xref: /linux/drivers/net/dsa/realtek/rtl8366rb.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Realtek SMI subdriver for the Realtek RTL8366RB ethernet switch
3  *
4  * This is a sparsely documented chip, the only viable documentation seems
5  * to be a patched up code drop from the vendor that appear in various
6  * GPL source trees.
7  *
8  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
9  * Copyright (C) 2009-2010 Gabor Juhos <juhosg@openwrt.org>
10  * Copyright (C) 2010 Antti Seppälä <a.seppala@gmail.com>
11  * Copyright (C) 2010 Roman Yeryomin <roman@advem.lv>
12  * Copyright (C) 2011 Colin Leitner <colin.leitner@googlemail.com>
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_bridge.h>
18 #include <linux/if_vlan.h>
19 #include <linux/interrupt.h>
20 #include <linux/irqdomain.h>
21 #include <linux/irqchip/chained_irq.h>
22 #include <linux/of_irq.h>
23 #include <linux/regmap.h>
24 
25 #include "realtek.h"
26 #include "realtek-smi.h"
27 #include "realtek-mdio.h"
28 #include "rtl83xx.h"
29 
30 #define RTL8366RB_PORT_NUM_CPU		5
31 #define RTL8366RB_NUM_PORTS		6
32 #define RTL8366RB_PHY_NO_MAX		4
33 #define RTL8366RB_PHY_ADDR_MAX		31
34 
35 /* Switch Global Configuration register */
36 #define RTL8366RB_SGCR				0x0000
37 #define RTL8366RB_SGCR_EN_BC_STORM_CTRL		BIT(0)
38 #define RTL8366RB_SGCR_MAX_LENGTH(a)		((a) << 4)
39 #define RTL8366RB_SGCR_MAX_LENGTH_MASK		RTL8366RB_SGCR_MAX_LENGTH(0x3)
40 #define RTL8366RB_SGCR_MAX_LENGTH_1522		RTL8366RB_SGCR_MAX_LENGTH(0x0)
41 #define RTL8366RB_SGCR_MAX_LENGTH_1536		RTL8366RB_SGCR_MAX_LENGTH(0x1)
42 #define RTL8366RB_SGCR_MAX_LENGTH_1552		RTL8366RB_SGCR_MAX_LENGTH(0x2)
43 #define RTL8366RB_SGCR_MAX_LENGTH_16000		RTL8366RB_SGCR_MAX_LENGTH(0x3)
44 #define RTL8366RB_SGCR_EN_VLAN			BIT(13)
45 #define RTL8366RB_SGCR_EN_VLAN_4KTB		BIT(14)
46 
47 /* Port Enable Control register */
48 #define RTL8366RB_PECR				0x0001
49 
50 /* Switch per-port learning disablement register */
51 #define RTL8366RB_PORT_LEARNDIS_CTRL		0x0002
52 
53 /* Security control, actually aging register */
54 #define RTL8366RB_SECURITY_CTRL			0x0003
55 
56 #define RTL8366RB_SSCR2				0x0004
57 #define RTL8366RB_SSCR2_DROP_UNKNOWN_DA		BIT(0)
58 
59 /* Port Mode Control registers */
60 #define RTL8366RB_PMC0				0x0005
61 #define RTL8366RB_PMC0_SPI			BIT(0)
62 #define RTL8366RB_PMC0_EN_AUTOLOAD		BIT(1)
63 #define RTL8366RB_PMC0_PROBE			BIT(2)
64 #define RTL8366RB_PMC0_DIS_BISR			BIT(3)
65 #define RTL8366RB_PMC0_ADCTEST			BIT(4)
66 #define RTL8366RB_PMC0_SRAM_DIAG		BIT(5)
67 #define RTL8366RB_PMC0_EN_SCAN			BIT(6)
68 #define RTL8366RB_PMC0_P4_IOMODE_SHIFT		7
69 #define RTL8366RB_PMC0_P4_IOMODE_MASK		GENMASK(9, 7)
70 #define RTL8366RB_PMC0_P5_IOMODE_SHIFT		10
