1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
4 * and other Tigon based cards.
5 *
6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 *
8 * Thanks to Alteon and 3Com for providing hardware and documentation
9 * enabling me to write this driver.
10 *
11 * A mailing list for discussing the use of this driver has been
12 * setup, please subscribe to the lists if you have any questions
13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
14 * see how to subscribe.
15 *
16 * Additional credits:
17 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
18 * dump support. The trace dump support has not been
19 * integrated yet however.
20 * Troy Benjegerdes: Big Endian (PPC) patches.
21 * Nate Stahl: Better out of memory handling and stats support.
22 * Aman Singla: Nasty race between interrupt handler and tx code dealing
23 * with 'testing the tx_ret_csm and setting tx_full'
24 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
25 * infrastructure and Sparc support
26 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
27 * driver under Linux/Sparc64
28 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
29 * ETHTOOL_GDRVINFO support
30 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
31 * handler and close() cleanup.
32 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
33 * memory mapped IO is enabled to
34 * make the driver work on RS/6000.
35 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
36 * where the driver would disable
37 * bus master mode if it had to disable
38 * write and invalidate.
39 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
40 * endian systems.
41 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
42 * rx producer index when
43 * flushing the Jumbo ring.
44 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
45 * driver init path.
46 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
47 */
48
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/types.h>
52 #include <linux/errno.h>
53 #include <linux/ioport.h>
54 #include <linux/pci.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/kernel.h>
57 #include <linux/netdevice.h>
58 #include <linux/etherdevice.h>
59 #include <linux/skbuff.h>
60 #include <linux/delay.h>
61 #include <linux/mm.h>
62 #include <linux/highmem.h>
63 #include <linux/sockios.h>
64 #include <linux/firmware.h>
65 #include <linux/slab.h>
66 #include <linux/prefetch.h>
67 #include <linux/if_vlan.h>
68
69 #ifdef SIOCETHTOOL
70 #include <linux/ethtool.h>
71 #endif
72
73 #include <net/sock.h>
74 #include <net/ip.h>
75
76 #include <asm/io.h>
77 #include <asm/irq.h>
78 #include <asm/byteorder.h>
79 #include <linux/uaccess.h>
80
81
82 #define DRV_NAME "acenic"
83
84 #undef INDEX_DEBUG
85
86 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
87 #define ACE_IS_TIGON_I(ap) 0
88 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
89 #else
90 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
91 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
92 #endif
93
94 #ifndef PCI_VENDOR_ID_ALTEON
95 #define PCI_VENDOR_ID_ALTEON 0x12ae
96 #endif
97 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
98 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
99 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
100 #endif
101 #ifndef PCI_DEVICE_ID_3COM_3C985
102 #define PCI_DEVICE_ID_3COM_3C985 0x0001
103 #endif
104 #ifndef PCI_VENDOR_ID_NETGEAR
105 #define PCI_VENDOR_ID_NETGEAR 0x1385
106 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
107 #endif
108 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
109 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
110 #endif
111
112
113 /*
114 * Farallon used the DEC vendor ID by mistake and they seem not
115 * to care - stinky!
116 */
117 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
118 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
119 #endif
120 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
121 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
122 #endif
123 #ifndef PCI_VENDOR_ID_SGI
124 #define PCI_VENDOR_ID_SGI 0x10a9
125 #endif
126 #ifndef PCI_DEVICE_ID_SGI_ACENIC
127 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
128 #endif
129
130 static const struct pci_device_id acenic_pci_tbl[] = {
131 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
132 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
133 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
134 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
135 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
136 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
137 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
139 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 /*
142 * Farallon used the DEC vendor ID on their cards incorrectly,
143 * then later Alteon's ID.
144 */
145 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
147 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
148 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
150 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
151 { }
152 };
153 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
154
155 #define ace_sync_irq(irq) synchronize_irq(irq)
156
157 #ifndef offset_in_page
158 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
159 #endif
160
161 #define ACE_MAX_MOD_PARMS 8
162 #define BOARD_IDX_STATIC 0
163 #define BOARD_IDX_OVERFLOW -1
164
165 #include "acenic.h"
166
167 /*
168 * These must be defined before the firmware is included.
169 */
170 #define MAX_TEXT_LEN 96*1024
171 #define MAX_RODATA_LEN 8*1024
172 #define MAX_DATA_LEN 2*1024
173
174 #ifndef tigon2FwReleaseLocal
175 #define tigon2FwReleaseLocal 0
176 #endif
177
178 /*
179 * This driver currently supports Tigon I and Tigon II based cards
180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
181 * GA620. The driver should also work on the SGI, DEC and Farallon
182 * versions of the card, however I have not been able to test that
183 * myself.
184 *
185 * This card is really neat, it supports receive hardware checksumming
186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
187 * firmware. Also the programming interface is quite neat, except for
188 * the parts dealing with the i2c eeprom on the card ;-)
189 *
190 * Using jumbo frames:
191 *
192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
195 * interface number and <MTU> being the MTU value.
196 *
197 * Module parameters:
198 *
199 * When compiled as a loadable module, the driver allows for a number
200 * of module parameters to be specified. The driver supports the
201 * following module parameters:
202 *
203 * trace=<val> - Firmware trace level. This requires special traced
204 * firmware to replace the firmware supplied with
205 * the driver - for debugging purposes only.
206 *
207 * link=<val> - Link state. Normally you want to use the default link
208 * parameters set by the driver. This can be used to
209 * override these in case your switch doesn't negotiate
210 * the link properly. Valid values are:
211 * 0x0001 - Force half duplex link.
212 * 0x0002 - Do not negotiate line speed with the other end.
213 * 0x0010 - 10Mbit/sec link.
214 * 0x0020 - 100Mbit/sec link.
215 * 0x0040 - 1000Mbit/sec link.
216 * 0x0100 - Do not negotiate flow control.
217 * 0x0200 - Enable RX flow control Y
218 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
219 * Default value is 0x0270, ie. enable link+flow
220 * control negotiation. Negotiating the highest
221 * possible link speed with RX flow control enabled.
222 *
223 * When disabling link speed negotiation, only one link
224 * speed is allowed to be specified!
225 *
226 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
227 * to wait for more packets to arive before
228 * interrupting the host, from the time the first
229 * packet arrives.
230 *
231 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232 * to wait for more packets to arive in the transmit ring,
233 * before interrupting the host, after transmitting the
234 * first packet in the ring.
235 *
236 * max_tx_desc=<val> - maximum number of transmit descriptors
237 * (packets) transmitted before interrupting the host.
238 *
239 * max_rx_desc=<val> - maximum number of receive descriptors
240 * (packets) received before interrupting the host.
241 *
242 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
243 * increments of the NIC's on board memory to be used for
244 * transmit and receive buffers. For the 1MB NIC app. 800KB
245 * is available, on the 1/2MB NIC app. 300KB is available.
246 * 68KB will always be available as a minimum for both
247 * directions. The default value is a 50/50 split.
248 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
249 * operations, default (1) is to always disable this as
250 * that is what Alteon does on NT. I have not been able
251 * to measure any real performance differences with
252 * this on my systems. Set <val>=0 if you want to
253 * enable these operations.
254 *
255 * If you use more than one NIC, specify the parameters for the
256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
257 * run tracing on NIC #2 but not on NIC #1 and #3.
258 *
259 * TODO:
260 *
261 * - Proper multicast support.
262 * - NIC dump support.
263 * - More tuning parameters.
264 *
265 * The mini ring is not used under Linux and I am not sure it makes sense
266 * to actually use it.
267 *
268 * New interrupt handler strategy:
269 *
270 * The old interrupt handler worked using the traditional method of
271 * replacing an skbuff with a new one when a packet arrives. However
272 * the rx rings do not need to contain a static number of buffer
273 * descriptors, thus it makes sense to move the memory allocation out
274 * of the main interrupt handler and do it in a bottom half handler
275 * and only allocate new buffers when the number of buffers in the
276 * ring is below a certain threshold. In order to avoid starving the
277 * NIC under heavy load it is however necessary to force allocation
278 * when hitting a minimum threshold. The strategy for alloction is as
279 * follows:
280 *
281 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
282 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
283 * the buffers in the interrupt handler
284 * RX_RING_THRES - maximum number of buffers in the rx ring
285 * RX_MINI_THRES - maximum number of buffers in the mini ring
286 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
287 *
288 * One advantagous side effect of this allocation approach is that the
289 * entire rx processing can be done without holding any spin lock
290 * since the rx rings and registers are totally independent of the tx
291 * ring and its registers. This of course includes the kmalloc's of
292 * new skb's. Thus start_xmit can run in parallel with rx processing
293 * and the memory allocation on SMP systems.
294 *
295 * Note that running the skb reallocation in a bottom half opens up
296 * another can of races which needs to be handled properly. In
297 * particular it can happen that the interrupt handler tries to run
298 * the reallocation while the bottom half is either running on another
299 * CPU or was interrupted on the same CPU. To get around this the
300 * driver uses bitops to prevent the reallocation routines from being
301 * reentered.
302 *
303 * TX handling can also be done without holding any spin lock, wheee
304 * this is fun! since tx_ret_csm is only written to by the interrupt
305 * handler. The case to be aware of is when shutting down the device
306 * and cleaning up where it is necessary to make sure that
307 * start_xmit() is not running while this is happening. Well DaveM
308 * informs me that this case is already protected against ... bye bye
309 * Mr. Spin Lock, it was nice to know you.
310 *
311 * TX interrupts are now partly disabled so the NIC will only generate
312 * TX interrupts for the number of coal ticks, not for the number of
313 * TX packets in the queue. This should reduce the number of TX only,
314 * ie. when no RX processing is done, interrupts seen.
315 */
316
317 /*
318 * Threshold values for RX buffer allocation - the low water marks for
319 * when to start refilling the rings are set to 75% of the ring
320 * sizes. It seems to make sense to refill the rings entirely from the
321 * intrrupt handler once it gets below the panic threshold, that way
322 * we don't risk that the refilling is moved to another CPU when the
323 * one running the interrupt handler just got the slab code hot in its
324 * cache.
325 */
326 #define RX_RING_SIZE 72
327 #define RX_MINI_SIZE 64
328 #define RX_JUMBO_SIZE 48
329
330 #define RX_PANIC_STD_THRES 16
331 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
332 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
333 #define RX_PANIC_MINI_THRES 12
334 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
335 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
336 #define RX_PANIC_JUMBO_THRES 6
337 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
338 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
339
340
341 /*
342 * Size of the mini ring entries, basically these just should be big
343 * enough to take TCP ACKs
344 */
345 #define ACE_MINI_SIZE 100
346
347 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
348 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
349 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
350
351 /*
352 * There seems to be a magic difference in the effect between 995 and 996
353 * but little difference between 900 and 995 ... no idea why.
354 *
355 * There is now a default set of tuning parameters which is set, depending
356 * on whether or not the user enables Jumbo frames. It's assumed that if
357 * Jumbo frames are enabled, the user wants optimal tuning for that case.
358 */
359 #define DEF_TX_COAL 400 /* 996 */
360 #define DEF_TX_MAX_DESC 60 /* was 40 */
361 #define DEF_RX_COAL 120 /* 1000 */
362 #define DEF_RX_MAX_DESC 25
363 #define DEF_TX_RATIO 21 /* 24 */
364
365 #define DEF_JUMBO_TX_COAL 20
366 #define DEF_JUMBO_TX_MAX_DESC 60
367 #define DEF_JUMBO_RX_COAL 30
368 #define DEF_JUMBO_RX_MAX_DESC 6
369 #define DEF_JUMBO_TX_RATIO 21
370
371 #if tigon2FwReleaseLocal < 20001118
372 /*
373 * Standard firmware and early modifications duplicate
374 * IRQ load without this flag (coal timer is never reset).
375 * Note that with this flag tx_coal should be less than
376 * time to xmit full tx ring.
377 * 400usec is not so bad for tx ring size of 128.
378 */
379 #define TX_COAL_INTS_ONLY 1 /* worth it */
380 #else
381 /*
382 * With modified firmware, this is not necessary, but still useful.
