xref: /linux/drivers/net/ethernet/3com/3c59x.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		large_frames:1,			/* accept large frames */
636 		handling_irq:1;			/* private in_irq indicator */
637 	/* {get|set}_wol operations are already serialized by rtnl.
638 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
639 	 */
640 	int drv_flags;
641 	u16 status_enable;
642 	u16 intr_enable;
643 	u16 available_media;				/* From Wn3_Options. */
644 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
645 	u16 advertising;					/* NWay media advertisement */
646 	unsigned char phys[2];				/* MII device addresses. */
647 	u16 deferred;						/* Resend these interrupts when we
648 										 * bale from the ISR */
649 	u16 io_size;						/* Size of PCI region (for release_region) */
650 
651 	/* Serialises access to hardware other than MII and variables below.
652 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
653 	spinlock_t lock;
654 
655 	spinlock_t mii_lock;		/* Serialises access to MII */
656 	struct mii_if_info mii;		/* MII lib hooks/info */
657 	spinlock_t window_lock;		/* Serialises access to windowed regs */
658 	int window;			/* Register window */
659 };
660 
661 static void window_set(struct vortex_private *vp, int window)
662 {
663 	if (window != vp->window) {
664 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
665 		vp->window = window;
666 	}
667 }
668 
669 #define DEFINE_WINDOW_IO(size)						\
670 static u ## size							\
671 window_read ## size(struct vortex_private *vp, int window, int addr)	\
672 {									\
673 	unsigned long flags;						\
674 	u ## size ret;							\
675 	spin_lock_irqsave(&vp->window_lock, flags);			\
676 	window_set(vp, window);						\
677 	ret = ioread ## size(vp->ioaddr + addr);			\
678 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
679 	return ret;							\
680 }									\
681 static void								\
682 window_write ## size(struct vortex_private *vp, u ## size value,	\
683 		     int window, int addr)				\
684 {									\
685 	unsigned long flags;						\
686 	spin_lock_irqsave(&vp->window_lock, flags);			\
687 	window_set(vp, window);						\
688 	iowrite ## size(value, vp->ioaddr + addr);			\
689 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
690 }
691 DEFINE_WINDOW_IO(8)
692 DEFINE_WINDOW_IO(16)
693 DEFINE_WINDOW_IO(32)
694 
695 #ifdef CONFIG_PCI
696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
697 #else
698 #define DEVICE_PCI(dev) NULL
699 #endif
700 
701 #define VORTEX_PCI(vp)							\
702 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
703 
704 #ifdef CONFIG_EISA
705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
706 #else
707 #define DEVICE_EISA(dev) NULL
708 #endif
709 
710 #define VORTEX_EISA(vp)							\
711 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
712 
713 /* The action to take with a media selection timer tick.
714    Note that we deviate from the 3Com order by checking 10base2 before AUI.
715  */
716 enum xcvr_types {
717 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
718 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
719 };
720 
721 static const struct media_table {
722 	char *name;
723 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
724 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
725 		next:8;						/* The media type to try next. */
726 	int wait;						/* Time before we check media status. */
727 } media_tbl[] = {
728   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
729   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
730   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
731   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
732   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
733   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
734   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
735   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
736   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
737   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
738   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
739 };
740 
741 static struct {
742 	const char str[ETH_GSTRING_LEN];
743 } ethtool_stats_keys[] = {
744 	{ "tx_deferred" },
745 	{ "tx_max_collisions" },
746 	{ "tx_multiple_collisions" },
747 	{ "tx_single_collisions" },
748 	{ "rx_bad_ssd" },
749 };
750 
751 /* number of ETHTOOL_GSTATS u64's */
752 #define VORTEX_NUM_STATS    5
753 
754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
755 				   int chip_idx, int card_idx);
756 static int vortex_up(struct net_device *dev);
757 static void vortex_down(struct net_device *dev, int final);
758 static int vortex_open(struct net_device *dev);
759 static void mdio_sync(struct vortex_private *vp, int bits);
760 static int mdio_read(struct net_device *dev, int phy_id, int location);
761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
762 static void vortex_timer(unsigned long arg);
763 static void rx_oom_timer(unsigned long arg);
764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
765 				     struct net_device *dev);
766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
767 					struct net_device *dev);
768 static int vortex_rx(struct net_device *dev);
769 static int boomerang_rx(struct net_device *dev);
770 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
772 static int vortex_close(struct net_device *dev);
773 static void dump_tx_ring(struct net_device *dev);
774 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
775 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
776 static void set_rx_mode(struct net_device *dev);
777 #ifdef CONFIG_PCI
778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
779 #endif
780 static void vortex_tx_timeout(struct net_device *dev);
781 static void acpi_set_WOL(struct net_device *dev);
782 static const struct ethtool_ops vortex_ethtool_ops;
783 static void set_8021q_mode(struct net_device *dev, int enable);
784 
785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
786 /* Option count limit only -- unlimited interfaces are supported. */
787 #define MAX_UNITS 8
788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int global_options = -1;
795 static int global_full_duplex = -1;
796 static int global_enable_wol = -1;
797 static int global_use_mmio = -1;
798 
799 /* Variables to work-around the Compaq PCI BIOS32 problem. */
800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
801 static struct net_device *compaq_net_device;
802 
803 static int vortex_cards_found;
804 
805 module_param(debug, int, 0);
806 module_param(global_options, int, 0);
807 module_param_array(options, int, NULL, 0);
808 module_param(global_full_duplex, int, 0);
809 module_param_array(full_duplex, int, NULL, 0);
810 module_param_array(hw_checksums, int, NULL, 0);
811 module_param_array(flow_ctrl, int, NULL, 0);
812 module_param(global_enable_wol, int, 0);
813 module_param_array(enable_wol, int, NULL, 0);
814 module_param(rx_copybreak, int, 0);
815 module_param(max_interrupt_work, int, 0);
816 module_param(compaq_ioaddr, int, 0);
817 module_param(compaq_irq, int, 0);
818 module_param(compaq_device_id, int, 0);
819 module_param(watchdog, int, 0);
820 module_param(global_use_mmio, int, 0);
821 module_param_array(use_mmio, int, NULL, 0);
822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
839 
840 #ifdef CONFIG_NET_POLL_CONTROLLER
841 static void poll_vortex(struct net_device *dev)
842 {
843 	struct vortex_private *vp = netdev_priv(dev);
844 	unsigned long flags;
845 	local_irq_save(flags);
846 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
847 	local_irq_restore(flags);
848 }
849 #endif
850 
851 #ifdef CONFIG_PM
852 
853 static int vortex_suspend(struct device *dev)
854 {
855 	struct pci_dev *pdev = to_pci_dev(dev);
856 	struct net_device *ndev = pci_get_drvdata(pdev);
857 
858 	if (!ndev || !netif_running(ndev))
859 		return 0;
860 
861 	netif_device_detach(ndev);
862 	vortex_down(ndev, 1);
863 
864 	return 0;
865 }
866 
867 static int vortex_resume(struct device *dev)
868 {
869 	struct pci_dev *pdev = to_pci_dev(dev);
870 	struct net_device *ndev = pci_get_drvdata(pdev);
871 	int err;
872 
873 	if (!ndev || !netif_running(ndev))
874 		return 0;
875 
876 	err = vortex_up(ndev);
877 	if (err)
878 		return err;
879 
880 	netif_device_attach(ndev);
881 
882 	return 0;
883 }
884 
885 static const struct dev_pm_ops vortex_pm_ops = {
886 	.suspend = vortex_suspend,
887 	.resume = vortex_resume,
888 	.freeze = vortex_suspend,
889 	.thaw = vortex_resume,
890 	.poweroff = vortex_suspend,
891 	.restore = vortex_resume,
892 };
893 
894 #define VORTEX_PM_OPS (&vortex_pm_ops)
895 
896 #else /* !CONFIG_PM */
897 
898 #define VORTEX_PM_OPS NULL
899 
900 #endif /* !CONFIG_PM */
901 
902 #ifdef CONFIG_EISA
903 static struct eisa_device_id vortex_eisa_ids[] = {
904 	{ "TCM5920", CH_3C592 },
905 	{ "TCM5970", CH_3C597 },
906 	{ "" }
907 };
908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
909 
910 static int __init vortex_eisa_probe(struct device *device)
911 {
912 	void __iomem *ioaddr;
913 	struct eisa_device *edev;
914 
915 	edev = to_eisa_device(device);
916 
917 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
918 		return -EBUSY;
919 
920 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
921 
922 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
923 					  edev->id.driver_data, vortex_cards_found)) {
924 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
925 		return -ENODEV;
926 	}
927 
928 	vortex_cards_found++;
929 
930 	return 0;
931 }
932 
933 static int vortex_eisa_remove(struct device *device)
934 {
935 	struct eisa_device *edev;
936 	struct net_device *dev;
937 	struct vortex_private *vp;
938 	void __iomem *ioaddr;
939 
940 	edev = to_eisa_device(device);
941 	dev = eisa_get_drvdata(edev);
942 
943 	if (!dev) {
944 		pr_err("vortex_eisa_remove called for Compaq device!\n");
945 		BUG();
946 	}
947 
948 	vp = netdev_priv(dev);
949 	ioaddr = vp->ioaddr;
950 
951 	unregister_netdev(dev);
952 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
953 	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
954 
955 	free_netdev(dev);
956 	return 0;
957 }
958 
959 static struct eisa_driver vortex_eisa_driver = {
960 	.id_table = vortex_eisa_ids,
961 	.driver   = {
962 		.name    = "3c59x",
963 		.probe   = vortex_eisa_probe,
964 		.remove  = vortex_eisa_remove
965 	}
966 };
967 
968 #endif /* CONFIG_EISA */
969 
970 /* returns count found (>= 0), or negative on error */
971 static int __init vortex_eisa_init(void)
972 {
973 	int eisa_found = 0;
974 	int orig_cards_found = vortex_cards_found;
975 
976 #ifdef CONFIG_EISA
977 	int err;
978 
979 	err = eisa_driver_register (&vortex_eisa_driver);
980 	if (!err) {
981 		/*
982 		 * Because of the way EISA bus is probed, we cannot assume
983 		 * any device have been found when we exit from
984 		 * eisa_driver_register (the bus root driver may not be
985 		 * initialized yet). So we blindly assume something was
986 		 * found, and let the sysfs magic happened...
