1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card 4 * and other Tigon based cards. 5 * 6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. 7 * 8 * Thanks to Alteon and 3Com for providing hardware and documentation 9 * enabling me to write this driver. 10 * 11 * A mailing list for discussing the use of this driver has been 12 * setup, please subscribe to the lists if you have any questions 13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to 14 * see how to subscribe. 15 * 16 * Additional credits: 17 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace 18 * dump support. The trace dump support has not been 19 * integrated yet however. 20 * Troy Benjegerdes: Big Endian (PPC) patches. 21 * Nate Stahl: Better out of memory handling and stats support. 22 * Aman Singla: Nasty race between interrupt handler and tx code dealing 23 * with 'testing the tx_ret_csm and setting tx_full' 24 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping 25 * infrastructure and Sparc support 26 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the 27 * driver under Linux/Sparc64 28 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards 29 * ETHTOOL_GDRVINFO support 30 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx 31 * handler and close() cleanup. 32 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether 33 * memory mapped IO is enabled to 34 * make the driver work on RS/6000. 35 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem 36 * where the driver would disable 37 * bus master mode if it had to disable 38 * write and invalidate. 39 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little 40 * endian systems. 41 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and 42 * rx producer index when 43 * flushing the Jumbo ring. 44 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the 45 * driver init path. 46 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. 47 */ 48 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/types.h> 52 #include <linux/errno.h> 53 #include <linux/ioport.h> 54 #include <linux/pci.h> 55 #include <linux/dma-mapping.h> 56 #include <linux/kernel.h> 57 #include <linux/netdevice.h> 58 #include <linux/etherdevice.h> 59 #include <linux/skbuff.h> 60 #include <linux/delay.h> 61 #include <linux/mm.h> 62 #include <linux/highmem.h> 63 #include <linux/sockios.h> 64 #include <linux/firmware.h> 65 #include <linux/slab.h> 66 #include <linux/prefetch.h> 67 #include <linux/if_vlan.h> 68 69 #ifdef SIOCETHTOOL 70 #include <linux/ethtool.h> 71 #endif 72 73 #include <net/sock.h> 74 #include <net/ip.h> 75 76 #include <asm/io.h> 77 #include <asm/irq.h> 78 #include <asm/byteorder.h> 79 #include <linux/uaccess.h> 80 81 82 #define DRV_NAME "acenic" 83 84 #undef INDEX_DEBUG 85 86 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 87 #define ACE_IS_TIGON_I(ap) 0 88 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES 89 #else 90 #define ACE_IS_TIGON_I(ap) (ap->version == 1) 91 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries 92 #endif 93 94 #ifndef PCI_VENDOR_ID_ALTEON 95 #define PCI_VENDOR_ID_ALTEON 0x12ae 96 #endif 97 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 98 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 99 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 100 #endif 101 #ifndef PCI_DEVICE_ID_3COM_3C985 102 #define PCI_DEVICE_ID_3COM_3C985 0x0001 103 #endif 104 #ifndef PCI_VENDOR_ID_NETGEAR 105 #define PCI_VENDOR_ID_NETGEAR 0x1385 106 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a 107 #endif 108 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T 109 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a 110 #endif 111 112 113 /* 114 * Farallon used the DEC vendor ID by mistake and they seem not 115 * to care - stinky! 116 */ 117 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX 118 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a 119 #endif 120 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T 121 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa 122 #endif 123 #ifndef PCI_VENDOR_ID_SGI 124 #define PCI_VENDOR_ID_SGI 0x10a9 125 #endif 126 #ifndef PCI_DEVICE_ID_SGI_ACENIC 127 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 128 #endif 129 130 static const struct pci_device_id acenic_pci_tbl[] = { 131 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, 132 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 133 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, 134 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 135 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, 136 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 137 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, 138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 139 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, 140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 141 /* 142 * Farallon used the DEC vendor ID on their cards incorrectly, 143 * then later Alteon's ID. 144 */ 145 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, 146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 147 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, 148 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 149 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, 150 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 151 { } 152 }; 153 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); 154 155 #define ace_sync_irq(irq) synchronize_irq(irq) 156 157 #ifndef offset_in_page 158 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) 159 #endif 160 161 #define ACE_MAX_MOD_PARMS 8 162 #define BOARD_IDX_STATIC 0 163 #define BOARD_IDX_OVERFLOW -1 164 165 #include "acenic.h" 166 167 /* 168 * These must be defined before the firmware is included. 169 */ 170 #define MAX_TEXT_LEN 96*1024 171 #define MAX_RODATA_LEN 8*1024 172 #define MAX_DATA_LEN 2*1024 173 174 #ifndef tigon2FwReleaseLocal 175 #define tigon2FwReleaseLocal 0 176 #endif 177 178 /* 179 * This driver currently supports Tigon I and Tigon II based cards 180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear 181 * GA620. The driver should also work on the SGI, DEC and Farallon 182 * versions of the card, however I have not been able to test that 183 * myself. 184 * 185 * This card is really neat, it supports receive hardware checksumming 186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the 187 * firmware. Also the programming interface is quite neat, except for 188 * the parts dealing with the i2c eeprom on the card ;-) 189 * 190 * Using jumbo frames: 191 * 192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000 193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time 194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet 195 * interface number and <MTU> being the MTU value. 196 * 197 * Module parameters: 198 * 199 * When compiled as a loadable module, the driver allows for a number 200 * of module parameters to be specified. The driver supports the 201 * following module parameters: 202 * 203 * trace=<val> - Firmware trace level. This requires special traced 204 * firmware to replace the firmware supplied with 205 * the driver - for debugging purposes only. 206 * 207 * link=<val> - Link state. Normally you want to use the default link 208 * parameters set by the driver. This can be used to 209 * override these in case your switch doesn't negotiate 210 * the link properly. Valid values are: 211 * 0x0001 - Force half duplex link. 212 * 0x0002 - Do not negotiate line speed with the other end. 213 * 0x0010 - 10Mbit/sec link. 214 * 0x0020 - 100Mbit/sec link. 215 * 0x0040 - 1000Mbit/sec link. 216 * 0x0100 - Do not negotiate flow control. 217 * 0x0200 - Enable RX flow control Y 218 * 0x0400 - Enable TX flow control Y (Tigon II NICs only). 219 * Default value is 0x0270, ie. enable link+flow 220 * control negotiation. Negotiating the highest 221 * possible link speed with RX flow control enabled. 222 * 223 * When disabling link speed negotiation, only one link 224 * speed is allowed to be specified! 225 * 226 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 227 * to wait for more packets to arive before 228 * interrupting the host, from the time the first 229 * packet arrives. 230 * 231 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 232 * to wait for more packets to arive in the transmit ring, 233 * before interrupting the host, after transmitting the 234 * first packet in the ring. 235 * 236 * max_tx_desc=<val> - maximum number of transmit descriptors 237 * (packets) transmitted before interrupting the host. 238 * 239 * max_rx_desc=<val> - maximum number of receive descriptors 240 * (packets) received before interrupting the host. 241 * 242 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th 243 * increments of the NIC's on board memory to be used for 244 * transmit and receive buffers. For the 1MB NIC app. 800KB 245 * is available, on the 1/2MB NIC app. 300KB is available. 246 * 68KB will always be available as a minimum for both 247 * directions. The default value is a 50/50 split. 248 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate 249 * operations, default (1) is to always disable this as 250 * that is what Alteon does on NT. I have not been able 251 * to measure any real performance differences with 252 * this on my systems. Set <val>=0 if you want to 253 * enable these operations. 254 * 255 * If you use more than one NIC, specify the parameters for the 256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to 257 * run tracing on NIC #2 but not on NIC #1 and #3. 258 * 259 * TODO: 260 * 261 * - Proper multicast support. 262 * - NIC dump support. 263 * - More tuning parameters. 264 * 265 * The mini ring is not used under Linux and I am not sure it makes sense 266 * to actually use it. 267 * 268 * New interrupt handler strategy: 269 * 270 * The old interrupt handler worked using the traditional method of 271 * replacing an skbuff with a new one when a packet arrives. However 272 * the rx rings do not need to contain a static number of buffer 273 * descriptors, thus it makes sense to move the memory allocation out 274 * of the main interrupt handler and do it in a bottom half handler 275 * and only allocate new buffers when the number of buffers in the 276 * ring is below a certain threshold. In order to avoid starving the 277 * NIC under heavy load it is however necessary to force allocation 278 * when hitting a minimum threshold. The strategy for alloction is as 279 * follows: 280 * 281 * RX_LOW_BUF_THRES - allocate buffers in the bottom half 282 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate 283 * the buffers in the interrupt handler 284 * RX_RING_THRES - maximum number of buffers in the rx ring 285 * RX_MINI_THRES - maximum number of buffers in the mini ring 286 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring 287 * 288 * One advantagous side effect of this allocation approach is that the 289 * entire rx processing can be done without holding any spin lock 290 * since the rx rings and registers are totally independent of the tx 291 * ring and its registers. This of course includes the kmalloc's of 292 * new skb's. Thus start_xmit can run in parallel with rx processing 293 * and the memory allocation on SMP systems. 294 * 295 * Note that running the skb reallocation in a bottom half opens up 296 * another can of races which needs to be handled properly. In 297 * particular it can happen that the interrupt handler tries to run 298 * the reallocation while the bottom half is either running on another 299 * CPU or was interrupted on the same CPU. To get around this the 300 * driver uses bitops to prevent the reallocation routines from being 301 * reentered. 