383 */
384 #define TX_COAL_INTS_ONLY 1
385 #endif
386
387 #define DEF_TRACE 0
388 #define DEF_STAT (2 * TICKS_PER_SEC)
389
390
391 static int link_state[ACE_MAX_MOD_PARMS];
392 static int trace[ACE_MAX_MOD_PARMS];
393 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
394 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
395 static int max_tx_desc[ACE_MAX_MOD_PARMS];
396 static int max_rx_desc[ACE_MAX_MOD_PARMS];
397 static int tx_ratio[ACE_MAX_MOD_PARMS];
398 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
399
400 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
401 MODULE_LICENSE("GPL");
402 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
403 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
404 MODULE_FIRMWARE("acenic/tg1.bin");
405 #endif
406 MODULE_FIRMWARE("acenic/tg2.bin");
407
408 module_param_array_named(link, link_state, int, NULL, 0);
409 module_param_array(trace, int, NULL, 0);
410 module_param_array(tx_coal_tick, int, NULL, 0);
411 module_param_array(max_tx_desc, int, NULL, 0);
412 module_param_array(rx_coal_tick, int, NULL, 0);
413 module_param_array(max_rx_desc, int, NULL, 0);
414 module_param_array(tx_ratio, int, NULL, 0);
415 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
416 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
417 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
418 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
419 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
420 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
421 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
422
423
424 static const char version[] =
425 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
426 " http://home.cern.ch/~jes/gige/acenic.html\n";
427
428 static int ace_get_link_ksettings(struct net_device *,
429 struct ethtool_link_ksettings *);
430 static int ace_set_link_ksettings(struct net_device *,
431 const struct ethtool_link_ksettings *);
432 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
433
434 static const struct ethtool_ops ace_ethtool_ops = {
435 .get_drvinfo = ace_get_drvinfo,
436 .get_link_ksettings = ace_get_link_ksettings,
437 .set_link_ksettings = ace_set_link_ksettings,
438 };
439
440 static void ace_watchdog(struct net_device *dev, unsigned int txqueue);
441
442 static const struct net_device_ops ace_netdev_ops = {
443 .ndo_open = ace_open,
444 .ndo_stop = ace_close,
445 .ndo_tx_timeout = ace_watchdog,
446 .ndo_get_stats = ace_get_stats,
447 .ndo_start_xmit = ace_start_xmit,
448 .ndo_set_rx_mode = ace_set_multicast_list,
449 .ndo_validate_addr = eth_validate_addr,
450 .ndo_set_mac_address = ace_set_mac_addr,
451 .ndo_change_mtu = ace_change_mtu,
452 };
453
acenic_probe_one(struct pci_dev * pdev,const struct pci_device_id * id)454 static int acenic_probe_one(struct pci_dev *pdev,
455 const struct pci_device_id *id)
456 {
457 struct net_device *dev;
458 struct ace_private *ap;
459 static int boards_found;
460
461 dev = alloc_etherdev(sizeof(struct ace_private));
462 if (dev == NULL)
463 return -ENOMEM;
464
465 SET_NETDEV_DEV(dev, &pdev->dev);
466
467 ap = netdev_priv(dev);
468 ap->ndev = dev;
469 ap->pdev = pdev;
470 ap->name = pci_name(pdev);
471
472 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
473 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
474
475 dev->watchdog_timeo = 5*HZ;
476 dev->min_mtu = 0;
477 dev->max_mtu = ACE_JUMBO_MTU;
478
479 dev->netdev_ops = &ace_netdev_ops;
480 dev->ethtool_ops = &ace_ethtool_ops;
481
482 /* we only display this string ONCE */
483 if (!boards_found)
484 printk(version);
485
486 if (pci_enable_device(pdev))
487 goto fail_free_netdev;
488
489 /*
490 * Enable master mode before we start playing with the
491 * pci_command word since pci_set_master() will modify
492 * it.
493 */
494 pci_set_master(pdev);
495
496 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
497
498 /* OpenFirmware on Mac's does not set this - DOH.. */
499 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
500 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
501 "access - was not enabled by BIOS/Firmware\n",
502 ap->name);
503 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
504 pci_write_config_word(ap->pdev, PCI_COMMAND,
505 ap->pci_command);
506 wmb();
507 }
508
509 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
510 if (ap->pci_latency <= 0x40) {
511 ap->pci_latency = 0x40;
512 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
513 }
514
515 /*
516 * Remap the regs into kernel space - this is abuse of
517 * dev->base_addr since it was means for I/O port
518 * addresses but who gives a damn.
519 */
520 dev->base_addr = pci_resource_start(pdev, 0);
521 ap->regs = ioremap(dev->base_addr, 0x4000);
522 if (!ap->regs) {
523 printk(KERN_ERR "%s: Unable to map I/O register, "
524 "AceNIC %i will be disabled.\n",
525 ap->name, boards_found);
526 goto fail_free_netdev;
527 }
528
529 switch(pdev->vendor) {
530 case PCI_VENDOR_ID_ALTEON:
531 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
532 printk(KERN_INFO "%s: Farallon PN9100-T ",
533 ap->name);
534 } else {
535 printk(KERN_INFO "%s: Alteon AceNIC ",
536 ap->name);
537 }
538 break;
539 case PCI_VENDOR_ID_3COM:
540 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
541 break;
542 case PCI_VENDOR_ID_NETGEAR:
543 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
544 break;
545 case PCI_VENDOR_ID_DEC:
546 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
547 printk(KERN_INFO "%s: Farallon PN9000-SX ",
548 ap->name);
549 break;
550 }
551 fallthrough;
552 case PCI_VENDOR_ID_SGI:
553 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
554 break;
555 default:
556 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
557 break;
558 }
559
560 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
561 printk("irq %d\n", pdev->irq);
562
563 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
564 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
565 printk(KERN_ERR "%s: Driver compiled without Tigon I"
566 " support - NIC disabled\n", dev->name);
567 goto fail_uninit;
568 }
569 #endif
570
571 if (ace_allocate_descriptors(dev))
572 goto fail_free_netdev;
573
574 #ifdef MODULE
575 if (boards_found >= ACE_MAX_MOD_PARMS)
576 ap->board_idx = BOARD_IDX_OVERFLOW;
577 else
578 ap->board_idx = boards_found;
579 #else
580 ap->board_idx = BOARD_IDX_STATIC;
581 #endif
582
583 if (ace_init(dev))
584 goto fail_free_netdev;
585
586 if (register_netdev(dev)) {
587 printk(KERN_ERR "acenic: device registration failed\n");
588 goto fail_uninit;
589 }
590 ap->name = dev->name;
591
592 dev->features |= NETIF_F_HIGHDMA;
593
594 pci_set_drvdata(pdev, dev);
595
596 boards_found++;
597 return 0;
598
599 fail_uninit:
600 ace_init_cleanup(dev);
601 fail_free_netdev:
602 free_netdev(dev);
603 return -ENODEV;
604 }
605
acenic_remove_one(struct pci_dev * pdev)606 static void acenic_remove_one(struct pci_dev *pdev)
607 {
608 struct net_device *dev = pci_get_drvdata(pdev);
609 struct ace_private *ap = netdev_priv(dev);
610 struct ace_regs __iomem *regs = ap->regs;
611 short i;
612
613 unregister_netdev(dev);
614
615 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
616 if (ap->version >= 2)
617 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
618
619 /*
620 * This clears any pending interrupts
621 */
622 writel(1, ®s->Mb0Lo);
623 readl(®s->CpuCtrl); /* flush */
624
625 /*
626 * Make sure no other CPUs are processing interrupts
627 * on the card before the buffers are being released.
628 * Otherwise one might experience some `interesting'
629 * effects.
630 *
631 * Then release the RX buffers - jumbo buffers were
632 * already released in ace_close().
633 */
634 ace_sync_irq(dev->irq);
635
636 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
637 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
638
639 if (skb) {
640 struct ring_info *ringp;
641 dma_addr_t mapping;
642
643 ringp = &ap->skb->rx_std_skbuff[i];
644 mapping = dma_unmap_addr(ringp, mapping);
645 dma_unmap_page(&ap->pdev->dev, mapping,
646 ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
647
648 ap->rx_std_ring[i].size = 0;
649 ap->skb->rx_std_skbuff[i].skb = NULL;
650 dev_kfree_skb(skb);
651 }
652 }
653
654 if (ap->version >= 2) {
655 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
656 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
657
658 if (skb) {
659 struct ring_info *ringp;
660 dma_addr_t mapping;
661
662 ringp = &ap->skb->rx_mini_skbuff[i];
663 mapping = dma_unmap_addr(ringp,mapping);
664 dma_unmap_page(&ap->pdev->dev, mapping,
665 ACE_MINI_BUFSIZE,
666 DMA_FROM_DEVICE);
667
668 ap->rx_mini_ring[i].size = 0;
669 ap->skb->rx_mini_skbuff[i].skb = NULL;
670 dev_kfree_skb(skb);
671 }
672 }
673 }
674
675 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
676 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
677 if (skb) {
678 struct ring_info *ringp;
679 dma_addr_t mapping;
680
681 ringp = &ap->skb->rx_jumbo_skbuff[i];
682 mapping = dma_unmap_addr(ringp, mapping);
683 dma_unmap_page(&ap->pdev->dev, mapping,
684 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
685
686 ap->rx_jumbo_ring[i].size = 0;
687 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
688 dev_kfree_skb(skb);
689 }
690 }
691
692 ace_init_cleanup(dev);
693 free_netdev(dev);
694 }
695
696 static struct pci_driver acenic_pci_driver = {
697 .name = "acenic",
698 .id_table = acenic_pci_tbl,
699 .probe = acenic_probe_one,
700 .remove = acenic_remove_one,
701 };
702
ace_free_descriptors(struct net_device * dev)703 static void ace_free_descriptors(struct net_device *dev)
704 {
705 struct ace_private *ap = netdev_priv(dev);
706 int size;
707
708 if (ap->rx_std_ring != NULL) {
709 size = (sizeof(struct rx_desc) *
710 (RX_STD_RING_ENTRIES +
711 RX_JUMBO_RING_ENTRIES +
712 RX_MINI_RING_ENTRIES +
713 RX_RETURN_RING_ENTRIES));
714 dma_free_coherent(&ap->pdev->dev, size, ap->rx_std_ring,
715 ap->rx_ring_base_dma);
716 ap->rx_std_ring = NULL;
717 ap->rx_jumbo_ring = NULL;
718 ap->rx_mini_ring = NULL;
719 ap->rx_return_ring = NULL;
720 }
721 if (ap->evt_ring != NULL) {
722 size = (sizeof(struct event) * EVT_RING_ENTRIES);
723 dma_free_coherent(&ap->pdev->dev, size, ap->evt_ring,
724 ap->evt_ring_dma);
725 ap->evt_ring = NULL;
726 }
727 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
728 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
729 dma_free_coherent(&ap->pdev->dev, size, ap->tx_ring,
730 ap->tx_ring_dma);
731 }
732 ap->tx_ring = NULL;
733
734 if (ap->evt_prd != NULL) {
735 dma_free_coherent(&ap->pdev->dev, sizeof(u32),
736 (void *)ap->evt_prd, ap->evt_prd_dma);
737 ap->evt_prd = NULL;
738 }
739 if (ap->rx_ret_prd != NULL) {
740 dma_free_coherent(&ap->pdev->dev, sizeof(u32),
741 (void *)ap->rx_ret_prd, ap->rx_ret_prd_dma);
742 ap->rx_ret_prd = NULL;
743 }
744 if (ap->tx_csm != NULL) {
745 dma_free_coherent(&ap->pdev->dev, sizeof(u32),
746 (void *)ap->tx_csm, ap->tx_csm_dma);
747 ap->tx_csm = NULL;
748 }
749 }
750
751
ace_allocate_descriptors(struct net_device * dev)752 static int ace_allocate_descriptors(struct net_device *dev)
753 {
754 struct ace_private *ap = netdev_priv(dev);
755 int size;
756
757 size = (sizeof(struct rx_desc) *
758 (RX_STD_RING_ENTRIES +
759 RX_JUMBO_RING_ENTRIES +
760 RX_MINI_RING_ENTRIES +
761 RX_RETURN_RING_ENTRIES));
762
763 ap->rx_std_ring = dma_alloc_coherent(&ap->pdev->dev, size,
764 &ap->rx_ring_base_dma, GFP_KERNEL);
765 if (ap->rx_std_ring == NULL)
766 goto fail;
767
768 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
769 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
770 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
771
772 size = (sizeof(struct event) * EVT_RING_ENTRIES);
773
774 ap->evt_ring = dma_alloc_coherent(&ap->pdev->dev, size,
775 &ap->evt_ring_dma, GFP_KERNEL);
776
777 if (ap->evt_ring == NULL)
778 goto fail;
779
780 /*
781 * Only allocate a host TX ring for the Tigon II, the Tigon I
782 * has to use PCI registers for this ;-(
783 */
784 if (!ACE_IS_TIGON_I(ap)) {
785 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
786
787 ap->tx_ring = dma_alloc_coherent(&ap->pdev->dev, size,
788 &ap->tx_ring_dma, GFP_KERNEL);
789
790 if (ap->tx_ring == NULL)
791 goto fail;
792 }
793
794 ap->evt_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
795 &ap->evt_prd_dma, GFP_KERNEL);
796 if (ap->evt_prd == NULL)
797 goto fail;
798
799 ap->rx_ret_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
800 &ap->rx_ret_prd_dma, GFP_KERNEL);
801 if (ap->rx_ret_prd == NULL)
802 goto fail;
803
804 ap->tx_csm = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
805 &ap->tx_csm_dma, GFP_KERNEL);
806 if (ap->tx_csm == NULL)
807 goto fail;
808
809 return 0;
810
811 fail:
812 /* Clean up. */
813 ace_init_cleanup(dev);
814 return 1;
815 }
816
817
818 /*
819 * Generic cleanup handling data allocated during init. Used when the
820 * module is unloaded or if an error occurs during initialization
821 */
ace_init_cleanup(struct net_device * dev)822 static void ace_init_cleanup(struct net_device *dev)
823 {
824 struct ace_private *ap;
825
826 ap = netdev_priv(dev);
827
828 ace_free_descriptors(dev);
829
830 if (ap->info)
831 dma_free_coherent(&ap->pdev->dev, sizeof(struct ace_info),
832 ap->info, ap->info_dma);
833 kfree(ap->skb);
834 kfree(ap->trace_buf);
835
836 if (dev->irq)
837 free_irq(dev->irq, dev);
838
839 iounmap(ap->regs);
840 }
841
842
843 /*
844 * Commands are considered to be slow.
