070 	max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
4071 
4072 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
4073 				  max_tx_queue_size);
4074 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
4075 				  max_rx_queue_size);
4076 
4077 	tx_queue_size = rounddown_pow_of_two(tx_queue_size);
4078 	rx_queue_size = rounddown_pow_of_two(rx_queue_size);
4079 
4080 	ctx->max_tx_queue_size = max_tx_queue_size;
4081 	ctx->max_rx_queue_size = max_rx_queue_size;
4082 	ctx->tx_queue_size = tx_queue_size;
4083 	ctx->rx_queue_size = rx_queue_size;
4084 
4085 	return 0;
4086 }
4087 
4088 /* ena_probe - Device Initialization Routine
4089  * @pdev: PCI device information struct
4090  * @ent: entry in ena_pci_tbl
4091  *
4092  * Returns 0 on success, negative on failure
4093  *
4094  * ena_probe initializes an adapter identified by a pci_dev structure.
4095  * The OS initialization, configuring of the adapter private structure,
4096  * and a hardware reset occur.
4097  */
4098 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4099 {
4100 	struct ena_com_dev_get_features_ctx get_feat_ctx;
4101 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
4102 	struct ena_llq_configurations llq_config;
4103 	struct ena_com_dev *ena_dev = NULL;
4104 	struct ena_adapter *adapter;
4105 	struct net_device *netdev;
4106 	static int adapters_found;
4107 	u32 max_num_io_queues;
4108 	char *queue_type_str;
4109 	bool wd_state;
4110 	int bars, rc;
4111 
4112 	dev_dbg(&pdev->dev, "%s\n", __func__);
4113 
4114 	rc = pci_enable_device_mem(pdev);
4115 	if (rc) {
4116 		dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
4117 		return rc;
4118 	}
4119 
4120 	pci_set_master(pdev);
4121 
4122 	ena_dev = vzalloc(sizeof(*ena_dev));
4123 	if (!ena_dev) {
4124 		rc = -ENOMEM;
4125 		goto err_disable_device;
4126 	}
4127 
4128 	bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
4129 	rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
4130 	if (rc) {
4131 		dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
4132 			rc);
4133 		goto err_free_ena_dev;
4134 	}
4135 
4136 	ena_dev->reg_bar = devm_ioremap(&pdev->dev,
4137 					pci_resource_start(pdev, ENA_REG_BAR),
4138 					pci_resource_len(pdev, ENA_REG_BAR));
4139 	if (!ena_dev->reg_bar) {
4140 		dev_err(&pdev->dev, "failed to remap regs bar\n");
4141 		rc = -EFAULT;
4142 		goto err_free_region;
4143 	}
4144 
4145 	ena_dev->dmadev = &pdev->dev;
4146 
4147 	rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
4148 	if (rc) {
4149 		dev_err(&pdev->dev, "ena device init failed\n");
4150 		if (rc == -ETIME)
4151 			rc = -EPROBE_DEFER;
4152 		goto err_free_region;
4153 	}
4154 
4155 	set_default_llq_configurations(&llq_config);
4156 
4157 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq,
4158 					     &llq_config);
4159 	if (rc) {
4160 		dev_err(&pdev->dev, "ena device init failed\n");
4161 		goto err_device_destroy;
4162 	}
4163 
4164 	calc_queue_ctx.ena_dev = ena_dev;
4165 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
4166 	calc_queue_ctx.pdev = pdev;
4167 
4168 	/* Initial Tx and RX interrupt delay. Assumes 1 usec granularity.