302 * 303 * TX handling can also be done without holding any spin lock, wheee 304 * this is fun! since tx_ret_csm is only written to by the interrupt 305 * handler. The case to be aware of is when shutting down the device 306 * and cleaning up where it is necessary to make sure that 307 * start_xmit() is not running while this is happening. Well DaveM 308 * informs me that this case is already protected against ... bye bye 309 * Mr. Spin Lock, it was nice to know you. 310 * 311 * TX interrupts are now partly disabled so the NIC will only generate 312 * TX interrupts for the number of coal ticks, not for the number of 313 * TX packets in the queue. This should reduce the number of TX only, 314 * ie. when no RX processing is done, interrupts seen. 315 */ 316 317 /* 318 * Threshold values for RX buffer allocation - the low water marks for 319 * when to start refilling the rings are set to 75% of the ring 320 * sizes. It seems to make sense to refill the rings entirely from the 321 * intrrupt handler once it gets below the panic threshold, that way 322 * we don't risk that the refilling is moved to another CPU when the 323 * one running the interrupt handler just got the slab code hot in its 324 * cache. 325 */ 326 #define RX_RING_SIZE 72 327 #define RX_MINI_SIZE 64 328 #define RX_JUMBO_SIZE 48 329 330 #define RX_PANIC_STD_THRES 16 331 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 332 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 333 #define RX_PANIC_MINI_THRES 12 334 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 335 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 336 #define RX_PANIC_JUMBO_THRES 6 337 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 338 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 339 340 341 /* 342 * Size of the mini ring entries, basically these just should be big 343 * enough to take TCP ACKs 344 */ 345 #define ACE_MINI_SIZE 100 346 347 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE 348 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) 349 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) 350 351 /* 352 * There seems to be a magic difference in the effect between 995 and 996 353 * but little difference between 900 and 995 ... no idea why. 354 * 355 * There is now a default set of tuning parameters which is set, depending 356 * on whether or not the user enables Jumbo frames. It's assumed that if 357 * Jumbo frames are enabled, the user wants optimal tuning for that case. 358 */ 359 #define DEF_TX_COAL 400 /* 996 */ 360 #define DEF_TX_MAX_DESC 60 /* was 40 */ 361 #define DEF_RX_COAL 120 /* 1000 */ 362 #define DEF_RX_MAX_DESC 25 363 #define DEF_TX_RATIO 21 /* 24 */ 364 365 #define DEF_JUMBO_TX_COAL 20 366 #define DEF_JUMBO_TX_MAX_DESC 60 367 #define DEF_JUMBO_RX_COAL 30 368 #define DEF_JUMBO_RX_MAX_DESC 6 369 #define DEF_JUMBO_TX_RATIO 21 370 371 #if tigon2FwReleaseLocal < 20001118 372 /* 373 * Standard firmware and early modifications duplicate 374 * IRQ load without this flag (coal timer is never reset). 375 * Note that with this flag tx_coal should be less than 376 * time to xmit full tx ring. 377 * 400usec is not so bad for tx ring size of 128. 378 */ 379 #define TX_COAL_INTS_ONLY 1 /* worth it */ 380 #else 381 /* 382 * With modified firmware, this is not necessary, but still useful. 383 */ 384 #define TX_COAL_INTS_ONLY 1 385 #endif 386 387 #define DEF_TRACE 0 388 #define DEF_STAT (2 * TICKS_PER_SEC) 389 390 391 static int link_state[ACE_MAX_MOD_PARMS]; 392 static int trace[ACE_MAX_MOD_PARMS]; 393 static int tx_coal_tick[ACE_MAX_MOD_PARMS]; 394 static int rx_coal_tick[ACE_MAX_MOD_PARMS]; 395 static int max_tx_desc[ACE_MAX_MOD_PARMS]; 396 static int max_rx_desc[ACE_MAX_MOD_PARMS]; 397 static int tx_ratio[ACE_MAX_MOD_PARMS]; 398 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; 399 400 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); 401 MODULE_LICENSE("GPL"); 402 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); 403 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 404 MODULE_FIRMWARE("acenic/tg1.bin"); 405 #endif 406 MODULE_FIRMWARE("acenic/tg2.bin"); 407 408 module_param_array_named(link, link_state, int, NULL, 0); 409 module_param_array(trace, int, NULL, 0); 410 module_param_array(tx_coal_tick, int, NULL, 0); 411 module_param_array(max_tx_desc, int, NULL, 0); 412 module_param_array(rx_coal_tick, int, NULL, 0); 413 module_param_array(max_rx_desc, int, NULL, 0); 414 module_param_array(tx_ratio, int, NULL, 0); 415 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); 416 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); 417 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); 418 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); 419 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); 420 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); 421 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); 422 423 424 static const char version[] = 425 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" 426 " http://home.cern.ch/~jes/gige/acenic.html\n"; 427 428 static int ace_get_link_ksettings(struct net_device *, 429 struct ethtool_link_ksettings *); 430 static int ace_set_link_ksettings(struct net_device *, 431 const struct ethtool_link_ksettings *); 432 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); 433 434 static const struct ethtool_ops ace_ethtool_ops = { 435 .get_drvinfo = ace_get_drvinfo, 436 .get_link_ksettings = ace_get_link_ksettings, 437 .set_link_ksettings = ace_set_link_ksettings, 438 }; 439 440 static void ace_watchdog(struct net_device *dev, unsigned int txqueue); 441 442 static const struct net_device_ops ace_netdev_ops = { 443 .ndo_open = ace_open, 444 .ndo_stop = ace_close, 445 .ndo_tx_timeout = ace_watchdog, 446 .ndo_get_stats = ace_get_stats, 447 .ndo_start_xmit = ace_start_xmit, 448 .ndo_set_rx_mode = ace_set_multicast_list, 449 .ndo_validate_addr = eth_validate_addr, 450 .ndo_set_mac_address = ace_set_mac_addr, 451 .ndo_change_mtu = ace_change_mtu, 452 }; 453 454 static int acenic_probe_one(struct pci_dev *pdev, 455 const struct pci_device_id *id) 456 { 457 struct net_device *dev; 458 struct ace_private *ap; 459 static int boards_found; 460 461 dev = alloc_etherdev(sizeof(struct ace_private)); 462 if (dev == NULL) 463 return -ENOMEM; 464 465 SET_NETDEV_DEV(dev, &pdev->dev); 466 467 ap = netdev_priv(dev); 468 ap->ndev = dev; 469 ap->pdev = pdev; 470 ap->name = pci_name(pdev); 471 472 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; 473 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 474 475 dev->watchdog_timeo = 5*HZ; 476 dev->min_mtu = 0; 477 dev->max_mtu = ACE_JUMBO_MTU; 478 479 dev->netdev_ops = &ace_netdev_ops; 480 dev->ethtool_ops = &ace_ethtool_ops; 481 482 /* we only display this string ONCE */ 483 if (!boards_found) 484 printk(version); 485 486 if (pci_enable_device(pdev)) 487 goto fail_free_netdev; 488 489 /* 490 * Enable master mode before we start playing with the 491 * pci_command word since pci_set_master() will modify 492 * it. 493 */ 494 pci_set_master(pdev); 495 496 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); 497 498 /* OpenFirmware on Mac's does not set this - DOH.. */ 499 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { 500 printk(KERN_INFO "%s: Enabling PCI Memory Mapped " 501 "access - was not enabled by BIOS/Firmware\n", 502 ap->name); 503 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; 504 pci_write_config_word(ap->pdev, PCI_COMMAND, 505 ap->pci_command); 506 wmb(); 507 } 508 509 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); 510 if (ap->pci_latency <= 0x40) { 511 ap->pci_latency = 0x40; 512 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); 513 } 514 515 /* 516 * Remap the regs into kernel space - this is abuse of 517 * dev->base_addr since it was means for I/O port 518 * addresses but who gives a damn. 519 */ 520 dev->base_addr = pci_resource_start(pdev, 0); 521 ap->regs = ioremap(dev->base_addr, 0x4000); 522 if (!ap->regs) { 523 printk(KERN_ERR "%s: Unable to map I/O register, " 524 "AceNIC %i will be disabled.\n", 525 ap->name, boards_found); 526 goto fail_free_netdev; 527 } 528 529 switch(pdev->vendor) { 530 case PCI_VENDOR_ID_ALTEON: 531 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { 532 printk(KERN_INFO "%s: Farallon PN9100-T ", 533 ap->name); 534 } else { 535 printk(KERN_INFO "%s: Alteon AceNIC ", 536 ap->name); 537 } 538 break; 539 case PCI_VENDOR_ID_3COM: 540 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); 541 break; 542 case PCI_VENDOR_ID_NETGEAR: 543 printk(KERN_INFO "%s: NetGear GA620 ", ap->name); 544 break; 545 case PCI_VENDOR_ID_DEC: 546 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { 547 printk(KERN_INFO "%s: Farallon PN9000-SX ", 548 ap->name); 549 break; 550 } 551 fallthrough; 552 case PCI_VENDOR_ID_SGI: 553 printk(KERN_INFO "%s: SGI AceNIC ", ap->name); 554 break; 555 default: 556 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); 557 break; 558 } 559 560 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); 561 printk("irq %d\n", pdev->irq); 562 563 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 564 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { 565 printk(KERN_ERR "%s: Driver compiled without Tigon I" 566 " support - NIC disabled\n", dev->name); 567 goto fail_uninit; 568 } 569 #endif 570 571 if (ace_allocate_descriptors(dev)) 572 goto fail_free_netdev; 573 574 #ifdef MODULE 575 if (boards_found >= ACE_MAX_MOD_PARMS) 576 ap->board_idx = BOARD_IDX_OVERFLOW; 577 else 578 ap->board_idx = boards_found; 579 #else 580 ap->board_idx = BOARD_IDX_STATIC; 581 #endif 582 583 if (ace_init(dev)) 584 goto fail_free_netdev; 585 586 if (register_netdev(dev)) { 587 printk(KERN_ERR "acenic: device registration failed\n"); 588 goto fail_uninit; 589 } 590 ap->name = dev->name; 591 592 dev->features |= NETIF_F_HIGHDMA; 593 594 pci_set_drvdata(pdev, dev); 595 596 boards_found++; 597 return 0; 598 599 fail_uninit: 600 ace_init_cleanup(dev); 601 fail_free_netdev: 602 free_netdev(dev); 603 return -ENODEV; 604 } 605 606 static void acenic_remove_one(struct pci_dev *pdev) 607 { 608 struct net_device *dev = pci_get_drvdata(pdev); 609 struct ace_private *ap = netdev_priv(dev); 610 struct ace_regs __iomem *regs = ap->regs; 611 short i; 612 613 unregister_netdev(dev); 614 615 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 616 if (ap->version >= 2) 617 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 618 619 /* 620 * This clears any pending interrupts 621 */ 622 writel(1, ®s->Mb0Lo); 623 readl(®s->CpuCtrl); /* flush */ 624 625 /* 626 * Make sure no other CPUs are processing interrupts 627 * on the card before the buffers are being released. 628 * Otherwise one might experience some `interesting' 629 * effects. 630 * 631 * Then release the RX buffers - jumbo buffers were 632 * already released in ace_close(). 