1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright 2015-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/ethtool.h> 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/numa.h> 12 #include <linux/pci.h> 13 #include <linux/utsname.h> 14 #include <linux/version.h> 15 #include <linux/vmalloc.h> 16 #include <net/ip.h> 17 18 #include "ena_netdev.h" 19 #include "ena_pci_id_tbl.h" 20 #include "ena_xdp.h" 21 22 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 23 MODULE_DESCRIPTION(DEVICE_NAME); 24 MODULE_LICENSE("GPL"); 25 26 /* Time in jiffies before concluding the transmitter is hung. */ 27 #define TX_TIMEOUT (5 * HZ) 28 29 #define ENA_MAX_RINGS min_t(unsigned int, ENA_MAX_NUM_IO_QUEUES, num_possible_cpus()) 30 31 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 32 NETIF_MSG_IFDOWN | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 33 34 static struct ena_aenq_handlers aenq_handlers; 35 36 static struct workqueue_struct *ena_wq; 37 38 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 39 40 static int ena_rss_init_default(struct ena_adapter *adapter); 41 static void check_for_admin_com_state(struct ena_adapter *adapter); 42 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful); 43 static int ena_restore_device(struct ena_adapter *adapter); 44 45 static void ena_tx_timeout(struct net_device *dev, unsigned int txqueue) 46 { 47 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 48 struct ena_adapter *adapter = netdev_priv(dev); 49 unsigned int time_since_last_napi, threshold; 50 struct ena_ring *tx_ring; 51 int napi_scheduled; 52 53 if (txqueue >= adapter->num_io_queues) { 54 netdev_err(dev, "TX timeout on invalid queue %u\n", txqueue); 55 goto schedule_reset; 56 } 57 58 threshold = jiffies_to_usecs(dev->watchdog_timeo); 59 tx_ring = &adapter->tx_ring[txqueue]; 60 61 time_since_last_napi = jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 62 napi_scheduled = !!(tx_ring->napi->state & NAPIF_STATE_SCHED); 63 64 netdev_err(dev, 65 "TX q %d is paused for too long (threshold %u). Time since last napi %u usec. napi scheduled: %d\n", 66 txqueue, 67 threshold, 68 time_since_last_napi, 69 napi_scheduled); 70 71 if (threshold < time_since_last_napi && napi_scheduled) { 72 netdev_err(dev, 73 "napi handler hasn't been called for a long time but is scheduled\n"); 74 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 75 } 76 schedule_reset: 77 /* Change the state of the device to trigger reset 78 * Check that we are not in the middle or a trigger already 79 */ 80 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 81 return; 82 83 ena_reset_device(adapter, reset_reason); 84 ena_increase_stat(&adapter->dev_stats.tx_timeout, 1, &adapter->syncp); 85 } 86 87 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 88 { 89 int i; 90 91 for (i = 0; i < adapter->num_io_queues; i++) 92 adapter->rx_ring[i].mtu = mtu; 93 } 94 95 static int ena_change_mtu(struct net_device *dev, int new_mtu) 96 { 97 struct ena_adapter *adapter = netdev_priv(dev); 98 int ret; 99 100 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 101 if (!ret) { 102 netif_dbg(adapter, drv, dev, "Set MTU to %d\n", new_mtu); 103 update_rx_ring_mtu(adapter, new_mtu); 104 WRITE_ONCE(dev->mtu, new_mtu); 105 } else { 106 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 107 new_mtu); 108 } 109 110 return ret; 111 } 112 113 int ena_xmit_common(struct ena_adapter *adapter, 114 struct ena_ring *ring, 115 struct ena_tx_buffer *tx_info, 116 struct ena_com_tx_ctx *ena_tx_ctx, 117 u16 next_to_use, 118 u32 bytes) 119 { 120 int rc, nb_hw_desc; 121 122 if (unlikely(ena_com_is_doorbell_needed(ring->ena_com_io_sq, 123 ena_tx_ctx))) { 124 netif_dbg(adapter, tx_queued, adapter->netdev, 125 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 126 ring->qid); 127 ena_ring_tx_doorbell(ring); 128 } 129 130 /* prepare the packet's descriptors to dma engine */ 131 rc = ena_com_prepare_tx(ring->ena_com_io_sq, ena_tx_ctx, 132 &nb_hw_desc); 133 134 /* In case there isn't enough space in the queue for the packet, 135 * we simply drop it. All other failure reasons of 136 * ena_com_prepare_tx() are fatal and therefore require a device reset. 137 */ 138 if (unlikely(rc)) { 139 netif_err(adapter, tx_queued, adapter->netdev, 140 "Failed to prepare tx bufs\n"); 141 ena_increase_stat(&ring->tx_stats.prepare_ctx_err, 1, &ring->syncp); 142 if (rc != -ENOMEM) 143 ena_reset_device(adapter, ENA_REGS_RESET_DRIVER_INVALID_STATE); 144 return rc; 145 } 146 147 u64_stats_update_begin(&ring->syncp); 148 ring->tx_stats.cnt++; 149 ring->tx_stats.bytes += bytes; 150 u64_stats_update_end(&ring->syncp); 151 152 tx_info->tx_descs = nb_hw_desc; 153 tx_info->total_tx_size = bytes; 154 tx_info->last_jiffies = jiffies; 155 tx_info->print_once = 0; 156 157 ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 158 ring->ring_size); 159 return 0; 160 } 161 162 static void ena_init_io_rings_common(struct ena_adapter *adapter, 163 struct ena_ring *ring, u16 qid) 164 { 165 ring->qid = qid; 166 ring->pdev = adapter->pdev; 167 ring->dev = &adapter->pdev->dev; 168 ring->netdev = adapter->netdev; 169 ring->napi = &adapter->ena_napi[qid].napi; 170 ring->adapter = adapter; 171 ring->ena_dev = adapter->ena_dev; 172 ring->per_napi_packets = 0; 173 ring->cpu = 0; 174 ring->numa_node = 0; 175 ring->no_interrupt_event_cnt = 0; 176 u64_stats_init(&ring->syncp); 177 } 178 179 void ena_init_io_rings(struct ena_adapter *adapter, 180 int first_index, int count) 181 { 182 struct ena_com_dev *ena_dev; 183 struct ena_ring *txr, *rxr; 184 int i; 185 186 ena_dev = adapter->ena_dev; 187 188 for (i = first_index; i < first_index + count; i++) { 189 txr = &adapter->tx_ring[i]; 190 rxr = &adapter->rx_ring[i]; 191 192 /* TX common ring state */ 193 ena_init_io_rings_common(adapter, txr, i); 194 195 /* TX specific ring state */ 196 txr->ring_size = adapter->requested_tx_ring_size; 197 txr->tx_max_header_size = ena_dev->tx_max_header_size; 198 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 199 txr->sgl_size = adapter->max_tx_sgl_size; 200 txr->smoothed_interval = 201 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 202 txr->disable_meta_caching = adapter->disable_meta_caching; 203 spin_lock_init(&txr->xdp_tx_lock); 204 205 /* Don't init RX queues for xdp queues */ 206 if (!ENA_IS_XDP_INDEX(adapter, i)) { 207 /* RX common ring state */ 208 ena_init_io_rings_common(adapter, rxr, i); 209 210 /* RX specific ring state */ 211 rxr->ring_size = adapter->requested_rx_ring_size; 212 rxr->rx_copybreak = adapter->rx_copybreak; 213 rxr->sgl_size = adapter->max_rx_sgl_size; 214 rxr->smoothed_interval = 215 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 216 rxr->empty_rx_queue = 0; 217 rxr->rx_headroom = NET_SKB_PAD; 218 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 219 rxr->xdp_ring = &adapter->tx_ring[i + adapter->num_io_queues]; 220 } 221 } 222 } 223 224 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 225 * @adapter: network interface device structure 226 * @qid: queue index 227 * 228 * Return 0 on success, negative on failure 229 */ 230 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 231 { 232 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 233 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 234 int size, i, node; 235 236 if (tx_ring->tx_buffer_info) { 237 netif_err(adapter, ifup, 238 adapter->netdev, "tx_buffer_info info is not NULL"); 239 return -EEXIST; 240 } 241 242 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 243 node = cpu_to_node(ena_irq->cpu); 244 245 tx_ring->tx_buffer_info = vzalloc_node(size, node); 246 if (!tx_ring->tx_buffer_info) { 247 tx_ring->tx_buffer_info = vzalloc(size); 248 if (!tx_ring->tx_buffer_info) 249 goto err_tx_buffer_info; 250 } 251 252 size = sizeof(u16) * tx_ring->ring_size; 253 tx_ring->free_ids = vzalloc_node(size, node); 254 if (!tx_ring->free_ids) { 255 tx_ring->free_ids = vzalloc(size); 256 if (!tx_ring->free_ids) 257 goto err_tx_free_ids; 258 } 259 260 size = tx_ring->tx_max_header_size; 261 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 262 if (!tx_ring->push_buf_intermediate_buf) { 263 tx_ring->push_buf_intermediate_buf = vzalloc(size); 264 if (!tx_ring->push_buf_intermediate_buf) 265 goto err_push_buf_intermediate_buf; 266 } 267 268 /* Req id ring for TX out of order completions */ 269 for (i = 0; i < tx_ring->ring_size; i++) 270 tx_ring->free_ids[i] = i; 271 272 /* Reset tx statistics */ 273 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 274 275 tx_ring->next_to_use = 0; 276 tx_ring->next_to_clean = 0; 277 tx_ring->cpu = ena_irq->cpu; 278 tx_ring->numa_node = node; 279 return 0; 280 281 err_push_buf_intermediate_buf: 282 vfree(tx_ring->free_ids); 283 tx_ring->free_ids = NULL; 284 err_tx_free_ids: 285 vfree(tx_ring->tx_buffer_info); 286 tx_ring->tx_buffer_info = NULL; 287 err_tx_buffer_info: 288 return -ENOMEM; 289 } 290 291 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 292 * @adapter: network interface device structure 293 * @qid: queue index 294 * 295 * Free all transmit software resources 296 */ 297 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 298 { 299 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 300 301 vfree(tx_ring->tx_buffer_info); 302 tx_ring->tx_buffer_info = NULL; 303 304 vfree(tx_ring->free_ids); 305 tx_ring->free_ids = NULL; 306 307 vfree(tx_ring->push_buf_intermediate_buf); 308 tx_ring->push_buf_intermediate_buf = NULL; 309 } 310 311 int ena_setup_tx_resources_in_range(struct ena_adapter *adapter, 312 int first_index, int count) 313 { 314 int i, rc = 0; 315 316 for (i = first_index; i < first_index + count; i++) { 317 rc = ena_setup_tx_resources(adapter, i); 318 if (rc) 319 goto err_setup_tx; 320 } 321 322 return 0; 323 324 err_setup_tx: 325 326 netif_err(adapter, ifup, adapter->netdev, 327 "Tx queue %d: allocation failed\n", i); 328 329 /* rewind the index freeing the rings as we go */ 330 while (first_index < i--) 331 ena_free_tx_resources(adapter, i); 332 return rc; 333 } 334 335 void ena_free_all_io_tx_resources_in_range(struct ena_adapter *adapter, 336 int first_index, int count) 337 { 338 int i; 339 340 for (i = first_index; i < first_index + count; i++) 341 ena_free_tx_resources(adapter, i); 342 } 343 344 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 345 * @adapter: board private structure 346 * 347 * Free all transmit software resources 348 */ 349 void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 350 { 351 ena_free_all_io_tx_resources_in_range(adapter, 352 0, 353 adapter->xdp_num_queues + 354 adapter->num_io_queues); 355 } 356 357 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 358 * @adapter: network interface device structure 359 * @qid: queue index 360 * 361 * Returns 0 on success, negative on failure 362 */ 363 static int ena_setup_rx_resources(struct ena_adapter *adapter, 364 u32 qid) 365 { 366 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 367 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 368 int size, node, i; 369 370 if (rx_ring->rx_buffer_info) { 371 netif_err(adapter, ifup, adapter->netdev, 372 "rx_buffer_info is not NULL"); 373 return -EEXIST; 374 } 375 376 /* alloc extra element so in rx path 377 * we can always prefetch rx_info + 1 378 */ 379 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 380 node = cpu_to_node(ena_irq->cpu); 381 382 rx_ring->rx_buffer_info = vzalloc_node(size, node); 383 if (!rx_ring->rx_buffer_info) { 384 rx_ring->rx_buffer_info = vzalloc(size); 385 if (!rx_ring->rx_buffer_info) 386 return -ENOMEM; 387 } 388 389 size = sizeof(u16) * rx_ring->ring_size; 390 rx_ring->free_ids = vzalloc_node(size, node); 391 if (!rx_ring->free_ids) { 392 rx_ring->free_ids = vzalloc(size); 393 if (!rx_ring->free_ids) { 394 vfree(rx_ring->rx_buffer_info); 395 rx_ring->rx_buffer_info = NULL; 396 return -ENOMEM; 397 } 398 } 399 400 /* Req id ring for receiving RX pkts out of order */ 401 for (i = 0; i < rx_ring->ring_size; i++) 402 rx_ring->free_ids[i] = i; 403 404 /* Reset rx statistics */ 405 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 406 407 rx_ring->next_to_clean = 0; 408 rx_ring->next_to_use = 0; 409 rx_ring->cpu = ena_irq->cpu; 410 rx_ring->numa_node = node; 411 412 return 0; 413 } 414 415 /* ena_free_rx_resources - Free I/O Rx Resources 416 * @adapter: network interface device structure 417 * @qid: queue index 418 * 419 * Free all receive software resources 420 */ 421 static void ena_free_rx_resources(struct ena_adapter *adapter, 422 u32 qid) 423 { 424 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 425 426 vfree(rx_ring->rx_buffer_info); 427 rx_ring->rx_buffer_info = NULL; 428 429 vfree(rx_ring->free_ids); 430 rx_ring->free_ids = NULL; 431 } 432 433 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 434 * @adapter: board private structure 435 * 436 * Return 0 on success, negative on failure 437 */ 438 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 439 { 440 int i, rc = 0; 441 442 for (i = 0; i < adapter->num_io_queues; i++) { 443 rc = ena_setup_rx_resources(adapter, i); 444 if (rc) 445 goto err_setup_rx; 446 } 447 448 return 0; 449 450 err_setup_rx: 451 452 netif_err(adapter, ifup, adapter->netdev, 453 "Rx queue %d: allocation failed\n", i); 454 455 /* rewind the index freeing the rings as we go */ 456 while (i--) 457 ena_free_rx_resources(adapter, i); 458 return rc; 459 } 460 461 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 462 * @adapter: board private structure 463 * 464 * Free all receive software resources 465 */ 466 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 467 { 468 int i; 469 470 for (i = 0; i < adapter->num_io_queues; i++) 471 ena_free_rx_resources(adapter, i); 472 } 473 474 static struct page *ena_alloc_map_page(struct ena_ring *rx_ring, 475 dma_addr_t *dma) 476 { 477 struct page *page; 478 479 /* This would allocate the page on the same NUMA node the executing code 480 * is running on. 481 */ 482 page = dev_alloc_page(); 483 if (!page) { 484 ena_increase_stat(&rx_ring->rx_stats.page_alloc_fail, 1, &rx_ring->syncp); 485 return ERR_PTR(-ENOSPC); 486 } 487 488 /* To enable NIC-side port-mirroring, AKA SPAN port, 489 * we make the buffer readable from the nic as well 490 */ 491 *dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 492 DMA_BIDIRECTIONAL); 493 if (unlikely(dma_mapping_error(rx_ring->dev, *dma))) { 494 ena_increase_stat(&rx_ring->rx_stats.dma_mapping_err, 1, 495 &rx_ring->syncp); 496 __free_page(page); 497 return ERR_PTR(-EIO); 498 } 499 500 return page; 501 } 502 503 static int ena_alloc_rx_buffer(struct ena_ring *rx_ring, 504 struct ena_rx_buffer *rx_info) 505 { 506 int headroom = rx_ring->rx_headroom; 507 struct ena_com_buf *ena_buf; 508 struct page *page; 509 dma_addr_t dma; 510 int tailroom; 511 512 /* restore page offset value in case it has been changed by device */ 513 rx_info->buf_offset = headroom; 514 515 /* if previous allocated page is not used */ 516 if (unlikely(rx_info->page)) 517 return 0; 518 519 /* We handle DMA here */ 520 page = ena_alloc_map_page(rx_ring, &dma); 521 if (IS_ERR(page)) 522 return PTR_ERR(page); 523 524 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 525 "Allocate page %p, rx_info %p\n", page, rx_info); 526 527 tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 528 529 rx_info->page = page; 530 rx_info->dma_addr = dma; 531 rx_info->page_offset = 0; 532 ena_buf = &rx_info->ena_buf; 533 ena_buf->paddr = dma + headroom; 534 ena_buf->len = ENA_PAGE_SIZE - headroom - tailroom; 535 536 return 0; 537 } 538 539 static void ena_unmap_rx_buff_attrs(struct ena_ring *rx_ring, 540 struct ena_rx_buffer *rx_info, 541 unsigned long attrs) 542 { 543 dma_unmap_page_attrs(rx_ring->dev, rx_info->dma_addr, ENA_PAGE_SIZE, DMA_BIDIRECTIONAL, 544 attrs); 545 } 546 547 static void ena_free_rx_page(struct ena_ring *rx_ring, 548 struct ena_rx_buffer *rx_info) 549 { 550 struct page *page = rx_info->page; 551 552 if (unlikely(!page)) { 553 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 554 "Trying to free unallocated buffer\n"); 555 return; 556 } 557 558 ena_unmap_rx_buff_attrs(rx_ring, rx_info, 0); 559 560 __free_page(page); 561 rx_info->page = NULL; 562 } 563 564 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 565 { 