xref: /linux/drivers/net/dsa/rzn1_a5psw.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2022 Schneider-Electric
4  *
5  * Clément Léger <clement.leger@bootlin.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/etherdevice.h>
10 #include <linux/if_bridge.h>
11 #include <linux/if_ether.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_mdio.h>
16 #include <net/dsa.h>
17 
18 #include "rzn1_a5psw.h"
19 
20 struct a5psw_stats {
21 	u16 offset;
22 	const char name[ETH_GSTRING_LEN];
23 };
24 
25 #define STAT_DESC(_offset) {	\
26 	.offset = A5PSW_##_offset,	\
27 	.name = __stringify(_offset),	\
28 }
29 
30 static const struct a5psw_stats a5psw_stats[] = {
31 	STAT_DESC(aFramesTransmittedOK),
32 	STAT_DESC(aFramesReceivedOK),
33 	STAT_DESC(aFrameCheckSequenceErrors),
34 	STAT_DESC(aAlignmentErrors),
35 	STAT_DESC(aOctetsTransmittedOK),
36 	STAT_DESC(aOctetsReceivedOK),
37 	STAT_DESC(aTxPAUSEMACCtrlFrames),
38 	STAT_DESC(aRxPAUSEMACCtrlFrames),
39 	STAT_DESC(ifInErrors),
40 	STAT_DESC(ifOutErrors),
41 	STAT_DESC(ifInUcastPkts),
42 	STAT_DESC(ifInMulticastPkts),
43 	STAT_DESC(ifInBroadcastPkts),
44 	STAT_DESC(ifOutDiscards),
45 	STAT_DESC(ifOutUcastPkts),
46 	STAT_DESC(ifOutMulticastPkts),
47 	STAT_DESC(ifOutBroadcastPkts),
48 	STAT_DESC(etherStatsDropEvents),
49 	STAT_DESC(etherStatsOctets),
50 	STAT_DESC(etherStatsPkts),
51 	STAT_DESC(etherStatsUndersizePkts),
52 	STAT_DESC(etherStatsOversizePkts),
53 	STAT_DESC(etherStatsPkts64Octets),
54 	STAT_DESC(etherStatsPkts65to127Octets),
55 	STAT_DESC(etherStatsPkts128to255Octets),
56 	STAT_DESC(etherStatsPkts256to511Octets),
57 	STAT_DESC(etherStatsPkts1024to1518Octets),
58 	STAT_DESC(etherStatsPkts1519toXOctets),
59 	STAT_DESC(etherStatsJabbers),
60 	STAT_DESC(etherStatsFragments),
61 	STAT_DESC(VLANReceived),
62 	STAT_DESC(VLANTransmitted),
63 	STAT_DESC(aDeferred),
64 	STAT_DESC(aMultipleCollisions),
65 	STAT_DESC(aSingleCollisions),
66 	STAT_DESC(aLateCollisions),
67 	STAT_DESC(aExcessiveCollisions),
68 	STAT_DESC(aCarrierSenseErrors),
69 };
70 
71 static void a5psw_reg_writel(struct a5psw *a5psw, int offset, u32 value)
72 {
73 	writel(value, a5psw->base + offset);
74 }
75 
76 static u32 a5psw_reg_readl(struct a5psw *a5psw, int offset)
77 {
78 	return readl(a5psw->base + offset);
79 }
80 
81 static void a5psw_reg_rmw(struct a5psw *a5psw, int offset, u32 mask, u32 val)
82 {
83 	u32 reg;
84 
85 	spin_lock(&a5psw->reg_lock);
86 
87 	reg = a5psw_reg_readl(a5psw, offset);
88 	reg &= ~mask;
89 	reg |= val;
90 	a5psw_reg_writel(a5psw, offset, reg);
91 
92 	spin_unlock(&a5psw->reg_lock);
93 }
94 
95 static enum dsa_tag_protocol a5psw_get_tag_protocol(struct dsa_switch *ds,
96 						    int port,
97 						    enum dsa_tag_protocol mp)
98 {
99 	return DSA_TAG_PROTO_RZN1_A5PSW;
100 }
101 
102 static void a5psw_port_pattern_set(struct a5psw *a5psw, int port, int pattern,
103 				   bool enable)
104 {
105 	u32 rx_match = 0;
106 
107 	if (enable)
108 		rx_match |= A5PSW_RXMATCH_CONFIG_PATTERN(pattern);
109 
110 	a5psw_reg_rmw(a5psw, A5PSW_RXMATCH_CONFIG(port),
111 		      A5PSW_RXMATCH_CONFIG_PATTERN(pattern), rx_match);
112 }
113 
114 static void a5psw_port_mgmtfwd_set(struct a5psw *a5psw, int port, bool enable)
115 {
116 	/* Enable "management forward" pattern matching, this will forward
117 	 * packets from this port only towards the management port and thus
118 	 * isolate the port.
119 	 */
120 	a5psw_port_pattern_set(a5psw, port, A5PSW_PATTERN_MGMTFWD, enable);
121 }
122 
123 static void a5psw_port_tx_enable(struct a5psw *a5psw, int port, bool enable)
124 {
125 	u32 mask = A5PSW_PORT_ENA_TX(port);
126 	u32 reg = enable ? mask : 0;
127 
128 	/* Even though the port TX is disabled through TXENA bit in the
129 	 * PORT_ENA register, it can still send BPDUs. This depends on the tag
130 	 * configuration added when sending packets from the CPU port to the
131 	 * switch port. Indeed, when using forced forwarding without filtering,
132 	 * even disabled ports will be able to send packets that are tagged.
133 	 * This allows to implement STP support when ports are in a state where
134 	 * forwarding traffic should be stopped but BPDUs should still be sent.
