1 // SPDX-License-Identifier: GPL-2.0 2 /* DSA driver for: 3 * Vitesse VSC7385 SparX-G5 5+1-port Integrated Gigabit Ethernet Switch 4 * Vitesse VSC7388 SparX-G8 8-port Integrated Gigabit Ethernet Switch 5 * Vitesse VSC7395 SparX-G5e 5+1-port Integrated Gigabit Ethernet Switch 6 * Vitesse VSC7398 SparX-G8e 8-port Integrated Gigabit Ethernet Switch 7 * 8 * These switches have a built-in 8051 CPU and can download and execute a 9 * firmware in this CPU. They can also be configured to use an external CPU 10 * handling the switch in a memory-mapped manner by connecting to that external 11 * CPU's memory bus. 12 * 13 * Copyright (C) 2018 Linus Wallej <linus.walleij@linaro.org> 14 * Includes portions of code from the firmware uploader by: 15 * Copyright (C) 2009 Gabor Juhos <juhosg@openwrt.org> 16 */ 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/device.h> 20 #include <linux/iopoll.h> 21 #include <linux/of.h> 22 #include <linux/of_mdio.h> 23 #include <linux/bitops.h> 24 #include <linux/bitfield.h> 25 #include <linux/if_bridge.h> 26 #include <linux/if_vlan.h> 27 #include <linux/etherdevice.h> 28 #include <linux/gpio/consumer.h> 29 #include <linux/gpio/driver.h> 30 #include <linux/dsa/8021q.h> 31 #include <linux/random.h> 32 #include <net/dsa.h> 33 34 #include "vitesse-vsc73xx.h" 35 36 #define VSC73XX_BLOCK_MAC 0x1 /* Subblocks 0-4, 6 (CPU port) */ 37 #define VSC73XX_BLOCK_ANALYZER 0x2 /* Only subblock 0 */ 38 #define VSC73XX_BLOCK_MII 0x3 /* Subblocks 0 and 1 */ 39 #define VSC73XX_BLOCK_MEMINIT 0x3 /* Only subblock 2 */ 40 #define VSC73XX_BLOCK_CAPTURE 0x4 /* Only subblock 2 */ 41 #define VSC73XX_BLOCK_ARBITER 0x5 /* Only subblock 0 */ 42 #define VSC73XX_BLOCK_SYSTEM 0x7 /* Only subblock 0 */ 43 44 /* MII Block subblock */ 45 #define VSC73XX_BLOCK_MII_INTERNAL 0x0 /* Internal MDIO subblock */ 46 #define VSC73XX_BLOCK_MII_EXTERNAL 0x1 /* External MDIO subblock */ 47 48 #define CPU_PORT 6 /* CPU port */ 49 50 /* MAC Block registers */ 51 #define VSC73XX_MAC_CFG 0x00 52 #define VSC73XX_MACHDXGAP 0x02 53 #define VSC73XX_FCCONF 0x04 54 #define VSC73XX_FCMACHI 0x08 55 #define VSC73XX_FCMACLO 0x0c 56 #define VSC73XX_MAXLEN 0x10 57 #define VSC73XX_ADVPORTM 0x19 58 #define VSC73XX_TXUPDCFG 0x24 59 #define VSC73XX_TXQ_SELECT_CFG 0x28 60 #define VSC73XX_RXOCT 0x50 61 #define VSC73XX_TXOCT 0x51 62 #define VSC73XX_C_RX0 0x52 63 #define VSC73XX_C_RX1 0x53 64 #define VSC73XX_C_RX2 0x54 65 #define VSC73XX_C_TX0 0x55 66 #define VSC73XX_C_TX1 0x56 67 #define VSC73XX_C_TX2 0x57 68 #define VSC73XX_C_CFG 0x58 69 #define VSC73XX_CAT_DROP 0x6e 70 #define VSC73XX_CAT_PR_MISC_L2 0x6f 71 #define VSC73XX_CAT_PR_USR_PRIO 0x75 72 #define VSC73XX_CAT_VLAN_MISC 0x79 73 #define VSC73XX_CAT_PORT_VLAN 0x7a 74 #define VSC73XX_Q_MISC_CONF 0xdf 75 76 /* MAC_CFG register bits */ 77 #define VSC73XX_MAC_CFG_WEXC_DIS BIT(31) 78 #define VSC73XX_MAC_CFG_PORT_RST BIT(29) 79 #define VSC73XX_MAC_CFG_TX_EN BIT(28) 80 #define VSC73XX_MAC_CFG_SEED_LOAD BIT(27) 81 #define VSC73XX_MAC_CFG_SEED_MASK GENMASK(26, 19) 82 #define VSC73XX_MAC_CFG_SEED_OFFSET 19 83 #define VSC73XX_MAC_CFG_FDX BIT(18) 84 #define VSC73XX_MAC_CFG_GIGA_MODE BIT(17) 85 #define VSC73XX_MAC_CFG_RX_EN BIT(16) 86 #define VSC73XX_MAC_CFG_VLAN_DBLAWR BIT(15) 87 #define VSC73XX_MAC_CFG_VLAN_AWR BIT(14) 88 #define VSC73XX_MAC_CFG_100_BASE_T BIT(13) /* Not in manual */ 89 #define VSC73XX_MAC_CFG_TX_IPG_MASK GENMASK(10, 6) 90 #define VSC73XX_MAC_CFG_TX_IPG_OFFSET 6 91 #define VSC73XX_MAC_CFG_TX_IPG_1000M (6 << VSC73XX_MAC_CFG_TX_IPG_OFFSET) 92 #define VSC73XX_MAC_CFG_TX_IPG_100_10M (17 << VSC73XX_MAC_CFG_TX_IPG_OFFSET) 93 #define VSC73XX_MAC_CFG_MAC_RX_RST BIT(5) 94 #define VSC73XX_MAC_CFG_MAC_TX_RST BIT(4) 95 #define VSC73XX_MAC_CFG_CLK_SEL_MASK GENMASK(2, 0) 96 #define VSC73XX_MAC_CFG_CLK_SEL_OFFSET 0 97 #define VSC73XX_MAC_CFG_CLK_SEL_1000M 1 98 #define VSC73XX_MAC_CFG_CLK_SEL_100M 2 99 #define VSC73XX_MAC_CFG_CLK_SEL_10M 3 100 #define VSC73XX_MAC_CFG_CLK_SEL_EXT 4 101 102 #define VSC73XX_MAC_CFG_1000M_F_PHY (VSC73XX_MAC_CFG_FDX | \ 103 VSC73XX_MAC_CFG_GIGA_MODE | \ 104 VSC73XX_MAC_CFG_TX_IPG_1000M | \ 105 VSC73XX_MAC_CFG_CLK_SEL_EXT) 106 #define VSC73XX_MAC_CFG_100_10M_F_PHY (VSC73XX_MAC_CFG_FDX | \ 107 VSC73XX_MAC_CFG_TX_IPG_100_10M | \ 108 VSC73XX_MAC_CFG_CLK_SEL_EXT) 109 #define VSC73XX_MAC_CFG_100_10M_H_PHY (VSC73XX_MAC_CFG_TX_IPG_100_10M | \ 110 VSC73XX_MAC_CFG_CLK_SEL_EXT) 111 #define VSC73XX_MAC_CFG_1000M_F_RGMII (VSC73XX_MAC_CFG_FDX | \ 112 VSC73XX_MAC_CFG_GIGA_MODE | \ 113 VSC73XX_MAC_CFG_TX_IPG_1000M | \ 114 VSC73XX_MAC_CFG_CLK_SEL_1000M) 115 #define VSC73XX_MAC_CFG_RESET (VSC73XX_MAC_CFG_PORT_RST | \ 116 VSC73XX_MAC_CFG_MAC_RX_RST | \ 117 VSC73XX_MAC_CFG_MAC_TX_RST) 118 119 /* Flow control register bits */ 120 #define VSC73XX_FCCONF_ZERO_PAUSE_EN BIT(17) 121 #define VSC73XX_FCCONF_FLOW_CTRL_OBEY BIT(16) 122 #define VSC73XX_FCCONF_PAUSE_VAL_MASK GENMASK(15, 0) 123 124 /* ADVPORTM advanced port setup register bits */ 125 #define VSC73XX_ADVPORTM_IFG_PPM BIT(7) 126 #define VSC73XX_ADVPORTM_EXC_COL_CONT BIT(6) 127 #define VSC73XX_ADVPORTM_EXT_PORT BIT(5) 128 #define VSC73XX_ADVPORTM_INV_GTX BIT(4) 129 #define VSC73XX_ADVPORTM_ENA_GTX BIT(3) 130 #define VSC73XX_ADVPORTM_DDR_MODE BIT(2) 131 #define VSC73XX_ADVPORTM_IO_LOOPBACK BIT(1) 132 #define VSC73XX_ADVPORTM_HOST_LOOPBACK BIT(0) 133 134 /* TXUPDCFG transmit modify setup bits */ 135 #define VSC73XX_TXUPDCFG_DSCP_REWR_MODE GENMASK(20, 19) 136 #define VSC73XX_TXUPDCFG_DSCP_REWR_ENA BIT(18) 137 #define VSC73XX_TXUPDCFG_TX_INT_TO_USRPRIO_ENA BIT(17) 138 #define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID GENMASK(15, 4) 139 #define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA BIT(3) 140 #define VSC73XX_TXUPDCFG_TX_UPDATE_CRC_CPU_ENA BIT(1) 141 #define VSC73XX_TXUPDCFG_TX_INSERT_TAG BIT(0) 142 143 #define VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT 4 144 145 /* CAT_DROP categorizer frame dropping register bits */ 146 #define VSC73XX_CAT_DROP_DROP_MC_SMAC_ENA BIT(6) 147 #define VSC73XX_CAT_DROP_FWD_CTRL_ENA BIT(4) 148 #define VSC73XX_CAT_DROP_FWD_PAUSE_ENA BIT(3) 149 #define VSC73XX_CAT_DROP_UNTAGGED_ENA BIT(2) 150 #define VSC73XX_CAT_DROP_TAGGED_ENA BIT(1) 151 #define VSC73XX_CAT_DROP_NULL_MAC_ENA BIT(0) 152 153 #define VSC73XX_Q_MISC_CONF_EXTENT_MEM BIT(31) 154 #define VSC73XX_Q_MISC_CONF_EARLY_TX_MASK GENMASK(4, 1) 155 #define VSC73XX_Q_MISC_CONF_EARLY_TX_512 (1 << 1) 156 #define VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE BIT(0) 157 158 /* CAT_VLAN_MISC categorizer VLAN miscellaneous bits */ 159 #define VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA BIT(8) 160 #define VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA BIT(7) 161 162 /* CAT_PORT_VLAN categorizer port VLAN */ 163 #define VSC73XX_CAT_PORT_VLAN_VLAN_CFI BIT(15) 164 #define VSC73XX_CAT_PORT_VLAN_VLAN_USR_PRIO GENMASK(14, 12) 165 #define VSC73XX_CAT_PORT_VLAN_VLAN_VID GENMASK(11, 0) 166 167 /* Frame analyzer block 2 registers */ 168 #define VSC73XX_STORMLIMIT 0x02 169 #define VSC73XX_ADVLEARN 0x03 170 #define VSC73XX_IFLODMSK 0x04 171 #define VSC73XX_VLANMASK 0x05 172 #define VSC73XX_MACHDATA 0x06 173 #define VSC73XX_MACLDATA 0x07 174 #define VSC73XX_ANMOVED 0x08 175 #define VSC73XX_ANAGEFIL 0x09 176 #define VSC73XX_ANEVENTS 0x0a 177 #define VSC73XX_ANCNTMASK 0x0b 178 #define VSC73XX_ANCNTVAL 0x0c 179 #define VSC73XX_LEARNMASK 0x0d 180 #define VSC73XX_UFLODMASK 0x0e 181 #define VSC73XX_MFLODMASK 0x0f 182 #define VSC73XX_RECVMASK 0x10 183 #define VSC73XX_AGGRCTRL 0x20 184 #define VSC73XX_AGGRMSKS 0x30 /* Until 0x3f */ 185 #define VSC73XX_DSTMASKS 0x40 /* Until 0x7f */ 186 #define VSC73XX_SRCMASKS 0x80 /* Until 0x87 */ 187 #define VSC73XX_CAPENAB 0xa0 188 #define VSC73XX_MACACCESS 0xb0 189 #define VSC73XX_IPMCACCESS 0xb1 190 #define VSC73XX_MACTINDX 0xc0 191 #define VSC73XX_VLANACCESS 0xd0 192 #define VSC73XX_VLANTIDX 0xe0 193 #define VSC73XX_AGENCTRL 0xf0 194 #define VSC73XX_CAPRST 0xff 195 196 #define VSC73XX_SRCMASKS_CPU_COPY BIT(27) 197 #define VSC73XX_SRCMASKS_MIRROR BIT(26) 198 #define VSC73XX_SRCMASKS_PORTS_MASK GENMASK(7, 0) 199 200 #define VSC73XX_MACACCESS_CPU_COPY BIT(14) 201 #define VSC73XX_MACACCESS_FWD_KILL BIT(13) 202 #define VSC73XX_MACACCESS_IGNORE_VLAN BIT(12) 203 #define VSC73XX_MACACCESS_AGED_FLAG BIT(11) 