566 u16 next_to_use, req_id; 567 u32 i; 568 int rc; 569 570 next_to_use = rx_ring->next_to_use; 571 572 for (i = 0; i < num; i++) { 573 struct ena_rx_buffer *rx_info; 574 575 req_id = rx_ring->free_ids[next_to_use]; 576 577 rx_info = &rx_ring->rx_buffer_info[req_id]; 578 579 rc = ena_alloc_rx_buffer(rx_ring, rx_info); 580 if (unlikely(rc < 0)) { 581 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 582 "Failed to allocate buffer for rx queue %d\n", 583 rx_ring->qid); 584 break; 585 } 586 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 587 &rx_info->ena_buf, 588 req_id); 589 if (unlikely(rc)) { 590 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 591 "Failed to add buffer for rx queue %d\n", 592 rx_ring->qid); 593 break; 594 } 595 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 596 rx_ring->ring_size); 597 } 598 599 if (unlikely(i < num)) { 600 ena_increase_stat(&rx_ring->rx_stats.refil_partial, 1, 601 &rx_ring->syncp); 602 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 603 "Refilled rx qid %d with only %d buffers (from %d)\n", 604 rx_ring->qid, i, num); 605 } 606 607 /* ena_com_write_sq_doorbell issues a wmb() */ 608 if (likely(i)) 609 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 610 611 rx_ring->next_to_use = next_to_use; 612 613 return i; 614 } 615 616 static void ena_free_rx_bufs(struct ena_adapter *adapter, 617 u32 qid) 618 { 619 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 620 u32 i; 621 622 for (i = 0; i < rx_ring->ring_size; i++) { 623 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 624 625 if (rx_info->page) 626 ena_free_rx_page(rx_ring, rx_info); 627 } 628 } 629 630 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 631 * @adapter: board private structure 632 */ 633 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 634 { 635 struct ena_ring *rx_ring; 636 int i, rc, bufs_num; 637 638 for (i = 0; i < adapter->num_io_queues; i++) { 639 rx_ring = &adapter->rx_ring[i]; 640 bufs_num = rx_ring->ring_size - 1; 641 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 642 643 if (unlikely(rc != bufs_num)) 644 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 645 "Refilling Queue %d failed. allocated %d buffers from: %d\n", 646 i, rc, bufs_num); 647 } 648 } 649 650 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 651 { 652 int i; 653 654 for (i = 0; i < adapter->num_io_queues; i++) 655 ena_free_rx_bufs(adapter, i); 656 } 657 658 void ena_unmap_tx_buff(struct ena_ring *tx_ring, 659 struct ena_tx_buffer *tx_info) 660 { 661 struct ena_com_buf *ena_buf; 662 u32 cnt; 663 int i; 664 665 ena_buf = tx_info->bufs; 666 cnt = tx_info->num_of_bufs; 667 668 if (unlikely(!cnt)) 669 return; 670 671 if (tx_info->map_linear_data) { 672 dma_unmap_single(tx_ring->dev, 673 dma_unmap_addr(ena_buf, paddr), 674 dma_unmap_len(ena_buf, len), 675 DMA_TO_DEVICE); 676 ena_buf++; 677 cnt--; 678 } 679 680 /* unmap remaining mapped pages */ 681 for (i = 0; i < cnt; i++) { 682 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 683 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 684 ena_buf++; 685 } 686 } 687 688 /* ena_free_tx_bufs - Free Tx Buffers per Queue 689 * @tx_ring: TX ring for which buffers be freed 690 */ 691 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 692 { 693 bool print_once = true; 694 bool is_xdp_ring; 695 u32 i; 696 697 is_xdp_ring = ENA_IS_XDP_INDEX(tx_ring->adapter, tx_ring->qid); 698 699 for (i = 0; i < tx_ring->ring_size; i++) { 700 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 701 702 if (!tx_info->skb) 703 continue; 704 705 if (print_once) { 706 netif_notice(tx_ring->adapter, ifdown, tx_ring->netdev, 707 "Free uncompleted tx skb qid %d idx 0x%x\n", 708 tx_ring->qid, i); 709 print_once = false; 710 } else { 711 netif_dbg(tx_ring->adapter, ifdown, tx_ring->netdev, 712 "Free uncompleted tx skb qid %d idx 0x%x\n", 713 tx_ring->qid, i); 714 } 715 716 ena_unmap_tx_buff(tx_ring, tx_info); 717 718 if (is_xdp_ring) 719 xdp_return_frame(tx_info->xdpf); 720 else 721 dev_kfree_skb_any(tx_info->skb); 722 } 723 724 if (!is_xdp_ring) 725 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 726 tx_ring->qid)); 727 } 728 729 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 730 { 731 struct ena_ring *tx_ring; 732 int i; 733 734 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 735 tx_ring = &adapter->tx_ring[i]; 736 ena_free_tx_bufs(tx_ring); 737 } 738 } 739 740 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 741 { 742 u16 ena_qid; 743 int i; 744 745 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 746 ena_qid = ENA_IO_TXQ_IDX(i); 747 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 748 } 749 } 750 751 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 752 { 753 u16 ena_qid; 754 int i; 755 756 for (i = 0; i < adapter->num_io_queues; i++) { 757 ena_qid = ENA_IO_RXQ_IDX(i); 758 cancel_work_sync(&adapter->ena_napi[i].dim.work); 759 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 760 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 761 } 762 } 763 764 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 765 { 766 ena_destroy_all_tx_queues(adapter); 767 ena_destroy_all_rx_queues(adapter); 768 } 769 770 int handle_invalid_req_id(struct ena_ring *ring, u16 req_id, 771 struct ena_tx_buffer *tx_info, bool is_xdp) 772 { 773 if (tx_info) 774 netif_err(ring->adapter, 775 tx_done, 776 ring->netdev, 777 "tx_info doesn't have valid %s. qid %u req_id %u", 778 is_xdp ? "xdp frame" : "skb", ring->qid, req_id); 779 else 780 netif_err(ring->adapter, 781 tx_done, 782 ring->netdev, 783 "Invalid req_id %u in qid %u\n", 784 req_id, ring->qid); 785 786 ena_increase_stat(&ring->tx_stats.bad_req_id, 1, &ring->syncp); 787 ena_reset_device(ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID); 788 789 return -EFAULT; 790 } 791 792 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 793 { 794 struct ena_tx_buffer *tx_info; 795 796 tx_info = &tx_ring->tx_buffer_info[req_id]; 797 if (likely(tx_info->skb)) 798 return 0; 799 800 return handle_invalid_req_id(tx_ring, req_id, tx_info, false); 801 } 802 803 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 804 { 805 struct netdev_queue *txq; 806 bool above_thresh; 807 u32 tx_bytes = 0; 808 u32 total_done = 0; 809 u16 next_to_clean; 810 u16 req_id; 811 int tx_pkts = 0; 812 int rc; 813 814 next_to_clean = tx_ring->next_to_clean; 815 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 816 817 while (tx_pkts < budget) { 818 struct ena_tx_buffer *tx_info; 819 struct sk_buff *skb; 820 821 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 822 &req_id); 823 if (rc) { 824 if (unlikely(rc == -EINVAL)) 825 handle_invalid_req_id(tx_ring, req_id, NULL, false); 826 break; 827 } 828 829 /* validate that the request id points to a valid skb */ 830 rc = validate_tx_req_id(tx_ring, req_id); 831 if (rc) 832 break; 833 834 tx_info = &tx_ring->tx_buffer_info[req_id]; 835 skb = tx_info->skb; 836 837 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 838 prefetch(&skb->end); 839 840 tx_info->skb = NULL; 841 tx_info->last_jiffies = 0; 842 843 ena_unmap_tx_buff(tx_ring, tx_info); 844 845 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 846 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 847 skb); 848 849 tx_bytes += tx_info->total_tx_size; 850 dev_kfree_skb(skb); 851 tx_pkts++; 852 total_done += tx_info->tx_descs; 853 854 tx_ring->free_ids[next_to_clean] = req_id; 855 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 856 tx_ring->ring_size); 857 } 858 859 tx_ring->next_to_clean = next_to_clean; 860 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 861 862 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 863 864 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 865 "tx_poll: q %d done. total pkts: %d\n", 866 tx_ring->qid, tx_pkts); 867 868 /* need to make the rings circular update visible to 869 * ena_start_xmit() before checking for netif_queue_stopped(). 870 */ 871 smp_mb(); 872 873 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 874 ENA_TX_WAKEUP_THRESH); 875 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 876 __netif_tx_lock(txq, smp_processor_id()); 877 above_thresh = 878 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 879 ENA_TX_WAKEUP_THRESH); 880 if (netif_tx_queue_stopped(txq) && above_thresh && 881 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 882 netif_tx_wake_queue(txq); 883 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 884 &tx_ring->syncp); 885 } 886 __netif_tx_unlock(txq); 887 } 888 889 return tx_pkts; 890 } 891 892 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, void *first_frag, u16 len) 893 { 894 struct sk_buff *skb; 895 896 if (!first_frag) 897 skb = napi_alloc_skb(rx_ring->napi, len); 898 else 899 skb = napi_build_skb(first_frag, len); 900 901 if (unlikely(!skb)) { 902 ena_increase_stat(&rx_ring->rx_stats.skb_alloc_fail, 1, 903 &rx_ring->syncp); 904 905 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 906 "Failed to allocate skb. first_frag %s\n", 907 first_frag ? "provided" : "not provided"); 908 } 909 910 return skb; 911 } 912 913 static bool ena_try_rx_buf_page_reuse(struct ena_rx_buffer *rx_info, u16 buf_len, 914 u16 len, int pkt_offset) 915 { 916 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 917 918 /* More than ENA_MIN_RX_BUF_SIZE left in the reused buffer 919 * for data + headroom + tailroom. 920 */ 921 if (SKB_DATA_ALIGN(len + pkt_offset) + ENA_MIN_RX_BUF_SIZE <= ena_buf->len) { 922 page_ref_inc(rx_info->page); 923 rx_info->page_offset += buf_len; 924 ena_buf->paddr += buf_len; 925 ena_buf->len -= buf_len; 926 return true; 927 } 928 929 return false; 930 } 931 932 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 933 struct ena_com_rx_buf_info *ena_bufs, 934 u32 descs, 935 u16 *next_to_clean) 936 { 937 int tailroom = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 938 bool is_xdp_loaded = ena_xdp_present_ring(rx_ring); 939 struct ena_rx_buffer *rx_info; 940 struct ena_adapter *adapter; 941 int page_offset, pkt_offset; 942 dma_addr_t pre_reuse_paddr; 943 u16 len, req_id, buf = 0; 944 bool reuse_rx_buf_page; 945 struct sk_buff *skb; 946 void *buf_addr; 947 int buf_offset; 948 u16 buf_len; 949 950 len = ena_bufs[buf].len; 951 req_id = ena_bufs[buf].req_id; 952 953 rx_info = &rx_ring->rx_buffer_info[req_id]; 954 955 if (unlikely(!rx_info->page)) { 956 adapter = rx_ring->adapter; 957 netif_err(adapter, rx_err, rx_ring->netdev, 958 "Page is NULL. qid %u req_id %u\n", rx_ring->qid, req_id); 959 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, &rx_ring->syncp); 960 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 961 return NULL; 962 } 963 964 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 965 "rx_info %p page %p\n", 966 rx_info, rx_info->page); 967 968 buf_offset = rx_info->buf_offset; 969 pkt_offset = buf_offset - rx_ring->rx_headroom; 970 page_offset = rx_info->page_offset; 971 buf_addr = page_address(rx_info->page) + page_offset; 972 973 if (len <= rx_ring->rx_copybreak) { 974 skb = ena_alloc_skb(rx_ring, NULL, len); 975 if (unlikely(!skb)) 976 return NULL; 977 978 skb_copy_to_linear_data(skb, buf_addr + buf_offset, len); 979 dma_sync_single_for_device(rx_ring->dev, 980 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 981 len, 982 DMA_FROM_DEVICE); 983 984 skb_put(skb, len); 985 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 986 "RX allocated small packet. len %d.\n", skb->len); 987 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 988 rx_ring->free_ids[*next_to_clean] = req_id; 989 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 990 rx_ring->ring_size); 991 return skb; 992 } 993 994 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 995 996 /* If XDP isn't loaded try to reuse part of the RX buffer */ 997 reuse_rx_buf_page = !is_xdp_loaded && 998 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 999 1000 if (!reuse_rx_buf_page) 1001 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1002 1003 skb = ena_alloc_skb(rx_ring, buf_addr, buf_len); 1004 if (unlikely(!skb)) 1005 return NULL; 1006 1007 /* Populate skb's linear part */ 1008 skb_reserve(skb, buf_offset); 1009 skb_put(skb, len); 1010 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 1011 1012 do { 1013 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1014 "RX skb updated. len %d. data_len %d\n", 1015 skb->len, skb->data_len); 1016 1017 if (!reuse_rx_buf_page) 1018 rx_info->page = NULL; 1019 1020 rx_ring->free_ids[*next_to_clean] = req_id; 1021 *next_to_clean = 1022 ENA_RX_RING_IDX_NEXT(*next_to_clean, 1023 rx_ring->ring_size); 1024 if (likely(--descs == 0)) 1025 break; 1026 1027 buf++; 1028 len = ena_bufs[buf].len; 1029 req_id = ena_bufs[buf].req_id; 1030 1031 rx_info = &rx_ring->rx_buffer_info[req_id]; 1032 1033 /* rx_info->buf_offset includes rx_ring->rx_headroom */ 1034 buf_offset = rx_info->buf_offset; 1035 pkt_offset = buf_offset - rx_ring->rx_headroom; 1036 buf_len = SKB_DATA_ALIGN(len + buf_offset + tailroom); 1037 page_offset = rx_info->page_offset; 1038 1039 pre_reuse_paddr = dma_unmap_addr(&rx_info->ena_buf, paddr); 1040 1041 reuse_rx_buf_page = !is_xdp_loaded && 1042 ena_try_rx_buf_page_reuse(rx_info, buf_len, len, pkt_offset); 1043 1044 dma_sync_single_for_cpu(rx_ring->dev, 1045 pre_reuse_paddr + pkt_offset, 1046 len, 1047 DMA_FROM_DEVICE); 1048 1049 if (!reuse_rx_buf_page) 1050 ena_unmap_rx_buff_attrs(rx_ring, rx_info, DMA_ATTR_SKIP_CPU_SYNC); 1051 1052 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 1053 page_offset + buf_offset, len, buf_len); 1054 1055 } while (1); 1056 1057 return skb; 1058 } 1059 1060 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 1061 * @adapter: structure containing adapter specific data 1062 * @ena_rx_ctx: received packet context/metadata 1063 * @skb: skb currently being received and modified 1064 */ 1065 static void ena_rx_checksum(struct ena_ring *rx_ring, 1066 struct ena_com_rx_ctx *ena_rx_ctx, 1067 struct sk_buff *skb) 1068 { 1069 /* Rx csum disabled */ 1070 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 1071 skb->ip_summed = CHECKSUM_NONE; 1072 return; 1073 } 1074 1075 /* For fragmented packets the checksum isn't valid */ 1076 if (ena_rx_ctx->frag) { 1077 skb->ip_summed = CHECKSUM_NONE; 1078 return; 1079 } 1080 1081 /* if IP and error */ 1082 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 1083 (ena_rx_ctx->l3_csum_err))) { 1084 /* ipv4 checksum error */ 1085 skb->ip_summed = CHECKSUM_NONE; 1086 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1087 &rx_ring->syncp); 1088 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1089 "RX IPv4 header checksum error\n"); 1090 return; 1091 } 1092 1093 /* if TCP/UDP */ 1094 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1095 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 1096 if (unlikely(ena_rx_ctx->l4_csum_err)) { 1097 /* TCP/UDP checksum error */ 1098 ena_increase_stat(&rx_ring->rx_stats.csum_bad, 1, 1099 &rx_ring->syncp); 1100 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 1101 "RX L4 checksum error\n"); 1102 skb->ip_summed = CHECKSUM_NONE; 1103 return; 1104 } 1105 1106 if (likely(ena_rx_ctx->l4_csum_checked)) { 1107 skb->ip_summed = CHECKSUM_UNNECESSARY; 1108 ena_increase_stat(&rx_ring->rx_stats.csum_good, 1, 1109 &rx_ring->syncp); 1110 } else { 1111 ena_increase_stat(&rx_ring->rx_stats.csum_unchecked, 1, 1112 &rx_ring->syncp); 1113 skb->ip_summed = CHECKSUM_NONE; 1114 } 1115 } else { 1116 skb->ip_summed = CHECKSUM_NONE; 1117 return; 1118 } 1119 1120 } 1121 1122 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1123 struct ena_com_rx_ctx *ena_rx_ctx, 1124 struct sk_buff *skb) 1125 { 1126 enum pkt_hash_types hash_type; 1127 1128 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1129 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1130 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1131 1132 hash_type = PKT_HASH_TYPE_L4; 1133 else 1134 hash_type = PKT_HASH_TYPE_NONE; 1135 1136 /* Override hash type if the packet is fragmented */ 1137 if (ena_rx_ctx->frag) 1138 hash_type = PKT_HASH_TYPE_NONE; 1139 1140 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1141 } 1142 } 1143 1144 static int ena_xdp_handle_buff(struct ena_ring *rx_ring, struct xdp_buff *xdp, u16 num_descs) 1145 { 1146 struct ena_rx_buffer *rx_info; 1147 int ret; 1148 1149 /* XDP multi-buffer packets not supported */ 1150 if (unlikely(num_descs > 1)) { 1151 netdev_err_once(rx_ring->adapter->netdev, 1152 "xdp: dropped unsupported multi-buffer packets\n"); 1153 ena_increase_stat(&rx_ring->rx_stats.xdp_drop, 1, &rx_ring->syncp); 1154 return ENA_XDP_DROP; 1155 } 1156 1157 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1158 xdp_prepare_buff(xdp, page_address(rx_info->page), 1159 rx_info->buf_offset, 1160 rx_ring->ena_bufs[0].len, false); 1161 1162 ret = ena_xdp_execute(rx_ring, xdp); 1163 1164 /* The xdp program might expand the headers */ 1165 if (ret == ENA_XDP_PASS) { 1166 rx_info->buf_offset = xdp->data - xdp->data_hard_start; 1167 rx_ring->ena_bufs[0].len = xdp->data_end - xdp->data; 1168 } 1169 1170 return ret; 1171 } 1172 1173 /* ena_clean_rx_irq - Cleanup RX irq 1174 * @rx_ring: RX ring to clean 1175 * @napi: napi handler 1176 * @budget: how many packets driver is allowed to clean 1177 * 1178 * Returns the number of cleaned buffers. 