1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #ifdef CONFIG_RFS_ACCEL 9 #include <linux/cpu_rmap.h> 10 #endif /* CONFIG_RFS_ACCEL */ 11 #include <linux/ethtool.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/numa.h> 15 #include <linux/pci.h> 16 #include <linux/utsname.h> 17 #include <linux/version.h> 18 #include <linux/vmalloc.h> 19 #include <net/ip.h> 20 21 #include "ena_netdev.h" 22 #include "ena_pci_id_tbl.h" 23 #include "ena_xdp.h" 24 25 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 26 MODULE_DESCRIPTION(DEVICE_NAME); 27 MODULE_LICENSE("GPL"); 28 29 /* Time in jiffies before concluding the transmitter is hung. */ 30 #define TX_TIMEOUT (5 * HZ) 31 32 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus()) 33 34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 35 NETIF_MSG_IFDOWN | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 36 37 static struct ena_aenq_handlers aenq_handlers; 38 39 static struct workqueue_struct *ena_wq; 40 41 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 42 43 static int ena_rss_init_default(struct ena_adapter *adapter); 44 static void check_for_admin_com_state(struct ena_adapter *adapter); 45 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 46 static int ena_restore_device(struct ena_adapter *adapter); 47 48 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 49 { 50 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 51 struct ena_adapter *adapter = netdev_priv(dev); 52 unsigned int time_since_last_napi, threshold; 53 struct ena_ring *tx_ring; 54 int napi_scheduled; 55 56 if (txqueue >= adapter->num_io_queues) { 57 netdev_err(dev, "TX timeout on invalid queue %u\n", txqueue); 58 goto schedule_reset; 59 } 60 61 threshold = jiffies_to_usecs(dev->watchdog_timeo); 62 tx_ring = &adapter->tx_ring[txqueue]; 63 64 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 65 napi_scheduled = !!(tx_ring->napi->state & NAPIF_STATE_SCHED); 66 67 netdev_err(dev, 68 "TX q %d is paused for too long (threshold %u). Time since last napi %u usec. napi scheduled: %d\n", 69 txqueue, 70 threshold, 71 time_since_last_napi, 72 napi_scheduled); 73 74 if (threshold < time_since_last_napi && napi_scheduled) { 75 netdev_err(dev, 76 "napi handler hasn't been called for a long time but is scheduled\n"); 77 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 78 } 79 schedule_reset: 80 /* Change the state of the device to trigger reset 81 * Check that we are not in the middle or a trigger already 82 */ 83 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 84 return; 85 86 ena_reset_device(adapter, reset_reason); 87 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp); 88 } 89 90 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 91 { 92 int i; 93 94 for (i = 0; i < adapter->num_io_queues; i++) 95 adapter->rx_ring[i].mtu = mtu; 96 } 97 98 static int ena_change_mtu(struct net_device *dev, int new_mtu) 99 { 100 struct ena_adapter *adapter = netdev_priv(dev); 101 int ret; 102 103 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 104 if (!ret) { 105 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); 106 update_rx_ring_mtu(adapter, new_mtu); 107 WRITE_ONCE(dev->mtu, new_mtu); 108 } else { 109 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 110 new_mtu); 111 } 112 113 return ret; 114 } 115 116 int ena_xmit_common(struct ena_adapter *adapter, 117 struct ena_ring *ring, 118 struct ena_tx_buffer *tx_info, 119 struct ena_com_tx_ctx *ena_tx_ctx, 120 u16 next_to_use, 121 u32 bytes) 122 { 123 int rc, nb_hw_desc; 124 125 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 126 ena_tx_ctx))) { 127 netif_dbg(adapter, tx_queued, adapter->netdev, 128 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 129 ring->qid); 130 ena_ring_tx_doorbell(ring); 131 } 132 133 /* prepare the packet's descriptors to dma engine */ 134 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 135 &nb_hw_desc); 136 137 /* In case there isn't enough space in the queue for the packet, 138 * we simply drop it. All other failure reasons of 139 * ena_com_prepare_tx() are fatal and therefore require a device reset. 140 */ 141 if (unlikely(rc)) { 142 netif_err(adapter, tx_queued, adapter->netdev, 143 "Failed to prepare tx bufs\n"); 144 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, &ring->syncp); 145 if (rc != -ENOMEM) 146 ena_reset_device(adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE); 147 return rc; 148 } 149 150 u64_stats_update_begin(&ring->syncp); 151 ring->tx_stats.cnt++; 152 ring->tx_stats.bytes += bytes; 153 u64_stats_update_end(&ring->syncp); 154 155 tx_info->tx_descs = nb_hw_desc; 156 tx_info->total_tx_size = bytes; 157 tx_info->last_jiffies = jiffies; 158 tx_info->print_once = 0; 159 160 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 161 ring->ring_size); 162 return 0; 163 } 164 165 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 166 { 167 #ifdef CONFIG_RFS_ACCEL 168 u32 i; 169 int rc; 170 171 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 172 if (!adapter->netdev->rx_cpu_rmap) 173 return -ENOMEM; 174 for (i = 0; i < adapter->num_io_queues; i++) { 175 int irq_idx = ENA_IO_IRQ_IDX(i); 176 177 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 178 pci_irq_vector(adapter->pdev, irq_idx)); 179 if (rc) { 180 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 181 adapter->netdev->rx_cpu_rmap = NULL; 182 return rc; 183 } 184 } 185 #endif /* CONFIG_RFS_ACCEL */ 186 return 0; 187 } 188 189 static void ena_init_io_rings_common(struct ena_adapter *adapter, 190 struct ena_ring *ring, u16 qid) 191 { 192 ring->qid = qid; 193 ring->pdev = adapter->pdev; 194 ring->dev = &adapter->pdev->dev; 195 ring->netdev = adapter->netdev; 196 ring->napi = &adapter->ena_napi[qid].napi; 197 ring->adapter = adapter; 198 ring->ena_dev = adapter->ena_dev; 199 ring->per_napi_packets = 0; 200 ring->cpu = 0; 201 ring->numa_node = 0; 202 ring->no_interrupt_event_cnt = 0; 203 u64_stats_init(&ring->syncp); 204 } 205 206 void ena_init_io_rings(struct ena_adapter *adapter, 207 int first_index, int count) 208 { 209 struct ena_com_dev *ena_dev; 210 struct ena_ring *txr, *rxr; 211 int i; 212 213 ena_dev = adapter->ena_dev; 214 215 for (i = first_index; i < first_index + count; i++) { 216 txr = &adapter->tx_ring[i]; 217 rxr = &adapter->rx_ring[i]; 218 219 /* TX common ring state */ 220 ena_init_io_rings_common(adapter, txr, i); 221 222 /* TX specific ring state */ 223 txr->ring_size = adapter->requested_tx_ring_size; 224 txr->tx_max_header_size = ena_dev->tx_max_header_size; 225 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 226 txr->sgl_size = adapter->max_tx_sgl_size; 227 txr->smoothed_interval = 228 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 229 txr->disable_meta_caching = adapter->disable_meta_caching; 230 spin_lock_init(&txr->xdp_tx_lock); 231 232 /* Don't init RX queues for xdp queues */ 233 if (!ENA_IS_XDP_INDEX(adapter, i)) { 234 /* RX common ring state */ 235 ena_init_io_rings_common(adapter, rxr, i); 236 237 /* RX specific ring state */ 238 rxr->ring_size = adapter->requested_rx_ring_size; 239 rxr->rx_copybreak = adapter->rx_copybreak; 240 rxr->sgl_size = adapter->max_rx_sgl_size; 241 rxr->smoothed_interval = 242 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 243 rxr->empty_rx_queue = 0; 244 rxr->rx_headroom = NET_SKB_PAD; 245 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 246 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues]; 247 } 248 } 249 } 250 251 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 252 * @adapter: network interface device structure 253 * @qid: queue index 254 * 255 * Return 0 on success, negative on failure 256 */ 257 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 258 { 259 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 260 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 261 int size, i, node; 262 263 if (tx_ring->tx_buffer_info) { 264 netif_err(adapter, ifup, 265 adapter->netdev, "tx_buffer_info info is not NULL"); 266 return -EEXIST; 267 } 268 269 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 270 node = cpu_to_node(ena_irq->cpu); 271 272 tx_ring->tx_buffer_info = vzalloc_node(size, node); 273 if (!tx_ring->tx_buffer_info) { 274 tx_ring->tx_buffer_info = vzalloc(size); 275 if (!tx_ring->tx_buffer_info) 276 goto err_tx_buffer_info; 277 } 278 279 size = sizeof(u16) * tx_ring->ring_size; 280 tx_ring->free_ids = vzalloc_node(size, node); 281 if (!tx_ring->free_ids) { 282 tx_ring->free_ids = vzalloc(size); 283 if (!tx_ring->free_ids) 284 goto err_tx_free_ids; 285 } 286 287 size = tx_ring->tx_max_header_size; 288 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 289 if (!tx_ring->push_buf_intermediate_buf) { 290 tx_ring->push_buf_intermediate_buf = vzalloc(size); 291 if (!tx_ring->push_buf_intermediate_buf) 292 goto err_push_buf_intermediate_buf; 293 } 294 295 /* Req id ring for TX out of order completions */ 296 for (i = 0; i < tx_ring->ring_size; i++) 297 tx_ring->free_ids[i] = i; 298 299 /* Reset tx statistics */ 300 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 301 302 tx_ring->next_to_use = 0; 303 tx_ring->next_to_clean = 0; 304 tx_ring->cpu = ena_irq->cpu; 305 tx_ring->numa_node = node; 306 return 0; 307 308 err_push_buf_intermediate_buf: 309 vfree(tx_ring->free_ids); 310 tx_ring->free_ids = NULL; 311 err_tx_free_ids: 312 vfree(tx_ring->tx_buffer_info); 313 tx_ring->tx_buffer_info = NULL; 314 err_tx_buffer_info: 315 return -ENOMEM; 316 } 317 318 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 319 * @adapter: network interface device structure 320 * @qid: queue index 321 * 322 * Free all transmit software resources 323 */ 324 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 325 { 326 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 327 328 vfree(tx_ring->tx_buffer_info); 329 tx_ring->tx_buffer_info = NULL; 330 331 vfree(tx_ring->free_ids); 332 tx_ring->free_ids = NULL; 333 334 vfree(tx_ring->push_buf_intermediate_buf); 335 tx_ring->push_buf_intermediate_buf = NULL; 336 } 337 338 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 339 int first_index, int count) 340 { 341 int i, rc = 0; 342 343 for (i = first_index; i < first_index + count; i++) { 344 rc = ena_setup_tx_resources(adapter, i); 345 if (rc) 346 goto err_setup_tx; 347 } 348 349 return 0; 350 351 err_setup_tx: 352 353 netif_err(adapter, ifup, adapter->netdev, 354 "Tx queue %d: allocation failed\n", i); 355 356 /* rewind the index freeing the rings as we go */ 357 while (first_index < i--) 358 ena_free_tx_resources(adapter, i); 359 return rc; 360 } 361 362 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 363 int first_index, int count) 364 { 365 int i; 366 367 for (i = first_index; i < first_index + count; i++) 368 ena_free_tx_resources(adapter, i); 369 } 370 371 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 372 * @adapter: board private structure 373 * 374 * Free all transmit software resources 375 */ 376 void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 377 { 378 ena_free_all_io_tx_resources_in_range(adapter, 379 0, 380 adapter->xdp_num_queues + 381 adapter->num_io_queues); 382 } 383 384 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 385 * @adapter: network interface device structure 386 * @qid: queue index 387 * 388 * Returns 0 on success, negative on failure 389 */ 390 static int ena_setup_rx_resources(struct ena_adapter *adapter, 391 u32 qid) 392 { 393 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 394 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 395 int size, node, i; 396 397 if (rx_ring->rx_buffer_info) { 398 netif_err(adapter, ifup, adapter->netdev, 399 "rx_buffer_info is not NULL"); 400 return -EEXIST; 401 } 402 403 /* alloc extra element so in rx path 404 * we can always prefetch rx_info + 1 405 */ 406 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 407 node = cpu_to_node(ena_irq->cpu); 408 409 rx_ring->rx_buffer_info = vzalloc_node(size, node); 410 if (!rx_ring->rx_buffer_info) { 411 rx_ring->rx_buffer_info = vzalloc(size); 412 if (!rx_ring->rx_buffer_info) 413 return -ENOMEM; 414 } 415 416 size = sizeof(u16) * rx_ring->ring_size; 417 rx_ring->free_ids = vzalloc_node(size, node); 418 if (!rx_ring->free_ids) { 419 rx_ring->free_ids = vzalloc(size); 420 if (!rx_ring->free_ids) { 421 vfree(rx_ring->rx_buffer_info); 422 rx_ring->rx_buffer_info = NULL; 423 return -ENOMEM; 424 } 425 } 426 427 /* Req id ring for receiving RX pkts out of order */ 428 for (i = 0; i < rx_ring->ring_size; i++) 429 rx_ring->free_ids[i] = i; 430 431 /* Reset rx statistics */ 432 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 433 434 rx_ring->next_to_clean = 0; 435 rx_ring->next_to_use = 0; 436 rx_ring->cpu = ena_irq->cpu; 437 rx_ring->numa_node = node; 438 439 return 0; 440 } 441 442 /* ena_free_rx_resources - Free I/O Rx Resources 443 * @adapter: network interface device structure 444 * @qid: queue index 445 * 446 * Free all receive software resources 447 */ 448 static void ena_free_rx_resources(struct ena_adapter *adapter, 449 u32 qid) 450 { 451 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 452 453 vfree(rx_ring->rx_buffer_info); 454 rx_ring->rx_buffer_info = NULL; 455 456 vfree(rx_ring->free_ids); 457 rx_ring->free_ids = NULL; 458 } 459 460 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 461 * @adapter: board private structure 462 * 463 * Return 0 on success, negative on failure 464 */ 465 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 466 { 467 int i, rc = 0; 468 469 for (i = 0; i < adapter->num_io_queues; i++) { 470 rc = ena_setup_rx_resources(adapter, i); 471 if (rc) 472 goto err_setup_rx; 473 } 474 475 return 0; 476 477 err_setup_rx: 478 479 netif_err(adapter, ifup, adapter->netdev, 480 "Rx queue %d: allocation failed\n", i); 481 482 /* rewind the index freeing the rings as we go */ 483 while (i--) 484 ena_free_rx_resources(adapter, i); 485 return rc; 486 } 487 488 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 489 * @adapter: board private structure 490 * 491 * Free all receive software resources 492 */ 493 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 494 { 495 int i; 496 497 for (i = 0; i < adapter->num_io_queues; i++) 498 ena_free_rx_resources(adapter, i); 499 } 500 501 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring, 502 dma_addr_t *dma) 503 { 504 struct page *page; 505 506 /* This would allocate the page on the same NUMA node the executing code 507 * is running on. 508 */ 509 page = dev_alloc_page(); 510 if (!page) { 511 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, &rx_ring->syncp); 512 return ERR_PTR(-ENOSPC); 513 } 514 515 /* To enable NIC-side port-mirroring, AKA SPAN port, 516 * we make the buffer readable from the nic as well 517 */ 518 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 519 DMA_BIDIRECTIONAL); 520 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) { 521 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1, 522 &rx_ring->syncp); 523 __free_page(page); 524 return ERR_PTR(-EIO); 525 } 526 527 return page; 528 } 529 530 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring, 531 struct ena_rx_buffer *rx_info) 532 { 533 int headroom = rx_ring->rx_headroom; 534 struct ena_com_buf *ena_buf; 535 struct page *page; 536 dma_addr_t dma; 537 int tailroom; 538 539 /* restore page offset value in case it has been changed by device */ 540 rx_info->buf_offset = headroom; 541 542 /* if previous allocated page is not used */ 543 if (unlikely(rx_info->page)) 544 return 0; 545 546 /* We handle DMA here */ 547 page = ena_alloc_map_page(rx_ring, &dma); 548 if (IS_ERR(page)) 549 return PTR_ERR(page); 550 551 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 552 "Allocate page %p, rx_info %p\n", page, rx_info); 553 554 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 555 556 rx_info->page = page; 557 rx_info->dma_addr = dma; 558 rx_info->page_offset = 0; 559 ena_buf = &rx_info->ena_buf; 560 ena_buf->paddr = dma + headroom; 561 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom; 