204 #define VSC73XX_MACACCESS_VALID BIT(10) 205 #define VSC73XX_MACACCESS_LOCKED BIT(9) 206 #define VSC73XX_MACACCESS_DEST_IDX_MASK GENMASK(8, 3) 207 #define VSC73XX_MACACCESS_CMD_MASK GENMASK(2, 0) 208 #define VSC73XX_MACACCESS_CMD_IDLE 0 209 #define VSC73XX_MACACCESS_CMD_LEARN 1 210 #define VSC73XX_MACACCESS_CMD_FORGET 2 211 #define VSC73XX_MACACCESS_CMD_AGE_TABLE 3 212 #define VSC73XX_MACACCESS_CMD_FLUSH_TABLE 4 213 #define VSC73XX_MACACCESS_CMD_CLEAR_TABLE 5 214 #define VSC73XX_MACACCESS_CMD_READ_ENTRY 6 215 #define VSC73XX_MACACCESS_CMD_WRITE_ENTRY 7 216 217 #define VSC73XX_VLANACCESS_LEARN_DISABLED BIT(30) 218 #define VSC73XX_VLANACCESS_VLAN_MIRROR BIT(29) 219 #define VSC73XX_VLANACCESS_VLAN_SRC_CHECK BIT(28) 220 #define VSC73XX_VLANACCESS_VLAN_PORT_MASK GENMASK(9, 2) 221 #define VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT 2 222 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK GENMASK(1, 0) 223 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE 0 224 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY 1 225 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY 2 226 #define VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE 3 227 228 /* MII block 3 registers */ 229 #define VSC73XX_MII_STAT 0x0 230 #define VSC73XX_MII_CMD 0x1 231 #define VSC73XX_MII_DATA 0x2 232 #define VSC73XX_MII_MPRES 0x3 233 234 #define VSC73XX_MII_STAT_BUSY BIT(3) 235 #define VSC73XX_MII_STAT_READ BIT(2) 236 #define VSC73XX_MII_STAT_WRITE BIT(1) 237 238 #define VSC73XX_MII_CMD_SCAN BIT(27) 239 #define VSC73XX_MII_CMD_OPERATION BIT(26) 240 #define VSC73XX_MII_CMD_PHY_ADDR GENMASK(25, 21) 241 #define VSC73XX_MII_CMD_PHY_REG GENMASK(20, 16) 242 #define VSC73XX_MII_CMD_WRITE_DATA GENMASK(15, 0) 243 244 #define VSC73XX_MII_DATA_FAILURE BIT(16) 245 #define VSC73XX_MII_DATA_READ_DATA GENMASK(15, 0) 246 247 #define VSC73XX_MII_MPRES_NOPREAMBLE BIT(6) 248 #define VSC73XX_MII_MPRES_PRESCALEVAL GENMASK(5, 0) 249 #define VSC73XX_MII_PRESCALEVAL_MIN 3 /* min allowed mdio clock prescaler */ 250 251 #define VSC73XX_MII_STAT_BUSY BIT(3) 252 253 /* Arbiter block 5 registers */ 254 #define VSC73XX_ARBEMPTY 0x0c 255 #define VSC73XX_ARBDISC 0x0e 256 #define VSC73XX_SBACKWDROP 0x12 257 #define VSC73XX_DBACKWDROP 0x13 258 #define VSC73XX_ARBBURSTPROB 0x15 259 260 /* System block 7 registers */ 261 #define VSC73XX_ICPU_SIPAD 0x01 262 #define VSC73XX_GMIIDELAY 0x05 263 #define VSC73XX_ICPU_CTRL 0x10 264 #define VSC73XX_ICPU_ADDR 0x11 265 #define VSC73XX_ICPU_SRAM 0x12 266 #define VSC73XX_HWSEM 0x13 267 #define VSC73XX_GLORESET 0x14 268 #define VSC73XX_ICPU_MBOX_VAL 0x15 269 #define VSC73XX_ICPU_MBOX_SET 0x16 270 #define VSC73XX_ICPU_MBOX_CLR 0x17 271 #define VSC73XX_CHIPID 0x18 272 #define VSC73XX_GPIO 0x34 273 274 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE 0 275 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS 1 276 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS 2 277 #define VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS 3 278 279 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE (0 << 4) 280 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS (1 << 4) 281 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS (2 << 4) 282 #define VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS (3 << 4) 283 284 #define VSC73XX_ICPU_CTRL_WATCHDOG_RST BIT(31) 285 #define VSC73XX_ICPU_CTRL_CLK_DIV_MASK GENMASK(12, 8) 286 #define VSC73XX_ICPU_CTRL_SRST_HOLD BIT(7) 287 #define VSC73XX_ICPU_CTRL_ICPU_PI_EN BIT(6) 288 #define VSC73XX_ICPU_CTRL_BOOT_EN BIT(3) 289 #define VSC73XX_ICPU_CTRL_EXT_ACC_EN BIT(2) 290 #define VSC73XX_ICPU_CTRL_CLK_EN BIT(1) 291 #define VSC73XX_ICPU_CTRL_SRST BIT(0) 292 293 #define VSC73XX_CHIPID_ID_SHIFT 12 294 #define VSC73XX_CHIPID_ID_MASK 0xffff 295 #define VSC73XX_CHIPID_REV_SHIFT 28 296 #define VSC73XX_CHIPID_REV_MASK 0xf 297 #define VSC73XX_CHIPID_ID_7385 0x7385 298 #define VSC73XX_CHIPID_ID_7388 0x7388 299 #define VSC73XX_CHIPID_ID_7395 0x7395 300 #define VSC73XX_CHIPID_ID_7398 0x7398 301 302 #define VSC73XX_GLORESET_STROBE BIT(4) 303 #define VSC73XX_GLORESET_ICPU_LOCK BIT(3) 304 #define VSC73XX_GLORESET_MEM_LOCK BIT(2) 305 #define VSC73XX_GLORESET_PHY_RESET BIT(1) 306 #define VSC73XX_GLORESET_MASTER_RESET BIT(0) 307 308 #define VSC7385_CLOCK_DELAY ((3 << 4) | 3) 309 #define VSC7385_CLOCK_DELAY_MASK ((3 << 4) | 3) 310 311 #define VSC73XX_ICPU_CTRL_STOP (VSC73XX_ICPU_CTRL_SRST_HOLD | \ 312 VSC73XX_ICPU_CTRL_BOOT_EN | \ 313 VSC73XX_ICPU_CTRL_EXT_ACC_EN) 314 315 #define VSC73XX_ICPU_CTRL_START (VSC73XX_ICPU_CTRL_CLK_DIV | \ 316 VSC73XX_ICPU_CTRL_BOOT_EN | \ 317 VSC73XX_ICPU_CTRL_CLK_EN | \ 318 VSC73XX_ICPU_CTRL_SRST) 319 320 #define IS_7385(a) ((a)->chipid == VSC73XX_CHIPID_ID_7385) 321 #define IS_7388(a) ((a)->chipid == VSC73XX_CHIPID_ID_7388) 322 #define IS_7395(a) ((a)->chipid == VSC73XX_CHIPID_ID_7395) 323 #define IS_7398(a) ((a)->chipid == VSC73XX_CHIPID_ID_7398) 324 #define IS_739X(a) (IS_7395(a) || IS_7398(a)) 325 326 #define VSC73XX_POLL_SLEEP_US 1000 327 #define VSC73XX_MDIO_POLL_SLEEP_US 5 328 #define VSC73XX_POLL_TIMEOUT_US 10000 329 330 struct vsc73xx_counter { 331 u8 counter; 332 const char *name; 333 }; 334 335 /* Counters are named according to the MIB standards where applicable. 336 * Some counters are custom, non-standard. The standard counters are 337 * named in accordance with RFC2819, RFC2021 and IEEE Std 802.3-2002 Annex 338 * 30A Counters. 339 */ 340 static const struct vsc73xx_counter vsc73xx_rx_counters[] = { 341 { 0, "RxEtherStatsPkts" }, 342 { 1, "RxBroadcast+MulticastPkts" }, /* non-standard counter */ 343 { 2, "RxTotalErrorPackets" }, /* non-standard counter */ 344 { 3, "RxEtherStatsBroadcastPkts" }, 345 { 4, "RxEtherStatsMulticastPkts" }, 346 { 5, "RxEtherStatsPkts64Octets" }, 347 { 6, "RxEtherStatsPkts65to127Octets" }, 348 { 7, "RxEtherStatsPkts128to255Octets" }, 349 { 8, "RxEtherStatsPkts256to511Octets" }, 350 { 9, "RxEtherStatsPkts512to1023Octets" }, 351 { 10, "RxEtherStatsPkts1024to1518Octets" }, 352 { 11, "RxJumboFrames" }, /* non-standard counter */ 353 { 12, "RxaPauseMACControlFramesTransmitted" }, 354 { 13, "RxFIFODrops" }, /* non-standard counter */ 355 { 14, "RxBackwardDrops" }, /* non-standard counter */ 356 { 15, "RxClassifierDrops" }, /* non-standard counter */ 357 { 16, "RxEtherStatsCRCAlignErrors" }, 358 { 17, "RxEtherStatsUndersizePkts" }, 359 { 18, "RxEtherStatsOversizePkts" }, 360 { 19, "RxEtherStatsFragments" }, 361 { 20, "RxEtherStatsJabbers" }, 362 { 21, "RxaMACControlFramesReceived" }, 363 /* 22-24 are undefined */ 364 { 25, "RxaFramesReceivedOK" }, 365 { 26, "RxQoSClass0" }, /* non-standard counter */ 366 { 27, "RxQoSClass1" }, /* non-standard counter */ 367 { 28, "RxQoSClass2" }, /* non-standard counter */ 368 { 29, "RxQoSClass3" }, /* non-standard counter */ 369 }; 370 371 static const struct vsc73xx_counter vsc73xx_tx_counters[] = { 372 { 0, "TxEtherStatsPkts" }, 373 { 1, "TxBroadcast+MulticastPkts" }, /* non-standard counter */ 374 { 2, "TxTotalErrorPackets" }, /* non-standard counter */ 375 { 3, "TxEtherStatsBroadcastPkts" }, 376 { 4, "TxEtherStatsMulticastPkts" }, 377 { 5, "TxEtherStatsPkts64Octets" }, 378 { 6, "TxEtherStatsPkts65to127Octets" }, 379 { 7, "TxEtherStatsPkts128to255Octets" }, 380 { 8, "TxEtherStatsPkts256to511Octets" }, 381 { 9, "TxEtherStatsPkts512to1023Octets" }, 382 { 10, "TxEtherStatsPkts1024to1518Octets" }, 383 { 11, "TxJumboFrames" }, /* non-standard counter */ 384 { 12, "TxaPauseMACControlFramesTransmitted" }, 385 { 13, "TxFIFODrops" }, /* non-standard counter */ 386 { 14, "TxDrops" }, /* non-standard counter */ 387 { 15, "TxEtherStatsCollisions" }, 388 { 16, "TxEtherStatsCRCAlignErrors" }, 389 { 17, "TxEtherStatsUndersizePkts" }, 390 { 18, "TxEtherStatsOversizePkts" }, 391 { 19, "TxEtherStatsFragments" }, 392 { 20, "TxEtherStatsJabbers" }, 393 /* 21-24 are undefined */ 394 { 25, "TxaFramesReceivedOK" }, 395 { 26, "TxQoSClass0" }, /* non-standard counter */ 396 { 27, "TxQoSClass1" }, /* non-standard counter */ 397 { 28, "TxQoSClass2" }, /* non-standard counter */ 398 { 29, "TxQoSClass3" }, /* non-standard counter */ 399 }; 400 401 struct vsc73xx_vlan_summary { 402 size_t num_tagged; 403 size_t num_untagged; 404 }; 405 406 enum vsc73xx_port_vlan_conf { 407 VSC73XX_VLAN_FILTER, 408 VSC73XX_VLAN_FILTER_UNTAG_ALL, 409 VSC73XX_VLAN_IGNORE, 410 }; 411 412 int vsc73xx_is_addr_valid(u8 block, u8 subblock) 413 { 414 switch (block) { 415 case VSC73XX_BLOCK_MAC: 416 switch (subblock) { 417 case 0 ... 