135 	 */
136 	a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, mask, reg);
137 }
138 
139 static void a5psw_port_enable_set(struct a5psw *a5psw, int port, bool enable)
140 {
141 	u32 port_ena = 0;
142 
143 	if (enable)
144 		port_ena |= A5PSW_PORT_ENA_TX_RX(port);
145 
146 	a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, A5PSW_PORT_ENA_TX_RX(port),
147 		      port_ena);
148 }
149 
150 static int a5psw_lk_execute_ctrl(struct a5psw *a5psw, u32 *ctrl)
151 {
152 	int ret;
153 
154 	a5psw_reg_writel(a5psw, A5PSW_LK_ADDR_CTRL, *ctrl);
155 
156 	ret = readl_poll_timeout(a5psw->base + A5PSW_LK_ADDR_CTRL, *ctrl,
157 				 !(*ctrl & A5PSW_LK_ADDR_CTRL_BUSY),
158 				 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
159 	if (ret)
160 		dev_err(a5psw->dev, "LK_CTRL timeout waiting for BUSY bit\n");
161 
162 	return ret;
163 }
164 
165 static void a5psw_port_fdb_flush(struct a5psw *a5psw, int port)
166 {
167 	u32 ctrl = A5PSW_LK_ADDR_CTRL_DELETE_PORT | BIT(port);
168 
169 	mutex_lock(&a5psw->lk_lock);
170 	a5psw_lk_execute_ctrl(a5psw, &ctrl);
171 	mutex_unlock(&a5psw->lk_lock);
172 }
173 
174 static void a5psw_port_authorize_set(struct a5psw *a5psw, int port,
175 				     bool authorize)
176 {
177 	u32 reg = a5psw_reg_readl(a5psw, A5PSW_AUTH_PORT(port));
178 
179 	if (authorize)
180 		reg |= A5PSW_AUTH_PORT_AUTHORIZED;
181 	else
182 		reg &= ~A5PSW_AUTH_PORT_AUTHORIZED;
183 
184 	a5psw_reg_writel(a5psw, A5PSW_AUTH_PORT(port), reg);
185 }
186 
187 static void a5psw_port_disable(struct dsa_switch *ds, int port)
188 {
189 	struct a5psw *a5psw = ds->priv;
190 
191 	a5psw_port_authorize_set(a5psw, port, false);
192 	a5psw_port_enable_set(a5psw, port, false);
193 }
194 
195 static int a5psw_port_enable(struct dsa_switch *ds, int port,
196 			     struct phy_device *phy)
197 {
198 	struct a5psw *a5psw = ds->priv;
199 
200 	a5psw_port_authorize_set(a5psw, port, true);
201 	a5psw_port_enable_set(a5psw, port, true);
202 
203 	return 0;
204 }
205 
206 static int a5psw_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
207 {
208 	struct a5psw *a5psw = ds->priv;
209 
210 	new_mtu += ETH_HLEN + A5PSW_EXTRA_MTU_LEN + ETH_FCS_LEN;
211 	a5psw_reg_writel(a5psw, A5PSW_FRM_LENGTH(port), new_mtu);
212 
213 	return 0;
214 }
215 
216 static int a5psw_port_max_mtu(struct dsa_switch *ds, int port)
217 {
218 	return A5PSW_MAX_MTU;
219 }
220 
221 static void a5psw_phylink_get_caps(struct dsa_switch *ds, int port,
222 				   struct phylink_config *config)
223 {
224 	unsigned long *intf = config->supported_interfaces;
225 
226 	config->mac_capabilities = MAC_1000FD;
227 
228 	if (dsa_is_cpu_port(ds, port)) {
229 		/* GMII is used internally and GMAC2 is connected to the switch
230 		 * using 1000Mbps Full-Duplex mode only (cf ethernet manual)
231 		 */
232 		__set_bit(PHY_INTERFACE_MODE_GMII, intf);
233 	} else {
234 		config->mac_capabilities |= MAC_100 | MAC_10;
235 		phy_interface_set_rgmii(intf);
236 		__set_bit(PHY_INTERFACE_MODE_RMII, intf);
237 		__set_bit(PHY_INTERFACE_MODE_MII, intf);
238 	}
239 }
240 
241 static struct phylink_pcs *
242 a5psw_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
243 			     phy_interface_t interface)
244 {
245 	struct dsa_port *dp = dsa_to_port(ds, port);
246 	struct a5psw *a5psw = ds->priv;
247 
248 	if (!dsa_port_is_cpu(dp) && a5psw->pcs[port])
249 		return a5psw->pcs[port];
250 
251 	return NULL;
252 }
253 
254 static void a5psw_phylink_mac_link_down(struct dsa_switch *ds, int port,
255 					unsigned int mode,
256 					phy_interface_t interface)
257 {
258 	struct a5psw *a5psw = ds->priv;
259 	u32 cmd_cfg;
260 
261 	cmd_cfg = a5psw_reg_readl(a5psw, A5PSW_CMD_CFG(port));
262 	cmd_cfg &= ~(A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA);
263 	a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
264 }
265 
266 static void a5psw_phylink_mac_link_up(struct dsa_switch *ds, int port,
267 				      unsigned int mode,
268 				      phy_interface_t interface,
269 				      struct phy_device *phydev, int speed,
270 				      int duplex, bool tx_pause, bool rx_pause)
271 {
272 	u32 cmd_cfg = A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA |
273 		      A5PSW_CMD_CFG_TX_CRC_APPEND;
274 	struct a5psw *a5psw = ds->priv;
275 
276 	if (speed == SPEED_1000)
277 		cmd_cfg |= A5PSW_CMD_CFG_ETH_SPEED;
278 
279 	if (duplex == DUPLEX_HALF)
280 		cmd_cfg |= A5PSW_CMD_CFG_HD_ENA;
281 
282 	cmd_cfg |= A5PSW_CMD_CFG_CNTL_FRM_ENA;
283 
284 	if (!rx_pause)
285 		cmd_cfg &= ~A5PSW_CMD_CFG_PAUSE_IGNORE;
286 
287 	a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
288 }
289 
290 static int a5psw_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
291 {
292 	struct a5psw *a5psw = ds->priv;
293 	unsigned long rate;
294 	u64 max, tmp;
295 	u32 agetime;
296 
297 	rate = clk_get_rate(a5psw->clk);
298 	max = div64_ul(((u64)A5PSW_LK_AGETIME_MASK * A5PSW_TABLE_ENTRIES * 1024),
299 		       rate) * 1000;
300 	if (msecs > max)
301 		return -EINVAL;
302 
303 	tmp = div_u64(rate, MSEC_PER_SEC);
304 	agetime = div_u64(msecs * tmp, 1024 * A5PSW_TABLE_ENTRIES);
305 
306 	a5psw_reg_writel(a5psw, A5PSW_LK_AGETIME, agetime);
307 
308 	return 0;
309 }
310 
311 static void a5psw_port_learning_set(struct a5psw *a5psw, int port, bool learn)
312 {
313 	u32 mask = A5PSW_INPUT_LEARN_DIS(port);
314 	u32 reg = !learn ? mask : 0;
315 
316 	a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
317 }
318 
319 static void a5psw_port_rx_block_set(struct a5psw *a5psw, int port, bool block)
320 {
321 	u32 mask = A5PSW_INPUT_LEARN_BLOCK(port);
322 	u32 reg = block ? mask : 0;
323 
324 	a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
325 }
326 
327 static void a5psw_flooding_set_resolution(struct a5psw *a5psw, int port,
328 					  bool set)
329 {
330 	u8 offsets[] = {A5PSW_UCAST_DEF_MASK, A5PSW_BCAST_DEF_MASK,
331 			A5PSW_MCAST_DEF_MASK};
332 	int i;
333 
334 	for (i = 0; i < ARRAY_SIZE(offsets); i++)
335 		a5psw_reg_rmw(a5psw, offsets[i], BIT(port),
336 			      set ? BIT(port) : 0);
337 }
338 
339 static void a5psw_port_set_standalone(struct a5psw *a5psw, int port,
340 				      bool standalone)
341 {
342 	a5psw_port_learning_set(a5psw, port, !standalone);
343 	a5psw_flooding_set_resolution(a5psw, port, !standalone);
344 	a5psw_port_mgmtfwd_set(a5psw, port, standalone);
345 }
346 
347 static int a5psw_port_bridge_join(struct dsa_switch *ds, int port,
348 				  struct dsa_bridge bridge,
349 				  bool *tx_fwd_offload,
350 				  struct netlink_ext_ack *extack)
351 {
352 	struct a5psw *a5psw = ds->priv;
353 