562 563 return 0; 564 } 565 566 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring, 567 struct ena_rx_buffer *rx_info, 568 unsigned long attrs) 569 { 570 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL, 571 attrs); 572 } 573 574 static void ena_free_rx_page(struct ena_ring *rx_ring, 575 struct ena_rx_buffer *rx_info) 576 { 577 struct page *page = rx_info->page; 578 579 if (unlikely(!page)) { 580 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 581 "Trying to free unallocated buffer\n"); 582 return; 583 } 584 585 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0); 586 587 __free_page(page); 588 rx_info->page = NULL; 589 } 590 591 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 592 { 593 u16 next_to_use, req_id; 594 u32 i; 595 int rc; 596 597 next_to_use = rx_ring->next_to_use; 598 599 for (i = 0; i < num; i++) { 600 struct ena_rx_buffer *rx_info; 601 602 req_id = rx_ring->free_ids[next_to_use]; 603 604 rx_info = &rx_ring->rx_buffer_info[req_id]; 605 606 rc = ena_alloc_rx_buffer(rx_ring, rx_info); 607 if (unlikely(rc < 0)) { 608 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 609 "Failed to allocate buffer for rx queue %d\n", 610 rx_ring->qid); 611 break; 612 } 613 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 614 &rx_info->ena_buf, 615 req_id); 616 if (unlikely(rc)) { 617 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 618 "Failed to add buffer for rx queue %d\n", 619 rx_ring->qid); 620 break; 621 } 622 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 623 rx_ring->ring_size); 624 } 625 626 if (unlikely(i < num)) { 627 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1, 628 &rx_ring->syncp); 629 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 630 "Refilled rx qid %d with only %d buffers (from %d)\n", 631 rx_ring->qid, i, num); 632 } 633 634 /* ena_com_write_sq_doorbell issues a wmb() */ 635 if (likely(i)) 636 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 637 638 rx_ring->next_to_use = next_to_use; 639 640 return i; 641 } 642 643 static void ena_free_rx_bufs(struct ena_adapter *adapter, 644 u32 qid) 645 { 646 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 647 u32 i; 648 649 for (i = 0; i < rx_ring->ring_size; i++) { 650 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 651 652 if (rx_info->page) 653 ena_free_rx_page(rx_ring, rx_info); 654 } 655 } 656 657 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 658 * @adapter: board private structure 659 */ 660 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 661 { 662 struct ena_ring *rx_ring; 663 int i, rc, bufs_num; 664 665 for (i = 0; i < adapter->num_io_queues; i++) { 666 rx_ring = &adapter->rx_ring[i]; 667 bufs_num = rx_ring->ring_size - 1; 668 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 669 670 if (unlikely(rc != bufs_num)) 671 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 672 "Refilling Queue %d failed. allocated %d buffers from: %d\n", 673 i, rc, bufs_num); 674 } 675 } 676 677 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 678 { 679 int i; 680 681 for (i = 0; i < adapter->num_io_queues; i++) 682 ena_free_rx_bufs(adapter, i); 683 } 684 685 void ena_unmap_tx_buff(struct ena_ring *tx_ring, 686 struct ena_tx_buffer *tx_info) 687 { 688 struct ena_com_buf *ena_buf; 689 u32 cnt; 690 int i; 691 692 ena_buf = tx_info->bufs; 693 cnt = tx_info->num_of_bufs; 694 695 if (unlikely(!cnt)) 696 return; 697 698 if (tx_info->map_linear_data) { 699 dma_unmap_single(tx_ring->dev, 700 dma_unmap_addr(ena_buf, paddr), 701 dma_unmap_len(ena_buf, len), 702 DMA_TO_DEVICE); 703 ena_buf++; 704 cnt--; 705 } 706 707 /* unmap remaining mapped pages */ 708 for (i = 0; i < cnt; i++) { 709 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 710 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 711 ena_buf++; 712 } 713 } 714 715 /* ena_free_tx_bufs - Free Tx Buffers per Queue 716 * @tx_ring: TX ring for which buffers be freed 717 */ 718 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 719 { 720 bool print_once = true; 721 bool is_xdp_ring; 722 u32 i; 723 724 is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid); 725 726 for (i = 0; i < tx_ring->ring_size; i++) { 727 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 728 729 if (!tx_info->skb) 730 continue; 731 732 if (print_once) { 733 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, 734 "Free uncompleted tx skb qid %d idx 0x%x\n", 735 tx_ring->qid, i); 736 print_once = false; 737 } else { 738 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, 739 "Free uncompleted tx skb qid %d idx 0x%x\n", 740 tx_ring->qid, i); 741 } 742 743 ena_unmap_tx_buff(tx_ring, tx_info); 744 745 if (is_xdp_ring) 746 xdp_return_frame(tx_info->xdpf); 747 else 748 dev_kfree_skb_any(tx_info->skb); 749 } 750 751 if (!is_xdp_ring) 752 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 753 tx_ring->qid)); 754 } 755 756 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 757 { 758 struct ena_ring *tx_ring; 759 int i; 760 761 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 762 tx_ring = &adapter->tx_ring[i]; 763 ena_free_tx_bufs(tx_ring); 764 } 765 } 766 767 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 768 { 769 u16 ena_qid; 770 int i; 771 772 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 773 ena_qid = ENA_IO_TXQ_IDX(i); 774 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 775 } 776 } 777 778 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 779 { 780 u16 ena_qid; 781 int i; 782 783 for (i = 0; i < adapter->num_io_queues; i++) { 784 ena_qid = ENA_IO_RXQ_IDX(i); 785 cancel_work_sync(&adapter->ena_napi[i].dim.work); 786 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 787 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 788 } 789 } 790 791 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 792 { 793 ena_destroy_all_tx_queues(adapter); 794 ena_destroy_all_rx_queues(adapter); 795 } 796 797 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 798 struct ena_tx_buffer *tx_info, bool is_xdp) 799 { 800 if (tx_info) 801 netif_err(ring->adapter, 802 tx_done, 803 ring->netdev, 804 "tx_info doesn't have valid %s. qid %u req_id %u", 805 is_xdp ? "xdp frame" : "skb", ring->qid, req_id); 806 else 807 netif_err(ring->adapter, 808 tx_done, 809 ring->netdev, 810 "Invalid req_id %u in qid %u\n", 811 req_id, ring->qid); 812 813 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp); 814 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 815 816 return -EFAULT; 817 } 818 819 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 820 { 821 struct ena_tx_buffer *tx_info; 822 823 tx_info = &tx_ring->tx_buffer_info[req_id]; 824 if (likely(tx_info->skb)) 825 return 0; 826 827 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 828 } 829 830 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 831 { 832 struct netdev_queue *txq; 833 bool above_thresh; 834 u32 tx_bytes = 0; 835 u32 total_done = 0; 836 u16 next_to_clean; 837 u16 req_id; 838 int tx_pkts = 0; 839 int rc; 840 841 next_to_clean = tx_ring->next_to_clean; 842 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 843 844 while (tx_pkts < budget) { 845 struct ena_tx_buffer *tx_info; 846 struct sk_buff *skb; 847 848 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 849 &req_id); 850 if (rc) { 851 if (unlikely(rc == -EINVAL)) 852 handle_invalid_req_id(tx_ring, req_id, NULL, false); 853 break; 854 } 855 856 /* validate that the request id points to a valid skb */ 857 rc = validate_tx_req_id(tx_ring, req_id); 858 if (rc) 859 break; 860 861 tx_info = &tx_ring->tx_buffer_info[req_id]; 862 skb = tx_info->skb; 863 864 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 865 prefetch(&skb->end); 866 867 tx_info->skb = NULL; 868 tx_info->last_jiffies = 0; 869 870 ena_unmap_tx_buff(tx_ring, tx_info); 871 872 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 873 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 874 skb); 875 876 tx_bytes += tx_info->total_tx_size; 877 dev_kfree_skb(skb); 878 tx_pkts++; 879 total_done += tx_info->tx_descs; 880 881 tx_ring->free_ids[next_to_clean] = req_id; 882 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 883 tx_ring->ring_size); 884 } 885 886 tx_ring->next_to_clean = next_to_clean; 887 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 888 889 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 890 891 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 892 "tx_poll: q %d done. total pkts: %d\n", 893 tx_ring->qid, tx_pkts); 894 895 /* need to make the rings circular update visible to 896 * ena_start_xmit() before checking for netif_queue_stopped(). 897 */ 898 smp_mb(); 899 900 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 901 ENA_TX_WAKEUP_THRESH); 902 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 903 __netif_tx_lock(txq, smp_processor_id()); 904 above_thresh = 905 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 906 ENA_TX_WAKEUP_THRESH); 907 if (netif_tx_queue_stopped(txq) && above_thresh && 908 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 909 netif_tx_wake_queue(txq); 910 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 911 &tx_ring->syncp); 912 } 913 __netif_tx_unlock(txq); 914 } 915 916 return tx_pkts; 917 } 918 919 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len) 920 { 921 struct sk_buff *skb; 922 923 if (!first_frag) 924 skb = napi_alloc_skb(rx_ring->napi, len); 925 else 926 skb = napi_build_skb(first_frag, len); 927 928 if (unlikely(!skb)) { 929 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1, 930 &rx_ring->syncp); 931 932 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 933 "Failed to allocate skb. first_frag %s\n", 934 first_frag ? "provided" : "not provided"); 935 } 936 937 return skb; 938 } 939 940 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len, 941 u16 len, int pkt_offset) 942 { 943 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 944 945 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer 946 * for data + headroom + tailroom. 947 */ 948 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) { 949 page_ref_inc(rx_info->page); 950 rx_info->page_offset += buf_len; 951 ena_buf->paddr += buf_len; 952 ena_buf->len -= buf_len; 953 return true; 954 } 955 956 return false; 957 } 958 959 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 960 struct ena_com_rx_buf_info *ena_bufs, 961 u32 descs, 962 u16 *next_to_clean) 963 { 964 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 965 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring); 966 struct ena_rx_buffer *rx_info; 967 struct ena_adapter *adapter; 968 int page_offset, pkt_offset; 969 dma_addr_t pre_reuse_paddr; 970 u16 len, req_id, buf = 0; 971 bool reuse_rx_buf_page; 972 struct sk_buff *skb; 973 void *buf_addr; 974 int buf_offset; 975 u16 buf_len; 976 977 len = ena_bufs[buf].len; 978 req_id = ena_bufs[buf].req_id; 979 980 rx_info = &rx_ring->rx_buffer_info[req_id]; 981 982 if (unlikely(!rx_info->page)) { 983 adapter = rx_ring->adapter; 984 netif_err(adapter, rx_err, rx_ring->netdev, 985 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id); 986 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp); 987 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 988 return NULL; 989 } 990 991 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 992 "rx_info %p page %p\n", 993 rx_info, rx_info->page); 994 995 buf_offset = rx_info->buf_offset; 996 pkt_offset = buf_offset - rx_ring->rx_headroom; 997 page_offset = rx_info->page_offset; 998 buf_addr = page_address(rx_info->page) + page_offset; 999 1000 if (len <= rx_ring->rx_copybreak) { 1001 skb = ena_alloc_skb(rx_ring, NULL, len); 1002 if (unlikely(!skb)) 1003 return NULL; 1004 1005 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len); 1006 dma_sync_single_for_device(rx_ring->dev, 1007 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1008 len, 1009 DMA_FROM_DEVICE); 1010 1011 skb_put(skb, len); 1012 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1013 "RX allocated small packet. len %d.\n", skb->len); 1014 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1015 rx_ring->free_ids[*next_to_clean] = req_id; 1016 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 1017 rx_ring->ring_size); 1018 return skb; 1019 } 1020 1021 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1022 1023 /* If XDP isn't loaded try to reuse part of the RX buffer */ 1024 reuse_rx_buf_page = !is_xdp_loaded && 1025 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1026 1027 if (!reuse_rx_buf_page) 1028 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1029 1030 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len); 1031 if (unlikely(!skb)) 1032 return NULL; 1033 1034 /* Populate skb's linear part */ 1035 skb_reserve(skb, buf_offset); 1036 skb_put(skb, len); 1037 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1038 1039 do { 1040 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1041 "RX skb updated. len %d. data_len %d\n", 1042 skb->len, skb->data_len); 1043 1044 if (!reuse_rx_buf_page) 1045 rx_info->page = NULL; 1046 1047 rx_ring->free_ids[*next_to_clean] = req_id; 1048 *next_to_clean = 1049 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1050 rx_ring->ring_size); 1051 if (likely(--descs == 0)) 1052 break; 1053 1054 buf++; 1055 len = ena_bufs[buf].len; 1056 req_id = ena_bufs[buf].req_id; 1057 1058 rx_info = &rx_ring->rx_buffer_info[req_id]; 1059 1060 /* rx_info->buf_offset includes rx_ring->rx_headroom */ 1061 buf_offset = rx_info->buf_offset; 1062 pkt_offset = buf_offset - rx_ring->rx_headroom; 1063 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1064 page_offset = rx_info->page_offset; 1065 1066 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr); 1067 1068 reuse_rx_buf_page = !is_xdp_loaded && 1069 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1070 1071 dma_sync_single_for_cpu(rx_ring->dev, 1072 pre_reuse_paddr + pkt_offset, 1073 len, 1074 DMA_FROM_DEVICE); 1075 1076 if (!reuse_rx_buf_page) 1077 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1078 1079 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1080 page_offset + buf_offset, len, buf_len); 1081 1082 } while (1); 1083 1084 return skb; 1085 } 1086 1087 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1088 * @adapter: structure containing adapter specific data 1089 * @ena_rx_ctx: received packet context/metadata 1090 * @skb: skb currently being received and modified 1091 */ 1092 static void ena_rx_checksum(struct ena_ring *rx_ring, 1093 struct ena_com_rx_ctx *ena_rx_ctx, 1094 struct sk_buff *skb) 1095 { 1096 /* Rx csum disabled */ 1097 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1098 skb->ip_summed = CHECKSUM_NONE; 1099 return; 1100 } 1101 1102 /* For fragmented packets the checksum isn't valid */ 1103 if (ena_rx_ctx->frag) { 1104 skb->ip_summed = CHECKSUM_NONE; 1105 return; 1106 } 1107 1108 /* if IP and error */ 1109 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1110 (ena_rx_ctx->l3_csum_err))) { 1111 /* ipv4 checksum error */ 1112 skb->ip_summed = CHECKSUM_NONE; 1113 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1114 &rx_ring->syncp); 1115 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1116 "RX IPv4 header checksum error\n"); 1117 return; 1118 } 1119 1120 /* if TCP/UDP */ 1121 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1122 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1123 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1124 /* TCP/UDP checksum error */ 1125 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1126 &rx_ring->syncp); 1127 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1128 "RX L4 checksum error\n"); 1129 skb->ip_summed = CHECKSUM_NONE; 1130 return; 1131 } 1132 1133 if (likely(ena_rx_ctx->l4_csum_checked)) { 1134 skb->ip_summed = CHECKSUM_UNNECESSARY; 1135 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1, 1136 &rx_ring->syncp); 1137 } else { 1138 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1, 1139 &rx_ring->syncp); 1140 skb->ip_summed = CHECKSUM_NONE; 1141 } 1142 } else { 1143 skb->ip_summed = CHECKSUM_NONE; 1144 return; 1145 } 1146 1147 } 1148 1149 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1150 struct ena_com_rx_ctx *ena_rx_ctx, 1151 struct sk_buff *skb) 1152 { 1153 enum pkt_hash_types hash_type; 1154 1155 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1156 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1157 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1158 1159 hash_type = PKT_HASH_TYPE_L4; 1160 else 1161 hash_type = PKT_HASH_TYPE_NONE; 1162 1163 /* Override hash type if the packet is fragmented */ 1164 if (ena_rx_ctx->frag) 1165 hash_type = PKT_HASH_TYPE_NONE; 1166 1167 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1168 } 1169 } 1170 1171 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs) 1172 { 1173 struct ena_rx_buffer *rx_info; 1174 int ret; 1175 1176 /* XDP multi-buffer packets not supported */ 1177 if (unlikely(num_descs > 1)) { 1178 netdev_err_once(rx_ring->adapter->netdev, 1179 "xdp: dropped unsupported multi-buffer packets\n"); 1180 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp); 1181 return ENA_XDP_DROP; 1182 } 1183 1184 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1185 xdp_prepare_buff(xdp, page_address(rx_info->page), 1186 rx_info->buf_offset, 1187 rx_ring->ena_bufs[0].len, false); 1188 1189 ret = ena_xdp_execute(rx_ring, xdp); 1190 1191 /* The xdp program might expand the headers */ 1192 if (ret == ENA_XDP_PASS) { 1193 rx_info->buf_offset = xdp->data - xdp->data_hard_start; 1194 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1195 } 1196 1197 return ret; 1198 } 1199 1200 /* ena_clean_rx_irq - Cleanup RX irq 1201 * @rx_ring: RX ring to clean 1202 * @napi: napi handler 1203 * @budget: how many packets driver is allowed to clean 1204 * 1205 * Returns the number of cleaned buffers. 