4: 418 case 6: 419 return 1; 420 } 421 break; 422 423 case VSC73XX_BLOCK_ANALYZER: 424 case VSC73XX_BLOCK_SYSTEM: 425 switch (subblock) { 426 case 0: 427 return 1; 428 } 429 break; 430 431 case VSC73XX_BLOCK_MII: 432 case VSC73XX_BLOCK_CAPTURE: 433 case VSC73XX_BLOCK_ARBITER: 434 switch (subblock) { 435 case 0 ... 1: 436 return 1; 437 } 438 break; 439 } 440 441 return 0; 442 } 443 EXPORT_SYMBOL(vsc73xx_is_addr_valid); 444 445 static int vsc73xx_read(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg, 446 u32 *val) 447 { 448 return vsc->ops->read(vsc, block, subblock, reg, val); 449 } 450 451 static int vsc73xx_write(struct vsc73xx *vsc, u8 block, u8 subblock, u8 reg, 452 u32 val) 453 { 454 return vsc->ops->write(vsc, block, subblock, reg, val); 455 } 456 457 static int vsc73xx_update_bits(struct vsc73xx *vsc, u8 block, u8 subblock, 458 u8 reg, u32 mask, u32 val) 459 { 460 u32 tmp, orig; 461 int ret; 462 463 /* Same read-modify-write algorithm as e.g. regmap */ 464 ret = vsc73xx_read(vsc, block, subblock, reg, &orig); 465 if (ret) 466 return ret; 467 tmp = orig & ~mask; 468 tmp |= val & mask; 469 return vsc73xx_write(vsc, block, subblock, reg, tmp); 470 } 471 472 static int vsc73xx_detect(struct vsc73xx *vsc) 473 { 474 bool icpu_si_boot_en; 475 bool icpu_pi_en; 476 u32 val; 477 u32 rev; 478 int ret; 479 u32 id; 480 481 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 482 VSC73XX_ICPU_MBOX_VAL, &val); 483 if (ret) { 484 dev_err(vsc->dev, "unable to read mailbox (%d)\n", ret); 485 return ret; 486 } 487 488 if (val == 0xffffffff) { 489 dev_info(vsc->dev, "chip seems dead.\n"); 490 return -EAGAIN; 491 } 492 493 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 494 VSC73XX_CHIPID, &val); 495 if (ret) { 496 dev_err(vsc->dev, "unable to read chip id (%d)\n", ret); 497 return ret; 498 } 499 500 id = (val >> VSC73XX_CHIPID_ID_SHIFT) & 501 VSC73XX_CHIPID_ID_MASK; 502 switch (id) { 503 case VSC73XX_CHIPID_ID_7385: 504 case VSC73XX_CHIPID_ID_7388: 505 case VSC73XX_CHIPID_ID_7395: 506 case VSC73XX_CHIPID_ID_7398: 507 break; 508 default: 509 dev_err(vsc->dev, "unsupported chip, id=%04x\n", id); 510 return -ENODEV; 511 } 512 513 vsc->chipid = id; 514 rev = (val >> VSC73XX_CHIPID_REV_SHIFT) & 515 VSC73XX_CHIPID_REV_MASK; 516 dev_info(vsc->dev, "VSC%04X (rev: %d) switch found\n", id, rev); 517 518 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 519 VSC73XX_ICPU_CTRL, &val); 520 if (ret) { 521 dev_err(vsc->dev, "unable to read iCPU control\n"); 522 return ret; 523 } 524 525 /* The iCPU can always be used but can boot in different ways. 526 * If it is initially disabled and has no external memory, 527 * we are in control and can do whatever we like, else we 528 * are probably in trouble (we need some way to communicate 529 * with the running firmware) so we bail out for now. 530 */ 531 icpu_pi_en = !!(val & VSC73XX_ICPU_CTRL_ICPU_PI_EN); 532 icpu_si_boot_en = !!(val & VSC73XX_ICPU_CTRL_BOOT_EN); 533 if (icpu_si_boot_en && icpu_pi_en) { 534 dev_err(vsc->dev, 535 "iCPU enabled boots from SI, has external memory\n"); 536 dev_err(vsc->dev, "no idea how to deal with this\n"); 537 return -ENODEV; 538 } 539 if (icpu_si_boot_en && !icpu_pi_en) { 540 dev_err(vsc->dev, 541 "iCPU enabled boots from PI/SI, no external memory\n"); 542 return -EAGAIN; 543 } 544 if (!icpu_si_boot_en && icpu_pi_en) { 545 dev_err(vsc->dev, 546 "iCPU enabled, boots from PI external memory\n"); 547 dev_err(vsc->dev, "no idea how to deal with this\n"); 548 return -ENODEV; 549 } 550 /* !icpu_si_boot_en && !cpu_pi_en */ 551 dev_info(vsc->dev, "iCPU disabled, no external memory\n"); 552 553 return 0; 554 } 555 556 static int vsc73xx_mdio_busy_check(struct vsc73xx *vsc) 557 { 558 int ret, err; 559 u32 val; 560 561 ret = read_poll_timeout(vsc73xx_read, err, 562 err < 0 || !(val & VSC73XX_MII_STAT_BUSY), 563 VSC73XX_MDIO_POLL_SLEEP_US, 564 VSC73XX_POLL_TIMEOUT_US, false, vsc, 565 VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 566 VSC73XX_MII_STAT, &val); 567 if (ret) 568 return ret; 569 return err; 570 } 571 572 static int vsc73xx_phy_read(struct dsa_switch *ds, int phy, int regnum) 573 { 574 struct vsc73xx *vsc = ds->priv; 575 u32 cmd; 576 u32 val; 577 int ret; 578 579 ret = vsc73xx_mdio_busy_check(vsc); 580 if (ret) 581 return ret; 582 583 /* Setting bit 26 means "read" */ 584 cmd = VSC73XX_MII_CMD_OPERATION | 585 FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) | 586 FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum); 587 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 588 VSC73XX_MII_CMD, cmd); 589 if (ret) 590 return ret; 591 592 ret = vsc73xx_mdio_busy_check(vsc); 593 if (ret) 594 return ret; 595 596 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 597 VSC73XX_MII_DATA, &val); 598 if (ret) 599 return ret; 600 if (val & VSC73XX_MII_DATA_FAILURE) { 601 dev_err(vsc->dev, "reading reg %02x from phy%d failed\n", 602 regnum, phy); 603 return -EIO; 604 } 605 val &= VSC73XX_MII_DATA_READ_DATA; 606 607 dev_dbg(vsc->dev, "read reg %02x from phy%d = %04x\n", 608 regnum, phy, val); 609 610 return val; 611 } 612 613 static int vsc73xx_phy_write(struct dsa_switch *ds, int phy, int regnum, 614 u16 val) 615 { 616 struct vsc73xx *vsc = ds->priv; 617 u32 cmd; 618 int ret; 619 620 ret = vsc73xx_mdio_busy_check(vsc); 621 if (ret) 622 return ret; 623 624 cmd = FIELD_PREP(VSC73XX_MII_CMD_PHY_ADDR, phy) | 625 FIELD_PREP(VSC73XX_MII_CMD_PHY_REG, regnum) | 626 FIELD_PREP(VSC73XX_MII_CMD_WRITE_DATA, val); 627 ret = vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 628 VSC73XX_MII_CMD, cmd); 629 if (ret) 630 return ret; 631 632 dev_dbg(vsc->dev, "write %04x to reg %02x in phy%d\n", 633 val, regnum, phy); 634 return 0; 635 } 636 637 static enum dsa_tag_protocol vsc73xx_get_tag_protocol(struct dsa_switch *ds, 638 int port, 639 enum dsa_tag_protocol mp) 640 { 641 /* The switch internally uses a 8 byte header with length, 642 * source port, tag, LPA and priority. This is supposedly 643 * only accessible when operating the switch using the internal 644 * CPU or with an external CPU mapping the device in, but not 645 * when operating the switch over SPI and putting frames in/out 646 * on port 6 (the CPU port). So far we must assume that we 647 * cannot access the tag. (See "Internal frame header" section 648 * 3.9.1 in the manual.) 649 */ 650 return DSA_TAG_PROTO_VSC73XX_8021Q; 651 } 652 653 static int vsc73xx_wait_for_vlan_table_cmd(struct vsc73xx *vsc) 654 { 655 int ret, err; 656 u32 val; 657 658 ret = read_poll_timeout(vsc73xx_read, err, 659 err < 0 || 660 ((val & VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK) == 661 VSC73XX_VLANACCESS_VLAN_TBL_CMD_IDLE), 662 VSC73XX_POLL_SLEEP_US, VSC73XX_POLL_TIMEOUT_US, 663 false, vsc, VSC73XX_BLOCK_ANALYZER, 664 0, VSC73XX_VLANACCESS, &val); 665 if (ret) 666 return ret; 667 return err; 668 } 669 670 static int 671 vsc73xx_read_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 *portmap) 672 { 673 u32 val; 674 int ret; 675 676 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid); 677 678 ret = vsc73xx_wait_for_vlan_table_cmd(vsc); 679 if (ret) 680 return ret; 681 682 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, 683 VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK, 684 VSC73XX_VLANACCESS_VLAN_TBL_CMD_READ_ENTRY); 685 686 ret = vsc73xx_wait_for_vlan_table_cmd(vsc); 687 if (ret) 688 return ret; 689 690 vsc73xx_read(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, &val); 691 *portmap = (val & VSC73XX_VLANACCESS_VLAN_PORT_MASK) >> 692 VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT; 693 694 return 0; 695 } 696 697 static int 698 vsc73xx_write_vlan_table_entry(struct vsc73xx *vsc, u16 vid, u8 portmap) 699 { 700 int ret; 701 702 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANTIDX, vid); 703 704 ret = vsc73xx_wait_for_vlan_table_cmd(vsc); 705 if (ret) 706 return ret; 707 708 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANACCESS, 709 VSC73XX_VLANACCESS_VLAN_TBL_CMD_MASK | 710 VSC73XX_VLANACCESS_VLAN_SRC_CHECK | 711 VSC73XX_VLANACCESS_VLAN_PORT_MASK, 