354 	/* We only support 1 bridge device */
355 	if (a5psw->br_dev && bridge.dev != a5psw->br_dev) {
356 		NL_SET_ERR_MSG_MOD(extack,
357 				   "Forwarding offload supported for a single bridge");
358 		return -EOPNOTSUPP;
359 	}
360 
361 	a5psw->br_dev = bridge.dev;
362 	a5psw_port_set_standalone(a5psw, port, false);
363 
364 	a5psw->bridged_ports |= BIT(port);
365 
366 	return 0;
367 }
368 
369 static void a5psw_port_bridge_leave(struct dsa_switch *ds, int port,
370 				    struct dsa_bridge bridge)
371 {
372 	struct a5psw *a5psw = ds->priv;
373 
374 	a5psw->bridged_ports &= ~BIT(port);
375 
376 	a5psw_port_set_standalone(a5psw, port, true);
377 
378 	/* No more ports bridged */
379 	if (a5psw->bridged_ports == BIT(A5PSW_CPU_PORT))
380 		a5psw->br_dev = NULL;
381 }
382 
383 static int a5psw_port_pre_bridge_flags(struct dsa_switch *ds, int port,
384 				       struct switchdev_brport_flags flags,
385 				       struct netlink_ext_ack *extack)
386 {
387 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
388 			   BR_BCAST_FLOOD))
389 		return -EINVAL;
390 
391 	return 0;
392 }
393 
394 static int
395 a5psw_port_bridge_flags(struct dsa_switch *ds, int port,
396 			struct switchdev_brport_flags flags,
397 			struct netlink_ext_ack *extack)
398 {
399 	struct a5psw *a5psw = ds->priv;
400 	u32 val;
401 
402 	/* If a port is set as standalone, we do not want to be able to
403 	 * configure flooding nor learning which would result in joining the
404 	 * unique bridge. This can happen when a port leaves the bridge, in
405 	 * which case the DSA core will try to "clear" all flags for the
406 	 * standalone port (ie enable flooding, disable learning). In that case
407 	 * do not fail but do not apply the flags.
408 	 */
409 	if (!(a5psw->bridged_ports & BIT(port)))
410 		return 0;
411 
412 	if (flags.mask & BR_LEARNING) {
413 		val = flags.val & BR_LEARNING ? 0 : A5PSW_INPUT_LEARN_DIS(port);
414 		a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN,
415 			      A5PSW_INPUT_LEARN_DIS(port), val);
416 	}
417 
418 	if (flags.mask & BR_FLOOD) {
419 		val = flags.val & BR_FLOOD ? BIT(port) : 0;
420 		a5psw_reg_rmw(a5psw, A5PSW_UCAST_DEF_MASK, BIT(port), val);
421 	}
422 
423 	if (flags.mask & BR_MCAST_FLOOD) {
424 		val = flags.val & BR_MCAST_FLOOD ? BIT(port) : 0;
425 		a5psw_reg_rmw(a5psw, A5PSW_MCAST_DEF_MASK, BIT(port), val);
426 	}
427 
428 	if (flags.mask & BR_BCAST_FLOOD) {
429 		val = flags.val & BR_BCAST_FLOOD ? BIT(port) : 0;
430 		a5psw_reg_rmw(a5psw, A5PSW_BCAST_DEF_MASK, BIT(port), val);
431 	}
432 
433 	return 0;
434 }
435 
436 static void a5psw_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
437 {
438 	bool learning_enabled, rx_enabled, tx_enabled;
439 	struct dsa_port *dp = dsa_to_port(ds, port);
440 	struct a5psw *a5psw = ds->priv;
441 
442 	switch (state) {
443 	case BR_STATE_DISABLED:
444 	case BR_STATE_BLOCKING:
445 	case BR_STATE_LISTENING:
446 		rx_enabled = false;
447 		tx_enabled = false;
448 		learning_enabled = false;
449 		break;
450 	case BR_STATE_LEARNING:
451 		rx_enabled = false;
452 		tx_enabled = false;
453 		learning_enabled = dp->learning;
454 		break;
455 	case BR_STATE_FORWARDING:
456 		rx_enabled = true;
457 		tx_enabled = true;
458 		learning_enabled = dp->learning;
459 		break;
460 	default:
461 		dev_err(ds->dev, "invalid STP state: %d\n", state);
462 		return;
463 	}
464 
465 	a5psw_port_learning_set(a5psw, port, learning_enabled);
466 	a5psw_port_rx_block_set(a5psw, port, !rx_enabled);
467 	a5psw_port_tx_enable(a5psw, port, tx_enabled);
468 }
469 
470 static void a5psw_port_fast_age(struct dsa_switch *ds, int port)
471 {
472 	struct a5psw *a5psw = ds->priv;
473 
474 	a5psw_port_fdb_flush(a5psw, port);
475 }
476 
477 static int a5psw_lk_execute_lookup(struct a5psw *a5psw, union lk_data *lk_data,
478 				   u16 *entry)
479 {
480 	u32 ctrl;
481 	int ret;
482 
483 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_LO, lk_data->lo);
484 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data->hi);
485 
486 	ctrl = A5PSW_LK_ADDR_CTRL_LOOKUP;
487 	ret = a5psw_lk_execute_ctrl(a5psw, &ctrl);
488 	if (ret)
489 		return ret;
490 
491 	*entry = ctrl & A5PSW_LK_ADDR_CTRL_ADDRESS;
492 
493 	return 0;
494 }
495 
496 static int a5psw_port_fdb_add(struct dsa_switch *ds, int port,
497 			      const unsigned char *addr, u16 vid,
498 			      struct dsa_db db)
499 {
500 	struct a5psw *a5psw = ds->priv;
501 	union lk_data lk_data = {0};
502 	bool inc_learncount = false;
503 	int ret = 0;
504 	u16 entry;
505 	u32 reg;
506 
507 	ether_addr_copy(lk_data.entry.mac, addr);
508 	lk_data.entry.port_mask = BIT(port);
509 
510 	mutex_lock(&a5psw->lk_lock);
511 
512 	/* Set the value to be written in the lookup table */
513 	ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
514 	if (ret)
515 		goto lk_unlock;
516 
517 	lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
518 	if (!lk_data.entry.valid) {
519 		inc_learncount = true;
520 		/* port_mask set to 0x1f when entry is not valid, clear it */
521 		lk_data.entry.port_mask = 0;
522 		lk_data.entry.prio = 0;
523 	}
524 
525 	lk_data.entry.port_mask |= BIT(port);
526 	lk_data.entry.is_static = 1;
527 	lk_data.entry.valid = 1;
528 
529 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
530 
531 	reg = A5PSW_LK_ADDR_CTRL_WRITE | entry;
532 	ret = a5psw_lk_execute_ctrl(a5psw, &reg);
533 	if (ret)
534 		goto lk_unlock;
535 
536 	if (inc_learncount) {
537 		reg = A5PSW_LK_LEARNCOUNT_MODE_INC;
538 		a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
539 	}
540 
541 lk_unlock:
542 	mutex_unlock(&a5psw->lk_lock);
543 
544 	return ret;
545 }
546 
547 static int a5psw_port_fdb_del(struct dsa_switch *ds, int port,
548 			      const unsigned char *addr, u16 vid,
549 			      struct dsa_db db)
550 {
551 	struct a5psw *a5psw = ds->priv;
552 	union lk_data lk_data = {0};
553 	bool clear = false;
554 	u16 entry;
555 	u32 reg;
556 	int ret;
557 
558 	ether_addr_copy(lk_data.entry.mac, addr);
559 
560 	mutex_lock(&a5psw->lk_lock);
561 
562 	ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
563 	if (ret)
564 		goto lk_unlock;
565 
566 	lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
567 
568 	/* Our hardware does not associate any VID to the FDB entries so this
569 	 * means that if two entries were added for the same mac but for
570 	 * different VID, then, on the deletion of the first one, we would also
571 	 * delete the second one. Since there is unfortunately nothing we can do
572 	 * about that, do not return an error...