1206 */ 1207 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1208 u32 budget) 1209 { 1210 u16 next_to_clean = rx_ring->next_to_clean; 1211 struct ena_com_rx_ctx ena_rx_ctx; 1212 struct ena_rx_buffer *rx_info; 1213 struct ena_adapter *adapter; 1214 u32 res_budget, work_done; 1215 int rx_copybreak_pkt = 0; 1216 int refill_threshold; 1217 struct sk_buff *skb; 1218 int refill_required; 1219 struct xdp_buff xdp; 1220 int xdp_flags = 0; 1221 int total_len = 0; 1222 int xdp_verdict; 1223 u8 pkt_offset; 1224 int rc = 0; 1225 int i; 1226 1227 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1228 "%s qid %d\n", __func__, rx_ring->qid); 1229 res_budget = budget; 1230 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq); 1231 1232 do { 1233 xdp_verdict = ENA_XDP_PASS; 1234 skb = NULL; 1235 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1236 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1237 ena_rx_ctx.descs = 0; 1238 ena_rx_ctx.pkt_offset = 0; 1239 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1240 rx_ring->ena_com_io_sq, 1241 &ena_rx_ctx); 1242 if (unlikely(rc)) 1243 goto error; 1244 1245 if (unlikely(ena_rx_ctx.descs == 0)) 1246 break; 1247 1248 /* First descriptor might have an offset set by the device */ 1249 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1250 pkt_offset = ena_rx_ctx.pkt_offset; 1251 rx_info->buf_offset += pkt_offset; 1252 1253 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1254 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1255 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1256 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1257 1258 dma_sync_single_for_cpu(rx_ring->dev, 1259 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1260 rx_ring->ena_bufs[0].len, 1261 DMA_FROM_DEVICE); 1262 1263 if (ena_xdp_present_ring(rx_ring)) 1264 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs); 1265 1266 /* allocate skb and fill it */ 1267 if (xdp_verdict == ENA_XDP_PASS) 1268 skb = ena_rx_skb(rx_ring, 1269 rx_ring->ena_bufs, 1270 ena_rx_ctx.descs, 1271 &next_to_clean); 1272 1273 if (unlikely(!skb)) { 1274 for (i = 0; i < ena_rx_ctx.descs; i++) { 1275 int req_id = rx_ring->ena_bufs[i].req_id; 1276 1277 rx_ring->free_ids[next_to_clean] = req_id; 1278 next_to_clean = 1279 ENA_RX_RING_IDX_NEXT(next_to_clean, 1280 rx_ring->ring_size); 1281 1282 /* Packets was passed for transmission, unmap it 1283 * from RX side. 1284 */ 1285 if (xdp_verdict & ENA_XDP_FORWARDED) { 1286 ena_unmap_rx_buff_attrs(rx_ring, 1287 &rx_ring->rx_buffer_info[req_id], 1288 DMA_ATTR_SKIP_CPU_SYNC); 1289 rx_ring->rx_buffer_info[req_id].page = NULL; 1290 } 1291 } 1292 if (xdp_verdict != ENA_XDP_PASS) { 1293 xdp_flags |= xdp_verdict; 1294 total_len += ena_rx_ctx.ena_bufs[0].len; 1295 res_budget--; 1296 continue; 1297 } 1298 break; 1299 } 1300 1301 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1302 1303 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1304 1305 skb_record_rx_queue(skb, rx_ring->qid); 1306 1307 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) 1308 rx_copybreak_pkt++; 1309 1310 total_len += skb->len; 1311 1312 napi_gro_receive(napi, skb); 1313 1314 res_budget--; 1315 } while (likely(res_budget)); 1316 1317 work_done = budget - res_budget; 1318 rx_ring->per_napi_packets += work_done; 1319 u64_stats_update_begin(&rx_ring->syncp); 1320 rx_ring->rx_stats.bytes += total_len; 1321 rx_ring->rx_stats.cnt += work_done; 1322 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1323 u64_stats_update_end(&rx_ring->syncp); 1324 1325 rx_ring->next_to_clean = next_to_clean; 1326 1327 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1328 refill_threshold = 1329 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1330 ENA_RX_REFILL_THRESH_PACKET); 1331 1332 /* Optimization, try to batch new rx buffers */ 1333 if (refill_required > refill_threshold) 1334 ena_refill_rx_bufs(rx_ring, refill_required); 1335 1336 if (xdp_flags & ENA_XDP_REDIRECT) 1337 xdp_do_flush(); 1338 1339 return work_done; 1340 1341 error: 1342 if (xdp_flags & ENA_XDP_REDIRECT) 1343 xdp_do_flush(); 1344 1345 adapter = netdev_priv(rx_ring->netdev); 1346 1347 if (rc == -ENOSPC) { 1348 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, &rx_ring->syncp); 1349 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); 1350 } else { 1351 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, 1352 &rx_ring->syncp); 1353 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1354 } 1355 return 0; 1356 } 1357 1358 static void ena_dim_work(struct work_struct *w) 1359 { 1360 struct dim *dim = container_of(w, struct dim, work); 1361 struct dim_cq_moder cur_moder = 1362 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1363 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1364 1365 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1366 dim->state = DIM_START_MEASURE; 1367 } 1368 1369 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1370 { 1371 struct dim_sample dim_sample; 1372 struct ena_ring *rx_ring = ena_napi->rx_ring; 1373 1374 if (!rx_ring->per_napi_packets) 1375 return; 1376 1377 rx_ring->non_empty_napi_events++; 1378 1379 dim_update_sample(rx_ring->non_empty_napi_events, 1380 rx_ring->rx_stats.cnt, 1381 rx_ring->rx_stats.bytes, 1382 &dim_sample); 1383 1384 net_dim(&ena_napi->dim, dim_sample); 1385 1386 rx_ring->per_napi_packets = 0; 1387 } 1388 1389 void ena_unmask_interrupt(struct ena_ring *tx_ring, 1390 struct ena_ring *rx_ring) 1391 { 1392 u32 rx_interval = tx_ring->smoothed_interval; 1393 struct ena_eth_io_intr_reg intr_reg; 1394 1395 /* Rx ring can be NULL when for XDP tx queues which don't have an 1396 * accompanying rx_ring pair. 1397 */ 1398 if (rx_ring) 1399 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1400 rx_ring->smoothed_interval : 1401 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1402 1403 /* Update intr register: rx intr delay, 1404 * tx intr delay and interrupt unmask 1405 */ 1406 ena_com_update_intr_reg(&intr_reg, 1407 rx_interval, 1408 tx_ring->smoothed_interval, 1409 true); 1410 1411 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1, 1412 &tx_ring->syncp); 1413 1414 /* It is a shared MSI-X. 1415 * Tx and Rx CQ have pointer to it. 1416 * So we use one of them to reach the intr reg 1417 * The Tx ring is used because the rx_ring is NULL for XDP queues 1418 */ 1419 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1420 } 1421 1422 void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1423 struct ena_ring *rx_ring) 1424 { 1425 int cpu = get_cpu(); 1426 int numa_node; 1427 1428 /* Check only one ring since the 2 rings are running on the same cpu */ 1429 if (likely(tx_ring->cpu == cpu)) 1430 goto out; 1431 1432 tx_ring->cpu = cpu; 1433 if (rx_ring) 1434 rx_ring->cpu = cpu; 1435 1436 numa_node = cpu_to_node(cpu); 1437 1438 if (likely(tx_ring->numa_node == numa_node)) 1439 goto out; 1440 1441 put_cpu(); 1442 1443 if (numa_node != NUMA_NO_NODE) { 1444 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1445 tx_ring->numa_node = numa_node; 1446 if (rx_ring) { 1447 rx_ring->numa_node = numa_node; 1448 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1449 numa_node); 1450 } 1451 } 1452 1453 return; 1454 out: 1455 put_cpu(); 1456 } 1457 1458 static int ena_io_poll(struct napi_struct *napi, int budget) 1459 { 1460 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1461 struct ena_ring *tx_ring, *rx_ring; 1462 int tx_work_done; 1463 int rx_work_done = 0; 1464 int tx_budget; 1465 int napi_comp_call = 0; 1466 int ret; 1467 1468 tx_ring = ena_napi->tx_ring; 1469 rx_ring = ena_napi->rx_ring; 1470 1471 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1472 1473 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1474 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1475 napi_complete_done(napi, 0); 1476 return 0; 1477 } 1478 1479 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1480 /* On netpoll the budget is zero and the handler should only clean the 1481 * tx completions. 1482 */ 1483 if (likely(budget)) 1484 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1485 1486 /* If the device is about to reset or down, avoid unmask 1487 * the interrupt and return 0 so NAPI won't reschedule 1488 */ 1489 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1490 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1491 napi_complete_done(napi, 0); 1492 ret = 0; 1493 1494 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1495 napi_comp_call = 1; 1496 1497 /* Update numa and unmask the interrupt only when schedule 1498 * from the interrupt context (vs from sk_busy_loop) 1499 */ 1500 if (napi_complete_done(napi, rx_work_done) && 1501 READ_ONCE(ena_napi->interrupts_masked)) { 1502 smp_rmb(); /* make sure interrupts_masked is read */ 1503 WRITE_ONCE(ena_napi->interrupts_masked, false); 1504 /* We apply adaptive moderation on Rx path only. 1505 * Tx uses static interrupt moderation. 1506 */ 1507 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1508 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1509 1510 ena_update_ring_numa_node(tx_ring, rx_ring); 1511 ena_unmask_interrupt(tx_ring, rx_ring); 1512 } 1513 1514 ret = rx_work_done; 1515 } else { 1516 ret = budget; 1517 } 1518 1519 u64_stats_update_begin(&tx_ring->syncp); 1520 tx_ring->tx_stats.napi_comp += napi_comp_call; 1521 tx_ring->tx_stats.tx_poll++; 1522 u64_stats_update_end(&tx_ring->syncp); 1523 1524 tx_ring->tx_stats.last_napi_jiffies = jiffies; 1525 1526 return ret; 1527 } 1528 1529 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1530 { 1531 struct ena_adapter *adapter = (struct ena_adapter *)data; 1532 1533 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1534 1535 /* Don't call the aenq handler before probe is done */ 1536 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1537 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1538 1539 return IRQ_HANDLED; 1540 } 1541 1542 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1543 * @irq: interrupt number 1544 * @data: pointer to a network interface private napi device structure 1545 */ 1546 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1547 { 1548 struct ena_napi *ena_napi = data; 1549 1550 /* Used to check HW health */ 1551 WRITE_ONCE(ena_napi->first_interrupt, true); 1552 1553 WRITE_ONCE(ena_napi->interrupts_masked, true); 1554 smp_wmb(); /* write interrupts_masked before calling napi */ 1555 1556 napi_schedule_irqoff(&ena_napi->napi); 1557 1558 return IRQ_HANDLED; 1559 } 1560 1561 /* Reserve a single MSI-X vector for management (admin + aenq). 1562 * plus reserve one vector for each potential io queue. 1563 * the number of potential io queues is the minimum of what the device 1564 * supports and the number of vCPUs. 1565 */ 1566 static int ena_enable_msix(struct ena_adapter *adapter) 1567 { 1568 int msix_vecs, irq_cnt; 1569 1570 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1571 netif_err(adapter, probe, adapter->netdev, 1572 "Error, MSI-X is already enabled\n"); 1573 return -EPERM; 1574 } 1575 1576 /* Reserved the max msix vectors we might need */ 1577 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1578 netif_dbg(adapter, probe, adapter->netdev, 1579 "Trying to enable MSI-X, vectors %d\n", msix_vecs); 1580 1581 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1582 msix_vecs, PCI_IRQ_MSIX); 1583 1584 if (irq_cnt < 0) { 1585 netif_err(adapter, probe, adapter->netdev, 1586 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1587 return -ENOSPC; 1588 } 1589 1590 if (irq_cnt != msix_vecs) { 1591 netif_notice(adapter, probe, adapter->netdev, 1592 "Enable only %d MSI-X (out of %d), reduce the number of queues\n", 1593 irq_cnt, msix_vecs); 1594 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1595 } 1596 1597 if (ena_init_rx_cpu_rmap(adapter)) 1598 netif_warn(adapter, probe, adapter->netdev, 1599 "Failed to map IRQs to CPUs\n"); 1600 1601 adapter->msix_vecs = irq_cnt; 1602 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1603 1604 return 0; 1605 } 1606 1607 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1608 { 1609 u32 cpu; 1610 1611 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1612 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1613 pci_name(adapter->pdev)); 1614 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1615 ena_intr_msix_mgmnt; 1616 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1617 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1618 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1619 cpu = cpumask_first(cpu_online_mask); 1620 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1621 cpumask_set_cpu(cpu, 1622 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1623 } 1624 1625 static void ena_setup_io_intr(struct ena_adapter *adapter) 1626 { 1627 struct net_device *netdev; 1628 int irq_idx, i, cpu; 1629 int io_queue_count; 1630 1631 netdev = adapter->netdev; 1632 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1633 1634 for (i = 0; i < io_queue_count; i++) { 1635 irq_idx = ENA_IO_IRQ_IDX(i); 1636 cpu = i % num_online_cpus(); 1637 1638 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1639 "%s-Tx-Rx-%d", netdev->name, i); 1640 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1641 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1642 adapter->irq_tbl[irq_idx].vector = 1643 pci_irq_vector(adapter->pdev, irq_idx); 1644 adapter->irq_tbl[irq_idx].cpu = cpu; 1645 1646 cpumask_set_cpu(cpu, 1647 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1648 } 1649 } 1650 1651 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1652 { 1653 unsigned long flags = 0; 1654 struct ena_irq *irq; 1655 int rc; 1656 1657 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1658 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1659 irq->data); 1660 if (rc) { 1661 netif_err(adapter, probe, adapter->netdev, 1662 "Failed to request admin irq\n"); 1663 return rc; 1664 } 1665 1666 netif_dbg(adapter, probe, adapter->netdev, 1667 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1668 irq->affinity_hint_mask.bits[0], irq->vector); 1669 1670 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1671 1672 return rc; 1673 } 