4169 	 * Updated during device initialization with the real granularity
4170 	 */
4171 	ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
4172 	ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
4173 	ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
4174 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx);
4175 	rc = ena_calc_io_queue_size(&calc_queue_ctx);
4176 	if (rc || !max_num_io_queues) {
4177 		rc = -EFAULT;
4178 		goto err_device_destroy;
4179 	}
4180 
4181 	/* dev zeroed in init_etherdev */
4182 	netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues);
4183 	if (!netdev) {
4184 		dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
4185 		rc = -ENOMEM;
4186 		goto err_device_destroy;
4187 	}
4188 
4189 	SET_NETDEV_DEV(netdev, &pdev->dev);
4190 
4191 	adapter = netdev_priv(netdev);
4192 	pci_set_drvdata(pdev, adapter);
4193 
4194 	adapter->ena_dev = ena_dev;
4195 	adapter->netdev = netdev;
4196 	adapter->pdev = pdev;
4197 
4198 	ena_set_conf_feat_params(adapter, &get_feat_ctx);
4199 
4200 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4201 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
4202 
4203 	adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
4204 	adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
4205 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
4206 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
4207 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
4208 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
4209 
4210 	adapter->num_io_queues = max_num_io_queues;
4211 	adapter->max_num_io_queues = max_num_io_queues;
4212 
4213 	adapter->xdp_first_ring = 0;
4214 	adapter->xdp_num_queues = 0;
4215 
4216 	adapter->last_monitored_tx_qid = 0;
4217 
4218 	adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
4219 	adapter->wd_state = wd_state;
4220 
4221 	snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
4222 
4223 	rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
4224 	if (rc) {
4225 		dev_err(&pdev->dev,
4226 			"Failed to query interrupt moderation feature\n");
4227 		goto err_netdev_destroy;
4228 	}
4229 	ena_init_io_rings(adapter,
4230 			  0,
4231 			  adapter->xdp_num_queues +
4232 			  adapter->num_io_queues);
4233 
4234 	netdev->netdev_ops = &ena_netdev_ops;
4235 	netdev->watchdog_timeo = TX_TIMEOUT;
4236 	ena_set_ethtool_ops(netdev);
4237 
4238 	netdev->priv_flags |= IFF_UNICAST_FLT;
4239 
4240 	u64_stats_init(&adapter->syncp);
4241 
4242 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
4243 	if (rc) {
4244 		dev_err(&pdev->dev,
4245 			"Failed to enable and set the admin interrupts\n");
4246 		goto err_worker_destroy;
4247 	}
4248 	rc = ena_rss_init_default(adapter);
4249 	if (rc && (rc != -EOPNOTSUPP)) {
4250 		dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
4251 		goto err_free_msix;
4252 	}
4253 
4254 	ena_config_debug_area(adapter);
4255 
4256 	memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
4257 
4258 	netif_carrier_off(netdev);
4259 
4260 	rc = register_netdev(netdev);
4261 	if (rc) {
4262 		dev_err(&pdev->dev, "Cannot register net device\n");
4263 		goto err_rss;
4264 	}
4265 
4266 	INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
4267 
4268 	adapter->last_keep_alive_jiffies = jiffies;
4269 	adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
4270 	adapter->missing_tx_completion_to = TX_TIMEOUT;
4271 	adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
4272 
4273 	ena_update_hints(adapter, &get_feat_ctx.hw_hints);
4274 
4275 	timer_setup(&adapter->timer_service, ena_timer_service, 0);
4276 	mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
4277 
4278 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
4279 		queue_type_str = "Regular";
4280 	else
4281 		queue_type_str = "Low Latency";
4282 
4283 	dev_info(&pdev->dev,
4284 		 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n",
4285 		 DEVICE_NAME, (long)pci_resource_start(pdev, 0),
4286 		 netdev->dev_addr, queue_type_str);
4287 
4288 	set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
4289 
4290 	adapters_found++;
4291 
4292 	return 0;
4293 
4294 err_rss:
4295 	ena_com_delete_debug_area(ena_dev);
4296 	ena_com_rss_destroy(ena_dev);
4297 err_free_msix:
4298 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
4299 	/* stop submitting admin commands on a device that was reset */
4300 	ena_com_set_admin_running_state(ena_dev, false);
4301 	ena_free_mgmnt_irq(adapter);
4302 	ena_disable_msix(adapter);
4303 err_worker_destroy:
4304 	del_timer(&adapter->timer_service);
4305 err_netdev_destroy:
4306 	free_netdev(netdev);
4307 err_device_destroy:
4308 	ena_com_delete_host_info(ena_dev);
4309 	ena_com_admin_destroy(ena_dev);
4310 err_free_region:
4311 	ena_release_bars(ena_dev, pdev);
4312 err_free_ena_dev:
4313 	vfree(ena_dev);
4314 err_disable_device:
4315 	pci_disable_device(pdev);
4316 	return rc;
4317 }
4318 
4319 /*****************************************************************************/
4320 
4321 /* ena_remove - Device Removal Routine
4322  * @pdev: PCI device information struct
4323  *
4324  * ena_remove is called by the PCI subsystem to alert the driver
4325  * that it should release a PCI device.
