1 // SPDX-License-Identifier: GPL-2.0 2 /* DSA driver for: 3 * Vitesse VSC7385 SparX-G5 5+1-port Integrated Gigabit Ethernet Switch 4 * Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch 5 * Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch 6 * Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch 7 * 8 * These switches have a built-in 8051 CPU and can download and execute a 9 * firmware in this CPU. They can also be configured to use an external CPU 10 * handling the switch in a memory-mapped manner by connecting to that external 11 * CPU's memory bus. 12 * 13 * Copyright (C) 2018 Linus Wallej <linus.walleij@linaro.org> 14 * Includes portions of code from the firmware uploader by: 15 * Copyright (C) 2009 Gabor Juhos <juhosg@openwrt.org> 16 */ 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/device.h> 20 #include <linux/iopoll.h> 21 #include <linux/of.h> 22 #include <linux/of_mdio.h> 23 #include <linux/bitops.h> 24 #include <linux/bitfield.h> 25 #include <linux/if_bridge.h> 26 #include <linux/if_vlan.h> 27 #include <linux/etherdevice.h> 28 #include <linux/gpio/consumer.h> 29 #include <linux/gpio/driver.h> 30 #include <linux/dsa/8021q.h> 31 #include <linux/random.h> 32 #include <net/dsa.h> 33 34 #include "vitesse-vsc73xx.h" 35 36 #define VSC73XX_BLOCK_MAC 0x1 /* Subblocks 0-4, 6 (CPU port) */ 37 #define VSC73XX_BLOCK_ANALYZER 0x2 /* Only subblock 0 */ 38 #define VSC73XX_BLOCK_MII 0x3 /* Subblocks 0 and 1 */ 39 #define VSC73XX_BLOCK_MEMINIT 0x3 /* Only subblock 2 */ 40 #define VSC73XX_BLOCK_CAPTURE 0x4 /* Subblocks 0-4, 6, 7 */ 41 #define VSC73XX_BLOCK_ARBITER 0x5 /* Only subblock 0 */ 42 #define VSC73XX_BLOCK_SYSTEM 0x7 /* Only subblock 0 */ 43 44 /* MII Block subblock */ 45 #define VSC73XX_BLOCK_MII_INTERNAL 0x0 /* Internal MDIO subblock */ 46 #define VSC73XX_BLOCK_MII_EXTERNAL 0x1 /* External MDIO subblock */ 47 48 #define CPU_PORT 6 /* CPU port */ 49 #define VSC73XX_NUM_FDB_ROWS 2048 50 #define VSC73XX_NUM_BUCKETS 4 51 52 /* MAC Block registers */ 53 #define VSC73XX_MAC_CFG 0x00 54 #define VSC73XX_MACHDXGAP 0x02 55 #define VSC73XX_FCCONF 0x04 56 #define VSC73XX_FCMACHI 0x08 57 #define VSC73XX_FCMACLO 0x0c 58 #define VSC73XX_MAXLEN 0x10 59 #define VSC73XX_ADVPORTM 0x19 60 #define VSC73XX_TXUPDCFG 0x24 61 #define VSC73XX_TXQ_SELECT_CFG 0x28 62 #define VSC73XX_RXOCT 0x50 63 #define VSC73XX_TXOCT 0x51 64 #define VSC73XX_C_RX0 0x52 65 #define VSC73XX_C_RX1 0x53 66 #define VSC73XX_C_RX2 0x54 67 #define VSC73XX_C_TX0 0x55 68 #define VSC73XX_C_TX1 0x56 69 #define VSC73XX_C_TX2 0x57 70 #define VSC73XX_C_CFG 0x58 71 #define VSC73XX_CAT_DROP 0x6e 72 #define VSC73XX_CAT_PR_MISC_L2 0x6f 73 #define VSC73XX_CAT_PR_USR_PRIO 0x75 74 #define VSC73XX_CAT_VLAN_MISC 0x79 75 #define VSC73XX_CAT_PORT_VLAN 0x7a 76 #define VSC73XX_Q_MISC_CONF 0xdf 77 78 /* MAC_CFG register bits */ 79 #define VSC73XX_MAC_CFG_WEXC_DIS BIT(31) 80 #define VSC73XX_MAC_CFG_PORT_RST BIT(29) 81 #define VSC73XX_MAC_CFG_TX_EN BIT(28) 82 #define VSC73XX_MAC_CFG_SEED_LOAD BIT(27) 83 #define VSC73XX_MAC_CFG_SEED_MASK GENMASK(26, 19) 84 #define VSC73XX_MAC_CFG_SEED_OFFSET 19 85 #define VSC73XX_MAC_CFG_FDX BIT(18) 86 #define VSC73XX_MAC_CFG_GIGA_MODE BIT(17) 87 #define VSC73XX_MAC_CFG_RX_EN BIT(16) 88 #define VSC73XX_MAC_CFG_VLAN_DBLAWR BIT(15) 89 #define VSC73XX_MAC_CFG_VLAN_AWR BIT(14) 90 #define VSC73XX_MAC_CFG_100_BASE_T BIT(13) /* Not in manual */ 91 #define VSC73XX_MAC_CFG_TX_IPG_MASK GENMASK(10, 6) 92 #define VSC73XX_MAC_CFG_TX_IPG_OFFSET 6 93 #define VSC73XX_MAC_CFG_TX_IPG_1000M (6 << VSC73XX_MAC_CFG_TX_IPG_OFFSET) 94 #define VSC73XX_MAC_CFG_TX_IPG_100_10M (17 << VSC73XX_MAC_CFG_TX_IPG_OFFSET) 95 #define VSC73XX_MAC_CFG_MAC_RX_RST BIT(5) 96 #define VSC73XX_MAC_CFG_MAC_TX_RST BIT(4) 97 #define VSC73XX_MAC_CFG_CLK_SEL_MASK GENMASK(2, 0) 98 #define VSC73XX_MAC_CFG_CLK_SEL_OFFSET 0 99 #define VSC73XX_MAC_CFG_CLK_SEL_1000M 1 100 #define VSC73XX_MAC_CFG_CLK_SEL_100M 2 101 #define VSC73XX_MAC_CFG_CLK_SEL_10M 3 102 #define VSC73XX_MAC_CFG_CLK_SEL_EXT 4 103 104 #define VSC73XX_MAC_CFG_1000M_F_PHY (VSC73XX_MAC_CFG_FDX | \ 105 VSC73XX_MAC_CFG_GIGA_MODE | \ 106 VSC73XX_MAC_CFG_TX_IPG_1000M | \ 107 VSC73XX_MAC_CFG_CLK_SEL_EXT) 108 #define VSC73XX_MAC_CFG_100_10M_F_PHY (VSC73XX_MAC_CFG_FDX | \ 109 VSC73XX_MAC_CFG_TX_IPG_100_10M | \ 110 VSC73XX_MAC_CFG_CLK_SEL_EXT) 111 #define VSC73XX_MAC_CFG_100_10M_H_PHY (VSC73XX_MAC_CFG_TX_IPG_100_10M | \ 112 VSC73XX_MAC_CFG_CLK_SEL_EXT) 113 #define VSC73XX_MAC_CFG_1000M_F_RGMII (VSC73XX_MAC_CFG_FDX | \ 114 VSC73XX_MAC_CFG_GIGA_MODE | \ 115 VSC73XX_MAC_CFG_TX_IPG_1000M | \ 116 VSC73XX_MAC_CFG_CLK_SEL_1000M) 117 #define VSC73XX_MAC_CFG_RESET (VSC73XX_MAC_CFG_PORT_RST | \ 118 VSC73XX_MAC_CFG_MAC_RX_RST | \ 119 VSC73XX_MAC_CFG_MAC_TX_RST) 120 121 /* Flow control register bits */ 122 #define VSC73XX_FCCONF_ZERO_PAUSE_EN BIT(17) 123 #define VSC73XX_FCCONF_FLOW_CTRL_OBEY BIT(16) 124 #define VSC73XX_FCCONF_PAUSE_VAL_MASK GENMASK(15, 0) 125 126 /* ADVPORTM advanced port setup register bits */ 127 #define VSC73XX_ADVPORTM_IFG_PPM BIT(7) 128 #define VSC73XX_ADVPORTM_EXC_COL_CONT BIT(6) 129 #define VSC73XX_ADVPORTM_EXT_PORT BIT(5) 130 #define VSC73XX_ADVPORTM_INV_GTX BIT(4) 131 #define VSC73XX_ADVPORTM_ENA_GTX BIT(3) 132 #define VSC73XX_ADVPORTM_DDR_MODE BIT(2) 133 #define VSC73XX_ADVPORTM_IO_LOOPBACK BIT(1) 134 #define VSC73XX_ADVPORTM_HOST_LOOPBACK BIT(0) 135 136 /* TXUPDCFG transmit modify setup bits */ 137 #define VSC73XX_TXUPDCFG_DSCP_REWR_MODE GENMASK(20, 19) 138 #define VSC73XX_TXUPDCFG_DSCP_REWR_ENA BIT(18) 139 #define VSC73XX_TXUPDCFG_TX_INT_TO_USRPRIO_ENA BIT(17) 140 #define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID GENMASK(15, 4) 141 #define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA BIT(3) 142 #define VSC73XX_TXUPDCFG_TX_UPDATE_CRC_CPU_ENA BIT(1) 143 #define VSC73XX_TXUPDCFG_TX_INSERT_TAG BIT(0) 144 145 #define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT 4 146 147 /* CAT_DROP categorizer frame dropping register bits */ 148 #define VSC73XX_CAT_DROP_DROP_MC_SMAC_ENA BIT(6) 149 #define VSC73XX_CAT_DROP_FWD_CTRL_ENA BIT(4) 150 #define VSC73XX_CAT_DROP_FWD_PAUSE_ENA BIT(3) 151 #define VSC73XX_CAT_DROP_UNTAGGED_ENA BIT(2) 152 #define VSC73XX_CAT_DROP_TAGGED_ENA BIT(1) 153 #define VSC73XX_CAT_DROP_NULL_MAC_ENA BIT(0) 154 155 #define VSC73XX_Q_MISC_CONF_EXTENT_MEM BIT(31) 156 #define VSC73XX_Q_MISC_CONF_EARLY_TX_MASK GENMASK(4, 1) 157 #define VSC73XX_Q_MISC_CONF_EARLY_TX_512 (1 << 1) 158 #define VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE BIT(0) 159 160 /* CAT_VLAN_MISC categorizer VLAN miscellaneous bits */ 161 #define VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA BIT(8) 162 #define VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA BIT(7) 163 164 /* CAT_PORT_VLAN categorizer port VLAN */ 165 #define VSC73XX_CAT_PORT_VLAN_VLAN_CFI BIT(15) 166 #define VSC73XX_CAT_PORT_VLAN_VLAN_USR_PRIO GENMASK(14, 12) 167 #define VSC73XX_CAT_PORT_VLAN_VLAN_VID GENMASK(11, 0) 168 169 /* Frame analyzer block 2 registers */ 170 #define VSC73XX_STORMLIMIT 0x02 171 #define VSC73XX_ADVLEARN 0x03 172 #define VSC73XX_IFLODMSK 0x04 173 #define VSC73XX_VLANMASK 0x05 174 #define VSC73XX_MACHDATA 0x06 175 #define VSC73XX_MACLDATA 0x07 176 #define VSC73XX_ANMOVED 0x08 177 #define VSC73XX_ANAGEFIL 0x09 178 #define VSC73XX_ANEVENTS 0x0a 179 #define VSC73XX_ANCNTMASK 0x0b 180 #define VSC73XX_ANCNTVAL 0x0c 181 #define VSC73XX_LEARNMASK 0x0d 182 #define VSC73XX_UFLODMASK 0x0e 183 #define VSC73XX_MFLODMASK 0x0f 184 #define VSC73XX_RECVMASK 0x10 185 #define VSC73XX_AGGRCTRL 0x20 186 #define VSC73XX_AGGRMSKS 0x30 /* Until 0x3f */ 187 #define VSC73XX_DSTMASKS 0x40 /* Until 0x7f */ 188 #define VSC73XX_SRCMASKS 0x80 /* Until 0x87 */ 189 #define VSC73XX_CAPENAB 0xa0 190 #define VSC73XX_MACACCESS 0xb0 191 #define VSC73XX_IPMCACCESS 0xb1 192 #define VSC73XX_MACTINDX 0xc0 193 #define VSC73XX_VLANACCESS 0xd0 194 #define VSC73XX_VLANTIDX 0xe0 195 #define VSC73XX_AGENCTRL 0xf0 196 #define VSC73XX_CAPRST 0xff 197 198 #define VSC73XX_SRCMASKS_CPU_COPY BIT(27) 199 #define VSC73XX_SRCMASKS_MIRROR BIT(26) 200 #define VSC73XX_SRCMASKS_PORTS_MASK GENMASK(7, 0) 201 202 #define VSC73XX_MACHDATA_VID GENMASK(27, 16) 203 #define VSC73XX_MACHDATA_MAC0 GENMASK(15, 8) 204 #define VSC73XX_MACHDATA_MAC1 GENMASK(7, 0) 205 #define VSC73XX_MACLDATA_MAC2 GENMASK(31, 24) 206 #define VSC73XX_MACLDATA_MAC3 GENMASK(23, 16) 207 #define VSC73XX_MACLDATA_MAC4 GENMASK(15, 8) 208 #define VSC73XX_MACLDATA_MAC5 GENMASK(7, 0) 209 210 #define VSC73XX_HASH0_VID_FROM_MASK GENMASK(5, 0) 211 #define VSC73XX_HASH0_MAC0_FROM_MASK GENMASK(7, 4) 212 #define VSC73XX_HASH1_MAC0_FROM_MASK GENMASK(3, 0) 213 #define VSC73XX_HASH1_MAC1_FROM_MASK GENMASK(7, 1) 214 #define VSC73XX_HASH2_MAC1_FROM_MASK BIT(0) 215 #define VSC73XX_HASH2_MAC2_FROM_MASK GENMASK(7, 0) 216 #define VSC73XX_HASH2_MAC3_FROM_MASK GENMASK(7, 6) 217 #define VSC73XX_HASH3_MAC3_FROM_MASK GENMASK(5, 0) 218 #define VSC73XX_HASH3_MAC4_FROM_MASK GENMASK(7, 3) 219 #define VSC73XX_HASH4_MAC4_FROM_MASK GENMASK(2, 0) 220 221 #define VSC73XX_HASH0_VID_TO_MASK GENMASK(9, 4) 222 #define VSC73XX_HASH0_MAC0_TO_MASK GENMASK(3, 0) 223 #define VSC73XX_HASH1_MAC0_TO_MASK GENMASK(10, 7) 224 #define VSC73XX_HASH1_MAC1_TO_MASK GENMASK(6, 0) 225 #define VSC73XX_HASH2_MAC1_TO_MASK BIT(10) 226 #define VSC73XX_HASH2_MAC2_TO_MASK GENMASK(9, 2) 227 #define VSC73XX_HASH2_MAC3_TO_MASK GENMASK(1, 0) 228 #define VSC73XX_HASH3_MAC3_TO_MASK GENMASK(10, 5) 229 #define VSC73XX_HASH3_MAC4_TO_MASK GENMASK(4, 0) 230 #define VSC73XX_HASH4_MAC4_TO_MASK GENMASK(10, 8) 231 232 #define VSC73XX_MACTINDX_SHADOW BIT(13) 233 #define VSC73XX_MACTINDX_BUCKET_MSK