1674 1675 static int ena_request_io_irq(struct ena_adapter *adapter) 1676 { 1677 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1678 unsigned long flags = 0; 1679 struct ena_irq *irq; 1680 int rc = 0, i, k; 1681 1682 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1683 netif_err(adapter, ifup, adapter->netdev, 1684 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1685 return -EINVAL; 1686 } 1687 1688 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1689 irq = &adapter->irq_tbl[i]; 1690 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1691 irq->data); 1692 if (rc) { 1693 netif_err(adapter, ifup, adapter->netdev, 1694 "Failed to request I/O IRQ. index %d rc %d\n", 1695 i, rc); 1696 goto err; 1697 } 1698 1699 netif_dbg(adapter, ifup, adapter->netdev, 1700 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1701 i, irq->affinity_hint_mask.bits[0], irq->vector); 1702 1703 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1704 } 1705 1706 return rc; 1707 1708 err: 1709 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1710 irq = &adapter->irq_tbl[k]; 1711 free_irq(irq->vector, irq->data); 1712 } 1713 1714 return rc; 1715 } 1716 1717 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1718 { 1719 struct ena_irq *irq; 1720 1721 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1722 synchronize_irq(irq->vector); 1723 irq_set_affinity_hint(irq->vector, NULL); 1724 free_irq(irq->vector, irq->data); 1725 } 1726 1727 static void ena_free_io_irq(struct ena_adapter *adapter) 1728 { 1729 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1730 struct ena_irq *irq; 1731 int i; 1732 1733 #ifdef CONFIG_RFS_ACCEL 1734 if (adapter->msix_vecs >= 1) { 1735 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 1736 adapter->netdev->rx_cpu_rmap = NULL; 1737 } 1738 #endif /* CONFIG_RFS_ACCEL */ 1739 1740 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1741 irq = &adapter->irq_tbl[i]; 1742 irq_set_affinity_hint(irq->vector, NULL); 1743 free_irq(irq->vector, irq->data); 1744 } 1745 } 1746 1747 static void ena_disable_msix(struct ena_adapter *adapter) 1748 { 1749 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1750 pci_free_irq_vectors(adapter->pdev); 1751 } 1752 1753 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1754 { 1755 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1756 int i; 1757 1758 if (!netif_running(adapter->netdev)) 1759 return; 1760 1761 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 1762 synchronize_irq(adapter->irq_tbl[i].vector); 1763 } 1764 1765 static void ena_del_napi_in_range(struct ena_adapter *adapter, 1766 int first_index, 1767 int count) 1768 { 1769 int i; 1770 1771 for (i = first_index; i < first_index + count; i++) { 1772 netif_napi_del(&adapter->ena_napi[i].napi); 1773 1774 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 1775 adapter->ena_napi[i].rx_ring); 1776 } 1777 } 1778 1779 static void ena_init_napi_in_range(struct ena_adapter *adapter, 1780 int first_index, int count) 1781 { 1782 int (*napi_handler)(struct napi_struct *napi, int budget); 1783 int i; 1784 1785 for (i = first_index; i < first_index + count; i++) { 1786 struct ena_napi *napi = &adapter->ena_napi[i]; 1787 struct ena_ring *rx_ring, *tx_ring; 1788 1789 memset(napi, 0, sizeof(*napi)); 1790 1791 rx_ring = &adapter->rx_ring[i]; 1792 tx_ring = &adapter->tx_ring[i]; 1793 1794 napi_handler = ena_io_poll; 1795 if (ENA_IS_XDP_INDEX(adapter, i)) 1796 napi_handler = ena_xdp_io_poll; 1797 1798 netif_napi_add(adapter->netdev, &napi->napi, napi_handler); 1799 1800 if (!ENA_IS_XDP_INDEX(adapter, i)) 1801 napi->rx_ring = rx_ring; 1802 1803 napi->tx_ring = tx_ring; 1804 napi->qid = i; 1805 } 1806 } 1807 1808 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 1809 int first_index, 1810 int count) 1811 { 1812 int i; 1813 1814 for (i = first_index; i < first_index + count; i++) 1815 napi_disable(&adapter->ena_napi[i].napi); 1816 } 1817 1818 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 1819 int first_index, 1820 int count) 1821 { 1822 int i; 1823 1824 for (i = first_index; i < first_index + count; i++) 1825 napi_enable(&adapter->ena_napi[i].napi); 1826 } 1827 1828 /* Configure the Rx forwarding */ 1829 static int ena_rss_configure(struct ena_adapter *adapter) 1830 { 1831 struct ena_com_dev *ena_dev = adapter->ena_dev; 1832 int rc; 1833 1834 /* In case the RSS table wasn't initialized by probe */ 1835 if (!ena_dev->rss.tbl_log_size) { 1836 rc = ena_rss_init_default(adapter); 1837 if (rc && (rc != -EOPNOTSUPP)) { 1838 netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc); 1839 return rc; 1840 } 1841 } 1842 1843 /* Set indirect table */ 1844 rc = ena_com_indirect_table_set(ena_dev); 1845 if (unlikely(rc && rc != -EOPNOTSUPP)) 1846 return rc; 1847 1848 /* Configure hash function (if supported) */ 1849 rc = ena_com_set_hash_function(ena_dev); 1850 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1851 return rc; 1852 1853 /* Configure hash inputs (if supported) */ 1854 rc = ena_com_set_hash_ctrl(ena_dev); 1855 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1856 return rc; 1857 1858 return 0; 1859 } 1860 1861 static int ena_up_complete(struct ena_adapter *adapter) 1862 { 1863 int rc; 1864 1865 rc = ena_rss_configure(adapter); 1866 if (rc) 1867 return rc; 1868 1869 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1870 1871 ena_refill_all_rx_bufs(adapter); 1872 1873 /* enable transmits */ 1874 netif_tx_start_all_queues(adapter->netdev); 1875 1876 ena_napi_enable_in_range(adapter, 1877 0, 1878 adapter->xdp_num_queues + adapter->num_io_queues); 1879 1880 return 0; 1881 } 1882 1883 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1884 { 1885 struct ena_com_create_io_ctx ctx; 1886 struct ena_com_dev *ena_dev; 1887 struct ena_ring *tx_ring; 1888 u32 msix_vector; 1889 u16 ena_qid; 1890 int rc; 1891 1892 ena_dev = adapter->ena_dev; 1893 1894 tx_ring = &adapter->tx_ring[qid]; 1895 msix_vector = ENA_IO_IRQ_IDX(qid); 1896 ena_qid = ENA_IO_TXQ_IDX(qid); 1897 1898 memset(&ctx, 0x0, sizeof(ctx)); 1899 1900 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1901 ctx.qid = ena_qid; 1902 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1903 ctx.msix_vector = msix_vector; 1904 ctx.queue_size = tx_ring->ring_size; 1905 ctx.numa_node = tx_ring->numa_node; 1906 1907 rc = ena_com_create_io_queue(ena_dev, &ctx); 1908 if (rc) { 1909 netif_err(adapter, ifup, adapter->netdev, 1910 "Failed to create I/O TX queue num %d rc: %d\n", 1911 qid, rc); 1912 return rc; 1913 } 1914 1915 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1916 &tx_ring->ena_com_io_sq, 1917 &tx_ring->ena_com_io_cq); 1918 if (rc) { 1919 netif_err(adapter, ifup, adapter->netdev, 1920 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1921 qid, rc); 1922 ena_com_destroy_io_queue(ena_dev, ena_qid); 1923 return rc; 1924 } 1925 1926 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1927 return rc; 1928 } 1929 1930 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 1931 int first_index, int count) 1932 { 1933 struct ena_com_dev *ena_dev = adapter->ena_dev; 1934 int rc, i; 1935 1936 for (i = first_index; i < first_index + count; i++) { 1937 rc = ena_create_io_tx_queue(adapter, i); 1938 if (rc) 1939 goto create_err; 1940 } 1941 1942 return 0; 1943 1944 create_err: 1945 while (i-- > first_index) 1946 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1947 1948 return rc; 1949 } 1950 1951 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1952 { 1953 struct ena_com_dev *ena_dev; 1954 struct ena_com_create_io_ctx ctx; 1955 struct ena_ring *rx_ring; 1956 u32 msix_vector; 1957 u16 ena_qid; 1958 int rc; 1959 1960 ena_dev = adapter->ena_dev; 1961 1962 rx_ring = &adapter->rx_ring[qid]; 1963 msix_vector = ENA_IO_IRQ_IDX(qid); 1964 ena_qid = ENA_IO_RXQ_IDX(qid); 1965 1966 memset(&ctx, 0x0, sizeof(ctx)); 1967 1968 ctx.qid = ena_qid; 1969 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1970 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1971 ctx.msix_vector = msix_vector; 1972 ctx.queue_size = rx_ring->ring_size; 1973 ctx.numa_node = rx_ring->numa_node; 1974 1975 rc = ena_com_create_io_queue(ena_dev, &ctx); 1976 if (rc) { 1977 netif_err(adapter, ifup, adapter->netdev, 1978 "Failed to create I/O RX queue num %d rc: %d\n", 1979 qid, rc); 1980 return rc; 1981 } 1982 1983 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1984 &rx_ring->ena_com_io_sq, 1985 &rx_ring->ena_com_io_cq); 1986 if (rc) { 1987 netif_err(adapter, ifup, adapter->netdev, 1988 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1989 qid, rc); 1990 goto err; 1991 } 1992 1993 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 1994 1995 return rc; 1996 err: 1997 ena_com_destroy_io_queue(ena_dev, ena_qid); 1998 return rc; 1999 } 2000 2001 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2002 { 2003 struct ena_com_dev *ena_dev = adapter->ena_dev; 2004 int rc, i; 2005 2006 for (i = 0; i < adapter->num_io_queues; i++) { 2007 rc = ena_create_io_rx_queue(adapter, i); 2008 if (rc) 2009 goto create_err; 2010 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2011 2012 ena_xdp_register_rxq_info(&adapter->rx_ring[i]); 2013 } 2014 2015 return 0; 2016 2017 create_err: 2018 while (i--) { 2019 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 2020 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2021 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2022 } 2023 2024 return rc; 2025 } 2026 2027 static void set_io_rings_size(struct ena_adapter *adapter, 2028 int new_tx_size, 2029 int new_rx_size) 2030 { 2031 int i; 2032 2033 for (i = 0; i < adapter->num_io_queues; i++) { 2034 adapter->tx_ring[i].ring_size = new_tx_size; 2035 adapter->rx_ring[i].ring_size = new_rx_size; 2036 } 2037 } 2038 2039 /* This function allows queue allocation to backoff when the system is 2040 * low on memory. If there is not enough memory to allocate io queues 2041 * the driver will try to allocate smaller queues. 2042 * 2043 * The backoff algorithm is as follows: 2044 * 1. Try to allocate TX and RX and if successful. 2045 * 1.1. return success 2046 * 2047 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2048 * 2049 * 3. If TX or RX is smaller than 256 2050 * 3.1. return failure. 2051 * 4. else 2052 * 4.1. go back to 1. 2053 */ 2054 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2055 { 2056 int rc, cur_rx_ring_size, cur_tx_ring_size; 2057 int new_rx_ring_size, new_tx_ring_size; 2058 2059 /* current queue sizes might be set to smaller than the requested 2060 * ones due to past queue allocation failures. 2061 */ 2062 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2063 adapter->requested_rx_ring_size); 2064 2065 while (1) { 2066 if (ena_xdp_present(adapter)) { 2067 rc = ena_setup_and_create_all_xdp_queues(adapter); 2068 2069 if (rc) 2070 goto err_setup_tx; 2071 } 2072 rc = ena_setup_tx_resources_in_range(adapter, 2073 0, 2074 adapter->num_io_queues); 2075 if (rc) 2076 goto err_setup_tx; 2077 2078 rc = ena_create_io_tx_queues_in_range(adapter, 2079 0, 2080 adapter->num_io_queues); 2081 if (rc) 2082 goto err_create_tx_queues; 2083 2084 rc = ena_setup_all_rx_resources(adapter); 2085 if (rc) 2086 goto err_setup_rx; 2087 2088 rc = ena_create_all_io_rx_queues(adapter); 2089 if (rc) 2090 goto err_create_rx_queues; 2091 2092 return 0; 2093 2094 err_create_rx_queues: 2095 ena_free_all_io_rx_resources(adapter); 2096 err_setup_rx: 2097 ena_destroy_all_tx_queues(adapter); 2098 err_create_tx_queues: 2099 ena_free_all_io_tx_resources(adapter); 2100 err_setup_tx: 2101 if (rc != -ENOMEM) { 2102 netif_err(adapter, ifup, adapter->netdev, 2103 "Queue creation failed with error code %d\n", 2104 rc); 2105 return rc; 2106 } 2107 2108 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2109 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2110 2111 netif_err(adapter, ifup, adapter->netdev, 2112 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2113 cur_tx_ring_size, cur_rx_ring_size); 2114 2115 new_tx_ring_size = cur_tx_ring_size; 2116 new_rx_ring_size = cur_rx_ring_size; 2117 2118 /* Decrease the size of the larger queue, or 2119 * decrease both if they are the same size. 2120 */ 2121 if (cur_rx_ring_size <= cur_tx_ring_size) 2122 new_tx_ring_size = cur_tx_ring_size / 2; 2123 if (cur_rx_ring_size >= cur_tx_ring_size) 2124 new_rx_ring_size = cur_rx_ring_size / 2; 2125 2126 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2127 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2128 netif_err(adapter, ifup, adapter->netdev, 2129 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2130 ENA_MIN_RING_SIZE); 2131 return rc; 2132 } 2133 2134 netif_err(adapter, ifup, adapter->netdev, 2135 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2136 new_tx_ring_size, 2137 new_rx_ring_size); 2138 2139 set_io_rings_size(adapter, new_tx_ring_size, 2140 new_rx_ring_size); 2141 } 2142 } 2143 2144 int ena_up(struct ena_adapter *adapter) 2145 { 2146 int io_queue_count, rc, i; 2147 2148 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 2149 2150 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2151 ena_setup_io_intr(adapter); 2152 2153 /* napi poll functions should be initialized before running 2154 * request_irq(), to handle a rare condition where there is a pending 2155 * interrupt, causing the ISR to fire immediately while the poll 2156 * function wasn't set yet, causing a null dereference 2157 */ 2158 ena_init_napi_in_range(adapter, 0, io_queue_count); 2159 2160 /* Enabling DIM needs to happen before enabling IRQs since DIM 2161 * is run from napi routine 2162 */ 2163 if (ena_com_interrupt_moderation_supported(adapter->ena_dev)) 2164 ena_com_enable_adaptive_moderation(adapter->ena_dev); 2165 2166 rc = ena_request_io_irq(adapter); 2167 if (rc) 2168 goto err_req_irq; 2169 2170 rc = create_queues_with_size_backoff(adapter); 2171 if (rc) 2172 goto err_create_queues_with_backoff; 2173 2174 rc = ena_up_complete(adapter); 2175 if (rc) 2176 goto err_up; 2177 2178 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2179 netif_carrier_on(adapter->netdev); 2180 2181 ena_increase_stat(&adapter->dev_stats.interface_up, 1, 2182 &adapter->syncp); 2183 2184 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2185 2186 /* Enable completion queues interrupt */ 2187 for (i = 0; i < adapter->num_io_queues; i++) 2188 ena_unmask_interrupt(&adapter->tx_ring[i], 2189 &adapter->rx_ring[i]); 2190 2191 /* schedule napi in case we had pending packets 2192 * from the last time we disable napi 2193 */ 2194 for (i = 0; i < io_queue_count; i++) 2195 napi_schedule(&adapter->ena_napi[i].napi); 2196 2197 return rc; 2198 2199 err_up: 2200 ena_destroy_all_tx_queues(adapter); 2201 ena_free_all_io_tx_resources(adapter); 2202 ena_destroy_all_rx_queues(adapter); 2203 ena_free_all_io_rx_resources(adapter); 2204 err_create_queues_with_backoff: 2205 ena_free_io_irq(adapter); 2206 err_req_irq: 2207 ena_del_napi_in_range(adapter, 0, io_queue_count); 2208 2209 return rc; 2210 } 2211 2212 void ena_down(struct ena_adapter *adapter) 2213 { 2214 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2215 2216 netif_dbg(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2217 2218 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2219 2220 ena_increase_stat(&adapter->dev_stats.interface_down, 1, 2221 &adapter->syncp); 2222 2223 netif_carrier_off(adapter->netdev); 2224 netif_tx_disable(adapter->netdev); 2225 2226 /* After this point the napi handler won't enable the tx queue */ 2227 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2228 2229 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2230 int rc; 2231 2232 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2233 if (rc) 2234 netif_err(adapter, ifdown, adapter->netdev, 2235 "Device reset failed\n"); 2236 /* stop submitting admin commands on a device that was reset */ 2237 ena_com_set_admin_running_state(adapter->ena_dev, false); 2238 } 2239 2240 ena_destroy_all_io_queues(adapter); 2241 2242 ena_disable_io_intr_sync(adapter); 2243 ena_free_io_irq(adapter); 2244 ena_del_napi_in_range(adapter, 0, io_queue_count); 2245 2246 ena_free_all_tx_bufs(adapter); 2247 ena_free_all_rx_bufs(adapter); 2248 ena_free_all_io_tx_resources(adapter); 2249 ena_free_all_io_rx_resources(adapter); 2250 } 2251 2252 /* ena_open - Called when a network interface is made active 2253 * @netdev: network interface device structure 2254 * 2255 * Returns 0 on success, negative value on failure 2256 * 2257 * The open entry point is called when a network interface is made 2258 * active by the system (IFF_UP). At this point all resources needed 2259 * for transmit and receive operations are allocated, the interrupt 2260 * handler is registered with the OS, the watchdog timer is started, 2261 * and the stack is notified that the interface is ready. 