1179 */ 1180 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1181 u32 budget) 1182 { 1183 u16 next_to_clean = rx_ring->next_to_clean; 1184 struct ena_com_rx_ctx ena_rx_ctx; 1185 struct ena_rx_buffer *rx_info; 1186 struct ena_adapter *adapter; 1187 u32 res_budget, work_done; 1188 int rx_copybreak_pkt = 0; 1189 int refill_threshold; 1190 struct sk_buff *skb; 1191 int refill_required; 1192 struct xdp_buff xdp; 1193 int xdp_flags = 0; 1194 int total_len = 0; 1195 int xdp_verdict; 1196 u8 pkt_offset; 1197 int rc = 0; 1198 int i; 1199 1200 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1201 "%s qid %d\n", __func__, rx_ring->qid); 1202 res_budget = budget; 1203 xdp_init_buff(&xdp, ENA_PAGE_SIZE, &rx_ring->xdp_rxq); 1204 1205 do { 1206 xdp_verdict = ENA_XDP_PASS; 1207 skb = NULL; 1208 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1209 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1210 ena_rx_ctx.descs = 0; 1211 ena_rx_ctx.pkt_offset = 0; 1212 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1213 rx_ring->ena_com_io_sq, 1214 &ena_rx_ctx); 1215 if (unlikely(rc)) 1216 goto error; 1217 1218 if (unlikely(ena_rx_ctx.descs == 0)) 1219 break; 1220 1221 /* First descriptor might have an offset set by the device */ 1222 rx_info = &rx_ring->rx_buffer_info[rx_ring->ena_bufs[0].req_id]; 1223 pkt_offset = ena_rx_ctx.pkt_offset; 1224 rx_info->buf_offset += pkt_offset; 1225 1226 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1227 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1228 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1229 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1230 1231 dma_sync_single_for_cpu(rx_ring->dev, 1232 dma_unmap_addr(&rx_info->ena_buf, paddr) + pkt_offset, 1233 rx_ring->ena_bufs[0].len, 1234 DMA_FROM_DEVICE); 1235 1236 if (ena_xdp_present_ring(rx_ring)) 1237 xdp_verdict = ena_xdp_handle_buff(rx_ring, &xdp, ena_rx_ctx.descs); 1238 1239 /* allocate skb and fill it */ 1240 if (xdp_verdict == ENA_XDP_PASS) 1241 skb = ena_rx_skb(rx_ring, 1242 rx_ring->ena_bufs, 1243 ena_rx_ctx.descs, 1244 &next_to_clean); 1245 1246 if (unlikely(!skb)) { 1247 for (i = 0; i < ena_rx_ctx.descs; i++) { 1248 int req_id = rx_ring->ena_bufs[i].req_id; 1249 1250 rx_ring->free_ids[next_to_clean] = req_id; 1251 next_to_clean = 1252 ENA_RX_RING_IDX_NEXT(next_to_clean, 1253 rx_ring->ring_size); 1254 1255 /* Packets was passed for transmission, unmap it 1256 * from RX side. 1257 */ 1258 if (xdp_verdict & ENA_XDP_FORWARDED) { 1259 ena_unmap_rx_buff_attrs(rx_ring, 1260 &rx_ring->rx_buffer_info[req_id], 1261 DMA_ATTR_SKIP_CPU_SYNC); 1262 rx_ring->rx_buffer_info[req_id].page = NULL; 1263 } 1264 } 1265 if (xdp_verdict != ENA_XDP_PASS) { 1266 xdp_flags |= xdp_verdict; 1267 total_len += ena_rx_ctx.ena_bufs[0].len; 1268 res_budget--; 1269 continue; 1270 } 1271 break; 1272 } 1273 1274 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1275 1276 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1277 1278 skb_record_rx_queue(skb, rx_ring->qid); 1279 1280 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) 1281 rx_copybreak_pkt++; 1282 1283 total_len += skb->len; 1284 1285 napi_gro_receive(napi, skb); 1286 1287 res_budget--; 1288 } while (likely(res_budget)); 1289 1290 work_done = budget - res_budget; 1291 rx_ring->per_napi_packets += work_done; 1292 u64_stats_update_begin(&rx_ring->syncp); 1293 rx_ring->rx_stats.bytes += total_len; 1294 rx_ring->rx_stats.cnt += work_done; 1295 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1296 u64_stats_update_end(&rx_ring->syncp); 1297 1298 rx_ring->next_to_clean = next_to_clean; 1299 1300 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 1301 refill_threshold = 1302 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1303 ENA_RX_REFILL_THRESH_PACKET); 1304 1305 /* Optimization, try to batch new rx buffers */ 1306 if (refill_required > refill_threshold) 1307 ena_refill_rx_bufs(rx_ring, refill_required); 1308 1309 if (xdp_flags & ENA_XDP_REDIRECT) 1310 xdp_do_flush(); 1311 1312 return work_done; 1313 1314 error: 1315 if (xdp_flags & ENA_XDP_REDIRECT) 1316 xdp_do_flush(); 1317 1318 adapter = netdev_priv(rx_ring->netdev); 1319 1320 if (rc == -ENOSPC) { 1321 ena_increase_stat(&rx_ring->rx_stats.bad_desc_num, 1, &rx_ring->syncp); 1322 ena_reset_device(adapter, ENA_REGS_RESET_TOO_MANY_RX_DESCS); 1323 } else if (rc == -EFAULT) { 1324 ena_reset_device(adapter, ENA_REGS_RESET_RX_DESCRIPTOR_MALFORMED); 1325 } else { 1326 ena_increase_stat(&rx_ring->rx_stats.bad_req_id, 1, 1327 &rx_ring->syncp); 1328 ena_reset_device(adapter, ENA_REGS_RESET_INV_RX_REQ_ID); 1329 } 1330 return 0; 1331 } 1332 1333 static void ena_dim_work(struct work_struct *w) 1334 { 1335 struct dim *dim = container_of(w, struct dim, work); 1336 struct dim_cq_moder cur_moder = 1337 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1338 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1339 1340 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1341 dim->state = DIM_START_MEASURE; 1342 } 1343 1344 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1345 { 1346 struct dim_sample dim_sample; 1347 struct ena_ring *rx_ring = ena_napi->rx_ring; 1348 1349 if (!rx_ring->per_napi_packets) 1350 return; 1351 1352 rx_ring->non_empty_napi_events++; 1353 1354 dim_update_sample(rx_ring->non_empty_napi_events, 1355 rx_ring->rx_stats.cnt, 1356 rx_ring->rx_stats.bytes, 1357 &dim_sample); 1358 1359 net_dim(&ena_napi->dim, &dim_sample); 1360 1361 rx_ring->per_napi_packets = 0; 1362 } 1363 1364 void ena_unmask_interrupt(struct ena_ring *tx_ring, 1365 struct ena_ring *rx_ring) 1366 { 1367 u32 rx_interval = tx_ring->smoothed_interval; 1368 struct ena_eth_io_intr_reg intr_reg; 1369 1370 /* Rx ring can be NULL when for XDP tx queues which don't have an 1371 * accompanying rx_ring pair. 1372 */ 1373 if (rx_ring) 1374 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1375 rx_ring->smoothed_interval : 1376 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1377 1378 /* Update intr register: rx intr delay, 1379 * tx intr delay and interrupt unmask 1380 */ 1381 ena_com_update_intr_reg(&intr_reg, 1382 rx_interval, 1383 tx_ring->smoothed_interval, 1384 true); 1385 1386 ena_increase_stat(&tx_ring->tx_stats.unmask_interrupt, 1, 1387 &tx_ring->syncp); 1388 1389 /* It is a shared MSI-X. 1390 * Tx and Rx CQ have pointer to it. 1391 * So we use one of them to reach the intr reg 1392 * The Tx ring is used because the rx_ring is NULL for XDP queues 1393 */ 1394 ena_com_unmask_intr(tx_ring->ena_com_io_cq, &intr_reg); 1395 } 1396 1397 void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1398 struct ena_ring *rx_ring) 1399 { 1400 int cpu = get_cpu(); 1401 int numa_node; 1402 1403 /* Check only one ring since the 2 rings are running on the same cpu */ 1404 if (likely(tx_ring->cpu == cpu)) 1405 goto out; 1406 1407 tx_ring->cpu = cpu; 1408 if (rx_ring) 1409 rx_ring->cpu = cpu; 1410 1411 numa_node = cpu_to_node(cpu); 1412 1413 if (likely(tx_ring->numa_node == numa_node)) 1414 goto out; 1415 1416 put_cpu(); 1417 1418 if (numa_node != NUMA_NO_NODE) { 1419 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1420 tx_ring->numa_node = numa_node; 1421 if (rx_ring) { 1422 rx_ring->numa_node = numa_node; 1423 ena_com_update_numa_node(rx_ring->ena_com_io_cq, 1424 numa_node); 1425 } 1426 } 1427 1428 return; 1429 out: 1430 put_cpu(); 1431 } 1432 1433 static int ena_io_poll(struct napi_struct *napi, int budget) 1434 { 1435 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1436 struct ena_ring *tx_ring, *rx_ring; 1437 int tx_work_done; 1438 int rx_work_done = 0; 1439 int tx_budget; 1440 int napi_comp_call = 0; 1441 int ret; 1442 1443 tx_ring = ena_napi->tx_ring; 1444 rx_ring = ena_napi->rx_ring; 1445 1446 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1447 1448 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1449 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1450 napi_complete_done(napi, 0); 1451 return 0; 1452 } 1453 1454 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1455 /* On netpoll the budget is zero and the handler should only clean the 1456 * tx completions. 1457 */ 1458 if (likely(budget)) 1459 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1460 1461 /* If the device is about to reset or down, avoid unmask 1462 * the interrupt and return 0 so NAPI won't reschedule 1463 */ 1464 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1465 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1466 napi_complete_done(napi, 0); 1467 ret = 0; 1468 1469 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1470 napi_comp_call = 1; 1471 1472 /* Update numa and unmask the interrupt only when schedule 1473 * from the interrupt context (vs from sk_busy_loop) 1474 */ 1475 if (napi_complete_done(napi, rx_work_done) && 1476 READ_ONCE(ena_napi->interrupts_masked)) { 1477 smp_rmb(); /* make sure interrupts_masked is read */ 1478 WRITE_ONCE(ena_napi->interrupts_masked, false); 1479 /* We apply adaptive moderation on Rx path only. 1480 * Tx uses static interrupt moderation. 1481 */ 1482 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1483 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1484 1485 ena_update_ring_numa_node(tx_ring, rx_ring); 1486 ena_unmask_interrupt(tx_ring, rx_ring); 1487 } 1488 1489 ret = rx_work_done; 1490 } else { 1491 ret = budget; 1492 } 1493 1494 u64_stats_update_begin(&tx_ring->syncp); 1495 tx_ring->tx_stats.napi_comp += napi_comp_call; 1496 tx_ring->tx_stats.tx_poll++; 1497 u64_stats_update_end(&tx_ring->syncp); 1498 1499 tx_ring->tx_stats.last_napi_jiffies = jiffies; 1500 1501 return ret; 1502 } 1503 1504 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1505 { 1506 struct ena_adapter *adapter = (struct ena_adapter *)data; 1507 1508 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1509 1510 /* Don't call the aenq handler before probe is done */ 1511 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1512 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1513 1514 return IRQ_HANDLED; 1515 } 1516 1517 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1518 * @irq: interrupt number 1519 * @data: pointer to a network interface private napi device structure 1520 */ 1521 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1522 { 1523 struct ena_napi *ena_napi = data; 1524 1525 /* Used to check HW health */ 1526 WRITE_ONCE(ena_napi->first_interrupt, true); 1527 1528 WRITE_ONCE(ena_napi->interrupts_masked, true); 1529 smp_wmb(); /* write interrupts_masked before calling napi */ 1530 1531 napi_schedule_irqoff(&ena_napi->napi); 1532 1533 return IRQ_HANDLED; 1534 } 1535 1536 /* Reserve a single MSI-X vector for management (admin + aenq). 1537 * plus reserve one vector for each potential io queue. 1538 * the number of potential io queues is the minimum of what the device 1539 * supports and the number of vCPUs. 1540 */ 1541 static int ena_enable_msix(struct ena_adapter *adapter) 1542 { 1543 int msix_vecs, irq_cnt; 1544 1545 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1546 netif_err(adapter, probe, adapter->netdev, 1547 "Error, MSI-X is already enabled\n"); 1548 return -EPERM; 1549 } 1550 1551 /* Reserved the max msix vectors we might need */ 1552 msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); 1553 netif_dbg(adapter, probe, adapter->netdev, 1554 "Trying to enable MSI-X, vectors %d\n", msix_vecs); 1555 1556 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1557 msix_vecs, PCI_IRQ_MSIX); 1558 1559 if (irq_cnt < 0) { 1560 netif_err(adapter, probe, adapter->netdev, 1561 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1562 return -ENOSPC; 1563 } 1564 1565 if (irq_cnt != msix_vecs) { 1566 netif_notice(adapter, probe, adapter->netdev, 1567 "Enable only %d MSI-X (out of %d), reduce the number of queues\n", 1568 irq_cnt, msix_vecs); 1569 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1570 } 1571 1572 if (netif_enable_cpu_rmap(adapter->netdev, adapter->num_io_queues)) 1573 netif_warn(adapter, probe, adapter->netdev, 1574 "Failed to map IRQs to CPUs\n"); 1575 1576 adapter->msix_vecs = irq_cnt; 1577 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1578 1579 return 0; 1580 } 1581 1582 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1583 { 1584 u32 cpu; 1585 1586 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1587 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1588 pci_name(adapter->pdev)); 1589 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1590 ena_intr_msix_mgmnt; 1591 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1592 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1593 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1594 cpu = cpumask_first(cpu_online_mask); 1595 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1596 cpumask_set_cpu(cpu, 1597 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1598 } 1599 1600 static void ena_setup_io_intr(struct ena_adapter *adapter) 1601 { 1602 struct net_device *netdev; 1603 int irq_idx, i, cpu; 1604 int io_queue_count; 1605 1606 netdev = adapter->netdev; 1607 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1608 1609 for (i = 0; i < io_queue_count; i++) { 1610 irq_idx = ENA_IO_IRQ_IDX(i); 1611 cpu = i % num_online_cpus(); 1612 1613 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1614 "%s-Tx-Rx-%d", netdev->name, i); 1615 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1616 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1617 adapter->irq_tbl[irq_idx].vector = 1618 pci_irq_vector(adapter->pdev, irq_idx); 1619 adapter->irq_tbl[irq_idx].cpu = cpu; 1620 1621 cpumask_set_cpu(cpu, 1622 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1623 } 1624 } 1625 1626 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1627 { 1628 unsigned long flags = 0; 1629 struct ena_irq *irq; 1630 int rc; 1631 1632 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1633 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1634 irq->data); 1635 if (rc) { 1636 netif_err(adapter, probe, adapter->netdev, 1637 "Failed to request admin irq\n"); 1638 return rc; 1639 } 1640 1641 netif_dbg(adapter, probe, adapter->netdev, 1642 "Set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1643 irq->affinity_hint_mask.bits[0], irq->vector); 1644 1645 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1646 1647 return rc; 1648 } 1649 1650 static int ena_request_io_irq(struct ena_adapter *adapter) 1651 { 1652 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1653 int rc = 0, i, k, irq_idx; 1654 unsigned long flags = 0; 1655 struct ena_irq *irq; 1656 1657 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1658 netif_err(adapter, ifup, adapter->netdev, 1659 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1660 return -EINVAL; 1661 } 1662 1663 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1664 irq = &adapter->irq_tbl[i]; 1665 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1666 irq->data); 1667 if (rc) { 1668 netif_err(adapter, ifup, adapter->netdev, 1669 "Failed to request I/O IRQ. index %d rc %d\n", 1670 i, rc); 1671 goto err; 1672 } 1673 1674 netif_dbg(adapter, ifup, adapter->netdev, 1675 "Set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1676 i, irq->affinity_hint_mask.bits[0], irq->vector); 1677 1678 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1679 } 1680 1681 /* Now that IO IRQs have been successfully allocated map them to the 1682 * corresponding IO NAPI instance. Note that the mgmnt IRQ does not 1683 * have a NAPI, so care must be taken to correctly map IRQs to NAPIs. 