845 */
ace_issue_cmd(struct ace_regs __iomem * regs,struct cmd * cmd)846 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
847 {
848 u32 idx;
849
850 idx = readl(®s->CmdPrd);
851
852 writel(*(u32 *)(cmd), ®s->CmdRng[idx]);
853 idx = (idx + 1) % CMD_RING_ENTRIES;
854
855 writel(idx, ®s->CmdPrd);
856 }
857
858
ace_init(struct net_device * dev)859 static int ace_init(struct net_device *dev)
860 {
861 struct ace_private *ap;
862 struct ace_regs __iomem *regs;
863 struct ace_info *info = NULL;
864 struct pci_dev *pdev;
865 unsigned long myjif;
866 u64 tmp_ptr;
867 u32 tig_ver, mac1, mac2, tmp, pci_state;
868 int board_idx, ecode = 0;
869 short i;
870 unsigned char cache_size;
871 u8 addr[ETH_ALEN];
872
873 ap = netdev_priv(dev);
874 regs = ap->regs;
875
876 board_idx = ap->board_idx;
877
878 /*
879 * aman@sgi.com - its useful to do a NIC reset here to
880 * address the `Firmware not running' problem subsequent
881 * to any crashes involving the NIC
882 */
883 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl);
884 readl(®s->HostCtrl); /* PCI write posting */
885 udelay(5);
886
887 /*
888 * Don't access any other registers before this point!
889 */
890 #ifdef __BIG_ENDIAN
891 /*
892 * This will most likely need BYTE_SWAP once we switch
893 * to using __raw_writel()
894 */
895 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
896 ®s->HostCtrl);
897 #else
898 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
899 ®s->HostCtrl);
900 #endif
901 readl(®s->HostCtrl); /* PCI write posting */
902
903 /*
904 * Stop the NIC CPU and clear pending interrupts
905 */
906 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
907 readl(®s->CpuCtrl); /* PCI write posting */
908 writel(0, ®s->Mb0Lo);
909
910 tig_ver = readl(®s->HostCtrl) >> 28;
911
912 switch(tig_ver){
913 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
914 case 4:
915 case 5:
916 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
917 tig_ver, ap->firmware_major, ap->firmware_minor,
918 ap->firmware_fix);
919 writel(0, ®s->LocalCtrl);
920 ap->version = 1;
921 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
922 break;
923 #endif
924 case 6:
925 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
926 tig_ver, ap->firmware_major, ap->firmware_minor,
927 ap->firmware_fix);
928 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
929 readl(®s->CpuBCtrl); /* PCI write posting */
930 /*
931 * The SRAM bank size does _not_ indicate the amount
932 * of memory on the card, it controls the _bank_ size!
933 * Ie. a 1MB AceNIC will have two banks of 512KB.
934 */
935 writel(SRAM_BANK_512K, ®s->LocalCtrl);
936 writel(SYNC_SRAM_TIMING, ®s->MiscCfg);
937 ap->version = 2;
938 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
939 break;
940 default:
941 printk(KERN_WARNING " Unsupported Tigon version detected "
942 "(%i)\n", tig_ver);
943 ecode = -ENODEV;
944 goto init_error;
945 }
946
947 /*
948 * ModeStat _must_ be set after the SRAM settings as this change
949 * seems to corrupt the ModeStat and possible other registers.
950 * The SRAM settings survive resets and setting it to the same
951 * value a second time works as well. This is what caused the
952 * `Firmware not running' problem on the Tigon II.
953 */
954 #ifdef __BIG_ENDIAN
955 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
956 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
957 #else
958 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
959 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
960 #endif
961 readl(®s->ModeStat); /* PCI write posting */
962
963 mac1 = 0;
964 for(i = 0; i < 4; i++) {
965 int t;
966
967 mac1 = mac1 << 8;
968 t = read_eeprom_byte(dev, 0x8c+i);
969 if (t < 0) {
970 ecode = -EIO;
971 goto init_error;
972 } else
973 mac1 |= (t & 0xff);
974 }
975 mac2 = 0;
976 for(i = 4; i < 8; i++) {
977 int t;
978
979 mac2 = mac2 << 8;
980 t = read_eeprom_byte(dev, 0x8c+i);
981 if (t < 0) {
982 ecode = -EIO;
983 goto init_error;
984 } else
985 mac2 |= (t & 0xff);
986 }
987
988 writel(mac1, ®s->MacAddrHi);
989 writel(mac2, ®s->MacAddrLo);
990
991 addr[0] = (mac1 >> 8) & 0xff;
992 addr[1] = mac1 & 0xff;
993 addr[2] = (mac2 >> 24) & 0xff;
994 addr[3] = (mac2 >> 16) & 0xff;
995 addr[4] = (mac2 >> 8) & 0xff;
996 addr[5] = mac2 & 0xff;
997 eth_hw_addr_set(dev, addr);
998
999 printk("MAC: %pM\n", dev->dev_addr);
1000
1001 /*
1002 * Looks like this is necessary to deal with on all architectures,
1003 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1004 * Ie. having two NICs in the machine, one will have the cache
1005 * line set at boot time, the other will not.
1006 */
1007 pdev = ap->pdev;
1008 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1009 cache_size <<= 2;
1010 if (cache_size != SMP_CACHE_BYTES) {
1011 printk(KERN_INFO " PCI cache line size set incorrectly "
1012 "(%i bytes) by BIOS/FW, ", cache_size);
1013 if (cache_size > SMP_CACHE_BYTES)
1014 printk("expecting %i\n", SMP_CACHE_BYTES);
1015 else {
1016 printk("correcting to %i\n", SMP_CACHE_BYTES);
1017 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1018 SMP_CACHE_BYTES >> 2);
1019 }
1020 }
1021
1022 pci_state = readl(®s->PciState);
1023 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1024 "latency: %i clks\n",
1025 (pci_state & PCI_32BIT) ? 32 : 64,
1026 (pci_state & PCI_66MHZ) ? 66 : 33,
1027 ap->pci_latency);
1028
1029 /*
1030 * Set the max DMA transfer size. Seems that for most systems
1031 * the performance is better when no MAX parameter is
1032 * set. However for systems enabling PCI write and invalidate,
1033 * DMA writes must be set to the L1 cache line size to get
1034 * optimal performance.
1035 *
1036 * The default is now to turn the PCI write and invalidate off
1037 * - that is what Alteon does for NT.
1038 */
1039 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1040 if (ap->version >= 2) {
1041 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1042 /*
1043 * Tuning parameters only supported for 8 cards
1044 */
1045 if (board_idx == BOARD_IDX_OVERFLOW ||
1046 dis_pci_mem_inval[board_idx]) {
1047 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1048 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1049 pci_write_config_word(pdev, PCI_COMMAND,
1050 ap->pci_command);
1051 printk(KERN_INFO " Disabling PCI memory "
1052 "write and invalidate\n");
1053 }
1054 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1055 printk(KERN_INFO " PCI memory write & invalidate "
1056 "enabled by BIOS, enabling counter measures\n");
1057
1058 switch(SMP_CACHE_BYTES) {
1059 case 16:
1060 tmp |= DMA_WRITE_MAX_16;
1061 break;
1062 case 32:
1063 tmp |= DMA_WRITE_MAX_32;
1064 break;
1065 case 64:
1066 tmp |= DMA_WRITE_MAX_64;
1067 break;
1068 case 128:
1069 tmp |= DMA_WRITE_MAX_128;
1070 break;
1071 default:
1072 printk(KERN_INFO " Cache line size %i not "
1073 "supported, PCI write and invalidate "
1074 "disabled\n", SMP_CACHE_BYTES);
1075 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1076 pci_write_config_word(pdev, PCI_COMMAND,
1077 ap->pci_command);
1078 }
1079 }
1080 }
1081
1082 #ifdef __sparc__
1083 /*
1084 * On this platform, we know what the best dma settings
1085 * are. We use 64-byte maximum bursts, because if we
1086 * burst larger than the cache line size (or even cross
1087 * a 64byte boundary in a single burst) the UltraSparc
1088 * PCI controller will disconnect at 64-byte multiples.
1089 *
1090 * Read-multiple will be properly enabled above, and when
1091 * set will give the PCI controller proper hints about
1092 * prefetching.
1093 */
1094 tmp &= ~DMA_READ_WRITE_MASK;
1095 tmp |= DMA_READ_MAX_64;
1096 tmp |= DMA_WRITE_MAX_64;
1097 #endif
1098 #ifdef __alpha__
1099 tmp &= ~DMA_READ_WRITE_MASK;
1100 tmp |= DMA_READ_MAX_128;
1101 /*
1102 * All the docs say MUST NOT. Well, I did.
1103 * Nothing terrible happens, if we load wrong size.
1104 * Bit w&i still works better!
1105 */
1106 tmp |= DMA_WRITE_MAX_128;
1107 #endif
1108 writel(tmp, ®s->PciState);
1109
1110 #if 0
1111 /*
1112 * The Host PCI bus controller driver has to set FBB.
1113 * If all devices on that PCI bus support FBB, then the controller
1114 * can enable FBB support in the Host PCI Bus controller (or on
1115 * the PCI-PCI bridge if that applies).
1116 * -ggg
1117 */
1118 /*
1119 * I have received reports from people having problems when this
1120 * bit is enabled.
1121 */
1122 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1123 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1124 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1125 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1126 }
1127 #endif
1128
1129 /*
1130 * Configure DMA attributes.
1131 */
1132 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1133 ecode = -ENODEV;
1134 goto init_error;
1135 }
1136
1137 /*
1138 * Initialize the generic info block and the command+event rings
1139 * and the control blocks for the transmit and receive rings
1140 * as they need to be setup once and for all.
1141 */
1142 if (!(info = dma_alloc_coherent(&ap->pdev->dev, sizeof(struct ace_info),
1143 &ap->info_dma, GFP_KERNEL))) {
1144 ecode = -EAGAIN;
1145 goto init_error;
1146 }
1147 ap->info = info;
1148
1149 /*
1150 * Get the memory for the skb rings.