2262 */ 2263 static int ena_open(struct net_device *netdev) 2264 { 2265 struct ena_adapter *adapter = netdev_priv(netdev); 2266 int rc; 2267 2268 /* Notify the stack of the actual queue counts. */ 2269 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2270 if (rc) { 2271 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2272 return rc; 2273 } 2274 2275 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2276 if (rc) { 2277 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2278 return rc; 2279 } 2280 2281 rc = ena_up(adapter); 2282 if (rc) 2283 return rc; 2284 2285 return rc; 2286 } 2287 2288 /* ena_close - Disables a network interface 2289 * @netdev: network interface device structure 2290 * 2291 * Returns 0, this is not allowed to fail 2292 * 2293 * The close entry point is called when an interface is de-activated 2294 * by the OS. The hardware is still under the drivers control, but 2295 * needs to be disabled. A global MAC reset is issued to stop the 2296 * hardware, and all transmit and receive resources are freed. 2297 */ 2298 static int ena_close(struct net_device *netdev) 2299 { 2300 struct ena_adapter *adapter = netdev_priv(netdev); 2301 2302 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2303 2304 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2305 return 0; 2306 2307 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2308 ena_down(adapter); 2309 2310 /* Check for device status and issue reset if needed*/ 2311 check_for_admin_com_state(adapter); 2312 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2313 netif_err(adapter, ifdown, adapter->netdev, 2314 "Destroy failure, restarting device\n"); 2315 ena_dump_stats_to_dmesg(adapter); 2316 /* rtnl lock already obtained in dev_ioctl() layer */ 2317 ena_destroy_device(adapter, false); 2318 ena_restore_device(adapter); 2319 } 2320 2321 return 0; 2322 } 2323 2324 int ena_update_queue_params(struct ena_adapter *adapter, 2325 u32 new_tx_size, 2326 u32 new_rx_size, 2327 u32 new_llq_header_len) 2328 { 2329 bool dev_was_up, large_llq_changed = false; 2330 int rc = 0; 2331 2332 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2333 ena_close(adapter->netdev); 2334 adapter->requested_tx_ring_size = new_tx_size; 2335 adapter->requested_rx_ring_size = new_rx_size; 2336 ena_init_io_rings(adapter, 2337 0, 2338 adapter->xdp_num_queues + 2339 adapter->num_io_queues); 2340 2341 large_llq_changed = adapter->ena_dev->tx_mem_queue_type == 2342 ENA_ADMIN_PLACEMENT_POLICY_DEV; 2343 large_llq_changed &= 2344 new_llq_header_len != adapter->ena_dev->tx_max_header_size; 2345 2346 /* a check that the configuration is valid is done by caller */ 2347 if (large_llq_changed) { 2348 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled; 2349 2350 ena_destroy_device(adapter, false); 2351 rc = ena_restore_device(adapter); 2352 } 2353 2354 return dev_was_up && !rc ? ena_up(adapter) : rc; 2355 } 2356 2357 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak) 2358 { 2359 struct ena_ring *rx_ring; 2360 int i; 2361 2362 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE)) 2363 return -EINVAL; 2364 2365 adapter->rx_copybreak = rx_copybreak; 2366 2367 for (i = 0; i < adapter->num_io_queues; i++) { 2368 rx_ring = &adapter->rx_ring[i]; 2369 rx_ring->rx_copybreak = rx_copybreak; 2370 } 2371 2372 return 0; 2373 } 2374 2375 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2376 { 2377 struct ena_com_dev *ena_dev = adapter->ena_dev; 2378 int prev_channel_count; 2379 bool dev_was_up; 2380 2381 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2382 ena_close(adapter->netdev); 2383 prev_channel_count = adapter->num_io_queues; 2384 adapter->num_io_queues = new_channel_count; 2385 if (ena_xdp_present(adapter) && 2386 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2387 adapter->xdp_first_ring = new_channel_count; 2388 adapter->xdp_num_queues = new_channel_count; 2389 if (prev_channel_count > new_channel_count) 2390 ena_xdp_exchange_program_rx_in_range(adapter, 2391 NULL, 2392 new_channel_count, 2393 prev_channel_count); 2394 else 2395 ena_xdp_exchange_program_rx_in_range(adapter, 2396 adapter->xdp_bpf_prog, 2397 prev_channel_count, 2398 new_channel_count); 2399 } 2400 2401 /* We need to destroy the rss table so that the indirection 2402 * table will be reinitialized by ena_up() 2403 */ 2404 ena_com_rss_destroy(ena_dev); 2405 ena_init_io_rings(adapter, 2406 0, 2407 adapter->xdp_num_queues + 2408 adapter->num_io_queues); 2409 return dev_was_up ? ena_open(adapter->netdev) : 0; 2410 } 2411 2412 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2413 struct sk_buff *skb, 2414 bool disable_meta_caching) 2415 { 2416 u32 mss = skb_shinfo(skb)->gso_size; 2417 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2418 u8 l4_protocol = 0; 2419 2420 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2421 ena_tx_ctx->l4_csum_enable = 1; 2422 if (mss) { 2423 ena_tx_ctx->tso_enable = 1; 2424 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2425 ena_tx_ctx->l4_csum_partial = 0; 2426 } else { 2427 ena_tx_ctx->tso_enable = 0; 2428 ena_meta->l4_hdr_len = 0; 2429 ena_tx_ctx->l4_csum_partial = 1; 2430 } 2431 2432 switch (ip_hdr(skb)->version) { 2433 case IPVERSION: 2434 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2435 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2436 ena_tx_ctx->df = 1; 2437 if (mss) 2438 ena_tx_ctx->l3_csum_enable = 1; 2439 l4_protocol = ip_hdr(skb)->protocol; 2440 break; 2441 case 6: 2442 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2443 l4_protocol = ipv6_hdr(skb)->nexthdr; 2444 break; 2445 default: 2446 break; 2447 } 2448 2449 if (l4_protocol == IPPROTO_TCP) 2450 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2451 else 2452 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2453 2454 ena_meta->mss = mss; 2455 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2456 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2457 ena_tx_ctx->meta_valid = 1; 2458 } else if (disable_meta_caching) { 2459 memset(ena_meta, 0, sizeof(*ena_meta)); 2460 ena_tx_ctx->meta_valid = 1; 2461 } else { 2462 ena_tx_ctx->meta_valid = 0; 2463 } 2464 } 2465 2466 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2467 struct sk_buff *skb) 2468 { 2469 int num_frags, header_len, rc; 2470 2471 num_frags = skb_shinfo(skb)->nr_frags; 2472 header_len = skb_headlen(skb); 2473 2474 if (num_frags < tx_ring->sgl_size) 2475 return 0; 2476 2477 if ((num_frags == tx_ring->sgl_size) && 2478 (header_len < tx_ring->tx_max_header_size)) 2479 return 0; 2480 2481 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp); 2482 2483 rc = skb_linearize(skb); 2484 if (unlikely(rc)) { 2485 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1, 2486 &tx_ring->syncp); 2487 } 2488 2489 return rc; 2490 } 2491 2492 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2493 struct ena_tx_buffer *tx_info, 2494 struct sk_buff *skb, 2495 void **push_hdr, 2496 u16 *header_len) 2497 { 2498 struct ena_adapter *adapter = tx_ring->adapter; 2499 struct ena_com_buf *ena_buf; 2500 dma_addr_t dma; 2501 u32 skb_head_len, frag_len, last_frag; 2502 u16 push_len = 0; 2503 u16 delta = 0; 2504 int i = 0; 2505 2506 skb_head_len = skb_headlen(skb); 2507 tx_info->skb = skb; 2508 ena_buf = tx_info->bufs; 2509 2510 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2511 /* When the device is LLQ mode, the driver will copy 2512 * the header into the device memory space. 2513 * the ena_com layer assume the header is in a linear 2514 * memory space. 2515 * This assumption might be wrong since part of the header 2516 * can be in the fragmented buffers. 2517 * Use skb_header_pointer to make sure the header is in a 2518 * linear memory space. 2519 */ 2520 2521 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2522 *push_hdr = skb_header_pointer(skb, 0, push_len, 2523 tx_ring->push_buf_intermediate_buf); 2524 *header_len = push_len; 2525 if (unlikely(skb->data != *push_hdr)) { 2526 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1, 2527 &tx_ring->syncp); 2528 2529 delta = push_len - skb_head_len; 2530 } 2531 } else { 2532 *push_hdr = NULL; 2533 *header_len = min_t(u32, skb_head_len, 2534 tx_ring->tx_max_header_size); 2535 } 2536 2537 netif_dbg(adapter, tx_queued, adapter->netdev, 2538 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2539 *push_hdr, push_len); 2540 2541 if (skb_head_len > push_len) { 2542 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2543 skb_head_len - push_len, DMA_TO_DEVICE); 2544 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2545 goto error_report_dma_error; 2546 2547 ena_buf->paddr = dma; 2548 ena_buf->len = skb_head_len - push_len; 2549 2550 ena_buf++; 2551 tx_info->num_of_bufs++; 2552 tx_info->map_linear_data = 1; 2553 } else { 2554 tx_info->map_linear_data = 0; 2555 } 2556 2557 last_frag = skb_shinfo(skb)->nr_frags; 2558 2559 for (i = 0; i < last_frag; i++) { 2560 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2561 2562 frag_len = skb_frag_size(frag); 2563 2564 if (unlikely(delta >= frag_len)) { 2565 delta -= frag_len; 2566 continue; 2567 } 2568 2569 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2570 frag_len - delta, DMA_TO_DEVICE); 2571 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2572 goto error_report_dma_error; 2573 2574 ena_buf->paddr = dma; 2575 ena_buf->len = frag_len - delta; 2576 ena_buf++; 2577 tx_info->num_of_bufs++; 2578 delta = 0; 2579 } 2580 2581 return 0; 2582 2583 error_report_dma_error: 2584 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1, 2585 &tx_ring->syncp); 2586 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); 2587 2588 tx_info->skb = NULL; 2589 2590 tx_info->num_of_bufs += i; 2591 ena_unmap_tx_buff(tx_ring, tx_info); 2592 2593 return -EINVAL; 2594 } 2595 2596 /* Called with netif_tx_lock. */ 2597 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2598 { 2599 struct ena_adapter *adapter = netdev_priv(dev); 2600 struct ena_tx_buffer *tx_info; 2601 struct ena_com_tx_ctx ena_tx_ctx; 2602 struct ena_ring *tx_ring; 2603 struct netdev_queue *txq; 2604 void *push_hdr; 2605 u16 next_to_use, req_id, header_len; 2606 int qid, rc; 2607 2608 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2609 /* Determine which tx ring we will be placed on */ 2610 qid = skb_get_queue_mapping(skb); 2611 tx_ring = &adapter->tx_ring[qid]; 2612 txq = netdev_get_tx_queue(dev, qid); 2613 2614 rc = ena_check_and_linearize_skb(tx_ring, skb); 2615 if (unlikely(rc)) 2616 goto error_drop_packet; 2617 2618 next_to_use = tx_ring->next_to_use; 2619 req_id = tx_ring->free_ids[next_to_use]; 2620 tx_info = &tx_ring->tx_buffer_info[req_id]; 2621 tx_info->num_of_bufs = 0; 2622 2623 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2624 2625 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2626 if (unlikely(rc)) 2627 goto error_drop_packet; 2628 2629 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2630 ena_tx_ctx.ena_bufs = tx_info->bufs; 2631 ena_tx_ctx.push_header = push_hdr; 2632 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2633 ena_tx_ctx.req_id = req_id; 2634 ena_tx_ctx.header_len = header_len; 2635 2636 /* set flags and meta data */ 2637 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 2638 2639 rc = ena_xmit_common(adapter, 2640 tx_ring, 2641 tx_info, 2642 &ena_tx_ctx, 2643 next_to_use, 2644 skb->len); 2645 if (rc) 2646 goto error_unmap_dma; 2647 2648 netdev_tx_sent_queue(txq, skb->len); 2649 2650 /* stop the queue when no more space available, the packet can have up 2651 * to sgl_size + 2. one for the meta descriptor and one for header 2652 * (if the header is larger than tx_max_header_size). 2653 */ 2654 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2655 tx_ring->sgl_size + 2))) { 2656 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2657 __func__, qid); 2658 2659 netif_tx_stop_queue(txq); 2660 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1, 2661 &tx_ring->syncp); 2662 2663 /* There is a rare condition where this function decide to 2664 * stop the queue but meanwhile clean_tx_irq updates 2665 * next_to_completion and terminates. 2666 * The queue will remain stopped forever. 2667 * To solve this issue add a mb() to make sure that 2668 * netif_tx_stop_queue() write is vissible before checking if 2669 * there is additional space in the queue. 2670 */ 2671 smp_mb(); 2672 2673 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2674 ENA_TX_WAKEUP_THRESH)) { 2675 netif_tx_wake_queue(txq); 2676 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 2677 &tx_ring->syncp); 2678 } 2679 } 2680 2681 skb_tx_timestamp(skb); 2682 2683 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) 2684 /* trigger the dma engine. ena_ring_tx_doorbell() 2685 * calls a memory barrier inside it. 2686 */ 2687 ena_ring_tx_doorbell(tx_ring); 2688 2689 return NETDEV_TX_OK; 2690 2691 error_unmap_dma: 2692 ena_unmap_tx_buff(tx_ring, tx_info); 2693 tx_info->skb = NULL; 2694 2695 error_drop_packet: 2696 dev_kfree_skb(skb); 2697 return NETDEV_TX_OK; 2698 } 2699 2700 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 2701 { 2702 struct device *dev = &pdev->dev; 2703 struct ena_admin_host_info *host_info; 2704 int rc; 2705 2706 /* Allocate only the host info */ 2707 rc = ena_com_allocate_host_info(ena_dev); 2708 if (rc) { 2709 dev_err(dev, "Cannot allocate host info\n"); 2710 return; 2711 } 2712 2713 host_info = ena_dev->host_attr.host_info; 2714 2715 host_info->bdf = pci_dev_id(pdev); 2716 host_info->os_type = ENA_ADMIN_OS_LINUX; 2717 host_info->kernel_ver = LINUX_VERSION_CODE; 2718 strscpy(host_info->kernel_ver_str, utsname()->version, 2719 sizeof(host_info->kernel_ver_str) - 1); 2720 host_info->os_dist = 0; 2721 strscpy(host_info->os_dist_str, utsname()->release, 2722 sizeof(host_info->os_dist_str)); 2723 host_info->driver_version = 2724 (DRV_MODULE_GEN_MAJOR) | 2725 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2726 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2727 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2728 host_info->num_cpus = num_online_cpus(); 2729 2730 host_info->driver_supported_features = 2731 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 2732 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 2733 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 2734 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK | 2735 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK; 2736 2737 rc = ena_com_set_host_attributes(ena_dev); 2738 if (rc) { 2739 if (rc == -EOPNOTSUPP) 2740 dev_warn(dev, "Cannot set host attributes\n"); 2741 else 2742 dev_err(dev, "Cannot set host attributes\n"); 2743 2744 goto err; 2745 } 2746 2747 return; 2748 2749 err: 2750 ena_com_delete_host_info(ena_dev); 2751 } 2752 2753 static void ena_config_debug_area(struct ena_adapter *adapter) 2754 { 2755 u32 debug_area_size; 2756 int rc, ss_count; 2757 2758 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2759 if (ss_count <= 0) { 2760 netif_err(adapter, drv, adapter->netdev, 2761 "SS count is negative\n"); 2762 return; 2763 } 2764 2765 /* allocate 32 bytes for each string and 64bit for the value */ 2766 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2767 2768 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2769 if (rc) { 2770 netif_err(adapter, drv, adapter->netdev, 