GENMASK(12, 11) 234 #define VSC73XX_MACTINDX_INDEX_MSK GENMASK(10, 0) 235 236 #define VSC73XX_MACACCESS_CPU_COPY BIT(14) 237 #define VSC73XX_MACACCESS_FWD_KILL BIT(13) 238 #define VSC73XX_MACACCESS_IGNORE_VLAN BIT(12) 239 #define VSC73XX_MACACCESS_AGED_FLAG BIT(11) 240 #define VSC73XX_MACACCESS_VALID BIT(10) 241 #define VSC73XX_MACACCESS_LOCKED BIT(9) 242 #define VSC73XX_MACACCESS_DEST_IDX_MASK GENMASK(8, 3) 243 #define VSC73XX_MACACCESS_CMD_MASK GENMASK(2, 0) 244 #define VSC73XX_MACACCESS_CMD_IDLE 0 245 #define VSC73XX_MACACCESS_CMD_LEARN 1 246 #define VSC73XX_MACACCESS_CMD_FORGET 2 247 #define VSC73XX_MACACCESS_CMD_AGE_TABLE 3 248 #define VSC73XX_MACACCESS_CMD_FLUSH_TABLE 4 249 #define VSC73XX_MACACCESS_CMD_CLEAR_TABLE 5 250 #define VSC73XX_MACACCESS_CMD_READ_ENTRY 6 251 #define VSC73XX_MACACCESS_CMD_WRITE_ENTRY 7 252 253 #define VSC73XX_VLANACCESS_LEARN_DISABLED BIT(30) 254 #define VSC73XX_VLANACCESS_VLAN_MIRROR BIT(29) 255 #define VSC73XX_VLANACCESS_VLAN_SRC_CHECK BIT(28) 256 #define VSC73XX_VLANACCESS_VLAN_PORT_MASK GENMASK(9, 2) 257 #define VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT 2 258 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK GENMASK(1, 0) 259 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE 0 260 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY 1 261 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY 2 262 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE 3 263 264 /* MII block 3 registers */ 265 #define VSC73XX_MII_STAT 0x0 266 #define VSC73XX_MII_CMD 0x1 267 #define VSC73XX_MII_DATA 0x2 268 #define VSC73XX_MII_MPRES 0x3 269 270 #define VSC73XX_MII_STAT_BUSY BIT(3) 271 #define VSC73XX_MII_STAT_READ BIT(2) 272 #define VSC73XX_MII_STAT_WRITE BIT(1) 273 274 #define VSC73XX_MII_CMD_SCAN BIT(27) 275 #define VSC73XX_MII_CMD_OPERATION BIT(26) 276 #define VSC73XX_MII_CMD_PHY_ADDR GENMASK(25, 21) 277 #define VSC73XX_MII_CMD_PHY_REG GENMASK(20, 16) 278 #define VSC73XX_MII_CMD_WRITE_DATA GENMASK(15, 0) 279 280 #define VSC73XX_MII_DATA_FAILURE BIT(16) 281 #define VSC73XX_MII_DATA_READ_DATA GENMASK(15, 0) 282 283 #define VSC73XX_MII_MPRES_NOPREAMBLE BIT(6) 284 #define VSC73XX_MII_MPRES_PRESCALEVAL GENMASK(5, 0) 285 #define VSC73XX_MII_PRESCALEVAL_MIN 3 /* min allowed mdio clock prescaler */ 286 287 #define VSC73XX_MII_STAT_BUSY BIT(3) 288 289 /* Arbiter block 5 registers */ 290 #define VSC73XX_ARBEMPTY 0x0c 291 #define VSC73XX_ARBDISC 0x0e 292 #define VSC73XX_SBACKWDROP 0x12 293 #define VSC73XX_DBACKWDROP 0x13 294 #define VSC73XX_ARBBURSTPROB 0x15 295 296 /* System block 7 registers */ 297 #define VSC73XX_ICPU_SIPAD 0x01 298 #define VSC73XX_GMIIDELAY 0x05 299 #define VSC73XX_ICPU_CTRL 0x10 300 #define VSC73XX_ICPU_ADDR 0x11 301 #define VSC73XX_ICPU_SRAM 0x12 302 #define VSC73XX_HWSEM 0x13 303 #define VSC73XX_GLORESET 0x14 304 #define VSC73XX_ICPU_MBOX_VAL 0x15 305 #define VSC73XX_ICPU_MBOX_SET 0x16 306 #define VSC73XX_ICPU_MBOX_CLR 0x17 307 #define VSC73XX_CHIPID 0x18 308 #define VSC73XX_GPIO 0x34 309 310 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE 0 311 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS 1 312 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS 2 313 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS 3 314 315 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE (0 << 4) 316 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS (1 << 4) 317 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS (2 << 4) 318 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS (3 << 4) 319 320 #define VSC73XX_ICPU_CTRL_WATCHDOG_RST BIT(31) 321 #define VSC73XX_ICPU_CTRL_CLK_DIV_MASK GENMASK(12, 8) 322 #define VSC73XX_ICPU_CTRL_SRST_HOLD BIT(7) 323 #define VSC73XX_ICPU_CTRL_ICPU_PI_EN BIT(6) 324 #define VSC73XX_ICPU_CTRL_BOOT_EN BIT(3) 325 #define VSC73XX_ICPU_CTRL_EXT_ACC_EN BIT(2) 326 #define VSC73XX_ICPU_CTRL_CLK_EN BIT(1) 327 #define VSC73XX_ICPU_CTRL_SRST BIT(0) 328 329 #define VSC73XX_CHIPID_ID_SHIFT 12 330 #define VSC73XX_CHIPID_ID_MASK 0xffff 331 #define VSC73XX_CHIPID_REV_SHIFT 28 332 #define VSC73XX_CHIPID_REV_MASK 0xf 333 #define VSC73XX_CHIPID_ID_7385 0x7385 334 #define VSC73XX_CHIPID_ID_7388 0x7388 335 #define VSC73XX_CHIPID_ID_7395 0x7395 336 #define VSC73XX_CHIPID_ID_7398 0x7398 337 338 #define VSC73XX_GLORESET_STROBE BIT(4) 339 #define VSC73XX_GLORESET_ICPU_LOCK BIT(3) 340 #define VSC73XX_GLORESET_MEM_LOCK BIT(2) 341 #define VSC73XX_GLORESET_PHY_RESET BIT(1) 342 #define VSC73XX_GLORESET_MASTER_RESET BIT(0) 343 344 #define VSC7385_CLOCK_DELAY ((3 << 4) | 3) 345 #define VSC7385_CLOCK_DELAY_MASK ((3 << 4) | 3) 346 347 #define VSC73XX_ICPU_CTRL_STOP (VSC73XX_ICPU_CTRL_SRST_HOLD | \ 348 VSC73XX_ICPU_CTRL_BOOT_EN | \ 349 VSC73XX_ICPU_CTRL_EXT_ACC_EN) 350 351 #define VSC73XX_ICPU_CTRL_START (VSC73XX_ICPU_CTRL_CLK_DIV | \ 352 VSC73XX_ICPU_CTRL_BOOT_EN | \ 353 VSC73XX_ICPU_CTRL_CLK_EN | \ 354 VSC73XX_ICPU_CTRL_SRST) 355 356 #define IS_7385(a) ((a)->chipid == VSC73XX_CHIPID_ID_7385) 357 #define IS_7388(a) ((a)->chipid == VSC73XX_CHIPID_ID_7388) 358 #define IS_7395(a) ((a)->chipid == VSC73XX_CHIPID_ID_7395) 359 #define IS_7398(a) ((a)->chipid == VSC73XX_CHIPID_ID_7398) 360 #define IS_739X(a) (IS_7395(a) || IS_7398(a)) 361 362 #define VSC73XX_POLL_SLEEP_US 1000 363 #define VSC73XX_MDIO_POLL_SLEEP_US 5 364 #define VSC73XX_POLL_TIMEOUT_US 10000 365 366 struct vsc73xx_counter { 367 u8 counter; 368 const char *name; 369 }; 370 371 struct vsc73xx_fdb { 372 u16 vid; 373 u8 port; 374 u8 mac[ETH_ALEN]; 375 bool valid; 376 }; 377 378 /* Counters are named according to the MIB standards where applicable. 379 * Some counters are custom, non-standard. The standard counters are 380 * named in accordance with RFC2819, RFC2021 and IEEE Std 802.3-2002 Annex 381 * 30A Counters. 382 */ 383 static const struct vsc73xx_counter vsc73xx_rx_counters[] = { 384 { 0, "RxEtherStatsPkts" }, 385 { 1, "RxBroadcast+MulticastPkts" }, /* non-standard counter */ 386 { 2, "RxTotalErrorPackets" }, /* non-standard counter */ 387 { 3, "RxEtherStatsBroadcastPkts" }, 388 { 4, "RxEtherStatsMulticastPkts" }, 389 { 5, "RxEtherStatsPkts64Octets" }, 390 { 6, "RxEtherStatsPkts65to127Octets" }, 391 { 7, "RxEtherStatsPkts128to255Octets" }, 392 { 8, "RxEtherStatsPkts256to511Octets" }, 393 { 9, "RxEtherStatsPkts512to1023Octets" }, 394 { 10, "RxEtherStatsPkts1024to1518Octets" }, 395 { 11, "RxJumboFrames" }, /* non-standard counter */ 396 { 12, "RxaPauseMACControlFramesTransmitted" }, 397 { 13, "RxFIFODrops" }, /* non-standard counter */ 398 { 14, "RxBackwardDrops" }, /* non-standard counter */ 399 { 15, "RxClassifierDrops" }, /* non-standard counter */ 400 { 16, "RxEtherStatsCRCAlignErrors" }, 401 { 17, "RxEtherStatsUndersizePkts" }, 402 { 18, "RxEtherStatsOversizePkts" }, 403 { 19, "RxEtherStatsFragments" }, 404 { 20, "RxEtherStatsJabbers" }, 405 { 21, "RxaMACControlFramesReceived" }, 406 /* 22-24 are undefined */ 407 { 25, "RxaFramesReceivedOK" }, 408 { 26, "RxQoSClass0" }, /* non-standard counter */ 409 { 27, "RxQoSClass1" }, /* non-standard counter */ 410 { 28, "RxQoSClass2" }, /* non-standard counter */ 411 { 29, "RxQoSClass3" }, /* non-standard counter */ 412 }; 413 414 static const struct vsc73xx_counter vsc73xx_tx_counters[] = { 415 { 0, "TxEtherStatsPkts" }, 416 { 1, "TxBroadcast+MulticastPkts" }, /* non-standard counter */ 417 { 2, "TxTotalErrorPackets" }, /* non-standard counter */ 418 { 3, "TxEtherStatsBroadcastPkts" }, 419 { 4, "TxEtherStatsMulticastPkts" }, 420 { 5, "TxEtherStatsPkts64Octets" }, 421 { 6, "TxEtherStatsPkts65to127Octets" }, 422 { 7, "TxEtherStatsPkts128to255Octets" }, 423 { 8, "TxEtherStatsPkts256to511Octets" }, 424 { 9, "TxEtherStatsPkts512to1023Octets" }, 425 { 10, "TxEtherStatsPkts1024to1518Octets" }, 426 { 11, "TxJumboFrames" }, /* non-standard counter */ 427 { 12, "TxaPauseMACControlFramesTransmitted" }, 428 { 13, "TxFIFODrops" }, /* non-standard counter */ 429 { 14, "TxDrops" }, /* non-standard counter */ 430 { 15, "TxEtherStatsCollisions" }, 431 { 16, "TxEtherStatsCRCAlignErrors" }, 432 { 17, "TxEtherStatsUndersizePkts" }, 433 { 18, "TxEtherStatsOversizePkts" }, 434 { 19, "TxEtherStatsFragments" }, 435 { 20, "TxEtherStatsJabbers" }, 436 /* 21-24 are undefined */ 437 { 25, "TxaFramesReceivedOK" }, 438 { 26, "TxQoSClass0" }, /* non-standard counter */ 439 { 27, "TxQoSClass1" }, /* non-standard counter */ 440 { 28, "TxQoSClass2" }, /* non-standard counter */ 441 { 29, "TxQoSClass3" }, /* non-standard counter */ 442 }; 443 444 struct vsc73xx_vlan_summary { 445 size_t num_tagged; 446 size_t num_untagged; 447 }; 448 449 enum vsc73xx_port_vlan_conf { 450 VSC73XX_VLAN_FILTER, 451 VSC73XX_VLAN_FILTER_UNTAG_ALL, 452 VSC73XX_VLAN_IGNORE, 453 }; 454 455 int vsc73xx_is_addr_valid(u8 block, u8 subblock) 456 { 457 switch (block) { 458 case VSC73XX_BLOCK_MAC: 459 switch (subblock) { 460 case 0 ... 4: 461 case 6: 462 return 1; 463 } 464 break; 465 466 case VSC73XX_BLOCK_ANALYZER: 467 case VSC73XX_BLOCK_SYSTEM: 468 switch (subblock) { 469 case 0: 470 return 1; 471 } 472 break; 473 474 case VSC73XX_BLOCK_MII: 475 case VSC73XX_BLOCK_ARBITER: 476 switch (subblock) { 477 case 0 ... 1: 478 return 1; 479 } 480 break; 481 case VSC73XX_BLOCK_CAPTURE: 482 switch (subblock) { 483 case 0 ... 4: 484 case 6 ... 