712 VSC73XX_VLANACCESS_VLAN_TBL_CMD_WRITE_ENTRY | 713 VSC73XX_VLANACCESS_VLAN_SRC_CHECK | 714 (portmap << VSC73XX_VLANACCESS_VLAN_PORT_MASK_SHIFT)); 715 716 return vsc73xx_wait_for_vlan_table_cmd(vsc); 717 } 718 719 static int 720 vsc73xx_update_vlan_table(struct vsc73xx *vsc, int port, u16 vid, bool set) 721 { 722 u8 portmap; 723 int ret; 724 725 ret = vsc73xx_read_vlan_table_entry(vsc, vid, &portmap); 726 if (ret) 727 return ret; 728 729 if (set) 730 portmap |= BIT(port); 731 else 732 portmap &= ~BIT(port); 733 734 return vsc73xx_write_vlan_table_entry(vsc, vid, portmap); 735 } 736 737 static int vsc73xx_configure_rgmii_port_delay(struct dsa_switch *ds) 738 { 739 /* Keep 2.0 ns delay for backward complatibility */ 740 u32 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_2_0_NS; 741 u32 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_2_0_NS; 742 struct dsa_port *dp = dsa_to_port(ds, CPU_PORT); 743 struct device_node *port_dn = dp->dn; 744 struct vsc73xx *vsc = ds->priv; 745 u32 delay; 746 747 if (!of_property_read_u32(port_dn, "tx-internal-delay-ps", &delay)) { 748 switch (delay) { 749 case 0: 750 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_NONE; 751 break; 752 case 1400: 753 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_4_NS; 754 break; 755 case 1700: 756 tx_delay = VSC73XX_GMIIDELAY_GMII0_GTXDELAY_1_7_NS; 757 break; 758 case 2000: 759 break; 760 default: 761 dev_err(vsc->dev, 762 "Unsupported RGMII Transmit Clock Delay\n"); 763 return -EINVAL; 764 } 765 } else { 766 dev_dbg(vsc->dev, 767 "RGMII Transmit Clock Delay isn't configured, set to 2.0 ns\n"); 768 } 769 770 if (!of_property_read_u32(port_dn, "rx-internal-delay-ps", &delay)) { 771 switch (delay) { 772 case 0: 773 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_NONE; 774 break; 775 case 1400: 776 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_4_NS; 777 break; 778 case 1700: 779 rx_delay = VSC73XX_GMIIDELAY_GMII0_RXDELAY_1_7_NS; 780 break; 781 case 2000: 782 break; 783 default: 784 dev_err(vsc->dev, 785 "Unsupported RGMII Receive Clock Delay value\n"); 786 return -EINVAL; 787 } 788 } else { 789 dev_dbg(vsc->dev, 790 "RGMII Receive Clock Delay isn't configured, set to 2.0 ns\n"); 791 } 792 793 /* MII delay, set both GTX and RX delay */ 794 return vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GMIIDELAY, 795 tx_delay | rx_delay); 796 } 797 798 static int vsc73xx_setup(struct dsa_switch *ds) 799 { 800 struct vsc73xx *vsc = ds->priv; 801 int i, ret, val; 802 803 dev_info(vsc->dev, "set up the switch\n"); 804 805 ds->untag_bridge_pvid = true; 806 ds->max_num_bridges = DSA_TAG_8021Q_MAX_NUM_BRIDGES; 807 808 /* Issue RESET */ 809 vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET, 810 VSC73XX_GLORESET_MASTER_RESET); 811 usleep_range(125, 200); 812 813 /* Initialize memory, initialize RAM bank 0..15 except 6 and 7 814 * This sequence appears in the 815 * VSC7385 SparX-G5 datasheet section 6.6.1 816 * VSC7395 SparX-G5e datasheet section 6.6.1 817 * "initialization sequence". 818 * No explanation is given to the 0x1010400 magic number. 819 */ 820 for (i = 0; i <= 15; i++) { 821 if (i != 6 && i != 7) { 822 vsc73xx_write(vsc, VSC73XX_BLOCK_MEMINIT, 823 2, 824 0, 0x1010400 + i); 825 mdelay(1); 826 } 827 } 828 mdelay(30); 829 830 /* Clear MAC table */ 831 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, 832 VSC73XX_MACACCESS, 833 VSC73XX_MACACCESS_CMD_CLEAR_TABLE); 834 835 /* Set VLAN table to default values */ 836 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, 837 VSC73XX_VLANACCESS, 838 VSC73XX_VLANACCESS_VLAN_TBL_CMD_CLEAR_TABLE); 839 840 msleep(40); 841 842 /* Use 20KiB buffers on all ports on VSC7395 843 * The VSC7385 has 16KiB buffers and that is the 844 * default if we don't set this up explicitly. 845 * Port "31" is "all ports". 846 */ 847 if (IS_739X(vsc)) 848 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 0x1f, 849 VSC73XX_Q_MISC_CONF, 850 VSC73XX_Q_MISC_CONF_EXTENT_MEM); 851 852 /* Put all ports into reset until enabled */ 853 for (i = 0; i < 7; i++) { 854 if (i == 5) 855 continue; 856 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 4, 857 VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET); 858 } 859 860 /* Configure RGMII delay */ 861 ret = vsc73xx_configure_rgmii_port_delay(ds); 862 if (ret) 863 return ret; 864 865 /* Ingess VLAN reception mask (table 145) */ 866 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_VLANMASK, 867 0xff); 868 /* IP multicast flood mask (table 144) */ 869 vsc73xx_write(vsc, VSC73XX_BLOCK_ANALYZER, 0, VSC73XX_IFLODMSK, 870 0xff); 871 872 mdelay(50); 873 874 /* Disable preamble and use maximum allowed clock for the internal 875 * mdio bus, used for communication with internal PHYs only. 876 */ 877 val = VSC73XX_MII_MPRES_NOPREAMBLE | 878 FIELD_PREP(VSC73XX_MII_MPRES_PRESCALEVAL, 879 VSC73XX_MII_PRESCALEVAL_MIN); 880 vsc73xx_write(vsc, VSC73XX_BLOCK_MII, VSC73XX_BLOCK_MII_INTERNAL, 881 VSC73XX_MII_MPRES, val); 882 883 /* Release reset from the internal PHYs */ 884 vsc73xx_write(vsc, VSC73XX_BLOCK_SYSTEM, 0, VSC73XX_GLORESET, 885 VSC73XX_GLORESET_PHY_RESET); 886 887 udelay(4); 888 889 /* Clear VLAN table */ 890 for (i = 0; i < VLAN_N_VID; i++) 891 vsc73xx_write_vlan_table_entry(vsc, i, 0); 892 893 INIT_LIST_HEAD(&vsc->vlans); 894 895 rtnl_lock(); 896 ret = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q)); 897 rtnl_unlock(); 898 899 return ret; 900 } 901 902 static void vsc73xx_teardown(struct dsa_switch *ds) 903 { 904 rtnl_lock(); 905 dsa_tag_8021q_unregister(ds); 906 rtnl_unlock(); 907 } 908 909 static void vsc73xx_init_port(struct vsc73xx *vsc, int port) 910 { 911 u32 val; 912 913 /* MAC configure, first reset the port and then write defaults */ 914 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 915 port, 916 VSC73XX_MAC_CFG, 917 VSC73XX_MAC_CFG_RESET); 918 919 /* Take up the port in 1Gbit mode by default, this will be 920 * augmented after auto-negotiation on the PHY-facing 921 * ports. 922 */ 923 if (port == CPU_PORT) 924 val = VSC73XX_MAC_CFG_1000M_F_RGMII; 925 else 926 val = VSC73XX_MAC_CFG_1000M_F_PHY; 927 928 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 929 port, 930 VSC73XX_MAC_CFG, 931 val | 932 VSC73XX_MAC_CFG_TX_EN | 933 VSC73XX_MAC_CFG_RX_EN); 934 935 /* Flow control for the CPU port: 936 * Use a zero delay pause frame when pause condition is left 937 * Obey pause control frames 938 */ 939 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 940 port, 941 VSC73XX_FCCONF, 942 VSC73XX_FCCONF_ZERO_PAUSE_EN | 943 VSC73XX_FCCONF_FLOW_CTRL_OBEY); 944 945 /* Issue pause control frames on PHY facing ports. 946 * Allow early initiation of MAC transmission if the amount 947 * of egress data is below 512 bytes on CPU port. 948 * FIXME: enable 20KiB buffers? 949 */ 950 if (port == CPU_PORT) 951 val = VSC73XX_Q_MISC_CONF_EARLY_TX_512; 952 else 953 val = VSC73XX_Q_MISC_CONF_MAC_PAUSE_MODE; 954 val |= VSC73XX_Q_MISC_CONF_EXTENT_MEM; 955 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 956 port, 957 VSC73XX_Q_MISC_CONF, 958 val); 959 960 /* Flow control MAC: a MAC address used in flow control frames */ 961 val = (vsc->addr[5] << 16) | (vsc->addr[4] << 8) | (vsc->addr[3]); 962 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 963 port, 964 VSC73XX_FCMACHI, 965 val); 966 val = (vsc->addr[2] << 16) | (vsc->addr[1] << 8) | (vsc->addr[0]); 967 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 968 port, 969 VSC73XX_FCMACLO, 970 val); 971 972 /* Tell the categorizer to forward pause frames, not control 973 * frame. Do not drop anything. 