1151 */
1152 if (!(ap->skb = kzalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1153 ecode = -EAGAIN;
1154 goto init_error;
1155 }
1156
1157 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1158 DRV_NAME, dev);
1159 if (ecode) {
1160 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1161 DRV_NAME, pdev->irq);
1162 goto init_error;
1163 } else
1164 dev->irq = pdev->irq;
1165
1166 #ifdef INDEX_DEBUG
1167 spin_lock_init(&ap->debug_lock);
1168 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1169 ap->last_std_rx = 0;
1170 ap->last_mini_rx = 0;
1171 #endif
1172
1173 ecode = ace_load_firmware(dev);
1174 if (ecode)
1175 goto init_error;
1176
1177 ap->fw_running = 0;
1178
1179 tmp_ptr = ap->info_dma;
1180 writel(tmp_ptr >> 32, ®s->InfoPtrHi);
1181 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo);
1182
1183 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1184
1185 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1186 info->evt_ctrl.flags = 0;
1187
1188 *(ap->evt_prd) = 0;
1189 wmb();
1190 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1191 writel(0, ®s->EvtCsm);
1192
1193 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1194 info->cmd_ctrl.flags = 0;
1195 info->cmd_ctrl.max_len = 0;
1196
1197 for (i = 0; i < CMD_RING_ENTRIES; i++)
1198 writel(0, ®s->CmdRng[i]);
1199
1200 writel(0, ®s->CmdPrd);
1201 writel(0, ®s->CmdCsm);
1202
1203 tmp_ptr = ap->info_dma;
1204 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1205 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1206
1207 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1208 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1209 info->rx_std_ctrl.flags =
1210 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1211
1212 memset(ap->rx_std_ring, 0,
1213 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1214
1215 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1216 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1217
1218 ap->rx_std_skbprd = 0;
1219 atomic_set(&ap->cur_rx_bufs, 0);
1220
1221 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1222 (ap->rx_ring_base_dma +
1223 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1224 info->rx_jumbo_ctrl.max_len = 0;
1225 info->rx_jumbo_ctrl.flags =
1226 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1227
1228 memset(ap->rx_jumbo_ring, 0,
1229 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1230
1231 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1232 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1233
1234 ap->rx_jumbo_skbprd = 0;
1235 atomic_set(&ap->cur_jumbo_bufs, 0);
1236
1237 memset(ap->rx_mini_ring, 0,
1238 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1239
1240 if (ap->version >= 2) {
1241 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1242 (ap->rx_ring_base_dma +
1243 (sizeof(struct rx_desc) *
1244 (RX_STD_RING_ENTRIES +
1245 RX_JUMBO_RING_ENTRIES))));
1246 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1247 info->rx_mini_ctrl.flags =
1248 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1249
1250 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1251 ap->rx_mini_ring[i].flags =
1252 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1253 } else {
1254 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1255 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1256 info->rx_mini_ctrl.max_len = 0;
1257 }
1258
1259 ap->rx_mini_skbprd = 0;
1260 atomic_set(&ap->cur_mini_bufs, 0);
1261
1262 set_aceaddr(&info->rx_return_ctrl.rngptr,
1263 (ap->rx_ring_base_dma +
1264 (sizeof(struct rx_desc) *
1265 (RX_STD_RING_ENTRIES +
1266 RX_JUMBO_RING_ENTRIES +
1267 RX_MINI_RING_ENTRIES))));
1268 info->rx_return_ctrl.flags = 0;
1269 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1270
1271 memset(ap->rx_return_ring, 0,
1272 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1273
1274 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1275 *(ap->rx_ret_prd) = 0;
1276
1277 writel(TX_RING_BASE, ®s->WinBase);
1278
1279 if (ACE_IS_TIGON_I(ap)) {
1280 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1281 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1282 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1283 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1284
1285 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1286 } else {
1287 memset(ap->tx_ring, 0,
1288 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1289
1290 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1291 }
1292
1293 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1294 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1295
1296 /*
1297 * The Tigon I does not like having the TX ring in host memory ;-(
1298 */
1299 if (!ACE_IS_TIGON_I(ap))
1300 tmp |= RCB_FLG_TX_HOST_RING;
1301 #if TX_COAL_INTS_ONLY
1302 tmp |= RCB_FLG_COAL_INT_ONLY;
1303 #endif
1304 info->tx_ctrl.flags = tmp;
1305
1306 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1307
1308 /*
1309 * Potential item for tuning parameter
1310 */
1311 #if 0 /* NO */
1312 writel(DMA_THRESH_16W, ®s->DmaReadCfg);
1313 writel(DMA_THRESH_16W, ®s->DmaWriteCfg);
1314 #else
1315 writel(DMA_THRESH_8W, ®s->DmaReadCfg);
1316 writel(DMA_THRESH_8W, ®s->DmaWriteCfg);
1317 #endif
1318
1319 writel(0, ®s->MaskInt);
1320 writel(1, ®s->IfIdx);
1321 #if 0
1322 /*
1323 * McKinley boxes do not like us fiddling with AssistState
1324 * this early
1325 */
1326 writel(1, ®s->AssistState);
1327 #endif
1328
1329 writel(DEF_STAT, ®s->TuneStatTicks);
1330 writel(DEF_TRACE, ®s->TuneTrace);
1331
1332 ace_set_rxtx_parms(dev, 0);
1333
1334 if (board_idx == BOARD_IDX_OVERFLOW) {
1335 printk(KERN_WARNING "%s: more than %i NICs detected, "
1336 "ignoring module parameters!\n",
1337 ap->name, ACE_MAX_MOD_PARMS);
1338 } else if (board_idx >= 0) {
1339 if (tx_coal_tick[board_idx])
1340 writel(tx_coal_tick[board_idx],
1341 ®s->TuneTxCoalTicks);
1342 if (max_tx_desc[board_idx])
1343 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc);
1344
1345 if (rx_coal_tick[board_idx])
1346 writel(rx_coal_tick[board_idx],
1347 ®s->TuneRxCoalTicks);
1348 if (max_rx_desc[board_idx])
1349 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc);
1350
1351 if (trace[board_idx])
1352 writel(trace[board_idx], ®s->TuneTrace);
1353
1354 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1355 writel(tx_ratio[board_idx], ®s->TxBufRat);
1356 }
1357
1358 /*
1359 * Default link parameters
1360 */
1361 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1362 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1363 if(ap->version >= 2)
1364 tmp |= LNK_TX_FLOW_CTL_Y;
1365
1366 /*
1367 * Override link default parameters
1368 */
1369 if ((board_idx >= 0) && link_state[board_idx]) {
1370 int option = link_state[board_idx];
1371
1372 tmp = LNK_ENABLE;
1373
1374 if (option & 0x01) {
1375 printk(KERN_INFO "%s: Setting half duplex link\n",
1376 ap->name);
1377 tmp &= ~LNK_FULL_DUPLEX;
1378 }
1379 if (option & 0x02)
1380 tmp &= ~LNK_NEGOTIATE;
1381 if (option & 0x10)
1382 tmp |= LNK_10MB;
1383 if (option & 0x20)
1384 tmp |= LNK_100MB;
1385 if (option & 0x40)
1386 tmp |= LNK_1000MB;
1387 if ((option & 0x70) == 0) {
1388 printk(KERN_WARNING "%s: No media speed specified, "
1389 "forcing auto negotiation\n", ap->name);
1390 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1391 LNK_100MB | LNK_10MB;
1392 }
1393 if ((option & 0x100) == 0)
1394 tmp |= LNK_NEG_FCTL;
1395 else
1396 printk(KERN_INFO "%s: Disabling flow control "
1397 "negotiation\n", ap->name);
1398 if (option & 0x200)
1399 tmp |= LNK_RX_FLOW_CTL_Y;
1400 if ((option & 0x400) && (ap->version >= 2)) {
1401 printk(KERN_INFO "%s: Enabling TX flow control\n",
1402 ap->name);
1403 tmp |= LNK_TX_FLOW_CTL_Y;
1404 }
1405 }
1406
1407 ap->link = tmp;
1408 writel(tmp, ®s->TuneLink);
1409 if (ap->version >= 2)
1410 writel(tmp, ®s->TuneFastLink);
1411
1412 writel(ap->firmware_start, ®s->Pc);
1413
1414 writel(0, ®s->Mb0Lo);
1415
1416 /*
1417 * Set tx_csm before we start receiving interrupts, otherwise
1418 * the interrupt handler might think it is supposed to process
1419 * tx ints before we are up and running, which may cause a null
1420 * pointer access in the int handler.
1421 */
1422 ap->cur_rx = 0;
1423 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1424
1425 wmb();
1426 ace_set_txprd(regs, ap, 0);
1427 writel(0, ®s->RxRetCsm);
1428
1429 /*
1430 * Enable DMA engine now.
1431 * If we do this sooner, Mckinley box pukes.
1432 * I assume it's because Tigon II DMA engine wants to check
1433 * *something* even before the CPU is started.
1434 */
1435 writel(1, ®s->AssistState); /* enable DMA */
1436
1437 /*
1438 * Start the NIC CPU
1439 */
1440 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl);
1441 readl(®s->CpuCtrl);
1442
1443 /*
1444 * Wait for the firmware to spin up - max 3 seconds.
1445 */
1446 myjif = jiffies + 3 * HZ;
1447 while (time_before(jiffies, myjif) && !ap->fw_running)
1448 cpu_relax();
1449
1450 if (!ap->fw_running) {
1451 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1452
1453 ace_dump_trace(ap);
1454 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
1455 readl(®s->CpuCtrl);
1456
1457 /* aman@sgi.com - account for badly behaving firmware/NIC:
1458 * - have observed that the NIC may continue to generate
1459 * interrupts for some reason; attempt to stop it - halt
1460 * second CPU for Tigon II cards, and also clear Mb0
1461 * - if we're a module, we'll fail to load if this was
1462 * the only GbE card in the system => if the kernel does
1463 * see an interrupt from the NIC, code to handle it is
1464 * gone and OOps! - so free_irq also
1465 */
1466 if (ap->version >= 2)
1467 writel(readl(®s->CpuBCtrl) | CPU_HALT,
1468 ®s->CpuBCtrl);
1469 writel(0, ®s->Mb0Lo);
1470 readl(®s->Mb0Lo);
1471
1472 ecode = -EBUSY;
1473 goto init_error;
1474 }
1475
1476 /*
1477 * We load the ring here as there seem to be no way to tell the
1478 * firmware to wipe the ring without re-initializing it.
1479 */
1480 if (!test_and_set_bit(0, &ap->std_refill_busy))
1481 ace_load_std_rx_ring(dev, RX_RING_SIZE);
1482 else
1483 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1484 ap->name);
1485 if (ap->version >= 2) {
1486 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1487 ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1488 else
1489 printk(KERN_ERR "%s: Someone is busy refilling "
1490 "the RX mini ring\n", ap->name);
1491 }
1492 return 0;
1493
1494 init_error:
1495 ace_init_cleanup(dev);
1496 return ecode;
1497 }
1498
1499
ace_set_rxtx_parms(struct net_device * dev,int jumbo)1500 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1501 {
1502 struct ace_private *ap = netdev_priv(dev);
1503 struct ace_regs __iomem *regs = ap->regs;
1504 int board_idx = ap->board_idx;
1505
1506 if (board_idx >= 0) {
1507 if (!jumbo) {
1508 if (!tx_coal_tick[board_idx])
1509 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks);
1510 if (!max_tx_desc[board_idx])
1511 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc);
1512 if (!rx_coal_tick[board_idx])
1513 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks);
1514 if (!max_rx_desc[board_idx])
1515 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc);
1516 if (!tx_ratio[board_idx])
1517 writel(DEF_TX_RATIO, ®s->TxBufRat);
1518 } else {
1519 if (!tx_coal_tick[board_idx])
1520 writel(DEF_JUMBO_TX_COAL,
1521 ®s->TuneTxCoalTicks);
1522 if (!max_tx_desc[board_idx])
1523 writel(DEF_JUMBO_TX_MAX_DESC,
1524 ®s->TuneMaxTxDesc);
1525 if (!rx_coal_tick[board_idx])
1526 writel(DEF_JUMBO_RX_COAL,
1527 ®s->TuneRxCoalTicks);
1528 if (!max_rx_desc[board_idx])
1529 writel(DEF_JUMBO_RX_MAX_DESC,
1530 ®s->TuneMaxRxDesc);
1531 if (!tx_ratio[board_idx])
1532 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat);
1533 }
1534 }
1535 }
1536
1537
ace_watchdog(struct net_device * data,unsigned int txqueue)1538 static void ace_watchdog(struct net_device *data, unsigned int txqueue)
1539 {
1540 struct net_device *dev = data;
1541 struct ace_private *ap = netdev_priv(dev);
1542 struct ace_regs __iomem *regs = ap->regs;
1543
1544 /*
1545 * We haven't received a stats update event for more than 2.5
1546 * seconds and there is data in the transmit queue, thus we
1547 * assume the card is stuck.
1548 */
1549 if (*ap->tx_csm != ap->tx_ret_csm) {
1550 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1551 dev->name, (unsigned int)readl(®s->HostCtrl));
1552 /* This can happen due to ieee flow control. */
1553 } else {
1554 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1555 dev->name);
1556 #if 0
1557 netif_wake_queue(dev);
1558 #endif
1559 }
1560 }
1561
1562
ace_bh_work(struct work_struct * work)1563 static void ace_bh_work(struct work_struct *work)
1564 {
1565 struct ace_private *ap = from_work(ap, work, ace_bh_work);
1566 struct net_device *dev = ap->ndev;
1567 int cur_size;
1568
1569 cur_size = atomic_read(&ap->cur_rx_bufs);
1570 if ((cur_size < RX_LOW_STD_THRES) &&
1571 !test_and_set_bit(0, &ap->std_refill_busy)) {
1572 #ifdef DEBUG
1573 printk("refilling buffers (current %i)\n", cur_size);
1574 #endif
1575 ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1576 }
1577
1578 if (ap->version >= 2) {
1579 cur_size = atomic_read(&ap->cur_mini_bufs);
1580 if ((cur_size < RX_LOW_MINI_THRES) &&
1581 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1582 #ifdef DEBUG
1583 printk("refilling mini buffers (current %i)\n",
1584 cur_size);
1585 #endif
1586 ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1587 }
1588 }
1589
1590 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1591 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1592 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1593 #ifdef DEBUG
1594 printk("refilling jumbo buffers (current %i)\n", cur_size);
1595 #endif
1596 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1597 }
1598 ap->bh_work_pending = 0;
1599 }
1600
1601
1602 /*
1603 * Copy the contents of the NIC's trace buffer to kernel memory.
1604 */
ace_dump_trace(struct ace_private * ap)1605 static void ace_dump_trace(struct ace_private *ap)
1606 {
1607 #if 0
1608 if (!ap->trace_buf)
1609 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1610 return;
1611 #endif
1612 }
1613
1614
1615 /*
1616 * Load the standard rx ring.
1617 *
1618 * Loading rings is safe without holding the spin lock since this is
1619 * done only before the device is enabled, thus no interrupts are
1620 * generated and by the interrupt handler/bh handler.