7: 485 return 1; 486 } 487 break; 488 } 489 490 return 0; 491 } 492 EXPORT_SYMBOL(vsc73xx_is_addr_valid); 493 494 static int vsc73xx_read(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg, 495 u32 *val) 496 { 497 return vsc->ops->read(vsc, block, subblock, reg, val); 498 } 499 500 static int vsc73xx_write(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg, 501 u32 val) 502 { 503 return vsc->ops->write(vsc, block, subblock, reg, val); 504 } 505 506 static int vsc73xx_update_bits(struct vsc73xx *vsc, u8 block, u8 subblock, 507 u8 reg, u32 mask, u32 val) 508 { 509 u32 tmp, orig; 510 int ret; 511 512 /* Same read-modify-write algorithm as e.g. regmap */ 513 ret = vsc73xx_read(vsc, block, subblock, reg, &orig); 514 if (ret) 515 return ret; 516 tmp = orig & ~mask; 517 tmp |= val & mask; 518 return vsc73xx_write(vsc, block, subblock, reg, tmp); 519 } 520 521 static int vsc73xx_detect(struct vsc73xx *vsc) 522 { 523 bool icpu_si_boot_en; 524 bool icpu_pi_en; 525 u32 val; 526 u32 rev; 527 int ret; 528 u32 id; 529 530 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 531 VSC73XX_ICPU_MBOX_VAL, &val); 532 if (ret) { 533 dev_err(vsc->dev, "unable to read mailbox (%d)\n", ret); 534 return ret; 535 } 536 537 if (val == 0xffffffff) { 538 dev_info(vsc->dev, "chip seems dead.\n"); 539 return -EAGAIN; 540 } 541 542 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 543 VSC73XX_CHIPID, &val); 544 if (ret) { 545 dev_err(vsc->dev, "unable to read chip id (%d)\n", ret); 546 return ret; 547 } 548 549 id = (val >> VSC73XX_CHIPID_ID_SHIFT) & 550 VSC73XX_CHIPID_ID_MASK; 551 switch (id) { 552 case VSC73XX_CHIPID_ID_7385: 553 case VSC73XX_CHIPID_ID_7388: 554 case VSC73XX_CHIPID_ID_7395: 555 case VSC73XX_CHIPID_ID_7398: 556 break; 557 default: 558 dev_err(vsc->dev, "unsupported chip, id=%04x\n", id); 559 return -ENODEV; 560 } 561 562 vsc->chipid = id; 563 rev = (val >> VSC73XX_CHIPID_REV_SHIFT) & 564 VSC73XX_CHIPID_REV_MASK; 565 dev_info(vsc->dev, "VSC%04X (rev: %d) switch found\n", id, rev); 566 567 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 568 VSC73XX_ICPU_CTRL, &val); 569 if (ret) { 570 dev_err(vsc->dev, "unable to read iCPU control\n"); 571 return ret; 572 } 573 574 /* The iCPU can always be used but can boot in different ways. 575 * If it is initially disabled and has no external memory, 576 * we are in control and can do whatever we like, else we 577 * are probably in trouble (we need some way to communicate 578 * with the running firmware) so we bail out for now. 579 */ 580 icpu_pi_en = !!(val & VSC73XX_ICPU_CTRL_ICPU_PI_EN); 581 icpu_si_boot_en = !!(val & VSC73XX_ICPU_CTRL_BOOT_EN); 582 if (icpu_si_boot_en && icpu_pi_en) { 583 dev_err(vsc->dev, 584 "iCPU enabled boots from SI, has external memory\n"); 585 dev_err(vsc->dev, "no idea how to deal with this\n"); 586 return -ENODEV; 587 } 588 if (icpu_si_boot_en && !icpu_pi_en) { 589 dev_err(vsc->dev, 590 "iCPU enabled boots from PI/SI, no external memory\n"); 591 return -EAGAIN; 592 } 593 if (!icpu_si_boot_en && icpu_pi_en) { 594 dev_err(vsc->dev, 595 "iCPU enabled, boots from PI external memory\n"); 596 dev_err(vsc->dev, "no idea how to deal with this\n"); 597 return -ENODEV; 598 } 599 /* !icpu_si_boot_en && !cpu_pi_en */ 600 dev_info(vsc->dev, "iCPU disabled, no external memory\n"); 601 602 return 0; 603 } 604 605 static int vsc73xx_mdio_busy_check(struct vsc73xx *vsc) 606 { 607 int ret, err; 608 u32 val; 609 610 ret = read_poll_timeout(vsc73xx_read, err, 611 err < 0 || !(val & VSC73XX_MII_STAT_BUSY), 612 VSC73XX_MDIO_POLL_SLEEP_US, 613 VSC73XX_POLL_TIMEOUT_US, false, vsc, 614 VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 615 VSC73XX_MII_STAT, &val); 616 if (ret) 617 return ret; 618 return err; 619 } 620 621 static int vsc73xx_phy_read(struct dsa_switch *ds, int phy, int regnum) 622 { 623 struct vsc73xx *vsc = ds->priv; 624 u32 cmd; 625 u32 val; 626 int ret; 627 628 ret = vsc73xx_mdio_busy_check(vsc); 629 if (ret) 630 return ret; 631 632 /* Setting bit 26 means "read" */ 633 cmd = VSC73XX_MII_CMD_OPERATION | 634 FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) | 635 FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum); 636 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 637 VSC73XX_MII_CMD, cmd); 638 if (ret) 639 return ret; 640 641 ret = vsc73xx_mdio_busy_check(vsc); 642 if (ret) 643 return ret; 644 645 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 646 VSC73XX_MII_DATA, &val); 647 if (ret) 648 return ret; 649 if (val & VSC73XX_MII_DATA_FAILURE) { 650 dev_err(vsc->dev, "reading reg %02x from phy%d failed\n", 651 regnum, phy); 652 return -EIO; 653 } 654 val &= VSC73XX_MII_DATA_READ_DATA; 655 656 dev_dbg(vsc->dev, "read reg %02x from phy%d = %04x\n", 657 regnum, phy, val); 658 659 return val; 660 } 661 662 static int vsc73xx_phy_write(struct dsa_switch *ds, int phy, int regnum, 663 u16 val) 664 { 665 struct vsc73xx *vsc = ds->priv; 666 u32 cmd; 667 int ret; 668 669 ret = vsc73xx_mdio_busy_check(vsc); 670 if (ret) 671 return ret; 672 673 cmd = FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) | 674 FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum) | 675 FIELD_PREP(VSC73XX_MII_CMD_WRITE_DATA, val); 676 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 677 VSC73XX_MII_CMD, cmd); 678 if (ret) 679 return ret; 680 681 dev_dbg(vsc->dev, "write %04x to reg %02x in phy%d\n", 682 val, regnum, phy); 683 return 0; 684 } 685 686 static enum dsa_tag_protocol vsc73xx_get_tag_protocol(struct dsa_switch *ds, 687 int port, 688 enum dsa_tag_protocol mp) 689 { 690 /* The switch internally uses a 8 byte header with length, 691 * source port, tag, LPA and priority. This is supposedly 692 * only accessible when operating the switch using the internal 693 * CPU or with an external CPU mapping the device in, but not 694 * when operating the switch over SPI and putting frames in/out 695 * on port 6 (the CPU port). So far we must assume that we 696 * cannot access the tag. (See "Internal frame header" section 697 * 3.9.1 in the manual.) 698 */ 699 return DSA_TAG_PROTO_VSC73XX_8021Q; 700 } 701 702 static int vsc73xx_wait_for_vlan_table_cmd(struct vsc73xx *vsc) 703 { 704 int ret, err; 705 u32 val; 706 707 ret = read_poll_timeout(vsc73xx_read, err, 708 err < 0 || 709 ((val & VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK) == 710 VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE), 711 VSC73XX_POLL_SLEEP_US, VSC73XX_POLL_TIMEOUT_US, 712 false, vsc, VSC73XX_BLOCK_ANALYZER, 713 0, VSC73XX_VLANACCESS, &val); 714 if (ret) 715 return ret; 716 return err; 717 } 718 719 static int 720 vsc73xx_read_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 *portmap) 721 { 722 u32 val; 723 int ret; 724 725 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid); 726 727 ret = vsc73xx_wait_for_vlan_table_cmd(vsc); 728 if (ret) 729 return ret; 730 731 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, 732 VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK, 733 VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY); 734 735 ret = vsc73xx_wait_for_vlan_table_cmd(vsc); 736 if (ret) 737 return ret; 738 739 vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, &val); 740 *portmap = (val & VSC73XX_VLANACCESS_VLAN_PORT_MASK) >> 741 VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT; 742 743 return 0; 744 } 745 746 static int 747 vsc73xx_write_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 portmap) 748 { 749 int ret; 750 751 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid); 752 753 ret = vsc73xx_wait_for_vlan_table_cmd(vsc); 754 if (ret) 755 return ret; 756 757 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, 758 VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK | 759 VSC73XX_VLANACCESS_VLAN_SRC_CHECK | 760 VSC73XX_VLANACCESS_VLAN_PORT_MASK, 761 VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY | 762 VSC73XX_VLANACCESS_VLAN_SRC_CHECK | 763 (portmap << VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT)); 764 765 return vsc73xx_wait_for_vlan_table_cmd(vsc); 766 } 767 768 static int 769 vsc73xx_update_vlan_table(struct vsc73xx *vsc, int port, u16 vid, bool set) 770 { 771 u8 portmap; 772 int ret; 773 774 ret = vsc73xx_read_vlan_table_entry(vsc, vid, &portmap); 775 if (ret) 776 return ret; 777 778 if (set) 779 portmap |= BIT(port); 780 else 781 portmap &= ~BIT(port); 782 783 return vsc73xx_write_vlan_table_entry(vsc, vid, portmap); 784 } 785 786 static int vsc73xx_configure_rgmii_port_delay(struct dsa_switch *ds) 787 { 788 /* Keep 2.0 ns delay for backward complatibility */ 789 u32 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS; 790 u32 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS; 791 struct dsa_port *dp = dsa_to_port(ds, CPU_PORT); 792 struct device_node *port_dn = dp->dn; 793 struct vsc73xx *vsc = ds->priv; 794 u32 delay; 795 796 if (!of_property_read_u32(port_dn, "tx-internal-delay-ps", &delay)) { 797 switch (delay) { 798 case 0: 799 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE; 800 break; 801 case 1400: 802 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS; 803 break; 804 case 1700: 805 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS; 806 break; 807 case 2000: 808 break; 809 default: 810 dev_err(vsc->dev, 811 "Unsupported RGMII Transmit Clock Delay\n"); 812 return -EINVAL; 813 } 814 } else { 815 dev_dbg(vsc->dev, 816 "RGMII Transmit Clock Delay isn't configured, set to 2.0 ns\n"); 817 } 818 819 if (!of_property_read_u32(port_dn, "rx-internal-delay-ps", &delay)) { 820 switch (delay) { 821 case 0: 822 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE; 823 break; 824 case 1400: 825 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS; 826 break; 827 case 1700: 828 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS; 829 break; 830 case 2000: 831 break; 832 default: 833 dev_err(vsc->dev, 834 "Unsupported RGMII Receive Clock Delay value\n"); 835 return -EINVAL; 836 } 837 } else { 838 dev_dbg(vsc->dev, 839 "RGMII Receive Clock Delay isn't configured, set to 2.0 ns\n"); 840 } 841 842 /* MII delay, set both GTX and RX delay */ 843 return vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GMIIDELAY, 844 tx_delay | rx_delay); 845 } 846 847 static int vsc73xx_setup(struct dsa_switch *ds) 848 { 849 struct vsc73xx *vsc = ds->priv; 850 int i, ret, val; 851 852 dev_info(vsc->dev, "set up the switch\n"); 853 854 ds->untag_bridge_pvid = true; 855 ds->max_num_bridges = DSA_TAG_8021Q_MAX_NUM_BRIDGES; 856 ds->fdb_isolation = true; 857 858 /* Issue RESET */ 859 vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET, 860 VSC73XX_GLORESET_MASTER_RESET); 861 usleep_range(125, 200); 862 863 /* Initialize memory, initialize RAM bank 0..15 except 6 and 7 864 * This sequence appears in the 865 * VSC7385 SparX-G5 datasheet section 6.6.1 866 * VSC7395 SparX-G5e datasheet section 6.6.1 867 * "initialization sequence". 