573 	 */
574 	if (!lk_data.entry.valid)
575 		goto lk_unlock;
576 
577 	lk_data.entry.port_mask &= ~BIT(port);
578 	/* If there is no more port in the mask, clear the entry */
579 	if (lk_data.entry.port_mask == 0)
580 		clear = true;
581 
582 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
583 
584 	reg = entry;
585 	if (clear)
586 		reg |= A5PSW_LK_ADDR_CTRL_CLEAR;
587 	else
588 		reg |= A5PSW_LK_ADDR_CTRL_WRITE;
589 
590 	ret = a5psw_lk_execute_ctrl(a5psw, &reg);
591 	if (ret)
592 		goto lk_unlock;
593 
594 	/* Decrement LEARNCOUNT */
595 	if (clear) {
596 		reg = A5PSW_LK_LEARNCOUNT_MODE_DEC;
597 		a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
598 	}
599 
600 lk_unlock:
601 	mutex_unlock(&a5psw->lk_lock);
602 
603 	return ret;
604 }
605 
606 static int a5psw_port_fdb_dump(struct dsa_switch *ds, int port,
607 			       dsa_fdb_dump_cb_t *cb, void *data)
608 {
609 	struct a5psw *a5psw = ds->priv;
610 	union lk_data lk_data;
611 	int i = 0, ret = 0;
612 	u32 reg;
613 
614 	mutex_lock(&a5psw->lk_lock);
615 
616 	for (i = 0; i < A5PSW_TABLE_ENTRIES; i++) {
617 		reg = A5PSW_LK_ADDR_CTRL_READ | A5PSW_LK_ADDR_CTRL_WAIT | i;
618 
619 		ret = a5psw_lk_execute_ctrl(a5psw, &reg);
620 		if (ret)
621 			goto out_unlock;
622 
623 		lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
624 		/* If entry is not valid or does not contain the port, skip */
625 		if (!lk_data.entry.valid ||
626 		    !(lk_data.entry.port_mask & BIT(port)))
627 			continue;
628 
629 		lk_data.lo = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_LO);
630 
631 		ret = cb(lk_data.entry.mac, 0, lk_data.entry.is_static, data);
632 		if (ret)
633 			goto out_unlock;
634 	}
635 
636 out_unlock:
637 	mutex_unlock(&a5psw->lk_lock);
638 
639 	return ret;
640 }
641 
642 static int a5psw_port_vlan_filtering(struct dsa_switch *ds, int port,
643 				     bool vlan_filtering,
644 				     struct netlink_ext_ack *extack)
645 {
646 	u32 mask = BIT(port + A5PSW_VLAN_VERI_SHIFT) |
647 		   BIT(port + A5PSW_VLAN_DISC_SHIFT);
648 	u32 val = vlan_filtering ? mask : 0;
649 	struct a5psw *a5psw = ds->priv;
650 
651 	/* Disable/enable vlan tagging */
652 	a5psw_reg_rmw(a5psw, A5PSW_VLAN_IN_MODE_ENA, BIT(port),
653 		      vlan_filtering ? BIT(port) : 0);
654 
655 	/* Disable/enable vlan input filtering */
656 	a5psw_reg_rmw(a5psw, A5PSW_VLAN_VERIFY, mask, val);
657 
658 	return 0;
659 }
660 
661 static int a5psw_find_vlan_entry(struct a5psw *a5psw, u16 vid)
662 {
663 	u32 vlan_res;
664 	int i;
665 
666 	/* Find vlan for this port */
667 	for (i = 0; i < A5PSW_VLAN_COUNT; i++) {
668 		vlan_res = a5psw_reg_readl(a5psw, A5PSW_VLAN_RES(i));
669 		if (FIELD_GET(A5PSW_VLAN_RES_VLANID, vlan_res) == vid)
670 			return i;
671 	}
672 
673 	return -1;
674 }
675 
676 static int a5psw_new_vlan_res_entry(struct a5psw *a5psw, u16 newvid)
677 {
678 	u32 vlan_res;
679 	int i;
680 
681 	/* Find a free VLAN entry */
682 	for (i = 0; i < A5PSW_VLAN_COUNT; i++) {
683 		vlan_res = a5psw_reg_readl(a5psw, A5PSW_VLAN_RES(i));
684 		if (!(FIELD_GET(A5PSW_VLAN_RES_PORTMASK, vlan_res))) {
685 			vlan_res = FIELD_PREP(A5PSW_VLAN_RES_VLANID, newvid);
686 			a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(i), vlan_res);
687 			return i;
688 		}
689 	}
690 
691 	return -1;
692 }
693 
694 static void a5psw_port_vlan_tagged_cfg(struct a5psw *a5psw,
695 				       unsigned int vlan_res_id, int port,
696 				       bool set)
697 {
698 	u32 mask = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_RD_TAGMASK |
699 		   BIT(port);
700 	u32 vlan_res_off = A5PSW_VLAN_RES(vlan_res_id);
701 	u32 val = A5PSW_VLAN_RES_WR_TAGMASK, reg;
702 
703 	if (set)
704 		val |= BIT(port);
705 
706 	/* Toggle tag mask read */
707 	a5psw_reg_writel(a5psw, vlan_res_off, A5PSW_VLAN_RES_RD_TAGMASK);
708 	reg = a5psw_reg_readl(a5psw, vlan_res_off);
709 	a5psw_reg_writel(a5psw, vlan_res_off, A5PSW_VLAN_RES_RD_TAGMASK);
710 
711 	reg &= ~mask;
712 	reg |= val;
713 	a5psw_reg_writel(a5psw, vlan_res_off, reg);
714 }
715 
716 static void a5psw_port_vlan_cfg(struct a5psw *a5psw, unsigned int vlan_res_id,
717 				int port, bool set)
718 {
719 	u32 mask = A5PSW_VLAN_RES_WR_TAGMASK | BIT(port);
720 	u32 reg = A5PSW_VLAN_RES_WR_PORTMASK;
721 
722 	if (set)
723 		reg |= BIT(port);
724 
725 	a5psw_reg_rmw(a5psw, A5PSW_VLAN_RES(vlan_res_id), mask, reg);
726 }
727 
728 static int a5psw_port_vlan_add(struct dsa_switch *ds, int port,
729 			       const struct switchdev_obj_port_vlan *vlan,
730 			       struct netlink_ext_ack *extack)
731 {
732 	bool tagged = !(vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED);