633 */ 634 ace_sync_irq(dev->irq); 635 636 for (i = 0; i < RX_STD_RING_ENTRIES; i++) { 637 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; 638 639 if (skb) { 640 struct ring_info *ringp; 641 dma_addr_t mapping; 642 643 ringp = &ap->skb->rx_std_skbuff[i]; 644 mapping = dma_unmap_addr(ringp, mapping); 645 dma_unmap_page(&ap->pdev->dev, mapping, 646 ACE_STD_BUFSIZE, DMA_FROM_DEVICE); 647 648 ap->rx_std_ring[i].size = 0; 649 ap->skb->rx_std_skbuff[i].skb = NULL; 650 dev_kfree_skb(skb); 651 } 652 } 653 654 if (ap->version >= 2) { 655 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { 656 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; 657 658 if (skb) { 659 struct ring_info *ringp; 660 dma_addr_t mapping; 661 662 ringp = &ap->skb->rx_mini_skbuff[i]; 663 mapping = dma_unmap_addr(ringp,mapping); 664 dma_unmap_page(&ap->pdev->dev, mapping, 665 ACE_MINI_BUFSIZE, 666 DMA_FROM_DEVICE); 667 668 ap->rx_mini_ring[i].size = 0; 669 ap->skb->rx_mini_skbuff[i].skb = NULL; 670 dev_kfree_skb(skb); 671 } 672 } 673 } 674 675 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 676 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; 677 if (skb) { 678 struct ring_info *ringp; 679 dma_addr_t mapping; 680 681 ringp = &ap->skb->rx_jumbo_skbuff[i]; 682 mapping = dma_unmap_addr(ringp, mapping); 683 dma_unmap_page(&ap->pdev->dev, mapping, 684 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE); 685 686 ap->rx_jumbo_ring[i].size = 0; 687 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 688 dev_kfree_skb(skb); 689 } 690 } 691 692 ace_init_cleanup(dev); 693 free_netdev(dev); 694 } 695 696 static struct pci_driver acenic_pci_driver = { 697 .name = "acenic", 698 .id_table = acenic_pci_tbl, 699 .probe = acenic_probe_one, 700 .remove = acenic_remove_one, 701 }; 702 703 static void ace_free_descriptors(struct net_device *dev) 704 { 705 struct ace_private *ap = netdev_priv(dev); 706 int size; 707 708 if (ap->rx_std_ring != NULL) { 709 size = (sizeof(struct rx_desc) * 710 (RX_STD_RING_ENTRIES + 711 RX_JUMBO_RING_ENTRIES + 712 RX_MINI_RING_ENTRIES + 713 RX_RETURN_RING_ENTRIES)); 714 dma_free_coherent(&ap->pdev->dev, size, ap->rx_std_ring, 715 ap->rx_ring_base_dma); 716 ap->rx_std_ring = NULL; 717 ap->rx_jumbo_ring = NULL; 718 ap->rx_mini_ring = NULL; 719 ap->rx_return_ring = NULL; 720 } 721 if (ap->evt_ring != NULL) { 722 size = (sizeof(struct event) * EVT_RING_ENTRIES); 723 dma_free_coherent(&ap->pdev->dev, size, ap->evt_ring, 724 ap->evt_ring_dma); 725 ap->evt_ring = NULL; 726 } 727 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { 728 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 729 dma_free_coherent(&ap->pdev->dev, size, ap->tx_ring, 730 ap->tx_ring_dma); 731 } 732 ap->tx_ring = NULL; 733 734 if (ap->evt_prd != NULL) { 735 dma_free_coherent(&ap->pdev->dev, sizeof(u32), 736 (void *)ap->evt_prd, ap->evt_prd_dma); 737 ap->evt_prd = NULL; 738 } 739 if (ap->rx_ret_prd != NULL) { 740 dma_free_coherent(&ap->pdev->dev, sizeof(u32), 741 (void *)ap->rx_ret_prd, ap->rx_ret_prd_dma); 742 ap->rx_ret_prd = NULL; 743 } 744 if (ap->tx_csm != NULL) { 745 dma_free_coherent(&ap->pdev->dev, sizeof(u32), 746 (void *)ap->tx_csm, ap->tx_csm_dma); 747 ap->tx_csm = NULL; 748 } 749 } 750 751 752 static int ace_allocate_descriptors(struct net_device *dev) 753 { 754 struct ace_private *ap = netdev_priv(dev); 755 int size; 756 757 size = (sizeof(struct rx_desc) * 758 (RX_STD_RING_ENTRIES + 759 RX_JUMBO_RING_ENTRIES + 760 RX_MINI_RING_ENTRIES + 761 RX_RETURN_RING_ENTRIES)); 762 763 ap->rx_std_ring = dma_alloc_coherent(&ap->pdev->dev, size, 764 &ap->rx_ring_base_dma, GFP_KERNEL); 765 if (ap->rx_std_ring == NULL) 766 goto fail; 767 768 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; 769 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; 770 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; 771 772 size = (sizeof(struct event) * EVT_RING_ENTRIES); 773 774 ap->evt_ring = dma_alloc_coherent(&ap->pdev->dev, size, 775 &ap->evt_ring_dma, GFP_KERNEL); 776 777 if (ap->evt_ring == NULL) 778 goto fail; 779 780 /* 781 * Only allocate a host TX ring for the Tigon II, the Tigon I 782 * has to use PCI registers for this ;-( 783 */ 784 if (!ACE_IS_TIGON_I(ap)) { 785 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 786 787 ap->tx_ring = dma_alloc_coherent(&ap->pdev->dev, size, 788 &ap->tx_ring_dma, GFP_KERNEL); 789 790 if (ap->tx_ring == NULL) 791 goto fail; 792 } 793 794 ap->evt_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32), 795 &ap->evt_prd_dma, GFP_KERNEL); 796 if (ap->evt_prd == NULL) 797 goto fail; 798 799 ap->rx_ret_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32), 800 &ap->rx_ret_prd_dma, GFP_KERNEL); 801 if (ap->rx_ret_prd == NULL) 802 goto fail; 803 804 ap->tx_csm = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32), 805 &ap->tx_csm_dma, GFP_KERNEL); 806 if (ap->tx_csm == NULL) 807 goto fail; 808 809 return 0; 810 811 fail: 812 /* Clean up. */ 813 ace_init_cleanup(dev); 814 return 1; 815 } 816 817 818 /* 819 * Generic cleanup handling data allocated during init. Used when the 820 * module is unloaded or if an error occurs during initialization 821 */ 822 static void ace_init_cleanup(struct net_device *dev) 823 { 824 struct ace_private *ap; 825 826 ap = netdev_priv(dev); 827 828 ace_free_descriptors(dev); 829 830 if (ap->info) 831 dma_free_coherent(&ap->pdev->dev, sizeof(struct ace_info), 832 ap->info, ap->info_dma); 833 kfree(ap->skb); 834 kfree(ap->trace_buf); 835 836 if (dev->irq) 837 free_irq(dev->irq, dev); 838 839 iounmap(ap->regs); 840 } 841 842 843 /* 844 * Commands are considered to be slow. 845 */ 846 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) 847 { 848 u32 idx; 849 850 idx = readl(®s->CmdPrd); 851 852 writel(*(u32 *)(cmd), ®s->CmdRng[idx]); 853 idx = (idx + 1) % CMD_RING_ENTRIES; 854 855 writel(idx, ®s->CmdPrd); 856 } 857 858 859 static int ace_init(struct net_device *dev) 860 { 861 struct ace_private *ap; 862 struct ace_regs __iomem *regs; 863 struct ace_info *info = NULL; 864 struct pci_dev *pdev; 865 unsigned long myjif; 866 u64 tmp_ptr; 867 u32 tig_ver, mac1, mac2, tmp, pci_state; 868 int board_idx, ecode = 0; 869 short i; 870 unsigned char cache_size; 871 u8 addr[ETH_ALEN]; 872 873 ap = netdev_priv(dev); 874 regs = ap->regs; 875 876 board_idx = ap->board_idx; 877 878 /* 879 * aman@sgi.com - its useful to do a NIC reset here to 880 * address the `Firmware not running' problem subsequent 881 * to any crashes involving the NIC 882 */ 883 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); 884 readl(®s->HostCtrl); /* PCI write posting */ 885 udelay(5); 886 887 /* 888 * Don't access any other registers before this point! 889 */ 890 #ifdef __BIG_ENDIAN 891 /* 892 * This will most likely need BYTE_SWAP once we switch 893 * to using __raw_writel() 894 */ 895 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), 896 ®s->HostCtrl); 897 #else 898 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), 899 ®s->HostCtrl); 900 #endif 901 readl(®s->HostCtrl); /* PCI write posting */ 902 903 /* 904 * Stop the NIC CPU and clear pending interrupts 905 */ 906 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 907 readl(®s->CpuCtrl); /* PCI write posting */ 908 writel(0, ®s->Mb0Lo); 909 910 tig_ver = readl(®s->HostCtrl) >> 28; 911 912 switch(tig_ver){ 913 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 914 case 4: 915 case 5: 916 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", 917 tig_ver, ap->firmware_major, ap->firmware_minor, 918 ap->firmware_fix); 919 writel(0, ®s->LocalCtrl); 920 ap->version = 1; 921 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; 922 break; 923 #endif 924 case 6: 925 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", 926 tig_ver, ap->firmware_major, ap->firmware_minor, 927 ap->firmware_fix); 928 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 929 readl(®s->CpuBCtrl); /* PCI write posting */ 930 /* 931 * The SRAM bank size does _not_ indicate the amount 932 * of memory on the card, it controls the _bank_ size! 933 * Ie. a 1MB AceNIC will have two banks of 512KB. 934 */ 935 writel(SRAM_BANK_512K, ®s->LocalCtrl); 936 writel(SYNC_SRAM_TIMING, ®s->MiscCfg); 937 ap->version = 2; 938 ap->tx_ring_entries = MAX_TX_RING_ENTRIES; 939 break; 940 default: 941 printk(KERN_WARNING " Unsupported Tigon version detected " 942 "(%i)\n", tig_ver); 943 ecode = -ENODEV; 944 goto init_error; 945 } 946 947 /* 948 * ModeStat _must_ be set after the SRAM settings as this change 949 * seems to corrupt the ModeStat and possible other registers. 950 * The SRAM settings survive resets and setting it to the same 951 * value a second time works as well. This is what caused the 952 * `Firmware not running' problem on the Tigon II. 953 */ 954 #ifdef __BIG_ENDIAN 955 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | 956 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 957 #else 958 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | 959 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 960 #endif 961 readl(®s->ModeStat); /* PCI write posting */ 962 963 mac1 = 0; 964 for(i = 0; i < 4; i++) { 965 int t; 966 967 mac1 = mac1 << 8; 968 t = read_eeprom_byte(dev, 0x8c+i); 969 if (t < 0) { 970 ecode = -EIO; 971 goto init_error; 972 } else 973 mac1 |= (t & 0xff); 974 } 975 mac2 = 0; 976 for(i = 4; i < 8; i++) { 977 int t; 978 979 mac2 = mac2 << 8; 980 t = read_eeprom_byte(dev, 0x8c+i); 981 if (t < 0) { 982 ecode = -EIO; 983 goto init_error; 984 } else 985 mac2 |= (t & 0xff); 986 } 987 988 writel(mac1, ®s->MacAddrHi); 989 writel(mac2, ®s->MacAddrLo); 990 991 addr[0] = (mac1 >> 8) & 0xff; 992 addr[1] = mac1 & 0xff; 993 addr[2] = (mac2 >> 24) & 0xff; 994 addr[3] = (mac2 >> 16) & 0xff; 995 addr[4] = (mac2 >> 8) & 0xff; 996 addr[5] = mac2 & 0xff; 997 eth_hw_addr_set(dev, addr); 998 999 printk("MAC: %pM\n", dev->dev_addr); 1000 1001 /* 1002 * Looks like this is necessary to deal with on all architectures, 1003 * even this %$#%$# N440BX Intel based thing doesn't get it right. 1004 * Ie. having two NICs in the machine, one will have the cache 1005 * line set at boot time, the other will not. 1006 */ 1007 pdev = ap->pdev; 1008 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); 1009 cache_size <<= 2; 1010 if (cache_size != SMP_CACHE_BYTES) { 1011 printk(KERN_INFO " PCI cache line size set incorrectly " 1012 "(%i bytes) by BIOS/FW, ", cache_size); 1013 if (cache_size > SMP_CACHE_BYTES) 1014 printk("expecting %i\n", SMP_CACHE_BYTES); 1015 else { 1016 printk("correcting to %i\n", SMP_CACHE_BYTES); 1017 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 1018 SMP_CACHE_BYTES >> 2); 1019 } 1020 } 1021 1022 pci_state = readl(®s->PciState); 1023 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " 1024 "latency: %i clks\n", 1025 (pci_state & PCI_32BIT) ? 32 : 64, 1026 (pci_state & PCI_66MHZ) ? 66 : 33, 1027 ap->pci_latency); 1028 1029 /* 1030 * Set the max DMA transfer size. Seems that for most systems 1031 * the performance is better when no MAX parameter is 1032 * set. However for systems enabling PCI write and invalidate, 1033 * DMA writes must be set to the L1 cache line size to get 1034 * optimal performance. 1035 * 1036 * The default is now to turn the PCI write and invalidate off 1037 * - that is what Alteon does for NT. 1038 */ 1039 tmp = READ_CMD_MEM | WRITE_CMD_MEM; 1040 if (ap->version >= 2) { 1041 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); 1042 /* 1043 * Tuning parameters only supported for 8 cards 1044 */ 1045 if (board_idx == BOARD_IDX_OVERFLOW || 1046 dis_pci_mem_inval[board_idx]) { 1047 if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1048 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1049 pci_write_config_word(pdev, PCI_COMMAND, 1050 ap->pci_command); 1051 printk(KERN_INFO " Disabling PCI memory " 1052 "write and invalidate\n"); 1053 } 1054 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1055 printk(KERN_INFO " PCI memory write & invalidate " 1056 "enabled by BIOS, enabling counter measures\n"); 1057 1058 switch(SMP_CACHE_BYTES) { 1059 case 16: 1060 tmp |= DMA_WRITE_MAX_16; 1061 break; 1062 case 32: 1063 tmp |= DMA_WRITE_MAX_32; 1064 break; 1065 case 64: 1066 tmp |= DMA_WRITE_MAX_64; 1067 break; 1068 case 128: 1069 tmp |= DMA_WRITE_MAX_128; 1070 break; 1071 default: 1072 printk(KERN_INFO " Cache line size %i not " 1073 "supported, PCI write and invalidate " 1074 "disabled\n", SMP_CACHE_BYTES); 1075 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1076 pci_write_config_word(pdev, PCI_COMMAND, 1077 ap->pci_command); 1078 } 1079 } 1080 } 1081 1082 #ifdef __sparc__ 1083 /* 1084 * On this platform, we know what the best dma settings 1085 * are. We use 64-byte maximum bursts, because if we 1086 * burst larger than the cache line size (or even cross 1087 * a 64byte boundary in a single burst) the UltraSparc 1088 * PCI controller will disconnect at 64-byte multiples. 