868 * No explanation is given to the 0x1010400 magic number. 869 */ 870 for (i = 0; i <= 15; i++) { 871 if (i != 6 && i != 7) { 872 vsc73xx_write(vsc, VSC73XX_BLOCK_MEMINIT, 873 2, 874 0, 0x1010400 + i); 875 mdelay(1); 876 } 877 } 878 mdelay(30); 879 880 /* Clear MAC table */ 881 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, 882 VSC73XX_MACACCESS, 883 VSC73XX_MACACCESS_CMD_CLEAR_TABLE); 884 885 /* Set VLAN table to default values */ 886 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, 887 VSC73XX_VLANACCESS, 888 VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE); 889 890 msleep(40); 891 892 /* Use 20KiB buffers on all ports on VSC7395 893 * The VSC7385 has 16KiB buffers and that is the 894 * default if we don't set this up explicitly. 895 * Port "31" is "all ports". 896 */ 897 if (IS_739X(vsc)) 898 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 0x1f, 899 VSC73XX_Q_MISC_CONF, 900 VSC73XX_Q_MISC_CONF_EXTENT_MEM); 901 902 /* Put all ports into reset until enabled */ 903 for (i = 0; i < 7; i++) { 904 if (i == 5) 905 continue; 906 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 4, 907 VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET); 908 } 909 910 /* Configure RGMII delay */ 911 ret = vsc73xx_configure_rgmii_port_delay(ds); 912 if (ret) 913 return ret; 914 915 /* Ingess VLAN reception mask (table 145) */ 916 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANMASK, 917 0xff); 918 /* IP multicast flood mask (table 144) */ 919 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_IFLODMSK, 920 0xff); 921 922 mdelay(50); 923 924 /* Disable preamble and use maximum allowed clock for the internal 925 * mdio bus, used for communication with internal PHYs only. 926 */ 927 val = VSC73XX_MII_MPRES_NOPREAMBLE | 928 FIELD_PREP(VSC73XX_MII_MPRES_PRESCALEVAL, 929 VSC73XX_MII_PRESCALEVAL_MIN); 930 vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 931 VSC73XX_MII_MPRES, val); 932 933 /* Release reset from the internal PHYs */ 934 vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET, 935 VSC73XX_GLORESET_PHY_RESET); 936 937 udelay(4); 938 939 /* Clear VLAN table */ 940 for (i = 0; i < VLAN_N_VID; i++) 941 vsc73xx_write_vlan_table_entry(vsc, i, 0); 942 943 INIT_LIST_HEAD(&vsc->vlans); 944 945 rtnl_lock(); 946 ret = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q)); 947 rtnl_unlock(); 948 949 return ret; 950 } 951 952 static void vsc73xx_teardown(struct dsa_switch *ds) 953 { 954 rtnl_lock(); 955 dsa_tag_8021q_unregister(ds); 956 rtnl_unlock(); 957 } 958 959 static void vsc73xx_init_port(struct vsc73xx *vsc, int port) 960 { 961 u32 val; 962 963 /* MAC configure, first reset the port and then write defaults */ 964 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 965 port, 966 VSC73XX_MAC_CFG, 967 VSC73XX_MAC_CFG_RESET); 968 969 /* Take up the port in 1Gbit mode by default, this will be 970 * augmented after auto-negotiation on the PHY-facing 971 * ports. 972 */ 973 if (port == CPU_PORT) 974 val = VSC73XX_MAC_CFG_1000M_F_RGMII; 975 else 976 val = VSC73XX_MAC_CFG_1000M_F_PHY; 977 978 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 979 port, 980 VSC73XX_MAC_CFG, 981 val | 982 VSC73XX_MAC_CFG_TX_EN | 983 VSC73XX_MAC_CFG_RX_EN); 984 985 /* Flow control for the CPU port: 986 * Use a zero delay pause frame when pause condition is left 987 * Obey pause control frames 988 */ 989 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 990 port, 991 VSC73XX_FCCONF, 992 VSC73XX_FCCONF_ZERO_PAUSE_EN | 993 VSC73XX_FCCONF_FLOW_CTRL_OBEY); 994 995 /* Issue pause control frames on PHY facing ports. 996 * Allow early initiation of MAC transmission if the amount 997 * of egress data is below 512 bytes on CPU port. 998 * FIXME: enable 20KiB buffers? 999 */ 1000 if (port == CPU_PORT) 1001 val = VSC73XX_Q_MISC_CONF_EARLY_TX_512; 1002 else 1003 val = VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE; 1004 val |= VSC73XX_Q_MISC_CONF_EXTENT_MEM; 1005 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 1006 port, 1007 VSC73XX_Q_MISC_CONF, 1008 val); 1009 1010 /* Flow control MAC: a MAC address used in flow control frames */ 1011 val = (vsc->addr[5] << 16) | (vsc->addr[4] << 8) | (vsc->addr[3]); 1012 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 1013 port, 1014 VSC73XX_FCMACHI, 1015 val); 1016 val = (vsc->addr[2] << 16) | (vsc->addr[1] << 8) | (vsc->addr[0]); 1017 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 1018 port, 1019 VSC73XX_FCMACLO, 1020 val); 1021 1022 /* Tell the categorizer to forward pause frames, not control 1023 * frame. Do not drop anything. 1024 */ 1025 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 1026 port, 1027 VSC73XX_CAT_DROP, 1028 VSC73XX_CAT_DROP_FWD_PAUSE_ENA); 1029 1030 /* Clear all counters */ 1031 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 1032 port, VSC73XX_C_RX0, 0); 1033 } 1034 1035 static void vsc73xx_reset_port(struct vsc73xx *vsc, int port, u32 initval) 1036 { 1037 int ret, err; 1038 u32 val; 1039 1040 /* Disable RX on this port */ 1041 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1042 VSC73XX_MAC_CFG, 1043 VSC73XX_MAC_CFG_RX_EN, 0); 1044 1045 /* Discard packets */ 1046 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 1047 VSC73XX_ARBDISC, BIT(port), BIT(port)); 1048 1049 /* Wait until queue is empty */ 1050 ret = read_poll_timeout(vsc73xx_read, err, 1051 err < 0 || (val & BIT(port)), 1052 VSC73XX_POLL_SLEEP_US, 1053 VSC73XX_POLL_TIMEOUT_US, false, 1054 vsc, VSC73XX_BLOCK_ARBITER, 0, 1055 VSC73XX_ARBEMPTY, &val); 1056 if (ret) 1057 dev_err(vsc->dev, 1058 "timeout waiting for block arbiter\n"); 1059 else if (err < 0) 1060 dev_err(vsc->dev, "error reading arbiter\n"); 1061 1062 /* Put this port into reset */ 1063 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, 1064 VSC73XX_MAC_CFG_RESET | initval); 1065 } 1066 1067 static void vsc73xx_mac_config(struct phylink_config *config, unsigned int mode, 1068 const struct phylink_link_state *state) 1069 { 1070 struct dsa_port *dp = dsa_phylink_to_port(config); 1071 struct vsc73xx *vsc = dp->ds->priv; 1072 int port = dp->index; 1073 1074 /* Special handling of the CPU-facing port */ 1075 if (port == CPU_PORT) { 1076 /* Other ports are already initialized but not this one */ 1077 vsc73xx_init_port(vsc, CPU_PORT); 1078 /* Select the external port for this interface (EXT_PORT) 1079 * Enable the GMII GTX external clock 1080 * Use double data rate (DDR mode) 1081 */ 1082 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 1083 CPU_PORT, 1084 VSC73XX_ADVPORTM, 1085 VSC73XX_ADVPORTM_EXT_PORT | 1086 VSC73XX_ADVPORTM_ENA_GTX | 1087 VSC73XX_ADVPORTM_DDR_MODE); 1088 } 1089 } 1090 1091 static void vsc73xx_mac_link_down(struct phylink_config *config, 1092 unsigned int mode, phy_interface_t interface) 1093 { 1094 struct dsa_port *dp = dsa_phylink_to_port(config); 1095 struct vsc73xx *vsc = dp->ds->priv; 1096 int port = dp->index; 1097 1098 /* This routine is described in the datasheet (below ARBDISC register 1099 * description) 1100 */ 1101 vsc73xx_reset_port(vsc, port, 0); 1102 1103 /* Allow backward dropping of frames from this port */ 1104 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 1105 VSC73XX_SBACKWDROP, BIT(port), BIT(port)); 1106 } 1107 1108 static void vsc73xx_mac_link_up(struct phylink_config *config, 1109 struct phy_device *phy, unsigned int mode, 1110 phy_interface_t interface, int speed, 1111 int duplex, bool tx_pause, bool rx_pause) 1112 { 1113 struct dsa_port *dp = dsa_phylink_to_port(config); 1114 struct vsc73xx *vsc = dp->ds->priv; 1115 int port = dp->index; 1116 u32 val; 1117 u8 seed; 1118 1119 if (speed == SPEED_1000) 1120 val = VSC73XX_MAC_CFG_GIGA_MODE | VSC73XX_MAC_CFG_TX_IPG_1000M; 1121 else 1122 val = VSC73XX_MAC_CFG_TX_IPG_100_10M; 1123 1124 if (phy_interface_mode_is_rgmii(interface)) 1125 val |= VSC73XX_MAC_CFG_CLK_SEL_1000M; 1126 else 1127 val |= VSC73XX_MAC_CFG_CLK_SEL_EXT; 1128 1129 if (duplex == DUPLEX_FULL) 1130 val |= VSC73XX_MAC_CFG_FDX; 1131 else 1132 /* In datasheet description ("Port Mode Procedure" in 5.6.2) 1133 * this bit is configured only for half duplex. 1134 */ 1135 val |= VSC73XX_MAC_CFG_WEXC_DIS; 1136 1137 /* This routine is described in the datasheet (below ARBDISC register 1138 * description) 1139 */ 1140 vsc73xx_reset_port(vsc, port, val); 1141 1142 /* Seed the port randomness with randomness */ 1143 get_random_bytes(&seed, 1); 1144 val |= seed << VSC73XX_MAC_CFG_SEED_OFFSET; 1145 val |= VSC73XX_MAC_CFG_SEED_LOAD; 1146 1147 /* Those bits are responsible for MTU only. Kernel takes care about MTU, 1148 * let's enable +8 bytes frame length unconditionally. 