1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. 4 * 5 * 2005-2010 (c) Aeroflex Gaisler AB 6 * 7 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs 8 * available in the GRLIB VHDL IP core library. 9 * 10 * Full documentation of both cores can be found here: 11 * https://www.gaisler.com/products/grlib/grip.pdf 12 * 13 * The Gigabit version supports scatter/gather DMA, any alignment of 14 * buffers and checksum offloading. 15 * 16 * Contributors: Kristoffer Glembo 17 * Daniel Hellstrom 18 * Marko Isomaki 19 */ 20 21 #include <linux/dma-mapping.h> 22 #include <linux/module.h> 23 #include <linux/uaccess.h> 24 #include <linux/interrupt.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/ethtool.h> 28 #include <linux/skbuff.h> 29 #include <linux/io.h> 30 #include <linux/crc32.h> 31 #include <linux/mii.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/platform_device.h> 35 #include <linux/slab.h> 36 #include <asm/cacheflush.h> 37 #include <asm/byteorder.h> 38 39 #ifdef CONFIG_SPARC 40 #include <asm/idprom.h> 41 #endif 42 43 #include "greth.h" 44 45 #define GRETH_DEF_MSG_ENABLE \ 46 (NETIF_MSG_DRV | \ 47 NETIF_MSG_PROBE | \ 48 NETIF_MSG_LINK | \ 49 NETIF_MSG_IFDOWN | \ 50 NETIF_MSG_IFUP | \ 51 NETIF_MSG_RX_ERR | \ 52 NETIF_MSG_TX_ERR) 53 54 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ 55 module_param(greth_debug, int, 0); 56 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); 57 58 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 59 static int macaddr[6]; 60 module_param_array(macaddr, int, NULL, 0); 61 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); 62 63 static int greth_edcl = 1; 64 module_param(greth_edcl, int, 0); 65 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); 66 67 static int greth_open(struct net_device *dev); 68 static netdev_tx_t greth_start_xmit(struct sk_buff *skb, 69 struct net_device *dev); 70 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, 71 struct net_device *dev); 72 static int greth_rx(struct net_device *dev, int limit); 73 static int greth_rx_gbit(struct net_device *dev, int limit); 74 static void greth_clean_tx(struct net_device *dev); 75 static void greth_clean_tx_gbit(struct net_device *dev); 76 static irqreturn_t greth_interrupt(int irq, void *dev_id); 77 static int greth_close(struct net_device *dev); 78 static int greth_set_mac_add(struct net_device *dev, void *p); 79 static void greth_set_multicast_list(struct net_device *dev); 80 81 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) 82 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) 83 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) 84 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) 85 86 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) 87 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) 88 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) 89 90 static void greth_print_rx_packet(void *addr, int len) 91 { 92 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, 93 addr, len, true); 94 } 95 96 static void greth_print_tx_packet(struct sk_buff *skb) 97 { 98 int i; 99 int length; 100 101 if (skb_shinfo(skb)->nr_frags == 0) 102 length = skb->len; 103 else 104 length = skb_headlen(skb); 105 106 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 107 skb->data, length, true); 108 109 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 110 111 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 112 skb_frag_address(&skb_shinfo(skb)->frags[i]), 113 skb_frag_size(&skb_shinfo(skb)->frags[i]), true); 114 } 115 } 116 117 static inline void greth_enable_tx(struct greth_private *greth) 118 { 119 wmb(); 120 GRETH_REGORIN(greth->regs->control, GRETH_TXEN); 121 } 122 123 static inline void greth_enable_tx_and_irq(struct greth_private *greth) 124 { 125 wmb(); /* BDs must been written to memory before enabling TX */ 126 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI); 127 } 128 129 static inline void greth_disable_tx(struct greth_private *greth) 130 { 131 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); 132 } 133 134 static inline void greth_enable_rx(struct greth_private *greth) 135 { 136 wmb(); 137 GRETH_REGORIN(greth->regs->control, GRETH_RXEN); 138 } 139 140 static inline void greth_disable_rx(struct greth_private *greth) 141 { 142 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); 143 } 144 145 static inline void greth_enable_irqs(struct greth_private *greth) 146 { 147 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); 148 } 149 150 static inline void greth_disable_irqs(struct greth_private *greth) 151 { 152 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); 153 } 154 155 static inline void greth_write_bd(u32 *bd, u32 val) 156 { 157 __raw_writel(cpu_to_be32(val), bd); 158 } 159 160 static inline u32 greth_read_bd(u32 *bd) 161 { 162 return be32_to_cpu(__raw_readl(bd)); 163 } 164 165 static void greth_clean_rings(struct greth_private *greth) 166 { 167 int i; 168 struct greth_bd *rx_bdp = greth->rx_bd_base; 169 struct greth_bd *tx_bdp = greth->tx_bd_base; 170 171 if (greth->gbit_mac) { 172 173 /* Free and unmap RX buffers */ 174 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 175 if (greth->rx_skbuff[i] != NULL) { 176 dev_kfree_skb(greth->rx_skbuff[i]); 177 dma_unmap_single(greth->dev, 