71 #define RTL8366RB_PMC0_P5_IOMODE_MASK		GENMASK(12, 10)
72 #define RTL8366RB_PMC0_SDSMODE_SHIFT		13
73 #define RTL8366RB_PMC0_SDSMODE_MASK		GENMASK(15, 13)
74 #define RTL8366RB_PMC1				0x0006
75 
76 /* Port Mirror Control Register */
77 #define RTL8366RB_PMCR				0x0007
78 #define RTL8366RB_PMCR_SOURCE_PORT(a)		(a)
79 #define RTL8366RB_PMCR_SOURCE_PORT_MASK		0x000f
80 #define RTL8366RB_PMCR_MONITOR_PORT(a)		((a) << 4)
81 #define RTL8366RB_PMCR_MONITOR_PORT_MASK	0x00f0
82 #define RTL8366RB_PMCR_MIRROR_RX		BIT(8)
83 #define RTL8366RB_PMCR_MIRROR_TX		BIT(9)
84 #define RTL8366RB_PMCR_MIRROR_SPC		BIT(10)
85 #define RTL8366RB_PMCR_MIRROR_ISO		BIT(11)
86 
87 /* bits 0..7 = port 0, bits 8..15 = port 1 */
88 #define RTL8366RB_PAACR0		0x0010
89 /* bits 0..7 = port 2, bits 8..15 = port 3 */
90 #define RTL8366RB_PAACR1		0x0011
91 /* bits 0..7 = port 4, bits 8..15 = port 5 */
92 #define RTL8366RB_PAACR2		0x0012
93 #define RTL8366RB_PAACR_SPEED_10M	0
94 #define RTL8366RB_PAACR_SPEED_100M	1
95 #define RTL8366RB_PAACR_SPEED_1000M	2
96 #define RTL8366RB_PAACR_FULL_DUPLEX	BIT(2)
97 #define RTL8366RB_PAACR_LINK_UP		BIT(4)
98 #define RTL8366RB_PAACR_TX_PAUSE	BIT(5)
99 #define RTL8366RB_PAACR_RX_PAUSE	BIT(6)
100 #define RTL8366RB_PAACR_AN		BIT(7)
101 
102 /* bits 0..7 = port 0, bits 8..15 = port 1 */
103 #define RTL8366RB_PSTAT0		0x0014
104 /* bits 0..7 = port 2, bits 8..15 = port 3 */
105 #define RTL8366RB_PSTAT1		0x0015
106 /* bits 0..7 = port 4, bits 8..15 = port 5 */
107 #define RTL8366RB_PSTAT2		0x0016
108 
109 #define RTL8366RB_POWER_SAVING_REG	0x0021
110 
111 /* Spanning tree status (STP) control, two bits per port per FID */
112 #define RTL8366RB_STP_STATE_BASE	0x0050 /* 0x0050..0x0057 */
113 #define RTL8366RB_STP_STATE_DISABLED	0x0
114 #define RTL8366RB_STP_STATE_BLOCKING	0x1
115 #define RTL8366RB_STP_STATE_LEARNING	0x2
116 #define RTL8366RB_STP_STATE_FORWARDING	0x3
117 #define RTL8366RB_STP_MASK		GENMASK(1, 0)
118 #define RTL8366RB_STP_STATE(port, state) \
119 	((state) << ((port) * 2))
120 #define RTL8366RB_STP_STATE_MASK(port) \
121 	RTL8366RB_STP_STATE((port), RTL8366RB_STP_MASK)
122 
123 /* CPU port control reg */
124 #define RTL8366RB_CPU_CTRL_REG		0x0061
125 #define RTL8366RB_CPU_PORTS_MSK		0x00FF
126 /* Disables inserting custom tag length/type 0x8899 */
127 #define RTL8366RB_CPU_NO_TAG		BIT(15)
128 #define RTL8366RB_CPU_TAG_SIZE		4
129 
130 #define RTL8366RB_SMAR0			0x0070 /* bits 0..15 */
131 #define RTL8366RB_SMAR1			0x0071 /* bits 16..31 */
132 #define RTL8366RB_SMAR2			0x0072 /* bits 32..47 */
133 
134 #define RTL8366RB_RESET_CTRL_REG		0x0100
135 #define RTL8366RB_CHIP_CTRL_RESET_HW		BIT(0)
136 #define RTL8366RB_CHIP_CTRL_RESET_SW		BIT(1)