733 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
734 	struct a5psw *a5psw = ds->priv;
735 	u16 vid = vlan->vid;
736 	int vlan_res_id;
737 
738 	vlan_res_id = a5psw_find_vlan_entry(a5psw, vid);
739 	if (vlan_res_id < 0) {
740 		vlan_res_id = a5psw_new_vlan_res_entry(a5psw, vid);
741 		if (vlan_res_id < 0)
742 			return -ENOSPC;
743 	}
744 
745 	a5psw_port_vlan_cfg(a5psw, vlan_res_id, port, true);
746 	if (tagged)
747 		a5psw_port_vlan_tagged_cfg(a5psw, vlan_res_id, port, true);
748 
749 	/* Configure port to tag with corresponding VID, but do not enable it
750 	 * yet: wait for vlan filtering to be enabled to enable vlan port
751 	 * tagging
752 	 */
753 	if (pvid)
754 		a5psw_reg_writel(a5psw, A5PSW_SYSTEM_TAGINFO(port), vid);
755 
756 	return 0;
757 }
758 
759 static int a5psw_port_vlan_del(struct dsa_switch *ds, int port,
760 			       const struct switchdev_obj_port_vlan *vlan)
761 {
762 	struct a5psw *a5psw = ds->priv;
763 	u16 vid = vlan->vid;
764 	int vlan_res_id;
765 
766 	vlan_res_id = a5psw_find_vlan_entry(a5psw, vid);
767 	if (vlan_res_id < 0)
768 		return -EINVAL;
769 
770 	a5psw_port_vlan_cfg(a5psw, vlan_res_id, port, false);
771 	a5psw_port_vlan_tagged_cfg(a5psw, vlan_res_id, port, false);
772 
773 	return 0;
774 }
775 
776 static u64 a5psw_read_stat(struct a5psw *a5psw, u32 offset, int port)
777 {
778 	u32 reg_lo, reg_hi;
779 
780 	reg_lo = a5psw_reg_readl(a5psw, offset + A5PSW_PORT_OFFSET(port));
781 	/* A5PSW_STATS_HIWORD is latched on stat read */
782 	reg_hi = a5psw_reg_readl(a5psw, A5PSW_STATS_HIWORD);
783 
784 	return ((u64)reg_hi << 32) | reg_lo;
785 }
786 
787 static void a5psw_get_strings(struct dsa_switch *ds, int port, u32 stringset,
788 			      uint8_t *data)
789 {
790 	unsigned int u;
791 
792 	if (stringset != ETH_SS_STATS)
793 		return;
794 
795 	for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++) {
796 		memcpy(data + u * ETH_GSTRING_LEN, a5psw_stats[u].name,
797 		       ETH_GSTRING_LEN);
798 	}
799 }
800 
801 static void a5psw_get_ethtool_stats(struct dsa_switch *ds, int port,
802 				    uint64_t *data)
803 {
804 	struct a5psw *a5psw = ds->priv;
805 	unsigned int u;
806 
807 	for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++)
808 		data[u] = a5psw_read_stat(a5psw, a5psw_stats[u].offset, port);
809 }
810 
811 static int a5psw_get_sset_count(struct dsa_switch *ds, int port, int sset)
812 {
813 	if (sset != ETH_SS_STATS)
814 		return 0;
815 
816 	return ARRAY_SIZE(a5psw_stats);
817 }
818 
819 static void a5psw_get_eth_mac_stats(struct dsa_switch *ds, int port,
820 				    struct ethtool_eth_mac_stats *mac_stats)
821 {
822 	struct a5psw *a5psw = ds->priv;
823 
824 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
825 	mac_stats->FramesTransmittedOK = RD(aFramesTransmittedOK);
826 	mac_stats->SingleCollisionFrames = RD(aSingleCollisions);
827 	mac_stats->MultipleCollisionFrames = RD(aMultipleCollisions);
828 	mac_stats->FramesReceivedOK = RD(aFramesReceivedOK);
829 	mac_stats->FrameCheckSequenceErrors = RD(aFrameCheckSequenceErrors);
830 	mac_stats->AlignmentErrors = RD(aAlignmentErrors);
831 	mac_stats->OctetsTransmittedOK = RD(aOctetsTransmittedOK);
832 	mac_stats->FramesWithDeferredXmissions = RD(aDeferred);
833 	mac_stats->LateCollisions = RD(aLateCollisions);
834 	mac_stats->FramesAbortedDueToXSColls = RD(aExcessiveCollisions);
835 	mac_stats->FramesLostDueToIntMACXmitError = RD(ifOutErrors);
836 	mac_stats->CarrierSenseErrors = RD(aCarrierSenseErrors);
837 	mac_stats->OctetsReceivedOK = RD(aOctetsReceivedOK);
838 	mac_stats->FramesLostDueToIntMACRcvError = RD(ifInErrors);
839 	mac_stats->MulticastFramesXmittedOK = RD(ifOutMulticastPkts);
840 	mac_stats->BroadcastFramesXmittedOK = RD(ifOutBroadcastPkts);
841 	mac_stats->FramesWithExcessiveDeferral = RD(aDeferred);
842 	mac_stats->MulticastFramesReceivedOK = RD(ifInMulticastPkts);
843 	mac_stats->BroadcastFramesReceivedOK = RD(ifInBroadcastPkts);
844 #undef RD
845 }
846 
847 static const struct ethtool_rmon_hist_range a5psw_rmon_ranges[] = {
848 	{ 0, 64 },
849 	{ 65, 127 },
850 	{ 128, 255 },
851 	{ 256, 511 },
852 	{ 512, 1023 },
853 	{ 1024, 1518 },
854 	{ 1519, A5PSW_MAX_MTU },
855 	{}
856 };
857 
858 static void a5psw_get_rmon_stats(struct dsa_switch *ds, int port,
859 				 struct ethtool_rmon_stats *rmon_stats,
860 				 const struct ethtool_rmon_hist_range **ranges)
861 {
862 	struct a5psw *a5psw = ds->priv;
863 
864 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
865 	rmon_stats->undersize_pkts = RD(etherStatsUndersizePkts);
866 	rmon_stats->oversize_pkts = RD(etherStatsOversizePkts);