1089 * 1090 * Read-multiple will be properly enabled above, and when 1091 * set will give the PCI controller proper hints about 1092 * prefetching. 1093 */ 1094 tmp &= ~DMA_READ_WRITE_MASK; 1095 tmp |= DMA_READ_MAX_64; 1096 tmp |= DMA_WRITE_MAX_64; 1097 #endif 1098 #ifdef __alpha__ 1099 tmp &= ~DMA_READ_WRITE_MASK; 1100 tmp |= DMA_READ_MAX_128; 1101 /* 1102 * All the docs say MUST NOT. Well, I did. 1103 * Nothing terrible happens, if we load wrong size. 1104 * Bit w&i still works better! 1105 */ 1106 tmp |= DMA_WRITE_MAX_128; 1107 #endif 1108 writel(tmp, ®s->PciState); 1109 1110 #if 0 1111 /* 1112 * The Host PCI bus controller driver has to set FBB. 1113 * If all devices on that PCI bus support FBB, then the controller 1114 * can enable FBB support in the Host PCI Bus controller (or on 1115 * the PCI-PCI bridge if that applies). 1116 * -ggg 1117 */ 1118 /* 1119 * I have received reports from people having problems when this 1120 * bit is enabled. 1121 */ 1122 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { 1123 printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); 1124 ap->pci_command |= PCI_COMMAND_FAST_BACK; 1125 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); 1126 } 1127 #endif 1128 1129 /* 1130 * Configure DMA attributes. 1131 */ 1132 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 1133 ecode = -ENODEV; 1134 goto init_error; 1135 } 1136 1137 /* 1138 * Initialize the generic info block and the command+event rings 1139 * and the control blocks for the transmit and receive rings 1140 * as they need to be setup once and for all. 1141 */ 1142 if (!(info = dma_alloc_coherent(&ap->pdev->dev, sizeof(struct ace_info), 1143 &ap->info_dma, GFP_KERNEL))) { 1144 ecode = -EAGAIN; 1145 goto init_error; 1146 } 1147 ap->info = info; 1148 1149 /* 1150 * Get the memory for the skb rings. 1151 */ 1152 if (!(ap->skb = kzalloc(sizeof(struct ace_skb), GFP_KERNEL))) { 1153 ecode = -EAGAIN; 1154 goto init_error; 1155 } 1156 1157 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, 1158 DRV_NAME, dev); 1159 if (ecode) { 1160 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1161 DRV_NAME, pdev->irq); 1162 goto init_error; 1163 } else 1164 dev->irq = pdev->irq; 1165 1166 #ifdef INDEX_DEBUG 1167 spin_lock_init(&ap->debug_lock); 1168 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; 1169 ap->last_std_rx = 0; 1170 ap->last_mini_rx = 0; 1171 #endif 1172 1173 ecode = ace_load_firmware(dev); 1174 if (ecode) 1175 goto init_error; 1176 1177 ap->fw_running = 0; 1178 1179 tmp_ptr = ap->info_dma; 1180 writel(tmp_ptr >> 32, ®s->InfoPtrHi); 1181 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); 1182 1183 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); 1184 1185 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); 1186 info->evt_ctrl.flags = 0; 1187 1188 *(ap->evt_prd) = 0; 1189 wmb(); 1190 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); 1191 writel(0, ®s->EvtCsm); 1192 1193 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); 1194 info->cmd_ctrl.flags = 0; 1195 info->cmd_ctrl.max_len = 0; 1196 1197 for (i = 0; i < CMD_RING_ENTRIES; i++) 1198 writel(0, ®s->CmdRng[i]); 1199 1200 writel(0, ®s->CmdPrd); 1201 writel(0, ®s->CmdCsm); 1202 1203 tmp_ptr = ap->info_dma; 1204 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); 1205 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); 1206 1207 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); 1208 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; 1209 info->rx_std_ctrl.flags = 1210 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1211 1212 memset(ap->rx_std_ring, 0, 1213 RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); 1214 1215 for (i = 0; i < RX_STD_RING_ENTRIES; i++) 1216 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; 1217 1218 ap->rx_std_skbprd = 0; 1219 atomic_set(&ap->cur_rx_bufs, 0); 1220 1221 set_aceaddr(&info->rx_jumbo_ctrl.rngptr, 1222 (ap->rx_ring_base_dma + 1223 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); 1224 info->rx_jumbo_ctrl.max_len = 0; 1225 info->rx_jumbo_ctrl.flags = 1226 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1227 1228 memset(ap->rx_jumbo_ring, 0, 1229 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); 1230 1231 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) 1232 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; 1233 1234 ap->rx_jumbo_skbprd = 0; 1235 atomic_set(&ap->cur_jumbo_bufs, 0); 1236 1237 memset(ap->rx_mini_ring, 0, 1238 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); 1239 1240 if (ap->version >= 2) { 1241 set_aceaddr(&info->rx_mini_ctrl.rngptr, 1242 (ap->rx_ring_base_dma + 1243 (sizeof(struct rx_desc) * 1244 (RX_STD_RING_ENTRIES + 1245 RX_JUMBO_RING_ENTRIES)))); 1246 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; 1247 info->rx_mini_ctrl.flags = 1248 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST; 1249 1250 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) 1251 ap->rx_mini_ring[i].flags = 1252 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; 1253 } else { 1254 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); 1255 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; 1256 info->rx_mini_ctrl.max_len = 0; 1257 } 1258 1259 ap->rx_mini_skbprd = 0; 1260 atomic_set(&ap->cur_mini_bufs, 0); 1261 1262 set_aceaddr(&info->rx_return_ctrl.rngptr, 1263 (ap->rx_ring_base_dma + 1264 (sizeof(struct rx_desc) * 1265 (RX_STD_RING_ENTRIES + 1266 RX_JUMBO_RING_ENTRIES + 1267 RX_MINI_RING_ENTRIES)))); 1268 info->rx_return_ctrl.flags = 0; 1269 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; 1270 1271 memset(ap->rx_return_ring, 0, 1272 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); 1273 1274 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); 1275 *(ap->rx_ret_prd) = 0; 1276 1277 writel(TX_RING_BASE, ®s->WinBase); 1278 1279 if (ACE_IS_TIGON_I(ap)) { 1280 ap->tx_ring = (__force struct tx_desc *) regs->Window; 1281 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES 1282 * sizeof(struct tx_desc)) / sizeof(u32); i++) 1283 writel(0, (__force void __iomem *)ap->tx_ring + i * 4); 1284 1285 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); 1286 } else { 1287 memset(ap->tx_ring, 0, 1288 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); 1289 1290 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); 1291 } 1292 1293 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); 1294 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1295 1296 /* 1297 * The Tigon I does not like having the TX ring in host memory ;-( 1298 */ 1299 if (!ACE_IS_TIGON_I(ap)) 1300 tmp |= RCB_FLG_TX_HOST_RING; 1301 #if TX_COAL_INTS_ONLY 1302 tmp |= RCB_FLG_COAL_INT_ONLY; 1303 #endif 1304 info->tx_ctrl.flags = tmp; 1305 1306 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); 1307 1308 /* 1309 * Potential item for tuning parameter 1310 */ 1311 #if 0 /* NO */ 1312 writel(DMA_THRESH_16W, ®s->DmaReadCfg); 1313 writel(DMA_THRESH_16W, ®s->DmaWriteCfg); 1314 #else 1315 writel(DMA_THRESH_8W, ®s->DmaReadCfg); 1316 writel(DMA_THRESH_8W, ®s->DmaWriteCfg); 1317 #endif 1318 1319 writel(0, ®s->MaskInt); 1320 writel(1, ®s->IfIdx); 1321 #if 0 1322 /* 1323 * McKinley boxes do not like us fiddling with AssistState 1324 * this early 1325 */ 1326 writel(1, ®s->AssistState); 1327 #endif 1328 1329 writel(DEF_STAT, ®s->TuneStatTicks); 1330 writel(DEF_TRACE, ®s->TuneTrace); 1331 1332 ace_set_rxtx_parms(dev, 0); 1333 1334 if (board_idx == BOARD_IDX_OVERFLOW) { 1335 printk(KERN_WARNING "%s: more than %i NICs detected, " 1336 "ignoring module parameters!\n", 1337 ap->name, ACE_MAX_MOD_PARMS); 1338 } else if (board_idx >= 0) { 1339 if (tx_coal_tick[board_idx]) 1340 writel(tx_coal_tick[board_idx], 1341 ®s->TuneTxCoalTicks); 1342 if (max_tx_desc[board_idx]) 1343 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); 1344 1345 if (rx_coal_tick[board_idx]) 1346 writel(rx_coal_tick[board_idx], 1347 ®s->TuneRxCoalTicks); 1348 if (max_rx_desc[board_idx]) 1349 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); 1350 1351 if (trace[board_idx]) 1352 writel(trace[board_idx], ®s->TuneTrace); 1353 1354 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) 1355 writel(tx_ratio[board_idx], ®s->TxBufRat); 1356 } 1357 1358 /* 1359 * Default link parameters 1360 */ 1361 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | 1362 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; 1363 if(ap->version >= 2) 1364 tmp |= LNK_TX_FLOW_CTL_Y; 1365 1366 /* 1367 * Override link default parameters 1368 */ 1369 if ((board_idx >= 0) && link_state[board_idx]) { 1370 int option = link_state[board_idx]; 1371 1372 tmp = LNK_ENABLE; 1373 1374 if (option & 0x01) { 1375 printk(KERN_INFO "%s: Setting half duplex link\n", 1376 ap->name); 1377 tmp &= ~LNK_FULL_DUPLEX; 1378 } 1379 if (option & 0x02) 1380 tmp &= ~LNK_NEGOTIATE; 1381 if (option & 0x10) 1382 tmp |= LNK_10MB; 1383 if (option & 0x20) 1384 tmp |= LNK_100MB; 1385 if (option & 0x40) 1386 tmp |= LNK_1000MB; 1387 if ((option & 0x70) == 0) { 1388 printk(KERN_WARNING "%s: No media speed specified, " 1389 "forcing auto negotiation\n", ap->name); 1390 tmp |= LNK_NEGOTIATE | LNK_1000MB | 1391 LNK_100MB | LNK_10MB; 1392 } 1393 if ((option & 0x100) == 0) 1394 tmp |= LNK_NEG_FCTL; 1395 else 1396 printk(KERN_INFO "%s: Disabling flow control " 1397 "negotiation\n", ap->name); 1398 if (option & 0x200) 1399 tmp |= LNK_RX_FLOW_CTL_Y; 1400 if ((option & 0x400) && (ap->version >= 2)) { 1401 printk(KERN_INFO "%s: Enabling TX flow control\n", 1402 ap->name); 1403 tmp |= LNK_TX_FLOW_CTL_Y; 1404 } 1405 } 1406 1407 ap->link = tmp; 1408 writel(tmp, ®s->TuneLink); 1409 if (ap->version >= 2) 1410 writel(tmp, ®s->TuneFastLink); 1411 1412 writel(ap->firmware_start, ®s->Pc); 1413 1414 writel(0, ®s->Mb0Lo); 1415 1416 /* 1417 * Set tx_csm before we start receiving interrupts, otherwise 1418 * the interrupt handler might think it is supposed to process 1419 * tx ints before we are up and running, which may cause a null 1420 * pointer access in the int handler. 1421 */ 1422 ap->cur_rx = 0; 1423 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; 1424 1425 wmb(); 1426 ace_set_txprd(regs, ap, 0); 1427 writel(0, ®s->RxRetCsm); 1428 1429 /* 1430 * Enable DMA engine now. 1431 * If we do this sooner, Mckinley box pukes. 1432 * I assume it's because Tigon II DMA engine wants to check 1433 * *something* even before the CPU is started. 1434 */ 1435 writel(1, ®s->AssistState); /* enable DMA */ 1436 1437 /* 1438 * Start the NIC CPU 1439 */ 1440 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); 1441 readl(®s->CpuCtrl); 1442 1443 /* 1444 * Wait for the firmware to spin up - max 3 seconds. 