1621 */
ace_load_std_rx_ring(struct net_device * dev,int nr_bufs)1622 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1623 {
1624 struct ace_private *ap = netdev_priv(dev);
1625 struct ace_regs __iomem *regs = ap->regs;
1626 short i, idx;
1627
1628
1629 prefetchw(&ap->cur_rx_bufs);
1630
1631 idx = ap->rx_std_skbprd;
1632
1633 for (i = 0; i < nr_bufs; i++) {
1634 struct sk_buff *skb;
1635 struct rx_desc *rd;
1636 dma_addr_t mapping;
1637
1638 skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1639 if (!skb)
1640 break;
1641
1642 mapping = dma_map_page(&ap->pdev->dev,
1643 virt_to_page(skb->data),
1644 offset_in_page(skb->data),
1645 ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
1646 ap->skb->rx_std_skbuff[idx].skb = skb;
1647 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1648 mapping, mapping);
1649
1650 rd = &ap->rx_std_ring[idx];
1651 set_aceaddr(&rd->addr, mapping);
1652 rd->size = ACE_STD_BUFSIZE;
1653 rd->idx = idx;
1654 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1655 }
1656
1657 if (!i)
1658 goto error_out;
1659
1660 atomic_add(i, &ap->cur_rx_bufs);
1661 ap->rx_std_skbprd = idx;
1662
1663 if (ACE_IS_TIGON_I(ap)) {
1664 struct cmd cmd;
1665 cmd.evt = C_SET_RX_PRD_IDX;
1666 cmd.code = 0;
1667 cmd.idx = ap->rx_std_skbprd;
1668 ace_issue_cmd(regs, &cmd);
1669 } else {
1670 writel(idx, ®s->RxStdPrd);
1671 wmb();
1672 }
1673
1674 out:
1675 clear_bit(0, &ap->std_refill_busy);
1676 return;
1677
1678 error_out:
1679 printk(KERN_INFO "Out of memory when allocating "
1680 "standard receive buffers\n");
1681 goto out;
1682 }
1683
1684
ace_load_mini_rx_ring(struct net_device * dev,int nr_bufs)1685 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1686 {
1687 struct ace_private *ap = netdev_priv(dev);
1688 struct ace_regs __iomem *regs = ap->regs;
1689 short i, idx;
1690
1691 prefetchw(&ap->cur_mini_bufs);
1692
1693 idx = ap->rx_mini_skbprd;
1694 for (i = 0; i < nr_bufs; i++) {
1695 struct sk_buff *skb;
1696 struct rx_desc *rd;
1697 dma_addr_t mapping;
1698
1699 skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1700 if (!skb)
1701 break;
1702
1703 mapping = dma_map_page(&ap->pdev->dev,
1704 virt_to_page(skb->data),
1705 offset_in_page(skb->data),
1706 ACE_MINI_BUFSIZE, DMA_FROM_DEVICE);
1707 ap->skb->rx_mini_skbuff[idx].skb = skb;
1708 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1709 mapping, mapping);
1710
1711 rd = &ap->rx_mini_ring[idx];
1712 set_aceaddr(&rd->addr, mapping);
1713 rd->size = ACE_MINI_BUFSIZE;
1714 rd->idx = idx;
1715 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1716 }
1717
1718 if (!i)
1719 goto error_out;
1720
1721 atomic_add(i, &ap->cur_mini_bufs);
1722
1723 ap->rx_mini_skbprd = idx;
1724
1725 writel(idx, ®s->RxMiniPrd);
1726 wmb();
1727
1728 out:
1729 clear_bit(0, &ap->mini_refill_busy);
1730 return;
1731 error_out:
1732 printk(KERN_INFO "Out of memory when allocating "
1733 "mini receive buffers\n");
1734 goto out;
1735 }
1736
1737
1738 /*
1739 * Load the jumbo rx ring, this may happen at any time if the MTU
1740 * is changed to a value > 1500.
1741 */
ace_load_jumbo_rx_ring(struct net_device * dev,int nr_bufs)1742 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1743 {
1744 struct ace_private *ap = netdev_priv(dev);
1745 struct ace_regs __iomem *regs = ap->regs;
1746 short i, idx;
1747
1748 idx = ap->rx_jumbo_skbprd;
1749
1750 for (i = 0; i < nr_bufs; i++) {
1751 struct sk_buff *skb;
1752 struct rx_desc *rd;
1753 dma_addr_t mapping;
1754
1755 skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1756 if (!skb)
1757 break;
1758
1759 mapping = dma_map_page(&ap->pdev->dev,
1760 virt_to_page(skb->data),
1761 offset_in_page(skb->data),
1762 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
1763 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1764 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1765 mapping, mapping);
1766
1767 rd = &ap->rx_jumbo_ring[idx];
1768 set_aceaddr(&rd->addr, mapping);
1769 rd->size = ACE_JUMBO_BUFSIZE;
1770 rd->idx = idx;
1771 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1772 }
1773
1774 if (!i)
1775 goto error_out;
1776
1777 atomic_add(i, &ap->cur_jumbo_bufs);
1778 ap->rx_jumbo_skbprd = idx;
1779
1780 if (ACE_IS_TIGON_I(ap)) {
1781 struct cmd cmd;
1782 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1783 cmd.code = 0;
1784 cmd.idx = ap->rx_jumbo_skbprd;
1785 ace_issue_cmd(regs, &cmd);
1786 } else {
1787 writel(idx, ®s->RxJumboPrd);
1788 wmb();
1789 }
1790
1791 out:
1792 clear_bit(0, &ap->jumbo_refill_busy);
1793 return;
1794 error_out:
1795 if (net_ratelimit())
1796 printk(KERN_INFO "Out of memory when allocating "
1797 "jumbo receive buffers\n");
1798 goto out;
1799 }
1800
1801
1802 /*
1803 * All events are considered to be slow (RX/TX ints do not generate
1804 * events) and are handled here, outside the main interrupt handler,
1805 * to reduce the size of the handler.
1806 */
ace_handle_event(struct net_device * dev,u32 evtcsm,u32 evtprd)1807 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1808 {
1809 struct ace_private *ap;
1810
1811 ap = netdev_priv(dev);
1812
1813 while (evtcsm != evtprd) {
1814 switch (ap->evt_ring[evtcsm].evt) {
1815 case E_FW_RUNNING:
1816 printk(KERN_INFO "%s: Firmware up and running\n",
1817 ap->name);
1818 ap->fw_running = 1;
1819 wmb();
1820 break;
1821 case E_STATS_UPDATED:
1822 break;
1823 case E_LNK_STATE:
1824 {
1825 u16 code = ap->evt_ring[evtcsm].code;
1826 switch (code) {
1827 case E_C_LINK_UP:
1828 {
1829 u32 state = readl(&ap->regs->GigLnkState);
1830 printk(KERN_WARNING "%s: Optical link UP "
1831 "(%s Duplex, Flow Control: %s%s)\n",
1832 ap->name,
1833 state & LNK_FULL_DUPLEX ? "Full":"Half",
1834 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1835 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1836 break;
1837 }
1838 case E_C_LINK_DOWN:
1839 printk(KERN_WARNING "%s: Optical link DOWN\n",
1840 ap->name);
1841 break;
1842 case E_C_LINK_10_100:
1843 printk(KERN_WARNING "%s: 10/100BaseT link "
1844 "UP\n", ap->name);
1845 break;
1846 default:
1847 printk(KERN_ERR "%s: Unknown optical link "
1848 "state %02x\n", ap->name, code);
1849 }
1850 break;
1851 }
1852 case E_ERROR:
1853 switch(ap->evt_ring[evtcsm].code) {
1854 case E_C_ERR_INVAL_CMD:
1855 printk(KERN_ERR "%s: invalid command error\n",
1856 ap->name);
1857 break;
1858 case E_C_ERR_UNIMP_CMD:
1859 printk(KERN_ERR "%s: unimplemented command "
1860 "error\n", ap->name);
1861 break;
1862 case E_C_ERR_BAD_CFG:
1863 printk(KERN_ERR "%s: bad config error\n",
1864 ap->name);
1865 break;
1866 default:
1867 printk(KERN_ERR "%s: unknown error %02x\n",
1868 ap->name, ap->evt_ring[evtcsm].code);
1869 }
1870 break;
1871 case E_RESET_JUMBO_RNG:
1872 {
1873 int i;
1874 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1875 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1876 ap->rx_jumbo_ring[i].size = 0;
1877 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1878 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1879 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1880 }
1881 }
1882
1883 if (ACE_IS_TIGON_I(ap)) {
1884 struct cmd cmd;
1885 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1886 cmd.code = 0;
1887 cmd.idx = 0;
1888 ace_issue_cmd(ap->regs, &cmd);
1889 } else {
1890 writel(0, &((ap->regs)->RxJumboPrd));
1891 wmb();
1892 }
1893
1894 ap->jumbo = 0;
1895 ap->rx_jumbo_skbprd = 0;
1896 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1897 ap->name);
1898 clear_bit(0, &ap->jumbo_refill_busy);
1899 break;
1900 }
1901 default:
1902 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1903 ap->name, ap->evt_ring[evtcsm].evt);
1904 }
1905 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1906 }
1907
1908 return evtcsm;
1909 }
1910
1911
ace_rx_int(struct net_device * dev,u32 rxretprd,u32 rxretcsm)1912 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1913 {
1914 struct ace_private *ap = netdev_priv(dev);
1915 u32 idx;
1916 int mini_count = 0, std_count = 0;
1917
1918 idx = rxretcsm;
1919
1920 prefetchw(&ap->cur_rx_bufs);
1921 prefetchw(&ap->cur_mini_bufs);
1922
1923 while (idx != rxretprd) {
1924 struct ring_info *rip;
1925 struct sk_buff *skb;
1926 struct rx_desc *retdesc;
1927 u32 skbidx;
1928 int bd_flags, desc_type, mapsize;
1929 u16 csum;
1930
1931
1932 /* make sure the rx descriptor isn't read before rxretprd */
1933 if (idx == rxretcsm)
1934 rmb();
1935
1936 retdesc = &ap->rx_return_ring[idx];
1937 skbidx = retdesc->idx;
1938 bd_flags = retdesc->flags;
1939 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1940
1941 switch(desc_type) {
1942 /*
1943 * Normal frames do not have any flags set
1944 *
1945 * Mini and normal frames arrive frequently,
1946 * so use a local counter to avoid doing
1947 * atomic operations for each packet arriving.
1948 */
1949 case 0:
1950 rip = &ap->skb->rx_std_skbuff[skbidx];
1951 mapsize = ACE_STD_BUFSIZE;
1952 std_count++;
1953 break;
1954 case BD_FLG_JUMBO:
1955 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1956 mapsize = ACE_JUMBO_BUFSIZE;
1957 atomic_dec(&ap->cur_jumbo_bufs);
1958 break;
1959 case BD_FLG_MINI:
1960 rip = &ap->skb->rx_mini_skbuff[skbidx];
1961 mapsize = ACE_MINI_BUFSIZE;
1962 mini_count++;
1963 break;
1964 default:
1965 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1966 "returned by NIC\n", dev->name,
1967 retdesc->flags);
1968 goto error;
1969 }
1970
1971 skb = rip->skb;
1972 rip->skb = NULL;
1973 dma_unmap_page(&ap->pdev->dev, dma_unmap_addr(rip, mapping),
1974 mapsize, DMA_FROM_DEVICE);
1975 skb_put(skb, retdesc->size);
1976
1977 /*
1978 * Fly baby, fly!
1979 */
1980 csum = retdesc->tcp_udp_csum;
1981
1982 skb->protocol = eth_type_trans(skb, dev);
1983
1984 /*
1985 * Instead of forcing the poor tigon mips cpu to calculate
1986 * pseudo hdr checksum, we do this ourselves.
1987 */
1988 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
1989 skb->csum = htons(csum);
1990 skb->ip_summed = CHECKSUM_COMPLETE;
1991 } else {
1992 skb_checksum_none_assert(skb);
1993 }
1994
1995 /* send it up */
1996 if ((bd_flags & BD_FLG_VLAN_TAG))
1997 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
1998 netif_rx(skb);
1999
2000 dev->stats.rx_packets++;
2001 dev->stats.rx_bytes += retdesc->size;
2002
2003 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2004 }
2005
2006 atomic_sub(std_count, &ap->cur_rx_bufs);
2007 if (!ACE_IS_TIGON_I(ap))
2008 atomic_sub(mini_count, &ap->cur_mini_bufs);
2009
2010 out:
2011 /*
2012 * According to the documentation RxRetCsm is obsolete with
2013 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2014 */
2015 if (ACE_IS_TIGON_I(ap)) {
2016 writel(idx, &ap->regs->RxRetCsm);
2017 }
2018 ap->cur_rx = idx;
2019
2020 return;
2021 error:
2022 idx = rxretprd;
2023 goto out;
2024 }
2025
2026
ace_tx_int(struct net_device * dev,u32 txcsm,u32 idx)2027 static inline void ace_tx_int(struct net_device *dev,
2028 u32 txcsm, u32 idx)
2029 {
2030 struct ace_private *ap = netdev_priv(dev);
2031
2032 do {
2033 struct sk_buff *skb;
2034 struct tx_ring_info *info;
2035
2036 info = ap->skb->tx_skbuff + idx;
2037 skb = info->skb;
2038
2039 if (dma_unmap_len(info, maplen)) {
2040 dma_unmap_page(&ap->pdev->dev,
2041 dma_unmap_addr(info, mapping),
2042 dma_unmap_len(info, maplen),
2043 DMA_TO_DEVICE);
2044 dma_unmap_len_set(info, maplen, 0);
2045 }
2046
2047 if (skb) {
2048 dev->stats.tx_packets++;
2049 dev->stats.tx_bytes += skb->len;
2050 dev_consume_skb_irq(skb);
2051 info->skb = NULL;
2052 }
2053
2054 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2055 } while (idx != txcsm);
2056
2057 if (netif_queue_stopped(dev))
2058 netif_wake_queue(dev);
2059
2060 wmb();
2061 ap->tx_ret_csm = txcsm;
2062
2063 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2064 *
2065 * We could try to make it before. In this case we would get
2066 * the following race condition: hard_start_xmit on other cpu
2067 * enters after we advanced tx_ret_csm and fills space,
2068 * which we have just freed, so that we make illegal device wakeup.