178 greth_read_bd(&rx_bdp->addr), 179 MAX_FRAME_SIZE+NET_IP_ALIGN, 180 DMA_FROM_DEVICE); 181 } 182 } 183 184 /* TX buffers */ 185 while (greth->tx_free < GRETH_TXBD_NUM) { 186 187 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; 188 int nr_frags = skb_shinfo(skb)->nr_frags; 189 tx_bdp = greth->tx_bd_base + greth->tx_last; 190 greth->tx_last = NEXT_TX(greth->tx_last); 191 192 dma_unmap_single(greth->dev, 193 greth_read_bd(&tx_bdp->addr), 194 skb_headlen(skb), 195 DMA_TO_DEVICE); 196 197 for (i = 0; i < nr_frags; i++) { 198 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 199 tx_bdp = greth->tx_bd_base + greth->tx_last; 200 201 dma_unmap_page(greth->dev, 202 greth_read_bd(&tx_bdp->addr), 203 skb_frag_size(frag), 204 DMA_TO_DEVICE); 205 206 greth->tx_last = NEXT_TX(greth->tx_last); 207 } 208 greth->tx_free += nr_frags+1; 209 dev_kfree_skb(skb); 210 } 211 212 213 } else { /* 10/100 Mbps MAC */ 214 215 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 216 kfree(greth->rx_bufs[i]); 217 dma_unmap_single(greth->dev, 218 greth_read_bd(&rx_bdp->addr), 219 MAX_FRAME_SIZE, 220 DMA_FROM_DEVICE); 221 } 222 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { 223 kfree(greth->tx_bufs[i]); 224 dma_unmap_single(greth->dev, 225 greth_read_bd(&tx_bdp->addr), 226 MAX_FRAME_SIZE, 227 DMA_TO_DEVICE); 228 } 229 } 230 } 231 232 static int greth_init_rings(struct greth_private *greth) 233 { 234 struct sk_buff *skb; 235 struct greth_bd *rx_bd, *tx_bd; 236 u32 dma_addr; 237 int i; 238 239 rx_bd = greth->rx_bd_base; 240 tx_bd = greth->tx_bd_base; 241 242 /* Initialize descriptor rings and buffers */ 243 if (greth->gbit_mac) { 244 245 for (i = 0; i < GRETH_RXBD_NUM; i++) { 246 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); 247 if (skb == NULL) { 248 if (netif_msg_ifup(greth)) 249 dev_err(greth->dev, "Error allocating DMA ring.\n"); 250 goto cleanup; 251 } 252 skb_reserve(skb, NET_IP_ALIGN); 253 dma_addr = dma_map_single(greth->dev, 254 skb->data, 255 MAX_FRAME_SIZE+NET_IP_ALIGN, 256 DMA_FROM_DEVICE); 257 258 if (dma_mapping_error(greth->dev, dma_addr)) { 259 if (netif_msg_ifup(greth)) 260 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 261 dev_kfree_skb(skb); 262 goto cleanup; 263 } 264 greth->rx_skbuff[i] = skb; 265 greth_write_bd(&rx_bd[i].addr, dma_addr); 266 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 267 } 268 269 } else { 270 271 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ 272 for (i = 0; i < GRETH_RXBD_NUM; i++) { 273 274 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 275 276 if (greth->rx_bufs[i] == NULL) { 277 if (netif_msg_ifup(greth)) 278 dev_err(greth->dev, "Error allocating DMA ring.\n"); 279 goto cleanup; 280 } 281 282 dma_addr = dma_map_single(greth->dev, 283 greth->rx_bufs[i], 284 MAX_FRAME_SIZE, 285 DMA_FROM_DEVICE); 286 287 if (dma_mapping_error(greth->dev, dma_addr)) { 288 if (netif_msg_ifup(greth)) 289 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 290 goto cleanup; 291 } 292 greth_write_bd(&rx_bd[i].addr, dma_addr); 293 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 294 } 295 for (i = 0; i < GRETH_TXBD_NUM; i++) { 296 297 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 298 299 if (greth->tx_bufs[i] == NULL) { 300 if (netif_msg_ifup(greth)) 301 dev_err(greth->dev, "Error allocating DMA ring.\n"); 302 goto cleanup; 303 } 304 305 dma_addr = dma_map_single(greth->dev, 306 greth->tx_bufs[i], 307 MAX_FRAME_SIZE, 308 DMA_TO_DEVICE); 309 310 if (dma_mapping_error(greth->dev, dma_addr)) { 311 if (netif_msg_ifup(greth)) 312 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 313 goto cleanup; 314 } 315 greth_write_bd(&tx_bd[i].addr, dma_addr); 316 greth_write_bd(&tx_bd[i].stat, 0); 317 } 318 } 319 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, 320 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); 321 322 /* Initialize pointers. */ 323 greth->rx_cur = 0; 324 greth->tx_next = 0; 325 greth->tx_last = 0; 326 greth->tx_free = GRETH_TXBD_NUM; 327 328 /* Initialize descriptor base address */ 329 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); 330 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); 331 332 return 0; 333 334 cleanup: 335 greth_clean_rings(greth); 336 return -ENOMEM; 337 } 338 339 static int greth_open(struct net_device *dev) 340 { 341 struct greth_private *greth = netdev_priv(dev); 342 int err; 343 344 err = greth_init_rings(greth); 345 if (err) { 346 if (netif_msg_ifup(greth)) 347 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); 348 return err; 349 } 350 351 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); 352 if (err) { 353 if (netif_msg_ifup(greth)) 354 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); 355 greth_clean_rings(greth); 356 return err; 357 } 358 359 if (netif_msg_ifup(greth)) 360 dev_dbg(&dev->dev, " starting queue\n"); 361 netif_start_queue(dev); 362 363 GRETH_REGSAVE(greth->regs->status, 0xFF); 364 365 napi_enable(&greth->napi); 366 367 greth_enable_irqs(greth); 368 greth_enable_tx(greth); 369 greth_enable_rx(greth); 370 return 0; 371 372 } 373 374 static int greth_close(struct net_device *dev) 375 { 376 struct greth_private *greth = netdev_priv(dev); 377 378 napi_disable(&greth->napi); 379 380 greth_disable_irqs(greth); 381 greth_disable_tx(greth); 382 