974 */ 975 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 976 port, 977 VSC73XX_CAT_DROP, 978 VSC73XX_CAT_DROP_FWD_PAUSE_ENA); 979 980 /* Clear all counters */ 981 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 982 port, VSC73XX_C_RX0, 0); 983 } 984 985 static void vsc73xx_reset_port(struct vsc73xx *vsc, int port, u32 initval) 986 { 987 int ret, err; 988 u32 val; 989 990 /* Disable RX on this port */ 991 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 992 VSC73XX_MAC_CFG, 993 VSC73XX_MAC_CFG_RX_EN, 0); 994 995 /* Discard packets */ 996 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 997 VSC73XX_ARBDISC, BIT(port), BIT(port)); 998 999 /* Wait until queue is empty */ 1000 ret = read_poll_timeout(vsc73xx_read, err, 1001 err < 0 || (val & BIT(port)), 1002 VSC73XX_POLL_SLEEP_US, 1003 VSC73XX_POLL_TIMEOUT_US, false, 1004 vsc, VSC73XX_BLOCK_ARBITER, 0, 1005 VSC73XX_ARBEMPTY, &val); 1006 if (ret) 1007 dev_err(vsc->dev, 1008 "timeout waiting for block arbiter\n"); 1009 else if (err < 0) 1010 dev_err(vsc->dev, "error reading arbiter\n"); 1011 1012 /* Put this port into reset */ 1013 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, 1014 VSC73XX_MAC_CFG_RESET | initval); 1015 } 1016 1017 static void vsc73xx_mac_config(struct phylink_config *config, unsigned int mode, 1018 const struct phylink_link_state *state) 1019 { 1020 struct dsa_port *dp = dsa_phylink_to_port(config); 1021 struct vsc73xx *vsc = dp->ds->priv; 1022 int port = dp->index; 1023 1024 /* Special handling of the CPU-facing port */ 1025 if (port == CPU_PORT) { 1026 /* Other ports are already initialized but not this one */ 1027 vsc73xx_init_port(vsc, CPU_PORT); 1028 /* Select the external port for this interface (EXT_PORT) 1029 * Enable the GMII GTX external clock 1030 * Use double data rate (DDR mode) 1031 */ 1032 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, 1033 CPU_PORT, 1034 VSC73XX_ADVPORTM, 1035 VSC73XX_ADVPORTM_EXT_PORT | 1036 VSC73XX_ADVPORTM_ENA_GTX | 1037 VSC73XX_ADVPORTM_DDR_MODE); 1038 } 1039 } 1040 1041 static void vsc73xx_mac_link_down(struct phylink_config *config, 1042 unsigned int mode, phy_interface_t interface) 1043 { 1044 struct dsa_port *dp = dsa_phylink_to_port(config); 1045 struct vsc73xx *vsc = dp->ds->priv; 1046 int port = dp->index; 1047 1048 /* This routine is described in the datasheet (below ARBDISC register 1049 * description) 1050 */ 1051 vsc73xx_reset_port(vsc, port, 0); 1052 1053 /* Allow backward dropping of frames from this port */ 1054 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 1055 VSC73XX_SBACKWDROP, BIT(port), BIT(port)); 1056 } 1057 1058 static void vsc73xx_mac_link_up(struct phylink_config *config, 1059 struct phy_device *phy, unsigned int mode, 1060 phy_interface_t interface, int speed, 1061 int duplex, bool tx_pause, bool rx_pause) 1062 { 1063 struct dsa_port *dp = dsa_phylink_to_port(config); 1064 struct vsc73xx *vsc = dp->ds->priv; 1065 int port = dp->index; 1066 u32 val; 1067 u8 seed; 1068 1069 if (speed == SPEED_1000) 1070 val = VSC73XX_MAC_CFG_GIGA_MODE | VSC73XX_MAC_CFG_TX_IPG_1000M; 1071 else 1072 val = VSC73XX_MAC_CFG_TX_IPG_100_10M; 1073 1074 if (phy_interface_mode_is_rgmii(interface)) 1075 val |= VSC73XX_MAC_CFG_CLK_SEL_1000M; 1076 else 1077 val |= VSC73XX_MAC_CFG_CLK_SEL_EXT; 1078 1079 if (duplex == DUPLEX_FULL) 1080 val |= VSC73XX_MAC_CFG_FDX; 1081 else 1082 /* In datasheet description ("Port Mode Procedure" in 5.6.2) 1083 * this bit is configured only for half duplex. 1084 */ 1085 val |= VSC73XX_MAC_CFG_WEXC_DIS; 1086 1087 /* This routine is described in the datasheet (below ARBDISC register 1088 * description) 1089 */ 1090 vsc73xx_reset_port(vsc, port, val); 1091 1092 /* Seed the port randomness with randomness */ 1093 get_random_bytes(&seed, 1); 1094 val |= seed << VSC73XX_MAC_CFG_SEED_OFFSET; 1095 val |= VSC73XX_MAC_CFG_SEED_LOAD; 1096 1097 /* Those bits are responsible for MTU only. Kernel takes care about MTU, 1098 * let's enable +8 bytes frame length unconditionally. 1099 */ 1100 val |= VSC73XX_MAC_CFG_VLAN_AWR | VSC73XX_MAC_CFG_VLAN_DBLAWR; 1101 1102 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_MAC_CFG, val); 1103 1104 /* Flow control for the PHY facing ports: 1105 * Use a zero delay pause frame when pause condition is left 1106 * Obey pause control frames 1107 * When generating pause frames, use 0xff as pause value 1108 */ 1109 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, VSC73XX_FCCONF, 1110 VSC73XX_FCCONF_ZERO_PAUSE_EN | 1111 VSC73XX_FCCONF_FLOW_CTRL_OBEY | 1112 0xff); 1113 1114 /* Accept packets again */ 1115 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 1116 VSC73XX_ARBDISC, BIT(port), 0); 1117 1118 /* Disallow backward dropping of frames from this port */ 1119 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ARBITER, 0, 1120 VSC73XX_SBACKWDROP, BIT(port), 0); 1121 1122 /* Enable TX, RX, deassert reset, stop loading seed */ 1123 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1124 VSC73XX_MAC_CFG, 1125 VSC73XX_MAC_CFG_RESET | VSC73XX_MAC_CFG_SEED_LOAD | 1126 VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN, 1127 VSC73XX_MAC_CFG_TX_EN | VSC73XX_MAC_CFG_RX_EN); 1128 } 1129 1130 static bool vsc73xx_tag_8021q_active(struct dsa_port *dp) 1131 { 1132 return !dsa_port_is_vlan_filtering(dp); 1133 } 1134 1135 static struct vsc73xx_bridge_vlan * 1136 vsc73xx_bridge_vlan_find(struct vsc73xx *vsc, u16 vid) 1137 { 1138 struct vsc73xx_bridge_vlan *vlan; 1139 1140 list_for_each_entry(vlan, &vsc->vlans, list) 1141 if (vlan->vid == vid) 1142 return vlan; 1143 1144 return NULL; 1145 } 1146 1147 static void 1148 vsc73xx_bridge_vlan_remove_port(struct vsc73xx_bridge_vlan *vsc73xx_vlan, 1149 int port) 1150 { 1151 vsc73xx_vlan->portmask &= ~BIT(port); 1152 1153 if (vsc73xx_vlan->portmask) 1154 return; 1155 1156 list_del(&vsc73xx_vlan->list); 1157 kfree(vsc73xx_vlan); 1158 } 1159 1160 static void vsc73xx_bridge_vlan_summary(struct vsc73xx *vsc, int port, 1161 struct vsc73xx_vlan_summary *summary, 1162 u16 ignored_vid) 1163 { 1164 size_t num_tagged = 0, num_untagged = 0; 1165 struct vsc73xx_bridge_vlan *vlan; 1166 1167 list_for_each_entry(vlan, &vsc->vlans, list) { 1168 if (!(vlan->portmask & BIT(port)) || vlan->vid == ignored_vid) 1169 continue; 1170 1171 if (vlan->untagged & BIT(port)) 1172 num_untagged++; 1173 else 1174 num_tagged++; 1175 } 1176 1177 summary->num_untagged = num_untagged; 1178 summary->num_tagged = num_tagged; 1179 } 1180 1181 static u16 vsc73xx_find_first_vlan_untagged(struct vsc73xx *vsc, int port) 1182 { 1183 struct vsc73xx_bridge_vlan *vlan; 1184 1185 list_for_each_entry(vlan, &vsc->vlans, list) 1186 if ((vlan->portmask & BIT(port)) && 1187 (vlan->untagged & BIT(port))) 1188 return vlan->vid; 1189 1190 return VLAN_N_VID; 1191 } 1192 1193 static int vsc73xx_set_vlan_conf(struct vsc73xx *vsc, int port, 1194 enum vsc73xx_port_vlan_conf port_vlan_conf) 1195 { 1196 u32 val = 0; 1197 int ret; 1198 1199 if (port_vlan_conf == VSC73XX_VLAN_IGNORE) 1200 val = VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA | 1201 VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA; 1202 1203 ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1204 VSC73XX_CAT_VLAN_MISC, 1205 VSC73XX_CAT_VLAN_MISC_VLAN_TCI_IGNORE_ENA | 1206 VSC73XX_CAT_VLAN_MISC_VLAN_KEEP_TAG_ENA, val); 1207 if (ret) 1208 return ret; 1209 1210 val = (port_vlan_conf == VSC73XX_VLAN_FILTER) ? 1211 VSC73XX_TXUPDCFG_TX_INSERT_TAG : 0; 1212 1213 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1214 VSC73XX_TXUPDCFG, 1215 VSC73XX_TXUPDCFG_TX_INSERT_TAG, val); 1216 } 1217 1218 /** 1219 * vsc73xx_vlan_commit_conf - Update VLAN configuration of a port 1220 * @vsc: Switch private data structure 1221 * @port: Port index on which to operate 1222 * 1223 * Update the VLAN behavior of a port to make sure that when it is under 1224 * a VLAN filtering bridge, the port is either filtering with tag 1225 * preservation, or filtering with all VLANs egress-untagged. Otherwise, 1226 * the port ignores VLAN tags from packets and applies the port-based 1227 * VID. 1228 * 1229 * Must be called when changes are made to: 1230 * - the bridge VLAN filtering state of the port 1231 * - the number or attributes of VLANs from the bridge VLAN table, 1232 * while the port is currently VLAN-aware 1233 * 1234 * Return: 0 on success, or negative errno on error. 