2771 "Cannot allocate debug area\n"); 2772 return; 2773 } 2774 2775 rc = ena_com_set_host_attributes(adapter->ena_dev); 2776 if (rc) { 2777 if (rc == -EOPNOTSUPP) 2778 netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n"); 2779 else 2780 netif_err(adapter, drv, adapter->netdev, 2781 "Cannot set host attributes\n"); 2782 goto err; 2783 } 2784 2785 return; 2786 err: 2787 ena_com_delete_debug_area(adapter->ena_dev); 2788 } 2789 2790 int ena_update_hw_stats(struct ena_adapter *adapter) 2791 { 2792 int rc; 2793 2794 rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_stats); 2795 if (rc) { 2796 netdev_err(adapter->netdev, "Failed to get ENI stats\n"); 2797 return rc; 2798 } 2799 2800 return 0; 2801 } 2802 2803 static void ena_get_stats64(struct net_device *netdev, 2804 struct rtnl_link_stats64 *stats) 2805 { 2806 struct ena_adapter *adapter = netdev_priv(netdev); 2807 struct ena_ring *rx_ring, *tx_ring; 2808 u64 total_xdp_rx_drops = 0; 2809 unsigned int start; 2810 u64 rx_drops; 2811 u64 tx_drops; 2812 int i; 2813 2814 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2815 return; 2816 2817 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 2818 u64 bytes, packets, xdp_rx_drops; 2819 2820 tx_ring = &adapter->tx_ring[i]; 2821 2822 do { 2823 start = u64_stats_fetch_begin(&tx_ring->syncp); 2824 packets = tx_ring->tx_stats.cnt; 2825 bytes = tx_ring->tx_stats.bytes; 2826 } while (u64_stats_fetch_retry(&tx_ring->syncp, start)); 2827 2828 stats->tx_packets += packets; 2829 stats->tx_bytes += bytes; 2830 2831 /* In XDP there isn't an RX queue counterpart */ 2832 if (ENA_IS_XDP_INDEX(adapter, i)) 2833 continue; 2834 2835 rx_ring = &adapter->rx_ring[i]; 2836 2837 do { 2838 start = u64_stats_fetch_begin(&rx_ring->syncp); 2839 packets = rx_ring->rx_stats.cnt; 2840 bytes = rx_ring->rx_stats.bytes; 2841 xdp_rx_drops = rx_ring->rx_stats.xdp_drop; 2842 } while (u64_stats_fetch_retry(&rx_ring->syncp, start)); 2843 2844 stats->rx_packets += packets; 2845 stats->rx_bytes += bytes; 2846 total_xdp_rx_drops += xdp_rx_drops; 2847 } 2848 2849 do { 2850 start = u64_stats_fetch_begin(&adapter->syncp); 2851 rx_drops = adapter->dev_stats.rx_drops; 2852 tx_drops = adapter->dev_stats.tx_drops; 2853 } while (u64_stats_fetch_retry(&adapter->syncp, start)); 2854 2855 stats->rx_dropped = rx_drops + total_xdp_rx_drops; 2856 stats->tx_dropped = tx_drops; 2857 2858 stats->multicast = 0; 2859 stats->collisions = 0; 2860 2861 stats->rx_length_errors = 0; 2862 stats->rx_crc_errors = 0; 2863 stats->rx_frame_errors = 0; 2864 stats->rx_fifo_errors = 0; 2865 stats->rx_missed_errors = 0; 2866 stats->tx_window_errors = 0; 2867 2868 stats->rx_errors = 0; 2869 stats->tx_errors = 0; 2870 } 2871 2872 static const struct net_device_ops ena_netdev_ops = { 2873 .ndo_open = ena_open, 2874 .ndo_stop = ena_close, 2875 .ndo_start_xmit = ena_start_xmit, 2876 .ndo_get_stats64 = ena_get_stats64, 2877 .ndo_tx_timeout = ena_tx_timeout, 2878 .ndo_change_mtu = ena_change_mtu, 2879 .ndo_validate_addr = eth_validate_addr, 2880 .ndo_bpf = ena_xdp, 2881 .ndo_xdp_xmit = ena_xdp_xmit, 2882 }; 2883 2884 static int ena_calc_io_queue_size(struct ena_adapter *adapter, 2885 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2886 { 2887 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq; 2888 struct ena_com_dev *ena_dev = adapter->ena_dev; 2889 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 2890 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 2891 u32 max_tx_queue_size; 2892 u32 max_rx_queue_size; 2893 2894 /* If this function is called after driver load, the ring sizes have already 2895 * been configured. Take it into account when recalculating ring size. 2896 */ 2897 if (adapter->tx_ring->ring_size) 2898 tx_queue_size = adapter->tx_ring->ring_size; 2899 2900 if (adapter->rx_ring->ring_size) 2901 rx_queue_size = adapter->rx_ring->ring_size; 2902 2903 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 2904 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 2905 &get_feat_ctx->max_queue_ext.max_queue_ext; 2906 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 2907 max_queue_ext->max_rx_sq_depth); 2908 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 2909 2910 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2911 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2912 llq->max_llq_depth); 2913 else 2914 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2915 max_queue_ext->max_tx_sq_depth); 2916 2917 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2918 max_queue_ext->max_per_packet_tx_descs); 2919 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2920 max_queue_ext->max_per_packet_rx_descs); 2921 } else { 2922 struct ena_admin_queue_feature_desc *max_queues = 2923 &get_feat_ctx->max_queues; 2924 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 2925 max_queues->max_sq_depth); 2926 max_tx_queue_size = max_queues->max_cq_depth; 2927 2928 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2929 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2930 llq->max_llq_depth); 2931 else 2932 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2933 max_queues->max_sq_depth); 2934 2935 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2936 max_queues->max_packet_tx_descs); 2937 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2938 max_queues->max_packet_rx_descs); 2939 } 2940 2941 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 2942 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 2943 2944 if (max_tx_queue_size < ENA_MIN_RING_SIZE) { 2945 netdev_err(adapter->netdev, "Device max TX queue size: %d < minimum: %d\n", 2946 max_tx_queue_size, ENA_MIN_RING_SIZE); 2947 return -EINVAL; 2948 } 2949 2950 if (max_rx_queue_size < ENA_MIN_RING_SIZE) { 2951 netdev_err(adapter->netdev, "Device max RX queue size: %d < minimum: %d\n", 2952 max_rx_queue_size, ENA_MIN_RING_SIZE); 2953 return -EINVAL; 2954 } 2955 2956 /* When forcing large headers, we multiply the entry size by 2, and therefore divide 2957 * the queue size by 2, leaving the amount of memory used by the queues unchanged. 2958 */ 2959 if (adapter->large_llq_header_enabled) { 2960 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 2961 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2962 max_tx_queue_size /= 2; 2963 dev_info(&adapter->pdev->dev, 2964 "Forcing large headers and decreasing maximum TX queue size to %d\n", 2965 max_tx_queue_size); 2966 } else { 2967 dev_err(&adapter->pdev->dev, 2968 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 2969 2970 adapter->large_llq_header_enabled = false; 2971 } 2972 } 2973 2974 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 2975 max_tx_queue_size); 2976 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 2977 max_rx_queue_size); 2978 2979 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 2980 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 2981 2982 adapter->max_tx_ring_size = max_tx_queue_size; 2983 adapter->max_rx_ring_size = max_rx_queue_size; 2984 adapter->requested_tx_ring_size = tx_queue_size; 2985 adapter->requested_rx_ring_size = rx_queue_size; 2986 2987 return 0; 2988 } 2989 2990 static int ena_device_validate_params(struct ena_adapter *adapter, 2991 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2992 { 2993 struct net_device *netdev = adapter->netdev; 2994 int rc; 2995 2996 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 2997 adapter->mac_addr); 2998 if (!rc) { 2999 netif_err(adapter, drv, netdev, 3000 "Error, mac address are different\n"); 3001 return -EINVAL; 3002 } 3003 3004 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 3005 netif_err(adapter, drv, netdev, 3006 "Error, device max mtu is smaller than netdev MTU\n"); 3007 return -EINVAL; 3008 } 3009 3010 return 0; 3011 } 3012 3013 static void set_default_llq_configurations(struct ena_adapter *adapter, 3014 struct ena_llq_configurations *llq_config, 3015 struct ena_admin_feature_llq_desc *llq) 3016 { 3017 struct ena_com_dev *ena_dev = adapter->ena_dev; 3018 3019 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3020 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3021 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3022 3023 adapter->large_llq_header_supported = 3024 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ)); 3025 adapter->large_llq_header_supported &= 3026 !!(llq->entry_size_ctrl_supported & 3027 ENA_ADMIN_LIST_ENTRY_SIZE_256B); 3028 3029 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 3030 adapter->large_llq_header_enabled) { 3031 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; 3032 llq_config->llq_ring_entry_size_value = 256; 3033 } else { 3034 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3035 llq_config->llq_ring_entry_size_value = 128; 3036 } 3037 } 3038 3039 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3040 struct ena_com_dev *ena_dev, 3041 struct ena_admin_feature_llq_desc *llq, 3042 struct ena_llq_configurations *llq_default_configurations) 3043 { 3044 int rc; 3045 u32 llq_feature_mask; 3046 3047 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3048 if (!(ena_dev->supported_features & llq_feature_mask)) { 3049 dev_warn(&pdev->dev, 3050 "LLQ is not supported Fallback to host mode policy.\n"); 3051 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3052 return 0; 3053 } 3054 3055 if (!ena_dev->mem_bar) { 3056 netdev_err(ena_dev->net_device, 3057 "LLQ is advertised as supported but device doesn't expose mem bar\n"); 3058 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3059 return 0; 3060 } 3061 3062 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3063 if (unlikely(rc)) { 3064 dev_err(&pdev->dev, 3065 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3066 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3067 } 3068 3069 return 0; 3070 } 3071 3072 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3073 int bars) 3074 { 3075 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3076 3077 if (!has_mem_bar) 3078 return 0; 3079 3080 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3081 pci_resource_start(pdev, ENA_MEM_BAR), 3082 pci_resource_len(pdev, ENA_MEM_BAR)); 3083 3084 if (!ena_dev->mem_bar) 3085 return -EFAULT; 3086 3087 return 0; 3088 } 3089 3090 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev, 3091 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3092 bool *wd_state) 3093 { 3094 struct ena_com_dev *ena_dev = adapter->ena_dev; 3095 struct net_device *netdev = adapter->netdev; 3096 struct ena_llq_configurations llq_config; 3097 struct device *dev = &pdev->dev; 3098 bool readless_supported; 3099 u32 aenq_groups; 3100 int dma_width; 3101 int rc; 3102 3103 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3104 if (rc) { 3105 dev_err(dev, "Failed to init mmio read less\n"); 3106 return rc; 3107 } 3108 3109 /* The PCIe configuration space revision id indicate if mmio reg 3110 * read is disabled 3111 */ 3112 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3113 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3114 3115 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3116 if (rc) { 3117 dev_err(dev, "Can not reset device\n"); 3118 goto err_mmio_read_less; 3119 } 3120 3121 rc = ena_com_validate_version(ena_dev); 3122 if (rc) { 3123 dev_err(dev, "Device version is too low\n"); 3124 goto err_mmio_read_less; 3125 } 3126 3127 dma_width = ena_com_get_dma_width(ena_dev); 3128 if (dma_width < 0) { 3129 dev_err(dev, "Invalid dma width value %d", dma_width); 3130 rc = dma_width; 3131 goto err_mmio_read_less; 3132 } 3133 3134 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); 3135 if (rc) { 3136 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); 3137 goto err_mmio_read_less; 3138 } 3139 3140 /* ENA admin level init */ 3141 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3142 if (rc) { 3143 dev_err(dev, 3144 "Can not initialize ena admin queue with device\n"); 3145 goto err_mmio_read_less; 3146 } 3147 3148 /* To enable the msix interrupts the driver needs to know the number 3149 * of queues. So the driver uses polling mode to retrieve this 3150 * information 3151 */ 3152 ena_com_set_admin_polling_mode(ena_dev, true); 3153 3154 ena_config_host_info(ena_dev, pdev); 3155 3156 /* Get Device Attributes*/ 3157 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3158 if (rc) { 3159 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3160 goto err_admin_init; 3161 } 3162 3163 /* Try to turn all the available aenq groups */ 3164 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3165 BIT(ENA_ADMIN_FATAL_ERROR) | 3166 BIT(ENA_ADMIN_WARNING) | 3167 BIT(ENA_ADMIN_NOTIFICATION) | 3168 BIT(ENA_ADMIN_KEEP_ALIVE); 3169 3170 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3171 3172 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3173 if (rc) { 3174 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3175 goto err_admin_init; 3176 } 3177 3178 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3179 3180 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq); 3181 3182 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3183 &llq_config); 3184 if (rc) { 3185 netdev_err(netdev, "Cannot set queues placement policy rc= %d\n", rc); 3186 goto err_admin_init; 3187 } 3188 3189 rc = ena_calc_io_queue_size(adapter, get_feat_ctx); 3190 if (unlikely(rc)) 3191 goto err_admin_init; 3192 3193 return 0; 3194 3195 err_admin_init: 3196 ena_com_abort_admin_commands(ena_dev); 3197 ena_com_wait_for_abort_completion(ena_dev); 3198 ena_com_delete_host_info(ena_dev); 3199 ena_com_admin_destroy(ena_dev); 3200 err_mmio_read_less: 3201 ena_com_mmio_reg_read_request_destroy(ena_dev); 3202 3203 return rc; 3204 } 3205 3206 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3207 { 3208 struct ena_com_dev *ena_dev = adapter->ena_dev; 3209 struct device *dev = &adapter->pdev->dev; 3210 int rc; 3211 3212 rc = ena_enable_msix(adapter); 3213 if (rc) { 3214 dev_err(dev, "Can not reserve msix vectors\n"); 3215 return rc; 3216 } 3217 3218 ena_setup_mgmnt_intr(adapter); 3219 3220 rc = ena_request_mgmnt_irq(adapter); 3221 if (rc) { 3222 dev_err(dev, "Can not setup management interrupts\n"); 3223 goto err_disable_msix; 3224 } 3225 3226 ena_com_set_admin_polling_mode(ena_dev, false); 3227 3228 ena_com_admin_aenq_enable(ena_dev); 3229 3230 return 0; 3231 3232 err_disable_msix: 3233 ena_disable_msix(adapter); 3234 3235 return rc; 3236 } 3237 3238 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3239 { 3240 struct net_device *netdev = adapter->netdev; 3241 struct ena_com_dev *ena_dev = adapter->ena_dev; 3242 bool dev_up; 3243 3244 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3245 return; 3246 3247 netif_carrier_off(netdev); 3248 3249 del_timer_sync(&adapter->timer_service); 3250 3251 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3252 adapter->dev_up_before_reset = dev_up; 3253 if (!graceful) 3254 ena_com_set_admin_running_state(ena_dev, false); 3255 3256 if (dev_up) 3257 ena_down(adapter); 3258 3259 /* Stop the device from sending AENQ events (in case reset flag is set 3260 * and device is up, ena_down() already reset the device. 