137 
138 #define RTL8366RB_CHIP_ID_REG			0x0509
139 #define RTL8366RB_CHIP_ID_8366			0x5937
140 #define RTL8366RB_CHIP_VERSION_CTRL_REG		0x050A
141 #define RTL8366RB_CHIP_VERSION_MASK		0xf
142 
143 /* PHY registers control */
144 #define RTL8366RB_PHY_ACCESS_CTRL_REG		0x8000
145 #define RTL8366RB_PHY_CTRL_READ			BIT(0)
146 #define RTL8366RB_PHY_CTRL_WRITE		0
147 #define RTL8366RB_PHY_ACCESS_BUSY_REG		0x8001
148 #define RTL8366RB_PHY_INT_BUSY			BIT(0)
149 #define RTL8366RB_PHY_EXT_BUSY			BIT(4)
150 #define RTL8366RB_PHY_ACCESS_DATA_REG		0x8002
151 #define RTL8366RB_PHY_EXT_CTRL_REG		0x8010
152 #define RTL8366RB_PHY_EXT_WRDATA_REG		0x8011
153 #define RTL8366RB_PHY_EXT_RDDATA_REG		0x8012
154 
155 #define RTL8366RB_PHY_REG_MASK			0x1f
156 #define RTL8366RB_PHY_PAGE_OFFSET		5
157 #define RTL8366RB_PHY_PAGE_MASK			(0xf << 5)
158 #define RTL8366RB_PHY_NO_OFFSET			9
159 #define RTL8366RB_PHY_NO_MASK			(0x1f << 9)
160 
161 /* VLAN Ingress Control Register 1, one bit per port.
162  * bit 0 .. 5 will make the switch drop ingress frames without
163  * VID such as untagged or priority-tagged frames for respective
164  * port.
165  * bit 6 .. 11 will make the switch drop ingress frames carrying
166  * a C-tag with VID != 0 for respective port.
167  */
168 #define RTL8366RB_VLAN_INGRESS_CTRL1_REG	0x037E
169 #define RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port)	(BIT((port)) | BIT((port) + 6))
170 
171 /* VLAN Ingress Control Register 2, one bit per port.
172  * bit0 .. bit5 will make the switch drop all ingress frames with
173  * a VLAN classification that does not include the port is in its
174  * member set.
175  */
176 #define RTL8366RB_VLAN_INGRESS_CTRL2_REG	0x037f
177 
178 /* LED control registers */
179 /* The LED blink rate is global; it is used by all triggers in all groups. */
180 #define RTL8366RB_LED_BLINKRATE_REG		0x0430
181 #define RTL8366RB_LED_BLINKRATE_MASK		0x0007
182 #define RTL8366RB_LED_BLINKRATE_28MS		0x0000
183 #define RTL8366RB_LED_BLINKRATE_56MS		0x0001
184 #define RTL8366RB_LED_BLINKRATE_84MS		0x0002
185 #define RTL8366RB_LED_BLINKRATE_111MS		0x0003
186 #define RTL8366RB_LED_BLINKRATE_222MS		0x0004
187 #define RTL8366RB_LED_BLINKRATE_446MS		0x0005
188 
189 /* LED trigger event for each group */
190 #define RTL8366RB_LED_CTRL_REG			0x0431
191 #define RTL8366RB_LED_CTRL_OFFSET(led_group)	\
192 	(4 * (led_group))
193 #define RTL8366RB_LED_CTRL_MASK(led_group)	\
194 	(0xf << RTL8366RB_LED_CTRL_OFFSET(led_group))
195 
196 /* The RTL8366RB_LED_X_X registers are used to manually set the LED state only
197  * when the corresponding LED group in RTL8366RB_LED_CTRL_REG is
198  * RTL8366RB_LEDGROUP_FORCE. Otherwise, it is ignored.