987 		 */
988 		eisa_found = 1;
989 	}
990 #endif
991 
992 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
993 	if (compaq_ioaddr) {
994 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
995 			      compaq_irq, compaq_device_id, vortex_cards_found++);
996 	}
997 
998 	return vortex_cards_found - orig_cards_found + eisa_found;
999 }
1000 
1001 /* returns count (>= 0), or negative on error */
1002 static int vortex_init_one(struct pci_dev *pdev,
1003 			   const struct pci_device_id *ent)
1004 {
1005 	int rc, unit, pci_bar;
1006 	struct vortex_chip_info *vci;
1007 	void __iomem *ioaddr;
1008 
1009 	/* wake up and enable device */
1010 	rc = pci_enable_device(pdev);
1011 	if (rc < 0)
1012 		goto out;
1013 
1014 	rc = pci_request_regions(pdev, DRV_NAME);
1015 	if (rc < 0)
1016 		goto out_disable;
1017 
1018 	unit = vortex_cards_found;
1019 
1020 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021 		/* Determine the default if the user didn't override us */
1022 		vci = &vortex_info_tbl[ent->driver_data];
1023 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025 		pci_bar = use_mmio[unit] ? 1 : 0;
1026 	else
1027 		pci_bar = global_use_mmio ? 1 : 0;
1028 
1029 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031 		ioaddr = pci_iomap(pdev, 0, 0);
1032 	if (!ioaddr) {
1033 		rc = -ENOMEM;
1034 		goto out_release;
1035 	}
1036 
1037 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038 			   ent->driver_data, unit);
1039 	if (rc < 0)
1040 		goto out_iounmap;
1041 
1042 	vortex_cards_found++;
1043 	goto out;
1044 
1045 out_iounmap:
1046 	pci_iounmap(pdev, ioaddr);
1047 out_release:
1048 	pci_release_regions(pdev);
1049 out_disable:
1050 	pci_disable_device(pdev);
1051 out:
1052 	return rc;
1053 }
1054 
1055 static const struct net_device_ops boomrang_netdev_ops = {
1056 	.ndo_open		= vortex_open,
1057 	.ndo_stop		= vortex_close,
1058 	.ndo_start_xmit		= boomerang_start_xmit,
1059 	.ndo_tx_timeout		= vortex_tx_timeout,
1060 	.ndo_get_stats		= vortex_get_stats,
1061 #ifdef CONFIG_PCI
1062 	.ndo_do_ioctl 		= vortex_ioctl,
1063 #endif
1064 	.ndo_set_rx_mode	= set_rx_mode,
1065 	.ndo_change_mtu		= eth_change_mtu,
1066 	.ndo_set_mac_address 	= eth_mac_addr,
1067 	.ndo_validate_addr	= eth_validate_addr,
1068 #ifdef CONFIG_NET_POLL_CONTROLLER
1069 	.ndo_poll_controller	= poll_vortex,
1070 #endif
1071 };
1072 
1073 static const struct net_device_ops vortex_netdev_ops = {
1074 	.ndo_open		= vortex_open,
1075 	.ndo_stop		= vortex_close,
1076 	.ndo_start_xmit		= vortex_start_xmit,
1077 	.ndo_tx_timeout		= vortex_tx_timeout,
1078 	.ndo_get_stats		= vortex_get_stats,
1079 #ifdef CONFIG_PCI
1080 	.ndo_do_ioctl 		= vortex_ioctl,
1081 #endif
1082 	.ndo_set_rx_mode	= set_rx_mode,
1083 	.ndo_change_mtu		= eth_change_mtu,
1084 	.ndo_set_mac_address 	= eth_mac_addr,
1085 	.ndo_validate_addr	= eth_validate_addr,
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087 	.ndo_poll_controller	= poll_vortex,
1088 #endif
1089 };
1090 
1091 /*
1092  * Start up the PCI/EISA device which is described by *gendev.
1093  * Return 0 on success.
1094  *
1095  * NOTE: pdev can be NULL, for the case of a Compaq device
1096  */
1097 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098 			 int chip_idx, int card_idx)
1099 {
1100 	struct vortex_private *vp;
1101 	int option;
1102 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1103 	int i, step;
1104 	struct net_device *dev;
1105 	static int printed_version;
1106 	int retval, print_info;
1107 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108 	const char *print_name = "3c59x";
1109 	struct pci_dev *pdev = NULL;
1110 	struct eisa_device *edev = NULL;
1111 
1112 	if (!printed_version) {
1113 		pr_info("%s", version);
1114 		printed_version = 1;
1115 	}
1116 
1117 	if (gendev) {
1118 		if ((pdev = DEVICE_PCI(gendev))) {
1119 			print_name = pci_name(pdev);
1120 		}
1121 
1122 		if ((edev = DEVICE_EISA(gendev))) {
1123 			print_name = dev_name(&edev->dev);
1124 		}
1125 	}
1126 
1127 	dev = alloc_etherdev(sizeof(*vp));
1128 	retval = -ENOMEM;
1129 	if (!dev)
1130 		goto out;
1131 
1132 	SET_NETDEV_DEV(dev, gendev);
1133 	vp = netdev_priv(dev);
1134 
1135 	option = global_options;
1136 
1137 	/* The lower four bits are the media type. */
1138 	if (dev->mem_start) {
1139 		/*
1140 		 * The 'options' param is passed in as the third arg to the
1141 		 * LILO 'ether=' argument for non-modular use
1142 		 */
1143 		option = dev->mem_start;
1144 	}
1145 	else if (card_idx < MAX_UNITS) {
1146 		if (options[card_idx] >= 0)
1147 			option = options[card_idx];
1148 	}
1149 
1150 	if (option > 0) {
1151 		if (option & 0x8000)
1152 			vortex_debug = 7;
1153 		if (option & 0x4000)
1154 			vortex_debug = 2;
1155 		if (option & 0x0400)
1156 			vp->enable_wol = 1;
1157 	}
1158 
1159 	print_info = (vortex_debug > 1);
1160 	if (print_info)
1161 		pr_info("See Documentation/networking/vortex.txt\n");
1162 
1163 	pr_info("%s: 3Com %s %s at %p.\n",
1164 	       print_name,
1165 	       pdev ? "PCI" : "EISA",
1166 	       vci->name,
1167 	       ioaddr);
1168 
1169 	dev->base_addr = (unsigned long)ioaddr;
1170 	dev->irq = irq;
1171 	dev->mtu = mtu;
1172 	vp->ioaddr = ioaddr;
1173 	vp->large_frames = mtu > 1500;
1174 	vp->drv_flags = vci->drv_flags;
1175 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176 	vp->io_size = vci->io_size;
1177 	vp->card_idx = card_idx;
1178 	vp->window = -1;
1179 
1180 	/* module list only for Compaq device */
1181 	if (gendev == NULL) {
1182 		compaq_net_device = dev;
1183 	}
1184 
1185 	/* PCI-only startup logic */
1186 	if (pdev) {
1187 		/* enable bus-mastering if necessary */
1188 		if (vci->flags & PCI_USES_MASTER)
1189 			pci_set_master(pdev);
1190 
1191 		if (vci->drv_flags & IS_VORTEX) {
1192 			u8 pci_latency;
1193 			u8 new_latency = 248;
1194 
1195 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1196 			   must be set to the maximum value to avoid data corruption that occurs
1197 			   when the timer expires during a transfer.  This bug exists the Vortex
1198 			   chip only. */
1199 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200 			if (pci_latency < new_latency) {
1201 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202 					print_name, pci_latency, new_latency);
1203 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204 			}
1205 		}
1206 	}
1207 
1208 	spin_lock_init(&vp->lock);
1209 	spin_lock_init(&vp->mii_lock);
1210 	spin_lock_init(&vp->window_lock);
1211 	vp->gendev = gendev;
1212 	vp->mii.dev = dev;
1213 	vp->mii.mdio_read = mdio_read;
1214 	vp->mii.mdio_write = mdio_write;
1215 	vp->mii.phy_id_mask = 0x1f;
1216 	vp->mii.reg_num_mask = 0x1f;
1217 
1218 	/* Makes sure rings are at least 16 byte aligned. */
1219 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221 					   &vp->rx_ring_dma);
1222 	retval = -ENOMEM;
1223 	if (!vp->rx_ring)
1224 		goto free_device;
1225 
1226 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228 
1229 	/* if we are a PCI driver, we store info in pdev->driver_data
1230 	 * instead of a module list */
1231 	if (pdev)
1232 		pci_set_drvdata(pdev, dev);
1233 	if (edev)
1234 		eisa_set_drvdata(edev, dev);
1235 
1236 	vp->media_override = 7;
1237 	if (option >= 0) {
1238 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239 		if (vp->media_override != 7)
1240 			vp->medialock = 1;
1241 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1242 		vp->bus_master = (option & 16) ? 1 : 0;
1243 	}
1244 
1245 	if (global_full_duplex > 0)
1246 		vp->full_duplex = 1;
1247 	if (global_enable_wol > 0)
1248 		vp->enable_wol = 1;
1249 
1250 	if (card_idx < MAX_UNITS) {
1251 		if (full_duplex[card_idx] > 0)
1252 			vp->full_duplex = 1;
1253 		if (flow_ctrl[card_idx] > 0)
1254 			vp->flow_ctrl = 1;
1255 		if (enable_wol[card_idx] > 0)
1256 			vp->enable_wol = 1;
1257 	}
1258 
1259 	vp->mii.force_media = vp->full_duplex;
1260 	vp->options = option;
1261 	/* Read the station address from the EEPROM. */
1262 	{
1263 		int base;
1264 
1265 		if (vci->drv_flags & EEPROM_8BIT)
1266 			base = 0x230;
1267 		else if (vci->drv_flags & EEPROM_OFFSET)
1268 			base = EEPROM_Read + 0x30;
1269 		else
1270 			base = EEPROM_Read;
1271 
1272 		for (i = 0; i < 0x40; i++) {
1273 			int timer;
1274 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1275 			/* Pause for at least 162 us. for the read to take place. */
1276 			for (timer = 10; timer >= 0; timer--) {
1277 				udelay(162);
1278 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1279 				     0x8000) == 0)
1280 					break;
1281 			}
1282 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283 		}
1284 	}
1285 	for (i = 0; i < 0x18; i++)
1286 		checksum ^= eeprom[i];
1287 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1289 		while (i < 0x21)
1290 			checksum ^= eeprom[i++];
1291 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292 	}
1293 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295 	for (i = 0; i < 3; i++)
1296 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297 	if (print_info)
1298 		pr_cont(" %pM", dev->dev_addr);
1299 	/* Unfortunately an all zero eeprom passes the checksum and this
1300 	   gets found in the wild in failure cases. Crypto is hard 8) */
1301 	if (!is_valid_ether_addr(dev->dev_addr)) {
1302 		retval = -EINVAL;
1303 		pr_err("*** EEPROM MAC address is invalid.\n");
1304 		goto free_ring;	/* With every pack */
1305 	}
1306 	for (i = 0; i < 6; i++)
1307 		window_write8(vp, dev->dev_addr[i], 2, i);
1308 
1309 	if (print_info)
1310 		pr_cont(", IRQ %d\n", dev->irq);
1311 	/* Tell them about an invalid IRQ. */
1312 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313 		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314 			dev->irq);
1315 
1316 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317 	if (print_info) {
1318 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321 	}
1322 
1323 
1324 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325 		unsigned short n;
1326 
1327 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328 		if (!vp->cb_fn_base) {
1329 			retval = -ENOMEM;
1330 			goto free_ring;
1331 		}
1332 
1333 		if (print_info) {
1334 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335 				print_name,
1336 				(unsigned long long)pci_resource_start(pdev, 2),
1337 				vp->cb_fn_base);
1338 		}
1339 