1684 */ 1685 for (i = 0; i < io_queue_count; i++) { 1686 irq_idx = ENA_IO_IRQ_IDX(i); 1687 irq = &adapter->irq_tbl[irq_idx]; 1688 netif_napi_set_irq(&adapter->ena_napi[i].napi, irq->vector); 1689 } 1690 1691 return rc; 1692 1693 err: 1694 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1695 irq = &adapter->irq_tbl[k]; 1696 free_irq(irq->vector, irq->data); 1697 } 1698 1699 return rc; 1700 } 1701 1702 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1703 { 1704 struct ena_irq *irq; 1705 1706 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1707 synchronize_irq(irq->vector); 1708 irq_set_affinity_hint(irq->vector, NULL); 1709 free_irq(irq->vector, irq->data); 1710 } 1711 1712 static void ena_free_io_irq(struct ena_adapter *adapter) 1713 { 1714 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1715 struct ena_irq *irq; 1716 int i; 1717 1718 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) { 1719 irq = &adapter->irq_tbl[i]; 1720 irq_set_affinity_hint(irq->vector, NULL); 1721 free_irq(irq->vector, irq->data); 1722 } 1723 } 1724 1725 static void ena_disable_msix(struct ena_adapter *adapter) 1726 { 1727 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1728 pci_free_irq_vectors(adapter->pdev); 1729 } 1730 1731 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1732 { 1733 u32 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 1734 int i; 1735 1736 if (!netif_running(adapter->netdev)) 1737 return; 1738 1739 for (i = ENA_IO_IRQ_FIRST_IDX; i < ENA_MAX_MSIX_VEC(io_queue_count); i++) 1740 synchronize_irq(adapter->irq_tbl[i].vector); 1741 } 1742 1743 static void ena_del_napi_in_range(struct ena_adapter *adapter, 1744 int first_index, 1745 int count) 1746 { 1747 int i; 1748 1749 for (i = first_index; i < first_index + count; i++) { 1750 netif_napi_del(&adapter->ena_napi[i].napi); 1751 1752 WARN_ON(ENA_IS_XDP_INDEX(adapter, i) && 1753 adapter->ena_napi[i].rx_ring); 1754 } 1755 } 1756 1757 static void ena_init_napi_in_range(struct ena_adapter *adapter, 1758 int first_index, int count) 1759 { 1760 int (*napi_handler)(struct napi_struct *napi, int budget); 1761 int i; 1762 1763 for (i = first_index; i < first_index + count; i++) { 1764 struct ena_napi *napi = &adapter->ena_napi[i]; 1765 struct ena_ring *rx_ring, *tx_ring; 1766 1767 memset(napi, 0, sizeof(*napi)); 1768 1769 rx_ring = &adapter->rx_ring[i]; 1770 tx_ring = &adapter->tx_ring[i]; 1771 1772 napi_handler = ena_io_poll; 1773 if (ENA_IS_XDP_INDEX(adapter, i)) 1774 napi_handler = ena_xdp_io_poll; 1775 1776 netif_napi_add(adapter->netdev, &napi->napi, napi_handler); 1777 1778 if (!ENA_IS_XDP_INDEX(adapter, i)) 1779 napi->rx_ring = rx_ring; 1780 1781 napi->tx_ring = tx_ring; 1782 napi->qid = i; 1783 } 1784 } 1785 1786 static void ena_napi_disable_in_range(struct ena_adapter *adapter, 1787 int first_index, 1788 int count) 1789 { 1790 struct napi_struct *napi; 1791 int i; 1792 1793 for (i = first_index; i < first_index + count; i++) { 1794 napi = &adapter->ena_napi[i].napi; 1795 if (!ENA_IS_XDP_INDEX(adapter, i)) { 1796 /* This API is supported for non-XDP queues only */ 1797 netif_queue_set_napi(adapter->netdev, i, 1798 NETDEV_QUEUE_TYPE_TX, NULL); 1799 netif_queue_set_napi(adapter->netdev, i, 1800 NETDEV_QUEUE_TYPE_RX, NULL); 1801 } 1802 napi_disable(napi); 1803 } 1804 } 1805 1806 static void ena_napi_enable_in_range(struct ena_adapter *adapter, 1807 int first_index, 1808 int count) 1809 { 1810 struct napi_struct *napi; 1811 int i; 1812 1813 for (i = first_index; i < first_index + count; i++) { 1814 napi = &adapter->ena_napi[i].napi; 1815 napi_enable(napi); 1816 if (!ENA_IS_XDP_INDEX(adapter, i)) { 1817 /* This API is supported for non-XDP queues only */ 1818 netif_queue_set_napi(adapter->netdev, i, 1819 NETDEV_QUEUE_TYPE_RX, napi); 1820 netif_queue_set_napi(adapter->netdev, i, 1821 NETDEV_QUEUE_TYPE_TX, napi); 1822 } 1823 } 1824 } 1825 1826 /* Configure the Rx forwarding */ 1827 static int ena_rss_configure(struct ena_adapter *adapter) 1828 { 1829 struct ena_com_dev *ena_dev = adapter->ena_dev; 1830 int rc; 1831 1832 /* In case the RSS table wasn't initialized by probe */ 1833 if (!ena_dev->rss.tbl_log_size) { 1834 rc = ena_rss_init_default(adapter); 1835 if (rc && (rc != -EOPNOTSUPP)) { 1836 netif_err(adapter, ifup, adapter->netdev, "Failed to init RSS rc: %d\n", rc); 1837 return rc; 1838 } 1839 } 1840 1841 /* Set indirect table */ 1842 rc = ena_com_indirect_table_set(ena_dev); 1843 if (unlikely(rc && rc != -EOPNOTSUPP)) 1844 return rc; 1845 1846 /* Configure hash function (if supported) */ 1847 rc = ena_com_set_hash_function(ena_dev); 1848 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1849 return rc; 1850 1851 /* Configure hash inputs (if supported) */ 1852 rc = ena_com_set_hash_ctrl(ena_dev); 1853 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1854 return rc; 1855 1856 return 0; 1857 } 1858 1859 static int ena_up_complete(struct ena_adapter *adapter) 1860 { 1861 int rc; 1862 1863 rc = ena_rss_configure(adapter); 1864 if (rc) 1865 return rc; 1866 1867 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1868 1869 ena_refill_all_rx_bufs(adapter); 1870 1871 /* enable transmits */ 1872 netif_tx_start_all_queues(adapter->netdev); 1873 1874 ena_napi_enable_in_range(adapter, 1875 0, 1876 adapter->xdp_num_queues + adapter->num_io_queues); 1877 1878 return 0; 1879 } 1880 1881 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1882 { 1883 struct ena_com_create_io_ctx ctx; 1884 struct ena_com_dev *ena_dev; 1885 struct ena_ring *tx_ring; 1886 u32 msix_vector; 1887 u16 ena_qid; 1888 int rc; 1889 1890 ena_dev = adapter->ena_dev; 1891 1892 tx_ring = &adapter->tx_ring[qid]; 1893 msix_vector = ENA_IO_IRQ_IDX(qid); 1894 ena_qid = ENA_IO_TXQ_IDX(qid); 1895 1896 memset(&ctx, 0x0, sizeof(ctx)); 1897 1898 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1899 ctx.qid = ena_qid; 1900 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1901 ctx.msix_vector = msix_vector; 1902 ctx.queue_size = tx_ring->ring_size; 1903 ctx.numa_node = tx_ring->numa_node; 1904 1905 rc = ena_com_create_io_queue(ena_dev, &ctx); 1906 if (rc) { 1907 netif_err(adapter, ifup, adapter->netdev, 1908 "Failed to create I/O TX queue num %d rc: %d\n", 1909 qid, rc); 1910 return rc; 1911 } 1912 1913 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1914 &tx_ring->ena_com_io_sq, 1915 &tx_ring->ena_com_io_cq); 1916 if (rc) { 1917 netif_err(adapter, ifup, adapter->netdev, 1918 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1919 qid, rc); 1920 ena_com_destroy_io_queue(ena_dev, ena_qid); 1921 return rc; 1922 } 1923 1924 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1925 return rc; 1926 } 1927 1928 int ena_create_io_tx_queues_in_range(struct ena_adapter *adapter, 1929 int first_index, int count) 1930 { 1931 struct ena_com_dev *ena_dev = adapter->ena_dev; 1932 int rc, i; 1933 1934 for (i = first_index; i < first_index + count; i++) { 1935 rc = ena_create_io_tx_queue(adapter, i); 1936 if (rc) 1937 goto create_err; 1938 } 1939 1940 return 0; 1941 1942 create_err: 1943 while (i-- > first_index) 1944 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1945 1946 return rc; 1947 } 1948 1949 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1950 { 1951 struct ena_com_dev *ena_dev; 1952 struct ena_com_create_io_ctx ctx; 1953 struct ena_ring *rx_ring; 1954 u32 msix_vector; 1955 u16 ena_qid; 1956 int rc; 1957 1958 ena_dev = adapter->ena_dev; 1959 1960 rx_ring = &adapter->rx_ring[qid]; 1961 msix_vector = ENA_IO_IRQ_IDX(qid); 1962 ena_qid = ENA_IO_RXQ_IDX(qid); 1963 1964 memset(&ctx, 0x0, sizeof(ctx)); 1965 1966 ctx.qid = ena_qid; 1967 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1968 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1969 ctx.msix_vector = msix_vector; 1970 ctx.queue_size = rx_ring->ring_size; 1971 ctx.numa_node = rx_ring->numa_node; 1972 1973 rc = ena_com_create_io_queue(ena_dev, &ctx); 1974 if (rc) { 1975 netif_err(adapter, ifup, adapter->netdev, 1976 "Failed to create I/O RX queue num %d rc: %d\n", 1977 qid, rc); 1978 return rc; 1979 } 1980 1981 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1982 &rx_ring->ena_com_io_sq, 1983 &rx_ring->ena_com_io_cq); 1984 if (rc) { 1985 netif_err(adapter, ifup, adapter->netdev, 1986 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1987 qid, rc); 1988 goto err; 1989 } 1990 1991 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 1992 1993 return rc; 1994 err: 1995 ena_com_destroy_io_queue(ena_dev, ena_qid); 1996 return rc; 1997 } 1998 1999 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 2000 { 2001 struct ena_com_dev *ena_dev = adapter->ena_dev; 2002 int rc, i; 2003 2004 for (i = 0; i < adapter->num_io_queues; i++) { 2005 rc = ena_create_io_rx_queue(adapter, i); 2006 if (rc) 2007 goto create_err; 2008 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 2009 2010 ena_xdp_register_rxq_info(&adapter->rx_ring[i]); 2011 } 2012 2013 return 0; 2014 2015 create_err: 2016 while (i--) { 2017 ena_xdp_unregister_rxq_info(&adapter->rx_ring[i]); 2018 cancel_work_sync(&adapter->ena_napi[i].dim.work); 2019 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 2020 } 2021 2022 return rc; 2023 } 2024 2025 static void set_io_rings_size(struct ena_adapter *adapter, 2026 int new_tx_size, 2027 int new_rx_size) 2028 { 2029 int i; 2030 2031 for (i = 0; i < adapter->num_io_queues; i++) { 2032 adapter->tx_ring[i].ring_size = new_tx_size; 2033 adapter->rx_ring[i].ring_size = new_rx_size; 2034 } 2035 } 2036 2037 /* This function allows queue allocation to backoff when the system is 2038 * low on memory. If there is not enough memory to allocate io queues 2039 * the driver will try to allocate smaller queues. 2040 * 2041 * The backoff algorithm is as follows: 2042 * 1. Try to allocate TX and RX and if successful. 2043 * 1.1. return success 2044 * 2045 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 2046 * 2047 * 3. If TX or RX is smaller than 256 2048 * 3.1. return failure. 2049 * 4. else 2050 * 4.1. go back to 1. 2051 */ 2052 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 2053 { 2054 int rc, cur_rx_ring_size, cur_tx_ring_size; 2055 int new_rx_ring_size, new_tx_ring_size; 2056 2057 /* current queue sizes might be set to smaller than the requested 2058 * ones due to past queue allocation failures. 2059 */ 2060 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 2061 adapter->requested_rx_ring_size); 2062 2063 while (1) { 2064 if (ena_xdp_present(adapter)) { 2065 rc = ena_setup_and_create_all_xdp_queues(adapter); 2066 2067 if (rc) 2068 goto err_setup_tx; 2069 } 2070 rc = ena_setup_tx_resources_in_range(adapter, 2071 0, 2072 adapter->num_io_queues); 2073 if (rc) 2074 goto err_setup_tx; 2075 2076 rc = ena_create_io_tx_queues_in_range(adapter, 2077 0, 2078 adapter->num_io_queues); 2079 if (rc) 2080 goto err_create_tx_queues; 2081 2082 rc = ena_setup_all_rx_resources(adapter); 2083 if (rc) 2084 goto err_setup_rx; 2085 2086 rc = ena_create_all_io_rx_queues(adapter); 2087 if (rc) 2088 goto err_create_rx_queues; 2089 2090 return 0; 2091 2092 err_create_rx_queues: 2093 ena_free_all_io_rx_resources(adapter); 2094 err_setup_rx: 2095 ena_destroy_all_tx_queues(adapter); 2096 err_create_tx_queues: 2097 ena_free_all_io_tx_resources(adapter); 2098 err_setup_tx: 2099 if (rc != -ENOMEM) { 2100 netif_err(adapter, ifup, adapter->netdev, 2101 "Queue creation failed with error code %d\n", 2102 rc); 2103 return rc; 2104 } 2105 2106 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 2107 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 2108 2109 netif_err(adapter, ifup, adapter->netdev, 2110 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 2111 cur_tx_ring_size, cur_rx_ring_size); 2112 2113 new_tx_ring_size = cur_tx_ring_size; 2114 new_rx_ring_size = cur_rx_ring_size; 2115 2116 /* Decrease the size of the larger queue, or 2117 * decrease both if they are the same size. 2118 */ 2119 if (cur_rx_ring_size <= cur_tx_ring_size) 2120 new_tx_ring_size = cur_tx_ring_size / 2; 2121 if (cur_rx_ring_size >= cur_tx_ring_size) 2122 new_rx_ring_size = cur_rx_ring_size / 2; 2123 2124 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 2125 new_rx_ring_size < ENA_MIN_RING_SIZE) { 2126 netif_err(adapter, ifup, adapter->netdev, 2127 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 2128 ENA_MIN_RING_SIZE); 2129 return rc; 2130 } 2131 2132 netif_err(adapter, ifup, adapter->netdev, 2133 "Retrying queue creation with sizes TX=%d, RX=%d\n", 2134 new_tx_ring_size, 2135 new_rx_ring_size); 2136 2137 set_io_rings_size(adapter, new_tx_ring_size, 2138 new_rx_ring_size); 2139 } 2140 } 2141 2142 int ena_up(struct ena_adapter *adapter) 2143 { 2144 int io_queue_count, rc, i; 2145 2146 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 2147 2148 io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2149 ena_setup_io_intr(adapter); 2150 2151 /* napi poll functions should be initialized before running 2152 * request_irq(), to handle a rare condition where there is a pending 2153 * interrupt, causing the ISR to fire immediately while the poll 2154 * function wasn't set yet, causing a null dereference 2155 */ 2156 ena_init_napi_in_range(adapter, 0, io_queue_count); 2157 2158 /* Enabling DIM needs to happen before enabling IRQs since DIM 2159 * is run from napi routine 2160 */ 2161 if (ena_com_interrupt_moderation_supported(adapter->ena_dev)) 2162 ena_com_enable_adaptive_moderation(adapter->ena_dev); 2163 2164 rc = ena_request_io_irq(adapter); 2165 if (rc) 2166 goto err_req_irq; 2167 2168 rc = create_queues_with_size_backoff(adapter); 2169 if (rc) 2170 goto err_create_queues_with_backoff; 2171 2172 rc = ena_up_complete(adapter); 2173 if (rc) 2174 goto err_up; 2175 2176 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2177 netif_carrier_on(adapter->netdev); 2178 2179 ena_increase_stat(&adapter->dev_stats.interface_up, 1, 2180 &adapter->syncp); 2181 2182 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2183 2184 /* Enable completion queues interrupt */ 2185 for (i = 0; i < adapter->num_io_queues; i++) 2186 ena_unmask_interrupt(&adapter->tx_ring[i], 2187 &adapter->rx_ring[i]); 2188 2189 /* schedule napi in case we had pending packets 2190 * from the last time we disable napi 2191 */ 2192 for (i = 0; i < io_queue_count; i++) 2193 napi_schedule(&adapter->ena_napi[i].napi); 2194 2195 return rc; 2196 2197 err_up: 2198 ena_destroy_all_tx_queues(adapter); 2199 ena_free_all_io_tx_resources(adapter); 2200 ena_destroy_all_rx_queues(adapter); 2201 ena_free_all_io_rx_resources(adapter); 2202 err_create_queues_with_backoff: 2203 ena_free_io_irq(adapter); 2204 err_req_irq: 2205 ena_del_napi_in_range(adapter, 0, io_queue_count); 2206 2207 return rc; 2208 } 2209 2210 void ena_down(struct ena_adapter *adapter) 2211 { 2212 int io_queue_count = adapter->num_io_queues + adapter->xdp_num_queues; 2213 2214 netif_dbg(adapter, ifdown, adapter->netdev, "%s\n", __func__); 2215 2216 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2217 2218 ena_increase_stat(&adapter->dev_stats.interface_down, 1, 2219 &adapter->syncp); 2220 2221 netif_carrier_off(adapter->netdev); 2222 netif_tx_disable(adapter->netdev); 2223 2224 /* After this point the napi handler won't enable the tx queue */ 2225 ena_napi_disable_in_range(adapter, 0, io_queue_count); 2226 2227 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 2228 int rc; 2229 2230 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2231 if (rc) 2232 netif_err(adapter, ifdown, adapter->netdev, 2233 "Device reset failed\n"); 2234 /* stop submitting admin commands on a device that was reset */ 2235 ena_com_set_admin_running_state(adapter->ena_dev, false); 2236 } 2237 2238 ena_destroy_all_io_queues(adapter); 2239 2240 ena_disable_io_intr_sync(adapter); 2241 ena_free_io_irq(adapter); 2242 ena_del_napi_in_range(adapter, 0, io_queue_count); 2243 2244 ena_free_all_tx_bufs(adapter); 2245 ena_free_all_rx_bufs(adapter); 2246 ena_free_all_io_tx_resources(adapter); 2247 ena_free_all_io_rx_resources(adapter); 2248 } 2249 2250 /* ena_open - Called when a network interface is made active 2251 * @netdev: network interface device structure 2252 * 2253 * Returns 0 on success, negative value on failure 2254 * 2255 * The open entry point is called when a network interface is made 2256 * active by the system (IFF_UP). At this point all resources needed 2257 * for transmit and receive operations are allocated, the interrupt 2258 * handler is registered with the OS, the watchdog timer is started, 2259 * and the stack is notified that the interface is ready. 