199  */
200 #define RTL8366RB_LED_0_1_CTRL_REG		0x0432
201 #define RTL8366RB_LED_2_3_CTRL_REG		0x0433
202 #define RTL8366RB_LED_X_X_CTRL_REG(led_group)	\
203 	((led_group) <= 1 ? \
204 		RTL8366RB_LED_0_1_CTRL_REG : \
205 		RTL8366RB_LED_2_3_CTRL_REG)
206 #define RTL8366RB_LED_0_X_CTRL_MASK		GENMASK(5, 0)
207 #define RTL8366RB_LED_X_1_CTRL_MASK		GENMASK(11, 6)
208 #define RTL8366RB_LED_2_X_CTRL_MASK		GENMASK(5, 0)
209 #define RTL8366RB_LED_X_3_CTRL_MASK		GENMASK(11, 6)
210 
211 #define RTL8366RB_MIB_COUNT			33
212 #define RTL8366RB_GLOBAL_MIB_COUNT		1
213 #define RTL8366RB_MIB_COUNTER_PORT_OFFSET	0x0050
214 #define RTL8366RB_MIB_COUNTER_BASE		0x1000
215 #define RTL8366RB_MIB_CTRL_REG			0x13F0
216 #define RTL8366RB_MIB_CTRL_USER_MASK		0x0FFC
217 #define RTL8366RB_MIB_CTRL_BUSY_MASK		BIT(0)
218 #define RTL8366RB_MIB_CTRL_RESET_MASK		BIT(1)
219 #define RTL8366RB_MIB_CTRL_PORT_RESET(_p)	BIT(2 + (_p))
220 #define RTL8366RB_MIB_CTRL_GLOBAL_RESET		BIT(11)
221 
222 #define RTL8366RB_PORT_VLAN_CTRL_BASE		0x0063
223 #define RTL8366RB_PORT_VLAN_CTRL_REG(_p)  \
224 		(RTL8366RB_PORT_VLAN_CTRL_BASE + (_p) / 4)
225 #define RTL8366RB_PORT_VLAN_CTRL_MASK		0xf
226 #define RTL8366RB_PORT_VLAN_CTRL_SHIFT(_p)	(4 * ((_p) % 4))
227 
228 #define RTL8366RB_VLAN_TABLE_READ_BASE		0x018C
229 #define RTL8366RB_VLAN_TABLE_WRITE_BASE		0x0185
230 
231 #define RTL8366RB_TABLE_ACCESS_CTRL_REG		0x0180
232 #define RTL8366RB_TABLE_VLAN_READ_CTRL		0x0E01
233 #define RTL8366RB_TABLE_VLAN_WRITE_CTRL		0x0F01
234 
235 #define RTL8366RB_VLAN_MC_BASE(_x)		(0x0020 + (_x) * 3)
236 
237 #define RTL8366RB_PORT_LINK_STATUS_BASE		0x0014
238 #define RTL8366RB_PORT_STATUS_SPEED_MASK	0x0003
239 #define RTL8366RB_PORT_STATUS_DUPLEX_MASK	0x0004
240 #define RTL8366RB_PORT_STATUS_LINK_MASK		0x0010
241 #define RTL8366RB_PORT_STATUS_TXPAUSE_MASK	0x0020
242 #define RTL8366RB_PORT_STATUS_RXPAUSE_MASK	0x0040
243 #define RTL8366RB_PORT_STATUS_AN_MASK		0x0080
244 
245 #define RTL8366RB_NUM_VLANS		16
246 #define RTL8366RB_NUM_LEDGROUPS		4
247 #define RTL8366RB_NUM_VIDS		4096
248 #define RTL8366RB_PRIORITYMAX		7
249 #define RTL8366RB_NUM_FIDS		8
250 #define RTL8366RB_FIDMAX		7
251 
252 #define RTL8366RB_PORT_1		BIT(0) /* In userspace port 0 */
253 #define RTL8366RB_PORT_2		BIT(1) /* In userspace port 1 */
254 #define RTL8366RB_PORT_3		BIT(2) /* In userspace port 2 */
255 #define RTL8366RB_PORT_4		BIT(3) /* In userspace port 3 */
256 #define RTL8366RB_PORT_5		BIT(4) /* In userspace port 4 */
257 
258 #define RTL8366RB_PORT_CPU		BIT(5) /* CPU port */
259 
260 #define RTL8366RB_PORT_ALL		(RTL8366RB_PORT_1 |	\
261 					 RTL8366RB_PORT_2 |	\
262 					 RTL8366RB_PORT_3 |	\
263 					 RTL8366RB_PORT_4 |	\
264 					 RTL8366RB_PORT_5 |	\
265 					 RTL8366RB_PORT_CPU)
266 