3261 */ 3262 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3263 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3264 3265 ena_free_mgmnt_irq(adapter); 3266 3267 ena_disable_msix(adapter); 3268 3269 ena_com_abort_admin_commands(ena_dev); 3270 3271 ena_com_wait_for_abort_completion(ena_dev); 3272 3273 ena_com_admin_destroy(ena_dev); 3274 3275 ena_com_mmio_reg_read_request_destroy(ena_dev); 3276 3277 /* return reset reason to default value */ 3278 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3279 3280 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3281 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3282 } 3283 3284 static int ena_restore_device(struct ena_adapter *adapter) 3285 { 3286 struct ena_com_dev_get_features_ctx get_feat_ctx; 3287 struct ena_com_dev *ena_dev = adapter->ena_dev; 3288 struct pci_dev *pdev = adapter->pdev; 3289 struct ena_ring *txr; 3290 int rc, count, i; 3291 bool wd_state; 3292 3293 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3294 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state); 3295 if (rc) { 3296 dev_err(&pdev->dev, "Can not initialize device\n"); 3297 goto err; 3298 } 3299 adapter->wd_state = wd_state; 3300 3301 count = adapter->xdp_num_queues + adapter->num_io_queues; 3302 for (i = 0 ; i < count; i++) { 3303 txr = &adapter->tx_ring[i]; 3304 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 3305 txr->tx_max_header_size = ena_dev->tx_max_header_size; 3306 } 3307 3308 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3309 if (rc) { 3310 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3311 goto err_device_destroy; 3312 } 3313 3314 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3315 if (rc) { 3316 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3317 goto err_device_destroy; 3318 } 3319 /* If the interface was up before the reset bring it up */ 3320 if (adapter->dev_up_before_reset) { 3321 rc = ena_up(adapter); 3322 if (rc) { 3323 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3324 goto err_disable_msix; 3325 } 3326 } 3327 3328 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3329 3330 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3331 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3332 netif_carrier_on(adapter->netdev); 3333 3334 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3335 adapter->last_keep_alive_jiffies = jiffies; 3336 3337 return rc; 3338 err_disable_msix: 3339 ena_free_mgmnt_irq(adapter); 3340 ena_disable_msix(adapter); 3341 err_device_destroy: 3342 ena_com_abort_admin_commands(ena_dev); 3343 ena_com_wait_for_abort_completion(ena_dev); 3344 ena_com_admin_destroy(ena_dev); 3345 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3346 ena_com_mmio_reg_read_request_destroy(ena_dev); 3347 err: 3348 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3349 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3350 dev_err(&pdev->dev, 3351 "Reset attempt failed. Can not reset the device\n"); 3352 3353 return rc; 3354 } 3355 3356 static void ena_fw_reset_device(struct work_struct *work) 3357 { 3358 struct ena_adapter *adapter = 3359 container_of(work, struct ena_adapter, reset_task); 3360 3361 rtnl_lock(); 3362 3363 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3364 ena_destroy_device(adapter, false); 3365 ena_restore_device(adapter); 3366 3367 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n"); 3368 } 3369 3370 rtnl_unlock(); 3371 } 3372 3373 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3374 struct ena_ring *rx_ring) 3375 { 3376 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi); 3377 3378 if (likely(READ_ONCE(ena_napi->first_interrupt))) 3379 return 0; 3380 3381 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3382 return 0; 3383 3384 rx_ring->no_interrupt_event_cnt++; 3385 3386 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3387 netif_err(adapter, rx_err, adapter->netdev, 3388 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3389 rx_ring->qid); 3390 3391 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3392 return -EIO; 3393 } 3394 3395 return 0; 3396 } 3397 3398 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3399 struct ena_ring *tx_ring) 3400 { 3401 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi); 3402 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_MISS_TX_CMPL; 3403 unsigned int time_since_last_napi; 3404 unsigned int missing_tx_comp_to; 3405 bool is_tx_comp_time_expired; 3406 struct ena_tx_buffer *tx_buf; 3407 unsigned long last_jiffies; 3408 int napi_scheduled; 3409 u32 missed_tx = 0; 3410 int i, rc = 0; 3411 3412 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to); 3413 3414 for (i = 0; i < tx_ring->ring_size; i++) { 3415 tx_buf = &tx_ring->tx_buffer_info[i]; 3416 last_jiffies = tx_buf->last_jiffies; 3417 3418 if (last_jiffies == 0) 3419 /* no pending Tx at this location */ 3420 continue; 3421 3422 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3423 2 * adapter->missing_tx_completion_to); 3424 3425 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) { 3426 /* If after graceful period interrupt is still not 3427 * received, we schedule a reset 3428 */ 3429 netif_err(adapter, tx_err, adapter->netdev, 3430 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3431 tx_ring->qid); 3432 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3433 return -EIO; 3434 } 3435 3436 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3437 adapter->missing_tx_completion_to); 3438 3439 if (unlikely(is_tx_comp_time_expired)) { 3440 time_since_last_napi = 3441 jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 3442 napi_scheduled = !!(ena_napi->napi.state & NAPIF_STATE_SCHED); 3443 3444 if (missing_tx_comp_to < time_since_last_napi && napi_scheduled) { 3445 /* We suspect napi isn't called because the 3446 * bottom half is not run. Require a bigger 3447 * timeout for these cases 3448 */ 3449 if (!time_is_before_jiffies(last_jiffies + 3450 2 * adapter->missing_tx_completion_to)) 3451 continue; 3452 3453 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 3454 } 3455 3456 missed_tx++; 3457 3458 if (tx_buf->print_once) 3459 continue; 3460 3461 netif_notice(adapter, tx_err, adapter->netdev, 3462 "TX hasn't completed, qid %d, index %d. %u usecs from last napi execution, napi scheduled: %d\n", 3463 tx_ring->qid, i, time_since_last_napi, napi_scheduled); 3464 3465 tx_buf->print_once = 1; 3466 } 3467 } 3468 3469 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3470 netif_err(adapter, tx_err, adapter->netdev, 3471 "Lost TX completions are above the threshold (%d > %d). Completion transmission timeout: %u.\n", 3472 missed_tx, 3473 adapter->missing_tx_completion_threshold, 3474 missing_tx_comp_to); 3475 netif_err(adapter, tx_err, adapter->netdev, 3476 "Resetting the device\n"); 3477 3478 ena_reset_device(adapter, reset_reason); 3479 rc = -EIO; 3480 } 3481 3482 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx, 3483 &tx_ring->syncp); 3484 3485 return rc; 3486 } 3487 3488 static void check_for_missing_completions(struct ena_adapter *adapter) 3489 { 3490 struct ena_ring *tx_ring; 3491 struct ena_ring *rx_ring; 3492 int qid, budget, rc; 3493 int io_queue_count; 3494 3495 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3496 3497 /* Make sure the driver doesn't turn the device in other process */ 3498 smp_rmb(); 3499 3500 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3501 return; 3502 3503 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3504 return; 3505 3506 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3507 return; 3508 3509 budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES); 3510 3511 qid = adapter->last_monitored_tx_qid; 3512 3513 while (budget) { 3514 qid = (qid + 1) % io_queue_count; 3515 3516 tx_ring = &adapter->tx_ring[qid]; 3517 rx_ring = &adapter->rx_ring[qid]; 3518 3519 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3520 if (unlikely(rc)) 3521 return; 3522 3523 rc = !ENA_IS_XDP_INDEX(adapter, qid) ? 3524 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3525 if (unlikely(rc)) 3526 return; 3527 3528 budget--; 3529 } 3530 3531 adapter->last_monitored_tx_qid = qid; 3532 } 3533 3534 /* trigger napi schedule after 2 consecutive detections */ 3535 #define EMPTY_RX_REFILL 2 3536 /* For the rare case where the device runs out of Rx descriptors and the 3537 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3538 * for example). 3539 * This case will lead to a deadlock: 3540 * The device won't send interrupts since all the new Rx packets will be dropped 3541 * The napi handler won't allocate new Rx descriptors so the device will be 3542 * able to send new packets. 3543 * 3544 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3545 * It is recommended to have at least 512MB, with a minimum of 128MB for 3546 * constrained environment). 3547 * 3548 * When such a situation is detected - Reschedule napi 3549 */ 3550 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3551 { 3552 struct ena_ring *rx_ring; 3553 int i, refill_required; 3554 3555 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3556 return; 3557 3558 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3559 return; 3560 3561 for (i = 0; i < adapter->num_io_queues; i++) { 3562 rx_ring = &adapter->rx_ring[i]; 3563 3564 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3565 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3566 rx_ring->empty_rx_queue++; 3567 3568 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3569 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1, 3570 &rx_ring->syncp); 3571 3572 netif_err(adapter, drv, adapter->netdev, 3573 "Trigger refill for ring %d\n", i); 3574 3575 napi_schedule(rx_ring->napi); 3576 rx_ring->empty_rx_queue = 0; 3577 } 3578 } else { 3579 rx_ring->empty_rx_queue = 0; 3580 } 3581 } 3582 } 3583 3584 /* Check for keep alive expiration */ 3585 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3586 { 3587 unsigned long keep_alive_expired; 3588 3589 if (!adapter->wd_state) 3590 return; 3591 3592 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3593 return; 3594 3595 keep_alive_expired = adapter->last_keep_alive_jiffies + 3596 adapter->keep_alive_timeout; 3597 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3598 netif_err(adapter, drv, adapter->netdev, 3599 "Keep alive watchdog timeout.\n"); 3600 ena_increase_stat(&adapter->dev_stats.wd_expired, 1, 3601 &adapter->syncp); 3602 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); 3603 } 3604 } 3605 3606 static void check_for_admin_com_state(struct ena_adapter *adapter) 3607 { 3608 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3609 netif_err(adapter, drv, adapter->netdev, 3610 "ENA admin queue is not in running state!\n"); 3611 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1, 3612 &adapter->syncp); 3613 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO); 3614 } 3615 } 3616 3617 static void ena_update_hints(struct ena_adapter *adapter, 3618 struct ena_admin_ena_hw_hints *hints) 3619 { 3620 struct net_device *netdev = adapter->netdev; 3621 3622 if (hints->admin_completion_tx_timeout) 3623 adapter->ena_dev->admin_queue.completion_timeout = 3624 hints->admin_completion_tx_timeout * 1000; 3625 3626 if (hints->mmio_read_timeout) 3627 /* convert to usec */ 3628 adapter->ena_dev->mmio_read.reg_read_to = 3629 hints->mmio_read_timeout * 1000; 3630 3631 if (hints->missed_tx_completion_count_threshold_to_reset) 3632 adapter->missing_tx_completion_threshold = 3633 hints->missed_tx_completion_count_threshold_to_reset; 3634 3635 if (hints->missing_tx_completion_timeout) { 3636 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3637 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3638 else 3639 adapter->missing_tx_completion_to = 3640 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3641 } 3642 3643 if (hints->netdev_wd_timeout) 3644 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3645 3646 if (hints->driver_watchdog_timeout) { 3647 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3648 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3649 else 3650 adapter->keep_alive_timeout = 3651 msecs_to_jiffies(hints->driver_watchdog_timeout); 3652 } 3653 } 3654 3655 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3656 struct net_device *netdev) 3657 { 3658 host_info->supported_network_features[0] = 3659 netdev->features & GENMASK_ULL(31, 0); 3660 host_info->supported_network_features[1] = 3661 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3662 } 3663 3664 static void ena_timer_service(struct timer_list *t) 3665 { 3666 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3667 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3668 struct ena_admin_host_info *host_info = 3669 adapter->ena_dev->host_attr.host_info; 3670 3671 check_for_missing_keep_alive(adapter); 3672 3673 check_for_admin_com_state(adapter); 3674 3675 check_for_missing_completions(adapter); 3676 3677 check_for_empty_rx_ring(adapter); 3678 3679 if (debug_area) 3680 ena_dump_stats_to_buf(adapter, debug_area); 3681 3682 if (host_info) 3683 ena_update_host_info(host_info, adapter->netdev); 3684 3685 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3686 netif_err(adapter, drv, adapter->netdev, 3687 "Trigger reset is on\n"); 3688 ena_dump_stats_to_dmesg(adapter); 3689 queue_work(ena_wq, &adapter->reset_task); 3690 return; 3691 } 3692 3693 /* Reset the timer */ 3694 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3695 } 3696 3697 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3698 struct ena_com_dev *ena_dev, 3699 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3700 { 3701 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3702 3703 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3704 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3705 &get_feat_ctx->max_queue_ext.max_queue_ext; 3706 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3707 max_queue_ext->max_rx_cq_num); 3708 3709 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3710 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3711 } else { 3712 struct ena_admin_queue_feature_desc *max_queues = 3713 &get_feat_ctx->max_queues; 3714 io_tx_sq_num = max_queues->max_sq_num; 3715 io_tx_cq_num = max_queues->max_cq_num; 3716 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3717 } 3718 3719 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3720 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3721 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3722 3723 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3724 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3725 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3726 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3727 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */ 3728 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3729 3730 return max_num_io_queues; 3731 } 3732 3733 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3734 struct net_device *netdev) 3735 { 3736 netdev_features_t dev_features = 0; 3737 3738 /* Set offload features */ 3739 if (feat->offload.tx & 3740 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3741 dev_features |= NETIF_F_IP_CSUM; 3742 3743 if (feat->offload.tx & 3744 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3745 dev_features |= NETIF_F_IPV6_CSUM; 3746 3747 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3748 dev_features |= NETIF_F_TSO; 3749 3750 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3751 dev_features |= NETIF_F_TSO6; 3752 3753 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3754 dev_features |= NETIF_F_TSO_ECN; 3755 3756 if (feat->offload.rx_supported & 3757 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3758 dev_features |= NETIF_F_RXCSUM; 3759 3760 if (feat->offload.rx_supported & 3761 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3762 dev_features |= NETIF_F_RXCSUM; 3763 3764 netdev->features = 3765 dev_features | 3766 NETIF_F_SG | 3767 NETIF_F_RXHASH | 3768 NETIF_F_HIGHDMA; 3769 3770 netdev->hw_features |= netdev->features; 3771 netdev->vlan_features |= netdev->features; 3772 } 3773 3774 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3775 struct ena_com_dev_get_features_ctx *feat) 3776 { 3777 struct net_device *netdev = adapter->netdev; 3778 3779 /* Copy mac address */ 3780 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3781 eth_hw_addr_random(netdev); 3782 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3783 } else { 3784 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3785 eth_hw_addr_set(netdev, adapter->mac_addr); 3786 } 3787 3788 /* Set offload features */ 3789 ena_set_dev_offloads(feat, netdev); 3790 3791 adapter->max_mtu = feat->dev_attr.max_mtu; 3792 netdev->max_mtu = adapter->max_mtu; 3793 netdev->min_mtu = ENA_MIN_MTU; 3794 } 3795 3796 static int ena_rss_init_default(struct ena_adapter *adapter) 3797 { 3798 struct ena_com_dev *ena_dev = adapter->ena_dev; 3799 struct device *dev = &adapter->pdev->dev; 3800 int rc, i; 3801 u32 val; 3802 3803 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3804 if (unlikely(rc)) { 3805 dev_err(dev, "Cannot init indirect table\n"); 3806 goto err_rss_init; 3807 } 3808 3809 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3810 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3811 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3812 ENA_IO_RXQ_IDX(val)); 3813 if (unlikely(rc)) { 3814 dev_err(dev, "Cannot fill indirect table\n"); 3815 goto err_fill_indir; 3816 } 3817 } 3818 3819 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE, 3820 0xFFFFFFFF); 3821 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3822 dev_err(dev, "Cannot fill hash function\n"); 3823 goto err_fill_indir; 3824 } 3825 3826 rc = ena_com_set_default_hash_ctrl(ena_dev); 3827 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3828 dev_err(dev, "Cannot fill hash control\n"); 3829 goto err_fill_indir; 3830 } 3831 3832 return 0; 3833 3834 err_fill_indir: 3835 ena_com_rss_destroy(ena_dev); 3836 err_rss_init: 3837 3838 return rc; 3839 } 3840 3841 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3842 { 3843 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3844 3845 pci_release_selected_regions(pdev, release_bars); 3846 } 3847 3848 /* ena_probe - Device Initialization Routine 3849 * @pdev: PCI device information struct 3850 * @ent: entry in ena_pci_tbl 3851 * 3852 * Returns 0 on success, negative on failure 3853 * 3854 * ena_probe initializes an adapter identified by a pci_dev structure. 