greth_disable_rx(greth); 383 384 netif_stop_queue(dev); 385 386 free_irq(greth->irq, (void *) dev); 387 388 greth_clean_rings(greth); 389 390 return 0; 391 } 392 393 static netdev_tx_t 394 greth_start_xmit(struct sk_buff *skb, struct net_device *dev) 395 { 396 struct greth_private *greth = netdev_priv(dev); 397 struct greth_bd *bdp; 398 int err = NETDEV_TX_OK; 399 u32 status, dma_addr, ctrl; 400 unsigned long flags; 401 402 /* Clean TX Ring */ 403 greth_clean_tx(greth->netdev); 404 405 if (unlikely(greth->tx_free <= 0)) { 406 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 407 ctrl = GRETH_REGLOAD(greth->regs->control); 408 /* Enable TX IRQ only if not already in poll() routine */ 409 if (ctrl & GRETH_RXI) 410 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 411 netif_stop_queue(dev); 412 spin_unlock_irqrestore(&greth->devlock, flags); 413 return NETDEV_TX_BUSY; 414 } 415 416 if (netif_msg_pktdata(greth)) 417 greth_print_tx_packet(skb); 418 419 420 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 421 dev->stats.tx_errors++; 422 goto out; 423 } 424 425 bdp = greth->tx_bd_base + greth->tx_next; 426 dma_addr = greth_read_bd(&bdp->addr); 427 428 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); 429 430 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); 431 432 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); 433 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; 434 435 /* Wrap around descriptor ring */ 436 if (greth->tx_next == GRETH_TXBD_NUM_MASK) { 437 status |= GRETH_BD_WR; 438 } 439 440 greth->tx_next = NEXT_TX(greth->tx_next); 441 greth->tx_free--; 442 443 /* Write descriptor control word and enable transmission */ 444 greth_write_bd(&bdp->stat, status); 445 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 446 greth_enable_tx(greth); 447 spin_unlock_irqrestore(&greth->devlock, flags); 448 449 out: 450 dev_kfree_skb(skb); 451 return err; 452 } 453 454 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next) 455 { 456 if (tx_next < tx_last) 457 return (tx_last - tx_next) - 1; 458 else 459 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1; 460 } 461 462 static netdev_tx_t 463 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) 464 { 465 struct greth_private *greth = netdev_priv(dev); 466 struct greth_bd *bdp; 467 u32 status, dma_addr; 468 int curr_tx, nr_frags, i, err = NETDEV_TX_OK; 469 unsigned long flags; 470 u16 tx_last; 471 472 nr_frags = skb_shinfo(skb)->nr_frags; 473 tx_last = greth->tx_last; 474 rmb(); /* tx_last is updated by the poll task */ 475 476 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) { 477 netif_stop_queue(dev); 478 err = NETDEV_TX_BUSY; 479 goto out; 480 } 481 482 if (netif_msg_pktdata(greth)) 483 greth_print_tx_packet(skb); 484 485 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 486 dev->stats.tx_errors++; 487 goto out; 488 } 489 490 /* Save skb pointer. */ 491 greth->tx_skbuff[greth->tx_next] = skb; 492 493 /* Linear buf */ 494 if (nr_frags != 0) 495 status = GRETH_TXBD_MORE; 496 else 497 status = GRETH_BD_IE; 498 499 if (skb->ip_summed == CHECKSUM_PARTIAL) 500 status |= GRETH_TXBD_CSALL; 501 status |= skb_headlen(skb) & GRETH_BD_LEN; 502 if (greth->tx_next == GRETH_TXBD_NUM_MASK) 503 status |= GRETH_BD_WR; 504 505 506 bdp = greth->tx_bd_base + greth->tx_next; 507 greth_write_bd(&bdp->stat, status); 508 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 509 510 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 511 goto map_error; 512 513 greth_write_bd(&bdp->addr, dma_addr); 514 515 curr_tx = NEXT_TX(greth->tx_next); 516 517 /* Frags */ 518 for (i = 0; i < nr_frags; i++) { 519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 520 greth->tx_skbuff[curr_tx] = NULL; 521 bdp = greth->tx_bd_base + curr_tx; 522 523 status = GRETH_BD_EN; 524 if (skb->ip_summed == CHECKSUM_PARTIAL) 525 status |= GRETH_TXBD_CSALL; 526 status |= skb_frag_size(frag) & GRETH_BD_LEN; 527 528 /* Wrap around descriptor ring */ 529 if (curr_tx == GRETH_TXBD_NUM_MASK) 530 status |= GRETH_BD_WR; 531 532 /* More fragments left */ 533 if (i < nr_frags - 1) 534 status |= GRETH_TXBD_MORE; 535 else 536 status |= GRETH_BD_IE; /* enable IRQ on last fragment */ 537 538 greth_write_bd(&bdp->stat, status); 539 540 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), 541 DMA_TO_DEVICE); 542 543 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 544 goto frag_map_error; 545 546 greth_write_bd(&bdp->addr, dma_addr); 547 548 curr_tx = NEXT_TX(curr_tx); 549 } 550 551 wmb(); 552 553 /* Enable the descriptor chain by enabling the first descriptor */ 554 bdp = greth->tx_bd_base + greth->tx_next; 555 greth_write_bd(&bdp->stat, 556 greth_read_bd(&bdp->stat) | GRETH_BD_EN); 557 558 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 559 greth->tx_next = curr_tx; 560 greth_enable_tx_and_irq(greth); 561 spin_unlock_irqrestore(&greth->devlock, flags); 562 563 return NETDEV_TX_OK; 564 565 frag_map_error: 566 /* Unmap SKB mappings that succeeded and disable descriptor */ 567 for (i = 0; greth->tx_next + i != curr_tx; i++) { 568 bdp = greth->tx_bd_base + greth->tx_next + i; 569 dma_unmap_single(greth->dev, 570 greth_read_bd(&bdp->addr), 571 greth_read_bd(&bdp->stat) & GRETH_BD_LEN, 572 DMA_TO_DEVICE); 573 greth_write_bd(&bdp->stat, 0); 