1340 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341 		if (vp->drv_flags & INVERT_LED_PWR)
1342 			n |= 0x10;
1343 		if (vp->drv_flags & INVERT_MII_PWR)
1344 			n |= 0x4000;
1345 		window_write16(vp, n, 2, Wn2_ResetOptions);
1346 		if (vp->drv_flags & WNO_XCVR_PWR) {
1347 			window_write16(vp, 0x0800, 0, 0);
1348 		}
1349 	}
1350 
1351 	/* Extract our information from the EEPROM data. */
1352 	vp->info1 = eeprom[13];
1353 	vp->info2 = eeprom[15];
1354 	vp->capabilities = eeprom[16];
1355 
1356 	if (vp->info1 & 0x8000) {
1357 		vp->full_duplex = 1;
1358 		if (print_info)
1359 			pr_info("Full duplex capable\n");
1360 	}
1361 
1362 	{
1363 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364 		unsigned int config;
1365 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1366 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1367 			vp->available_media = 0x40;
1368 		config = window_read32(vp, 3, Wn3_Config);
1369 		if (print_info) {
1370 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371 				config, window_read16(vp, 3, Wn3_Options));
1372 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373 				   8 << RAM_SIZE(config),
1374 				   RAM_WIDTH(config) ? "word" : "byte",
1375 				   ram_split[RAM_SPLIT(config)],
1376 				   AUTOSELECT(config) ? "autoselect/" : "",
1377 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378 				   media_tbl[XCVR(config)].name);
1379 		}
1380 		vp->default_media = XCVR(config);
1381 		if (vp->default_media == XCVR_NWAY)
1382 			vp->has_nway = 1;
1383 		vp->autoselect = AUTOSELECT(config);
1384 	}
1385 
1386 	if (vp->media_override != 7) {
1387 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388 				print_name, vp->media_override,
1389 				media_tbl[vp->media_override].name);
1390 		dev->if_port = vp->media_override;
1391 	} else
1392 		dev->if_port = vp->default_media;
1393 
1394 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396 		int phy, phy_idx = 0;
1397 		mii_preamble_required++;
1398 		if (vp->drv_flags & EXTRA_PREAMBLE)
1399 			mii_preamble_required++;
1400 		mdio_sync(vp, 32);
1401 		mdio_read(dev, 24, MII_BMSR);
1402 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403 			int mii_status, phyx;
1404 
1405 			/*
1406 			 * For the 3c905CX we look at index 24 first, because it bogusly
1407 			 * reports an external PHY at all indices
1408 			 */
1409 			if (phy == 0)
1410 				phyx = 24;
1411 			else if (phy <= 24)
1412 				phyx = phy - 1;
1413 			else
1414 				phyx = phy;
1415 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1416 			if (mii_status  &&  mii_status != 0xffff) {
1417 				vp->phys[phy_idx++] = phyx;
1418 				if (print_info) {
1419 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1420 						phyx, mii_status);
1421 				}
1422 				if ((mii_status & 0x0040) == 0)
1423 					mii_preamble_required++;
1424 			}
1425 		}
1426 		mii_preamble_required--;
1427 		if (phy_idx == 0) {
1428 			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1429 			vp->phys[0] = 24;
1430 		} else {
1431 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432 			if (vp->full_duplex) {
1433 				/* Only advertise the FD media types. */
1434 				vp->advertising &= ~0x02A0;
1435 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436 			}
1437 		}
1438 		vp->mii.phy_id = vp->phys[0];
1439 	}
1440 
1441 	if (vp->capabilities & CapBusMaster) {
1442 		vp->full_bus_master_tx = 1;
1443 		if (print_info) {
1444 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1445 			(vp->info2 & 1) ? "early" : "whole-frame" );
1446 		}
1447 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448 		vp->bus_master = 0;		/* AKPM: vortex only */
1449 	}
1450 
1451 	/* The 3c59x-specific entries in the device structure. */
1452 	if (vp->full_bus_master_tx) {
1453 		dev->netdev_ops = &boomrang_netdev_ops;
1454 		/* Actually, it still should work with iommu. */
1455 		if (card_idx < MAX_UNITS &&
1456 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457 				hw_checksums[card_idx] == 1)) {
1458 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459 		}
1460 	} else
1461 		dev->netdev_ops =  &vortex_netdev_ops;
1462 
1463 	if (print_info) {
1464 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465 				print_name,
1466 				(dev->features & NETIF_F_SG) ? "en":"dis",
1467 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468 	}
1469 
1470 	dev->ethtool_ops = &vortex_ethtool_ops;
1471 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472 
1473 	if (pdev) {
1474 		vp->pm_state_valid = 1;
1475 		pci_save_state(pdev);
1476  		acpi_set_WOL(dev);
1477 	}
1478 	retval = register_netdev(dev);
1479 	if (retval == 0)
1480 		return 0;
1481 
1482 free_ring:
1483 	pci_free_consistent(pdev,
1484 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486 						vp->rx_ring,
1487 						vp->rx_ring_dma);
1488 free_device:
1489 	free_netdev(dev);
1490 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491 out:
1492 	return retval;
1493 }
1494 
1495 static void
1496 issue_and_wait(struct net_device *dev, int cmd)
1497 {
1498 	struct vortex_private *vp = netdev_priv(dev);
1499 	void __iomem *ioaddr = vp->ioaddr;
1500 	int i;
1501 
1502 	iowrite16(cmd, ioaddr + EL3_CMD);
1503 	for (i = 0; i < 2000; i++) {
1504 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505 			return;
1506 	}
1507 
1508 	/* OK, that didn't work.  Do it the slow way.  One second */
1509 	for (i = 0; i < 100000; i++) {
1510 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511 			if (vortex_debug > 1)
1512 				pr_info("%s: command 0x%04x took %d usecs\n",
1513 					   dev->name, cmd, i * 10);
1514 			return;
1515 		}
1516 		udelay(10);
1517 	}
1518 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520 }
1521 
1522 static void
1523 vortex_set_duplex(struct net_device *dev)
1524 {
1525 	struct vortex_private *vp = netdev_priv(dev);
1526 
1527 	pr_info("%s:  setting %s-duplex.\n",
1528 		dev->name, (vp->full_duplex) ? "full" : "half");
1529 
1530 	/* Set the full-duplex bit. */
1531 	window_write16(vp,
1532 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533 		       (vp->large_frames ? 0x40 : 0) |
1534 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535 			0x100 : 0),
1536 		       3, Wn3_MAC_Ctrl);
1537 }
1538 
1539 static void vortex_check_media(struct net_device *dev, unsigned int init)
1540 {
1541 	struct vortex_private *vp = netdev_priv(dev);
1542 	unsigned int ok_to_print = 0;
1543 
1544 	if (vortex_debug > 3)
1545 		ok_to_print = 1;
1546 
1547 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548 		vp->full_duplex = vp->mii.full_duplex;
1549 		vortex_set_duplex(dev);
1550 	} else if (init) {
1551 		vortex_set_duplex(dev);
1552 	}
1553 }
1554 
1555 static int
1556 vortex_up(struct net_device *dev)
1557 {
1558 	struct vortex_private *vp = netdev_priv(dev);
1559 	void __iomem *ioaddr = vp->ioaddr;
1560 	unsigned int config;
1561 	int i, mii_reg1, mii_reg5, err = 0;
1562 
1563 	if (VORTEX_PCI(vp)) {
1564 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1565 		if (vp->pm_state_valid)
1566 			pci_restore_state(VORTEX_PCI(vp));
1567 		err = pci_enable_device(VORTEX_PCI(vp));
1568 		if (err) {
1569 			pr_warn("%s: Could not enable device\n", dev->name);
1570 			goto err_out;
1571 		}
1572 	}
1573 
1574 	/* Before initializing select the active media port. */
1575 	config = window_read32(vp, 3, Wn3_Config);
1576 
1577 	if (vp->media_override != 7) {
1578 		pr_info("%s: Media override to transceiver %d (%s).\n",
1579 			   dev->name, vp->media_override,
1580 			   media_tbl[vp->media_override].name);
1581 		dev->if_port = vp->media_override;
1582 	} else if (vp->autoselect) {
1583 		if (vp->has_nway) {
1584 			if (vortex_debug > 1)
1585 				pr_info("%s: using NWAY device table, not %d\n",
1586 								dev->name, dev->if_port);
1587 			dev->if_port = XCVR_NWAY;
1588 		} else {
1589 			/* Find first available media type, starting with 100baseTx. */
1590 			dev->if_port = XCVR_100baseTx;
1591 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1592 				dev->if_port = media_tbl[dev->if_port].next;
1593 			if (vortex_debug > 1)
1594 				pr_info("%s: first available media type: %s\n",
1595 					dev->name, media_tbl[dev->if_port].name);
1596 		}
1597 	} else {
1598 		dev->if_port = vp->default_media;
1599 		if (vortex_debug > 1)
1600 			pr_info("%s: using default media %s\n",
1601 				dev->name, media_tbl[dev->if_port].name);
1602 	}
1603 
1604 	init_timer(&vp->timer);
1605 	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1606 	vp->timer.data = (unsigned long)dev;
1607 	vp->timer.function = vortex_timer;		/* timer handler */
1608 	add_timer(&vp->timer);
1609 
1610 	init_timer(&vp->rx_oom_timer);
1611 	vp->rx_oom_timer.data = (unsigned long)dev;
1612 	vp->rx_oom_timer.function = rx_oom_timer;
1613 
1614 	if (vortex_debug > 1)
1615 		pr_debug("%s: Initial media type %s.\n",
1616 			   dev->name, media_tbl[dev->if_port].name);
1617 
1618 	vp->full_duplex = vp->mii.force_media;
1619 	config = BFINS(config, dev->if_port, 20, 4);
1620 	if (vortex_debug > 6)
1621 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1622 	window_write32(vp, config, 3, Wn3_Config);
1623 
1624 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1625 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1626 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1627 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1628 		vp->mii.full_duplex = vp->full_duplex;
1629 
1630 		vortex_check_media(dev, 1);
1631 	}
1632 	else
1633 		vortex_set_duplex(dev);
1634 
1635 	issue_and_wait(dev, TxReset);
1636 	/*
1637 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1638 	 */
1639 	issue_and_wait(dev, RxReset|0x04);
1640 
1641 
1642 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1643 
1644 	if (vortex_debug > 1) {
1645 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1646 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1647 	}
1648 
1649 	/* Set the station address and mask in window 2 each time opened. */
1650 	for (i = 0; i < 6; i++)
1651 		window_write8(vp, dev->dev_addr[i], 2, i);
1652 	for (; i < 12; i+=2)
1653 		window_write16(vp, 0, 2, i);
1654 
1655 	if (vp->cb_fn_base) {
1656 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1657 		if (vp->drv_flags & INVERT_LED_PWR)
1658 			n |= 0x10;
1659 		if (vp->drv_flags & INVERT_MII_PWR)
1660 			n |= 0x4000;
1661 		window_write16(vp, n, 2, Wn2_ResetOptions);