867 	rmon_stats->fragments = RD(etherStatsFragments);
868 	rmon_stats->jabbers = RD(etherStatsJabbers);
869 	rmon_stats->hist[0] = RD(etherStatsPkts64Octets);
870 	rmon_stats->hist[1] = RD(etherStatsPkts65to127Octets);
871 	rmon_stats->hist[2] = RD(etherStatsPkts128to255Octets);
872 	rmon_stats->hist[3] = RD(etherStatsPkts256to511Octets);
873 	rmon_stats->hist[4] = RD(etherStatsPkts512to1023Octets);
874 	rmon_stats->hist[5] = RD(etherStatsPkts1024to1518Octets);
875 	rmon_stats->hist[6] = RD(etherStatsPkts1519toXOctets);
876 #undef RD
877 
878 	*ranges = a5psw_rmon_ranges;
879 }
880 
881 static void a5psw_get_eth_ctrl_stats(struct dsa_switch *ds, int port,
882 				     struct ethtool_eth_ctrl_stats *ctrl_stats)
883 {
884 	struct a5psw *a5psw = ds->priv;
885 	u64 stat;
886 
887 	stat = a5psw_read_stat(a5psw, A5PSW_aTxPAUSEMACCtrlFrames, port);
888 	ctrl_stats->MACControlFramesTransmitted = stat;
889 	stat = a5psw_read_stat(a5psw, A5PSW_aRxPAUSEMACCtrlFrames, port);
890 	ctrl_stats->MACControlFramesReceived = stat;
891 }
892 
893 static void a5psw_vlan_setup(struct a5psw *a5psw, int port)
894 {
895 	u32 reg;
896 
897 	/* Enable TAG always mode for the port, this is actually controlled
898 	 * by VLAN_IN_MODE_ENA field which will be used for PVID insertion
899 	 */
900 	reg = A5PSW_VLAN_IN_MODE_TAG_ALWAYS;
901 	reg <<= A5PSW_VLAN_IN_MODE_PORT_SHIFT(port);
902 	a5psw_reg_rmw(a5psw, A5PSW_VLAN_IN_MODE, A5PSW_VLAN_IN_MODE_PORT(port),
903 		      reg);
904 
905 	/* Set transparent mode for output frame manipulation, this will depend
906 	 * on the VLAN_RES configuration mode
907 	 */
908 	reg = A5PSW_VLAN_OUT_MODE_TRANSPARENT;
909 	reg <<= A5PSW_VLAN_OUT_MODE_PORT_SHIFT(port);
910 	a5psw_reg_rmw(a5psw, A5PSW_VLAN_OUT_MODE,
911 		      A5PSW_VLAN_OUT_MODE_PORT(port), reg);
912 }
913 
914 static int a5psw_setup(struct dsa_switch *ds)
915 {
916 	struct a5psw *a5psw = ds->priv;
917 	int port, vlan, ret;
918 	struct dsa_port *dp;
919 	u32 reg;
920 
921 	/* Validate that there is only 1 CPU port with index A5PSW_CPU_PORT */
922 	dsa_switch_for_each_cpu_port(dp, ds) {
923 		if (dp->index != A5PSW_CPU_PORT) {
924 			dev_err(a5psw->dev, "Invalid CPU port\n");
925 			return -EINVAL;
926 		}
927 	}
928 
929 	/* Configure management port */
930 	reg = A5PSW_CPU_PORT | A5PSW_MGMT_CFG_ENABLE;
931 	a5psw_reg_writel(a5psw, A5PSW_MGMT_CFG, reg);
932 
933 	/* Set pattern 0 to forward all frame to mgmt port */
934 	a5psw_reg_writel(a5psw, A5PSW_PATTERN_CTRL(A5PSW_PATTERN_MGMTFWD),
935 			 A5PSW_PATTERN_CTRL_MGMTFWD);
936 
937 	/* Enable port tagging */
938 	reg = FIELD_PREP(A5PSW_MGMT_TAG_CFG_TAGFIELD, ETH_P_DSA_A5PSW);
939 	reg |= A5PSW_MGMT_TAG_CFG_ENABLE | A5PSW_MGMT_TAG_CFG_ALL_FRAMES;
940 	a5psw_reg_writel(a5psw, A5PSW_MGMT_TAG_CFG, reg);
941 
942 	/* Enable normal switch operation */
943 	reg = A5PSW_LK_ADDR_CTRL_BLOCKING | A5PSW_LK_ADDR_CTRL_LEARNING |
944 	      A5PSW_LK_ADDR_CTRL_AGEING | A5PSW_LK_ADDR_CTRL_ALLOW_MIGR |
945 	      A5PSW_LK_ADDR_CTRL_CLEAR_TABLE;
946 	a5psw_reg_writel(a5psw, A5PSW_LK_CTRL, reg);
947 
948 	ret = readl_poll_timeout(a5psw->base + A5PSW_LK_CTRL, reg,
949 				 !(reg & A5PSW_LK_ADDR_CTRL_CLEAR_TABLE),
950 				 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
951 	if (ret) {
952 		dev_err(a5psw->dev, "Failed to clear lookup table\n");
953 		return ret;
954 	}
955 
956 	/* Reset learn count to 0 */
957 	reg = A5PSW_LK_LEARNCOUNT_MODE_SET;
958 	a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
959 
960 	/* Clear VLAN resource table */
961 	reg = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_WR_TAGMASK;
962 	for (vlan = 0; vlan < A5PSW_VLAN_COUNT; vlan++)
963 		a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(vlan), reg);
964 
965 	/* Reset all ports */
966 	dsa_switch_for_each_port(dp, ds) {
967 		port = dp->index;
968 
969 		/* Reset the port */
970 		a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port),
971 				 A5PSW_CMD_CFG_SW_RESET);
972 
973 		/* Enable only CPU port */
974 		a5psw_port_enable_set(a5psw, port, dsa_port_is_cpu(dp));
975 
976 		if (dsa_port_is_unused(dp))
977 			continue;
978 
979 		/* Enable egress flooding and learning for CPU port */
980 		if (dsa_port_is_cpu(dp)) {
981 			a5psw_flooding_set_resolution(a5psw, port, true);
982 			a5psw_port_learning_set(a5psw, port, true);
983 		}
984 
985 		/* Enable standalone mode for user ports */
986 		if (dsa_port_is_user(dp))
987 			a5psw_port_set_standalone(a5psw, port, true);
988 
989 		a5psw_vlan_setup(a5psw, port);
990 	}
991 
992 	return 0;
993 }
994 
995 static const struct dsa_switch_ops a5psw_switch_ops = {