4326  */
4327 static void ena_remove(struct pci_dev *pdev)
4328 {
4329 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4330 	struct ena_com_dev *ena_dev;
4331 	struct net_device *netdev;
4332 
4333 	ena_dev = adapter->ena_dev;
4334 	netdev = adapter->netdev;
4335 
4336 #ifdef CONFIG_RFS_ACCEL
4337 	if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
4338 		free_irq_cpu_rmap(netdev->rx_cpu_rmap);
4339 		netdev->rx_cpu_rmap = NULL;
4340 	}
4341 #endif /* CONFIG_RFS_ACCEL */
4342 	del_timer_sync(&adapter->timer_service);
4343 
4344 	cancel_work_sync(&adapter->reset_task);
4345 
4346 	rtnl_lock();
4347 	ena_destroy_device(adapter, true);
4348 	rtnl_unlock();
4349 
4350 	unregister_netdev(netdev);
4351 
4352 	free_netdev(netdev);
4353 
4354 	ena_com_rss_destroy(ena_dev);
4355 
4356 	ena_com_delete_debug_area(ena_dev);
4357 
4358 	ena_com_delete_host_info(ena_dev);
4359 
4360 	ena_release_bars(ena_dev, pdev);
4361 
4362 	pci_disable_device(pdev);
4363 
4364 	vfree(ena_dev);
4365 }
4366 
4367 #ifdef CONFIG_PM
4368 /* ena_suspend - PM suspend callback
4369  * @pdev: PCI device information struct
4370  * @state:power state
4371  */
4372 static int ena_suspend(struct pci_dev *pdev,  pm_message_t state)
4373 {
4374 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4375 
4376 	u64_stats_update_begin(&adapter->syncp);
4377 	adapter->dev_stats.suspend++;
4378 	u64_stats_update_end(&adapter->syncp);
4379 
4380 	rtnl_lock();
4381 	if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
4382 		dev_err(&pdev->dev,
4383 			"ignoring device reset request as the device is being suspended\n");
4384 		clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
4385 	}
4386 	ena_destroy_device(adapter, true);
4387 	rtnl_unlock();
4388 	return 0;
4389 }
4390 
4391 /* ena_resume - PM resume callback
4392  * @pdev: PCI device information struct
4393  *
4394  */
4395 static int ena_resume(struct pci_dev *pdev)
4396 {
4397 	struct ena_adapter *adapter = pci_get_drvdata(pdev);
4398 	int rc;
4399 
4400 	u64_stats_update_begin(&adapter->syncp);
4401 	adapter->dev_stats.resume++;
4402 	u64_stats_update_end(&adapter->syncp);
4403 
4404 	rtnl_lock();
4405 	rc = ena_restore_device(adapter);
4406 	rtnl_unlock();
4407 	return rc;
4408 }
4409 #endif
4410 
4411 static struct pci_driver ena_pci_driver = {
4412 	.name		= DRV_MODULE_NAME,
4413 	.id_table	= ena_pci_tbl,
4414 	.probe		= ena_probe,
4415 	.remove		= ena_remove,
4416 #ifdef CONFIG_PM
4417 	.suspend    = ena_suspend,
4418 	.resume     = ena_resume,
4419 #endif
4420 	.sriov_configure = pci_sriov_configure_simple,
4421 };
4422 
4423 static int __init ena_init(void)
4424 {
4425 	ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
4426 	if (!ena_wq) {
4427 		pr_err("Failed to create workqueue\n");
4428 		return -ENOMEM;
4429 	}
4430 
4431 	return pci_register_driver(&ena_pci_driver);
4432 }
4433 
4434 static void __exit ena_cleanup(void)
4435 {
4436 	pci_unregister_driver(&ena_pci_driver);
4437 
4438 	if (ena_wq) {
4439 		destroy_workqueue(ena_wq);
4440 		ena_wq = NULL;
4441 	}
4442 }
4443 
4444 /******************************************************************************
4445  ******************************** AENQ Handlers *******************************