1445 */ 1446 myjif = jiffies + 3 * HZ; 1447 while (time_before(jiffies, myjif) && !ap->fw_running) 1448 cpu_relax(); 1449 1450 if (!ap->fw_running) { 1451 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); 1452 1453 ace_dump_trace(ap); 1454 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 1455 readl(®s->CpuCtrl); 1456 1457 /* aman@sgi.com - account for badly behaving firmware/NIC: 1458 * - have observed that the NIC may continue to generate 1459 * interrupts for some reason; attempt to stop it - halt 1460 * second CPU for Tigon II cards, and also clear Mb0 1461 * - if we're a module, we'll fail to load if this was 1462 * the only GbE card in the system => if the kernel does 1463 * see an interrupt from the NIC, code to handle it is 1464 * gone and OOps! - so free_irq also 1465 */ 1466 if (ap->version >= 2) 1467 writel(readl(®s->CpuBCtrl) | CPU_HALT, 1468 ®s->CpuBCtrl); 1469 writel(0, ®s->Mb0Lo); 1470 readl(®s->Mb0Lo); 1471 1472 ecode = -EBUSY; 1473 goto init_error; 1474 } 1475 1476 /* 1477 * We load the ring here as there seem to be no way to tell the 1478 * firmware to wipe the ring without re-initializing it. 1479 */ 1480 if (!test_and_set_bit(0, &ap->std_refill_busy)) 1481 ace_load_std_rx_ring(dev, RX_RING_SIZE); 1482 else 1483 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", 1484 ap->name); 1485 if (ap->version >= 2) { 1486 if (!test_and_set_bit(0, &ap->mini_refill_busy)) 1487 ace_load_mini_rx_ring(dev, RX_MINI_SIZE); 1488 else 1489 printk(KERN_ERR "%s: Someone is busy refilling " 1490 "the RX mini ring\n", ap->name); 1491 } 1492 return 0; 1493 1494 init_error: 1495 ace_init_cleanup(dev); 1496 return ecode; 1497 } 1498 1499 1500 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) 1501 { 1502 struct ace_private *ap = netdev_priv(dev); 1503 struct ace_regs __iomem *regs = ap->regs; 1504 int board_idx = ap->board_idx; 1505 1506 if (board_idx >= 0) { 1507 if (!jumbo) { 1508 if (!tx_coal_tick[board_idx]) 1509 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); 1510 if (!max_tx_desc[board_idx]) 1511 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); 1512 if (!rx_coal_tick[board_idx]) 1513 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); 1514 if (!max_rx_desc[board_idx]) 1515 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); 1516 if (!tx_ratio[board_idx]) 1517 writel(DEF_TX_RATIO, ®s->TxBufRat); 1518 } else { 1519 if (!tx_coal_tick[board_idx]) 1520 writel(DEF_JUMBO_TX_COAL, 1521 ®s->TuneTxCoalTicks); 1522 if (!max_tx_desc[board_idx]) 1523 writel(DEF_JUMBO_TX_MAX_DESC, 1524 ®s->TuneMaxTxDesc); 1525 if (!rx_coal_tick[board_idx]) 1526 writel(DEF_JUMBO_RX_COAL, 1527 ®s->TuneRxCoalTicks); 1528 if (!max_rx_desc[board_idx]) 1529 writel(DEF_JUMBO_RX_MAX_DESC, 1530 ®s->TuneMaxRxDesc); 1531 if (!tx_ratio[board_idx]) 1532 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); 1533 } 1534 } 1535 } 1536 1537 1538 static void ace_watchdog(struct net_device *data, unsigned int txqueue) 1539 { 1540 struct net_device *dev = data; 1541 struct ace_private *ap = netdev_priv(dev); 1542 struct ace_regs __iomem *regs = ap->regs; 1543 1544 /* 1545 * We haven't received a stats update event for more than 2.5 1546 * seconds and there is data in the transmit queue, thus we 1547 * assume the card is stuck. 1548 */ 1549 if (*ap->tx_csm != ap->tx_ret_csm) { 1550 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", 1551 dev->name, (unsigned int)readl(®s->HostCtrl)); 1552 /* This can happen due to ieee flow control. */ 1553 } else { 1554 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", 1555 dev->name); 1556 #if 0 1557 netif_wake_queue(dev); 1558 #endif 1559 } 1560 } 1561 1562 1563 static void ace_tasklet(struct tasklet_struct *t) 1564 { 1565 struct ace_private *ap = from_tasklet(ap, t, ace_tasklet); 1566 struct net_device *dev = ap->ndev; 1567 int cur_size; 1568 1569 cur_size = atomic_read(&ap->cur_rx_bufs); 1570 if ((cur_size < RX_LOW_STD_THRES) && 1571 !test_and_set_bit(0, &ap->std_refill_busy)) { 1572 #ifdef DEBUG 1573 printk("refilling buffers (current %i)\n", cur_size); 1574 #endif 1575 ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size); 1576 } 1577 1578 if (ap->version >= 2) { 1579 cur_size = atomic_read(&ap->cur_mini_bufs); 1580 if ((cur_size < RX_LOW_MINI_THRES) && 1581 !test_and_set_bit(0, &ap->mini_refill_busy)) { 1582 #ifdef DEBUG 1583 printk("refilling mini buffers (current %i)\n", 1584 cur_size); 1585 #endif 1586 ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size); 1587 } 1588 } 1589 1590 cur_size = atomic_read(&ap->cur_jumbo_bufs); 1591 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && 1592 !test_and_set_bit(0, &ap->jumbo_refill_busy)) { 1593 #ifdef DEBUG 1594 printk("refilling jumbo buffers (current %i)\n", cur_size); 1595 #endif 1596 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size); 1597 } 1598 ap->tasklet_pending = 0; 1599 } 1600 1601 1602 /* 1603 * Copy the contents of the NIC's trace buffer to kernel memory. 1604 */ 1605 static void ace_dump_trace(struct ace_private *ap) 1606 { 1607 #if 0 1608 if (!ap->trace_buf) 1609 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) 1610 return; 1611 #endif 1612 } 1613 1614 1615 /* 1616 * Load the standard rx ring. 1617 * 1618 * Loading rings is safe without holding the spin lock since this is 1619 * done only before the device is enabled, thus no interrupts are 1620 * generated and by the interrupt handler/tasklet handler. 1621 */ 1622 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs) 1623 { 1624 struct ace_private *ap = netdev_priv(dev); 1625 struct ace_regs __iomem *regs = ap->regs; 1626 short i, idx; 1627 1628 1629 prefetchw(&ap->cur_rx_bufs); 1630 1631 idx = ap->rx_std_skbprd; 1632 1633 for (i = 0; i < nr_bufs; i++) { 1634 struct sk_buff *skb; 1635 struct rx_desc *rd; 1636 dma_addr_t mapping; 1637 1638 skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE); 1639 if (!skb) 1640 break; 1641 1642 mapping = dma_map_page(&ap->pdev->dev, 1643 virt_to_page(skb->data), 1644 offset_in_page(skb->data), 1645 ACE_STD_BUFSIZE, DMA_FROM_DEVICE); 1646 ap->skb->rx_std_skbuff[idx].skb = skb; 1647 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], 1648 mapping, mapping); 1649 1650 rd = &ap->rx_std_ring[idx]; 1651 set_aceaddr(&rd->addr, mapping); 1652 rd->size = ACE_STD_BUFSIZE; 1653 rd->idx = idx; 1654 idx = (idx + 1) % RX_STD_RING_ENTRIES; 1655 } 1656 1657 if (!i) 1658 goto error_out; 1659 1660 atomic_add(i, &ap->cur_rx_bufs); 1661 ap->rx_std_skbprd = idx; 1662 1663 if (ACE_IS_TIGON_I(ap)) { 1664 struct cmd cmd; 1665 cmd.evt = C_SET_RX_PRD_IDX; 1666 cmd.code = 0; 1667 cmd.idx = ap->rx_std_skbprd; 1668 ace_issue_cmd(regs, &cmd); 1669 } else { 1670 writel(idx, ®s->RxStdPrd); 1671 wmb(); 1672 } 1673 1674 out: 1675 clear_bit(0, &ap->std_refill_busy); 1676 return; 1677 1678 error_out: 1679 printk(KERN_INFO "Out of memory when allocating " 1680 "standard receive buffers\n"); 1681 goto out; 1682 } 1683 1684 1685 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs) 1686 { 1687 struct ace_private *ap = netdev_priv(dev); 1688 struct ace_regs __iomem *regs = ap->regs; 1689 short i, idx; 1690 1691 prefetchw(&ap->cur_mini_bufs); 1692 1693 idx = ap->rx_mini_skbprd; 1694 for (i = 0; i < nr_bufs; i++) { 1695 struct sk_buff *skb; 1696 struct rx_desc *rd; 1697 dma_addr_t mapping; 1698 1699 skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE); 1700 if (!skb) 1701 break; 1702 1703 mapping = dma_map_page(&ap->pdev->dev, 1704 virt_to_page(skb->data), 1705 offset_in_page(skb->data), 1706 ACE_MINI_BUFSIZE, DMA_FROM_DEVICE); 1707 ap->skb->rx_mini_skbuff[idx].skb = skb; 1708 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], 1709 mapping, mapping); 1710 1711 rd = &ap->rx_mini_ring[idx]; 1712 set_aceaddr(&rd->addr, mapping); 1713 rd->size = ACE_MINI_BUFSIZE; 1714 rd->idx = idx; 1715 idx = (idx + 1) % RX_MINI_RING_ENTRIES; 1716 } 1717 1718 if (!i) 1719 goto error_out; 1720 1721 atomic_add(i, &ap->cur_mini_bufs); 1722 1723 ap->rx_mini_skbprd = idx; 1724 1725 writel(idx, ®s->RxMiniPrd); 1726 wmb(); 1727 1728 out: 1729 clear_bit(0, &ap->mini_refill_busy); 1730 return; 1731 error_out: 1732 printk(KERN_INFO "Out of memory when allocating " 1733 "mini receive buffers\n"); 1734 goto out; 1735 } 1736 1737 1738 /* 1739 * Load the jumbo rx ring, this may happen at any time if the MTU 1740 * is changed to a value > 1500. 1741 */ 1742 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs) 1743 { 1744 struct ace_private *ap = netdev_priv(dev); 1745 struct ace_regs __iomem *regs = ap->regs; 1746 short i, idx; 1747 1748 idx = ap->rx_jumbo_skbprd; 1749 1750 for (i = 0; i < nr_bufs; i++) { 1751 struct sk_buff *skb; 1752 struct rx_desc *rd; 1753 dma_addr_t mapping; 1754 1755 skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE); 1756 if (!skb) 1757 break; 1758 1759 mapping = dma_map_page(&ap->pdev->dev, 1760 virt_to_page(skb->data), 1761 offset_in_page(skb->data), 1762 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE); 1763 ap->skb->rx_jumbo_skbuff[idx].skb = skb; 1764 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], 1765 mapping, mapping); 1766 1767 rd = &ap->rx_jumbo_ring[idx]; 1768 set_aceaddr(&rd->addr, mapping); 1769 rd->size = ACE_JUMBO_BUFSIZE; 1770 rd->idx = idx; 1771 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; 1772 } 1773 1774 if (!i) 1775 goto error_out; 1776 1777 atomic_add(i, &ap->cur_jumbo_bufs); 1778 ap->rx_jumbo_skbprd = idx; 1779 1780 if (ACE_IS_TIGON_I(ap)) { 1781 struct cmd cmd; 1782 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1783 cmd.code = 0; 1784 cmd.idx = ap->rx_jumbo_skbprd; 1785 ace_issue_cmd(regs, &cmd); 1786 } else { 1787 writel(idx, ®s->RxJumboPrd); 1788 wmb(); 1789 } 1790 1791 out: 1792 clear_bit(0, &ap->jumbo_refill_busy); 1793 return; 1794 error_out: 1795 if (net_ratelimit()) 1796 printk(KERN_INFO "Out of memory when allocating " 1797 "jumbo receive buffers\n"); 1798 goto out; 1799 } 1800 1801 1802 /* 1803 * All events are considered to be slow (RX/TX ints do not generate 1804 * events) and are handled here, outside the main interrupt handler, 1805 * to reduce the size of the handler. 1806 */ 1807 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) 1808 { 1809 struct ace_private *ap; 1810 1811 ap = netdev_priv(dev); 1812 1813 while (evtcsm != evtprd) { 1814 switch (ap->evt_ring[evtcsm].evt) { 1815 case E_FW_RUNNING: 1816 printk(KERN_INFO "%s: Firmware up and running\n", 1817 ap->name); 1818 ap->fw_running = 1; 1819 wmb(); 1820 break; 1821 case E_STATS_UPDATED: 1822 break; 1823 case E_LNK_STATE: 1824 { 1825 u16 code = ap->evt_ring[evtcsm].code; 1826 switch (code) { 1827 case E_C_LINK_UP: 1828 { 1829 u32 state = readl(&ap->regs->GigLnkState); 1830 printk(KERN_WARNING "%s: Optical link UP " 1831 "(%s Duplex, Flow Control: %s%s)\n", 1832 ap->name, 1833 state & LNK_FULL_DUPLEX ? "Full":"Half", 1834 state & LNK_TX_FLOW_CTL_Y ? "TX " : "", 1835 state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); 1836 break; 1837 } 1838 case E_C_LINK_DOWN: 1839 printk(KERN_WARNING "%s: Optical link DOWN\n", 1840 ap->name); 1841 break; 1842 case E_C_LINK_10_100: 1843 printk(KERN_WARNING "%s: 10/100BaseT link " 1844 "UP\n", ap->name); 1845 break; 1846 default: 1847 printk(KERN_ERR "%s: Unknown optical link " 1848 "state %02x\n", ap->name, code); 1849 } 1850 break; 1851 } 1852 case E_ERROR: 1853 switch(ap->evt_ring[evtcsm].code) { 1854 case E_C_ERR_INVAL_CMD: 1855 printk(KERN_ERR "%s: invalid command error\n", 1856 ap->name); 1857 break; 1858 case E_C_ERR_UNIMP_CMD: 1859 printk(KERN_ERR "%s: unimplemented command " 1860 "error\n", ap->name); 1861 break; 1862 case E_C_ERR_BAD_CFG: 1863 printk(KERN_ERR "%s: bad config error\n", 1864 ap->name); 1865 break; 1866 default: 1867 printk(KERN_ERR "%s: unknown error %02x\n", 1868 ap->name, ap->evt_ring[evtcsm].code); 1869 } 1870 break; 1871 case E_RESET_JUMBO_RNG: 1872 { 1873 int i; 1874 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 1875 if (ap->skb->rx_jumbo_skbuff[i].skb) { 1876 ap->rx_jumbo_ring[i].size = 0; 1877 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); 1878 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); 1879 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 1880 } 1881 } 1882 1883 if (ACE_IS_TIGON_I(ap)) { 1884 struct cmd cmd; 1885 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1886 cmd.code = 0; 1887 cmd.idx = 0; 1888 ace_issue_cmd(ap->regs, &cmd); 1889 } else { 1890 writel(0, &((ap->regs)->RxJumboPrd)); 1891 wmb(); 1892 } 1893 1894 ap->jumbo = 0; 1895 ap->rx_jumbo_skbprd = 0; 1896 printk(KERN_INFO "%s: Jumbo ring flushed\n", 1897 ap->name); 1898 clear_bit(0, &ap->jumbo_refill_busy); 1899 break; 1900 } 1901 default: 1902 printk(KERN_ERR "%s: Unhandled event 0x%02x\n", 1903 ap->name, ap->evt_ring[evtcsm].evt); 1904 } 1905 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; 1906 } 1907 1908 return evtcsm; 1909 } 1910 1911 1912 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) 1913 { 1914 struct ace_private *ap = netdev_priv(dev); 1915 u32 idx; 1916 int mini_count = 0, std_count = 0; 1917 1918 idx = rxretcsm; 1919 1920 prefetchw(&ap->cur_rx_bufs); 1921 prefetchw(&ap->cur_mini_bufs); 1922 1923 while (idx != rxretprd) { 1924 struct ring_info *rip; 1925 struct sk_buff *skb; 1926 struct rx_desc *retdesc; 1927 u32 skbidx; 1928 int bd_flags, desc_type, mapsize; 1929 u16 csum; 1930 1931 1932 /* make sure the rx descriptor isn't read before rxretprd */ 1933 if (idx == rxretcsm) 1934 rmb(); 1935 1936 retdesc = &ap->rx_return_ring[idx]; 1937 skbidx = retdesc->idx; 1938 bd_flags = retdesc->flags; 1939 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); 1940 1941 switch(desc_type) { 1942 /* 1943 * Normal frames do not have any flags set 1944 * 1945 * Mini and normal frames arrive frequently, 1946 * so use a local counter to avoid doing 1947 * atomic operations for each packet arriving. 