2260 */ 2261 static int ena_open(struct net_device *netdev) 2262 { 2263 struct ena_adapter *adapter = netdev_priv(netdev); 2264 int rc; 2265 2266 /* Notify the stack of the actual queue counts. */ 2267 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 2268 if (rc) { 2269 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 2270 return rc; 2271 } 2272 2273 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 2274 if (rc) { 2275 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2276 return rc; 2277 } 2278 2279 rc = ena_up(adapter); 2280 if (rc) 2281 return rc; 2282 2283 return rc; 2284 } 2285 2286 /* ena_close - Disables a network interface 2287 * @netdev: network interface device structure 2288 * 2289 * Returns 0, this is not allowed to fail 2290 * 2291 * The close entry point is called when an interface is de-activated 2292 * by the OS. The hardware is still under the drivers control, but 2293 * needs to be disabled. A global MAC reset is issued to stop the 2294 * hardware, and all transmit and receive resources are freed. 2295 */ 2296 static int ena_close(struct net_device *netdev) 2297 { 2298 struct ena_adapter *adapter = netdev_priv(netdev); 2299 2300 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2301 2302 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2303 return 0; 2304 2305 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2306 ena_down(adapter); 2307 2308 /* Check for device status and issue reset if needed*/ 2309 check_for_admin_com_state(adapter); 2310 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2311 netif_err(adapter, ifdown, adapter->netdev, 2312 "Destroy failure, restarting device\n"); 2313 ena_dump_stats_to_dmesg(adapter); 2314 /* rtnl lock already obtained in dev_ioctl() layer */ 2315 ena_destroy_device(adapter, false); 2316 ena_restore_device(adapter); 2317 } 2318 2319 return 0; 2320 } 2321 2322 int ena_update_queue_params(struct ena_adapter *adapter, 2323 u32 new_tx_size, 2324 u32 new_rx_size, 2325 u32 new_llq_header_len) 2326 { 2327 bool dev_was_up, large_llq_changed = false; 2328 int rc = 0; 2329 2330 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2331 ena_close(adapter->netdev); 2332 adapter->requested_tx_ring_size = new_tx_size; 2333 adapter->requested_rx_ring_size = new_rx_size; 2334 ena_init_io_rings(adapter, 2335 0, 2336 adapter->xdp_num_queues + 2337 adapter->num_io_queues); 2338 2339 large_llq_changed = adapter->ena_dev->tx_mem_queue_type == 2340 ENA_ADMIN_PLACEMENT_POLICY_DEV; 2341 large_llq_changed &= 2342 new_llq_header_len != adapter->ena_dev->tx_max_header_size; 2343 2344 /* a check that the configuration is valid is done by caller */ 2345 if (large_llq_changed) { 2346 adapter->large_llq_header_enabled = !adapter->large_llq_header_enabled; 2347 2348 ena_destroy_device(adapter, false); 2349 rc = ena_restore_device(adapter); 2350 } 2351 2352 return dev_was_up && !rc ? ena_up(adapter) : rc; 2353 } 2354 2355 int ena_set_rx_copybreak(struct ena_adapter *adapter, u32 rx_copybreak) 2356 { 2357 struct ena_ring *rx_ring; 2358 int i; 2359 2360 if (rx_copybreak > min_t(u16, adapter->netdev->mtu, ENA_PAGE_SIZE)) 2361 return -EINVAL; 2362 2363 adapter->rx_copybreak = rx_copybreak; 2364 2365 for (i = 0; i < adapter->num_io_queues; i++) { 2366 rx_ring = &adapter->rx_ring[i]; 2367 rx_ring->rx_copybreak = rx_copybreak; 2368 } 2369 2370 return 0; 2371 } 2372 2373 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2374 { 2375 struct ena_com_dev *ena_dev = adapter->ena_dev; 2376 int prev_channel_count; 2377 bool dev_was_up; 2378 2379 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2380 ena_close(adapter->netdev); 2381 prev_channel_count = adapter->num_io_queues; 2382 adapter->num_io_queues = new_channel_count; 2383 if (ena_xdp_present(adapter) && 2384 ena_xdp_allowed(adapter) == ENA_XDP_ALLOWED) { 2385 adapter->xdp_first_ring = new_channel_count; 2386 adapter->xdp_num_queues = new_channel_count; 2387 if (prev_channel_count > new_channel_count) 2388 ena_xdp_exchange_program_rx_in_range(adapter, 2389 NULL, 2390 new_channel_count, 2391 prev_channel_count); 2392 else 2393 ena_xdp_exchange_program_rx_in_range(adapter, 2394 adapter->xdp_bpf_prog, 2395 prev_channel_count, 2396 new_channel_count); 2397 } 2398 2399 /* We need to destroy the rss table so that the indirection 2400 * table will be reinitialized by ena_up() 2401 */ 2402 ena_com_rss_destroy(ena_dev); 2403 ena_init_io_rings(adapter, 2404 0, 2405 adapter->xdp_num_queues + 2406 adapter->num_io_queues); 2407 return dev_was_up ? ena_open(adapter->netdev) : 0; 2408 } 2409 2410 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, 2411 struct sk_buff *skb, 2412 bool disable_meta_caching) 2413 { 2414 u32 mss = skb_shinfo(skb)->gso_size; 2415 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2416 u8 l4_protocol = 0; 2417 2418 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2419 ena_tx_ctx->l4_csum_enable = 1; 2420 if (mss) { 2421 ena_tx_ctx->tso_enable = 1; 2422 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2423 ena_tx_ctx->l4_csum_partial = 0; 2424 } else { 2425 ena_tx_ctx->tso_enable = 0; 2426 ena_meta->l4_hdr_len = 0; 2427 ena_tx_ctx->l4_csum_partial = 1; 2428 } 2429 2430 switch (ip_hdr(skb)->version) { 2431 case IPVERSION: 2432 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2433 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2434 ena_tx_ctx->df = 1; 2435 if (mss) 2436 ena_tx_ctx->l3_csum_enable = 1; 2437 l4_protocol = ip_hdr(skb)->protocol; 2438 break; 2439 case 6: 2440 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2441 l4_protocol = ipv6_hdr(skb)->nexthdr; 2442 break; 2443 default: 2444 break; 2445 } 2446 2447 if (l4_protocol == IPPROTO_TCP) 2448 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2449 else 2450 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2451 2452 ena_meta->mss = mss; 2453 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2454 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2455 ena_tx_ctx->meta_valid = 1; 2456 } else if (disable_meta_caching) { 2457 memset(ena_meta, 0, sizeof(*ena_meta)); 2458 ena_tx_ctx->meta_valid = 1; 2459 } else { 2460 ena_tx_ctx->meta_valid = 0; 2461 } 2462 } 2463 2464 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2465 struct sk_buff *skb) 2466 { 2467 int num_frags, header_len, rc; 2468 2469 num_frags = skb_shinfo(skb)->nr_frags; 2470 header_len = skb_headlen(skb); 2471 2472 if (num_frags < tx_ring->sgl_size) 2473 return 0; 2474 2475 if ((num_frags == tx_ring->sgl_size) && 2476 (header_len < tx_ring->tx_max_header_size)) 2477 return 0; 2478 2479 ena_increase_stat(&tx_ring->tx_stats.linearize, 1, &tx_ring->syncp); 2480 2481 rc = skb_linearize(skb); 2482 if (unlikely(rc)) { 2483 ena_increase_stat(&tx_ring->tx_stats.linearize_failed, 1, 2484 &tx_ring->syncp); 2485 } 2486 2487 return rc; 2488 } 2489 2490 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2491 struct ena_tx_buffer *tx_info, 2492 struct sk_buff *skb, 2493 void **push_hdr, 2494 u16 *header_len) 2495 { 2496 struct ena_adapter *adapter = tx_ring->adapter; 2497 struct ena_com_buf *ena_buf; 2498 dma_addr_t dma; 2499 u32 skb_head_len, frag_len, last_frag; 2500 u16 push_len = 0; 2501 u16 delta = 0; 2502 int i = 0; 2503 2504 skb_head_len = skb_headlen(skb); 2505 tx_info->skb = skb; 2506 ena_buf = tx_info->bufs; 2507 2508 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2509 /* When the device is LLQ mode, the driver will copy 2510 * the header into the device memory space. 2511 * the ena_com layer assume the header is in a linear 2512 * memory space. 2513 * This assumption might be wrong since part of the header 2514 * can be in the fragmented buffers. 2515 * Use skb_header_pointer to make sure the header is in a 2516 * linear memory space. 2517 */ 2518 2519 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2520 *push_hdr = skb_header_pointer(skb, 0, push_len, 2521 tx_ring->push_buf_intermediate_buf); 2522 *header_len = push_len; 2523 if (unlikely(skb->data != *push_hdr)) { 2524 ena_increase_stat(&tx_ring->tx_stats.llq_buffer_copy, 1, 2525 &tx_ring->syncp); 2526 2527 delta = push_len - skb_head_len; 2528 } 2529 } else { 2530 *push_hdr = NULL; 2531 *header_len = min_t(u32, skb_head_len, 2532 tx_ring->tx_max_header_size); 2533 } 2534 2535 netif_dbg(adapter, tx_queued, adapter->netdev, 2536 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2537 *push_hdr, push_len); 2538 2539 if (skb_head_len > push_len) { 2540 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2541 skb_head_len - push_len, DMA_TO_DEVICE); 2542 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2543 goto error_report_dma_error; 2544 2545 ena_buf->paddr = dma; 2546 ena_buf->len = skb_head_len - push_len; 2547 2548 ena_buf++; 2549 tx_info->num_of_bufs++; 2550 tx_info->map_linear_data = 1; 2551 } else { 2552 tx_info->map_linear_data = 0; 2553 } 2554 2555 last_frag = skb_shinfo(skb)->nr_frags; 2556 2557 for (i = 0; i < last_frag; i++) { 2558 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2559 2560 frag_len = skb_frag_size(frag); 2561 2562 if (unlikely(delta >= frag_len)) { 2563 delta -= frag_len; 2564 continue; 2565 } 2566 2567 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2568 frag_len - delta, DMA_TO_DEVICE); 2569 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2570 goto error_report_dma_error; 2571 2572 ena_buf->paddr = dma; 2573 ena_buf->len = frag_len - delta; 2574 ena_buf++; 2575 tx_info->num_of_bufs++; 2576 delta = 0; 2577 } 2578 2579 return 0; 2580 2581 error_report_dma_error: 2582 ena_increase_stat(&tx_ring->tx_stats.dma_mapping_err, 1, 2583 &tx_ring->syncp); 2584 netif_warn(adapter, tx_queued, adapter->netdev, "Failed to map skb\n"); 2585 2586 tx_info->skb = NULL; 2587 2588 tx_info->num_of_bufs += i; 2589 ena_unmap_tx_buff(tx_ring, tx_info); 2590 2591 return -EINVAL; 2592 } 2593 2594 /* Called with netif_tx_lock. */ 2595 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2596 { 2597 struct ena_adapter *adapter = netdev_priv(dev); 2598 struct ena_tx_buffer *tx_info; 2599 struct ena_com_tx_ctx ena_tx_ctx; 2600 struct ena_ring *tx_ring; 2601 struct netdev_queue *txq; 2602 void *push_hdr; 2603 u16 next_to_use, req_id, header_len; 2604 int qid, rc; 2605 2606 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2607 /* Determine which tx ring we will be placed on */ 2608 qid = skb_get_queue_mapping(skb); 2609 tx_ring = &adapter->tx_ring[qid]; 2610 txq = netdev_get_tx_queue(dev, qid); 2611 2612 rc = ena_check_and_linearize_skb(tx_ring, skb); 2613 if (unlikely(rc)) 2614 goto error_drop_packet; 2615 2616 next_to_use = tx_ring->next_to_use; 2617 req_id = tx_ring->free_ids[next_to_use]; 2618 tx_info = &tx_ring->tx_buffer_info[req_id]; 2619 tx_info->num_of_bufs = 0; 2620 2621 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2622 2623 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2624 if (unlikely(rc)) 2625 goto error_drop_packet; 2626 2627 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2628 ena_tx_ctx.ena_bufs = tx_info->bufs; 2629 ena_tx_ctx.push_header = push_hdr; 2630 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2631 ena_tx_ctx.req_id = req_id; 2632 ena_tx_ctx.header_len = header_len; 2633 2634 /* set flags and meta data */ 2635 ena_tx_csum(&ena_tx_ctx, skb, tx_ring->disable_meta_caching); 2636 2637 rc = ena_xmit_common(adapter, 2638 tx_ring, 2639 tx_info, 2640 &ena_tx_ctx, 2641 next_to_use, 2642 skb->len); 2643 if (rc) 2644 goto error_unmap_dma; 2645 2646 netdev_tx_sent_queue(txq, skb->len); 2647 2648 /* stop the queue when no more space available, the packet can have up 2649 * to sgl_size + 2. one for the meta descriptor and one for header 2650 * (if the header is larger than tx_max_header_size). 2651 */ 2652 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2653 tx_ring->sgl_size + 2))) { 2654 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2655 __func__, qid); 2656 2657 netif_tx_stop_queue(txq); 2658 ena_increase_stat(&tx_ring->tx_stats.queue_stop, 1, 2659 &tx_ring->syncp); 2660 2661 /* There is a rare condition where this function decide to 2662 * stop the queue but meanwhile clean_tx_irq updates 2663 * next_to_completion and terminates. 2664 * The queue will remain stopped forever. 2665 * To solve this issue add a mb() to make sure that 2666 * netif_tx_stop_queue() write is vissible before checking if 2667 * there is additional space in the queue. 2668 */ 2669 smp_mb(); 2670 2671 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2672 ENA_TX_WAKEUP_THRESH)) { 2673 netif_tx_wake_queue(txq); 2674 ena_increase_stat(&tx_ring->tx_stats.queue_wakeup, 1, 2675 &tx_ring->syncp); 2676 } 2677 } 2678 2679 skb_tx_timestamp(skb); 2680 2681 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) 2682 /* trigger the dma engine. ena_ring_tx_doorbell() 2683 * calls a memory barrier inside it. 2684 */ 2685 ena_ring_tx_doorbell(tx_ring); 2686 2687 return NETDEV_TX_OK; 2688 2689 error_unmap_dma: 2690 ena_unmap_tx_buff(tx_ring, tx_info); 2691 tx_info->skb = NULL; 2692 2693 error_drop_packet: 2694 dev_kfree_skb(skb); 2695 return NETDEV_TX_OK; 2696 } 2697 2698 static void ena_config_host_info(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 2699 { 2700 struct device *dev = &pdev->dev; 2701 struct ena_admin_host_info *host_info; 2702 ssize_t ret; 2703 int rc; 2704 2705 /* Allocate only the host info */ 2706 rc = ena_com_allocate_host_info(ena_dev); 2707 if (rc) { 2708 dev_err(dev, "Cannot allocate host info\n"); 2709 return; 2710 } 2711 2712 host_info = ena_dev->host_attr.host_info; 2713 2714 host_info->bdf = pci_dev_id(pdev); 2715 host_info->os_type = ENA_ADMIN_OS_LINUX; 2716 host_info->kernel_ver = LINUX_VERSION_CODE; 2717 ret = strscpy(host_info->kernel_ver_str, utsname()->version, 2718 sizeof(host_info->kernel_ver_str)); 2719 if (ret < 0) 2720 dev_dbg(dev, 2721 "kernel version string will be truncated, status = %zd\n", ret); 2722 2723 host_info->os_dist = 0; 2724 ret = strscpy(host_info->os_dist_str, utsname()->release, 2725 sizeof(host_info->os_dist_str)); 2726 if (ret < 0) 2727 dev_dbg(dev, 2728 "OS distribution string will be truncated, status = %zd\n", ret); 2729 2730 host_info->driver_version = 2731 (DRV_MODULE_GEN_MAJOR) | 2732 (DRV_MODULE_GEN_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2733 (DRV_MODULE_GEN_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2734 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2735 host_info->num_cpus = num_online_cpus(); 2736 2737 host_info->driver_supported_features = 2738 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK | 2739 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK | 2740 ENA_ADMIN_HOST_INFO_RX_BUF_MIRRORING_MASK | 2741 ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK | 2742 ENA_ADMIN_HOST_INFO_RX_PAGE_REUSE_MASK; 2743 2744 rc = ena_com_set_host_attributes(ena_dev); 2745 if (rc) { 2746 if (rc == -EOPNOTSUPP) 2747 dev_warn(dev, "Cannot set host attributes\n"); 2748 else 2749 dev_err(dev, "Cannot set host attributes\n"); 2750 2751 goto err; 2752 } 2753 2754 return; 2755 2756 err: 2757 ena_com_delete_host_info(ena_dev); 2758 } 2759 2760 static void ena_config_debug_area(struct ena_adapter *adapter) 2761 { 2762 u32 debug_area_size; 2763 int rc, ss_count; 2764 2765 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2766 if (ss_count <= 0) { 2767 netif_err(adapter, drv, adapter->netdev, 2768 "SS count is negative\n"); 2769 return; 2770 } 2771 2772 /* allocate 32 bytes for each string and 64bit for the value */ 2773 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2774 2775 