4446  *****************************************************************************/
4447 /* ena_update_on_link_change:
4448  * Notify the network interface about the change in link status
4449  */
4450 static void ena_update_on_link_change(void *adapter_data,
4451 				      struct ena_admin_aenq_entry *aenq_e)
4452 {
4453 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4454 	struct ena_admin_aenq_link_change_desc *aenq_desc =
4455 		(struct ena_admin_aenq_link_change_desc *)aenq_e;
4456 	int status = aenq_desc->flags &
4457 		ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
4458 
4459 	if (status) {
4460 		netdev_dbg(adapter->netdev, "%s\n", __func__);
4461 		set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4462 		if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
4463 			netif_carrier_on(adapter->netdev);
4464 	} else {
4465 		clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
4466 		netif_carrier_off(adapter->netdev);
4467 	}
4468 }
4469 
4470 static void ena_keep_alive_wd(void *adapter_data,
4471 			      struct ena_admin_aenq_entry *aenq_e)
4472 {
4473 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4474 	struct ena_admin_aenq_keep_alive_desc *desc;
4475 	u64 rx_drops;
4476 
4477 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
4478 	adapter->last_keep_alive_jiffies = jiffies;
4479 
4480 	rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
4481 
4482 	u64_stats_update_begin(&adapter->syncp);
4483 	adapter->dev_stats.rx_drops = rx_drops;
4484 	u64_stats_update_end(&adapter->syncp);
4485 }
4486 
4487 static void ena_notification(void *adapter_data,
4488 			     struct ena_admin_aenq_entry *aenq_e)
4489 {
4490 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
4491 	struct ena_admin_ena_hw_hints *hints;
4492 
4493 	WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
4494 	     "Invalid group(%x) expected %x\n",
4495 	     aenq_e->aenq_common_desc.group,
4496 	     ENA_ADMIN_NOTIFICATION);
4497 
4498 	switch (aenq_e->aenq_common_desc.syndrom) {
4499 	case ENA_ADMIN_UPDATE_HINTS:
4500 		hints = (struct ena_admin_ena_hw_hints *)
4501 			(&aenq_e->inline_data_w4);
4502 		ena_update_hints(adapter, hints);
4503 		break;
4504 	default:
4505 		netif_err(adapter, drv, adapter->netdev,
4506 			  "Invalid aenq notification link state %d\n",
4507 			  aenq_e->aenq_common_desc.syndrom);
4508 	}
4509 }
4510 
4511 /* This handler will called for unknown event group or unimplemented handlers*/
4512 static void unimplemented_aenq_handler(void *data,
4513 				       struct ena_admin_aenq_entry *aenq_e)
4514 {
4515 	struct ena_adapter *adapter = (struct ena_adapter *)data;
4516 
4517 	netif_err(adapter, drv, adapter->netdev,
4518 		  "Unknown event was received or event with unimplemented handler\n");
4519 }
4520 
4521 static struct ena_aenq_handlers aenq_handlers = {
4522 	.handlers = {
4523 		[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
4524 		[ENA_ADMIN_NOTIFICATION] = ena_notification,
4525 		[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
4526 	},
4527 	.unimplemented_handler = unimplemented_aenq_handler
4528 };
4529 
4530 module_init(ena_init);
4531 module_exit(ena_cleanup);
4532