2069 * There is no good way to workaround this (at entry
2070 * to ace_start_xmit detects this condition and prevents
2071 * ring corruption, but it is not a good workaround.)
2072 *
2073 * When tx_ret_csm is advanced after, we wake up device _only_
2074 * if we really have some space in ring (though the core doing
2075 * hard_start_xmit can see full ring for some period and has to
2076 * synchronize.) Superb.
2077 * BUT! We get another subtle race condition. hard_start_xmit
2078 * may think that ring is full between wakeup and advancing
2079 * tx_ret_csm and will stop device instantly! It is not so bad.
2080 * We are guaranteed that there is something in ring, so that
2081 * the next irq will resume transmission. To speedup this we could
2082 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2083 * (see ace_start_xmit).
2084 *
2085 * Well, this dilemma exists in all lock-free devices.
2086 * We, following scheme used in drivers by Donald Becker,
2087 * select the least dangerous.
2088 * --ANK
2089 */
2090 }
2091
2092
ace_interrupt(int irq,void * dev_id)2093 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2094 {
2095 struct net_device *dev = (struct net_device *)dev_id;
2096 struct ace_private *ap = netdev_priv(dev);
2097 struct ace_regs __iomem *regs = ap->regs;
2098 u32 idx;
2099 u32 txcsm, rxretcsm, rxretprd;
2100 u32 evtcsm, evtprd;
2101
2102 /*
2103 * In case of PCI shared interrupts or spurious interrupts,
2104 * we want to make sure it is actually our interrupt before
2105 * spending any time in here.
2106 */
2107 if (!(readl(®s->HostCtrl) & IN_INT))
2108 return IRQ_NONE;
2109
2110 /*
2111 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2112 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2113 * writel(0, ®s->Mb0Lo).
2114 *
2115 * "IRQ avoidance" recommended in docs applies to IRQs served
2116 * threads and it is wrong even for that case.
2117 */
2118 writel(0, ®s->Mb0Lo);
2119 readl(®s->Mb0Lo);
2120
2121 /*
2122 * There is no conflict between transmit handling in
2123 * start_xmit and receive processing, thus there is no reason
2124 * to take a spin lock for RX handling. Wait until we start
2125 * working on the other stuff - hey we don't need a spin lock
2126 * anymore.
2127 */
2128 rxretprd = *ap->rx_ret_prd;
2129 rxretcsm = ap->cur_rx;
2130
2131 if (rxretprd != rxretcsm)
2132 ace_rx_int(dev, rxretprd, rxretcsm);
2133
2134 txcsm = *ap->tx_csm;
2135 idx = ap->tx_ret_csm;
2136
2137 if (txcsm != idx) {
2138 /*
2139 * If each skb takes only one descriptor this check degenerates
2140 * to identity, because new space has just been opened.
2141 * But if skbs are fragmented we must check that this index
2142 * update releases enough of space, otherwise we just
2143 * wait for device to make more work.
2144 */
2145 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2146 ace_tx_int(dev, txcsm, idx);
2147 }
2148
2149 evtcsm = readl(®s->EvtCsm);
2150 evtprd = *ap->evt_prd;
2151
2152 if (evtcsm != evtprd) {
2153 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2154 writel(evtcsm, ®s->EvtCsm);
2155 }
2156
2157 /*
2158 * This has to go last in the interrupt handler and run with
2159 * the spin lock released ... what lock?
2160 */
2161 if (netif_running(dev)) {
2162 int cur_size;
2163 int run_bh_work = 0;
2164
2165 cur_size = atomic_read(&ap->cur_rx_bufs);
2166 if (cur_size < RX_LOW_STD_THRES) {
2167 if ((cur_size < RX_PANIC_STD_THRES) &&
2168 !test_and_set_bit(0, &ap->std_refill_busy)) {
2169 #ifdef DEBUG
2170 printk("low on std buffers %i\n", cur_size);
2171 #endif
2172 ace_load_std_rx_ring(dev,
2173 RX_RING_SIZE - cur_size);
2174 } else
2175 run_bh_work = 1;
2176 }
2177
2178 if (!ACE_IS_TIGON_I(ap)) {
2179 cur_size = atomic_read(&ap->cur_mini_bufs);
2180 if (cur_size < RX_LOW_MINI_THRES) {
2181 if ((cur_size < RX_PANIC_MINI_THRES) &&
2182 !test_and_set_bit(0,
2183 &ap->mini_refill_busy)) {
2184 #ifdef DEBUG
2185 printk("low on mini buffers %i\n",
2186 cur_size);
2187 #endif
2188 ace_load_mini_rx_ring(dev,
2189 RX_MINI_SIZE - cur_size);
2190 } else
2191 run_bh_work = 1;
2192 }
2193 }
2194
2195 if (ap->jumbo) {
2196 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2197 if (cur_size < RX_LOW_JUMBO_THRES) {
2198 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2199 !test_and_set_bit(0,
2200 &ap->jumbo_refill_busy)){
2201 #ifdef DEBUG
2202 printk("low on jumbo buffers %i\n",
2203 cur_size);
2204 #endif
2205 ace_load_jumbo_rx_ring(dev,
2206 RX_JUMBO_SIZE - cur_size);
2207 } else
2208 run_bh_work = 1;
2209 }
2210 }
2211 if (run_bh_work && !ap->bh_work_pending) {
2212 ap->bh_work_pending = 1;
2213 queue_work(system_bh_wq, &ap->ace_bh_work);
2214 }
2215 }
2216
2217 return IRQ_HANDLED;
2218 }
2219
ace_open(struct net_device * dev)2220 static int ace_open(struct net_device *dev)
2221 {
2222 struct ace_private *ap = netdev_priv(dev);
2223 struct ace_regs __iomem *regs = ap->regs;
2224 struct cmd cmd;
2225
2226 if (!(ap->fw_running)) {
2227 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2228 return -EBUSY;
2229 }
2230
2231 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu);
2232
2233 cmd.evt = C_CLEAR_STATS;
2234 cmd.code = 0;
2235 cmd.idx = 0;
2236 ace_issue_cmd(regs, &cmd);
2237
2238 cmd.evt = C_HOST_STATE;
2239 cmd.code = C_C_STACK_UP;
2240 cmd.idx = 0;
2241 ace_issue_cmd(regs, &cmd);
2242
2243 if (ap->jumbo &&
2244 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2245 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2246
2247 if (dev->flags & IFF_PROMISC) {
2248 cmd.evt = C_SET_PROMISC_MODE;
2249 cmd.code = C_C_PROMISC_ENABLE;
2250 cmd.idx = 0;
2251 ace_issue_cmd(regs, &cmd);
2252
2253 ap->promisc = 1;
2254 }else
2255 ap->promisc = 0;
2256 ap->mcast_all = 0;
2257
2258 #if 0
2259 cmd.evt = C_LNK_NEGOTIATION;
2260 cmd.code = 0;
2261 cmd.idx = 0;
2262 ace_issue_cmd(regs, &cmd);
2263 #endif
2264
2265 netif_start_queue(dev);
2266
2267 /*
2268 * Setup the bottom half rx ring refill handler
2269 */
2270 INIT_WORK(&ap->ace_bh_work, ace_bh_work);
2271 return 0;
2272 }
2273
2274
ace_close(struct net_device * dev)2275 static int ace_close(struct net_device *dev)
2276 {
2277 struct ace_private *ap = netdev_priv(dev);
2278 struct ace_regs __iomem *regs = ap->regs;
2279 struct cmd cmd;
2280 unsigned long flags;
2281 short i;
2282
2283 /*
2284 * Without (or before) releasing irq and stopping hardware, this
2285 * is an absolute non-sense, by the way. It will be reset instantly
2286 * by the first irq.
2287 */
2288 netif_stop_queue(dev);
2289
2290
2291 if (ap->promisc) {
2292 cmd.evt = C_SET_PROMISC_MODE;
2293 cmd.code = C_C_PROMISC_DISABLE;
2294 cmd.idx = 0;
2295 ace_issue_cmd(regs, &cmd);
2296 ap->promisc = 0;
2297 }
2298
2299 cmd.evt = C_HOST_STATE;
2300 cmd.code = C_C_STACK_DOWN;
2301 cmd.idx = 0;
2302 ace_issue_cmd(regs, &cmd);
2303
2304 cancel_work_sync(&ap->ace_bh_work);
2305
2306 /*
2307 * Make sure one CPU is not processing packets while
2308 * buffers are being released by another.
2309 */
2310
2311 local_irq_save(flags);
2312 ace_mask_irq(dev);
2313
2314 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2315 struct sk_buff *skb;
2316 struct tx_ring_info *info;
2317
2318 info = ap->skb->tx_skbuff + i;
2319 skb = info->skb;
2320
2321 if (dma_unmap_len(info, maplen)) {
2322 if (ACE_IS_TIGON_I(ap)) {
2323 /* NB: TIGON_1 is special, tx_ring is in io space */
2324 struct tx_desc __iomem *tx;
2325 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2326 writel(0, &tx->addr.addrhi);
2327 writel(0, &tx->addr.addrlo);
2328 writel(0, &tx->flagsize);
2329 } else
2330 memset(ap->tx_ring + i, 0,
2331 sizeof(struct tx_desc));
2332 dma_unmap_page(&ap->pdev->dev,
2333 dma_unmap_addr(info, mapping),
2334 dma_unmap_len(info, maplen),
2335 DMA_TO_DEVICE);
2336 dma_unmap_len_set(info, maplen, 0);
2337 }
2338 if (skb) {
2339 dev_kfree_skb(skb);
2340 info->skb = NULL;
2341 }
2342 }
2343
2344 if (ap->jumbo) {
2345 cmd.evt = C_RESET_JUMBO_RNG;
2346 cmd.code = 0;
2347 cmd.idx = 0;
2348 ace_issue_cmd(regs, &cmd);
2349 }
2350
2351 ace_unmask_irq(dev);
2352 local_irq_restore(flags);
2353
2354 return 0;
2355 }
2356
2357
2358 static inline dma_addr_t
ace_map_tx_skb(struct ace_private * ap,struct sk_buff * skb,struct sk_buff * tail,u32 idx)2359 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2360 struct sk_buff *tail, u32 idx)
2361 {
2362 dma_addr_t mapping;
2363 struct tx_ring_info *info;
2364
2365 mapping = dma_map_page(&ap->pdev->dev, virt_to_page(skb->data),
2366 offset_in_page(skb->data), skb->len,
2367 DMA_TO_DEVICE);
2368
2369 info = ap->skb->tx_skbuff + idx;
2370 info->skb = tail;
2371 dma_unmap_addr_set(info, mapping, mapping);
2372 dma_unmap_len_set(info, maplen, skb->len);
2373 return mapping;
2374 }
2375
2376
2377 static inline void
ace_load_tx_bd(struct ace_private * ap,struct tx_desc * desc,u64 addr,u32 flagsize,u32 vlan_tag)2378 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2379 u32 flagsize, u32 vlan_tag)
2380 {
2381 #if !USE_TX_COAL_NOW
2382 flagsize &= ~BD_FLG_COAL_NOW;
2383 #endif
2384
2385 if (ACE_IS_TIGON_I(ap)) {
2386 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2387 writel(addr >> 32, &io->addr.addrhi);
2388 writel(addr & 0xffffffff, &io->addr.addrlo);
2389 writel(flagsize, &io->flagsize);
2390 writel(vlan_tag, &io->vlanres);
2391 } else {
2392 desc->addr.addrhi = addr >> 32;
2393 desc->addr.addrlo = addr;
2394 desc->flagsize = flagsize;
2395 desc->vlanres = vlan_tag;
2396 }
2397 }
2398
2399
ace_start_xmit(struct sk_buff * skb,struct net_device * dev)2400 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2401 struct net_device *dev)
2402 {
2403 struct ace_private *ap = netdev_priv(dev);
2404 struct ace_regs __iomem *regs = ap->regs;
2405 struct tx_desc *desc;
2406 u32 idx, flagsize;
2407 unsigned long maxjiff = jiffies + 3*HZ;
2408
2409 restart:
2410 idx = ap->tx_prd;
2411
2412 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2413 goto overflow;
2414
2415 if (!skb_shinfo(skb)->nr_frags) {
2416 dma_addr_t mapping;
2417 u32 vlan_tag = 0;
2418
2419 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2420 flagsize = (skb->len << 16) | (BD_FLG_END);
2421 if (skb->ip_summed == CHECKSUM_PARTIAL)
2422 flagsize |= BD_FLG_TCP_UDP_SUM;
2423 if (skb_vlan_tag_present(skb)) {
2424 flagsize |= BD_FLG_VLAN_TAG;
2425 vlan_tag = skb_vlan_tag_get(skb);
2426 }
2427 desc = ap->tx_ring + idx;
2428 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2429
2430 /* Look at ace_tx_int for explanations. */
2431 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2432 flagsize |= BD_FLG_COAL_NOW;
2433
2434 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2435 } else {
2436 dma_addr_t mapping;
2437 u32 vlan_tag = 0;
2438 int i;
2439
2440 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2441 flagsize = (skb_headlen(skb) << 16);
2442 if (skb->ip_summed == CHECKSUM_PARTIAL)
2443 flagsize |= BD_FLG_TCP_UDP_SUM;
2444 if (skb_vlan_tag_present(skb)) {
2445 flagsize |= BD_FLG_VLAN_TAG;
2446 vlan_tag = skb_vlan_tag_get(skb);
2447 }
2448
2449 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2450
2451 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2452
2453 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2454 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2455 struct tx_ring_info *info;
2456
2457 info = ap->skb->tx_skbuff + idx;
2458 desc = ap->tx_ring + idx;
2459
2460 mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2461 skb_frag_size(frag),
2462 DMA_TO_DEVICE);
2463
2464 flagsize = skb_frag_size(frag) << 16;
2465 if (skb->ip_summed == CHECKSUM_PARTIAL)
2466 flagsize |= BD_FLG_TCP_UDP_SUM;
2467 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2468
2469 if (i == skb_shinfo(skb)->nr_frags - 1) {
2470 flagsize |= BD_FLG_END;
2471 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2472 flagsize |= BD_FLG_COAL_NOW;
2473
2474 /*
2475 * Only the last fragment frees
2476 * the skb!