574 } 575 map_error: 576 if (net_ratelimit()) 577 dev_warn(greth->dev, "Could not create TX DMA mapping\n"); 578 dev_kfree_skb(skb); 579 out: 580 return err; 581 } 582 583 static irqreturn_t greth_interrupt(int irq, void *dev_id) 584 { 585 struct net_device *dev = dev_id; 586 struct greth_private *greth; 587 u32 status, ctrl; 588 irqreturn_t retval = IRQ_NONE; 589 590 greth = netdev_priv(dev); 591 592 spin_lock(&greth->devlock); 593 594 /* Get the interrupt events that caused us to be here. */ 595 status = GRETH_REGLOAD(greth->regs->status); 596 597 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be 598 * set regardless of whether IRQ is enabled or not. Especially 599 * important when shared IRQ. 600 */ 601 ctrl = GRETH_REGLOAD(greth->regs->control); 602 603 /* Handle rx and tx interrupts through poll */ 604 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || 605 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { 606 retval = IRQ_HANDLED; 607 608 /* Disable interrupts and schedule poll() */ 609 greth_disable_irqs(greth); 610 napi_schedule(&greth->napi); 611 } 612 613 spin_unlock(&greth->devlock); 614 615 return retval; 616 } 617 618 static void greth_clean_tx(struct net_device *dev) 619 { 620 struct greth_private *greth; 621 struct greth_bd *bdp; 622 u32 stat; 623 624 greth = netdev_priv(dev); 625 626 while (1) { 627 bdp = greth->tx_bd_base + greth->tx_last; 628 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 629 mb(); 630 stat = greth_read_bd(&bdp->stat); 631 632 if (unlikely(stat & GRETH_BD_EN)) 633 break; 634 635 if (greth->tx_free == GRETH_TXBD_NUM) 636 break; 637 638 /* Check status for errors */ 639 if (unlikely(stat & GRETH_TXBD_STATUS)) { 640 dev->stats.tx_errors++; 641 if (stat & GRETH_TXBD_ERR_AL) 642 dev->stats.tx_aborted_errors++; 643 if (stat & GRETH_TXBD_ERR_UE) 644 dev->stats.tx_fifo_errors++; 645 } 646 dev->stats.tx_packets++; 647 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; 648 greth->tx_last = NEXT_TX(greth->tx_last); 649 greth->tx_free++; 650 } 651 652 if (greth->tx_free > 0) { 653 netif_wake_queue(dev); 654 } 655 } 656 657 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) 658 { 659 /* Check status for errors */ 660 if (unlikely(stat & GRETH_TXBD_STATUS)) { 661 dev->stats.tx_errors++; 662 if (stat & GRETH_TXBD_ERR_AL) 663 dev->stats.tx_aborted_errors++; 664 if (stat & GRETH_TXBD_ERR_UE) 665 dev->stats.tx_fifo_errors++; 666 if (stat & GRETH_TXBD_ERR_LC) 667 dev->stats.tx_aborted_errors++; 668 } 669 dev->stats.tx_packets++; 670 } 671 672 static void greth_clean_tx_gbit(struct net_device *dev) 673 { 674 struct greth_private *greth; 675 struct greth_bd *bdp, *bdp_last_frag; 676 struct sk_buff *skb = NULL; 677 u32 stat; 678 int nr_frags, i; 679 u16 tx_last; 680 681 greth = netdev_priv(dev); 682 tx_last = greth->tx_last; 683 684 while (tx_last != greth->tx_next) { 685 686 skb = greth->tx_skbuff[tx_last]; 687 688 nr_frags = skb_shinfo(skb)->nr_frags; 689 690 /* We only clean fully completed SKBs */ 691 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags); 692 693 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 694 mb(); 695 stat = greth_read_bd(&bdp_last_frag->stat); 696 697 if (stat & GRETH_BD_EN) 698 break; 699 700 greth->tx_skbuff[tx_last] = NULL; 701 702 greth_update_tx_stats(dev, stat); 703 dev->stats.tx_bytes += skb->len; 704 705 bdp = greth->tx_bd_base + tx_last; 706 707 tx_last = NEXT_TX(tx_last); 708 709 dma_unmap_single(greth->dev, 710 greth_read_bd(&bdp->addr), 711 skb_headlen(skb), 712 DMA_TO_DEVICE); 713 714 for (i = 0; i < nr_frags; i++) { 715 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 716 bdp = greth->tx_bd_base + tx_last; 717 718 dma_unmap_page(greth->dev, 719 greth_read_bd(&bdp->addr), 720 skb_frag_size(frag), 721 DMA_TO_DEVICE); 722 723 tx_last = NEXT_TX(tx_last); 724 } 725 dev_kfree_skb(skb); 726 } 727 if (skb) { /* skb is set only if the above while loop was entered */ 728 wmb(); 729 greth->tx_last = tx_last; 730 731 if (netif_queue_stopped(dev) && 732 (greth_num_free_bds(tx_last, greth->tx_next) > 733 (MAX_SKB_FRAGS+1))) 734 netif_wake_queue(dev); 735 } 736 } 737 738 static int greth_rx(struct net_device *dev, int limit) 739 { 740 struct greth_private *greth; 741 struct greth_bd *bdp; 742 struct sk_buff *skb; 743 int pkt_len; 744 int bad, count; 745 u32 status, dma_addr; 746 unsigned long flags; 747 748 greth = netdev_priv(dev); 749 750 for (count = 0; count < limit; ++count) { 751 752 bdp = greth->rx_bd_base + greth->rx_cur; 753 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 754 mb(); 755 status = greth_read_bd(&bdp->stat); 756 757 if (unlikely(status & GRETH_BD_EN)) { 758 break; 759 } 760 761 dma_addr = greth_read_bd(&bdp->addr); 762 bad = 0; 763 764 /* Check status for errors. */ 765 if (unlikely(status & GRETH_RXBD_STATUS)) { 766 if (status & GRETH_RXBD_ERR_FT) { 767 dev->stats.rx_length_errors++; 768 bad = 1; 769 } 770 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { 771 dev->stats.rx_frame_errors++; 772 bad = 1; 773 } 774 if (status & GRETH_RXBD_ERR_CRC) { 775 dev->stats.rx_crc_errors++; 776 bad = 1; 777 } 778 } 779 if (unlikely(bad)) { 780 dev->stats.rx_errors++; 781 782 } else { 783 784 pkt_len = status & GRETH_BD_LEN; 785 786 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); 