1662 	}
1663 
1664 	if (dev->if_port == XCVR_10base2)
1665 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1666 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1667 	if (dev->if_port != XCVR_NWAY) {
1668 		window_write16(vp,
1669 			       (window_read16(vp, 4, Wn4_Media) &
1670 				~(Media_10TP|Media_SQE)) |
1671 			       media_tbl[dev->if_port].media_bits,
1672 			       4, Wn4_Media);
1673 	}
1674 
1675 	/* Switch to the stats window, and clear all stats by reading. */
1676 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1677 	for (i = 0; i < 10; i++)
1678 		window_read8(vp, 6, i);
1679 	window_read16(vp, 6, 10);
1680 	window_read16(vp, 6, 12);
1681 	/* New: On the Vortex we must also clear the BadSSD counter. */
1682 	window_read8(vp, 4, 12);
1683 	/* ..and on the Boomerang we enable the extra statistics bits. */
1684 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1685 
1686 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1687 		vp->cur_rx = vp->dirty_rx = 0;
1688 		/* Initialize the RxEarly register as recommended. */
1689 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1690 		iowrite32(0x0020, ioaddr + PktStatus);
1691 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1692 	}
1693 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1694 		vp->cur_tx = vp->dirty_tx = 0;
1695 		if (vp->drv_flags & IS_BOOMERANG)
1696 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1697 		/* Clear the Rx, Tx rings. */
1698 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1699 			vp->rx_ring[i].status = 0;
1700 		for (i = 0; i < TX_RING_SIZE; i++)
1701 			vp->tx_skbuff[i] = NULL;
1702 		iowrite32(0, ioaddr + DownListPtr);
1703 	}
1704 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1705 	set_rx_mode(dev);
1706 	/* enable 802.1q tagged frames */
1707 	set_8021q_mode(dev, 1);
1708 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1709 
1710 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1711 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1712 	/* Allow status bits to be seen. */
1713 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1714 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1715 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1716 		(vp->bus_master ? DMADone : 0);
1717 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1718 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1719 		StatsFull | HostError | TxComplete | IntReq
1720 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1721 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1722 	/* Ack all pending events, and set active indicator mask. */
1723 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1724 		 ioaddr + EL3_CMD);
1725 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1726 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1727 		iowrite32(0x8000, vp->cb_fn_base + 4);
1728 	netif_start_queue (dev);
1729 err_out:
1730 	return err;
1731 }
1732 
1733 static int
1734 vortex_open(struct net_device *dev)
1735 {
1736 	struct vortex_private *vp = netdev_priv(dev);
1737 	int i;
1738 	int retval;
1739 
1740 	/* Use the now-standard shared IRQ implementation. */
1741 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1742 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1743 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1744 		goto err;
1745 	}
1746 
1747 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1748 		if (vortex_debug > 2)
1749 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1750 		for (i = 0; i < RX_RING_SIZE; i++) {
1751 			struct sk_buff *skb;
1752 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1753 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1754 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1755 
1756 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1757 						 GFP_KERNEL);
1758 			vp->rx_skbuff[i] = skb;
1759 			if (skb == NULL)
1760 				break;			/* Bad news!  */
1761 
1762 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1763 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1764 		}
1765 		if (i != RX_RING_SIZE) {
1766 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1767 			retval = -ENOMEM;
1768 			goto err_free_skb;
1769 		}
1770 		/* Wrap the ring. */
1771 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1772 	}
1773 
1774 	retval = vortex_up(dev);
1775 	if (!retval)
1776 		goto out;
1777 
1778 err_free_skb:
1779 	for (i = 0; i < RX_RING_SIZE; i++) {
1780 		if (vp->rx_skbuff[i]) {
1781 			dev_kfree_skb(vp->rx_skbuff[i]);
1782 			vp->rx_skbuff[i] = NULL;
1783 		}
1784 	}
1785 	free_irq(dev->irq, dev);
1786 err:
1787 	if (vortex_debug > 1)
1788 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1789 out:
1790 	return retval;
1791 }
1792 
1793 static void
1794 vortex_timer(unsigned long data)
1795 {
1796 	struct net_device *dev = (struct net_device *)data;
1797 	struct vortex_private *vp = netdev_priv(dev);
1798 	void __iomem *ioaddr = vp->ioaddr;
1799 	int next_tick = 60*HZ;
1800 	int ok = 0;
1801 	int media_status;
1802 
1803 	if (vortex_debug > 2) {
1804 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1805 			   dev->name, media_tbl[dev->if_port].name);
1806 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1807 	}
1808 
1809 	media_status = window_read16(vp, 4, Wn4_Media);
1810 	switch (dev->if_port) {
1811 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1812 		if (media_status & Media_LnkBeat) {
1813 			netif_carrier_on(dev);
1814 			ok = 1;
1815 			if (vortex_debug > 1)
1816 				pr_debug("%s: Media %s has link beat, %x.\n",
1817 					   dev->name, media_tbl[dev->if_port].name, media_status);
1818 		} else {
1819 			netif_carrier_off(dev);
1820 			if (vortex_debug > 1) {
1821 				pr_debug("%s: Media %s has no link beat, %x.\n",
1822 					   dev->name, media_tbl[dev->if_port].name, media_status);
1823 			}
1824 		}
1825 		break;
1826 	case XCVR_MII: case XCVR_NWAY:
1827 		{
1828 			ok = 1;
1829 			vortex_check_media(dev, 0);
1830 		}
1831 		break;
1832 	  default:					/* Other media types handled by Tx timeouts. */
1833 		if (vortex_debug > 1)
1834 		  pr_debug("%s: Media %s has no indication, %x.\n",
1835 				 dev->name, media_tbl[dev->if_port].name, media_status);
1836 		ok = 1;
1837 	}
1838 
1839 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1840 		next_tick = 5*HZ;
1841 
1842 	if (vp->medialock)
1843 		goto leave_media_alone;
1844 
1845 	if (!ok) {
1846 		unsigned int config;
1847 
1848 		spin_lock_irq(&vp->lock);
1849 
1850 		do {
1851 			dev->if_port = media_tbl[dev->if_port].next;
1852 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1853 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1854 		  dev->if_port = vp->default_media;
1855 		  if (vortex_debug > 1)
1856 			pr_debug("%s: Media selection failing, using default %s port.\n",
1857 				   dev->name, media_tbl[dev->if_port].name);
1858 		} else {
1859 			if (vortex_debug > 1)
1860 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1861 					   dev->name, media_tbl[dev->if_port].name);
1862 			next_tick = media_tbl[dev->if_port].wait;
1863 		}
1864 		window_write16(vp,
1865 			       (media_status & ~(Media_10TP|Media_SQE)) |
1866 			       media_tbl[dev->if_port].media_bits,
1867 			       4, Wn4_Media);
1868 
1869 		config = window_read32(vp, 3, Wn3_Config);
1870 		config = BFINS(config, dev->if_port, 20, 4);
1871 		window_write32(vp, config, 3, Wn3_Config);
1872 
1873 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1874 			 ioaddr + EL3_CMD);
1875 		if (vortex_debug > 1)
1876 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1877 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1878 
1879 		spin_unlock_irq(&vp->lock);
1880 	}
1881 
1882 leave_media_alone:
1883 	if (vortex_debug > 2)
1884 	  pr_debug("%s: Media selection timer finished, %s.\n",
1885 			 dev->name, media_tbl[dev->if_port].name);
1886 
1887 	mod_timer(&vp->timer, RUN_AT(next_tick));
1888 	if (vp->deferred)
1889 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1890 }
1891 
1892 static void vortex_tx_timeout(struct net_device *dev)
1893 {
1894 	struct vortex_private *vp = netdev_priv(dev);
1895 	void __iomem *ioaddr = vp->ioaddr;
1896 
1897 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1898 		   dev->name, ioread8(ioaddr + TxStatus),
1899 		   ioread16(ioaddr + EL3_STATUS));
1900 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1901 			window_read16(vp, 4, Wn4_NetDiag),
1902 			window_read16(vp, 4, Wn4_Media),
1903 			ioread32(ioaddr + PktStatus),
1904 			window_read16(vp, 4, Wn4_FIFODiag));
1905 	/* Slight code bloat to be user friendly. */
1906 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1907 		pr_err("%s: Transmitter encountered 16 collisions --"
1908 			   " network cable problem?\n", dev->name);
1909 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1910 		pr_err("%s: Interrupt posted but not delivered --"
1911 			   " IRQ blocked by another device?\n", dev->name);
1912 		/* Bad idea here.. but we might as well handle a few events. */
1913 		{
1914 			/*
1915 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1916 			 */
1917 			unsigned long flags;
1918 			local_irq_save(flags);
1919 			if (vp->full_bus_master_tx)
1920 				boomerang_interrupt(dev->irq, dev);
1921 			else
1922 				vortex_interrupt(dev->irq, dev);
1923 			local_irq_restore(flags);
1924 		}
1925 	}
1926 
1927 	if (vortex_debug > 0)
1928 		dump_tx_ring(dev);
1929 
1930 	issue_and_wait(dev, TxReset);
1931 
1932 	dev->stats.tx_errors++;
1933 	if (vp->full_bus_master_tx) {
1934 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1935 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1936 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1937 				 ioaddr + DownListPtr);
1938 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1939 			netif_wake_queue (dev);
1940 		if (vp->drv_flags & IS_BOOMERANG)
1941 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1942 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1943 	} else {
1944 		dev->stats.tx_dropped++;
1945 		netif_wake_queue(dev);
1946 	}
1947 
1948 	/* Issue Tx Enable */
1949 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1950 	dev->trans_start = jiffies; /* prevent tx timeout */
1951 }
1952 
1953 /*
1954  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1955  * the cache impact.