2477 */
2478 info->skb = skb;
2479 } else {
2480 info->skb = NULL;
2481 }
2482 dma_unmap_addr_set(info, mapping, mapping);
2483 dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2484 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2485 }
2486 }
2487
2488 wmb();
2489 ap->tx_prd = idx;
2490 ace_set_txprd(regs, ap, idx);
2491
2492 if (flagsize & BD_FLG_COAL_NOW) {
2493 netif_stop_queue(dev);
2494
2495 /*
2496 * A TX-descriptor producer (an IRQ) might have gotten
2497 * between, making the ring free again. Since xmit is
2498 * serialized, this is the only situation we have to
2499 * re-test.
2500 */
2501 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2502 netif_wake_queue(dev);
2503 }
2504
2505 return NETDEV_TX_OK;
2506
2507 overflow:
2508 /*
2509 * This race condition is unavoidable with lock-free drivers.
2510 * We wake up the queue _before_ tx_prd is advanced, so that we can
2511 * enter hard_start_xmit too early, while tx ring still looks closed.
2512 * This happens ~1-4 times per 100000 packets, so that we can allow
2513 * to loop syncing to other CPU. Probably, we need an additional
2514 * wmb() in ace_tx_intr as well.
2515 *
2516 * Note that this race is relieved by reserving one more entry
2517 * in tx ring than it is necessary (see original non-SG driver).
2518 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2519 * is already overkill.
2520 *
2521 * Alternative is to return with 1 not throttling queue. In this
2522 * case loop becomes longer, no more useful effects.
2523 */
2524 if (time_before(jiffies, maxjiff)) {
2525 barrier();
2526 cpu_relax();
2527 goto restart;
2528 }
2529
2530 /* The ring is stuck full. */
2531 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2532 return NETDEV_TX_BUSY;
2533 }
2534
2535
ace_change_mtu(struct net_device * dev,int new_mtu)2536 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2537 {
2538 struct ace_private *ap = netdev_priv(dev);
2539 struct ace_regs __iomem *regs = ap->regs;
2540
2541 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu);
2542 WRITE_ONCE(dev->mtu, new_mtu);
2543
2544 if (new_mtu > ACE_STD_MTU) {
2545 if (!(ap->jumbo)) {
2546 printk(KERN_INFO "%s: Enabling Jumbo frame "
2547 "support\n", dev->name);
2548 ap->jumbo = 1;
2549 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2550 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2551 ace_set_rxtx_parms(dev, 1);
2552 }
2553 } else {
2554 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2555 ace_sync_irq(dev->irq);
2556 ace_set_rxtx_parms(dev, 0);
2557 if (ap->jumbo) {
2558 struct cmd cmd;
2559
2560 cmd.evt = C_RESET_JUMBO_RNG;
2561 cmd.code = 0;
2562 cmd.idx = 0;
2563 ace_issue_cmd(regs, &cmd);
2564 }
2565 }
2566
2567 return 0;
2568 }
2569
ace_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)2570 static int ace_get_link_ksettings(struct net_device *dev,
2571 struct ethtool_link_ksettings *cmd)
2572 {
2573 struct ace_private *ap = netdev_priv(dev);
2574 struct ace_regs __iomem *regs = ap->regs;
2575 u32 link;
2576 u32 supported;
2577
2578 memset(cmd, 0, sizeof(struct ethtool_link_ksettings));
2579
2580 supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2581 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2582 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2583 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2584
2585 cmd->base.port = PORT_FIBRE;
2586
2587 link = readl(®s->GigLnkState);
2588 if (link & LNK_1000MB) {
2589 cmd->base.speed = SPEED_1000;
2590 } else {
2591 link = readl(®s->FastLnkState);
2592 if (link & LNK_100MB)
2593 cmd->base.speed = SPEED_100;
2594 else if (link & LNK_10MB)
2595 cmd->base.speed = SPEED_10;
2596 else
2597 cmd->base.speed = 0;
2598 }
2599 if (link & LNK_FULL_DUPLEX)
2600 cmd->base.duplex = DUPLEX_FULL;
2601 else
2602 cmd->base.duplex = DUPLEX_HALF;
2603
2604 if (link & LNK_NEGOTIATE)
2605 cmd->base.autoneg = AUTONEG_ENABLE;
2606 else
2607 cmd->base.autoneg = AUTONEG_DISABLE;
2608
2609 #if 0
2610 /*
2611 * Current struct ethtool_cmd is insufficient
2612 */
2613 ecmd->trace = readl(®s->TuneTrace);
2614
2615 ecmd->txcoal = readl(®s->TuneTxCoalTicks);
2616 ecmd->rxcoal = readl(®s->TuneRxCoalTicks);
2617 #endif
2618
2619 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2620 supported);
2621
2622 return 0;
2623 }
2624
ace_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)2625 static int ace_set_link_ksettings(struct net_device *dev,
2626 const struct ethtool_link_ksettings *cmd)
2627 {
2628 struct ace_private *ap = netdev_priv(dev);
2629 struct ace_regs __iomem *regs = ap->regs;
2630 u32 link, speed;
2631
2632 link = readl(®s->GigLnkState);
2633 if (link & LNK_1000MB)
2634 speed = SPEED_1000;
2635 else {
2636 link = readl(®s->FastLnkState);
2637 if (link & LNK_100MB)
2638 speed = SPEED_100;
2639 else if (link & LNK_10MB)
2640 speed = SPEED_10;
2641 else
2642 speed = SPEED_100;
2643 }
2644
2645 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2646 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2647 if (!ACE_IS_TIGON_I(ap))
2648 link |= LNK_TX_FLOW_CTL_Y;
2649 if (cmd->base.autoneg == AUTONEG_ENABLE)
2650 link |= LNK_NEGOTIATE;
2651 if (cmd->base.speed != speed) {
2652 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2653 switch (cmd->base.speed) {
2654 case SPEED_1000:
2655 link |= LNK_1000MB;
2656 break;
2657 case SPEED_100:
2658 link |= LNK_100MB;
2659 break;
2660 case SPEED_10:
2661 link |= LNK_10MB;
2662 break;
2663 }
2664 }
2665
2666 if (cmd->base.duplex == DUPLEX_FULL)
2667 link |= LNK_FULL_DUPLEX;
2668
2669 if (link != ap->link) {
2670 struct cmd cmd;
2671 printk(KERN_INFO "%s: Renegotiating link state\n",
2672 dev->name);
2673
2674 ap->link = link;
2675 writel(link, ®s->TuneLink);
2676 if (!ACE_IS_TIGON_I(ap))
2677 writel(link, ®s->TuneFastLink);
2678 wmb();
2679
2680 cmd.evt = C_LNK_NEGOTIATION;
2681 cmd.code = 0;
2682 cmd.idx = 0;
2683 ace_issue_cmd(regs, &cmd);
2684 }
2685 return 0;
2686 }
2687
ace_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2688 static void ace_get_drvinfo(struct net_device *dev,
2689 struct ethtool_drvinfo *info)
2690 {
2691 struct ace_private *ap = netdev_priv(dev);
2692
2693 strscpy(info->driver, "acenic", sizeof(info->driver));
2694 snprintf(info->fw_version, sizeof(info->version), "%i.%i.%i",
2695 ap->firmware_major, ap->firmware_minor, ap->firmware_fix);
2696
2697 if (ap->pdev)
2698 strscpy(info->bus_info, pci_name(ap->pdev),
2699 sizeof(info->bus_info));
2700
2701 }
2702
2703 /*
2704 * Set the hardware MAC address.
2705 */
ace_set_mac_addr(struct net_device * dev,void * p)2706 static int ace_set_mac_addr(struct net_device *dev, void *p)
2707 {
2708 struct ace_private *ap = netdev_priv(dev);
2709 struct ace_regs __iomem *regs = ap->regs;
2710 struct sockaddr *addr=p;
2711 const u8 *da;
2712 struct cmd cmd;
2713
2714 if(netif_running(dev))
2715 return -EBUSY;
2716
2717 eth_hw_addr_set(dev, addr->sa_data);
2718
2719 da = (const u8 *)dev->dev_addr;
2720
2721 writel(da[0] << 8 | da[1], ®s->MacAddrHi);
2722 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2723 ®s->MacAddrLo);
2724
2725 cmd.evt = C_SET_MAC_ADDR;
2726 cmd.code = 0;
2727 cmd.idx = 0;
2728 ace_issue_cmd(regs, &cmd);
2729
2730 return 0;
2731 }
2732
2733
ace_set_multicast_list(struct net_device * dev)2734 static void ace_set_multicast_list(struct net_device *dev)
2735 {
2736 struct ace_private *ap = netdev_priv(dev);
2737 struct ace_regs __iomem *regs = ap->regs;
2738 struct cmd cmd;
2739
2740 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2741 cmd.evt = C_SET_MULTICAST_MODE;
2742 cmd.code = C_C_MCAST_ENABLE;
2743 cmd.idx = 0;
2744 ace_issue_cmd(regs, &cmd);
2745 ap->mcast_all = 1;
2746 } else if (ap->mcast_all) {
2747 cmd.evt = C_SET_MULTICAST_MODE;
2748 cmd.code = C_C_MCAST_DISABLE;
2749 cmd.idx = 0;
2750 ace_issue_cmd(regs, &cmd);
2751 ap->mcast_all = 0;
2752 }
2753
2754 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2755 cmd.evt = C_SET_PROMISC_MODE;
2756 cmd.code = C_C_PROMISC_ENABLE;
2757 cmd.idx = 0;
2758 ace_issue_cmd(regs, &cmd);
2759 ap->promisc = 1;
2760 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2761 cmd.evt = C_SET_PROMISC_MODE;
2762 cmd.code = C_C_PROMISC_DISABLE;
2763 cmd.idx = 0;
2764 ace_issue_cmd(regs, &cmd);
2765 ap->promisc = 0;
2766 }
2767
2768 /*
2769 * For the time being multicast relies on the upper layers
2770 * filtering it properly. The Firmware does not allow one to
2771 * set the entire multicast list at a time and keeping track of
2772 * it here is going to be messy.