1235 */ 1236 static int vsc73xx_vlan_commit_conf(struct vsc73xx *vsc, int port) 1237 { 1238 enum vsc73xx_port_vlan_conf port_vlan_conf = VSC73XX_VLAN_IGNORE; 1239 struct dsa_port *dp = dsa_to_port(vsc->ds, port); 1240 1241 if (port == CPU_PORT) { 1242 port_vlan_conf = VSC73XX_VLAN_FILTER; 1243 } else if (dsa_port_is_vlan_filtering(dp)) { 1244 struct vsc73xx_vlan_summary summary; 1245 1246 port_vlan_conf = VSC73XX_VLAN_FILTER; 1247 1248 vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID); 1249 if (summary.num_tagged == 0) 1250 port_vlan_conf = VSC73XX_VLAN_FILTER_UNTAG_ALL; 1251 } 1252 1253 return vsc73xx_set_vlan_conf(vsc, port, port_vlan_conf); 1254 } 1255 1256 static int 1257 vsc73xx_vlan_change_untagged(struct vsc73xx *vsc, int port, u16 vid, bool set) 1258 { 1259 u32 val = 0; 1260 1261 if (set) 1262 val = VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA | 1263 ((vid << VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_SHIFT) & 1264 VSC73XX_TXUPDCFG_TX_UNTAGGED_VID); 1265 1266 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1267 VSC73XX_TXUPDCFG, 1268 VSC73XX_TXUPDCFG_TX_UNTAGGED_VID_ENA | 1269 VSC73XX_TXUPDCFG_TX_UNTAGGED_VID, val); 1270 } 1271 1272 /** 1273 * vsc73xx_vlan_commit_untagged - Update native VLAN of a port 1274 * @vsc: Switch private data structure 1275 * @port: Port index on which to operate 1276 * 1277 * Update the native VLAN of a port (the one VLAN which is transmitted 1278 * as egress-tagged on a trunk port) when port is in VLAN filtering mode and 1279 * only one untagged vid is configured. 1280 * In other cases no need to configure it because switch can untag all vlans on 1281 * the port. 1282 * 1283 * Return: 0 on success, or negative errno on error. 1284 */ 1285 static int vsc73xx_vlan_commit_untagged(struct vsc73xx *vsc, int port) 1286 { 1287 struct dsa_port *dp = dsa_to_port(vsc->ds, port); 1288 struct vsc73xx_vlan_summary summary; 1289 u16 vid = 0; 1290 bool valid; 1291 1292 if (!dsa_port_is_vlan_filtering(dp)) 1293 /* Port is configured to untag all vlans in that case. 1294 * No need to commit untagged config change. 1295 */ 1296 return 0; 1297 1298 vsc73xx_bridge_vlan_summary(vsc, port, &summary, VLAN_N_VID); 1299 1300 if (summary.num_untagged > 1) 1301 /* Port must untag all vlans in that case. 1302 * No need to commit untagged config change. 1303 */ 1304 return 0; 1305 1306 valid = (summary.num_untagged == 1); 1307 if (valid) 1308 vid = vsc73xx_find_first_vlan_untagged(vsc, port); 1309 1310 return vsc73xx_vlan_change_untagged(vsc, port, vid, valid); 1311 } 1312 1313 static int 1314 vsc73xx_vlan_change_pvid(struct vsc73xx *vsc, int port, u16 vid, bool set) 1315 { 1316 u32 val = 0; 1317 int ret; 1318 1319 val = set ? 0 : VSC73XX_CAT_DROP_UNTAGGED_ENA; 1320 1321 ret = vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1322 VSC73XX_CAT_DROP, 1323 VSC73XX_CAT_DROP_UNTAGGED_ENA, val); 1324 if (!set || ret) 1325 return ret; 1326 1327 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_MAC, port, 1328 VSC73XX_CAT_PORT_VLAN, 1329 VSC73XX_CAT_PORT_VLAN_VLAN_VID, 1330 vid & VSC73XX_CAT_PORT_VLAN_VLAN_VID); 1331 } 1332 1333 /** 1334 * vsc73xx_vlan_commit_pvid - Update port-based default VLAN of a port 1335 * @vsc: Switch private data structure 1336 * @port: Port index on which to operate 1337 * 1338 * Update the PVID of a port so that it follows either the bridge PVID 1339 * configuration, when the bridge is currently VLAN-aware, or the PVID 1340 * from tag_8021q, when the port is standalone or under a VLAN-unaware 1341 * bridge. A port with no PVID drops all untagged and VID 0 tagged 1342 * traffic. 1343 * 1344 * Must be called when changes are made to: 1345 * - the bridge VLAN filtering state of the port 1346 * - the number or attributes of VLANs from the bridge VLAN table, 1347 * while the port is currently VLAN-aware 1348 * 1349 * Return: 0 on success, or negative errno on error. 1350 */ 1351 static int vsc73xx_vlan_commit_pvid(struct vsc73xx *vsc, int port) 1352 { 1353 struct vsc73xx_portinfo *portinfo = &vsc->portinfo[port]; 1354 bool valid = portinfo->pvid_tag_8021q_configured; 1355 struct dsa_port *dp = dsa_to_port(vsc->ds, port); 1356 u16 vid = portinfo->pvid_tag_8021q; 1357 1358 if (dsa_port_is_vlan_filtering(dp)) { 1359 vid = portinfo->pvid_vlan_filtering; 1360 valid = portinfo->pvid_vlan_filtering_configured; 1361 } 1362 1363 return vsc73xx_vlan_change_pvid(vsc, port, vid, valid); 1364 } 1365 1366 static int vsc73xx_vlan_commit_settings(struct vsc73xx *vsc, int port) 1367 { 1368 int ret; 1369 1370 ret = vsc73xx_vlan_commit_untagged(vsc, port); 1371 if (ret) 1372 return ret; 1373 1374 ret = vsc73xx_vlan_commit_pvid(vsc, port); 1375 if (ret) 1376 return ret; 1377 1378 return vsc73xx_vlan_commit_conf(vsc, port); 1379 } 1380 1381 static int vsc73xx_port_enable(struct dsa_switch *ds, int port, 1382 struct phy_device *phy) 1383 { 1384 struct vsc73xx *vsc = ds->priv; 1385 1386 dev_info(vsc->dev, "enable port %d\n", port); 1387 vsc73xx_init_port(vsc, port); 1388 1389 return vsc73xx_vlan_commit_settings(vsc, port); 1390 } 1391 1392 static void vsc73xx_port_disable(struct dsa_switch *ds, int port) 1393 { 1394 struct vsc73xx *vsc = ds->priv; 1395 1396 /* Just put the port into reset */ 1397 vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, 1398 VSC73XX_MAC_CFG, VSC73XX_MAC_CFG_RESET); 1399 } 1400 1401 static const struct vsc73xx_counter * 1402 vsc73xx_find_counter(struct vsc73xx *vsc, 1403 u8 counter, 1404 bool tx) 1405 { 1406 const struct vsc73xx_counter *cnts; 1407 int num_cnts; 1408 int i; 1409 1410 if (tx) { 1411 cnts = vsc73xx_tx_counters; 1412 num_cnts = ARRAY_SIZE(vsc73xx_tx_counters); 1413 } else { 1414 cnts = vsc73xx_rx_counters; 1415 num_cnts = ARRAY_SIZE(vsc73xx_rx_counters); 1416 } 1417 1418 for (i = 0; i < num_cnts; i++) { 1419 const struct vsc73xx_counter *cnt; 1420 1421 cnt = &cnts[i]; 1422 if (cnt->counter == counter) 1423 return cnt; 1424 } 1425 1426 return NULL; 1427 } 1428 1429 static void vsc73xx_get_strings(struct dsa_switch *ds, int port, u32 stringset, 1430 uint8_t *data) 1431 { 1432 const struct vsc73xx_counter *cnt; 1433 struct vsc73xx *vsc = ds->priv; 1434 u8 indices[6]; 1435 u8 *buf = data; 1436 int i; 1437 u32 val; 1438 int ret; 1439 1440 if (stringset != ETH_SS_STATS) 1441 return; 1442 1443 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port, 1444 VSC73XX_C_CFG, &val); 1445 if (ret) 1446 return; 1447 1448 indices[0] = (val & 0x1f); /* RX counter 0 */ 1449 indices[1] = ((val >> 5) & 0x1f); /* RX counter 1 */ 1450 indices[2] = ((val >> 10) & 0x1f); /* RX counter 2 */ 1451 indices[3] = ((val >> 16) & 0x1f); /* TX counter 0 */ 1452 indices[4] = ((val >> 21) & 0x1f); /* TX counter 1 */ 1453 indices[5] = ((val >> 26) & 0x1f); /* TX counter 2 */ 1454 1455 /* The first counters is the RX octets */ 1456 ethtool_puts(&buf, "RxEtherStatsOctets"); 1457 1458 /* Each port supports recording 3 RX counters and 3 TX counters, 1459 * figure out what counters we use in this set-up and return the 1460 * names of them. The hardware default counters will be number of 1461 * packets on RX/TX, combined broadcast+multicast packets RX/TX and 1462 * total error packets RX/TX. 1463 */ 1464 for (i = 0; i < 3; i++) { 1465 cnt = vsc73xx_find_counter(vsc, indices[i], false); 1466 ethtool_puts(&buf, cnt ? cnt->name : ""); 1467 } 1468 1469 /* TX stats begins with the number of TX octets */ 1470 ethtool_puts(&buf, "TxEtherStatsOctets"); 1471 1472 for (i = 3; i < 6; i++) { 1473 cnt = vsc73xx_find_counter(vsc, indices[i], true); 1474 ethtool_puts(&buf, cnt ? cnt->name : ""); 1475 1476 } 1477 } 1478 1479 static int vsc73xx_get_sset_count(struct dsa_switch *ds, int port, int sset) 1480 { 1481 /* We only support SS_STATS */ 1482 if (sset != ETH_SS_STATS) 1483 return 0; 1484 /* RX and TX packets, then 3 RX counters, 3 TX counters */ 1485 return 8; 1486 } 1487 1488 static void vsc73xx_get_ethtool_stats(struct dsa_switch *ds, int port, 1489 uint64_t *data) 1490 { 1491 struct vsc73xx *vsc = ds->priv; 1492 u8 regs[] = { 1493 VSC73XX_RXOCT, 1494 VSC73XX_C_RX0, 1495 VSC73XX_C_RX1, 1496 VSC73XX_C_RX2, 1497 VSC73XX_TXOCT, 1498 VSC73XX_C_TX0, 1499 VSC73XX_C_TX1, 1500 VSC73XX_C_TX2, 1501 }; 1502 u32 val; 1503 int ret; 1504 int i; 1505 1506 for (i = 0; i < ARRAY_SIZE(regs); i++) { 1507 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_MAC, port, 1508 regs[i], &val); 1509 if (ret) { 1510 dev_err(vsc->dev, "error reading counter %d\n", i); 1511 return; 1512 } 1513 data[i] = val; 1514 } 1515 } 1516 1517 static int vsc73xx_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1518 { 1519 struct vsc73xx *vsc = ds->priv; 1520 1521 return vsc73xx_write(vsc, VSC73XX_BLOCK_MAC, port, 1522 VSC73XX_MAXLEN, new_mtu + ETH_HLEN + ETH_FCS_LEN); 1523 } 1524 1525 /* According to application not "VSC7398 Jumbo Frames" setting 1526 * up the frame size to 9.6 KB does not affect the performance on standard 1527 * frames. It is clear from the application note that 1528 * "9.6 kilobytes" == 9600 bytes. 