996 	.get_tag_protocol = a5psw_get_tag_protocol,
997 	.setup = a5psw_setup,
998 	.port_disable = a5psw_port_disable,
999 	.port_enable = a5psw_port_enable,
1000 	.phylink_get_caps = a5psw_phylink_get_caps,
1001 	.phylink_mac_select_pcs = a5psw_phylink_mac_select_pcs,
1002 	.phylink_mac_link_down = a5psw_phylink_mac_link_down,
1003 	.phylink_mac_link_up = a5psw_phylink_mac_link_up,
1004 	.port_change_mtu = a5psw_port_change_mtu,
1005 	.port_max_mtu = a5psw_port_max_mtu,
1006 	.get_sset_count = a5psw_get_sset_count,
1007 	.get_strings = a5psw_get_strings,
1008 	.get_ethtool_stats = a5psw_get_ethtool_stats,
1009 	.get_eth_mac_stats = a5psw_get_eth_mac_stats,
1010 	.get_eth_ctrl_stats = a5psw_get_eth_ctrl_stats,
1011 	.get_rmon_stats = a5psw_get_rmon_stats,
1012 	.set_ageing_time = a5psw_set_ageing_time,
1013 	.port_bridge_join = a5psw_port_bridge_join,
1014 	.port_bridge_leave = a5psw_port_bridge_leave,
1015 	.port_pre_bridge_flags = a5psw_port_pre_bridge_flags,
1016 	.port_bridge_flags = a5psw_port_bridge_flags,
1017 	.port_stp_state_set = a5psw_port_stp_state_set,
1018 	.port_fast_age = a5psw_port_fast_age,
1019 	.port_vlan_filtering = a5psw_port_vlan_filtering,
1020 	.port_vlan_add = a5psw_port_vlan_add,
1021 	.port_vlan_del = a5psw_port_vlan_del,
1022 	.port_fdb_add = a5psw_port_fdb_add,
1023 	.port_fdb_del = a5psw_port_fdb_del,
1024 	.port_fdb_dump = a5psw_port_fdb_dump,
1025 };
1026 
1027 static int a5psw_mdio_wait_busy(struct a5psw *a5psw)
1028 {
1029 	u32 status;
1030 	int err;
1031 
1032 	err = readl_poll_timeout(a5psw->base + A5PSW_MDIO_CFG_STATUS, status,
1033 				 !(status & A5PSW_MDIO_CFG_STATUS_BUSY), 10,
1034 				 1000 * USEC_PER_MSEC);
1035 	if (err)
1036 		dev_err(a5psw->dev, "MDIO command timeout\n");
1037 
1038 	return err;
1039 }
1040 
1041 static int a5psw_mdio_read(struct mii_bus *bus, int phy_id, int phy_reg)
1042 {
1043 	struct a5psw *a5psw = bus->priv;
1044 	u32 cmd, status;
1045 	int ret;
1046 
1047 	cmd = A5PSW_MDIO_COMMAND_READ;
1048 	cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
1049 	cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
1050 
1051 	a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
1052 
1053 	ret = a5psw_mdio_wait_busy(a5psw);
1054 	if (ret)
1055 		return ret;
1056 
1057 	ret = a5psw_reg_readl(a5psw, A5PSW_MDIO_DATA) & A5PSW_MDIO_DATA_MASK;
1058 
1059 	status = a5psw_reg_readl(a5psw, A5PSW_MDIO_CFG_STATUS);
1060 	if (status & A5PSW_MDIO_CFG_STATUS_READERR)
1061 		return -EIO;
1062 
1063 	return ret;
1064 }
1065 
1066 static int a5psw_mdio_write(struct mii_bus *bus, int phy_id, int phy_reg,
1067 			    u16 phy_data)
1068 {
1069 	struct a5psw *a5psw = bus->priv;
1070 	u32 cmd;
1071 
1072 	cmd = FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
1073 	cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
1074 
1075 	a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
1076 	a5psw_reg_writel(a5psw, A5PSW_MDIO_DATA, phy_data);
1077 
1078 	return a5psw_mdio_wait_busy(a5psw);
1079 }
1080 
1081 static int a5psw_mdio_config(struct a5psw *a5psw, u32 mdio_freq)
1082 {
1083 	unsigned long rate;
1084 	unsigned long div;
1085 	u32 cfgstatus;
1086 
1087 	rate = clk_get_rate(a5psw->hclk);
1088 	div = ((rate / mdio_freq) / 2);
1089 	if (div > FIELD_MAX(A5PSW_MDIO_CFG_STATUS_CLKDIV) ||
1090 	    div < A5PSW_MDIO_CLK_DIV_MIN) {
1091 		dev_err(a5psw->dev, "MDIO clock div %ld out of range\n", div);
1092 		return -ERANGE;
1093 	}
1094 
1095 	cfgstatus = FIELD_PREP(A5PSW_MDIO_CFG_STATUS_CLKDIV, div);
1096 
1097 	a5psw_reg_writel(a5psw, A5PSW_MDIO_CFG_STATUS, cfgstatus);
1098 
1099 	return 0;
1100 }
1101 
1102 static int a5psw_probe_mdio(struct a5psw *a5psw, struct device_node *node)
1103 {
1104 	struct device *dev = a5psw->dev;
1105 	struct mii_bus *bus;
1106 	u32 mdio_freq;
1107 	int ret;
1108 
1109 	if (of_property_read_u32(node, "clock-frequency", &mdio_freq))
1110 		mdio_freq = A5PSW_MDIO_DEF_FREQ;
1111 
1112 	ret = a5psw_mdio_config(a5psw, mdio_freq);
1113 	if (ret)
1114 		return ret;
1115 
1116 	bus = devm_mdiobus_alloc(dev);
1117 	if (!bus)
1118 		return -ENOMEM;
1119 
1120 	bus->name = "a5psw_mdio";
1121 	bus->read = a5psw_mdio_read;
1122 	bus->write = a5psw_mdio_write;
1123 	bus->priv = a5psw;
1124 	bus->parent = dev;
1125 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1126 
1127 	a5psw->mii_bus = bus;
1128 
1129 	return devm_of_mdiobus_register(dev, bus, node);
1130 }
1131 
1132 static void a5psw_pcs_free(struct a5psw *a5psw)
1133 {
1134 	int i;
1135 
1136 	for (i = 0; i < ARRAY_SIZE(a5psw->pcs); i++) {
1137 		if (a5psw->pcs[i])
1138 			miic_destroy(a5psw->pcs[i]);