2773 */
2774 if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2775 cmd.evt = C_SET_MULTICAST_MODE;
2776 cmd.code = C_C_MCAST_ENABLE;
2777 cmd.idx = 0;
2778 ace_issue_cmd(regs, &cmd);
2779 }else if (!ap->mcast_all) {
2780 cmd.evt = C_SET_MULTICAST_MODE;
2781 cmd.code = C_C_MCAST_DISABLE;
2782 cmd.idx = 0;
2783 ace_issue_cmd(regs, &cmd);
2784 }
2785 }
2786
2787
ace_get_stats(struct net_device * dev)2788 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2789 {
2790 struct ace_private *ap = netdev_priv(dev);
2791 struct ace_mac_stats __iomem *mac_stats =
2792 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2793
2794 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2795 dev->stats.multicast = readl(&mac_stats->kept_mc);
2796 dev->stats.collisions = readl(&mac_stats->coll);
2797
2798 return &dev->stats;
2799 }
2800
2801
ace_copy(struct ace_regs __iomem * regs,const __be32 * src,u32 dest,int size)2802 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2803 u32 dest, int size)
2804 {
2805 void __iomem *tdest;
2806 short tsize, i;
2807
2808 if (size <= 0)
2809 return;
2810
2811 while (size > 0) {
2812 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2813 min_t(u32, size, ACE_WINDOW_SIZE));
2814 tdest = (void __iomem *) ®s->Window +
2815 (dest & (ACE_WINDOW_SIZE - 1));
2816 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2817 for (i = 0; i < (tsize / 4); i++) {
2818 /* Firmware is big-endian */
2819 writel(be32_to_cpup(src), tdest);
2820 src++;
2821 tdest += 4;
2822 dest += 4;
2823 size -= 4;
2824 }
2825 }
2826 }
2827
2828
ace_clear(struct ace_regs __iomem * regs,u32 dest,int size)2829 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2830 {
2831 void __iomem *tdest;
2832 short tsize = 0, i;
2833
2834 if (size <= 0)
2835 return;
2836
2837 while (size > 0) {
2838 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2839 min_t(u32, size, ACE_WINDOW_SIZE));
2840 tdest = (void __iomem *) ®s->Window +
2841 (dest & (ACE_WINDOW_SIZE - 1));
2842 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2843
2844 for (i = 0; i < (tsize / 4); i++) {
2845 writel(0, tdest + i*4);
2846 }
2847
2848 dest += tsize;
2849 size -= tsize;
2850 }
2851 }
2852
2853
2854 /*
2855 * Download the firmware into the SRAM on the NIC
2856 *
2857 * This operation requires the NIC to be halted and is performed with
2858 * interrupts disabled and with the spinlock hold.
2859 */
ace_load_firmware(struct net_device * dev)2860 static int ace_load_firmware(struct net_device *dev)
2861 {
2862 const struct firmware *fw;
2863 const char *fw_name = "acenic/tg2.bin";
2864 struct ace_private *ap = netdev_priv(dev);
2865 struct ace_regs __iomem *regs = ap->regs;
2866 const __be32 *fw_data;
2867 u32 load_addr;
2868 int ret;
2869
2870 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) {
2871 printk(KERN_ERR "%s: trying to download firmware while the "
2872 "CPU is running!\n", ap->name);
2873 return -EFAULT;
2874 }
2875
2876 if (ACE_IS_TIGON_I(ap))
2877 fw_name = "acenic/tg1.bin";
2878
2879 ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2880 if (ret) {
2881 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2882 ap->name, fw_name);
2883 return ret;
2884 }
2885
2886 fw_data = (void *)fw->data;
2887
2888 /* Firmware blob starts with version numbers, followed by
2889 load and start address. Remainder is the blob to be loaded
2890 contiguously from load address. We don't bother to represent
2891 the BSS/SBSS sections any more, since we were clearing the
2892 whole thing anyway. */
2893 ap->firmware_major = fw->data[0];
2894 ap->firmware_minor = fw->data[1];
2895 ap->firmware_fix = fw->data[2];
2896
2897 ap->firmware_start = be32_to_cpu(fw_data[1]);
2898 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2899 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2900 ap->name, ap->firmware_start, fw_name);
2901 ret = -EINVAL;
2902 goto out;
2903 }
2904
2905 load_addr = be32_to_cpu(fw_data[2]);
2906 if (load_addr < 0x4000 || load_addr >= 0x80000) {
2907 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2908 ap->name, load_addr, fw_name);
2909 ret = -EINVAL;
2910 goto out;
2911 }
2912
2913 /*
2914 * Do not try to clear more than 512KiB or we end up seeing
2915 * funny things on NICs with only 512KiB SRAM
2916 */
2917 ace_clear(regs, 0x2000, 0x80000-0x2000);
2918 ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2919 out:
2920 release_firmware(fw);
2921 return ret;
2922 }
2923
2924
2925 /*
2926 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2927 *
2928 * Accessing the EEPROM is `interesting' to say the least - don't read
2929 * this code right after dinner.
2930 *
2931 * This is all about black magic and bit-banging the device .... I
2932 * wonder in what hospital they have put the guy who designed the i2c
2933 * specs.
2934 *
2935 * Oh yes, this is only the beginning!
2936 *
2937 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2938 * code i2c readout code by beta testing all my hacks.
2939 */
eeprom_start(struct ace_regs __iomem * regs)2940 static void eeprom_start(struct ace_regs __iomem *regs)
2941 {
2942 u32 local;
2943
2944 readl(®s->LocalCtrl);
2945 udelay(ACE_SHORT_DELAY);
2946 local = readl(®s->LocalCtrl);
2947 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2948 writel(local, ®s->LocalCtrl);
2949 readl(®s->LocalCtrl);
2950 mb();
2951 udelay(ACE_SHORT_DELAY);
2952 local |= EEPROM_CLK_OUT;
2953 writel(local, ®s->LocalCtrl);
2954 readl(®s->LocalCtrl);
2955 mb();
2956 udelay(ACE_SHORT_DELAY);
2957 local &= ~EEPROM_DATA_OUT;
2958 writel(local, ®s->LocalCtrl);
2959 readl(®s->LocalCtrl);
2960 mb();
2961 udelay(ACE_SHORT_DELAY);
2962 local &= ~EEPROM_CLK_OUT;
2963 writel(local, ®s->LocalCtrl);
2964 readl(®s->LocalCtrl);
2965 mb();
2966 }
2967
2968
eeprom_prep(struct ace_regs __iomem * regs,u8 magic)2969 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2970 {
2971 short i;
2972 u32 local;
2973
2974 udelay(ACE_SHORT_DELAY);
2975 local = readl(®s->LocalCtrl);
2976 local &= ~EEPROM_DATA_OUT;
2977 local |= EEPROM_WRITE_ENABLE;
2978 writel(local, ®s->LocalCtrl);
2979 readl(®s->LocalCtrl);
2980 mb();
2981
2982 for (i = 0; i < 8; i++, magic <<= 1) {
2983 udelay(ACE_SHORT_DELAY);
2984 if (magic & 0x80)
2985 local |= EEPROM_DATA_OUT;
2986 else
2987 local &= ~EEPROM_DATA_OUT;
2988 writel(local, ®s->LocalCtrl);
2989 readl(®s->LocalCtrl);
2990 mb();
2991
2992 udelay(ACE_SHORT_DELAY);
2993 local |= EEPROM_CLK_OUT;
2994 writel(local, ®s->LocalCtrl);
2995 readl(®s->LocalCtrl);
2996 mb();
2997 udelay(ACE_SHORT_DELAY);
2998 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
2999 writel(local, ®s->LocalCtrl);
3000 readl(®s->LocalCtrl);
3001 mb();
3002 }
3003 }
3004
3005
eeprom_check_ack(struct ace_regs __iomem * regs)3006 static int eeprom_check_ack(struct ace_regs __iomem *regs)
3007 {
3008 int state;
3009 u32 local;
3010
3011 local = readl(®s->LocalCtrl);
3012 local &= ~EEPROM_WRITE_ENABLE;
3013 writel(local, ®s->LocalCtrl);
3014 readl(®s->LocalCtrl);
3015 mb();
3016 udelay(ACE_LONG_DELAY);
3017 local |= EEPROM_CLK_OUT;
3018 writel(local, ®s->LocalCtrl);
3019 readl(®s->LocalCtrl);
3020 mb();
3021 udelay(ACE_SHORT_DELAY);
3022 /* sample data in middle of high clk */
3023 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0;
3024 udelay(ACE_SHORT_DELAY);
3025 mb();
3026 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3027 readl(®s->LocalCtrl);
3028 mb();
3029
3030 return state;
3031 }
3032
3033
eeprom_stop(struct ace_regs __iomem * regs)3034 static void eeprom_stop(struct ace_regs __iomem *regs)
3035 {
3036 u32 local;
3037
3038 udelay(ACE_SHORT_DELAY);
3039 local = readl(®s->LocalCtrl);
3040 local |= EEPROM_WRITE_ENABLE;
3041 writel(local, ®s->LocalCtrl);
3042 readl(®s->LocalCtrl);
3043 mb();
3044 udelay(ACE_SHORT_DELAY);
3045 local &= ~EEPROM_DATA_OUT;
3046 writel(local, ®s->LocalCtrl);
3047 readl(®s->LocalCtrl);
3048 mb();
3049 udelay(ACE_SHORT_DELAY);
3050 local |= EEPROM_CLK_OUT;
3051 writel(local, ®s->LocalCtrl);
3052 readl(®s->LocalCtrl);
3053 mb();
3054 udelay(ACE_SHORT_DELAY);
3055 local |= EEPROM_DATA_OUT;
3056 writel(local, ®s->LocalCtrl);
3057 readl(®s->LocalCtrl);
3058 mb();
3059 udelay(ACE_LONG_DELAY);
3060 local &= ~EEPROM_CLK_OUT;
3061 writel(local, ®s->LocalCtrl);
3062 mb();
3063 }
3064
3065
3066 /*
3067 * Read a whole byte from the EEPROM.
3068 */
read_eeprom_byte(struct net_device * dev,unsigned long offset)3069 static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3070 {
3071 struct ace_private *ap = netdev_priv(dev);
3072 struct ace_regs __iomem *regs = ap->regs;
3073 unsigned long flags;
3074 u32 local;
3075 int result = 0;
3076 short i;
3077
3078 /*
3079 * Don't take interrupts on this CPU will bit banging
3080 * the %#%#@$ I2C device
3081 */
3082 local_irq_save(flags);
3083
3084 eeprom_start(regs);
3085
3086 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3087 if (eeprom_check_ack(regs)) {
3088 local_irq_restore(flags);
3089 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3090 result = -EIO;
3091 goto eeprom_read_error;
3092 }
3093
3094 eeprom_prep(regs, (offset >> 8) & 0xff);
3095 if (eeprom_check_ack(regs)) {
3096 local_irq_restore(flags);
3097 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3098 ap->name);
3099 result = -EIO;
3100 goto eeprom_read_error;
3101 }
3102
3103 eeprom_prep(regs, offset & 0xff);
3104 if (eeprom_check_ack(regs)) {
3105 local_irq_restore(flags);
3106 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3107 ap->name);
3108 result = -EIO;
3109 goto eeprom_read_error;
3110 }
3111
3112 eeprom_start(regs);
3113 eeprom_prep(regs, EEPROM_READ_SELECT);
3114 if (eeprom_check_ack(regs)) {
3115 local_irq_restore(flags);
3116 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3117 ap->name);
3118 result = -EIO;
3119 goto eeprom_read_error;
3120 }
3121
3122 for (i = 0; i < 8; i++) {
3123 local = readl(®s->LocalCtrl);
3124 local &= ~EEPROM_WRITE_ENABLE;
3125 writel(local, ®s->LocalCtrl);
3126 readl(®s->LocalCtrl);
3127 udelay(ACE_LONG_DELAY);
3128 mb();
3129 local |= EEPROM_CLK_OUT;
3130 writel(local, ®s->LocalCtrl);
3131 readl(®s->LocalCtrl);
3132 mb();
3133 udelay(ACE_SHORT_DELAY);
3134 /* sample data mid high clk */
3135 result = (result << 1) |
3136 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0);
3137 udelay(ACE_SHORT_DELAY);
3138 mb();
3139 local = readl(®s->LocalCtrl);
3140 local &= ~EEPROM_CLK_OUT;
3141 writel(local, ®s->LocalCtrl);
3142 readl(®s->LocalCtrl);
3143 udelay(ACE_SHORT_DELAY);
3144 mb();
3145 if (i == 7) {
3146 local |= EEPROM_WRITE_ENABLE;
3147 writel(local, ®s->LocalCtrl);
3148 readl(®s->LocalCtrl);
3149 mb();
3150 udelay(ACE_SHORT_DELAY);
3151 }
3152 }
3153
3154 local |= EEPROM_DATA_OUT;
3155 writel(local, ®s->LocalCtrl);
3156 readl(®s->LocalCtrl);
3157 mb();
3158 udelay(ACE_SHORT_DELAY);
3159 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl);
3160 readl(®s->LocalCtrl);
3161 udelay(ACE_LONG_DELAY);
3162 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3163 readl(®s->LocalCtrl);
3164 mb();
3165 udelay(ACE_SHORT_DELAY);
3166 eeprom_stop(regs);
3167
3168 local_irq_restore(flags);
3169 out:
3170 return result;
3171
3172 eeprom_read_error:
3173 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3174 ap->name, offset);
3175 goto out;
3176 }
3177
3178 module_pci_driver(acenic_pci_driver);
3179