1529 */ 1530 static int vsc73xx_get_max_mtu(struct dsa_switch *ds, int port) 1531 { 1532 return 9600 - ETH_HLEN - ETH_FCS_LEN; 1533 } 1534 1535 static void vsc73xx_phylink_get_caps(struct dsa_switch *dsa, int port, 1536 struct phylink_config *config) 1537 { 1538 unsigned long *interfaces = config->supported_interfaces; 1539 1540 if (port == 5) 1541 return; 1542 1543 if (port == CPU_PORT) { 1544 __set_bit(PHY_INTERFACE_MODE_MII, interfaces); 1545 __set_bit(PHY_INTERFACE_MODE_REVMII, interfaces); 1546 __set_bit(PHY_INTERFACE_MODE_GMII, interfaces); 1547 __set_bit(PHY_INTERFACE_MODE_RGMII, interfaces); 1548 } 1549 1550 if (port <= 4) { 1551 /* Internal PHYs */ 1552 __set_bit(PHY_INTERFACE_MODE_INTERNAL, interfaces); 1553 /* phylib default */ 1554 __set_bit(PHY_INTERFACE_MODE_GMII, interfaces); 1555 } 1556 1557 config->mac_capabilities = MAC_SYM_PAUSE | MAC_10 | MAC_100 | MAC_1000; 1558 } 1559 1560 static int 1561 vsc73xx_port_vlan_filtering(struct dsa_switch *ds, int port, 1562 bool vlan_filtering, struct netlink_ext_ack *extack) 1563 { 1564 struct vsc73xx *vsc = ds->priv; 1565 1566 /* The commit to hardware processed below is required because vsc73xx 1567 * is using tag_8021q. When vlan_filtering is disabled, tag_8021q uses 1568 * pvid/untagged vlans for port recognition. The values configured for 1569 * vlans and pvid/untagged states are stored in portinfo structure. 1570 * When vlan_filtering is enabled, we need to restore pvid/untagged from 1571 * portinfo structure. Analogous routine is processed when 1572 * vlan_filtering is disabled, but values used for tag_8021q are 1573 * restored. 1574 */ 1575 1576 return vsc73xx_vlan_commit_settings(vsc, port); 1577 } 1578 1579 static int vsc73xx_port_vlan_add(struct dsa_switch *ds, int port, 1580 const struct switchdev_obj_port_vlan *vlan, 1581 struct netlink_ext_ack *extack) 1582 { 1583 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1584 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1585 struct dsa_port *dp = dsa_to_port(ds, port); 1586 struct vsc73xx_bridge_vlan *vsc73xx_vlan; 1587 struct vsc73xx_vlan_summary summary; 1588 struct vsc73xx_portinfo *portinfo; 1589 struct vsc73xx *vsc = ds->priv; 1590 bool commit_to_hardware; 1591 int ret = 0; 1592 1593 /* Be sure to deny alterations to the configuration done by tag_8021q. 1594 */ 1595 if (vid_is_dsa_8021q(vlan->vid)) { 1596 NL_SET_ERR_MSG_MOD(extack, 1597 "Range 3072-4095 reserved for dsa_8021q operation"); 1598 return -EBUSY; 1599 } 1600 1601 /* The processed vlan->vid is excluded from the search because the VLAN 1602 * can be re-added with a different set of flags, so it's easiest to 1603 * ignore its old flags from the VLAN database software copy. 1604 */ 1605 vsc73xx_bridge_vlan_summary(vsc, port, &summary, vlan->vid); 1606 1607 /* VSC73XX allows only three untagged states: none, one or all */ 1608 if ((untagged && summary.num_tagged > 0 && summary.num_untagged > 0) || 1609 (!untagged && summary.num_untagged > 1)) { 1610 NL_SET_ERR_MSG_MOD(extack, 1611 "Port can have only none, one or all untagged vlan"); 1612 return -EBUSY; 1613 } 1614 1615 vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid); 1616 1617 if (!vsc73xx_vlan) { 1618 vsc73xx_vlan = kzalloc(sizeof(*vsc73xx_vlan), GFP_KERNEL); 1619 if (!vsc73xx_vlan) 1620 return -ENOMEM; 1621 1622 vsc73xx_vlan->vid = vlan->vid; 1623 1624 list_add_tail(&vsc73xx_vlan->list, &vsc->vlans); 1625 } 1626 1627 vsc73xx_vlan->portmask |= BIT(port); 1628 1629 /* CPU port must be always tagged because source port identification is 1630 * based on tag_8021q. 1631 */ 1632 if (port == CPU_PORT) 1633 goto update_vlan_table; 1634 1635 if (untagged) 1636 vsc73xx_vlan->untagged |= BIT(port); 1637 else 1638 vsc73xx_vlan->untagged &= ~BIT(port); 1639 1640 portinfo = &vsc->portinfo[port]; 1641 1642 if (pvid) { 1643 portinfo->pvid_vlan_filtering_configured = true; 1644 portinfo->pvid_vlan_filtering = vlan->vid; 1645 } else if (portinfo->pvid_vlan_filtering_configured && 1646 portinfo->pvid_vlan_filtering == vlan->vid) { 1647 portinfo->pvid_vlan_filtering_configured = false; 1648 } 1649 1650 commit_to_hardware = !vsc73xx_tag_8021q_active(dp); 1651 if (commit_to_hardware) { 1652 ret = vsc73xx_vlan_commit_settings(vsc, port); 1653 if (ret) 1654 goto err; 1655 } 1656 1657 update_vlan_table: 1658 ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, true); 1659 if (!ret) 1660 return 0; 1661 err: 1662 vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port); 1663 return ret; 1664 } 1665 1666 static int vsc73xx_port_vlan_del(struct dsa_switch *ds, int port, 1667 const struct switchdev_obj_port_vlan *vlan) 1668 { 1669 struct vsc73xx_bridge_vlan *vsc73xx_vlan; 1670 struct vsc73xx_portinfo *portinfo; 1671 struct vsc73xx *vsc = ds->priv; 1672 bool commit_to_hardware; 1673 int ret; 1674 1675 ret = vsc73xx_update_vlan_table(vsc, port, vlan->vid, false); 1676 if (ret) 1677 return ret; 1678 1679 portinfo = &vsc->portinfo[port]; 1680 1681 if (portinfo->pvid_vlan_filtering_configured && 1682 portinfo->pvid_vlan_filtering == vlan->vid) 1683 portinfo->pvid_vlan_filtering_configured = false; 1684 1685 vsc73xx_vlan = vsc73xx_bridge_vlan_find(vsc, vlan->vid); 1686 1687 if (vsc73xx_vlan) 1688 vsc73xx_bridge_vlan_remove_port(vsc73xx_vlan, port); 1689 1690 commit_to_hardware = !vsc73xx_tag_8021q_active(dsa_to_port(ds, port)); 1691 1692 if (commit_to_hardware) 1693 return vsc73xx_vlan_commit_settings(vsc, port); 1694 1695 return 0; 1696 } 1697 1698 static int vsc73xx_tag_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid, 1699 u16 flags) 1700 { 1701 bool pvid = flags & BRIDGE_VLAN_INFO_PVID; 1702 struct vsc73xx_portinfo *portinfo; 1703 struct vsc73xx *vsc = ds->priv; 1704 bool commit_to_hardware; 1705 int ret; 1706 1707 portinfo = &vsc->portinfo[port]; 1708 1709 if (pvid) { 1710 portinfo->pvid_tag_8021q_configured = true; 1711 portinfo->pvid_tag_8021q = vid; 1712 } 1713 1714 commit_to_hardware = vsc73xx_tag_8021q_active(dsa_to_port(ds, port)); 1715 if (commit_to_hardware) { 1716 ret = vsc73xx_vlan_commit_settings(vsc, port); 1717 if (ret) 1718 return ret; 1719 } 1720 1721 return vsc73xx_update_vlan_table(vsc, port, vid, true); 1722 } 1723 1724 static int vsc73xx_tag_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid) 1725 { 1726 struct vsc73xx_portinfo *portinfo; 1727 struct vsc73xx *vsc = ds->priv; 1728 1729 portinfo = &vsc->portinfo[port]; 1730 1731 if (portinfo->pvid_tag_8021q_configured && 1732 portinfo->pvid_tag_8021q == vid) { 1733 struct dsa_port *dp = dsa_to_port(ds, port); 1734 bool commit_to_hardware; 1735 int err; 1736 1737 portinfo->pvid_tag_8021q_configured = false; 1738 1739 commit_to_hardware = vsc73xx_tag_8021q_active(dp); 1740 if (commit_to_hardware) { 1741 err = vsc73xx_vlan_commit_settings(vsc, port); 1742 if (err) 1743 return err; 1744 } 1745 } 1746 1747 return vsc73xx_update_vlan_table(vsc, port, vid, false); 1748 } 1749 1750 static int vsc73xx_port_pre_bridge_flags(struct dsa_switch *ds, int port, 1751 struct switchdev_brport_flags flags, 1752 struct netlink_ext_ack *extack) 1753 { 1754 if (flags.mask & ~BR_LEARNING) 1755 return -EINVAL; 1756 1757 return 0; 1758 } 1759 1760 static int vsc73xx_port_bridge_flags(struct dsa_switch *ds, int port, 1761 struct switchdev_brport_flags flags, 1762 struct netlink_ext_ack *extack) 1763 { 1764 if (flags.mask & BR_LEARNING) { 1765 u32 val = flags.val & BR_LEARNING ? BIT(port) : 0; 1766 struct vsc73xx *vsc = ds->priv; 1767 1768 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1769 VSC73XX_LEARNMASK, BIT(port), val); 1770 } 1771 1772 return 0; 1773 } 1774 1775 static void vsc73xx_refresh_fwd_map(struct dsa_switch *ds, int port, u8 state) 1776 { 1777 struct dsa_port *other_dp, *dp = dsa_to_port(ds, port); 1778 struct vsc73xx *vsc = ds->priv; 1779 u16 mask; 1780 1781 if (state != BR_STATE_FORWARDING) { 1782 /* Ports that aren't in the forwarding state must not 1783 * forward packets anywhere. 