787 788 if (unlikely(skb == NULL)) { 789 790 if (net_ratelimit()) 791 dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); 792 793 dev->stats.rx_dropped++; 794 795 } else { 796 skb_reserve(skb, NET_IP_ALIGN); 797 798 dma_sync_single_for_cpu(greth->dev, 799 dma_addr, 800 pkt_len, 801 DMA_FROM_DEVICE); 802 803 if (netif_msg_pktdata(greth)) 804 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); 805 806 skb_put_data(skb, phys_to_virt(dma_addr), 807 pkt_len); 808 809 skb->protocol = eth_type_trans(skb, dev); 810 dev->stats.rx_bytes += pkt_len; 811 dev->stats.rx_packets++; 812 netif_receive_skb(skb); 813 } 814 } 815 816 status = GRETH_BD_EN | GRETH_BD_IE; 817 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 818 status |= GRETH_BD_WR; 819 } 820 821 wmb(); 822 greth_write_bd(&bdp->stat, status); 823 824 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); 825 826 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ 827 greth_enable_rx(greth); 828 spin_unlock_irqrestore(&greth->devlock, flags); 829 830 greth->rx_cur = NEXT_RX(greth->rx_cur); 831 } 832 833 return count; 834 } 835 836 static inline int hw_checksummed(u32 status) 837 { 838 839 if (status & GRETH_RXBD_IP_FRAG) 840 return 0; 841 842 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) 843 return 0; 844 845 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) 846 return 0; 847 848 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) 849 return 0; 850 851 return 1; 852 } 853 854 static int greth_rx_gbit(struct net_device *dev, int limit) 855 { 856 struct greth_private *greth; 857 struct greth_bd *bdp; 858 struct sk_buff *skb, *newskb; 859 int pkt_len; 860 int bad, count = 0; 861 u32 status, dma_addr; 862 unsigned long flags; 863 864 greth = netdev_priv(dev); 865 866 for (count = 0; count < limit; ++count) { 867 868 bdp = greth->rx_bd_base + greth->rx_cur; 869 skb = greth->rx_skbuff[greth->rx_cur]; 870 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 871 mb(); 872 status = greth_read_bd(&bdp->stat); 873 bad = 0; 874 875 if (status & GRETH_BD_EN) 876 break; 877 878 /* Check status for errors. */ 879 if (unlikely(status & GRETH_RXBD_STATUS)) { 880 881 if (status & GRETH_RXBD_ERR_FT) { 882 dev->stats.rx_length_errors++; 883 bad = 1; 884 } else if (status & 885 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { 886 dev->stats.rx_frame_errors++; 887 bad = 1; 888 } else if (status & GRETH_RXBD_ERR_CRC) { 889 dev->stats.rx_crc_errors++; 890 bad = 1; 891 } 892 } 893 894 /* Allocate new skb to replace current, not needed if the 895 * current skb can be reused */ 896 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { 897 skb_reserve(newskb, NET_IP_ALIGN); 898 899 dma_addr = dma_map_single(greth->dev, 900 newskb->data, 901 MAX_FRAME_SIZE + NET_IP_ALIGN, 902 DMA_FROM_DEVICE); 903 904 if (!dma_mapping_error(greth->dev, dma_addr)) { 905 /* Process the incoming frame. */ 906 pkt_len = status & GRETH_BD_LEN; 907 908 dma_unmap_single(greth->dev, 909 greth_read_bd(&bdp->addr), 910 MAX_FRAME_SIZE + NET_IP_ALIGN, 911 DMA_FROM_DEVICE); 912 913 if (netif_msg_pktdata(greth)) 914 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); 915 916 skb_put(skb, pkt_len); 917 918 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) 919 skb->ip_summed = CHECKSUM_UNNECESSARY; 920 else 921 skb_checksum_none_assert(skb); 922 923 skb->protocol = eth_type_trans(skb, dev); 924 dev->stats.rx_packets++; 925 dev->stats.rx_bytes += pkt_len; 926 netif_receive_skb(skb); 927 928 greth->rx_skbuff[greth->rx_cur] = newskb; 929 greth_write_bd(&bdp->addr, dma_addr); 930 } else { 931 if (net_ratelimit()) 932 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); 933 dev_kfree_skb(newskb); 934 /* reusing current skb, so it is a drop */ 935 dev->stats.rx_dropped++; 936 } 937 } else if (bad) { 938 /* Bad Frame transfer, the skb is reused */ 939 dev->stats.rx_dropped++; 940 } else { 941 /* Failed Allocating a new skb. This is rather stupid 942 * but the current "filled" skb is reused, as if 943 * transfer failure. One could argue that RX descriptor 944 * table handling should be divided into cleaning and 945 * filling as the TX part of the driver 946 */ 947 if (net_ratelimit()) 948 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); 949 /* reusing current skb, so it is a drop */ 950 dev->stats.rx_dropped++; 951 } 952 953 status = GRETH_BD_EN | GRETH_BD_IE; 954 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 955 status |= GRETH_BD_WR; 956 } 957 958 wmb(); 959 greth_write_bd(&bdp->stat, status); 960 spin_lock_irqsave(&greth->devlock, flags); 961 greth_enable_rx(greth); 962 spin_unlock_irqrestore(&greth->devlock, flags); 963 greth->rx_cur = NEXT_RX(greth->rx_cur); 964 } 965 966 return count; 967 968 } 969 970 static int greth_poll(struct napi_struct *napi, int budget) 971 { 972 struct greth_private *greth; 973 int work_done = 0; 974 unsigned long flags; 975 u32 mask, ctrl; 976 greth = container_of(napi, struct greth_private, napi); 977 978 restart_txrx_poll: 979 if (greth->gbit_mac) { 980 greth_clean_tx_gbit(greth->netdev); 981 work_done += greth_rx_gbit(greth->netdev, budget - work_done); 982 } else { 983 if (netif_queue_stopped(greth->netdev)) 984 greth_clean_tx(greth->netdev); 985 work_done += greth_rx(greth->netdev, budget - work_done); 986 } 987 988 if (work_done < budget) { 989 990 spin_lock_irqsave(&greth->devlock, flags); 991 992 ctrl = GRETH_REGLOAD(greth->regs->control); 993 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) || 994 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) { 995 GRETH_REGSAVE(greth->regs->control, 996 ctrl | GRETH_TXI | GRETH_RXI); 997 mask = GRETH_INT_RX | GRETH_INT_RE | 998 GRETH_INT_TX | GRETH_INT_TE; 999 } else { 1000 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); 1001 mask = GRETH_INT_RX | GRETH_INT_RE; 1002 } 1003 1004 if (GRETH_REGLOAD(greth->regs->status) & mask) { 1005 GRETH_REGSAVE(greth->regs->control, ctrl); 1006 spin_unlock_irqrestore(&greth->devlock, flags); 1007 goto restart_txrx_poll; 1008 } else { 1009 napi_complete_done(napi, work_done); 1010 spin_unlock_irqrestore(&greth->devlock, flags); 1011 } 1012 } 1013 1014 return work_done; 1015 } 1016 1017 static int greth_set_mac_add(struct net_device *dev, void *p) 1018 { 1019 struct sockaddr *addr = p; 1020 struct greth_private *greth; 1021 struct greth_regs *regs; 1022 1023 greth = netdev_priv(dev); 1024 regs = greth->regs; 1025 1026 if (!is_valid_ether_addr(addr->sa_data)) 1027 return -EADDRNOTAVAIL; 1028 1029 eth_hw_addr_set(dev, addr->sa_data); 1030 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1031 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1032 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1033 1034 return 0; 1035 } 1036 1037 static u32 greth_hash_get_index(__u8 *addr) 1038 { 1039 return (ether_crc(6, addr)) & 0x3F; 1040 } 1041 1042 static void greth_set_hash_filter(struct net_device *dev) 1043 { 1044 struct netdev_hw_addr *ha; 1045 struct greth_private *greth = netdev_priv(dev); 1046 struct greth_regs *regs = greth->regs; 1047 u32 mc_filter[2]; 1048 unsigned int bitnr; 1049 1050 mc_filter[0] = mc_filter[1] = 0; 1051 1052 netdev_for_each_mc_addr(ha, dev) { 1053 bitnr = greth_hash_get_index(ha->addr); 1054 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 1055 } 1056 1057 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); 1058 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); 1059 } 1060 1061 static void greth_set_multicast_list(struct net_device *dev) 1062 { 1063 int cfg; 1064 struct greth_private *greth = netdev_priv(dev); 1065 struct greth_regs *regs = greth->regs; 1066 1067 cfg = GRETH_REGLOAD(regs->control); 1068 if (dev->flags & IFF_PROMISC) 1069 cfg |= GRETH_CTRL_PR; 1070 else 1071 cfg &= ~GRETH_CTRL_PR; 1072 1073 if (greth->multicast) { 1074 if (dev->flags & IFF_ALLMULTI) { 1075 GRETH_REGSAVE(regs->hash_msb, -1); 1076 GRETH_REGSAVE(regs->hash_lsb, -1); 1077 cfg |= GRETH_CTRL_MCEN; 1078 GRETH_REGSAVE(regs->control, cfg); 1079 return; 1080 } 1081 1082 if (netdev_mc_empty(dev)) { 1083 cfg &= ~GRETH_CTRL_MCEN; 1084 GRETH_REGSAVE(regs->control, cfg); 1085 return; 1086 } 1087 1088 /* Setup multicast filter */ 1089 greth_set_hash_filter(dev); 1090 cfg |= GRETH_CTRL_MCEN; 1091 } 1092 GRETH_REGSAVE(regs->control, cfg); 1093 } 1094 1095 static u32 greth_get_msglevel(struct net_device *dev) 1096 { 1097 struct greth_private *greth = netdev_priv(dev); 1098 return greth->msg_enable; 1099 } 1100 1101 static void greth_set_msglevel(struct net_device *dev, u32 value) 1102 { 1103 struct greth_private *greth = netdev_priv(dev); 1104 greth->msg_enable = value; 1105 } 1106 1107 static int greth_get_regs_len(struct net_device *dev) 1108 { 1109 return sizeof(struct greth_regs); 1110 } 1111 1112 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1113 { 1114 struct greth_private *greth = netdev_priv(dev); 1115 1116 strscpy(info->driver, dev_driver_string(greth->dev), 1117 sizeof(info->driver)); 1118 strscpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); 1119 } 1120 1121 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) 1122 { 1123 int i; 1124 struct greth_private *greth = netdev_priv(dev); 1125 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; 1126 u32 *buff = p; 1127 1128 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) 1129 buff[i] = greth_read_bd(&greth_regs[i]); 1130 } 1131 1132 static const struct ethtool_ops greth_ethtool_ops = { 1133 .get_msglevel = greth_get_msglevel, 1134 .set_msglevel = greth_set_msglevel, 1135 .get_drvinfo = greth_get_drvinfo, 1136 .get_regs_len = greth_get_regs_len, 1137 .get_regs = greth_get_regs, 1138 .get_link = ethtool_op_get_link, 1139 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1140 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1141 }; 1142 1143 static struct net_device_ops greth_netdev_ops = { 1144 .ndo_open = greth_open, 1145 .ndo_stop = greth_close, 1146 .ndo_start_xmit = greth_start_xmit, 1147 .ndo_set_mac_address = greth_set_mac_add, 1148 .ndo_validate_addr = eth_validate_addr, 1149 }; 1150 1151 static inline int wait_for_mdio(struct greth_private *greth) 1152 { 1153 unsigned long timeout = jiffies + 4*HZ/100; 1154 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { 1155 if (time_after(jiffies, timeout)) 1156 return 0; 1157 } 1158 return 1; 1159 } 1160 1161 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) 1162 { 1163 struct greth_private *greth = bus->priv; 1164 int data; 1165 1166 if (!wait_for_mdio(greth)) 1167 return -EBUSY; 1168 1169 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); 