1149 */ 1150 val |= VSC73XX_MAC_CFG_VLAN_AWR | VSC73XX_MAC_CFG_VLAN_DBLAWR; 1151 1152 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, val); 1153 1154 /* Flow control for the PHY facing ports: 1155 * Use a zero delay pause frame when pause condition is left 1156 * Obey pause control frames 1157 * When generating pause frames, use 0xff as pause value 1158 */ 1159 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_FCCONF, 1160 VSC73XX_FCCONF_ZERO_PAUSE_EN | 1161 VSC73XX_FCCONF_FLOW_CTRL_OBEY | 1162 0xff); 1163 1164 /* Accept packets again */ 1165 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 1166 VSC73XX_ARBDISC, BIT(port), 0); 1167 1168 /* Disallow backward dropping of frames from this port */ 1169 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 1170 VSC73XX_SBACKWDROP, BIT(port), 0); 1171 1172 /* Enable TX, RX, deassert reset, stop loading seed */ 1173 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1174 VSC73XX_MAC_CFG, 1175 VSC73XX_MAC_CFG_RESET | VSC73XX_MAC_CFG_SEED_LOAD | 1176 VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN, 1177 VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN); 1178 } 1179 1180 static bool vsc73xx_tag_8021q_active(struct dsa_port *dp) 1181 { 1182 return !dsa_port_is_vlan_filtering(dp); 1183 } 1184 1185 static struct vsc73xx_bridge_vlan * 1186 vsc73xx_bridge_vlan_find(struct vsc73xx *vsc, u16 vid) 1187 { 1188 struct vsc73xx_bridge_vlan *vlan; 1189 1190 list_for_each_entry(vlan, &vsc->vlans, list) 1191 if (vlan->vid == vid) 1192 return vlan; 1193 1194 return NULL; 1195 } 1196 1197 static void 1198 vsc73xx_bridge_vlan_remove_port(struct vsc73xx_bridge_vlan *vsc73xx_vlan, 1199 int port) 1200 { 1201 vsc73xx_vlan->portmask &= ~BIT(port); 1202 1203 if (vsc73xx_vlan->portmask) 1204 return; 1205 1206 list_del(&vsc73xx_vlan->list); 1207 kfree(vsc73xx_vlan); 1208 } 1209 1210 static void vsc73xx_bridge_vlan_summary(struct vsc73xx *vsc, int port, 1211 struct vsc73xx_vlan_summary *summary, 1212 u16 ignored_vid) 1213 { 1214 size_t num_tagged = 0, num_untagged = 0; 1215 struct vsc73xx_bridge_vlan *vlan; 1216 1217 list_for_each_entry(vlan, &vsc->vlans, list) { 1218 if (!(vlan->portmask & BIT(port)) || vlan->vid == ignored_vid) 1219 continue; 1220 1221 if (vlan->untagged & BIT(port)) 1222 num_untagged++; 1223 else 1224 num_tagged++; 1225 } 1226 1227 summary->num_untagged = num_untagged; 1228 summary->num_tagged = num_tagged; 1229 } 1230 1231 static u16 vsc73xx_find_first_vlan_untagged(struct vsc73xx *vsc, int port) 1232 { 1233 struct vsc73xx_bridge_vlan *vlan; 1234 1235 list_for_each_entry(vlan, &vsc->vlans, list) 1236 if ((vlan->portmask & BIT(port)) && 1237 (vlan->untagged & BIT(port))) 1238 return vlan->vid; 1239 1240 return VLAN_N_VID; 1241 } 1242 1243 static int vsc73xx_set_vlan_conf(struct vsc73xx *vsc, int port, 1244 enum vsc73xx_port_vlan_conf port_vlan_conf) 1245 { 1246 u32 val = 0; 1247 int ret; 1248 1249 if (port_vlan_conf == VSC73XX_VLAN_IGNORE) 1250 val = VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA | 1251 VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA; 1252 1253 ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1254 VSC73XX_CAT_VLAN_MISC, 1255 VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA | 1256 VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA, val); 1257 if (ret) 1258 return ret; 1259 1260 val = (port_vlan_conf == VSC73XX_VLAN_FILTER) ? 1261 VSC73XX_TXUPDCFG_TX_INSERT_TAG : 0; 1262 1263 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1264 VSC73XX_TXUPDCFG, 1265 VSC73XX_TXUPDCFG_TX_INSERT_TAG, val); 1266 } 1267 1268 /** 1269 * vsc73xx_vlan_commit_conf - Update VLAN configuration of a port 1270 * @vsc: Switch private data structure 1271 * @port: Port index on which to operate 1272 * 1273 * Update the VLAN behavior of a port to make sure that when it is under 1274 * a VLAN filtering bridge, the port is either filtering with tag 1275 * preservation, or filtering with all VLANs egress-untagged. Otherwise, 1276 * the port ignores VLAN tags from packets and applies the port-based 1277 * VID. 1278 * 1279 * Must be called when changes are made to: 1280 * - the bridge VLAN filtering state of the port 1281 * - the number or attributes of VLANs from the bridge VLAN table, 1282 * while the port is currently VLAN-aware 1283 * 1284 * Return: 0 on success, or negative errno on error. 1285 */ 1286 static int vsc73xx_vlan_commit_conf(struct vsc73xx *vsc, int port) 1287 { 1288 enum vsc73xx_port_vlan_conf port_vlan_conf = VSC73XX_VLAN_IGNORE; 1289 struct dsa_port *dp = dsa_to_port(vsc->ds, port); 1290 1291 if (port == CPU_PORT) { 1292 port_vlan_conf = VSC73XX_VLAN_FILTER; 1293 } else if (dsa_port_is_vlan_filtering(dp)) { 1294 struct vsc73xx_vlan_summary summary; 1295 1296 port_vlan_conf = VSC73XX_VLAN_FILTER; 1297 1298 vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID); 1299 if (summary.num_tagged == 0) 1300 port_vlan_conf = VSC73XX_VLAN_FILTER_UNTAG_ALL; 1301 } 1302 1303 return vsc73xx_set_vlan_conf(vsc, port, port_vlan_conf); 1304 } 1305 1306 static int 1307 vsc73xx_vlan_change_untagged(struct vsc73xx *vsc, int port, u16 vid, bool set) 1308 { 1309 u32 val = 0; 1310 1311 if (set) 1312 val = VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA | 1313 ((vid << VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT) & 1314 VSC73XX_TXUPDCFG_TX_UNTAGGED_VID); 1315 1316 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1317 VSC73XX_TXUPDCFG, 1318 VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA | 1319 VSC73XX_TXUPDCFG_TX_UNTAGGED_VID, val); 1320 } 1321 1322 /** 1323 * vsc73xx_vlan_commit_untagged - Update native VLAN of a port 1324 * @vsc: Switch private data structure 1325 * @port: Port index on which to operate 1326 * 1327 * Update the native VLAN of a port (the one VLAN which is transmitted 1328 * as egress-tagged on a trunk port) when port is in VLAN filtering mode and 1329 * only one untagged vid is configured. 1330 * In other cases no need to configure it because switch can untag all vlans on 1331 * the port. 1332 * 1333 * Return: 0 on success, or negative errno on error. 1334 */ 1335 static int vsc73xx_vlan_commit_untagged(struct vsc73xx *vsc, int port) 1336 { 1337 struct dsa_port *dp = dsa_to_port(vsc->ds, port); 1338 struct vsc73xx_vlan_summary summary; 1339 u16 vid = 0; 1340 bool valid; 1341 1342 if (!dsa_port_is_vlan_filtering(dp)) 1343 /* Port is configured to untag all vlans in that case. 1344 * No need to commit untagged config change. 1345 */ 1346 return 0; 1347 1348 vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID); 1349 1350 if (summary.num_untagged > 1) 1351 /* Port must untag all vlans in that case. 1352 * No need to commit untagged config change. 1353 */ 1354 return 0; 1355 1356 valid = (summary.num_untagged == 1); 1357 if (valid) 1358 vid = vsc73xx_find_first_vlan_untagged(vsc, port); 1359 1360 return vsc73xx_vlan_change_untagged(vsc, port, vid, valid); 1361 } 1362 1363 static int 1364 vsc73xx_vlan_change_pvid(struct vsc73xx *vsc, int port, u16 vid, bool set) 1365 { 1366 u32 val = 0; 1367 int ret; 1368 1369 val = set ? 0 : VSC73XX_CAT_DROP_UNTAGGED_ENA; 1370 1371 ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1372 VSC73XX_CAT_DROP, 1373 VSC73XX_CAT_DROP_UNTAGGED_ENA, val); 1374 if (!set || ret) 1375 return ret; 1376 1377 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1378 VSC73XX_CAT_PORT_VLAN, 1379 VSC73XX_CAT_PORT_VLAN_VLAN_VID, 1380 vid & VSC73XX_CAT_PORT_VLAN_VLAN_VID); 1381 } 1382 1383 /** 1384 * vsc73xx_vlan_commit_pvid - Update port-based default VLAN of a port 1385 * @vsc: Switch private data structure 1386 * @port: Port index on which to operate 1387 * 1388 * Update the PVID of a port so that it follows either the bridge PVID 1389 * configuration, when the bridge is currently VLAN-aware, or the PVID 1390 * from tag_8021q, when the port is standalone or under a VLAN-unaware 1391 * bridge. A port with no PVID drops all untagged and VID 0 tagged 1392 * traffic. 1393 * 1394 * Must be called when changes are made to: 1395 * - the bridge VLAN filtering state of the port 1396 * - the number or attributes of VLANs from the bridge VLAN table, 1397 * while the port is currently VLAN-aware 1398 * 1399 * Return: 0 on success, or negative errno on error. 1400 */ 1401 static int vsc73xx_vlan_commit_pvid(struct vsc73xx *vsc, int port) 1402 { 1403 struct vsc73xx_portinfo *portinfo = &vsc->portinfo[port]; 1404 bool valid = portinfo->pvid_tag_8021q_configured; 1405 struct dsa_port *dp = dsa_to_port(vsc->ds, port); 1406 u16 vid = portinfo->pvid_tag_8021q; 1407 1408 if (dsa_port_is_vlan_filtering(dp)) { 1409 vid = portinfo->pvid_vlan_filtering; 1410 valid = portinfo->pvid_vlan_filtering_configured; 1411 } 1412 1413 return vsc73xx_vlan_change_pvid(vsc, port, vid, valid); 1414 } 1415 1416 static int vsc73xx_vlan_commit_settings(struct vsc73xx *vsc, int port) 1417 { 1418 int ret; 1419 1420 ret = vsc73xx_vlan_commit_untagged(vsc, port); 1421 if (ret) 1422 return ret; 1423 1424 ret = vsc73xx_vlan_commit_pvid(vsc, port); 1425 if (ret) 1426 return ret; 1427 1428 return vsc73xx_vlan_commit_conf(vsc, port); 1429 } 1430 1431 static int vsc73xx_port_enable(struct dsa_switch *ds, int port, 1432 struct phy_device *phy) 1433 { 1434 struct vsc73xx *vsc = ds->priv; 1435 1436 dev_info(vsc->dev, "enable port %d\n", port); 1437 vsc73xx_init_port(vsc, port); 1438 1439 return vsc73xx_vlan_commit_settings(vsc, port); 1440 } 1441 1442 static void vsc73xx_port_disable(struct dsa_switch *ds, int port) 1443 { 1444 struct vsc73xx *vsc = ds->priv; 1445 1446 /* Just put the port into reset */ 1447 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, 1448 VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET); 1449 } 1450 1451 static const struct vsc73xx_counter * 1452 