267 #define RTL8366RB_PORT_ALL_BUT_CPU	(RTL8366RB_PORT_1 |	\
268 					 RTL8366RB_PORT_2 |	\
269 					 RTL8366RB_PORT_3 |	\
270 					 RTL8366RB_PORT_4 |	\
271 					 RTL8366RB_PORT_5)
272 
273 #define RTL8366RB_PORT_ALL_EXTERNAL	(RTL8366RB_PORT_1 |	\
274 					 RTL8366RB_PORT_2 |	\
275 					 RTL8366RB_PORT_3 |	\
276 					 RTL8366RB_PORT_4)
277 
278 #define RTL8366RB_PORT_ALL_INTERNAL	 RTL8366RB_PORT_CPU
279 
280 /* First configuration word per member config, VID and prio */
281 #define RTL8366RB_VLAN_VID_MASK		0xfff
282 #define RTL8366RB_VLAN_PRIORITY_SHIFT	12
283 #define RTL8366RB_VLAN_PRIORITY_MASK	0x7
284 /* Second configuration word per member config, member and untagged */
285 #define RTL8366RB_VLAN_UNTAG_SHIFT	8
286 #define RTL8366RB_VLAN_UNTAG_MASK	0xff
287 #define RTL8366RB_VLAN_MEMBER_MASK	0xff
288 /* Third config word per member config, STAG currently unused */
289 #define RTL8366RB_VLAN_STAG_MBR_MASK	0xff
290 #define RTL8366RB_VLAN_STAG_MBR_SHIFT	8
291 #define RTL8366RB_VLAN_STAG_IDX_MASK	0x7
292 #define RTL8366RB_VLAN_STAG_IDX_SHIFT	5
293 #define RTL8366RB_VLAN_FID_MASK		0x7
294 
295 /* Port ingress bandwidth control */
296 #define RTL8366RB_IB_BASE		0x0200
297 #define RTL8366RB_IB_REG(pnum)		(RTL8366RB_IB_BASE + (pnum))
298 #define RTL8366RB_IB_BDTH_MASK		0x3fff
299 #define RTL8366RB_IB_PREIFG		BIT(14)
300 
301 /* Port egress bandwidth control */
302 #define RTL8366RB_EB_BASE		0x02d1
303 #define RTL8366RB_EB_REG(pnum)		(RTL8366RB_EB_BASE + (pnum))
304 #define RTL8366RB_EB_BDTH_MASK		0x3fff
305 #define RTL8366RB_EB_PREIFG_REG		0x02f8
306 #define RTL8366RB_EB_PREIFG		BIT(9)
307 
308 #define RTL8366RB_BDTH_SW_MAX		1048512 /* 1048576? */
309 #define RTL8366RB_BDTH_UNIT		64
310 #define RTL8366RB_BDTH_REG_DEFAULT	16383
311 
312 /* QOS */
313 #define RTL8366RB_QOS			BIT(15)
314 /* Include/Exclude Preamble and IFG (20 bytes). 0:Exclude, 1:Include. */
315 #define RTL8366RB_QOS_DEFAULT_PREIFG	1
316 
317 /* Interrupt handling */
318 #define RTL8366RB_INTERRUPT_CONTROL_REG	0x0440
319 #define RTL8366RB_INTERRUPT_POLARITY	BIT(0)
320 #define RTL8366RB_P4_RGMII_LED		BIT(2)
321 #define RTL8366RB_INTERRUPT_MASK_REG	0x0441
322 #define RTL8366RB_INTERRUPT_LINK_CHGALL	GENMASK(11, 0)
323 #define RTL8366RB_INTERRUPT_ACLEXCEED	BIT(8)
324 #define RTL8366RB_INTERRUPT_STORMEXCEED	BIT(9)
325 #define RTL8366RB_INTERRUPT_P4_FIBER	BIT(12)
326 #define RTL8366RB_INTERRUPT_P4_UTP	BIT(13)
327 #define RTL8366RB_INTERRUPT_VALID	(RTL8366RB_INTERRUPT_LINK_CHGALL | \
328 					 RTL8366RB_INTERRUPT_ACLEXCEED | \
329 					 RTL8366RB_INTERRUPT_STORMEXCEED | \
330 					 RTL8366RB_INTERRUPT_P4_FIBER | \
331 					 RTL8366RB_INTERRUPT_P4_UTP)
332 #define RTL8366RB_INTERRUPT_STATUS_REG	0x0442
333 #define RTL8366RB_NUM_INTERRUPT		14 /* 0..13 */
334 