1948 */ 1949 case 0: 1950 rip = &ap->skb->rx_std_skbuff[skbidx]; 1951 mapsize = ACE_STD_BUFSIZE; 1952 std_count++; 1953 break; 1954 case BD_FLG_JUMBO: 1955 rip = &ap->skb->rx_jumbo_skbuff[skbidx]; 1956 mapsize = ACE_JUMBO_BUFSIZE; 1957 atomic_dec(&ap->cur_jumbo_bufs); 1958 break; 1959 case BD_FLG_MINI: 1960 rip = &ap->skb->rx_mini_skbuff[skbidx]; 1961 mapsize = ACE_MINI_BUFSIZE; 1962 mini_count++; 1963 break; 1964 default: 1965 printk(KERN_INFO "%s: unknown frame type (0x%02x) " 1966 "returned by NIC\n", dev->name, 1967 retdesc->flags); 1968 goto error; 1969 } 1970 1971 skb = rip->skb; 1972 rip->skb = NULL; 1973 dma_unmap_page(&ap->pdev->dev, dma_unmap_addr(rip, mapping), 1974 mapsize, DMA_FROM_DEVICE); 1975 skb_put(skb, retdesc->size); 1976 1977 /* 1978 * Fly baby, fly! 1979 */ 1980 csum = retdesc->tcp_udp_csum; 1981 1982 skb->protocol = eth_type_trans(skb, dev); 1983 1984 /* 1985 * Instead of forcing the poor tigon mips cpu to calculate 1986 * pseudo hdr checksum, we do this ourselves. 1987 */ 1988 if (bd_flags & BD_FLG_TCP_UDP_SUM) { 1989 skb->csum = htons(csum); 1990 skb->ip_summed = CHECKSUM_COMPLETE; 1991 } else { 1992 skb_checksum_none_assert(skb); 1993 } 1994 1995 /* send it up */ 1996 if ((bd_flags & BD_FLG_VLAN_TAG)) 1997 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan); 1998 netif_rx(skb); 1999 2000 dev->stats.rx_packets++; 2001 dev->stats.rx_bytes += retdesc->size; 2002 2003 idx = (idx + 1) % RX_RETURN_RING_ENTRIES; 2004 } 2005 2006 atomic_sub(std_count, &ap->cur_rx_bufs); 2007 if (!ACE_IS_TIGON_I(ap)) 2008 atomic_sub(mini_count, &ap->cur_mini_bufs); 2009 2010 out: 2011 /* 2012 * According to the documentation RxRetCsm is obsolete with 2013 * the 12.3.x Firmware - my Tigon I NICs seem to disagree! 2014 */ 2015 if (ACE_IS_TIGON_I(ap)) { 2016 writel(idx, &ap->regs->RxRetCsm); 2017 } 2018 ap->cur_rx = idx; 2019 2020 return; 2021 error: 2022 idx = rxretprd; 2023 goto out; 2024 } 2025 2026 2027 static inline void ace_tx_int(struct net_device *dev, 2028 u32 txcsm, u32 idx) 2029 { 2030 struct ace_private *ap = netdev_priv(dev); 2031 2032 do { 2033 struct sk_buff *skb; 2034 struct tx_ring_info *info; 2035 2036 info = ap->skb->tx_skbuff + idx; 2037 skb = info->skb; 2038 2039 if (dma_unmap_len(info, maplen)) { 2040 dma_unmap_page(&ap->pdev->dev, 2041 dma_unmap_addr(info, mapping), 2042 dma_unmap_len(info, maplen), 2043 DMA_TO_DEVICE); 2044 dma_unmap_len_set(info, maplen, 0); 2045 } 2046 2047 if (skb) { 2048 dev->stats.tx_packets++; 2049 dev->stats.tx_bytes += skb->len; 2050 dev_consume_skb_irq(skb); 2051 info->skb = NULL; 2052 } 2053 2054 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2055 } while (idx != txcsm); 2056 2057 if (netif_queue_stopped(dev)) 2058 netif_wake_queue(dev); 2059 2060 wmb(); 2061 ap->tx_ret_csm = txcsm; 2062 2063 /* So... tx_ret_csm is advanced _after_ check for device wakeup. 2064 * 2065 * We could try to make it before. In this case we would get 2066 * the following race condition: hard_start_xmit on other cpu 2067 * enters after we advanced tx_ret_csm and fills space, 2068 * which we have just freed, so that we make illegal device wakeup. 2069 * There is no good way to workaround this (at entry 2070 * to ace_start_xmit detects this condition and prevents 2071 * ring corruption, but it is not a good workaround.) 2072 * 2073 * When tx_ret_csm is advanced after, we wake up device _only_ 2074 * if we really have some space in ring (though the core doing 2075 * hard_start_xmit can see full ring for some period and has to 2076 * synchronize.) Superb. 2077 * BUT! We get another subtle race condition. hard_start_xmit 2078 * may think that ring is full between wakeup and advancing 2079 * tx_ret_csm and will stop device instantly! It is not so bad. 2080 * We are guaranteed that there is something in ring, so that 2081 * the next irq will resume transmission. To speedup this we could 2082 * mark descriptor, which closes ring with BD_FLG_COAL_NOW 2083 * (see ace_start_xmit). 2084 * 2085 * Well, this dilemma exists in all lock-free devices. 2086 * We, following scheme used in drivers by Donald Becker, 2087 * select the least dangerous. 2088 * --ANK 2089 */ 2090 } 2091 2092 2093 static irqreturn_t ace_interrupt(int irq, void *dev_id) 2094 { 2095 struct net_device *dev = (struct net_device *)dev_id; 2096 struct ace_private *ap = netdev_priv(dev); 2097 struct ace_regs __iomem *regs = ap->regs; 2098 u32 idx; 2099 u32 txcsm, rxretcsm, rxretprd; 2100 u32 evtcsm, evtprd; 2101 2102 /* 2103 * In case of PCI shared interrupts or spurious interrupts, 2104 * we want to make sure it is actually our interrupt before 2105 * spending any time in here. 2106 */ 2107 if (!(readl(®s->HostCtrl) & IN_INT)) 2108 return IRQ_NONE; 2109 2110 /* 2111 * ACK intr now. Otherwise we will lose updates to rx_ret_prd, 2112 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before 2113 * writel(0, ®s->Mb0Lo). 2114 * 2115 * "IRQ avoidance" recommended in docs applies to IRQs served 2116 * threads and it is wrong even for that case. 2117 */ 2118 writel(0, ®s->Mb0Lo); 2119 readl(®s->Mb0Lo); 2120 2121 /* 2122 * There is no conflict between transmit handling in 2123 * start_xmit and receive processing, thus there is no reason 2124 * to take a spin lock for RX handling. Wait until we start 2125 * working on the other stuff - hey we don't need a spin lock 2126 * anymore. 2127 */ 2128 rxretprd = *ap->rx_ret_prd; 2129 rxretcsm = ap->cur_rx; 2130 2131 if (rxretprd != rxretcsm) 2132 ace_rx_int(dev, rxretprd, rxretcsm); 2133 2134 txcsm = *ap->tx_csm; 2135 idx = ap->tx_ret_csm; 2136 2137 if (txcsm != idx) { 2138 /* 2139 * If each skb takes only one descriptor this check degenerates 2140 * to identity, because new space has just been opened. 2141 * But if skbs are fragmented we must check that this index 2142 * update releases enough of space, otherwise we just 2143 * wait for device to make more work. 2144 */ 2145 if (!tx_ring_full(ap, txcsm, ap->tx_prd)) 2146 ace_tx_int(dev, txcsm, idx); 2147 } 2148 2149 evtcsm = readl(®s->EvtCsm); 2150 evtprd = *ap->evt_prd; 2151 2152 if (evtcsm != evtprd) { 2153 evtcsm = ace_handle_event(dev, evtcsm, evtprd); 2154 writel(evtcsm, ®s->EvtCsm); 2155 } 2156 2157 /* 2158 * This has to go last in the interrupt handler and run with 2159 * the spin lock released ... what lock? 2160 */ 2161 if (netif_running(dev)) { 2162 int cur_size; 2163 int run_tasklet = 0; 2164 2165 cur_size = atomic_read(&ap->cur_rx_bufs); 2166 if (cur_size < RX_LOW_STD_THRES) { 2167 if ((cur_size < RX_PANIC_STD_THRES) && 2168 !test_and_set_bit(0, &ap->std_refill_busy)) { 2169 #ifdef DEBUG 2170 printk("low on std buffers %i\n", cur_size); 2171 #endif 2172 ace_load_std_rx_ring(dev, 2173 RX_RING_SIZE - cur_size); 2174 } else 2175 run_tasklet = 1; 2176 } 2177 2178 if (!ACE_IS_TIGON_I(ap)) { 2179 cur_size = atomic_read(&ap->cur_mini_bufs); 2180 if (cur_size < RX_LOW_MINI_THRES) { 2181 if ((cur_size < RX_PANIC_MINI_THRES) && 2182 !test_and_set_bit(0, 2183 &ap->mini_refill_busy)) { 2184 #ifdef DEBUG 2185 printk("low on mini buffers %i\n", 2186 cur_size); 2187 #endif 2188 ace_load_mini_rx_ring(dev, 2189 RX_MINI_SIZE - cur_size); 2190 } else 2191 run_tasklet = 1; 2192 } 2193 } 2194 2195 if (ap->jumbo) { 2196 cur_size = atomic_read(&ap->cur_jumbo_bufs); 2197 if (cur_size < RX_LOW_JUMBO_THRES) { 2198 if ((cur_size < RX_PANIC_JUMBO_THRES) && 2199 !test_and_set_bit(0, 2200 &ap->jumbo_refill_busy)){ 2201 #ifdef DEBUG 2202 printk("low on jumbo buffers %i\n", 2203 cur_size); 2204 #endif 2205 ace_load_jumbo_rx_ring(dev, 2206 RX_JUMBO_SIZE - cur_size); 2207 } else 2208 run_tasklet = 1; 2209 } 2210 } 2211 if (run_tasklet && !ap->tasklet_pending) { 2212 ap->tasklet_pending = 1; 2213 tasklet_schedule(&ap->ace_tasklet); 2214 } 2215 } 2216 2217 return IRQ_HANDLED; 2218 } 2219 2220 static int ace_open(struct net_device *dev) 2221 { 2222 struct ace_private *ap = netdev_priv(dev); 2223 struct ace_regs __iomem *regs = ap->regs; 2224 struct cmd cmd; 2225 2226 if (!(ap->fw_running)) { 2227 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); 2228 return -EBUSY; 2229 } 2230 2231 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); 2232 2233 cmd.evt = C_CLEAR_STATS; 2234 cmd.code = 0; 2235 cmd.idx = 0; 2236 ace_issue_cmd(regs, &cmd); 2237 2238 cmd.evt = C_HOST_STATE; 2239 cmd.code = C_C_STACK_UP; 2240 cmd.idx = 0; 2241 ace_issue_cmd(regs, &cmd); 2242 2243 if (ap->jumbo && 2244 !test_and_set_bit(0, &ap->jumbo_refill_busy)) 2245 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2246 2247 if (dev->flags & IFF_PROMISC) { 2248 cmd.evt = C_SET_PROMISC_MODE; 2249 cmd.code = C_C_PROMISC_ENABLE; 2250 cmd.idx = 0; 2251 ace_issue_cmd(regs, &cmd); 2252 2253 ap->promisc = 1; 2254 }else 2255 ap->promisc = 0; 2256 ap->mcast_all = 0; 2257 2258 #if 0 2259 cmd.evt = C_LNK_NEGOTIATION; 2260 cmd.code = 0; 2261 cmd.idx = 0; 2262 ace_issue_cmd(regs, &cmd); 2263 #endif 2264 2265 netif_start_queue(dev); 2266 2267 /* 2268 * Setup the bottom half rx ring refill handler 2269 */ 2270 tasklet_setup(&ap->ace_tasklet, ace_tasklet); 2271 return 0; 2272 } 2273 2274 2275 static int ace_close(struct net_device *dev) 2276 { 2277 struct ace_private *ap = netdev_priv(dev); 2278 struct ace_regs __iomem *regs = ap->regs; 2279 struct cmd cmd; 2280 unsigned long flags; 2281 short i; 2282 2283 /* 2284 * Without (or before) releasing irq and stopping hardware, this 2285 * is an absolute non-sense, by the way. It will be reset instantly 2286 * by the first irq. 2287 */ 2288 netif_stop_queue(dev); 2289 2290 2291 if (ap->promisc) { 2292 cmd.evt = C_SET_PROMISC_MODE; 2293 cmd.code = C_C_PROMISC_DISABLE; 2294 cmd.idx = 0; 2295 ace_issue_cmd(regs, &cmd); 2296 ap->promisc = 0; 2297 } 2298 2299 cmd.evt = C_HOST_STATE; 2300 cmd.code = C_C_STACK_DOWN; 2301 cmd.idx = 0; 2302 ace_issue_cmd(regs, &cmd); 2303 2304 tasklet_kill(&ap->ace_tasklet); 2305 2306 /* 2307 * Make sure one CPU is not processing packets while 2308 * buffers are being released by another. 