vsc73xx_find_counter(struct vsc73xx *vsc, 1453 u8 counter, 1454 bool tx) 1455 { 1456 const struct vsc73xx_counter *cnts; 1457 int num_cnts; 1458 int i; 1459 1460 if (tx) { 1461 cnts = vsc73xx_tx_counters; 1462 num_cnts = ARRAY_SIZE(vsc73xx_tx_counters); 1463 } else { 1464 cnts = vsc73xx_rx_counters; 1465 num_cnts = ARRAY_SIZE(vsc73xx_rx_counters); 1466 } 1467 1468 for (i = 0; i < num_cnts; i++) { 1469 const struct vsc73xx_counter *cnt; 1470 1471 cnt = &cnts[i]; 1472 if (cnt->counter == counter) 1473 return cnt; 1474 } 1475 1476 return NULL; 1477 } 1478 1479 static void vsc73xx_get_strings(struct dsa_switch *ds, int port, u32 stringset, 1480 uint8_t *data) 1481 { 1482 const struct vsc73xx_counter *cnt; 1483 struct vsc73xx *vsc = ds->priv; 1484 u8 indices[6]; 1485 u8 *buf = data; 1486 int i; 1487 u32 val; 1488 int ret; 1489 1490 if (stringset != ETH_SS_STATS) 1491 return; 1492 1493 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port, 1494 VSC73XX_C_CFG, &val); 1495 if (ret) 1496 return; 1497 1498 indices[0] = (val & 0x1f); /* RX counter 0 */ 1499 indices[1] = ((val >> 5) & 0x1f); /* RX counter 1 */ 1500 indices[2] = ((val >> 10) & 0x1f); /* RX counter 2 */ 1501 indices[3] = ((val >> 16) & 0x1f); /* TX counter 0 */ 1502 indices[4] = ((val >> 21) & 0x1f); /* TX counter 1 */ 1503 indices[5] = ((val >> 26) & 0x1f); /* TX counter 2 */ 1504 1505 /* The first counters is the RX octets */ 1506 ethtool_puts(&buf, "RxEtherStatsOctets"); 1507 1508 /* Each port supports recording 3 RX counters and 3 TX counters, 1509 * figure out what counters we use in this set-up and return the 1510 * names of them. The hardware default counters will be number of 1511 * packets on RX/TX, combined broadcast+multicast packets RX/TX and 1512 * total error packets RX/TX. 1513 */ 1514 for (i = 0; i < 3; i++) { 1515 cnt = vsc73xx_find_counter(vsc, indices[i], false); 1516 ethtool_puts(&buf, cnt ? cnt->name : ""); 1517 } 1518 1519 /* TX stats begins with the number of TX octets */ 1520 ethtool_puts(&buf, "TxEtherStatsOctets"); 1521 1522 for (i = 3; i < 6; i++) { 1523 cnt = vsc73xx_find_counter(vsc, indices[i], true); 1524 ethtool_puts(&buf, cnt ? cnt->name : ""); 1525 1526 } 1527 } 1528 1529 static int vsc73xx_get_sset_count(struct dsa_switch *ds, int port, int sset) 1530 { 1531 /* We only support SS_STATS */ 1532 if (sset != ETH_SS_STATS) 1533 return 0; 1534 /* RX and TX packets, then 3 RX counters, 3 TX counters */ 1535 return 8; 1536 } 1537 1538 static void vsc73xx_get_ethtool_stats(struct dsa_switch *ds, int port, 1539 uint64_t *data) 1540 { 1541 struct vsc73xx *vsc = ds->priv; 1542 u8 regs[] = { 1543 VSC73XX_RXOCT, 1544 VSC73XX_C_RX0, 1545 VSC73XX_C_RX1, 1546 VSC73XX_C_RX2, 1547 VSC73XX_TXOCT, 1548 VSC73XX_C_TX0, 1549 VSC73XX_C_TX1, 1550 VSC73XX_C_TX2, 1551 }; 1552 u32 val; 1553 int ret; 1554 int i; 1555 1556 for (i = 0; i < ARRAY_SIZE(regs); i++) { 1557 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port, 1558 regs[i], &val); 1559 if (ret) { 1560 dev_err(vsc->dev, "error reading counter %d\n", i); 1561 return; 1562 } 1563 data[i] = val; 1564 } 1565 } 1566 1567 static int vsc73xx_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1568 { 1569 struct vsc73xx *vsc = ds->priv; 1570 1571 return vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, 1572 VSC73XX_MAXLEN, new_mtu + ETH_HLEN + ETH_FCS_LEN); 1573 } 1574 1575 /* According to application not "VSC7398 Jumbo Frames" setting 1576 * up the frame size to 9.6 KB does not affect the performance on standard 1577 * frames. It is clear from the application note that 1578 * "9.6 kilobytes" == 9600 bytes. 1579 */ 1580 static int vsc73xx_get_max_mtu(struct dsa_switch *ds, int port) 1581 { 1582 return 9600 - ETH_HLEN - ETH_FCS_LEN; 1583 } 1584 1585 static void vsc73xx_phylink_get_caps(struct dsa_switch *dsa, int port, 1586 struct phylink_config *config) 1587 { 1588 unsigned long *interfaces = config->supported_interfaces; 1589 1590 if (port == 5) 1591 return; 1592 1593 if (port == CPU_PORT) { 1594 __set_bit(PHY_INTERFACE_MODE_MII, interfaces); 1595 __set_bit(PHY_INTERFACE_MODE_REVMII, interfaces); 1596 __set_bit(PHY_INTERFACE_MODE_GMII, interfaces); 1597 __set_bit(PHY_INTERFACE_MODE_RGMII, interfaces); 1598 } 1599 1600 if (port <= 4) { 1601 /* Internal PHYs */ 1602 __set_bit(PHY_INTERFACE_MODE_INTERNAL, interfaces); 1603 /* phylib default */ 1604 __set_bit(PHY_INTERFACE_MODE_GMII, interfaces); 1605 } 1606 1607 config->mac_capabilities = MAC_SYM_PAUSE | MAC_10 | MAC_100 | MAC_1000; 1608 } 1609 1610 static int 1611 vsc73xx_port_vlan_filtering(struct dsa_switch *ds, int port, 1612 bool vlan_filtering, struct netlink_ext_ack *extack) 1613 { 1614 struct vsc73xx *vsc = ds->priv; 1615 1616 /* The commit to hardware processed below is required because vsc73xx 1617 * is using tag_8021q. When vlan_filtering is disabled, tag_8021q uses 1618 * pvid/untagged vlans for port recognition. The values configured for 1619 * vlans and pvid/untagged states are stored in portinfo structure. 1620 * When vlan_filtering is enabled, we need to restore pvid/untagged from 1621 * portinfo structure. Analogous routine is processed when 1622 * vlan_filtering is disabled, but values used for tag_8021q are 1623 * restored. 1624 */ 1625 1626 return vsc73xx_vlan_commit_settings(vsc, port); 1627 } 1628 1629 static int vsc73xx_port_vlan_add(struct dsa_switch *ds, int port, 1630 const struct switchdev_obj_port_vlan *vlan, 1631 struct netlink_ext_ack *extack) 1632 { 1633 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1634 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1635 struct dsa_port *dp = dsa_to_port(ds, port); 1636 struct vsc73xx_bridge_vlan *vsc73xx_vlan; 1637 struct vsc73xx_vlan_summary summary; 1638 struct vsc73xx_portinfo *portinfo; 1639 struct vsc73xx *vsc = ds->priv; 1640 bool commit_to_hardware; 1641 int ret = 0; 1642 1643 /* Be sure to deny alterations to the configuration done by tag_8021q. 1644 */ 1645 if (vid_is_dsa_8021q(vlan->vid)) { 1646 NL_SET_ERR_MSG_MOD(extack, 1647 "Range 3072-4095 reserved for dsa_8021q operation"); 1648 return -EBUSY; 1649 } 1650 1651 /* The processed vlan->vid is excluded from the search because the VLAN 1652 * can be re-added with a different set of flags, so it's easiest to 1653 * ignore its old flags from the VLAN database software copy. 1654 */ 1655 vsc73xx_bridge_vlan_summary(vsc, port, &summary, vlan->vid); 1656 1657 /* VSC73XX allows only three untagged states: none, one or all */ 1658 if ((untagged && summary.num_tagged > 0 && summary.num_untagged > 0) || 1659 (!untagged && summary.num_untagged > 1)) { 1660 NL_SET_ERR_MSG_MOD(extack, 1661 "Port can have only none, one or all untagged vlan"); 1662 return -EBUSY; 1663 } 1664 1665 vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid); 1666 1667 if (!vsc73xx_vlan) { 1668 vsc73xx_vlan = kzalloc(sizeof(*vsc73xx_vlan), GFP_KERNEL); 1669 if (!vsc73xx_vlan) 1670 return -ENOMEM; 1671 1672 vsc73xx_vlan->vid = vlan->vid; 1673 1674 list_add_tail(&vsc73xx_vlan->list, &vsc->vlans); 1675 } 1676 1677 vsc73xx_vlan->portmask |= BIT(port); 1678 1679 /* CPU port must be always tagged because source port identification is 1680 * based on tag_8021q. 1681 */ 1682 if (port == CPU_PORT) 1683 goto update_vlan_table; 1684 1685 if (untagged) 1686 vsc73xx_vlan->untagged |= BIT(port); 1687 else 1688 vsc73xx_vlan->untagged &= ~BIT(port); 1689 1690 portinfo = &vsc->portinfo[port]; 1691 1692 if (pvid) { 1693 portinfo->pvid_vlan_filtering_configured = true; 1694 portinfo->pvid_vlan_filtering = vlan->vid; 1695 } else if (portinfo->pvid_vlan_filtering_configured && 1696 portinfo->pvid_vlan_filtering == vlan->vid) { 1697 portinfo->pvid_vlan_filtering_configured = false; 1698 } 1699 1700 commit_to_hardware = !vsc73xx_tag_8021q_active(dp); 1701 if (commit_to_hardware) { 1702 ret = vsc73xx_vlan_commit_settings(vsc, port); 1703 if (ret) 1704 goto err; 1705 } 1706 1707 update_vlan_table: 1708 ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, true); 1709 if (!ret) 1710 return 0; 1711 err: 1712 vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port); 1713 return ret; 1714 } 1715 1716 static int vsc73xx_port_vlan_del(struct dsa_switch *ds, int port, 1717 const struct switchdev_obj_port_vlan *vlan) 1718 { 1719 struct vsc73xx_bridge_vlan *vsc73xx_vlan; 1720 struct vsc73xx_portinfo *portinfo; 1721 struct vsc73xx *vsc = ds->priv; 1722 bool commit_to_hardware; 1723 int ret; 1724 1725 ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, false); 1726 if (ret) 1727 return ret; 1728 1729 portinfo = &vsc->portinfo[port]; 1730 1731 if (portinfo->pvid_vlan_filtering_configured && 1732 portinfo->pvid_vlan_filtering == vlan->vid) 1733 portinfo->pvid_vlan_filtering_configured = false; 1734 1735 vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid); 1736 1737 if (vsc73xx_vlan) 1738 vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port); 1739 1740 commit_to_hardware = !vsc73xx_tag_8021q_active(dsa_to_port(ds, port)); 1741 1742 if (commit_to_hardware) 1743 return vsc73xx_vlan_commit_settings(vsc, port); 1744 1745 return 0; 1746 } 1747 1748 static int vsc73xx_tag_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid, 1749 u16 flags) 1750 { 1751 bool pvid = flags & BRIDGE_VLAN_INFO_PVID; 1752 struct vsc73xx_portinfo *portinfo; 1753 struct vsc73xx *vsc = ds->priv; 1754 bool commit_to_hardware; 1755 int ret; 1756 1757 portinfo = &vsc->portinfo[port]; 1758 1759 if (pvid) { 1760 portinfo->pvid_tag_8021q_configured = true; 1761 portinfo->pvid_tag_8021q = vid; 1762 } 1763 1764 commit_to_hardware = vsc73xx_tag_8021q_active(dsa_to_port(ds, port)); 1765 if (commit_to_hardware) { 1766 