3855 * The OS initialization, configuring of the adapter private structure, 3856 * and a hardware reset occur. 3857 */ 3858 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3859 { 3860 struct ena_com_dev_get_features_ctx get_feat_ctx; 3861 struct ena_com_dev *ena_dev = NULL; 3862 struct ena_adapter *adapter; 3863 struct net_device *netdev; 3864 static int adapters_found; 3865 u32 max_num_io_queues; 3866 bool wd_state; 3867 int bars, rc; 3868 3869 dev_dbg(&pdev->dev, "%s\n", __func__); 3870 3871 rc = pci_enable_device_mem(pdev); 3872 if (rc) { 3873 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3874 return rc; 3875 } 3876 3877 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); 3878 if (rc) { 3879 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); 3880 goto err_disable_device; 3881 } 3882 3883 pci_set_master(pdev); 3884 3885 ena_dev = vzalloc(sizeof(*ena_dev)); 3886 if (!ena_dev) { 3887 rc = -ENOMEM; 3888 goto err_disable_device; 3889 } 3890 3891 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3892 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3893 if (rc) { 3894 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3895 rc); 3896 goto err_free_ena_dev; 3897 } 3898 3899 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3900 pci_resource_start(pdev, ENA_REG_BAR), 3901 pci_resource_len(pdev, ENA_REG_BAR)); 3902 if (!ena_dev->reg_bar) { 3903 dev_err(&pdev->dev, "Failed to remap regs bar\n"); 3904 rc = -EFAULT; 3905 goto err_free_region; 3906 } 3907 3908 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 3909 3910 ena_dev->dmadev = &pdev->dev; 3911 3912 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS); 3913 if (!netdev) { 3914 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3915 rc = -ENOMEM; 3916 goto err_free_region; 3917 } 3918 3919 SET_NETDEV_DEV(netdev, &pdev->dev); 3920 adapter = netdev_priv(netdev); 3921 adapter->ena_dev = ena_dev; 3922 adapter->netdev = netdev; 3923 adapter->pdev = pdev; 3924 adapter->msg_enable = DEFAULT_MSG_ENABLE; 3925 3926 ena_dev->net_device = netdev; 3927 3928 pci_set_drvdata(pdev, adapter); 3929 3930 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 3931 if (rc) { 3932 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n"); 3933 goto err_netdev_destroy; 3934 } 3935 3936 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state); 3937 if (rc) { 3938 dev_err(&pdev->dev, "ENA device init failed\n"); 3939 if (rc == -ETIME) 3940 rc = -EPROBE_DEFER; 3941 goto err_netdev_destroy; 3942 } 3943 3944 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 3945 * Updated during device initialization with the real granularity 3946 */ 3947 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3948 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3949 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3950 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3951 if (unlikely(!max_num_io_queues)) { 3952 rc = -EFAULT; 3953 goto err_device_destroy; 3954 } 3955 3956 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3957 3958 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3959 3960 adapter->num_io_queues = max_num_io_queues; 3961 adapter->max_num_io_queues = max_num_io_queues; 3962 adapter->last_monitored_tx_qid = 0; 3963 3964 adapter->xdp_first_ring = 0; 3965 adapter->xdp_num_queues = 0; 3966 3967 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 3968 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3969 adapter->disable_meta_caching = 3970 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 3971 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 3972 3973 adapter->wd_state = wd_state; 3974 3975 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 3976 3977 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 3978 if (rc) { 3979 dev_err(&pdev->dev, 3980 "Failed to query interrupt moderation feature\n"); 3981 goto err_device_destroy; 3982 } 3983 3984 ena_init_io_rings(adapter, 3985 0, 3986 adapter->xdp_num_queues + 3987 adapter->num_io_queues); 3988 3989 netdev->netdev_ops = &ena_netdev_ops; 3990 netdev->watchdog_timeo = TX_TIMEOUT; 3991 ena_set_ethtool_ops(netdev); 3992 3993 netdev->priv_flags |= IFF_UNICAST_FLT; 3994 3995 u64_stats_init(&adapter->syncp); 3996 3997 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3998 if (rc) { 3999 dev_err(&pdev->dev, 4000 "Failed to enable and set the admin interrupts\n"); 4001 goto err_worker_destroy; 4002 } 4003 rc = ena_rss_init_default(adapter); 4004 if (rc && (rc != -EOPNOTSUPP)) { 4005 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4006 goto err_free_msix; 4007 } 4008 4009 ena_config_debug_area(adapter); 4010 4011 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues)) 4012 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 4013 NETDEV_XDP_ACT_REDIRECT; 4014 4015 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4016 4017 netif_carrier_off(netdev); 4018 4019 rc = register_netdev(netdev); 4020 if (rc) { 4021 dev_err(&pdev->dev, "Cannot register net device\n"); 4022 goto err_rss; 4023 } 4024 4025 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4026 4027 adapter->last_keep_alive_jiffies = jiffies; 4028 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4029 adapter->missing_tx_completion_to = TX_TIMEOUT; 4030 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4031 4032 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4033 4034 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4035 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4036 4037 dev_info(&pdev->dev, 4038 "%s found at mem %lx, mac addr %pM\n", 4039 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4040 netdev->dev_addr); 4041 4042 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4043 4044 adapters_found++; 4045 4046 return 0; 4047 4048 err_rss: 4049 ena_com_delete_debug_area(ena_dev); 4050 ena_com_rss_destroy(ena_dev); 4051 err_free_msix: 4052 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4053 /* stop submitting admin commands on a device that was reset */ 4054 ena_com_set_admin_running_state(ena_dev, false); 4055 ena_free_mgmnt_irq(adapter); 4056 ena_disable_msix(adapter); 4057 err_worker_destroy: 4058 del_timer(&adapter->timer_service); 4059 err_device_destroy: 4060 ena_com_delete_host_info(ena_dev); 4061 ena_com_admin_destroy(ena_dev); 4062 err_netdev_destroy: 4063 free_netdev(netdev); 4064 err_free_region: 4065 ena_release_bars(ena_dev, pdev); 4066 err_free_ena_dev: 4067 vfree(ena_dev); 4068 err_disable_device: 4069 pci_disable_device(pdev); 4070 return rc; 4071 } 4072 4073 /*****************************************************************************/ 4074 4075 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4076 * @pdev: PCI device information struct 4077 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4078 * 4079 * __ena_shutoff is a helper routine that does the real work on shutdown and 4080 * removal paths; the difference between those paths is with regards to whether 4081 * dettach or unregister the netdevice. 4082 */ 4083 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4084 { 4085 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4086 struct ena_com_dev *ena_dev; 4087 struct net_device *netdev; 4088 4089 ena_dev = adapter->ena_dev; 4090 netdev = adapter->netdev; 4091 4092 #ifdef CONFIG_RFS_ACCEL 4093 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 4094 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 4095 netdev->rx_cpu_rmap = NULL; 4096 } 4097 4098 #endif /* CONFIG_RFS_ACCEL */ 4099 /* Make sure timer and reset routine won't be called after 4100 * freeing device resources. 4101 */ 4102 del_timer_sync(&adapter->timer_service); 4103 cancel_work_sync(&adapter->reset_task); 4104 4105 rtnl_lock(); /* lock released inside the below if-else block */ 4106 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4107 ena_destroy_device(adapter, true); 4108 4109 if (shutdown) { 4110 netif_device_detach(netdev); 4111 dev_close(netdev); 4112 rtnl_unlock(); 4113 } else { 4114 rtnl_unlock(); 4115 unregister_netdev(netdev); 4116 free_netdev(netdev); 4117 } 4118 4119 ena_com_rss_destroy(ena_dev); 4120 4121 ena_com_delete_debug_area(ena_dev); 4122 4123 ena_com_delete_host_info(ena_dev); 4124 4125 ena_release_bars(ena_dev, pdev); 4126 4127 pci_disable_device(pdev); 4128 4129 vfree(ena_dev); 4130 } 4131 4132 /* ena_remove - Device Removal Routine 4133 * @pdev: PCI device information struct 4134 * 4135 * ena_remove is called by the PCI subsystem to alert the driver 4136 * that it should release a PCI device. 4137 */ 4138 4139 static void ena_remove(struct pci_dev *pdev) 4140 { 4141 __ena_shutoff(pdev, false); 4142 } 4143 4144 /* ena_shutdown - Device Shutdown Routine 4145 * @pdev: PCI device information struct 4146 * 4147 * ena_shutdown is called by the PCI subsystem to alert the driver that 4148 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4149 */ 4150 4151 static void ena_shutdown(struct pci_dev *pdev) 4152 { 4153 __ena_shutoff(pdev, true); 4154 } 4155 4156 /* ena_suspend - PM suspend callback 4157 * @dev_d: Device information struct 4158 */ 4159 static int __maybe_unused ena_suspend(struct device *dev_d) 4160 { 4161 struct pci_dev *pdev = to_pci_dev(dev_d); 4162 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4163 4164 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp); 4165 4166 rtnl_lock(); 4167 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4168 dev_err(&pdev->dev, 4169 "Ignoring device reset request as the device is being suspended\n"); 4170 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4171 } 4172 ena_destroy_device(adapter, true); 4173 rtnl_unlock(); 4174 return 0; 4175 } 4176 4177 /* ena_resume - PM resume callback 4178 * @dev_d: Device information struct 4179 */ 4180 static int __maybe_unused ena_resume(struct device *dev_d) 4181 { 4182 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4183 int rc; 4184 4185 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp); 4186 4187 rtnl_lock(); 4188 rc = ena_restore_device(adapter); 4189 rtnl_unlock(); 4190 return rc; 4191 } 4192 4193 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4194 4195 static struct pci_driver ena_pci_driver = { 4196 .name = DRV_MODULE_NAME, 4197 .id_table = ena_pci_tbl, 4198 .probe = ena_probe, 4199 .remove = ena_remove, 4200 .shutdown = ena_shutdown, 4201 .driver.pm = &ena_pm_ops, 4202 .sriov_configure = pci_sriov_configure_simple, 4203 }; 4204 4205 static int __init ena_init(void) 4206 { 4207 int ret; 4208 4209 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4210 if (!ena_wq) { 4211 pr_err("Failed to create workqueue\n"); 4212 return -ENOMEM; 4213 } 4214 4215 ret = pci_register_driver(&ena_pci_driver); 4216 if (ret) 4217 destroy_workqueue(ena_wq); 4218 4219 return ret; 4220 } 4221 4222 static void __exit ena_cleanup(void) 4223 { 4224 pci_unregister_driver(&ena_pci_driver); 4225 4226 if (ena_wq) { 4227 destroy_workqueue(ena_wq); 4228 ena_wq = NULL; 4229 } 4230 } 4231 4232 /****************************************************************************** 4233 ******************************** AENQ Handlers ******************************* 4234 *****************************************************************************/ 4235 /* ena_update_on_link_change: 4236 * Notify the network interface about the change in link status 4237 */ 4238 static void ena_update_on_link_change(void *adapter_data, 4239 struct ena_admin_aenq_entry *aenq_e) 4240 { 4241 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4242 struct ena_admin_aenq_link_change_desc *aenq_desc = 4243 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4244 int status = aenq_desc->flags & 4245 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4246 4247 if (status) { 4248 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 4249 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4250 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4251 netif_carrier_on(adapter->netdev); 4252 } else { 4253 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4254 netif_carrier_off(adapter->netdev); 4255 } 4256 } 4257 4258 static void ena_keep_alive_wd(void *adapter_data, 4259 struct ena_admin_aenq_entry *aenq_e) 4260 { 4261 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4262 struct ena_admin_aenq_keep_alive_desc *desc; 4263 u64 rx_drops; 4264 u64 tx_drops; 4265 4266 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4267 adapter->last_keep_alive_jiffies = jiffies; 4268 4269 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4270 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4271 4272 u64_stats_update_begin(&adapter->syncp); 4273 /* These stats are accumulated by the device, so the counters indicate 4274 * all drops since last reset. 4275 */ 4276 adapter->dev_stats.rx_drops = rx_drops; 4277 adapter->dev_stats.tx_drops = tx_drops; 4278 u64_stats_update_end(&adapter->syncp); 4279 } 4280 4281 static void ena_notification(void *adapter_data, 4282 struct ena_admin_aenq_entry *aenq_e) 4283 { 4284 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4285 struct ena_admin_ena_hw_hints *hints; 4286 4287 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4288 "Invalid group(%x) expected %x\n", 4289 aenq_e->aenq_common_desc.group, 4290 ENA_ADMIN_NOTIFICATION); 4291 4292 switch (aenq_e->aenq_common_desc.syndrome) { 4293 case ENA_ADMIN_UPDATE_HINTS: 4294 hints = (struct ena_admin_ena_hw_hints *) 4295 (&aenq_e->inline_data_w4); 4296 ena_update_hints(adapter, hints); 4297 break; 4298 default: 4299 netif_err(adapter, drv, adapter->netdev, 4300 "Invalid aenq notification link state %d\n", 4301 aenq_e->aenq_common_desc.syndrome); 4302 } 4303 } 4304 4305 /* This handler will called for unknown event group or unimplemented handlers*/ 4306 static void unimplemented_aenq_handler(void *data, 4307 struct ena_admin_aenq_entry *aenq_e) 4308 { 4309 struct ena_adapter *adapter = (struct ena_adapter *)data; 4310 4311 netif_err(adapter, drv, adapter->netdev, 4312 "Unknown event was received or event with unimplemented handler\n"); 4313 } 4314 4315 static struct ena_aenq_handlers aenq_handlers = { 4316 .handlers = { 4317 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4318 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4319 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4320 }, 4321 .unimplemented_handler = unimplemented_aenq_handler 4322 }; 4323 4324 module_init(ena_init); 4325 module_exit(ena_cleanup); 4326