1956  */
1957 static void
1958 vortex_error(struct net_device *dev, int status)
1959 {
1960 	struct vortex_private *vp = netdev_priv(dev);
1961 	void __iomem *ioaddr = vp->ioaddr;
1962 	int do_tx_reset = 0, reset_mask = 0;
1963 	unsigned char tx_status = 0;
1964 
1965 	if (vortex_debug > 2) {
1966 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1967 	}
1968 
1969 	if (status & TxComplete) {			/* Really "TxError" for us. */
1970 		tx_status = ioread8(ioaddr + TxStatus);
1971 		/* Presumably a tx-timeout. We must merely re-enable. */
1972 		if (vortex_debug > 2 ||
1973 		    (tx_status != 0x88 && vortex_debug > 0)) {
1974 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1975 				   dev->name, tx_status);
1976 			if (tx_status == 0x82) {
1977 				pr_err("Probably a duplex mismatch.  See "
1978 						"Documentation/networking/vortex.txt\n");
1979 			}
1980 			dump_tx_ring(dev);
1981 		}
1982 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1983 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1984 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1985 		iowrite8(0, ioaddr + TxStatus);
1986 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1987 			do_tx_reset = 1;
1988 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1989 			do_tx_reset = 1;
1990 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1991 		} else {				/* Merely re-enable the transmitter. */
1992 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1993 		}
1994 	}
1995 
1996 	if (status & RxEarly)				/* Rx early is unused. */
1997 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1998 
1999 	if (status & StatsFull) {			/* Empty statistics. */
2000 		static int DoneDidThat;
2001 		if (vortex_debug > 4)
2002 			pr_debug("%s: Updating stats.\n", dev->name);
2003 		update_stats(ioaddr, dev);
2004 		/* HACK: Disable statistics as an interrupt source. */
2005 		/* This occurs when we have the wrong media type! */
2006 		if (DoneDidThat == 0  &&
2007 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2008 			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2009 				dev->name);
2010 			iowrite16(SetIntrEnb |
2011 				  (window_read16(vp, 5, 10) & ~StatsFull),
2012 				  ioaddr + EL3_CMD);
2013 			vp->intr_enable &= ~StatsFull;
2014 			DoneDidThat++;
2015 		}
2016 	}
2017 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2018 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2019 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2020 	}
2021 	if (status & HostError) {
2022 		u16 fifo_diag;
2023 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2024 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2025 			   dev->name, fifo_diag);
2026 		/* Adapter failure requires Tx/Rx reset and reinit. */
2027 		if (vp->full_bus_master_tx) {
2028 			int bus_status = ioread32(ioaddr + PktStatus);
2029 			/* 0x80000000 PCI master abort. */
2030 			/* 0x40000000 PCI target abort. */
2031 			if (vortex_debug)
2032 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2033 
2034 			/* In this case, blow the card away */
2035 			/* Must not enter D3 or we can't legally issue the reset! */
2036 			vortex_down(dev, 0);
2037 			issue_and_wait(dev, TotalReset | 0xff);
2038 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2039 		} else if (fifo_diag & 0x0400)
2040 			do_tx_reset = 1;
2041 		if (fifo_diag & 0x3000) {
2042 			/* Reset Rx fifo and upload logic */
2043 			issue_and_wait(dev, RxReset|0x07);
2044 			/* Set the Rx filter to the current state. */
2045 			set_rx_mode(dev);
2046 			/* enable 802.1q VLAN tagged frames */
2047 			set_8021q_mode(dev, 1);
2048 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2049 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2050 		}
2051 	}
2052 
2053 	if (do_tx_reset) {
2054 		issue_and_wait(dev, TxReset|reset_mask);
2055 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2056 		if (!vp->full_bus_master_tx)
2057 			netif_wake_queue(dev);
2058 	}
2059 }
2060 
2061 static netdev_tx_t
2062 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2063 {
2064 	struct vortex_private *vp = netdev_priv(dev);
2065 	void __iomem *ioaddr = vp->ioaddr;
2066 
2067 	/* Put out the doubleword header... */
2068 	iowrite32(skb->len, ioaddr + TX_FIFO);
2069 	if (vp->bus_master) {
2070 		/* Set the bus-master controller to transfer the packet. */
2071 		int len = (skb->len + 3) & ~3;
2072 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2073 						PCI_DMA_TODEVICE);
2074 		spin_lock_irq(&vp->window_lock);
2075 		window_set(vp, 7);
2076 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2077 		iowrite16(len, ioaddr + Wn7_MasterLen);
2078 		spin_unlock_irq(&vp->window_lock);
2079 		vp->tx_skb = skb;
2080 		skb_tx_timestamp(skb);
2081 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2082 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2083 	} else {
2084 		/* ... and the packet rounded to a doubleword. */
2085 		skb_tx_timestamp(skb);
2086 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2087 		dev_consume_skb_any (skb);
2088 		if (ioread16(ioaddr + TxFree) > 1536) {
2089 			netif_start_queue (dev);	/* AKPM: redundant? */
2090 		} else {
2091 			/* Interrupt us when the FIFO has room for max-sized packet. */
2092 			netif_stop_queue(dev);
2093 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2094 		}
2095 	}
2096 
2097 
2098 	/* Clear the Tx status stack. */
2099 	{
2100 		int tx_status;
2101 		int i = 32;
2102 
2103 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2104 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2105 				if (vortex_debug > 2)
2106 				  pr_debug("%s: Tx error, status %2.2x.\n",
2107 						 dev->name, tx_status);
2108 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2109 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2110 				if (tx_status & 0x30) {
2111 					issue_and_wait(dev, TxReset);
2112 				}
2113 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2114 			}
2115 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2116 		}
2117 	}
2118 	return NETDEV_TX_OK;
2119 }
2120 
2121 static netdev_tx_t
2122 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2123 {
2124 	struct vortex_private *vp = netdev_priv(dev);
2125 	void __iomem *ioaddr = vp->ioaddr;
2126 	/* Calculate the next Tx descriptor entry. */
2127 	int entry = vp->cur_tx % TX_RING_SIZE;
2128 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2129 	unsigned long flags;
2130 	dma_addr_t dma_addr;
2131 
2132 	if (vortex_debug > 6) {
2133 		pr_debug("boomerang_start_xmit()\n");
2134 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2135 			   dev->name, vp->cur_tx);
2136 	}
2137 
2138 	/*
2139 	 * We can't allow a recursion from our interrupt handler back into the
2140 	 * tx routine, as they take the same spin lock, and that causes
2141 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2142 	 * a bit
2143 	 */
2144 	if (vp->handling_irq)
2145 		return NETDEV_TX_BUSY;
2146 
2147 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2148 		if (vortex_debug > 0)
2149 			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2150 				dev->name);
2151 		netif_stop_queue(dev);
2152 		return NETDEV_TX_BUSY;
2153 	}
2154 
2155 	vp->tx_skbuff[entry] = skb;
2156 
2157 	vp->tx_ring[entry].next = 0;
2158 #if DO_ZEROCOPY
2159 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2160 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2161 	else
2162 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2163 
2164 	if (!skb_shinfo(skb)->nr_frags) {
2165 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2166 					  PCI_DMA_TODEVICE);
2167 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2168 			goto out_dma_err;
2169 
2170 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2172 	} else {
2173 		int i;
2174 
2175 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2176 					  skb_headlen(skb), PCI_DMA_TODEVICE);
2177 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2178 			goto out_dma_err;
2179 
2180 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2181 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2182 
2183 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2184 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2185 
2186 			dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2187 						    0,
2188 						    frag->size,
2189 						    DMA_TO_DEVICE);
2190 			if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2191 				for(i = i-1; i >= 0; i--)
2192 					dma_unmap_page(&VORTEX_PCI(vp)->dev,
2193 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2194 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2195 						       DMA_TO_DEVICE);
2196 
2197 				pci_unmap_single(VORTEX_PCI(vp),
2198 						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2199 						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2200 						 PCI_DMA_TODEVICE);
2201 
2202 				goto out_dma_err;
2203 			}
2204 
2205 			vp->tx_ring[entry].frag[i+1].addr =
2206 						cpu_to_le32(dma_addr);
2207 
2208 			if (i == skb_shinfo(skb)->nr_frags-1)
2209 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2210 			else
2211 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2212 		}
2213 	}
2214 #else
2215 	dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2216 	if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2217 		goto out_dma_err;
2218 	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2219 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2220 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2221 #endif
2222 
2223 	spin_lock_irqsave(&vp->lock, flags);
2224 	/* Wait for the stall to complete. */
2225 	issue_and_wait(dev, DownStall);
2226 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2227 	if (ioread32(ioaddr + DownListPtr) == 0) {
2228 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2229 		vp->queued_packet++;
2230 	}
2231 
2232 	vp->cur_tx++;
2233 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2234 		netif_stop_queue (dev);
2235 	} else {					/* Clear previous interrupt enable. */
2236 #if defined(tx_interrupt_mitigation)
2237 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2238 		 * were selected, this would corrupt DN_COMPLETE. No?
2239 		 */
2240 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2241 #endif
2242 	}
2243 	skb_tx_timestamp(skb);
2244 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2245 	spin_unlock_irqrestore(&vp->lock, flags);
2246 out:
2247 	return NETDEV_TX_OK;
2248 out_dma_err:
2249 	dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2250 	goto out;
2251 }
2252 
2253 /* The interrupt handler does all of the Rx thread work and cleans up
2254    after the Tx thread. */
2255 
2256 /*
2257  * This is the ISR for the vortex series chips.