1170 1171 if (!wait_for_mdio(greth)) 1172 return -EBUSY; 1173 1174 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { 1175 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; 1176 return data; 1177 1178 } else { 1179 return -1; 1180 } 1181 } 1182 1183 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 1184 { 1185 struct greth_private *greth = bus->priv; 1186 1187 if (!wait_for_mdio(greth)) 1188 return -EBUSY; 1189 1190 GRETH_REGSAVE(greth->regs->mdio, 1191 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); 1192 1193 if (!wait_for_mdio(greth)) 1194 return -EBUSY; 1195 1196 return 0; 1197 } 1198 1199 static void greth_link_change(struct net_device *dev) 1200 { 1201 struct greth_private *greth = netdev_priv(dev); 1202 struct phy_device *phydev = dev->phydev; 1203 unsigned long flags; 1204 int status_change = 0; 1205 u32 ctrl; 1206 1207 spin_lock_irqsave(&greth->devlock, flags); 1208 1209 if (phydev->link) { 1210 1211 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { 1212 ctrl = GRETH_REGLOAD(greth->regs->control) & 1213 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); 1214 1215 if (phydev->duplex) 1216 ctrl |= GRETH_CTRL_FD; 1217 1218 if (phydev->speed == SPEED_100) 1219 ctrl |= GRETH_CTRL_SP; 1220 else if (phydev->speed == SPEED_1000) 1221 ctrl |= GRETH_CTRL_GB; 1222 1223 GRETH_REGSAVE(greth->regs->control, ctrl); 1224 greth->speed = phydev->speed; 1225 greth->duplex = phydev->duplex; 1226 status_change = 1; 1227 } 1228 } 1229 1230 if (phydev->link != greth->link) { 1231 if (!phydev->link) { 1232 greth->speed = 0; 1233 greth->duplex = -1; 1234 } 1235 greth->link = phydev->link; 1236 1237 status_change = 1; 1238 } 1239 1240 spin_unlock_irqrestore(&greth->devlock, flags); 1241 1242 if (status_change) { 1243 if (phydev->link) 1244 pr_debug("%s: link up (%d/%s)\n", 1245 dev->name, phydev->speed, 1246 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 1247 else 1248 pr_debug("%s: link down\n", dev->name); 1249 } 1250 } 1251 1252 static int greth_mdio_probe(struct net_device *dev) 1253 { 1254 struct greth_private *greth = netdev_priv(dev); 1255 struct phy_device *phy = NULL; 1256 int ret; 1257 1258 /* Find the first PHY */ 1259 phy = phy_find_first(greth->mdio); 1260 1261 if (!phy) { 1262 if (netif_msg_probe(greth)) 1263 dev_err(&dev->dev, "no PHY found\n"); 1264 return -ENXIO; 1265 } 1266 1267 ret = phy_connect_direct(dev, phy, &greth_link_change, 1268 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); 1269 if (ret) { 1270 if (netif_msg_ifup(greth)) 1271 dev_err(&dev->dev, "could not attach to PHY\n"); 1272 return ret; 1273 } 1274 1275 if (greth->gbit_mac) 1276 phy_set_max_speed(phy, SPEED_1000); 1277 else 1278 phy_set_max_speed(phy, SPEED_100); 1279 1280 linkmode_copy(phy->advertising, phy->supported); 1281 1282 greth->link = 0; 1283 greth->speed = 0; 1284 greth->duplex = -1; 1285 1286 return 0; 1287 } 1288 1289 static int greth_mdio_init(struct greth_private *greth) 1290 { 1291 int ret; 1292 unsigned long timeout; 1293 struct net_device *ndev = greth->netdev; 1294 1295 greth->mdio = mdiobus_alloc(); 1296 if (!greth->mdio) { 1297 return -ENOMEM; 1298 } 1299 1300 greth->mdio->name = "greth-mdio"; 1301 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); 1302 greth->mdio->read = greth_mdio_read; 1303 greth->mdio->write = greth_mdio_write; 1304 greth->mdio->priv = greth; 1305 1306 ret = mdiobus_register(greth->mdio); 1307 if (ret) { 1308 goto error; 1309 } 1310 1311 ret = greth_mdio_probe(greth->netdev); 1312 if (ret) { 1313 if (netif_msg_probe(greth)) 1314 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); 1315 goto unreg_mdio; 1316 } 1317 1318 phy_start(ndev->phydev); 1319 1320 /* If Ethernet debug link is used make autoneg happen right away */ 1321 if (greth->edcl && greth_edcl == 1) { 1322 phy_start_aneg(ndev->phydev); 1323 timeout = jiffies + 6*HZ; 1324 while (!phy_aneg_done(ndev->phydev) && 1325 time_before(jiffies, timeout)) { 1326 } 1327 phy_read_status(ndev->phydev); 1328 greth_link_change(greth->netdev); 1329 } 1330 1331 return 0; 1332 1333 unreg_mdio: 1334 mdiobus_unregister(greth->mdio); 1335 error: 1336 mdiobus_free(greth->mdio); 1337 return ret; 1338 } 1339 1340 /* Initialize the GRETH MAC */ 1341 static int greth_of_probe(struct platform_device *ofdev) 1342 { 1343 struct net_device *dev; 1344 struct greth_private *greth; 1345 struct greth_regs *regs; 1346 1347 int i; 1348 int err; 1349 int tmp; 1350 u8 addr[ETH_ALEN]; 1351 unsigned long timeout; 1352 1353 dev = alloc_etherdev(sizeof(struct greth_private)); 1354 1355 if (dev == NULL) 1356 return -ENOMEM; 1357 1358 greth = netdev_priv(dev); 1359 greth->netdev = dev; 1360 greth->dev = &ofdev->dev; 1361 1362 if (greth_debug > 0) 1363 greth->msg_enable = greth_debug; 1364 else 1365 greth->msg_enable = GRETH_DEF_MSG_ENABLE; 1366 1367 spin_lock_init(&greth->devlock); 1368 1369 greth->regs = of_ioremap(&ofdev->resource[0], 0, 1370 resource_size(&ofdev->resource[0]), 1371 "grlib-greth regs"); 1372 1373 if (greth->regs == NULL) { 1374 if (netif_msg_probe(greth)) 1375 dev_err(greth->dev, "ioremap failure.\n"); 1376 err = -EIO; 1377 goto error1; 1378 } 1379 1380 regs = greth->regs; 1381 greth->irq = ofdev->archdata.irqs[0]; 1382 1383 dev_set_drvdata(greth->dev, dev); 1384 SET_NETDEV_DEV(dev, greth->dev); 1385 1386 if (netif_msg_probe(greth)) 1387 dev_dbg(greth->dev, "resetting controller.