ret = vsc73xx_vlan_commit_settings(vsc, port); 1767 if (ret) 1768 return ret; 1769 } 1770 1771 return vsc73xx_update_vlan_table(vsc, port, vid, true); 1772 } 1773 1774 static int vsc73xx_tag_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid) 1775 { 1776 struct vsc73xx_portinfo *portinfo; 1777 struct vsc73xx *vsc = ds->priv; 1778 1779 portinfo = &vsc->portinfo[port]; 1780 1781 if (portinfo->pvid_tag_8021q_configured && 1782 portinfo->pvid_tag_8021q == vid) { 1783 struct dsa_port *dp = dsa_to_port(ds, port); 1784 bool commit_to_hardware; 1785 int err; 1786 1787 portinfo->pvid_tag_8021q_configured = false; 1788 1789 commit_to_hardware = vsc73xx_tag_8021q_active(dp); 1790 if (commit_to_hardware) { 1791 err = vsc73xx_vlan_commit_settings(vsc, port); 1792 if (err) 1793 return err; 1794 } 1795 } 1796 1797 return vsc73xx_update_vlan_table(vsc, port, vid, false); 1798 } 1799 1800 static int vsc73xx_port_pre_bridge_flags(struct dsa_switch *ds, int port, 1801 struct switchdev_brport_flags flags, 1802 struct netlink_ext_ack *extack) 1803 { 1804 if (flags.mask & ~BR_LEARNING) 1805 return -EINVAL; 1806 1807 return 0; 1808 } 1809 1810 static int vsc73xx_port_bridge_flags(struct dsa_switch *ds, int port, 1811 struct switchdev_brport_flags flags, 1812 struct netlink_ext_ack *extack) 1813 { 1814 if (flags.mask & BR_LEARNING) { 1815 u32 val = flags.val & BR_LEARNING ? BIT(port) : 0; 1816 struct vsc73xx *vsc = ds->priv; 1817 1818 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1819 VSC73XX_LEARNMASK, BIT(port), val); 1820 } 1821 1822 return 0; 1823 } 1824 1825 static void vsc73xx_refresh_fwd_map(struct dsa_switch *ds, int port, u8 state) 1826 { 1827 struct dsa_port *other_dp, *dp = dsa_to_port(ds, port); 1828 struct vsc73xx *vsc = ds->priv; 1829 u16 mask; 1830 1831 if (state != BR_STATE_FORWARDING) { 1832 /* Ports that aren't in the forwarding state must not 1833 * forward packets anywhere. 1834 */ 1835 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1836 VSC73XX_SRCMASKS + port, 1837 VSC73XX_SRCMASKS_PORTS_MASK, 0); 1838 1839 dsa_switch_for_each_available_port(other_dp, ds) { 1840 if (other_dp == dp) 1841 continue; 1842 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1843 VSC73XX_SRCMASKS + other_dp->index, 1844 BIT(port), 0); 1845 } 1846 1847 return; 1848 } 1849 1850 /* Forwarding ports must forward to the CPU and to other ports 1851 * in the same bridge 1852 */ 1853 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1854 VSC73XX_SRCMASKS + CPU_PORT, BIT(port), BIT(port)); 1855 1856 mask = BIT(CPU_PORT); 1857 1858 dsa_switch_for_each_user_port(other_dp, ds) { 1859 int other_port = other_dp->index; 1860 1861 if (port == other_port || !dsa_port_bridge_same(dp, other_dp) || 1862 other_dp->stp_state != BR_STATE_FORWARDING) 1863 continue; 1864 1865 mask |= BIT(other_port); 1866 1867 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1868 VSC73XX_SRCMASKS + other_port, 1869 BIT(port), BIT(port)); 1870 } 1871 1872 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1873 VSC73XX_SRCMASKS + port, 1874 VSC73XX_SRCMASKS_PORTS_MASK, mask); 1875 } 1876 1877 /* FIXME: STP frames aren't forwarded at this moment. BPDU frames are 1878 * forwarded only from and to PI/SI interface. For more info see chapter 1879 * 2.7.1 (CPU Forwarding) in datasheet. 1880 * This function is required for tag_8021q operations. 1881 */ 1882 static void vsc73xx_port_stp_state_set(struct dsa_switch *ds, int port, 1883 u8 state) 1884 { 1885 struct dsa_port *dp = dsa_to_port(ds, port); 1886 struct vsc73xx *vsc = ds->priv; 1887 u32 val = 0; 1888 1889 if (state == BR_STATE_LEARNING || state == BR_STATE_FORWARDING) 1890 val = dp->learning ? BIT(port) : 0; 1891 1892 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1893 VSC73XX_LEARNMASK, BIT(port), val); 1894 1895 val = (state == BR_STATE_BLOCKING || state == BR_STATE_DISABLED) ? 1896 0 : BIT(port); 1897 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1898 VSC73XX_RECVMASK, BIT(port), val); 1899 1900 /* CPU Port should always forward packets when user ports are forwarding 1901 * so let's configure it from other ports only. 1902 */ 1903 if (port != CPU_PORT) 1904 vsc73xx_refresh_fwd_map(ds, port, state); 1905 } 1906 1907 static u16 vsc73xx_calc_hash(const unsigned char *addr, u16 vid) 1908 { 1909 /* VID 5-0, MAC 47-44 */ 1910 u16 hash = FIELD_PREP(VSC73XX_HASH0_VID_TO_MASK, 1911 FIELD_GET(VSC73XX_HASH0_VID_FROM_MASK, vid)) | 1912 FIELD_PREP(VSC73XX_HASH0_MAC0_TO_MASK, 1913 FIELD_GET(VSC73XX_HASH0_MAC0_FROM_MASK, addr[0])); 1914 /* MAC 43-33 */ 1915 hash ^= FIELD_PREP(VSC73XX_HASH1_MAC0_TO_MASK, 1916 FIELD_GET(VSC73XX_HASH1_MAC0_FROM_MASK, addr[0])) | 1917 FIELD_PREP(VSC73XX_HASH1_MAC1_TO_MASK, 1918 FIELD_GET(VSC73XX_HASH1_MAC1_FROM_MASK, addr[1])); 1919 /* MAC 32-22 */ 1920 hash ^= FIELD_PREP(VSC73XX_HASH2_MAC1_TO_MASK, 1921 FIELD_GET(VSC73XX_HASH2_MAC1_FROM_MASK, addr[1])) | 1922 FIELD_PREP(VSC73XX_HASH2_MAC2_TO_MASK, 1923 FIELD_GET(VSC73XX_HASH2_MAC2_FROM_MASK, addr[2])) | 1924 FIELD_PREP(VSC73XX_HASH2_MAC3_TO_MASK, 1925 FIELD_GET(VSC73XX_HASH2_MAC3_FROM_MASK, addr[3])); 1926 /* MAC 21-11 */ 1927 hash ^= FIELD_PREP(VSC73XX_HASH3_MAC3_TO_MASK, 1928 FIELD_GET(VSC73XX_HASH3_MAC3_FROM_MASK, addr[3])) | 1929 FIELD_PREP(VSC73XX_HASH3_MAC4_TO_MASK, 1930 FIELD_GET(VSC73XX_HASH3_MAC4_FROM_MASK, addr[4])); 1931 /* MAC 10-0 */ 1932 hash ^= FIELD_PREP(VSC73XX_HASH4_MAC4_TO_MASK, 1933 FIELD_GET(VSC73XX_HASH4_MAC4_FROM_MASK, addr[4])) | 1934 addr[5]; 1935 1936 return hash; 1937 } 1938 1939 static int 1940 vsc73xx_port_wait_for_mac_table_cmd(struct vsc73xx *vsc) 1941 { 1942 int ret, err; 1943 u32 val; 1944 1945 ret = read_poll_timeout(vsc73xx_read, err, 1946 err < 0 || 1947 ((val & VSC73XX_MACACCESS_CMD_MASK) == 1948 VSC73XX_MACACCESS_CMD_IDLE), 1949 VSC73XX_POLL_SLEEP_US, VSC73XX_POLL_TIMEOUT_US, 1950 false, vsc, VSC73XX_BLOCK_ANALYZER, 1951 0, VSC73XX_MACACCESS, &val); 1952 if (ret) 1953 return ret; 1954 return err; 1955 } 1956 1957 static int vsc73xx_port_read_mac_table_row(struct vsc73xx *vsc, u16 index, 1958 struct vsc73xx_fdb *fdb) 1959 { 1960 int ret, i; 1961 u32 val; 1962 1963 if (!fdb) 1964 return -EINVAL; 1965 if (index >= VSC73XX_NUM_FDB_ROWS) 1966 return -EINVAL; 1967 1968 for (i = 0; i < VSC73XX_NUM_BUCKETS; i++) { 1969 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1970 VSC73XX_MACTINDX, 1971 (i ? 0 : VSC73XX_MACTINDX_SHADOW) | 1972 FIELD_PREP(VSC73XX_MACTINDX_BUCKET_MSK, i) | 1973 index); 1974 if (ret) 1975 return ret; 1976 1977 ret = vsc73xx_port_wait_for_mac_table_cmd(vsc); 1978 if (ret) 1979 return ret; 1980 1981 ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1982 VSC73XX_MACACCESS, 1983 VSC73XX_MACACCESS_CMD_MASK, 1984 VSC73XX_MACACCESS_CMD_READ_ENTRY); 1985 if (ret) 1986 return ret; 1987 1988 ret = vsc73xx_port_wait_for_mac_table_cmd(vsc); 1989 if (ret) 1990 return ret; 1991 1992 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1993 VSC73XX_MACACCESS, &val); 1994 if (ret) 1995 return ret; 1996 1997 fdb[i].valid = FIELD_GET(VSC73XX_MACACCESS_VALID, val); 1998 if (!fdb[i].valid) 1999 continue; 2000 2001 fdb[i].port = FIELD_GET(VSC73XX_MACACCESS_DEST_IDX_MASK, val); 2002 2003 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0, 2004 VSC73XX_MACHDATA, &val); 2005 if (ret) 2006 return ret; 2007 2008 fdb[i].vid = FIELD_GET(VSC73XX_MACHDATA_VID, val); 2009 fdb[i].mac[0] = FIELD_GET(VSC73XX_MACHDATA_MAC0, val); 2010 fdb[i].mac[1] = FIELD_GET(VSC73XX_MACHDATA_MAC1, val); 2011 2012 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0, 2013 VSC73XX_MACLDATA, &val); 2014 if (ret) 2015 return ret; 2016 2017 fdb[i].mac[2] = FIELD_GET(VSC73XX_MACLDATA_MAC2, val); 2018 fdb[i].mac[3] = FIELD_GET(VSC73XX_MACLDATA_MAC3, val); 2019 fdb[i].mac[4] = FIELD_GET(VSC73XX_MACLDATA_MAC4, val); 2020 fdb[i].mac[5] = FIELD_GET(VSC73XX_MACLDATA_MAC5, val); 2021 } 2022 2023 return ret; 2024 } 2025 2026 static int 2027 vsc73xx_fdb_operation(struct vsc73xx *vsc, const unsigned char *addr, u16 vid, 2028 u16 hash, u16 cmd_mask, u16 cmd_val) 2029 { 2030 int ret; 2031 u32 val; 2032 2033 val = FIELD_PREP(VSC73XX_MACHDATA_VID, vid) | 2034 FIELD_PREP(VSC73XX_MACHDATA_MAC0, addr[0]) | 2035 FIELD_PREP(VSC73XX_MACHDATA_MAC1, addr[1]); 2036 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACHDATA, 2037 val); 2038 if (ret) 2039 return ret; 2040 2041 val = FIELD_PREP(VSC73XX_MACLDATA_MAC2, addr[2]) | 2042 FIELD_PREP(VSC73XX_MACLDATA_MAC3, addr[3]) | 2043 FIELD_PREP(VSC73XX_MACLDATA_MAC4, addr[4]) | 2044 FIELD_PREP(VSC73XX_MACLDATA_MAC5, addr[5]); 2045 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACLDATA, 2046 val); 2047 if (ret) 2048 return ret; 2049 2050 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_MACTINDX, 2051 hash); 2052 if (ret) 2053 return ret; 2054 2055 ret = vsc73xx_port_wait_for_mac_table_cmd(vsc); 2056 if (ret) 2057 return ret; 2058 2059 ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 2060 VSC73XX_MACACCESS, cmd_mask, cmd_val); 2061 if (ret) 2062 return ret; 2063 2064 return vsc73xx_port_wait_for_mac_table_cmd(vsc); 2065 } 2066 2067 static int vsc73xx_fdb_del_entry(struct vsc73xx *vsc, int port, 2068 const unsigned char *addr, u16 vid) 2069 { 2070 struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS]; 2071 u16 hash = vsc73xx_calc_hash(addr, vid); 2072 int bucket, ret; 2073 2074 mutex_lock(&vsc->fdb_lock); 2075 2076 ret = vsc73xx_port_read_mac_table_row(vsc, hash, fdb); 2077 if (ret) 2078 goto err; 2079 2080 for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) { 2081 if (fdb[bucket].valid && fdb[bucket].port == port && 2082 ether_addr_equal(addr, fdb[bucket].mac)) 2083 break; 2084 } 2085 