2258  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2259  */
2260 
2261 static irqreturn_t
2262 vortex_interrupt(int irq, void *dev_id)
2263 {
2264 	struct net_device *dev = dev_id;
2265 	struct vortex_private *vp = netdev_priv(dev);
2266 	void __iomem *ioaddr;
2267 	int status;
2268 	int work_done = max_interrupt_work;
2269 	int handled = 0;
2270 
2271 	ioaddr = vp->ioaddr;
2272 	spin_lock(&vp->lock);
2273 
2274 	status = ioread16(ioaddr + EL3_STATUS);
2275 
2276 	if (vortex_debug > 6)
2277 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2278 
2279 	if ((status & IntLatch) == 0)
2280 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2281 	handled = 1;
2282 
2283 	if (status & IntReq) {
2284 		status |= vp->deferred;
2285 		vp->deferred = 0;
2286 	}
2287 
2288 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2289 		goto handler_exit;
2290 
2291 	if (vortex_debug > 4)
2292 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2293 			   dev->name, status, ioread8(ioaddr + Timer));
2294 
2295 	spin_lock(&vp->window_lock);
2296 	window_set(vp, 7);
2297 
2298 	do {
2299 		if (vortex_debug > 5)
2300 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2301 					   dev->name, status);
2302 		if (status & RxComplete)
2303 			vortex_rx(dev);
2304 
2305 		if (status & TxAvailable) {
2306 			if (vortex_debug > 5)
2307 				pr_debug("	TX room bit was handled.\n");
2308 			/* There's room in the FIFO for a full-sized packet. */
2309 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2310 			netif_wake_queue (dev);
2311 		}
2312 
2313 		if (status & DMADone) {
2314 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2315 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2316 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2317 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2318 				if (ioread16(ioaddr + TxFree) > 1536) {
2319 					/*
2320 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2321 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2322 					 * netif_wake_queue()
2323 					 */
2324 					netif_wake_queue(dev);
2325 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2326 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2327 					netif_stop_queue(dev);
2328 				}
2329 			}
2330 		}
2331 		/* Check for all uncommon interrupts at once. */
2332 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2333 			if (status == 0xffff)
2334 				break;
2335 			if (status & RxEarly)
2336 				vortex_rx(dev);
2337 			spin_unlock(&vp->window_lock);
2338 			vortex_error(dev, status);
2339 			spin_lock(&vp->window_lock);
2340 			window_set(vp, 7);
2341 		}
2342 
2343 		if (--work_done < 0) {
2344 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2345 				dev->name, status);
2346 			/* Disable all pending interrupts. */
2347 			do {
2348 				vp->deferred |= status;
2349 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2350 					 ioaddr + EL3_CMD);
2351 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2352 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2353 			/* The timer will reenable interrupts. */
2354 			mod_timer(&vp->timer, jiffies + 1*HZ);
2355 			break;
2356 		}
2357 		/* Acknowledge the IRQ. */
2358 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2359 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2360 
2361 	spin_unlock(&vp->window_lock);
2362 
2363 	if (vortex_debug > 4)
2364 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2365 			   dev->name, status);
2366 handler_exit:
2367 	spin_unlock(&vp->lock);
2368 	return IRQ_RETVAL(handled);
2369 }
2370 
2371 /*
2372  * This is the ISR for the boomerang series chips.
2373  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2374  */
2375 
2376 static irqreturn_t
2377 boomerang_interrupt(int irq, void *dev_id)
2378 {
2379 	struct net_device *dev = dev_id;
2380 	struct vortex_private *vp = netdev_priv(dev);
2381 	void __iomem *ioaddr;
2382 	int status;
2383 	int work_done = max_interrupt_work;
2384 	int handled = 0;
2385 
2386 	ioaddr = vp->ioaddr;
2387 
2388 
2389 	/*
2390 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2391 	 * and boomerang_start_xmit
2392 	 */
2393 	spin_lock(&vp->lock);
2394 	vp->handling_irq = 1;
2395 
2396 	status = ioread16(ioaddr + EL3_STATUS);
2397 
2398 	if (vortex_debug > 6)
2399 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2400 
2401 	if ((status & IntLatch) == 0)
2402 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2403 	handled = 1;
2404 
2405 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2406 		if (vortex_debug > 1)
2407 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2408 		goto handler_exit;
2409 	}
2410 
2411 	if (status & IntReq) {
2412 		status |= vp->deferred;
2413 		vp->deferred = 0;
2414 	}
2415 
2416 	if (vortex_debug > 4)
2417 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2418 			   dev->name, status, ioread8(ioaddr + Timer));
2419 	do {
2420 		if (vortex_debug > 5)
2421 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2422 					   dev->name, status);
2423 		if (status & UpComplete) {
2424 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2425 			if (vortex_debug > 5)
2426 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2427 			boomerang_rx(dev);
2428 		}
2429 
2430 		if (status & DownComplete) {
2431 			unsigned int dirty_tx = vp->dirty_tx;
2432 
2433 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2434 			while (vp->cur_tx - dirty_tx > 0) {
2435 				int entry = dirty_tx % TX_RING_SIZE;
2436 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2437 				if (ioread32(ioaddr + DownListPtr) ==
2438 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2439 					break;			/* It still hasn't been processed. */
2440 #else
2441 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2442 					break;			/* It still hasn't been processed. */
2443 #endif
2444 
2445 				if (vp->tx_skbuff[entry]) {
2446 					struct sk_buff *skb = vp->tx_skbuff[entry];
2447 #if DO_ZEROCOPY
2448 					int i;
2449 					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2450 							pci_unmap_single(VORTEX_PCI(vp),
2451 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2452 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2453 											 PCI_DMA_TODEVICE);
2454 #else
2455 					pci_unmap_single(VORTEX_PCI(vp),
2456 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2457 #endif
2458 					dev_kfree_skb_irq(skb);
2459 					vp->tx_skbuff[entry] = NULL;
2460 				} else {
2461 					pr_debug("boomerang_interrupt: no skb!\n");
2462 				}
2463 				/* dev->stats.tx_packets++;  Counted below. */
2464 				dirty_tx++;
2465 			}
2466 			vp->dirty_tx = dirty_tx;
2467 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2468 				if (vortex_debug > 6)
2469 					pr_debug("boomerang_interrupt: wake queue\n");
2470 				netif_wake_queue (dev);
2471 			}
2472 		}
2473 
2474 		/* Check for all uncommon interrupts at once. */
2475 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2476 			vortex_error(dev, status);
2477 
2478 		if (--work_done < 0) {
2479 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2480 				dev->name, status);
2481 			/* Disable all pending interrupts. */
2482 			do {
2483 				vp->deferred |= status;
2484 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2485 					 ioaddr + EL3_CMD);
2486 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2487 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2488 			/* The timer will reenable interrupts. */
2489 			mod_timer(&vp->timer, jiffies + 1*HZ);
2490 			break;
2491 		}
2492 		/* Acknowledge the IRQ. */
2493 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2494 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2495 			iowrite32(0x8000, vp->cb_fn_base + 4);
2496 
2497 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2498 
2499 	if (vortex_debug > 4)
2500 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2501 			   dev->name, status);
2502 handler_exit:
2503 	vp->handling_irq = 0;
2504 	spin_unlock(&vp->lock);
2505 	return IRQ_RETVAL(handled);
2506 }
2507 
2508 static int vortex_rx(struct net_device *dev)
2509 {
2510 	struct vortex_private *vp = netdev_priv(dev);
2511 	void __iomem *ioaddr = vp->ioaddr;
2512 	int i;
2513 	short rx_status;
2514 
2515 	if (vortex_debug > 5)
2516 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2517 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2518 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2519 		if (rx_status & 0x4000) { /* Error, update stats. */
2520 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2521 			if (vortex_debug > 2)
2522 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2523 			dev->stats.rx_errors++;
2524 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2525 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2526 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2527 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2528 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2529 		} else {
2530 			/* The packet length: up to 4.5K!. */
2531 			int pkt_len = rx_status & 0x1fff;
2532 			struct sk_buff *skb;
2533 
2534 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2535 			if (vortex_debug > 4)
2536 				pr_debug("Receiving packet size %d status %4.4x.\n",
2537 					   pkt_len, rx_status);
2538 			if (skb != NULL) {
2539 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2540 				/* 'skb_put()' points to the start of sk_buff data area. */
2541 				if (vp->bus_master &&
2542 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2543 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2544 									   pkt_len, PCI_DMA_FROMDEVICE);
2545 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2546 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2547 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2548 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2549 						;
2550 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2551 				} else {
2552 					ioread32_rep(ioaddr + RX_FIFO,
2553 					             skb_put(skb, pkt_len),
2554 						     (pkt_len + 3) >> 2);
2555 				}
2556 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2557 				skb->protocol = eth_type_trans(skb, dev);
2558 				netif_rx(skb);
2559 				dev->stats.rx_packets++;
2560 				/* Wait a limited time to go to next packet. */
2561 				for (i = 200; i >= 0; i--)
2562 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2563 						break;
2564 				continue;
2565 			} else if (vortex_debug > 0)
2566 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2567 					dev->name, pkt_len);
2568 			dev->stats.rx_dropped++;
2569 		}
2570 		issue_and_wait(dev, RxDiscard);
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 static int
2577 boomerang_rx(struct net_device *dev)
2578 {
2579 	struct vortex_private *vp = netdev_priv(dev);
2580 	int entry = vp->cur_rx % RX_RING_SIZE;
2581 	void __iomem *ioaddr = vp->ioaddr;
2582 	int rx_status;
2583 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2584 
2585 	if (vortex_debug > 5)
2586 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2587 
2588 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2589 		if (--rx_work_limit < 0)
2590 			break;
2591 		if (rx_status & RxDError) { /* Error, update stats. */
2592 			unsigned char rx_error = rx_status >> 16;
2593 			if (vortex_debug > 2)
2594 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2595 			dev->stats.rx_errors++;
2596 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2597 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2598 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2599 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2600 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2601 		} else {
2602 			/* The packet length: up to 4.5K!. */
2603 			int pkt_len = rx_status & 0x1fff;
2604 			struct sk_buff *skb;
2605 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2606 
2607 			if (vortex_debug > 4)
2608 				pr_debug("Receiving packet size %d status %4.4x.\n",
2609 					   pkt_len, rx_status);
2610 
2611 			/* Check if the packet is long enough to just accept without
2612 			   copying to a properly sized skbuff. */
2613 			if (pkt_len < rx_copybreak &&
2614 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2615 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2616 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2617 				/* 'skb_put()' points to the start of sk_buff data area. */
2618 				memcpy(skb_put(skb, pkt_len),
2619 					   vp->rx_skbuff[entry]->data,
2620 					   pkt_len);
2621 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2622 				vp->rx_copy++;
2623 			} else {
2624 				/* Pass up the skbuff already on the Rx ring. */
2625 				skb = vp->rx_skbuff[entry];
2626 				vp->rx_skbuff[entry] = NULL;
2627 				skb_put(skb, pkt_len);
2628 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2629 				vp->rx_nocopy++;
2630 			}
2631 			skb->protocol = eth_type_trans(skb, dev);
2632 			{					/* Use hardware checksum info. */
2633 				int csum_bits = rx_status & 0xee000000;
2634 				if (csum_bits &&
2635 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2636 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2637 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2638 					vp->rx_csumhits++;
2639 				}
2640 			}
2641 			netif_rx(skb);
2642 			dev->stats.rx_packets++;
2643 		}
2644 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2645 	}
2646 	/* Refill the Rx ring buffers. */
2647 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2648 		struct sk_buff *skb;
2649 		entry = vp->dirty_rx % RX_RING_SIZE;
2650 		if (vp->rx_skbuff[entry] == NULL) {
2651 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2652 			if (skb == NULL) {
2653 				static unsigned long last_jif;
2654 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2655 					pr_warn("%s: memory shortage\n",
2656 						dev->name);
2657 					last_jif = jiffies;
2658 				}
2659 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2660 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2661 				break;			/* Bad news!  */
2662 			}
2663 
2664 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2665 			vp->rx_skbuff[entry] = skb;
2666 		}
2667 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2668 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2669 	}
2670 	return 0;
2671 }
2672 
2673 /*
2674  * If we've hit a total OOM refilling the Rx ring we poll once a second
2675  * for some memory.  Otherwise there is no way to restart the rx process.