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2776 if (rc) { 2777 netif_err(adapter, drv, adapter->netdev, 2778 "Cannot allocate debug area\n"); 2779 return; 2780 } 2781 2782 rc = ena_com_set_host_attributes(adapter->ena_dev); 2783 if (rc) { 2784 if (rc == -EOPNOTSUPP) 2785 netif_warn(adapter, drv, adapter->netdev, "Cannot set host attributes\n"); 2786 else 2787 netif_err(adapter, drv, adapter->netdev, 2788 "Cannot set host attributes\n"); 2789 goto err; 2790 } 2791 2792 return; 2793 err: 2794 ena_com_delete_debug_area(adapter->ena_dev); 2795 } 2796 2797 static void ena_get_stats64(struct net_device *netdev, 2798 struct rtnl_link_stats64 *stats) 2799 { 2800 struct ena_adapter *adapter = netdev_priv(netdev); 2801 struct ena_ring *rx_ring, *tx_ring; 2802 u64 total_xdp_rx_drops = 0; 2803 unsigned int start; 2804 u64 rx_drops; 2805 u64 tx_drops; 2806 int i; 2807 2808 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2809 return; 2810 2811 for (i = 0; i < adapter->num_io_queues + adapter->xdp_num_queues; i++) { 2812 u64 bytes, packets, xdp_rx_drops; 2813 2814 tx_ring = &adapter->tx_ring[i]; 2815 2816 do { 2817 start = u64_stats_fetch_begin(&tx_ring->syncp); 2818 packets = tx_ring->tx_stats.cnt; 2819 bytes = tx_ring->tx_stats.bytes; 2820 } while (u64_stats_fetch_retry(&tx_ring->syncp, start)); 2821 2822 stats->tx_packets += packets; 2823 stats->tx_bytes += bytes; 2824 2825 /* In XDP there isn't an RX queue counterpart */ 2826 if (ENA_IS_XDP_INDEX(adapter, i)) 2827 continue; 2828 2829 rx_ring = &adapter->rx_ring[i]; 2830 2831 do { 2832 start = u64_stats_fetch_begin(&rx_ring->syncp); 2833 packets = rx_ring->rx_stats.cnt; 2834 bytes = rx_ring->rx_stats.bytes; 2835 xdp_rx_drops = rx_ring->rx_stats.xdp_drop; 2836 } while (u64_stats_fetch_retry(&rx_ring->syncp, start)); 2837 2838 stats->rx_packets += packets; 2839 stats->rx_bytes += bytes; 2840 total_xdp_rx_drops += xdp_rx_drops; 2841 } 2842 2843 do { 2844 start = u64_stats_fetch_begin(&adapter->syncp); 2845 rx_drops = adapter->dev_stats.rx_drops; 2846 tx_drops = adapter->dev_stats.tx_drops; 2847 } while (u64_stats_fetch_retry(&adapter->syncp, start)); 2848 2849 stats->rx_dropped = rx_drops + total_xdp_rx_drops; 2850 stats->tx_dropped = tx_drops; 2851 2852 stats->multicast = 0; 2853 stats->collisions = 0; 2854 2855 stats->rx_length_errors = 0; 2856 stats->rx_crc_errors = 0; 2857 stats->rx_frame_errors = 0; 2858 stats->rx_fifo_errors = 0; 2859 stats->rx_missed_errors = 0; 2860 stats->tx_window_errors = 0; 2861 2862 stats->rx_errors = 0; 2863 stats->tx_errors = 0; 2864 } 2865 2866 static const struct net_device_ops ena_netdev_ops = { 2867 .ndo_open = ena_open, 2868 .ndo_stop = ena_close, 2869 .ndo_start_xmit = ena_start_xmit, 2870 .ndo_get_stats64 = ena_get_stats64, 2871 .ndo_tx_timeout = ena_tx_timeout, 2872 .ndo_change_mtu = ena_change_mtu, 2873 .ndo_validate_addr = eth_validate_addr, 2874 .ndo_bpf = ena_xdp, 2875 .ndo_xdp_xmit = ena_xdp_xmit, 2876 }; 2877 2878 static int ena_calc_io_queue_size(struct ena_adapter *adapter, 2879 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2880 { 2881 struct ena_admin_feature_llq_desc *llq = &get_feat_ctx->llq; 2882 struct ena_com_dev *ena_dev = adapter->ena_dev; 2883 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 2884 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 2885 u32 max_tx_queue_size; 2886 u32 max_rx_queue_size; 2887 2888 /* If this function is called after driver load, the ring sizes have already 2889 * been configured. Take it into account when recalculating ring size. 2890 */ 2891 if (adapter->tx_ring->ring_size) 2892 tx_queue_size = adapter->tx_ring->ring_size; 2893 2894 if (adapter->rx_ring->ring_size) 2895 rx_queue_size = adapter->rx_ring->ring_size; 2896 2897 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 2898 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 2899 &get_feat_ctx->max_queue_ext.max_queue_ext; 2900 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 2901 max_queue_ext->max_rx_sq_depth); 2902 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 2903 2904 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2905 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2906 llq->max_llq_depth); 2907 else 2908 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2909 max_queue_ext->max_tx_sq_depth); 2910 2911 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2912 max_queue_ext->max_per_packet_tx_descs); 2913 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2914 max_queue_ext->max_per_packet_rx_descs); 2915 } else { 2916 struct ena_admin_queue_feature_desc *max_queues = 2917 &get_feat_ctx->max_queues; 2918 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 2919 max_queues->max_sq_depth); 2920 max_tx_queue_size = max_queues->max_cq_depth; 2921 2922 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 2923 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2924 llq->max_llq_depth); 2925 else 2926 max_tx_queue_size = min_t(u32, max_tx_queue_size, 2927 max_queues->max_sq_depth); 2928 2929 adapter->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2930 max_queues->max_packet_tx_descs); 2931 adapter->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 2932 max_queues->max_packet_rx_descs); 2933 } 2934 2935 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 2936 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 2937 2938 if (max_tx_queue_size < ENA_MIN_RING_SIZE) { 2939 netdev_err(adapter->netdev, "Device max TX queue size: %d < minimum: %d\n", 2940 max_tx_queue_size, ENA_MIN_RING_SIZE); 2941 return -EINVAL; 2942 } 2943 2944 if (max_rx_queue_size < ENA_MIN_RING_SIZE) { 2945 netdev_err(adapter->netdev, "Device max RX queue size: %d < minimum: %d\n", 2946 max_rx_queue_size, ENA_MIN_RING_SIZE); 2947 return -EINVAL; 2948 } 2949 2950 /* When forcing large headers, we multiply the entry size by 2, and therefore divide 2951 * the queue size by 2, leaving the amount of memory used by the queues unchanged. 2952 */ 2953 if (adapter->large_llq_header_enabled) { 2954 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 2955 ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2956 max_tx_queue_size /= 2; 2957 dev_info(&adapter->pdev->dev, 2958 "Forcing large headers and decreasing maximum TX queue size to %d\n", 2959 max_tx_queue_size); 2960 } else { 2961 dev_err(&adapter->pdev->dev, 2962 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); 2963 2964 adapter->large_llq_header_enabled = false; 2965 } 2966 } 2967 2968 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 2969 max_tx_queue_size); 2970 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 2971 max_rx_queue_size); 2972 2973 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 2974 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 2975 2976 adapter->max_tx_ring_size = max_tx_queue_size; 2977 adapter->max_rx_ring_size = max_rx_queue_size; 2978 adapter->requested_tx_ring_size = tx_queue_size; 2979 adapter->requested_rx_ring_size = rx_queue_size; 2980 2981 return 0; 2982 } 2983 2984 static int ena_device_validate_params(struct ena_adapter *adapter, 2985 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2986 { 2987 struct net_device *netdev = adapter->netdev; 2988 int rc; 2989 2990 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 2991 adapter->mac_addr); 2992 if (!rc) { 2993 netif_err(adapter, drv, netdev, 2994 "Error, mac address are different\n"); 2995 return -EINVAL; 2996 } 2997 2998 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 2999 netif_err(adapter, drv, netdev, 3000 "Error, device max mtu is smaller than netdev MTU\n"); 3001 return -EINVAL; 3002 } 3003 3004 return 0; 3005 } 3006 3007 static void set_default_llq_configurations(struct ena_adapter *adapter, 3008 struct ena_llq_configurations *llq_config, 3009 struct ena_admin_feature_llq_desc *llq) 3010 { 3011 struct ena_com_dev *ena_dev = adapter->ena_dev; 3012 3013 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3014 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3015 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3016 3017 adapter->large_llq_header_supported = 3018 !!(ena_dev->supported_features & BIT(ENA_ADMIN_LLQ)); 3019 adapter->large_llq_header_supported &= 3020 !!(llq->entry_size_ctrl_supported & 3021 ENA_ADMIN_LIST_ENTRY_SIZE_256B); 3022 3023 if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) && 3024 adapter->large_llq_header_enabled) { 3025 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; 3026 llq_config->llq_ring_entry_size_value = 256; 3027 } else { 3028 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3029 llq_config->llq_ring_entry_size_value = 128; 3030 } 3031 } 3032 3033 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3034 struct ena_com_dev *ena_dev, 3035 struct ena_admin_feature_llq_desc *llq, 3036 struct ena_llq_configurations *llq_default_configurations) 3037 { 3038 int rc; 3039 u32 llq_feature_mask; 3040 3041 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3042 if (!(ena_dev->supported_features & llq_feature_mask)) { 3043 dev_warn(&pdev->dev, 3044 "LLQ is not supported Fallback to host mode policy.\n"); 3045 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3046 return 0; 3047 } 3048 3049 if (!ena_dev->mem_bar) { 3050 netdev_err(ena_dev->net_device, 3051 "LLQ is advertised as supported but device doesn't expose mem bar\n"); 3052 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3053 return 0; 3054 } 3055 3056 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3057 if (unlikely(rc)) { 3058 dev_err(&pdev->dev, 3059 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3060 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3061 } 3062 3063 return 0; 3064 } 3065 3066 static int ena_map_llq_mem_bar(struct pci_dev *pdev, struct ena_com_dev *ena_dev, 3067 int bars) 3068 { 3069 bool has_mem_bar = !!(bars & BIT(ENA_MEM_BAR)); 3070 3071 if (!has_mem_bar) 3072 return 0; 3073 3074 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3075 pci_resource_start(pdev, ENA_MEM_BAR), 3076 pci_resource_len(pdev, ENA_MEM_BAR)); 3077 3078 if (!ena_dev->mem_bar) 3079 return -EFAULT; 3080 3081 return 0; 3082 } 3083 3084 static int ena_device_init(struct ena_adapter *adapter, struct pci_dev *pdev, 3085 struct ena_com_dev_get_features_ctx *get_feat_ctx, 3086 bool *wd_state) 3087 { 3088 struct ena_com_dev *ena_dev = adapter->ena_dev; 3089 struct net_device *netdev = adapter->netdev; 3090 struct ena_llq_configurations llq_config; 3091 struct device *dev = &pdev->dev; 3092 bool readless_supported; 3093 u32 aenq_groups; 3094 int dma_width; 3095 int rc; 3096 3097 rc = ena_com_mmio_reg_read_request_init(ena_dev); 3098 if (rc) { 3099 dev_err(dev, "Failed to init mmio read less\n"); 3100 return rc; 3101 } 3102 3103 /* The PCIe configuration space revision id indicate if mmio reg 3104 * read is disabled 3105 */ 3106 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 3107 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 3108 3109 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 3110 if (rc) { 3111 dev_err(dev, "Can not reset device\n"); 3112 goto err_mmio_read_less; 3113 } 3114 3115 rc = ena_com_validate_version(ena_dev); 3116 if (rc) { 3117 dev_err(dev, "Device version is too low\n"); 3118 goto err_mmio_read_less; 3119 } 3120 3121 dma_width = ena_com_get_dma_width(ena_dev); 3122 if (dma_width < 0) { 3123 dev_err(dev, "Invalid dma width value %d", dma_width); 3124 rc = dma_width; 3125 goto err_mmio_read_less; 3126 } 3127 3128 rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(dma_width)); 3129 if (rc) { 3130 dev_err(dev, "dma_set_mask_and_coherent failed %d\n", rc); 3131 goto err_mmio_read_less; 3132 } 3133 3134 /* ENA admin level init */ 3135 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 3136 if (rc) { 3137 dev_err(dev, 3138 "Can not initialize ena admin queue with device\n"); 3139 goto err_mmio_read_less; 3140 } 3141 3142 /* To enable the msix interrupts the driver needs to know the number 3143 * of queues. So the driver uses polling mode to retrieve this 3144 * information 3145 */ 3146 ena_com_set_admin_polling_mode(ena_dev, true); 3147 3148 ena_config_host_info(ena_dev, pdev); 3149 3150 /* Get Device Attributes*/ 3151 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 3152 if (rc) { 3153 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 3154 goto err_admin_init; 3155 } 3156 3157 /* Try to turn all the available aenq groups */ 3158 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 3159 BIT(ENA_ADMIN_FATAL_ERROR) | 3160 BIT(ENA_ADMIN_WARNING) | 3161 BIT(ENA_ADMIN_NOTIFICATION) | 3162 BIT(ENA_ADMIN_KEEP_ALIVE); 3163 3164 aenq_groups &= get_feat_ctx->aenq.supported_groups; 3165 3166 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 3167 if (rc) { 3168 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 3169 goto err_admin_init; 3170 } 3171 3172 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 3173 3174 set_default_llq_configurations(adapter, &llq_config, &get_feat_ctx->llq); 3175 3176 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx->llq, 3177 &llq_config); 3178 if (rc) { 3179 netdev_err(netdev, "Cannot set queues placement policy rc= %d\n", rc); 3180 goto err_admin_init; 3181 } 3182 3183 rc = ena_calc_io_queue_size(adapter, get_feat_ctx); 3184 if (unlikely(rc)) 3185 goto err_admin_init; 3186 3187 return 0; 3188 3189 err_admin_init: 3190 ena_com_abort_admin_commands(ena_dev); 3191 ena_com_wait_for_abort_completion(ena_dev); 3192 ena_com_delete_host_info(ena_dev); 3193 ena_com_admin_destroy(ena_dev); 3194 err_mmio_read_less: 3195 ena_com_mmio_reg_read_request_destroy(ena_dev); 3196 3197 return rc; 3198 } 3199 3200 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 3201 { 3202 struct ena_com_dev *ena_dev = adapter->ena_dev; 3203 struct device *dev = &adapter->pdev->dev; 3204 int rc; 3205 3206 rc = ena_enable_msix(adapter); 3207 if (rc) { 3208 dev_err(dev, "Can not reserve msix vectors\n"); 3209 return rc; 3210 } 3211 3212 ena_setup_mgmnt_intr(adapter); 3213 3214 rc = ena_request_mgmnt_irq(adapter); 3215 if (rc) { 3216 dev_err(dev, "Can not setup management interrupts\n"); 3217 goto err_disable_msix; 3218 } 3219 3220 ena_com_set_admin_polling_mode(ena_dev, false); 3221 3222 ena_com_admin_aenq_enable(ena_dev); 3223 3224 return 0; 3225 3226 err_disable_msix: 3227 ena_disable_msix(adapter); 3228 3229 return rc; 3230 } 3231 3232 static int ena_destroy_device(struct ena_adapter *adapter, bool graceful) 3233 { 3234 struct net_device *netdev = adapter->netdev; 3235 struct ena_com_dev *ena_dev = adapter->ena_dev; 3236 bool dev_up; 3237 int rc = 0; 3238 3239 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 3240 return 0; 3241 3242 netif_carrier_off(netdev); 3243 3244 del_timer_sync(&adapter->timer_service); 3245 3246 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 3247 adapter->dev_up_before_reset = dev_up; 3248 if (!graceful) 3249 ena_com_set_admin_running_state(ena_dev, false); 3250 3251 if (dev_up) 3252 ena_down(adapter); 3253 3254 /* Stop the device from sending AENQ events (in case reset flag is set 3255 * and device is up, ena_down() already reset the device. 