2086 if (bucket == VSC73XX_NUM_BUCKETS) { 2087 /* Can't find MAC in MAC table */ 2088 ret = -ENODATA; 2089 goto err; 2090 } 2091 2092 ret = vsc73xx_fdb_operation(vsc, addr, vid, hash, 2093 VSC73XX_MACACCESS_CMD_MASK, 2094 VSC73XX_MACACCESS_CMD_FORGET); 2095 err: 2096 mutex_unlock(&vsc->fdb_lock); 2097 return ret; 2098 } 2099 2100 static int vsc73xx_fdb_add_entry(struct vsc73xx *vsc, int port, 2101 const unsigned char *addr, u16 vid) 2102 { 2103 struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS]; 2104 u16 hash = vsc73xx_calc_hash(addr, vid); 2105 int bucket, ret; 2106 u32 val; 2107 2108 mutex_lock(&vsc->fdb_lock); 2109 2110 ret = vsc73xx_port_read_mac_table_row(vsc, hash, fdb); 2111 if (ret) 2112 goto err; 2113 2114 for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) { 2115 if (!fdb[bucket].valid) 2116 break; 2117 } 2118 2119 if (bucket == VSC73XX_NUM_BUCKETS) { 2120 /* Bucket is full */ 2121 ret = -EOVERFLOW; 2122 goto err; 2123 } 2124 2125 val = VSC73XX_MACACCESS_VALID | VSC73XX_MACACCESS_LOCKED | 2126 FIELD_PREP(VSC73XX_MACACCESS_DEST_IDX_MASK, port) | 2127 VSC73XX_MACACCESS_CMD_LEARN; 2128 ret = vsc73xx_fdb_operation(vsc, addr, vid, hash, 2129 VSC73XX_MACACCESS_VALID | 2130 VSC73XX_MACACCESS_LOCKED | 2131 VSC73XX_MACACCESS_DEST_IDX_MASK | 2132 VSC73XX_MACACCESS_CMD_MASK, val); 2133 err: 2134 mutex_unlock(&vsc->fdb_lock); 2135 return ret; 2136 } 2137 2138 static int vsc73xx_fdb_add(struct dsa_switch *ds, int port, 2139 const unsigned char *addr, u16 vid, struct dsa_db db) 2140 { 2141 struct vsc73xx *vsc = ds->priv; 2142 2143 if (!vid) { 2144 switch (db.type) { 2145 case DSA_DB_PORT: 2146 vid = dsa_tag_8021q_standalone_vid(db.dp); 2147 break; 2148 case DSA_DB_BRIDGE: 2149 vid = dsa_tag_8021q_bridge_vid(db.bridge.num); 2150 break; 2151 default: 2152 return -EOPNOTSUPP; 2153 } 2154 } 2155 2156 return vsc73xx_fdb_add_entry(vsc, port, addr, vid); 2157 } 2158 2159 static int vsc73xx_fdb_del(struct dsa_switch *ds, int port, 2160 const unsigned char *addr, u16 vid, struct dsa_db db) 2161 { 2162 struct vsc73xx *vsc = ds->priv; 2163 2164 if (!vid) { 2165 switch (db.type) { 2166 case DSA_DB_PORT: 2167 vid = dsa_tag_8021q_standalone_vid(db.dp); 2168 break; 2169 case DSA_DB_BRIDGE: 2170 vid = dsa_tag_8021q_bridge_vid(db.bridge.num); 2171 break; 2172 default: 2173 return -EOPNOTSUPP; 2174 } 2175 } 2176 2177 return vsc73xx_fdb_del_entry(vsc, port, addr, vid); 2178 } 2179 2180 static int vsc73xx_port_fdb_dump(struct dsa_switch *ds, 2181 int port, dsa_fdb_dump_cb_t *cb, void *data) 2182 { 2183 struct vsc73xx_fdb fdb[VSC73XX_NUM_BUCKETS]; 2184 struct vsc73xx *vsc = ds->priv; 2185 u16 i, bucket; 2186 int err = 0; 2187 2188 mutex_lock(&vsc->fdb_lock); 2189 2190 for (i = 0; i < VSC73XX_NUM_FDB_ROWS; i++) { 2191 err = vsc73xx_port_read_mac_table_row(vsc, i, fdb); 2192 if (err) 2193 goto unlock; 2194 2195 for (bucket = 0; bucket < VSC73XX_NUM_BUCKETS; bucket++) { 2196 if (!fdb[bucket].valid || fdb[bucket].port != port) 2197 continue; 2198 2199 /* We need to hide dsa_8021q VLANs from the user */ 2200 if (vid_is_dsa_8021q(fdb[bucket].vid)) 2201 fdb[bucket].vid = 0; 2202 2203 err = cb(fdb[bucket].mac, fdb[bucket].vid, false, data); 2204 if (err) 2205 goto unlock; 2206 } 2207 } 2208 unlock: 2209 mutex_unlock(&vsc->fdb_lock); 2210 return err; 2211 } 2212 2213 static const struct phylink_mac_ops vsc73xx_phylink_mac_ops = { 2214 .mac_config = vsc73xx_mac_config, 2215 .mac_link_down = vsc73xx_mac_link_down, 2216 .mac_link_up = vsc73xx_mac_link_up, 2217 }; 2218 2219 static const struct dsa_switch_ops vsc73xx_ds_ops = { 2220 .get_tag_protocol = vsc73xx_get_tag_protocol, 2221 .setup = vsc73xx_setup, 2222 .teardown = vsc73xx_teardown, 2223 .phy_read = vsc73xx_phy_read, 2224 .phy_write = vsc73xx_phy_write, 2225 .get_strings = vsc73xx_get_strings, 2226 .get_ethtool_stats = vsc73xx_get_ethtool_stats, 2227 .get_sset_count = vsc73xx_get_sset_count, 2228 .port_enable = vsc73xx_port_enable, 2229 .port_disable = vsc73xx_port_disable, 2230 .port_pre_bridge_flags = vsc73xx_port_pre_bridge_flags, 2231 .port_bridge_flags = vsc73xx_port_bridge_flags, 2232 .port_bridge_join = dsa_tag_8021q_bridge_join, 2233 .port_bridge_leave = dsa_tag_8021q_bridge_leave, 2234 .port_change_mtu = vsc73xx_change_mtu, 2235 .port_fdb_add = vsc73xx_fdb_add, 2236 .port_fdb_del = vsc73xx_fdb_del, 2237 .port_fdb_dump = vsc73xx_port_fdb_dump, 2238 .port_max_mtu = vsc73xx_get_max_mtu, 2239 .port_stp_state_set = vsc73xx_port_stp_state_set, 2240 .port_vlan_filtering = vsc73xx_port_vlan_filtering, 2241 .port_vlan_add = vsc73xx_port_vlan_add, 2242 .port_vlan_del = vsc73xx_port_vlan_del, 2243 .phylink_get_caps = vsc73xx_phylink_get_caps, 2244 .tag_8021q_vlan_add = vsc73xx_tag_8021q_vlan_add, 2245 .tag_8021q_vlan_del = vsc73xx_tag_8021q_vlan_del, 2246 }; 2247 2248 static int vsc73xx_gpio_get(struct gpio_chip *chip, unsigned int offset) 2249 { 2250 struct vsc73xx *vsc = gpiochip_get_data(chip); 2251 u32 val; 2252 int ret; 2253 2254 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 2255 VSC73XX_GPIO, &val); 2256 if (ret) 2257 return ret; 2258 2259 return !!(val & BIT(offset)); 2260 } 2261 2262 static void vsc73xx_gpio_set(struct gpio_chip *chip, unsigned int offset, 2263 int val) 2264 { 2265 struct vsc73xx *vsc = gpiochip_get_data(chip); 2266 u32 tmp = val ? BIT(offset) : 0; 2267 2268 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0, 2269 VSC73XX_GPIO, BIT(offset), tmp); 2270 } 2271 2272 static int vsc73xx_gpio_direction_output(struct gpio_chip *chip, 2273 unsigned int offset, int val) 2274 { 2275 struct vsc73xx *vsc = gpiochip_get_data(chip); 2276 u32 tmp = val ? BIT(offset) : 0; 2277 2278 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0, 2279 VSC73XX_GPIO, BIT(offset + 4) | BIT(offset), 2280 BIT(offset + 4) | tmp); 2281 } 2282 2283 static int vsc73xx_gpio_direction_input(struct gpio_chip *chip, 2284 unsigned int offset) 2285 { 2286 struct vsc73xx *vsc = gpiochip_get_data(chip); 2287 2288 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0, 2289 VSC73XX_GPIO, BIT(offset + 4), 2290 0); 2291 } 2292 2293 static int vsc73xx_gpio_get_direction(struct gpio_chip *chip, 2294 unsigned int offset) 2295 { 2296 struct vsc73xx *vsc = gpiochip_get_data(chip); 2297 u32 val; 2298 int ret; 2299 2300 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 2301 VSC73XX_GPIO, &val); 2302 if (ret) 2303 return ret; 2304 2305 return !(val & BIT(offset + 4)); 2306 } 2307 2308 static int vsc73xx_gpio_probe(struct vsc73xx *vsc) 2309 { 2310 int ret; 2311 2312 vsc->gc.label = devm_kasprintf(vsc->dev, GFP_KERNEL, "VSC%04x", 2313 vsc->chipid); 2314 if (!vsc->gc.label) 2315 return -ENOMEM; 2316 vsc->gc.ngpio = 4; 2317 vsc->gc.owner = THIS_MODULE; 2318 vsc->gc.parent = vsc->dev; 2319 vsc->gc.base = -1; 2320 vsc->gc.get = vsc73xx_gpio_get; 2321 vsc->gc.set = vsc73xx_gpio_set; 2322 vsc->gc.direction_input = vsc73xx_gpio_direction_input; 2323 vsc->gc.direction_output = vsc73xx_gpio_direction_output; 2324 vsc->gc.get_direction = vsc73xx_gpio_get_direction; 2325 vsc->gc.can_sleep = true; 2326 ret = devm_gpiochip_add_data(vsc->dev, &vsc->gc, vsc); 2327 if (ret) { 2328 dev_err(vsc->dev, "unable to register GPIO chip\n"); 2329 return ret; 2330 } 2331 return 0; 2332 } 2333 2334 int vsc73xx_probe(struct vsc73xx *vsc) 2335 { 2336 struct device *dev = vsc->dev; 2337 int ret; 2338 2339 /* Release reset, if any */ 2340 vsc->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); 2341 if (IS_ERR(vsc->reset)) { 2342 dev_err(dev, "failed to get RESET GPIO\n"); 2343 return PTR_ERR(vsc->reset); 2344 } 2345 if (vsc->reset) 2346 /* Wait 20ms according to datasheet table 245 */ 2347 msleep(20); 2348 2349 ret = vsc73xx_detect(vsc); 2350 if (ret == -EAGAIN) { 2351 dev_err(vsc->dev, 2352 "Chip seems to be out of control. Assert reset and try again.\n"); 2353 gpiod_set_value_cansleep(vsc->reset, 1); 2354 /* Reset pulse should be 20ns minimum, according to datasheet 2355 * table 245, so 10us should be fine 2356 */ 2357 usleep_range(10, 100); 2358 gpiod_set_value_cansleep(vsc->reset, 0); 2359 /* Wait 20ms according to datasheet table 245 */ 2360 msleep(20); 2361 ret = vsc73xx_detect(vsc); 2362 } 2363 if (ret) { 2364 dev_err(dev, "no chip found (%d)\n", ret); 2365 return -ENODEV; 2366 } 2367 2368 mutex_init(&vsc->fdb_lock); 2369 2370 eth_random_addr(vsc->addr); 2371 dev_info(vsc->dev, 2372 "MAC for control frames: %02X:%02X:%02X:%02X:%02X:%02X\n", 2373 vsc->addr[0], vsc->addr[1], vsc->addr[2], 2374 vsc->addr[3], vsc->addr[4], vsc->addr[5]); 2375 2376 vsc->ds = devm_kzalloc(dev, sizeof(*vsc->ds), GFP_KERNEL); 2377 if (!vsc->ds) 2378 return -ENOMEM; 2379 2380 vsc->ds->dev = dev; 2381 vsc->ds->num_ports = VSC73XX_MAX_NUM_PORTS; 2382 vsc->ds->priv = vsc; 2383 2384 vsc->ds->ops = &vsc73xx_ds_ops; 2385 vsc->ds->phylink_mac_ops = &vsc73xx_phylink_mac_ops; 2386 ret = dsa_register_switch(vsc->ds); 2387 if (ret) { 2388 dev_err(dev, "unable to register switch (%d)\n", ret); 2389 return ret; 2390 } 2391 2392 ret = vsc73xx_gpio_probe(vsc); 2393 if (ret) { 2394 dsa_unregister_switch(vsc->ds); 2395 return ret; 2396 } 2397 2398 return 0; 2399 } 2400 EXPORT_SYMBOL(vsc73xx_probe); 2401 2402 void vsc73xx_remove(struct vsc73xx *vsc) 2403 { 2404 dsa_unregister_switch(vsc->ds); 2405 gpiod_set_value(vsc->reset, 1); 2406 } 2407 EXPORT_SYMBOL(vsc73xx_remove); 2408 2409 void vsc73xx_shutdown(struct vsc73xx *vsc) 2410 { 2411 dsa_switch_shutdown(vsc->ds); 2412 } 2413 EXPORT_SYMBOL(vsc73xx_shutdown); 2414 2415 MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>"); 2416 MODULE_DESCRIPTION("Vitesse VSC7385/7388/7395/7398 driver"); 2417 MODULE_LICENSE("GPL v2"); 2418