2676  */
2677 static void
2678 rx_oom_timer(unsigned long arg)
2679 {
2680 	struct net_device *dev = (struct net_device *)arg;
2681 	struct vortex_private *vp = netdev_priv(dev);
2682 
2683 	spin_lock_irq(&vp->lock);
2684 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2685 		boomerang_rx(dev);
2686 	if (vortex_debug > 1) {
2687 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2688 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2689 	}
2690 	spin_unlock_irq(&vp->lock);
2691 }
2692 
2693 static void
2694 vortex_down(struct net_device *dev, int final_down)
2695 {
2696 	struct vortex_private *vp = netdev_priv(dev);
2697 	void __iomem *ioaddr = vp->ioaddr;
2698 
2699 	netif_stop_queue (dev);
2700 
2701 	del_timer_sync(&vp->rx_oom_timer);
2702 	del_timer_sync(&vp->timer);
2703 
2704 	/* Turn off statistics ASAP.  We update dev->stats below. */
2705 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2706 
2707 	/* Disable the receiver and transmitter. */
2708 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2709 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2710 
2711 	/* Disable receiving 802.1q tagged frames */
2712 	set_8021q_mode(dev, 0);
2713 
2714 	if (dev->if_port == XCVR_10base2)
2715 		/* Turn off thinnet power.  Green! */
2716 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2717 
2718 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2719 
2720 	update_stats(ioaddr, dev);
2721 	if (vp->full_bus_master_rx)
2722 		iowrite32(0, ioaddr + UpListPtr);
2723 	if (vp->full_bus_master_tx)
2724 		iowrite32(0, ioaddr + DownListPtr);
2725 
2726 	if (final_down && VORTEX_PCI(vp)) {
2727 		vp->pm_state_valid = 1;
2728 		pci_save_state(VORTEX_PCI(vp));
2729 		acpi_set_WOL(dev);
2730 	}
2731 }
2732 
2733 static int
2734 vortex_close(struct net_device *dev)
2735 {
2736 	struct vortex_private *vp = netdev_priv(dev);
2737 	void __iomem *ioaddr = vp->ioaddr;
2738 	int i;
2739 
2740 	if (netif_device_present(dev))
2741 		vortex_down(dev, 1);
2742 
2743 	if (vortex_debug > 1) {
2744 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2745 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2746 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2747 			   " tx_queued %d Rx pre-checksummed %d.\n",
2748 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2749 	}
2750 
2751 #if DO_ZEROCOPY
2752 	if (vp->rx_csumhits &&
2753 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2754 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2755 		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2756 			dev->name);
2757 	}
2758 #endif
2759 
2760 	free_irq(dev->irq, dev);
2761 
2762 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2763 		for (i = 0; i < RX_RING_SIZE; i++)
2764 			if (vp->rx_skbuff[i]) {
2765 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2766 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2767 				dev_kfree_skb(vp->rx_skbuff[i]);
2768 				vp->rx_skbuff[i] = NULL;
2769 			}
2770 	}
2771 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2772 		for (i = 0; i < TX_RING_SIZE; i++) {
2773 			if (vp->tx_skbuff[i]) {
2774 				struct sk_buff *skb = vp->tx_skbuff[i];
2775 #if DO_ZEROCOPY
2776 				int k;
2777 
2778 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2779 						pci_unmap_single(VORTEX_PCI(vp),
2780 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2781 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2782 										 PCI_DMA_TODEVICE);
2783 #else
2784 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2785 #endif
2786 				dev_kfree_skb(skb);
2787 				vp->tx_skbuff[i] = NULL;
2788 			}
2789 		}
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 static void
2796 dump_tx_ring(struct net_device *dev)
2797 {
2798 	if (vortex_debug > 0) {
2799 	struct vortex_private *vp = netdev_priv(dev);
2800 		void __iomem *ioaddr = vp->ioaddr;
2801 
2802 		if (vp->full_bus_master_tx) {
2803 			int i;
2804 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2805 
2806 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2807 					vp->full_bus_master_tx,
2808 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2809 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2810 			pr_err("  Transmit list %8.8x vs. %p.\n",
2811 				   ioread32(ioaddr + DownListPtr),
2812 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2813 			issue_and_wait(dev, DownStall);
2814 			for (i = 0; i < TX_RING_SIZE; i++) {
2815 				unsigned int length;
2816 
2817 #if DO_ZEROCOPY
2818 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2819 #else
2820 				length = le32_to_cpu(vp->tx_ring[i].length);
2821 #endif
2822 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2823 					   i, &vp->tx_ring[i], length,
2824 					   le32_to_cpu(vp->tx_ring[i].status));
2825 			}
2826 			if (!stalled)
2827 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2828 		}
2829 	}
2830 }
2831 
2832 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2833 {
2834 	struct vortex_private *vp = netdev_priv(dev);
2835 	void __iomem *ioaddr = vp->ioaddr;
2836 	unsigned long flags;
2837 
2838 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2839 		spin_lock_irqsave (&vp->lock, flags);
2840 		update_stats(ioaddr, dev);
2841 		spin_unlock_irqrestore (&vp->lock, flags);
2842 	}
2843 	return &dev->stats;
2844 }
2845 
2846 /*  Update statistics.
2847 	Unlike with the EL3 we need not worry about interrupts changing
2848 	the window setting from underneath us, but we must still guard
2849 	against a race condition with a StatsUpdate interrupt updating the
2850 	table.  This is done by checking that the ASM (!) code generated uses
2851 	atomic updates with '+='.
2852 	*/
2853 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2854 {
2855 	struct vortex_private *vp = netdev_priv(dev);
2856 
2857 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2858 	/* Switch to the stats window, and read everything. */
2859 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2860 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2861 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2862 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2863 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2864 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2865 						    0x30) << 4;
2866 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2867 	/* Don't bother with register 9, an extension of registers 6&7.
2868 	   If we do use the 6&7 values the atomic update assumption above
2869 	   is invalid. */
2870 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2871 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2872 	/* Extra stats for get_ethtool_stats() */
2873 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2874 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2875 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2876 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2877 
2878 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2879 		+ vp->xstats.tx_single_collisions
2880 		+ vp->xstats.tx_max_collisions;
2881 
2882 	{
2883 		u8 up = window_read8(vp, 4, 13);
2884 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2885 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2886 	}
2887 }
2888 
2889 static int vortex_nway_reset(struct net_device *dev)
2890 {
2891 	struct vortex_private *vp = netdev_priv(dev);
2892 
2893 	return mii_nway_restart(&vp->mii);
2894 }
2895 
2896 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2897 {
2898 	struct vortex_private *vp = netdev_priv(dev);
2899 
2900 	return mii_ethtool_gset(&vp->mii, cmd);
2901 }
2902 
2903 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2904 {
2905 	struct vortex_private *vp = netdev_priv(dev);
2906 
2907 	return mii_ethtool_sset(&vp->mii, cmd);
2908 }
2909 
2910 static u32 vortex_get_msglevel(struct net_device *dev)
2911 {
2912 	return vortex_debug;
2913 }
2914 
2915 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2916 {
2917 	vortex_debug = dbg;
2918 }
2919 
2920 static int vortex_get_sset_count(struct net_device *dev, int sset)
2921 {
2922 	switch (sset) {
2923 	case ETH_SS_STATS:
2924 		return VORTEX_NUM_STATS;
2925 	default:
2926 		return -EOPNOTSUPP;
2927 	}
2928 }
2929 
2930 static void vortex_get_ethtool_stats(struct net_device *dev,
2931 	struct ethtool_stats *stats, u64 *data)
2932 {
2933 	struct vortex_private *vp = netdev_priv(dev);
2934 	void __iomem *ioaddr = vp->ioaddr;
2935 	unsigned long flags;
2936 
2937 	spin_lock_irqsave(&vp->lock, flags);
2938 	update_stats(ioaddr, dev);
2939 	spin_unlock_irqrestore(&vp->lock, flags);
2940 
2941 	data[0] = vp->xstats.tx_deferred;
2942 	data[1] = vp->xstats.tx_max_collisions;
2943 	data[2] = vp->xstats.tx_multiple_collisions;
2944 	data[3] = vp->xstats.tx_single_collisions;
2945 	data[4] = vp->xstats.rx_bad_ssd;
2946 }
2947 
2948 
2949 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2950 {
2951 	switch (stringset) {
2952 	case ETH_SS_STATS:
2953 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2954 		break;
2955 	default:
2956 		WARN_ON(1);
2957 		break;
2958 	}
2959 }
2960 
2961 static void vortex_get_drvinfo(struct net_device *dev,
2962 					struct ethtool_drvinfo *info)
2963 {
2964 	struct vortex_private *vp = netdev_priv(dev);
2965 
2966 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2967 	if (VORTEX_PCI(vp)) {
2968 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2969 			sizeof(info->bus_info));
2970 	} else {
2971 		if (VORTEX_EISA(vp))
2972 			strlcpy(info->bus_info, dev_name(vp->gendev),
2973 				sizeof(info->bus_info));
2974 		else
2975 			snprintf(info->bus_info, sizeof(info->bus_info),
2976 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2977 	}
2978 }
2979 
2980 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2981 {
2982 	struct vortex_private *vp = netdev_priv(dev);
2983 
2984 	if (!VORTEX_PCI(vp))
2985 		return;
2986 
2987 	wol->supported = WAKE_MAGIC;
2988 
2989 	wol->wolopts = 0;
2990 	if (vp->enable_wol)
2991 		wol->wolopts |= WAKE_MAGIC;
2992 }
2993 
2994 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2995 {
2996 	struct vortex_private *vp = netdev_priv(dev);
2997 
2998 	if (!VORTEX_PCI(vp))
2999 		return -EOPNOTSUPP;
3000 
3001 	if (wol->wolopts & ~WAKE_MAGIC)
3002 		return -EINVAL;
3003 
3004 	if (wol->wolopts & WAKE_MAGIC)
3005 		vp->enable_wol = 1;
3006 	else
3007 		vp->enable_wol = 0;
3008 	acpi_set_WOL(dev);
3009 
3010 	return 0;
3011 }
3012 
3013 static const struct ethtool_ops vortex_ethtool_ops = {
3014 	.get_drvinfo		= vortex_get_drvinfo,
3015 	.get_strings            = vortex_get_strings,
3016 	.get_msglevel           = vortex_get_msglevel,
3017 	.set_msglevel           = vortex_set_msglevel,