1139 	}
1140 }
1141 
1142 static int a5psw_pcs_get(struct a5psw *a5psw)
1143 {
1144 	struct device_node *ports, *port, *pcs_node;
1145 	struct phylink_pcs *pcs;
1146 	int ret;
1147 	u32 reg;
1148 
1149 	ports = of_get_child_by_name(a5psw->dev->of_node, "ethernet-ports");
1150 	if (!ports)
1151 		return -EINVAL;
1152 
1153 	for_each_available_child_of_node(ports, port) {
1154 		pcs_node = of_parse_phandle(port, "pcs-handle", 0);
1155 		if (!pcs_node)
1156 			continue;
1157 
1158 		if (of_property_read_u32(port, "reg", &reg)) {
1159 			ret = -EINVAL;
1160 			goto free_pcs;
1161 		}
1162 
1163 		if (reg >= ARRAY_SIZE(a5psw->pcs)) {
1164 			ret = -ENODEV;
1165 			goto free_pcs;
1166 		}
1167 
1168 		pcs = miic_create(a5psw->dev, pcs_node);
1169 		if (IS_ERR(pcs)) {
1170 			dev_err(a5psw->dev, "Failed to create PCS for port %d\n",
1171 				reg);
1172 			ret = PTR_ERR(pcs);
1173 			goto free_pcs;
1174 		}
1175 
1176 		a5psw->pcs[reg] = pcs;
1177 		of_node_put(pcs_node);
1178 	}
1179 	of_node_put(ports);
1180 
1181 	return 0;
1182 
1183 free_pcs:
1184 	of_node_put(pcs_node);
1185 	of_node_put(port);
1186 	of_node_put(ports);
1187 	a5psw_pcs_free(a5psw);
1188 
1189 	return ret;
1190 }
1191 
1192 static int a5psw_probe(struct platform_device *pdev)
1193 {
1194 	struct device *dev = &pdev->dev;
1195 	struct device_node *mdio;
1196 	struct dsa_switch *ds;
1197 	struct a5psw *a5psw;
1198 	int ret;
1199 
1200 	a5psw = devm_kzalloc(dev, sizeof(*a5psw), GFP_KERNEL);
1201 	if (!a5psw)
1202 		return -ENOMEM;
1203 
1204 	a5psw->dev = dev;
1205 	mutex_init(&a5psw->lk_lock);
1206 	spin_lock_init(&a5psw->reg_lock);
1207 	a5psw->base = devm_platform_ioremap_resource(pdev, 0);
1208 	if (IS_ERR(a5psw->base))
1209 		return PTR_ERR(a5psw->base);
1210 
1211 	a5psw->bridged_ports = BIT(A5PSW_CPU_PORT);
1212 
1213 	ret = a5psw_pcs_get(a5psw);
1214 	if (ret)
1215 		return ret;
1216 
1217 	a5psw->hclk = devm_clk_get(dev, "hclk");
1218 	if (IS_ERR(a5psw->hclk)) {
1219 		dev_err(dev, "failed get hclk clock\n");
1220 		ret = PTR_ERR(a5psw->hclk);
1221 		goto free_pcs;
1222 	}
1223 
1224 	a5psw->clk = devm_clk_get(dev, "clk");
1225 	if (IS_ERR(a5psw->clk)) {
1226 		dev_err(dev, "failed get clk_switch clock\n");
1227 		ret = PTR_ERR(a5psw->clk);
1228 		goto free_pcs;
1229 	}
1230 
1231 	ret = clk_prepare_enable(a5psw->clk);
1232 	if (ret)
1233 		goto free_pcs;
1234 
1235 	ret = clk_prepare_enable(a5psw->hclk);
1236 	if (ret)
1237 		goto clk_disable;
1238 
1239 	mdio = of_get_child_by_name(dev->of_node, "mdio");
1240 	if (of_device_is_available(mdio)) {
1241 		ret = a5psw_probe_mdio(a5psw, mdio);
1242 		if (ret) {
1243 			of_node_put(mdio);
1244 			dev_err(dev, "Failed to register MDIO: %d\n", ret);
1245 			goto hclk_disable;
1246 		}
1247 	}
1248 
1249 	of_node_put(mdio);
1250 
1251 	ds = &a5psw->ds;
1252 	ds->dev = dev;
1253 	ds->num_ports = A5PSW_PORTS_NUM;
1254 	ds->ops = &a5psw_switch_ops;
1255 	ds->priv = a5psw;
1256 
1257 	ret = dsa_register_switch(ds);
1258 	if (ret) {
1259 		dev_err(dev, "Failed to register DSA switch: %d\n", ret);
1260 		goto hclk_disable;
1261 	}
1262 
1263 	return 0;
1264 
1265 hclk_disable:
1266 	clk_disable_unprepare(a5psw->hclk);
1267 clk_disable:
1268 	clk_disable_unprepare(a5psw->clk);
1269 free_pcs:
1270 	a5psw_pcs_free(a5psw);
1271 
1272 	return ret;
1273 }
1274 
1275 static void a5psw_remove(struct platform_device *pdev)
1276 {
1277 	struct a5psw *a5psw = platform_get_drvdata(pdev);
1278 
1279 	if (!a5psw)
1280 		return;
1281 
1282 	dsa_unregister_switch(&a5psw->ds);
1283 	a5psw_pcs_free(a5psw);
1284 	clk_disable_unprepare(a5psw->hclk);
1285 	clk_disable_unprepare(a5psw->clk);
1286 }
1287 
1288 static void a5psw_shutdown(struct platform_device *pdev)
1289 {
1290 	struct a5psw *a5psw = platform_get_drvdata(pdev);
1291 
1292 	if (!a5psw)
1293 		return;
1294 
1295 	dsa_switch_shutdown(&a5psw->ds);
1296 
1297 	platform_set_drvdata(pdev, NULL);
1298 }
1299 
1300 static const struct of_device_id a5psw_of_mtable[] = {
1301 	{ .compatible = "renesas,rzn1-a5psw", },
1302 	{ /* sentinel */ },
1303 };
1304 MODULE_DEVICE_TABLE(of, a5psw_of_mtable);
1305 
1306 static struct platform_driver a5psw_driver = {
1307 	.driver = {
1308 		.name	 = "rzn1_a5psw",
1309 		.of_match_table = a5psw_of_mtable,
1310 	},
1311 	.probe = a5psw_probe,
1312 	.remove_new = a5psw_remove,
1313 	.shutdown = a5psw_shutdown,
1314 };
1315 module_platform_driver(a5psw_driver);
1316 
1317 MODULE_LICENSE("GPL");
1318 MODULE_DESCRIPTION("Renesas RZ/N1 Advanced 5-port Switch driver");
1319 MODULE_AUTHOR("Clément Léger <clement.leger@bootlin.com>");
1320