2309 */ 2310 2311 local_irq_save(flags); 2312 ace_mask_irq(dev); 2313 2314 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { 2315 struct sk_buff *skb; 2316 struct tx_ring_info *info; 2317 2318 info = ap->skb->tx_skbuff + i; 2319 skb = info->skb; 2320 2321 if (dma_unmap_len(info, maplen)) { 2322 if (ACE_IS_TIGON_I(ap)) { 2323 /* NB: TIGON_1 is special, tx_ring is in io space */ 2324 struct tx_desc __iomem *tx; 2325 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i]; 2326 writel(0, &tx->addr.addrhi); 2327 writel(0, &tx->addr.addrlo); 2328 writel(0, &tx->flagsize); 2329 } else 2330 memset(ap->tx_ring + i, 0, 2331 sizeof(struct tx_desc)); 2332 dma_unmap_page(&ap->pdev->dev, 2333 dma_unmap_addr(info, mapping), 2334 dma_unmap_len(info, maplen), 2335 DMA_TO_DEVICE); 2336 dma_unmap_len_set(info, maplen, 0); 2337 } 2338 if (skb) { 2339 dev_kfree_skb(skb); 2340 info->skb = NULL; 2341 } 2342 } 2343 2344 if (ap->jumbo) { 2345 cmd.evt = C_RESET_JUMBO_RNG; 2346 cmd.code = 0; 2347 cmd.idx = 0; 2348 ace_issue_cmd(regs, &cmd); 2349 } 2350 2351 ace_unmask_irq(dev); 2352 local_irq_restore(flags); 2353 2354 return 0; 2355 } 2356 2357 2358 static inline dma_addr_t 2359 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, 2360 struct sk_buff *tail, u32 idx) 2361 { 2362 dma_addr_t mapping; 2363 struct tx_ring_info *info; 2364 2365 mapping = dma_map_page(&ap->pdev->dev, virt_to_page(skb->data), 2366 offset_in_page(skb->data), skb->len, 2367 DMA_TO_DEVICE); 2368 2369 info = ap->skb->tx_skbuff + idx; 2370 info->skb = tail; 2371 dma_unmap_addr_set(info, mapping, mapping); 2372 dma_unmap_len_set(info, maplen, skb->len); 2373 return mapping; 2374 } 2375 2376 2377 static inline void 2378 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, 2379 u32 flagsize, u32 vlan_tag) 2380 { 2381 #if !USE_TX_COAL_NOW 2382 flagsize &= ~BD_FLG_COAL_NOW; 2383 #endif 2384 2385 if (ACE_IS_TIGON_I(ap)) { 2386 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc; 2387 writel(addr >> 32, &io->addr.addrhi); 2388 writel(addr & 0xffffffff, &io->addr.addrlo); 2389 writel(flagsize, &io->flagsize); 2390 writel(vlan_tag, &io->vlanres); 2391 } else { 2392 desc->addr.addrhi = addr >> 32; 2393 desc->addr.addrlo = addr; 2394 desc->flagsize = flagsize; 2395 desc->vlanres = vlan_tag; 2396 } 2397 } 2398 2399 2400 static netdev_tx_t ace_start_xmit(struct sk_buff *skb, 2401 struct net_device *dev) 2402 { 2403 struct ace_private *ap = netdev_priv(dev); 2404 struct ace_regs __iomem *regs = ap->regs; 2405 struct tx_desc *desc; 2406 u32 idx, flagsize; 2407 unsigned long maxjiff = jiffies + 3*HZ; 2408 2409 restart: 2410 idx = ap->tx_prd; 2411 2412 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2413 goto overflow; 2414 2415 if (!skb_shinfo(skb)->nr_frags) { 2416 dma_addr_t mapping; 2417 u32 vlan_tag = 0; 2418 2419 mapping = ace_map_tx_skb(ap, skb, skb, idx); 2420 flagsize = (skb->len << 16) | (BD_FLG_END); 2421 if (skb->ip_summed == CHECKSUM_PARTIAL) 2422 flagsize |= BD_FLG_TCP_UDP_SUM; 2423 if (skb_vlan_tag_present(skb)) { 2424 flagsize |= BD_FLG_VLAN_TAG; 2425 vlan_tag = skb_vlan_tag_get(skb); 2426 } 2427 desc = ap->tx_ring + idx; 2428 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2429 2430 /* Look at ace_tx_int for explanations. */ 2431 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2432 flagsize |= BD_FLG_COAL_NOW; 2433 2434 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2435 } else { 2436 dma_addr_t mapping; 2437 u32 vlan_tag = 0; 2438 int i; 2439 2440 mapping = ace_map_tx_skb(ap, skb, NULL, idx); 2441 flagsize = (skb_headlen(skb) << 16); 2442 if (skb->ip_summed == CHECKSUM_PARTIAL) 2443 flagsize |= BD_FLG_TCP_UDP_SUM; 2444 if (skb_vlan_tag_present(skb)) { 2445 flagsize |= BD_FLG_VLAN_TAG; 2446 vlan_tag = skb_vlan_tag_get(skb); 2447 } 2448 2449 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); 2450 2451 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2452 2453 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2454 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2455 struct tx_ring_info *info; 2456 2457 info = ap->skb->tx_skbuff + idx; 2458 desc = ap->tx_ring + idx; 2459 2460 mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0, 2461 skb_frag_size(frag), 2462 DMA_TO_DEVICE); 2463 2464 flagsize = skb_frag_size(frag) << 16; 2465 if (skb->ip_summed == CHECKSUM_PARTIAL) 2466 flagsize |= BD_FLG_TCP_UDP_SUM; 2467 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2468 2469 if (i == skb_shinfo(skb)->nr_frags - 1) { 2470 flagsize |= BD_FLG_END; 2471 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2472 flagsize |= BD_FLG_COAL_NOW; 2473 2474 /* 2475 * Only the last fragment frees 2476 * the skb! 2477 */ 2478 info->skb = skb; 2479 } else { 2480 info->skb = NULL; 2481 } 2482 dma_unmap_addr_set(info, mapping, mapping); 2483 dma_unmap_len_set(info, maplen, skb_frag_size(frag)); 2484 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2485 } 2486 } 2487 2488 wmb(); 2489 ap->tx_prd = idx; 2490 ace_set_txprd(regs, ap, idx); 2491 2492 if (flagsize & BD_FLG_COAL_NOW) { 2493 netif_stop_queue(dev); 2494 2495 /* 2496 * A TX-descriptor producer (an IRQ) might have gotten 2497 * between, making the ring free again. Since xmit is 2498 * serialized, this is the only situation we have to 2499 * re-test. 2500 */ 2501 if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) 2502 netif_wake_queue(dev); 2503 } 2504 2505 return NETDEV_TX_OK; 2506 2507 overflow: 2508 /* 2509 * This race condition is unavoidable with lock-free drivers. 2510 * We wake up the queue _before_ tx_prd is advanced, so that we can 2511 * enter hard_start_xmit too early, while tx ring still looks closed. 2512 * This happens ~1-4 times per 100000 packets, so that we can allow 2513 * to loop syncing to other CPU. Probably, we need an additional 2514 * wmb() in ace_tx_intr as well. 2515 * 2516 * Note that this race is relieved by reserving one more entry 2517 * in tx ring than it is necessary (see original non-SG driver). 2518 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which 2519 * is already overkill. 2520 * 2521 * Alternative is to return with 1 not throttling queue. In this 2522 * case loop becomes longer, no more useful effects. 2523 */ 2524 if (time_before(jiffies, maxjiff)) { 2525 barrier(); 2526 cpu_relax(); 2527 goto restart; 2528 } 2529 2530 /* The ring is stuck full. */ 2531 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); 2532 return NETDEV_TX_BUSY; 2533 } 2534 2535 2536 static int ace_change_mtu(struct net_device *dev, int new_mtu) 2537 { 2538 struct ace_private *ap = netdev_priv(dev); 2539 struct ace_regs __iomem *regs = ap->regs; 2540 2541 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); 2542 WRITE_ONCE(dev->mtu, new_mtu); 2543 2544 if (new_mtu > ACE_STD_MTU) { 2545 if (!(ap->jumbo)) { 2546 printk(KERN_INFO "%s: Enabling Jumbo frame " 2547 "support\n", dev->name); 2548 ap->jumbo = 1; 2549 if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) 2550 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2551 ace_set_rxtx_parms(dev, 1); 2552 } 2553 } else { 2554 while (test_and_set_bit(0, &ap->jumbo_refill_busy)); 2555 ace_sync_irq(dev->irq); 2556 ace_set_rxtx_parms(dev, 0); 2557 if (ap->jumbo) { 2558 struct cmd cmd; 2559 2560 cmd.evt = C_RESET_JUMBO_RNG; 2561 cmd.code = 0; 2562 cmd.idx = 0; 2563 ace_issue_cmd(regs, &cmd); 2564 } 2565 } 2566 2567 return 0; 2568 } 2569 2570 static int ace_get_link_ksettings(struct net_device *dev, 2571 struct ethtool_link_ksettings *cmd) 2572 { 2573 struct ace_private *ap = netdev_priv(dev); 2574 struct ace_regs __iomem *regs = ap->regs; 2575 u32 link; 2576 u32 supported; 2577 2578 memset(cmd, 0, sizeof(struct ethtool_link_ksettings)); 2579 2580 supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2581 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2582 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | 2583 SUPPORTED_Autoneg | SUPPORTED_FIBRE); 2584 2585 cmd->base.port = PORT_FIBRE; 2586 2587 link = readl(®s->GigLnkState); 2588 if (link & LNK_1000MB) { 2589 cmd->base.speed = SPEED_1000; 2590 } else { 2591 link = readl(®s->FastLnkState); 2592 if (link & LNK_100MB) 2593 cmd->base.speed = SPEED_100; 2594 else if (link & LNK_10MB) 2595 cmd->base.speed = SPEED_10; 2596 else 2597 cmd->base.speed = 0; 2598 } 2599 if (link & LNK_FULL_DUPLEX) 2600 cmd->base.duplex = DUPLEX_FULL; 2601 else 2602 cmd->base.duplex = DUPLEX_HALF; 2603 2604 if (link & LNK_NEGOTIATE) 2605 cmd->base.autoneg = AUTONEG_ENABLE; 2606 else 2607 cmd->base.autoneg = AUTONEG_DISABLE; 2608 2609 #if 0 2610 /* 2611 * Current struct ethtool_cmd is insufficient 2612 */ 2613 ecmd->trace = readl(®s->TuneTrace); 2614 2615 ecmd->txcoal = readl(®s->TuneTxCoalTicks); 2616 ecmd->rxcoal = readl(®s->TuneRxCoalTicks); 2617 #endif 2618 2619 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 2620 supported); 2621 2622 return 0; 2623 } 2624 2625 static int ace_set_link_ksettings(struct net_device *dev, 2626 const struct ethtool_link_ksettings *cmd) 2627 { 2628 struct ace_private *ap = netdev_priv(dev); 2629 struct ace_regs __iomem *regs = ap->regs; 2630 u32 link, speed; 2631 2632 link = readl(®s->GigLnkState); 2633 if (link & LNK_1000MB) 2634 speed = SPEED_1000; 2635 else { 2636 link = readl(®s->FastLnkState); 2637 if (link & LNK_100MB) 2638 speed = SPEED_100; 2639 else if (link & LNK_10MB) 2640 speed = SPEED_10; 2641 else 2642 speed = SPEED_100; 2643 } 2644 2645 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | 2646 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; 2647 if (!ACE_IS_TIGON_I(ap)) 2648 link |= LNK_TX_FLOW_CTL_Y; 2649 if (cmd->base.autoneg == AUTONEG_ENABLE) 2650 link |= LNK_NEGOTIATE; 2651 if (cmd->base.speed != speed) { 2652 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); 2653 switch (cmd->base.speed) { 2654 case SPEED_1000: 2655 link |= LNK_1000MB; 2656 break; 2657 case SPEED_100: 2658 link |= LNK_100MB; 2659 break; 2660 case SPEED_10: 2661 link |= LNK_10MB; 2662 break; 2663 } 2664 } 2665 2666 if (cmd->base.duplex == DUPLEX_FULL) 2667 link |= LNK_FULL_DUPLEX; 2668 2669 if (link != ap->link) { 2670 struct cmd cmd; 2671 printk(KERN_INFO "%s: Renegotiating link state\n", 2672 dev->name); 2673 2674 ap->link = link; 2675 writel(link, ®s->TuneLink); 2676 if (!ACE_IS_TIGON_I(ap)) 2677 writel(link, ®s->TuneFastLink); 2678 wmb(); 2679 2680 cmd.evt = C_LNK_NEGOTIATION; 2681 cmd.code = 0; 2682 cmd.idx = 0; 2683 ace_issue_cmd(regs, &cmd); 2684 } 2685 return 0; 2686 } 2687 2688 static void ace_get_drvinfo(struct net_device *dev, 2689 struct ethtool_drvinfo *info) 2690 { 2691 struct ace_private *ap = netdev_priv(dev); 2692 2693 strscpy(info->driver, "acenic", sizeof(info->driver)); 2694 snprintf(info->fw_version, sizeof(info->version), "%i.%i.%i", 2695 ap->firmware_major, ap->firmware_minor, ap->firmware_fix); 2696 2697 if (ap->pdev) 2698 strscpy(info->bus_info, pci_name(ap->pdev), 2699 sizeof(info->bus_info)); 2700 2701 } 2702 2703 /* 2704 * Set the hardware MAC address. 2705 */ 2706 static int ace_set_mac_addr(struct net_device *dev, void *p) 2707 { 2708 struct ace_private *ap = netdev_priv(dev); 2709 struct ace_regs __iomem *regs = ap->regs; 2710 struct sockaddr *addr=p; 2711 const u8 *da; 2712 struct cmd cmd; 2713 2714 if(netif_running(dev)) 2715 return -EBUSY; 2716 2717 eth_hw_addr_set(dev, addr->sa_data); 2718 2719 da = (const u8 *)dev->dev_addr; 2720 2721 writel(da[0] << 8 | da[1], ®s->MacAddrHi); 2722 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], 2723 ®s->MacAddrLo); 2724 2725 cmd.evt = C_SET_MAC_ADDR; 2726 cmd.code = 0; 2727 cmd.idx = 0; 2728 ace_issue_cmd(regs, &cmd); 2729 2730 return 0; 2731 } 2732 2733 2734 static void ace_set_multicast_list(struct net_device *dev) 2735 { 2736 struct ace_private *ap = netdev_priv(dev); 2737 struct ace_regs __iomem *regs = ap->regs; 2738 struct cmd cmd; 2739 2740 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { 2741 cmd.evt = C_SET_MULTICAST_MODE; 2742 cmd.code = C_C_MCAST_ENABLE; 2743 cmd.idx = 0; 2744 ace_issue_cmd(regs, &cmd); 2745 ap->mcast_all = 1; 2746 } else if (ap->mcast_all) { 2747 cmd.evt = C_SET_MULTICAST_MODE; 2748 cmd.code = C_C_MCAST_DISABLE; 2749 cmd.idx = 0; 2750 ace_issue_cmd(regs, &cmd); 2751 ap->mcast_all = 0; 2752 } 2753 2754 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { 2755 cmd.evt = C_SET_PROMISC_MODE; 2756 cmd.code = C_C_PROMISC_ENABLE; 2757 cmd.idx = 0; 2758 ace_issue_cmd(regs, &cmd); 2759 ap->promisc = 1; 2760 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { 2761 cmd.evt = C_SET_PROMISC_MODE; 2762 cmd.code = C_C_PROMISC_DISABLE; 2763 cmd.idx = 0; 2764 ace_issue_cmd(regs, &cmd); 2765 ap->promisc = 0; 2766 } 2767 2768 /* 2769 * For the time being multicast relies on the upper layers 2770 * filtering it properly. The Firmware does not allow one to 2771 * set the entire multicast list at a time and keeping track of 2772 * it here is going to be messy. 