3018 	.get_ethtool_stats      = vortex_get_ethtool_stats,
3019 	.get_sset_count		= vortex_get_sset_count,
3020 	.get_settings           = vortex_get_settings,
3021 	.set_settings           = vortex_set_settings,
3022 	.get_link               = ethtool_op_get_link,
3023 	.nway_reset             = vortex_nway_reset,
3024 	.get_wol                = vortex_get_wol,
3025 	.set_wol                = vortex_set_wol,
3026 	.get_ts_info		= ethtool_op_get_ts_info,
3027 };
3028 
3029 #ifdef CONFIG_PCI
3030 /*
3031  *	Must power the device up to do MDIO operations
3032  */
3033 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3034 {
3035 	int err;
3036 	struct vortex_private *vp = netdev_priv(dev);
3037 	pci_power_t state = 0;
3038 
3039 	if(VORTEX_PCI(vp))
3040 		state = VORTEX_PCI(vp)->current_state;
3041 
3042 	/* The kernel core really should have pci_get_power_state() */
3043 
3044 	if(state != 0)
3045 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3046 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3047 	if(state != 0)
3048 		pci_set_power_state(VORTEX_PCI(vp), state);
3049 
3050 	return err;
3051 }
3052 #endif
3053 
3054 
3055 /* Pre-Cyclone chips have no documented multicast filter, so the only
3056    multicast setting is to receive all multicast frames.  At least
3057    the chip has a very clean way to set the mode, unlike many others. */
3058 static void set_rx_mode(struct net_device *dev)
3059 {
3060 	struct vortex_private *vp = netdev_priv(dev);
3061 	void __iomem *ioaddr = vp->ioaddr;
3062 	int new_mode;
3063 
3064 	if (dev->flags & IFF_PROMISC) {
3065 		if (vortex_debug > 3)
3066 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3067 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3068 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3069 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3070 	} else
3071 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3072 
3073 	iowrite16(new_mode, ioaddr + EL3_CMD);
3074 }
3075 
3076 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3077 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3078    Note that this must be done after each RxReset due to some backwards
3079    compatibility logic in the Cyclone and Tornado ASICs */
3080 
3081 /* The Ethernet Type used for 802.1q tagged frames */
3082 #define VLAN_ETHER_TYPE 0x8100
3083 
3084 static void set_8021q_mode(struct net_device *dev, int enable)
3085 {
3086 	struct vortex_private *vp = netdev_priv(dev);
3087 	int mac_ctrl;
3088 
3089 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3090 		/* cyclone and tornado chipsets can recognize 802.1q
3091 		 * tagged frames and treat them correctly */
3092 
3093 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3094 		if (enable)
3095 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3096 
3097 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3098 
3099 		/* set VlanEtherType to let the hardware checksumming
3100 		   treat tagged frames correctly */
3101 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3102 	} else {
3103 		/* on older cards we have to enable large frames */
3104 
3105 		vp->large_frames = dev->mtu > 1500 || enable;
3106 
3107 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3108 		if (vp->large_frames)
3109 			mac_ctrl |= 0x40;
3110 		else
3111 			mac_ctrl &= ~0x40;
3112 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3113 	}
3114 }
3115 #else
3116 
3117 static void set_8021q_mode(struct net_device *dev, int enable)
3118 {
3119 }
3120 
3121 
3122 #endif
3123 
3124 /* MII transceiver control section.
3125    Read and write the MII registers using software-generated serial
3126    MDIO protocol.  See the MII specifications or DP83840A data sheet
3127    for details. */
3128 
3129 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3130    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3131    "overclocking" issues. */
3132 static void mdio_delay(struct vortex_private *vp)
3133 {
3134 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3135 }
3136 
3137 #define MDIO_SHIFT_CLK	0x01
3138 #define MDIO_DIR_WRITE	0x04
3139 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3140 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3141 #define MDIO_DATA_READ	0x02
3142 #define MDIO_ENB_IN		0x00
3143 
3144 /* Generate the preamble required for initial synchronization and
3145    a few older transceivers. */
3146 static void mdio_sync(struct vortex_private *vp, int bits)
3147 {
3148 	/* Establish sync by sending at least 32 logic ones. */
3149 	while (-- bits >= 0) {
3150 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3151 		mdio_delay(vp);
3152 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3153 			       4, Wn4_PhysicalMgmt);
3154 		mdio_delay(vp);
3155 	}
3156 }
3157 
3158 static int mdio_read(struct net_device *dev, int phy_id, int location)
3159 {
3160 	int i;
3161 	struct vortex_private *vp = netdev_priv(dev);
3162 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3163 	unsigned int retval = 0;
3164 
3165 	spin_lock_bh(&vp->mii_lock);
3166 
3167 	if (mii_preamble_required)
3168 		mdio_sync(vp, 32);
3169 
3170 	/* Shift the read command bits out. */
3171 	for (i = 14; i >= 0; i--) {
3172 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3173 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3174 		mdio_delay(vp);
3175 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3176 			       4, Wn4_PhysicalMgmt);
3177 		mdio_delay(vp);
3178 	}
3179 	/* Read the two transition, 16 data, and wire-idle bits. */
3180 	for (i = 19; i > 0; i--) {
3181 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3182 		mdio_delay(vp);
3183 		retval = (retval << 1) |
3184 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3185 			  MDIO_DATA_READ) ? 1 : 0);
3186 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3187 			       4, Wn4_PhysicalMgmt);
3188 		mdio_delay(vp);
3189 	}
3190 
3191 	spin_unlock_bh(&vp->mii_lock);
3192 
3193 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3194 }
3195 
3196 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3197 {
3198 	struct vortex_private *vp = netdev_priv(dev);
3199 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3200 	int i;
3201 
3202 	spin_lock_bh(&vp->mii_lock);
3203 
3204 	if (mii_preamble_required)
3205 		mdio_sync(vp, 32);
3206 
3207 	/* Shift the command bits out. */
3208 	for (i = 31; i >= 0; i--) {
3209 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3210 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3211 		mdio_delay(vp);
3212 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3213 			       4, Wn4_PhysicalMgmt);
3214 		mdio_delay(vp);
3215 	}
3216 	/* Leave the interface idle. */
3217 	for (i = 1; i >= 0; i--) {
3218 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3219 		mdio_delay(vp);
3220 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3221 			       4, Wn4_PhysicalMgmt);
3222 		mdio_delay(vp);
3223 	}
3224 
3225 	spin_unlock_bh(&vp->mii_lock);
3226 }
3227 
3228 /* ACPI: Advanced Configuration and Power Interface. */
3229 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3230 static void acpi_set_WOL(struct net_device *dev)
3231 {
3232 	struct vortex_private *vp = netdev_priv(dev);
3233 	void __iomem *ioaddr = vp->ioaddr;
3234 
3235 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3236 
3237 	if (vp->enable_wol) {
3238 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3239 		window_write16(vp, 2, 7, 0x0c);
3240 		/* The RxFilter must accept the WOL frames. */
3241 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3242 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3243 
3244 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3245 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3246 
3247 			vp->enable_wol = 0;
3248 			return;
3249 		}
3250 
3251 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3252 			return;
3253 
3254 		/* Change the power state to D3; RxEnable doesn't take effect. */
3255 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3256 	}
3257 }
3258 
3259 
3260 static void vortex_remove_one(struct pci_dev *pdev)
3261 {
3262 	struct net_device *dev = pci_get_drvdata(pdev);
3263 	struct vortex_private *vp;
3264 
3265 	if (!dev) {
3266 		pr_err("vortex_remove_one called for Compaq device!\n");
3267 		BUG();
3268 	}
3269 
3270 	vp = netdev_priv(dev);
3271 
3272 	if (vp->cb_fn_base)
3273 		pci_iounmap(pdev, vp->cb_fn_base);
3274 
3275 	unregister_netdev(dev);
3276 
3277 	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3278 	if (vp->pm_state_valid)
3279 		pci_restore_state(pdev);
3280 	pci_disable_device(pdev);
3281 
3282 	/* Should really use issue_and_wait() here */
3283 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3284 	     vp->ioaddr + EL3_CMD);
3285 
3286 	pci_iounmap(pdev, vp->ioaddr);
3287 
3288 	pci_free_consistent(pdev,
3289 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3290 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3291 						vp->rx_ring,
3292 						vp->rx_ring_dma);
3293 
3294 	pci_release_regions(pdev);
3295 
3296 	free_netdev(dev);
3297 }
3298 
3299 
3300 static struct pci_driver vortex_driver = {
3301 	.name		= "3c59x",
3302 	.probe		= vortex_init_one,
3303 	.remove		= vortex_remove_one,
3304 	.id_table	= vortex_pci_tbl,
3305 	.driver.pm	= VORTEX_PM_OPS,
3306 };
3307 
3308 
3309 static int vortex_have_pci;
3310 static int vortex_have_eisa;
3311 
3312 
3313 static int __init vortex_init(void)
3314 {
3315 	int pci_rc, eisa_rc;
3316 
3317 	pci_rc = pci_register_driver(&vortex_driver);
3318 	eisa_rc = vortex_eisa_init();
3319 
3320 	if (pci_rc == 0)
3321 		vortex_have_pci = 1;
3322 	if (eisa_rc > 0)
3323 		vortex_have_eisa = 1;
3324 
3325 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3326 }
3327 
3328 
3329 static void __exit vortex_eisa_cleanup(void)
3330 {
3331 	void __iomem *ioaddr;
3332 
3333 #ifdef CONFIG_EISA
3334 	/* Take care of the EISA devices */
3335 	eisa_driver_unregister(&vortex_eisa_driver);
3336 #endif
3337 
3338 	if (compaq_net_device) {
3339 		ioaddr = ioport_map(compaq_net_device->base_addr,
3340 		                    VORTEX_TOTAL_SIZE);
3341 
3342 		unregister_netdev(compaq_net_device);
3343 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3344 		release_region(compaq_net_device->base_addr,
3345 		               VORTEX_TOTAL_SIZE);
3346 
3347 		free_netdev(compaq_net_device);
3348 	}
3349 }
3350 
3351 
3352 static void __exit vortex_cleanup(void)
3353 {
3354 	if (vortex_have_pci)
3355 		pci_unregister_driver(&vortex_driver);
3356 	if (vortex_have_eisa)
3357 		vortex_eisa_cleanup();
3358 }
3359 
3360 
3361 module_init(vortex_init);
3362 module_exit(vortex_cleanup);
3363