\n"); 1388 1389 /* Reset the controller. */ 1390 GRETH_REGSAVE(regs->control, GRETH_RESET); 1391 1392 /* Wait for MAC to reset itself */ 1393 timeout = jiffies + HZ/100; 1394 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { 1395 if (time_after(jiffies, timeout)) { 1396 err = -EIO; 1397 if (netif_msg_probe(greth)) 1398 dev_err(greth->dev, "timeout when waiting for reset.\n"); 1399 goto error2; 1400 } 1401 } 1402 1403 /* Get default PHY address */ 1404 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; 1405 1406 /* Check if we have GBIT capable MAC */ 1407 tmp = GRETH_REGLOAD(regs->control); 1408 greth->gbit_mac = (tmp >> 27) & 1; 1409 1410 /* Check for multicast capability */ 1411 greth->multicast = (tmp >> 25) & 1; 1412 1413 greth->edcl = (tmp >> 31) & 1; 1414 1415 /* If we have EDCL we disable the EDCL speed-duplex FSM so 1416 * it doesn't interfere with the software */ 1417 if (greth->edcl != 0) 1418 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); 1419 1420 /* Check if MAC can handle MDIO interrupts */ 1421 greth->mdio_int_en = (tmp >> 26) & 1; 1422 1423 err = greth_mdio_init(greth); 1424 if (err) { 1425 if (netif_msg_probe(greth)) 1426 dev_err(greth->dev, "failed to register MDIO bus\n"); 1427 goto error2; 1428 } 1429 1430 /* Allocate TX descriptor ring in coherent memory */ 1431 greth->tx_bd_base = dma_alloc_coherent(greth->dev, 1024, 1432 &greth->tx_bd_base_phys, 1433 GFP_KERNEL); 1434 if (!greth->tx_bd_base) { 1435 err = -ENOMEM; 1436 goto error3; 1437 } 1438 1439 /* Allocate RX descriptor ring in coherent memory */ 1440 greth->rx_bd_base = dma_alloc_coherent(greth->dev, 1024, 1441 &greth->rx_bd_base_phys, 1442 GFP_KERNEL); 1443 if (!greth->rx_bd_base) { 1444 err = -ENOMEM; 1445 goto error4; 1446 } 1447 1448 /* Get MAC address from: module param, OF property or ID prom */ 1449 for (i = 0; i < 6; i++) { 1450 if (macaddr[i] != 0) 1451 break; 1452 } 1453 if (i == 6) { 1454 err = of_get_mac_address(ofdev->dev.of_node, addr); 1455 if (!err) { 1456 for (i = 0; i < 6; i++) 1457 macaddr[i] = (unsigned int) addr[i]; 1458 } else { 1459 #ifdef CONFIG_SPARC 1460 for (i = 0; i < 6; i++) 1461 macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; 1462 #endif 1463 } 1464 } 1465 1466 for (i = 0; i < 6; i++) 1467 addr[i] = macaddr[i]; 1468 eth_hw_addr_set(dev, addr); 1469 1470 macaddr[5]++; 1471 1472 if (!is_valid_ether_addr(&dev->dev_addr[0])) { 1473 if (netif_msg_probe(greth)) 1474 dev_err(greth->dev, "no valid ethernet address, aborting.\n"); 1475 err = -EINVAL; 1476 goto error5; 1477 } 1478 1479 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1480 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1481 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1482 1483 /* Clear all pending interrupts except PHY irq */ 1484 GRETH_REGSAVE(regs->status, 0xFF); 1485 1486 if (greth->gbit_mac) { 1487 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 1488 NETIF_F_RXCSUM; 1489 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1490 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; 1491 } 1492 1493 if (greth->multicast) { 1494 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; 1495 dev->flags |= IFF_MULTICAST; 1496 } else { 1497 dev->flags &= ~IFF_MULTICAST; 1498 } 1499 1500 dev->netdev_ops = &greth_netdev_ops; 1501 dev->ethtool_ops = &greth_ethtool_ops; 1502 1503 err = register_netdev(dev); 1504 if (err) { 1505 if (netif_msg_probe(greth)) 1506 dev_err(greth->dev, "netdevice registration failed.\n"); 1507 goto error5; 1508 } 1509 1510 /* setup NAPI */ 1511 netif_napi_add(dev, &greth->napi, greth_poll); 1512 1513 return 0; 1514 1515 error5: 1516 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1517 error4: 1518 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1519 error3: 1520 mdiobus_unregister(greth->mdio); 1521 error2: 1522 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); 1523 error1: 1524 free_netdev(dev); 1525 return err; 1526 } 1527 1528 static void greth_of_remove(struct platform_device *of_dev) 1529 { 1530 struct net_device *ndev = platform_get_drvdata(of_dev); 1531 struct greth_private *greth = netdev_priv(ndev); 1532 1533 /* Free descriptor areas */ 1534 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1535 1536 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1537 1538 if (ndev->phydev) 1539 phy_stop(ndev->phydev); 1540 mdiobus_unregister(greth->mdio); 1541 1542 unregister_netdev(ndev); 1543 1544 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); 1545 1546 free_netdev(ndev); 1547 } 1548 1549 static const struct of_device_id greth_of_match[] = { 1550 { 1551 .name = "GAISLER_ETHMAC", 1552 }, 1553 { 1554 .name = "01_01d", 1555 }, 1556 {}, 1557 }; 1558 1559 MODULE_DEVICE_TABLE(of, greth_of_match); 1560 1561 static struct platform_driver greth_of_driver = { 1562 .driver = { 1563 .name = "grlib-greth", 1564 .of_match_table = greth_of_match, 1565 }, 1566 .probe = greth_of_probe, 1567 .remove_new = greth_of_remove, 1568 }; 1569 1570 module_platform_driver(greth_of_driver); 1571 1572 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1573 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); 1574 MODULE_LICENSE("GPL"); 1575