1784 */ 1785 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1786 VSC73XX_SRCMASKS + port, 1787 VSC73XX_SRCMASKS_PORTS_MASK, 0); 1788 1789 dsa_switch_for_each_available_port(other_dp, ds) { 1790 if (other_dp == dp) 1791 continue; 1792 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1793 VSC73XX_SRCMASKS + other_dp->index, 1794 BIT(port), 0); 1795 } 1796 1797 return; 1798 } 1799 1800 /* Forwarding ports must forward to the CPU and to other ports 1801 * in the same bridge 1802 */ 1803 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1804 VSC73XX_SRCMASKS + CPU_PORT, BIT(port), BIT(port)); 1805 1806 mask = BIT(CPU_PORT); 1807 1808 dsa_switch_for_each_user_port(other_dp, ds) { 1809 int other_port = other_dp->index; 1810 1811 if (port == other_port || !dsa_port_bridge_same(dp, other_dp) || 1812 other_dp->stp_state != BR_STATE_FORWARDING) 1813 continue; 1814 1815 mask |= BIT(other_port); 1816 1817 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1818 VSC73XX_SRCMASKS + other_port, 1819 BIT(port), BIT(port)); 1820 } 1821 1822 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1823 VSC73XX_SRCMASKS + port, 1824 VSC73XX_SRCMASKS_PORTS_MASK, mask); 1825 } 1826 1827 /* FIXME: STP frames aren't forwarded at this moment. BPDU frames are 1828 * forwarded only from and to PI/SI interface. For more info see chapter 1829 * 2.7.1 (CPU Forwarding) in datasheet. 1830 * This function is required for tag_8021q operations. 1831 */ 1832 static void vsc73xx_port_stp_state_set(struct dsa_switch *ds, int port, 1833 u8 state) 1834 { 1835 struct dsa_port *dp = dsa_to_port(ds, port); 1836 struct vsc73xx *vsc = ds->priv; 1837 u32 val = 0; 1838 1839 if (state == BR_STATE_LEARNING || state == BR_STATE_FORWARDING) 1840 val = dp->learning ? BIT(port) : 0; 1841 1842 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1843 VSC73XX_LEARNMASK, BIT(port), val); 1844 1845 val = (state == BR_STATE_BLOCKING || state == BR_STATE_DISABLED) ? 1846 0 : BIT(port); 1847 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_ANALYZER, 0, 1848 VSC73XX_RECVMASK, BIT(port), val); 1849 1850 /* CPU Port should always forward packets when user ports are forwarding 1851 * so let's configure it from other ports only. 1852 */ 1853 if (port != CPU_PORT) 1854 vsc73xx_refresh_fwd_map(ds, port, state); 1855 } 1856 1857 static const struct phylink_mac_ops vsc73xx_phylink_mac_ops = { 1858 .mac_config = vsc73xx_mac_config, 1859 .mac_link_down = vsc73xx_mac_link_down, 1860 .mac_link_up = vsc73xx_mac_link_up, 1861 }; 1862 1863 static const struct dsa_switch_ops vsc73xx_ds_ops = { 1864 .get_tag_protocol = vsc73xx_get_tag_protocol, 1865 .setup = vsc73xx_setup, 1866 .teardown = vsc73xx_teardown, 1867 .phy_read = vsc73xx_phy_read, 1868 .phy_write = vsc73xx_phy_write, 1869 .get_strings = vsc73xx_get_strings, 1870 .get_ethtool_stats = vsc73xx_get_ethtool_stats, 1871 .get_sset_count = vsc73xx_get_sset_count, 1872 .port_enable = vsc73xx_port_enable, 1873 .port_disable = vsc73xx_port_disable, 1874 .port_pre_bridge_flags = vsc73xx_port_pre_bridge_flags, 1875 .port_bridge_flags = vsc73xx_port_bridge_flags, 1876 .port_bridge_join = dsa_tag_8021q_bridge_join, 1877 .port_bridge_leave = dsa_tag_8021q_bridge_leave, 1878 .port_change_mtu = vsc73xx_change_mtu, 1879 .port_max_mtu = vsc73xx_get_max_mtu, 1880 .port_stp_state_set = vsc73xx_port_stp_state_set, 1881 .port_vlan_filtering = vsc73xx_port_vlan_filtering, 1882 .port_vlan_add = vsc73xx_port_vlan_add, 1883 .port_vlan_del = vsc73xx_port_vlan_del, 1884 .phylink_get_caps = vsc73xx_phylink_get_caps, 1885 .tag_8021q_vlan_add = vsc73xx_tag_8021q_vlan_add, 1886 .tag_8021q_vlan_del = vsc73xx_tag_8021q_vlan_del, 1887 }; 1888 1889 static int vsc73xx_gpio_get(struct gpio_chip *chip, unsigned int offset) 1890 { 1891 struct vsc73xx *vsc = gpiochip_get_data(chip); 1892 u32 val; 1893 int ret; 1894 1895 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 1896 VSC73XX_GPIO, &val); 1897 if (ret) 1898 return ret; 1899 1900 return !!(val & BIT(offset)); 1901 } 1902 1903 static void vsc73xx_gpio_set(struct gpio_chip *chip, unsigned int offset, 1904 int val) 1905 { 1906 struct vsc73xx *vsc = gpiochip_get_data(chip); 1907 u32 tmp = val ? BIT(offset) : 0; 1908 1909 vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0, 1910 VSC73XX_GPIO, BIT(offset), tmp); 1911 } 1912 1913 static int vsc73xx_gpio_direction_output(struct gpio_chip *chip, 1914 unsigned int offset, int val) 1915 { 1916 struct vsc73xx *vsc = gpiochip_get_data(chip); 1917 u32 tmp = val ? BIT(offset) : 0; 1918 1919 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0, 1920 VSC73XX_GPIO, BIT(offset + 4) | BIT(offset), 1921 BIT(offset + 4) | tmp); 1922 } 1923 1924 static int vsc73xx_gpio_direction_input(struct gpio_chip *chip, 1925 unsigned int offset) 1926 { 1927 struct vsc73xx *vsc = gpiochip_get_data(chip); 1928 1929 return vsc73xx_update_bits(vsc, VSC73XX_BLOCK_SYSTEM, 0, 1930 VSC73XX_GPIO, BIT(offset + 4), 1931 0); 1932 } 1933 1934 static int vsc73xx_gpio_get_direction(struct gpio_chip *chip, 1935 unsigned int offset) 1936 { 1937 struct vsc73xx *vsc = gpiochip_get_data(chip); 1938 u32 val; 1939 int ret; 1940 1941 ret = vsc73xx_read(vsc, VSC73XX_BLOCK_SYSTEM, 0, 1942 VSC73XX_GPIO, &val); 1943 if (ret) 1944 return ret; 1945 1946 return !(val & BIT(offset + 4)); 1947 } 1948 1949 static int vsc73xx_gpio_probe(struct vsc73xx *vsc) 1950 { 1951 int ret; 1952 1953 vsc->gc.label = devm_kasprintf(vsc->dev, GFP_KERNEL, "VSC%04x", 1954 vsc->chipid); 1955 if (!vsc->gc.label) 1956 return -ENOMEM; 1957 vsc->gc.ngpio = 4; 1958 vsc->gc.owner = THIS_MODULE; 1959 vsc->gc.parent = vsc->dev; 1960 vsc->gc.base = -1; 1961 vsc->gc.get = vsc73xx_gpio_get; 1962 vsc->gc.set = vsc73xx_gpio_set; 1963 vsc->gc.direction_input = vsc73xx_gpio_direction_input; 1964 vsc->gc.direction_output = vsc73xx_gpio_direction_output; 1965 vsc->gc.get_direction = vsc73xx_gpio_get_direction; 1966 vsc->gc.can_sleep = true; 1967 ret = devm_gpiochip_add_data(vsc->dev, &vsc->gc, vsc); 1968 if (ret) { 1969 dev_err(vsc->dev, "unable to register GPIO chip\n"); 1970 return ret; 1971 } 1972 return 0; 1973 } 1974 1975 int vsc73xx_probe(struct vsc73xx *vsc) 1976 { 1977 struct device *dev = vsc->dev; 1978 int ret; 1979 1980 /* Release reset, if any */ 1981 vsc->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); 1982 if (IS_ERR(vsc->reset)) { 1983 dev_err(dev, "failed to get RESET GPIO\n"); 1984 return PTR_ERR(vsc->reset); 1985 } 1986 if (vsc->reset) 1987 /* Wait 20ms according to datasheet table 245 */ 1988 msleep(20); 1989 1990 ret = vsc73xx_detect(vsc); 1991 if (ret == -EAGAIN) { 1992 dev_err(vsc->dev, 1993 "Chip seems to be out of control. Assert reset and try again.\n"); 1994 gpiod_set_value_cansleep(vsc->reset, 1); 1995 /* Reset pulse should be 20ns minimum, according to datasheet 1996 * table 245, so 10us should be fine 1997 */ 1998 usleep_range(10, 100); 1999 gpiod_set_value_cansleep(vsc->reset, 0); 2000 /* Wait 20ms according to datasheet table 245 */ 2001 msleep(20); 2002 ret = vsc73xx_detect(vsc); 2003 } 2004 if (ret) { 2005 dev_err(dev, "no chip found (%d)\n", ret); 2006 return -ENODEV; 2007 } 2008 2009 eth_random_addr(vsc->addr); 2010 dev_info(vsc->dev, 2011 "MAC for control frames: %02X:%02X:%02X:%02X:%02X:%02X\n", 2012 vsc->addr[0], vsc->addr[1], vsc->addr[2], 2013 vsc->addr[3], vsc->addr[4], vsc->addr[5]); 2014 2015 vsc->ds = devm_kzalloc(dev, sizeof(*vsc->ds), GFP_KERNEL); 2016 if (!vsc->ds) 2017 return -ENOMEM; 2018 2019 vsc->ds->dev = dev; 2020 vsc->ds->num_ports = VSC73XX_MAX_NUM_PORTS; 2021 vsc->ds->priv = vsc; 2022 2023 vsc->ds->ops = &vsc73xx_ds_ops; 2024 vsc->ds->phylink_mac_ops = &vsc73xx_phylink_mac_ops; 2025 ret = dsa_register_switch(vsc->ds); 2026 if (ret) { 2027 dev_err(dev, "unable to register switch (%d)\n", ret); 2028 return ret; 2029 } 2030 2031 ret = vsc73xx_gpio_probe(vsc); 2032 if (ret) { 2033 dsa_unregister_switch(vsc->ds); 2034 return ret; 2035 } 2036 2037 return 0; 2038 } 2039 EXPORT_SYMBOL(vsc73xx_probe); 2040 2041 void vsc73xx_remove(struct vsc73xx *vsc) 2042 { 2043 dsa_unregister_switch(vsc->ds); 2044 gpiod_set_value(vsc->reset, 1); 2045 } 2046 EXPORT_SYMBOL(vsc73xx_remove); 2047 2048 void vsc73xx_shutdown(struct vsc73xx *vsc) 2049 { 2050 dsa_switch_shutdown(vsc->ds); 2051 } 2052 EXPORT_SYMBOL(vsc73xx_shutdown); 2053 2054 MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>"); 2055 MODULE_DESCRIPTION("Vitesse VSC7385/7388/7395/7398 driver"); 2056 MODULE_LICENSE("GPL v2"); 2057