3256 */ 3257 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 3258 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 3259 3260 ena_free_mgmnt_irq(adapter); 3261 3262 ena_disable_msix(adapter); 3263 3264 ena_com_abort_admin_commands(ena_dev); 3265 3266 ena_com_wait_for_abort_completion(ena_dev); 3267 3268 ena_com_admin_destroy(ena_dev); 3269 3270 ena_com_mmio_reg_read_request_destroy(ena_dev); 3271 3272 /* return reset reason to default value */ 3273 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3274 3275 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3276 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3277 3278 return rc; 3279 } 3280 3281 static int ena_restore_device(struct ena_adapter *adapter) 3282 { 3283 struct ena_com_dev_get_features_ctx get_feat_ctx; 3284 struct ena_com_dev *ena_dev = adapter->ena_dev; 3285 struct pci_dev *pdev = adapter->pdev; 3286 struct ena_ring *txr; 3287 int rc, count, i; 3288 bool wd_state; 3289 3290 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3291 rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &wd_state); 3292 if (rc) { 3293 dev_err(&pdev->dev, "Can not initialize device\n"); 3294 goto err; 3295 } 3296 adapter->wd_state = wd_state; 3297 3298 count = adapter->xdp_num_queues + adapter->num_io_queues; 3299 for (i = 0 ; i < count; i++) { 3300 txr = &adapter->tx_ring[i]; 3301 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 3302 txr->tx_max_header_size = ena_dev->tx_max_header_size; 3303 } 3304 3305 rc = ena_device_validate_params(adapter, &get_feat_ctx); 3306 if (rc) { 3307 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 3308 goto err_device_destroy; 3309 } 3310 3311 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3312 if (rc) { 3313 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 3314 goto err_device_destroy; 3315 } 3316 /* If the interface was up before the reset bring it up */ 3317 if (adapter->dev_up_before_reset) { 3318 rc = ena_up(adapter); 3319 if (rc) { 3320 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 3321 goto err_disable_msix; 3322 } 3323 } 3324 3325 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3326 3327 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3328 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 3329 netif_carrier_on(adapter->netdev); 3330 3331 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3332 adapter->last_keep_alive_jiffies = jiffies; 3333 3334 return rc; 3335 err_disable_msix: 3336 ena_free_mgmnt_irq(adapter); 3337 ena_disable_msix(adapter); 3338 err_device_destroy: 3339 ena_com_abort_admin_commands(ena_dev); 3340 ena_com_wait_for_abort_completion(ena_dev); 3341 ena_com_admin_destroy(ena_dev); 3342 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 3343 ena_com_mmio_reg_read_request_destroy(ena_dev); 3344 err: 3345 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3346 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 3347 dev_err(&pdev->dev, 3348 "Reset attempt failed. Can not reset the device\n"); 3349 3350 return rc; 3351 } 3352 3353 static void ena_fw_reset_device(struct work_struct *work) 3354 { 3355 int rc = 0; 3356 3357 struct ena_adapter *adapter = 3358 container_of(work, struct ena_adapter, reset_task); 3359 3360 rtnl_lock(); 3361 3362 if (likely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3363 rc |= ena_destroy_device(adapter, false); 3364 rc |= ena_restore_device(adapter); 3365 adapter->dev_stats.reset_fail += !!rc; 3366 3367 dev_err(&adapter->pdev->dev, "Device reset completed successfully\n"); 3368 } 3369 3370 rtnl_unlock(); 3371 } 3372 3373 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 3374 struct ena_ring *rx_ring) 3375 { 3376 struct ena_napi *ena_napi = container_of(rx_ring->napi, struct ena_napi, napi); 3377 3378 if (likely(READ_ONCE(ena_napi->first_interrupt))) 3379 return 0; 3380 3381 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 3382 return 0; 3383 3384 rx_ring->no_interrupt_event_cnt++; 3385 3386 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 3387 netif_err(adapter, rx_err, adapter->netdev, 3388 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 3389 rx_ring->qid); 3390 3391 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3392 return -EIO; 3393 } 3394 3395 return 0; 3396 } 3397 3398 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 3399 struct ena_ring *tx_ring) 3400 { 3401 struct ena_napi *ena_napi = container_of(tx_ring->napi, struct ena_napi, napi); 3402 enum ena_regs_reset_reason_types reset_reason = ENA_REGS_RESET_MISS_TX_CMPL; 3403 unsigned int time_since_last_napi; 3404 unsigned int missing_tx_comp_to; 3405 bool is_tx_comp_time_expired; 3406 struct ena_tx_buffer *tx_buf; 3407 unsigned long last_jiffies; 3408 int napi_scheduled; 3409 u32 missed_tx = 0; 3410 int i, rc = 0; 3411 3412 missing_tx_comp_to = jiffies_to_msecs(adapter->missing_tx_completion_to); 3413 3414 for (i = 0; i < tx_ring->ring_size; i++) { 3415 tx_buf = &tx_ring->tx_buffer_info[i]; 3416 last_jiffies = tx_buf->last_jiffies; 3417 3418 if (last_jiffies == 0) 3419 /* no pending Tx at this location */ 3420 continue; 3421 3422 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3423 2 * adapter->missing_tx_completion_to); 3424 3425 if (unlikely(!READ_ONCE(ena_napi->first_interrupt) && is_tx_comp_time_expired)) { 3426 /* If after graceful period interrupt is still not 3427 * received, we schedule a reset 3428 */ 3429 netif_err(adapter, tx_err, adapter->netdev, 3430 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 3431 tx_ring->qid); 3432 ena_reset_device(adapter, ENA_REGS_RESET_MISS_INTERRUPT); 3433 return -EIO; 3434 } 3435 3436 is_tx_comp_time_expired = time_is_before_jiffies(last_jiffies + 3437 adapter->missing_tx_completion_to); 3438 3439 if (unlikely(is_tx_comp_time_expired)) { 3440 time_since_last_napi = 3441 jiffies_to_usecs(jiffies - tx_ring->tx_stats.last_napi_jiffies); 3442 napi_scheduled = !!(ena_napi->napi.state & NAPIF_STATE_SCHED); 3443 3444 if (missing_tx_comp_to < time_since_last_napi && napi_scheduled) { 3445 /* We suspect napi isn't called because the 3446 * bottom half is not run. Require a bigger 3447 * timeout for these cases 3448 */ 3449 if (!time_is_before_jiffies(last_jiffies + 3450 2 * adapter->missing_tx_completion_to)) 3451 continue; 3452 3453 reset_reason = ENA_REGS_RESET_SUSPECTED_POLL_STARVATION; 3454 } 3455 3456 missed_tx++; 3457 3458 if (tx_buf->print_once) 3459 continue; 3460 3461 netif_notice(adapter, tx_err, adapter->netdev, 3462 "TX hasn't completed, qid %d, index %d. %u usecs from last napi execution, napi scheduled: %d\n", 3463 tx_ring->qid, i, time_since_last_napi, napi_scheduled); 3464 3465 tx_buf->print_once = 1; 3466 } 3467 } 3468 3469 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 3470 netif_err(adapter, tx_err, adapter->netdev, 3471 "Lost TX completions are above the threshold (%d > %d). Completion transmission timeout: %u.\n", 3472 missed_tx, 3473 adapter->missing_tx_completion_threshold, 3474 missing_tx_comp_to); 3475 netif_err(adapter, tx_err, adapter->netdev, 3476 "Resetting the device\n"); 3477 3478 ena_reset_device(adapter, reset_reason); 3479 rc = -EIO; 3480 } 3481 3482 ena_increase_stat(&tx_ring->tx_stats.missed_tx, missed_tx, 3483 &tx_ring->syncp); 3484 3485 return rc; 3486 } 3487 3488 static void check_for_missing_completions(struct ena_adapter *adapter) 3489 { 3490 struct ena_ring *tx_ring; 3491 struct ena_ring *rx_ring; 3492 int qid, budget, rc; 3493 int io_queue_count; 3494 3495 io_queue_count = adapter->xdp_num_queues + adapter->num_io_queues; 3496 3497 /* Make sure the driver doesn't turn the device in other process */ 3498 smp_rmb(); 3499 3500 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3501 return; 3502 3503 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3504 return; 3505 3506 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 3507 return; 3508 3509 budget = min_t(u32, io_queue_count, ENA_MONITORED_TX_QUEUES); 3510 3511 qid = adapter->last_monitored_tx_qid; 3512 3513 while (budget) { 3514 qid = (qid + 1) % io_queue_count; 3515 3516 tx_ring = &adapter->tx_ring[qid]; 3517 rx_ring = &adapter->rx_ring[qid]; 3518 3519 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 3520 if (unlikely(rc)) 3521 return; 3522 3523 rc = !ENA_IS_XDP_INDEX(adapter, qid) ? 3524 check_for_rx_interrupt_queue(adapter, rx_ring) : 0; 3525 if (unlikely(rc)) 3526 return; 3527 3528 budget--; 3529 } 3530 3531 adapter->last_monitored_tx_qid = qid; 3532 } 3533 3534 /* trigger napi schedule after 2 consecutive detections */ 3535 #define EMPTY_RX_REFILL 2 3536 /* For the rare case where the device runs out of Rx descriptors and the 3537 * napi handler failed to refill new Rx descriptors (due to a lack of memory 3538 * for example). 3539 * This case will lead to a deadlock: 3540 * The device won't send interrupts since all the new Rx packets will be dropped 3541 * The napi handler won't allocate new Rx descriptors so the device will be 3542 * able to send new packets. 3543 * 3544 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3545 * It is recommended to have at least 512MB, with a minimum of 128MB for 3546 * constrained environment). 3547 * 3548 * When such a situation is detected - Reschedule napi 3549 */ 3550 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3551 { 3552 struct ena_ring *rx_ring; 3553 int i, refill_required; 3554 3555 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3556 return; 3557 3558 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3559 return; 3560 3561 for (i = 0; i < adapter->num_io_queues; i++) { 3562 rx_ring = &adapter->rx_ring[i]; 3563 3564 refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); 3565 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3566 rx_ring->empty_rx_queue++; 3567 3568 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3569 ena_increase_stat(&rx_ring->rx_stats.empty_rx_ring, 1, 3570 &rx_ring->syncp); 3571 3572 netif_err(adapter, drv, adapter->netdev, 3573 "Trigger refill for ring %d\n", i); 3574 3575 napi_schedule(rx_ring->napi); 3576 rx_ring->empty_rx_queue = 0; 3577 } 3578 } else { 3579 rx_ring->empty_rx_queue = 0; 3580 } 3581 } 3582 } 3583 3584 /* Check for keep alive expiration */ 3585 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3586 { 3587 unsigned long keep_alive_expired; 3588 3589 if (!adapter->wd_state) 3590 return; 3591 3592 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3593 return; 3594 3595 keep_alive_expired = adapter->last_keep_alive_jiffies + 3596 adapter->keep_alive_timeout; 3597 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3598 netif_err(adapter, drv, adapter->netdev, 3599 "Keep alive watchdog timeout.\n"); 3600 ena_increase_stat(&adapter->dev_stats.wd_expired, 1, 3601 &adapter->syncp); 3602 ena_reset_device(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); 3603 } 3604 } 3605 3606 static void check_for_admin_com_state(struct ena_adapter *adapter) 3607 { 3608 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3609 netif_err(adapter, drv, adapter->netdev, 3610 "ENA admin queue is not in running state!\n"); 3611 ena_increase_stat(&adapter->dev_stats.admin_q_pause, 1, 3612 &adapter->syncp); 3613 ena_reset_device(adapter, ENA_REGS_RESET_ADMIN_TO); 3614 } 3615 } 3616 3617 static void ena_update_hints(struct ena_adapter *adapter, 3618 struct ena_admin_ena_hw_hints *hints) 3619 { 3620 struct net_device *netdev = adapter->netdev; 3621 3622 if (hints->admin_completion_tx_timeout) 3623 adapter->ena_dev->admin_queue.completion_timeout = 3624 hints->admin_completion_tx_timeout * 1000; 3625 3626 if (hints->mmio_read_timeout) 3627 /* convert to usec */ 3628 adapter->ena_dev->mmio_read.reg_read_to = 3629 hints->mmio_read_timeout * 1000; 3630 3631 if (hints->missed_tx_completion_count_threshold_to_reset) 3632 adapter->missing_tx_completion_threshold = 3633 hints->missed_tx_completion_count_threshold_to_reset; 3634 3635 if (hints->missing_tx_completion_timeout) { 3636 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3637 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3638 else 3639 adapter->missing_tx_completion_to = 3640 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3641 } 3642 3643 if (hints->netdev_wd_timeout) 3644 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3645 3646 if (hints->driver_watchdog_timeout) { 3647 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3648 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3649 else 3650 adapter->keep_alive_timeout = 3651 msecs_to_jiffies(hints->driver_watchdog_timeout); 3652 } 3653 } 3654 3655 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3656 struct net_device *netdev) 3657 { 3658 host_info->supported_network_features[0] = 3659 netdev->features & GENMASK_ULL(31, 0); 3660 host_info->supported_network_features[1] = 3661 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3662 } 3663 3664 static void ena_timer_service(struct timer_list *t) 3665 { 3666 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3667 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3668 struct ena_admin_host_info *host_info = 3669 adapter->ena_dev->host_attr.host_info; 3670 3671 check_for_missing_keep_alive(adapter); 3672 3673 check_for_admin_com_state(adapter); 3674 3675 check_for_missing_completions(adapter); 3676 3677 check_for_empty_rx_ring(adapter); 3678 3679 if (debug_area) 3680 ena_dump_stats_to_buf(adapter, debug_area); 3681 3682 if (host_info) 3683 ena_update_host_info(host_info, adapter->netdev); 3684 3685 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3686 netif_err(adapter, drv, adapter->netdev, 3687 "Trigger reset is on\n"); 3688 ena_dump_stats_to_dmesg(adapter); 3689 queue_work(ena_wq, &adapter->reset_task); 3690 return; 3691 } 3692 3693 /* Reset the timer */ 3694 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3695 } 3696 3697 static u32 ena_calc_max_io_queue_num(struct pci_dev *pdev, 3698 struct ena_com_dev *ena_dev, 3699 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3700 { 3701 u32 io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3702 3703 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3704 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3705 &get_feat_ctx->max_queue_ext.max_queue_ext; 3706 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3707 max_queue_ext->max_rx_cq_num); 3708 3709 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3710 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3711 } else { 3712 struct ena_admin_queue_feature_desc *max_queues = 3713 &get_feat_ctx->max_queues; 3714 io_tx_sq_num = max_queues->max_sq_num; 3715 io_tx_cq_num = max_queues->max_cq_num; 3716 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3717 } 3718 3719 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3720 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3721 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3722 3723 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3724 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3725 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3726 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3727 /* 1 IRQ for mgmnt and 1 IRQs for each IO direction */ 3728 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3729 3730 return max_num_io_queues; 3731 } 3732 3733 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3734 struct net_device *netdev) 3735 { 3736 netdev_features_t dev_features = 0; 3737 3738 /* Set offload features */ 3739 if (feat->offload.tx & 3740 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3741 dev_features |= NETIF_F_IP_CSUM; 3742 3743 if (feat->offload.tx & 3744 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3745 dev_features |= NETIF_F_IPV6_CSUM; 3746 3747 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3748 dev_features |= NETIF_F_TSO; 3749 3750 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3751 dev_features |= NETIF_F_TSO6; 3752 3753 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3754 dev_features |= NETIF_F_TSO_ECN; 3755 3756 if (feat->offload.rx_supported & 3757 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3758 dev_features |= NETIF_F_RXCSUM; 3759 3760 if (feat->offload.rx_supported & 3761 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3762 dev_features |= NETIF_F_RXCSUM; 3763 3764 netdev->features = 3765 dev_features | 3766 NETIF_F_SG | 3767 NETIF_F_RXHASH | 3768 NETIF_F_HIGHDMA; 3769 3770 netdev->hw_features |= netdev->features; 3771 netdev->vlan_features |= netdev->features; 3772 } 3773 3774 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3775 struct ena_com_dev_get_features_ctx *feat) 3776 { 3777 struct net_device *netdev = adapter->netdev; 3778 3779 /* Copy mac address */ 3780 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3781 eth_hw_addr_random(netdev); 3782 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3783 } else { 3784 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3785 eth_hw_addr_set(netdev, adapter->mac_addr); 3786 } 3787 3788 /* Set offload features */ 3789 ena_set_dev_offloads(feat, netdev); 3790 3791 adapter->max_mtu = feat->dev_attr.max_mtu; 3792 netdev->max_mtu = adapter->max_mtu; 3793 netdev->min_mtu = ENA_MIN_MTU; 3794 } 3795 3796 static int ena_rss_init_default(struct ena_adapter *adapter) 3797 { 3798 struct ena_com_dev *ena_dev = adapter->ena_dev; 3799 struct device *dev = &adapter->pdev->dev; 3800 int rc, i; 3801 u32 val; 3802 3803 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3804 if (unlikely(rc)) { 3805 dev_err(dev, "Cannot init indirect table\n"); 3806 goto err_rss_init; 3807 } 3808 3809 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3810 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3811 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3812 ENA_IO_RXQ_IDX(val)); 3813 if (unlikely(rc)) { 3814 dev_err(dev, "Cannot fill indirect table\n"); 3815 goto err_fill_indir; 3816 } 3817 } 3818 3819 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, NULL, ENA_HASH_KEY_SIZE, 3820 0xFFFFFFFF); 3821 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3822 dev_err(dev, "Cannot fill hash function\n"); 3823 goto err_fill_indir; 3824 } 3825 3826 rc = ena_com_set_default_hash_ctrl(ena_dev); 3827 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3828 dev_err(dev, "Cannot fill hash control\n"); 3829 goto err_fill_indir; 3830 } 3831 3832 return 0; 3833 3834 err_fill_indir: 3835 ena_com_rss_destroy(ena_dev); 3836 err_rss_init: 3837 3838 return rc; 3839 } 3840 3841 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3842 { 3843 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3844 3845 pci_release_selected_regions(pdev, release_bars); 3846 } 3847 3848 /* ena_probe - Device Initialization Routine 3849 * @pdev: PCI device information struct 3850 * @ent: entry in ena_pci_tbl 3851 * 3852 * Returns 0 on success, negative on failure 3853 * 3854 * ena_probe initializes an adapter identified by a pci_dev structure. 