2773 */ 2774 if (!netdev_mc_empty(dev) && !ap->mcast_all) { 2775 cmd.evt = C_SET_MULTICAST_MODE; 2776 cmd.code = C_C_MCAST_ENABLE; 2777 cmd.idx = 0; 2778 ace_issue_cmd(regs, &cmd); 2779 }else if (!ap->mcast_all) { 2780 cmd.evt = C_SET_MULTICAST_MODE; 2781 cmd.code = C_C_MCAST_DISABLE; 2782 cmd.idx = 0; 2783 ace_issue_cmd(regs, &cmd); 2784 } 2785 } 2786 2787 2788 static struct net_device_stats *ace_get_stats(struct net_device *dev) 2789 { 2790 struct ace_private *ap = netdev_priv(dev); 2791 struct ace_mac_stats __iomem *mac_stats = 2792 (struct ace_mac_stats __iomem *)ap->regs->Stats; 2793 2794 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space); 2795 dev->stats.multicast = readl(&mac_stats->kept_mc); 2796 dev->stats.collisions = readl(&mac_stats->coll); 2797 2798 return &dev->stats; 2799 } 2800 2801 2802 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src, 2803 u32 dest, int size) 2804 { 2805 void __iomem *tdest; 2806 short tsize, i; 2807 2808 if (size <= 0) 2809 return; 2810 2811 while (size > 0) { 2812 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2813 min_t(u32, size, ACE_WINDOW_SIZE)); 2814 tdest = (void __iomem *) ®s->Window + 2815 (dest & (ACE_WINDOW_SIZE - 1)); 2816 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2817 for (i = 0; i < (tsize / 4); i++) { 2818 /* Firmware is big-endian */ 2819 writel(be32_to_cpup(src), tdest); 2820 src++; 2821 tdest += 4; 2822 dest += 4; 2823 size -= 4; 2824 } 2825 } 2826 } 2827 2828 2829 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) 2830 { 2831 void __iomem *tdest; 2832 short tsize = 0, i; 2833 2834 if (size <= 0) 2835 return; 2836 2837 while (size > 0) { 2838 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2839 min_t(u32, size, ACE_WINDOW_SIZE)); 2840 tdest = (void __iomem *) ®s->Window + 2841 (dest & (ACE_WINDOW_SIZE - 1)); 2842 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2843 2844 for (i = 0; i < (tsize / 4); i++) { 2845 writel(0, tdest + i*4); 2846 } 2847 2848 dest += tsize; 2849 size -= tsize; 2850 } 2851 } 2852 2853 2854 /* 2855 * Download the firmware into the SRAM on the NIC 2856 * 2857 * This operation requires the NIC to be halted and is performed with 2858 * interrupts disabled and with the spinlock hold. 2859 */ 2860 static int ace_load_firmware(struct net_device *dev) 2861 { 2862 const struct firmware *fw; 2863 const char *fw_name = "acenic/tg2.bin"; 2864 struct ace_private *ap = netdev_priv(dev); 2865 struct ace_regs __iomem *regs = ap->regs; 2866 const __be32 *fw_data; 2867 u32 load_addr; 2868 int ret; 2869 2870 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { 2871 printk(KERN_ERR "%s: trying to download firmware while the " 2872 "CPU is running!\n", ap->name); 2873 return -EFAULT; 2874 } 2875 2876 if (ACE_IS_TIGON_I(ap)) 2877 fw_name = "acenic/tg1.bin"; 2878 2879 ret = request_firmware(&fw, fw_name, &ap->pdev->dev); 2880 if (ret) { 2881 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n", 2882 ap->name, fw_name); 2883 return ret; 2884 } 2885 2886 fw_data = (void *)fw->data; 2887 2888 /* Firmware blob starts with version numbers, followed by 2889 load and start address. Remainder is the blob to be loaded 2890 contiguously from load address. We don't bother to represent 2891 the BSS/SBSS sections any more, since we were clearing the 2892 whole thing anyway. */ 2893 ap->firmware_major = fw->data[0]; 2894 ap->firmware_minor = fw->data[1]; 2895 ap->firmware_fix = fw->data[2]; 2896 2897 ap->firmware_start = be32_to_cpu(fw_data[1]); 2898 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) { 2899 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2900 ap->name, ap->firmware_start, fw_name); 2901 ret = -EINVAL; 2902 goto out; 2903 } 2904 2905 load_addr = be32_to_cpu(fw_data[2]); 2906 if (load_addr < 0x4000 || load_addr >= 0x80000) { 2907 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2908 ap->name, load_addr, fw_name); 2909 ret = -EINVAL; 2910 goto out; 2911 } 2912 2913 /* 2914 * Do not try to clear more than 512KiB or we end up seeing 2915 * funny things on NICs with only 512KiB SRAM 2916 */ 2917 ace_clear(regs, 0x2000, 0x80000-0x2000); 2918 ace_copy(regs, &fw_data[3], load_addr, fw->size-12); 2919 out: 2920 release_firmware(fw); 2921 return ret; 2922 } 2923 2924 2925 /* 2926 * The eeprom on the AceNIC is an Atmel i2c EEPROM. 2927 * 2928 * Accessing the EEPROM is `interesting' to say the least - don't read 2929 * this code right after dinner. 2930 * 2931 * This is all about black magic and bit-banging the device .... I 2932 * wonder in what hospital they have put the guy who designed the i2c 2933 * specs. 2934 * 2935 * Oh yes, this is only the beginning! 2936 * 2937 * Thanks to Stevarino Webinski for helping tracking down the bugs in the 2938 * code i2c readout code by beta testing all my hacks. 2939 */ 2940 static void eeprom_start(struct ace_regs __iomem *regs) 2941 { 2942 u32 local; 2943 2944 readl(®s->LocalCtrl); 2945 udelay(ACE_SHORT_DELAY); 2946 local = readl(®s->LocalCtrl); 2947 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; 2948 writel(local, ®s->LocalCtrl); 2949 readl(®s->LocalCtrl); 2950 mb(); 2951 udelay(ACE_SHORT_DELAY); 2952 local |= EEPROM_CLK_OUT; 2953 writel(local, ®s->LocalCtrl); 2954 readl(®s->LocalCtrl); 2955 mb(); 2956 udelay(ACE_SHORT_DELAY); 2957 local &= ~EEPROM_DATA_OUT; 2958 writel(local, ®s->LocalCtrl); 2959 readl(®s->LocalCtrl); 2960 mb(); 2961 udelay(ACE_SHORT_DELAY); 2962 local &= ~EEPROM_CLK_OUT; 2963 writel(local, ®s->LocalCtrl); 2964 readl(®s->LocalCtrl); 2965 mb(); 2966 } 2967 2968 2969 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic) 2970 { 2971 short i; 2972 u32 local; 2973 2974 udelay(ACE_SHORT_DELAY); 2975 local = readl(®s->LocalCtrl); 2976 local &= ~EEPROM_DATA_OUT; 2977 local |= EEPROM_WRITE_ENABLE; 2978 writel(local, ®s->LocalCtrl); 2979 readl(®s->LocalCtrl); 2980 mb(); 2981 2982 for (i = 0; i < 8; i++, magic <<= 1) { 2983 udelay(ACE_SHORT_DELAY); 2984 if (magic & 0x80) 2985 local |= EEPROM_DATA_OUT; 2986 else 2987 local &= ~EEPROM_DATA_OUT; 2988 writel(local, ®s->LocalCtrl); 2989 readl(®s->LocalCtrl); 2990 mb(); 2991 2992 udelay(ACE_SHORT_DELAY); 2993 local |= EEPROM_CLK_OUT; 2994 writel(local, ®s->LocalCtrl); 2995 readl(®s->LocalCtrl); 2996 mb(); 2997 udelay(ACE_SHORT_DELAY); 2998 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); 2999 writel(local, ®s->LocalCtrl); 3000 readl(®s->LocalCtrl); 3001 mb(); 3002 } 3003 } 3004 3005 3006 static int eeprom_check_ack(struct ace_regs __iomem *regs) 3007 { 3008 int state; 3009 u32 local; 3010 3011 local = readl(®s->LocalCtrl); 3012 local &= ~EEPROM_WRITE_ENABLE; 3013 writel(local, ®s->LocalCtrl); 3014 readl(®s->LocalCtrl); 3015 mb(); 3016 udelay(ACE_LONG_DELAY); 3017 local |= EEPROM_CLK_OUT; 3018 writel(local, ®s->LocalCtrl); 3019 readl(®s->LocalCtrl); 3020 mb(); 3021 udelay(ACE_SHORT_DELAY); 3022 /* sample data in middle of high clk */ 3023 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; 3024 udelay(ACE_SHORT_DELAY); 3025 mb(); 3026 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3027 readl(®s->LocalCtrl); 3028 mb(); 3029 3030 return state; 3031 } 3032 3033 3034 static void eeprom_stop(struct ace_regs __iomem *regs) 3035 { 3036 u32 local; 3037 3038 udelay(ACE_SHORT_DELAY); 3039 local = readl(®s->LocalCtrl); 3040 local |= EEPROM_WRITE_ENABLE; 3041 writel(local, ®s->LocalCtrl); 3042 readl(®s->LocalCtrl); 3043 mb(); 3044 udelay(ACE_SHORT_DELAY); 3045 local &= ~EEPROM_DATA_OUT; 3046 writel(local, ®s->LocalCtrl); 3047 readl(®s->LocalCtrl); 3048 mb(); 3049 udelay(ACE_SHORT_DELAY); 3050 local |= EEPROM_CLK_OUT; 3051 writel(local, ®s->LocalCtrl); 3052 readl(®s->LocalCtrl); 3053 mb(); 3054 udelay(ACE_SHORT_DELAY); 3055 local |= EEPROM_DATA_OUT; 3056 writel(local, ®s->LocalCtrl); 3057 readl(®s->LocalCtrl); 3058 mb(); 3059 udelay(ACE_LONG_DELAY); 3060 local &= ~EEPROM_CLK_OUT; 3061 writel(local, ®s->LocalCtrl); 3062 mb(); 3063 } 3064 3065 3066 /* 3067 * Read a whole byte from the EEPROM. 3068 */ 3069 static int read_eeprom_byte(struct net_device *dev, unsigned long offset) 3070 { 3071 struct ace_private *ap = netdev_priv(dev); 3072 struct ace_regs __iomem *regs = ap->regs; 3073 unsigned long flags; 3074 u32 local; 3075 int result = 0; 3076 short i; 3077 3078 /* 3079 * Don't take interrupts on this CPU will bit banging 3080 * the %#%#@$ I2C device 3081 */ 3082 local_irq_save(flags); 3083 3084 eeprom_start(regs); 3085 3086 eeprom_prep(regs, EEPROM_WRITE_SELECT); 3087 if (eeprom_check_ack(regs)) { 3088 local_irq_restore(flags); 3089 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); 3090 result = -EIO; 3091 goto eeprom_read_error; 3092 } 3093 3094 eeprom_prep(regs, (offset >> 8) & 0xff); 3095 if (eeprom_check_ack(regs)) { 3096 local_irq_restore(flags); 3097 printk(KERN_ERR "%s: Unable to set address byte 0\n", 3098 ap->name); 3099 result = -EIO; 3100 goto eeprom_read_error; 3101 } 3102 3103 eeprom_prep(regs, offset & 0xff); 3104 if (eeprom_check_ack(regs)) { 3105 local_irq_restore(flags); 3106 printk(KERN_ERR "%s: Unable to set address byte 1\n", 3107 ap->name); 3108 result = -EIO; 3109 goto eeprom_read_error; 3110 } 3111 3112 eeprom_start(regs); 3113 eeprom_prep(regs, EEPROM_READ_SELECT); 3114 if (eeprom_check_ack(regs)) { 3115 local_irq_restore(flags); 3116 printk(KERN_ERR "%s: Unable to set READ_SELECT\n", 3117 ap->name); 3118 result = -EIO; 3119 goto eeprom_read_error; 3120 } 3121 3122 for (i = 0; i < 8; i++) { 3123 local = readl(®s->LocalCtrl); 3124 local &= ~EEPROM_WRITE_ENABLE; 3125 writel(local, ®s->LocalCtrl); 3126 readl(®s->LocalCtrl); 3127 udelay(ACE_LONG_DELAY); 3128 mb(); 3129 local |= EEPROM_CLK_OUT; 3130 writel(local, ®s->LocalCtrl); 3131 readl(®s->LocalCtrl); 3132 mb(); 3133 udelay(ACE_SHORT_DELAY); 3134 /* sample data mid high clk */ 3135 result = (result << 1) | 3136 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); 3137 udelay(ACE_SHORT_DELAY); 3138 mb(); 3139 local = readl(®s->LocalCtrl); 3140 local &= ~EEPROM_CLK_OUT; 3141 writel(local, ®s->LocalCtrl); 3142 readl(®s->LocalCtrl); 3143 udelay(ACE_SHORT_DELAY); 3144 mb(); 3145 if (i == 7) { 3146 local |= EEPROM_WRITE_ENABLE; 3147 writel(local, ®s->LocalCtrl); 3148 readl(®s->LocalCtrl); 3149 mb(); 3150 udelay(ACE_SHORT_DELAY); 3151 } 3152 } 3153 3154 local |= EEPROM_DATA_OUT; 3155 writel(local, ®s->LocalCtrl); 3156 readl(®s->LocalCtrl); 3157 mb(); 3158 udelay(ACE_SHORT_DELAY); 3159 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); 3160 readl(®s->LocalCtrl); 3161 udelay(ACE_LONG_DELAY); 3162 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3163 readl(®s->LocalCtrl); 3164 mb(); 3165 udelay(ACE_SHORT_DELAY); 3166 eeprom_stop(regs); 3167 3168 local_irq_restore(flags); 3169 out: 3170 return result; 3171 3172 eeprom_read_error: 3173 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", 3174 ap->name, offset); 3175 goto out; 3176 } 3177 3178 module_pci_driver(acenic_pci_driver); 3179