3855 * The OS initialization, configuring of the adapter private structure, 3856 * and a hardware reset occur. 3857 */ 3858 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3859 { 3860 struct ena_com_dev_get_features_ctx get_feat_ctx; 3861 struct ena_com_dev *ena_dev = NULL; 3862 struct ena_adapter *adapter; 3863 struct net_device *netdev; 3864 static int adapters_found; 3865 u32 max_num_io_queues; 3866 bool wd_state; 3867 int bars, rc; 3868 3869 dev_dbg(&pdev->dev, "%s\n", __func__); 3870 3871 rc = pci_enable_device_mem(pdev); 3872 if (rc) { 3873 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3874 return rc; 3875 } 3876 3877 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(ENA_MAX_PHYS_ADDR_SIZE_BITS)); 3878 if (rc) { 3879 dev_err(&pdev->dev, "dma_set_mask_and_coherent failed %d\n", rc); 3880 goto err_disable_device; 3881 } 3882 3883 pci_set_master(pdev); 3884 3885 ena_dev = vzalloc(sizeof(*ena_dev)); 3886 if (!ena_dev) { 3887 rc = -ENOMEM; 3888 goto err_disable_device; 3889 } 3890 3891 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3892 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3893 if (rc) { 3894 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3895 rc); 3896 goto err_free_ena_dev; 3897 } 3898 3899 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3900 pci_resource_start(pdev, ENA_REG_BAR), 3901 pci_resource_len(pdev, ENA_REG_BAR)); 3902 if (!ena_dev->reg_bar) { 3903 dev_err(&pdev->dev, "Failed to remap regs bar\n"); 3904 rc = -EFAULT; 3905 goto err_free_region; 3906 } 3907 3908 ena_dev->ena_min_poll_delay_us = ENA_ADMIN_POLL_DELAY_US; 3909 3910 ena_dev->dmadev = &pdev->dev; 3911 3912 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), ENA_MAX_RINGS); 3913 if (!netdev) { 3914 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3915 rc = -ENOMEM; 3916 goto err_free_region; 3917 } 3918 3919 SET_NETDEV_DEV(netdev, &pdev->dev); 3920 adapter = netdev_priv(netdev); 3921 adapter->ena_dev = ena_dev; 3922 adapter->netdev = netdev; 3923 adapter->pdev = pdev; 3924 adapter->msg_enable = DEFAULT_MSG_ENABLE; 3925 3926 ena_dev->net_device = netdev; 3927 3928 pci_set_drvdata(pdev, adapter); 3929 3930 rc = ena_com_allocate_customer_metrics_buffer(ena_dev); 3931 if (rc) { 3932 netdev_err(netdev, "ena_com_allocate_customer_metrics_buffer failed\n"); 3933 goto err_netdev_destroy; 3934 } 3935 3936 rc = ena_map_llq_mem_bar(pdev, ena_dev, bars); 3937 if (rc) { 3938 dev_err(&pdev->dev, "ENA LLQ bar mapping failed\n"); 3939 goto err_metrics_destroy; 3940 } 3941 3942 rc = ena_device_init(adapter, pdev, &get_feat_ctx, &wd_state); 3943 if (rc) { 3944 dev_err(&pdev->dev, "ENA device init failed\n"); 3945 if (rc == -ETIME) 3946 rc = -EPROBE_DEFER; 3947 goto err_metrics_destroy; 3948 } 3949 3950 /* Initial TX and RX interrupt delay. Assumes 1 usec granularity. 3951 * Updated during device initialization with the real granularity 3952 */ 3953 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3954 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3955 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3956 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3957 if (unlikely(!max_num_io_queues)) { 3958 rc = -EFAULT; 3959 goto err_device_destroy; 3960 } 3961 3962 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3963 3964 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3965 3966 adapter->num_io_queues = max_num_io_queues; 3967 adapter->max_num_io_queues = max_num_io_queues; 3968 adapter->last_monitored_tx_qid = 0; 3969 3970 adapter->xdp_first_ring = 0; 3971 adapter->xdp_num_queues = 0; 3972 3973 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 3974 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3975 adapter->disable_meta_caching = 3976 !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & 3977 BIT(ENA_ADMIN_DISABLE_META_CACHING)); 3978 3979 adapter->wd_state = wd_state; 3980 3981 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 3982 3983 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 3984 if (rc) { 3985 dev_err(&pdev->dev, 3986 "Failed to query interrupt moderation feature\n"); 3987 goto err_device_destroy; 3988 } 3989 3990 ena_init_io_rings(adapter, 3991 0, 3992 adapter->xdp_num_queues + 3993 adapter->num_io_queues); 3994 3995 netdev->netdev_ops = &ena_netdev_ops; 3996 netdev->watchdog_timeo = TX_TIMEOUT; 3997 ena_set_ethtool_ops(netdev); 3998 3999 netdev->priv_flags |= IFF_UNICAST_FLT; 4000 4001 u64_stats_init(&adapter->syncp); 4002 4003 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 4004 if (rc) { 4005 dev_err(&pdev->dev, 4006 "Failed to enable and set the admin interrupts\n"); 4007 goto err_worker_destroy; 4008 } 4009 rc = ena_rss_init_default(adapter); 4010 if (rc && (rc != -EOPNOTSUPP)) { 4011 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 4012 goto err_free_msix; 4013 } 4014 4015 ena_config_debug_area(adapter); 4016 4017 if (ena_xdp_legal_queue_count(adapter, adapter->num_io_queues)) 4018 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | 4019 NETDEV_XDP_ACT_REDIRECT; 4020 4021 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 4022 4023 netif_carrier_off(netdev); 4024 4025 rc = register_netdev(netdev); 4026 if (rc) { 4027 dev_err(&pdev->dev, "Cannot register net device\n"); 4028 goto err_rss; 4029 } 4030 4031 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 4032 4033 adapter->last_keep_alive_jiffies = jiffies; 4034 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 4035 adapter->missing_tx_completion_to = TX_TIMEOUT; 4036 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 4037 4038 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 4039 4040 timer_setup(&adapter->timer_service, ena_timer_service, 0); 4041 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 4042 4043 dev_info(&pdev->dev, 4044 "%s found at mem %lx, mac addr %pM\n", 4045 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 4046 netdev->dev_addr); 4047 4048 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 4049 4050 adapters_found++; 4051 4052 return 0; 4053 4054 err_rss: 4055 ena_com_delete_debug_area(ena_dev); 4056 ena_com_rss_destroy(ena_dev); 4057 err_free_msix: 4058 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 4059 /* stop submitting admin commands on a device that was reset */ 4060 ena_com_set_admin_running_state(ena_dev, false); 4061 ena_free_mgmnt_irq(adapter); 4062 ena_disable_msix(adapter); 4063 err_worker_destroy: 4064 del_timer(&adapter->timer_service); 4065 err_device_destroy: 4066 ena_com_delete_host_info(ena_dev); 4067 ena_com_admin_destroy(ena_dev); 4068 err_metrics_destroy: 4069 ena_com_delete_customer_metrics_buffer(ena_dev); 4070 err_netdev_destroy: 4071 free_netdev(netdev); 4072 err_free_region: 4073 ena_release_bars(ena_dev, pdev); 4074 err_free_ena_dev: 4075 vfree(ena_dev); 4076 err_disable_device: 4077 pci_disable_device(pdev); 4078 return rc; 4079 } 4080 4081 /*****************************************************************************/ 4082 4083 /* __ena_shutoff - Helper used in both PCI remove/shutdown routines 4084 * @pdev: PCI device information struct 4085 * @shutdown: Is it a shutdown operation? If false, means it is a removal 4086 * 4087 * __ena_shutoff is a helper routine that does the real work on shutdown and 4088 * removal paths; the difference between those paths is with regards to whether 4089 * dettach or unregister the netdevice. 4090 */ 4091 static void __ena_shutoff(struct pci_dev *pdev, bool shutdown) 4092 { 4093 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4094 struct ena_com_dev *ena_dev; 4095 struct net_device *netdev; 4096 4097 ena_dev = adapter->ena_dev; 4098 netdev = adapter->netdev; 4099 4100 /* Make sure timer and reset routine won't be called after 4101 * freeing device resources. 4102 */ 4103 del_timer_sync(&adapter->timer_service); 4104 cancel_work_sync(&adapter->reset_task); 4105 4106 rtnl_lock(); /* lock released inside the below if-else block */ 4107 adapter->reset_reason = ENA_REGS_RESET_SHUTDOWN; 4108 ena_destroy_device(adapter, true); 4109 4110 if (shutdown) { 4111 netif_device_detach(netdev); 4112 dev_close(netdev); 4113 rtnl_unlock(); 4114 } else { 4115 rtnl_unlock(); 4116 unregister_netdev(netdev); 4117 free_netdev(netdev); 4118 } 4119 4120 ena_com_rss_destroy(ena_dev); 4121 4122 ena_com_delete_debug_area(ena_dev); 4123 4124 ena_com_delete_host_info(ena_dev); 4125 4126 ena_com_delete_customer_metrics_buffer(ena_dev); 4127 4128 ena_release_bars(ena_dev, pdev); 4129 4130 pci_disable_device(pdev); 4131 4132 vfree(ena_dev); 4133 } 4134 4135 /* ena_remove - Device Removal Routine 4136 * @pdev: PCI device information struct 4137 * 4138 * ena_remove is called by the PCI subsystem to alert the driver 4139 * that it should release a PCI device. 4140 */ 4141 4142 static void ena_remove(struct pci_dev *pdev) 4143 { 4144 __ena_shutoff(pdev, false); 4145 } 4146 4147 /* ena_shutdown - Device Shutdown Routine 4148 * @pdev: PCI device information struct 4149 * 4150 * ena_shutdown is called by the PCI subsystem to alert the driver that 4151 * a shutdown/reboot (or kexec) is happening and device must be disabled. 4152 */ 4153 4154 static void ena_shutdown(struct pci_dev *pdev) 4155 { 4156 __ena_shutoff(pdev, true); 4157 } 4158 4159 /* ena_suspend - PM suspend callback 4160 * @dev_d: Device information struct 4161 */ 4162 static int __maybe_unused ena_suspend(struct device *dev_d) 4163 { 4164 struct pci_dev *pdev = to_pci_dev(dev_d); 4165 struct ena_adapter *adapter = pci_get_drvdata(pdev); 4166 4167 ena_increase_stat(&adapter->dev_stats.suspend, 1, &adapter->syncp); 4168 4169 rtnl_lock(); 4170 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 4171 dev_err(&pdev->dev, 4172 "Ignoring device reset request as the device is being suspended\n"); 4173 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 4174 } 4175 ena_destroy_device(adapter, true); 4176 rtnl_unlock(); 4177 return 0; 4178 } 4179 4180 /* ena_resume - PM resume callback 4181 * @dev_d: Device information struct 4182 */ 4183 static int __maybe_unused ena_resume(struct device *dev_d) 4184 { 4185 struct ena_adapter *adapter = dev_get_drvdata(dev_d); 4186 int rc; 4187 4188 ena_increase_stat(&adapter->dev_stats.resume, 1, &adapter->syncp); 4189 4190 rtnl_lock(); 4191 rc = ena_restore_device(adapter); 4192 rtnl_unlock(); 4193 return rc; 4194 } 4195 4196 static SIMPLE_DEV_PM_OPS(ena_pm_ops, ena_suspend, ena_resume); 4197 4198 static struct pci_driver ena_pci_driver = { 4199 .name = DRV_MODULE_NAME, 4200 .id_table = ena_pci_tbl, 4201 .probe = ena_probe, 4202 .remove = ena_remove, 4203 .shutdown = ena_shutdown, 4204 .driver.pm = &ena_pm_ops, 4205 .sriov_configure = pci_sriov_configure_simple, 4206 }; 4207 4208 static int __init ena_init(void) 4209 { 4210 int ret; 4211 4212 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 4213 if (!ena_wq) { 4214 pr_err("Failed to create workqueue\n"); 4215 return -ENOMEM; 4216 } 4217 4218 ret = pci_register_driver(&ena_pci_driver); 4219 if (ret) 4220 destroy_workqueue(ena_wq); 4221 4222 return ret; 4223 } 4224 4225 static void __exit ena_cleanup(void) 4226 { 4227 pci_unregister_driver(&ena_pci_driver); 4228 4229 if (ena_wq) { 4230 destroy_workqueue(ena_wq); 4231 ena_wq = NULL; 4232 } 4233 } 4234 4235 /****************************************************************************** 4236 ******************************** AENQ Handlers ******************************* 4237 *****************************************************************************/ 4238 /* ena_update_on_link_change: 4239 * Notify the network interface about the change in link status 4240 */ 4241 static void ena_update_on_link_change(void *adapter_data, 4242 struct ena_admin_aenq_entry *aenq_e) 4243 { 4244 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4245 struct ena_admin_aenq_link_change_desc *aenq_desc = 4246 (struct ena_admin_aenq_link_change_desc *)aenq_e; 4247 int status = aenq_desc->flags & 4248 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 4249 4250 if (status) { 4251 netif_dbg(adapter, ifup, adapter->netdev, "%s\n", __func__); 4252 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4253 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 4254 netif_carrier_on(adapter->netdev); 4255 } else { 4256 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 4257 netif_carrier_off(adapter->netdev); 4258 } 4259 } 4260 4261 static void ena_keep_alive_wd(void *adapter_data, 4262 struct ena_admin_aenq_entry *aenq_e) 4263 { 4264 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4265 struct ena_admin_aenq_keep_alive_desc *desc; 4266 u64 rx_drops; 4267 u64 tx_drops; 4268 4269 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 4270 adapter->last_keep_alive_jiffies = jiffies; 4271 4272 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 4273 tx_drops = ((u64)desc->tx_drops_high << 32) | desc->tx_drops_low; 4274 4275 u64_stats_update_begin(&adapter->syncp); 4276 /* These stats are accumulated by the device, so the counters indicate 4277 * all drops since last reset. 4278 */ 4279 adapter->dev_stats.rx_drops = rx_drops; 4280 adapter->dev_stats.tx_drops = tx_drops; 4281 u64_stats_update_end(&adapter->syncp); 4282 } 4283 4284 static void ena_notification(void *adapter_data, 4285 struct ena_admin_aenq_entry *aenq_e) 4286 { 4287 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 4288 struct ena_admin_ena_hw_hints *hints; 4289 4290 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 4291 "Invalid group(%x) expected %x\n", 4292 aenq_e->aenq_common_desc.group, 4293 ENA_ADMIN_NOTIFICATION); 4294 4295 switch (aenq_e->aenq_common_desc.syndrome) { 4296 case ENA_ADMIN_UPDATE_HINTS: 4297 hints = (struct ena_admin_ena_hw_hints *) 4298 (&aenq_e->inline_data_w4); 4299 ena_update_hints(adapter, hints); 4300 break; 4301 default: 4302 netif_err(adapter, drv, adapter->netdev, 4303 "Invalid aenq notification link state %d\n", 4304 aenq_e->aenq_common_desc.syndrome); 4305 } 4306 } 4307 4308 /* This handler will called for unknown event group or unimplemented handlers*/ 4309 static void unimplemented_aenq_handler(void *data, 4310 struct ena_admin_aenq_entry *aenq_e) 4311 { 4312 struct ena_adapter *adapter = (struct ena_adapter *)data; 4313 4314 netif_err(adapter, drv, adapter->netdev, 4315 "Unknown event was received or event with unimplemented handler\n"); 4316 } 4317 4318 static struct ena_aenq_handlers aenq_handlers = { 4319 .handlers = { 4320 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 4321 [ENA_ADMIN_NOTIFICATION] = ena_notification, 4322 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 4323 }, 4324 .unimplemented_handler = unimplemented_aenq_handler 4325 }; 4326 4327 module_init(ena_init); 4328 module_exit(ena_cleanup); 4329