335 /* Port isolation registers */
336 #define RTL8366RB_PORT_ISO_BASE		0x0F08
337 #define RTL8366RB_PORT_ISO(pnum)	(RTL8366RB_PORT_ISO_BASE + (pnum))
338 #define RTL8366RB_PORT_ISO_EN		BIT(0)
339 #define RTL8366RB_PORT_ISO_PORTS_MASK	GENMASK(7, 1)
340 #define RTL8366RB_PORT_ISO_PORTS(pmask)	((pmask) << 1)
341 
342 /* bits 0..5 enable force when cleared */
343 #define RTL8366RB_MAC_FORCE_CTRL_REG	0x0F11
344 
345 #define RTL8366RB_OAM_PARSER_REG	0x0F14
346 #define RTL8366RB_OAM_MULTIPLEXER_REG	0x0F15
347 
348 #define RTL8366RB_GREEN_FEATURE_REG	0x0F51
349 #define RTL8366RB_GREEN_FEATURE_MSK	0x0007
350 #define RTL8366RB_GREEN_FEATURE_TX	BIT(0)
351 #define RTL8366RB_GREEN_FEATURE_RX	BIT(2)
352 
353 enum rtl8366_ledgroup_mode {
354 	RTL8366RB_LEDGROUP_OFF			= 0x0,
355 	RTL8366RB_LEDGROUP_DUP_COL		= 0x1,
356 	RTL8366RB_LEDGROUP_LINK_ACT		= 0x2,
357 	RTL8366RB_LEDGROUP_SPD1000		= 0x3,
358 	RTL8366RB_LEDGROUP_SPD100		= 0x4,
359 	RTL8366RB_LEDGROUP_SPD10		= 0x5,
360 	RTL8366RB_LEDGROUP_SPD1000_ACT		= 0x6,
361 	RTL8366RB_LEDGROUP_SPD100_ACT		= 0x7,
362 	RTL8366RB_LEDGROUP_SPD10_ACT		= 0x8,
363 	RTL8366RB_LEDGROUP_SPD100_10_ACT	= 0x9,
364 	RTL8366RB_LEDGROUP_FIBER		= 0xa,
365 	RTL8366RB_LEDGROUP_AN_FAULT		= 0xb,
366 	RTL8366RB_LEDGROUP_LINK_RX		= 0xc,
367 	RTL8366RB_LEDGROUP_LINK_TX		= 0xd,
368 	RTL8366RB_LEDGROUP_MASTER		= 0xe,
369 	RTL8366RB_LEDGROUP_FORCE		= 0xf,
370 
371 	__RTL8366RB_LEDGROUP_MODE_MAX
372 };
373 
374 struct rtl8366rb_led {
375 	u8 port_num;
376 	u8 led_group;
377 	struct realtek_priv *priv;
378 	struct led_classdev cdev;
379 };
380 
381 /**
382  * struct rtl8366rb - RTL8366RB-specific data
383  * @max_mtu: per-port max MTU setting
384  * @pvid_enabled: if PVID is set for respective port
385  * @leds: per-port and per-ledgroup led info
386  */
387 struct rtl8366rb {
388 	unsigned int max_mtu[RTL8366RB_NUM_PORTS];
389 	bool pvid_enabled[RTL8366RB_NUM_PORTS];
390 	struct rtl8366rb_led leds[RTL8366RB_NUM_PORTS][RTL8366RB_NUM_LEDGROUPS];
391 };
392 
393 static struct rtl8366_mib_counter rtl8366rb_mib_counters[] = {
394 	{ 0,  0, 4, "IfInOctets"				},
395 	{ 0,  4, 4, "EtherStatsOctets"				},
396 	{ 0,  8, 2, "EtherStatsUnderSizePkts"			},
397 	{ 0, 10, 2, "EtherFragments"				},
398 	{ 0, 12, 2, "EtherStatsPkts64Octets"			},
399 	{ 0, 14, 2, "EtherStatsPkts65to127Octets"		},
400 	{ 0, 16, 2, "EtherStatsPkts128to255Octets"		},
401 	{ 0, 18, 2, "EtherStatsPkts256to511Octets"		},
402 	{ 0, 20, 2, "EtherStatsPkts512to1023Octets"		},
403 	{ 0, 22, 2, "EtherStatsPkts1024to1518Octets"		},
404 	{ 0, 24, 2, "EtherOversizeStats"			},
405 	{ 0, 26, 2, "EtherStatsJabbers"				},
406 	{ 0, 28, 2, "IfInUcastPkts"				},
407 	{ 0, 30, 2, "EtherStatsMulticastPkts"			},
408 	{ 0, 32, 2, "EtherStatsBroadcastPkts"			},
409 	{ 0, 34, 2, "EtherStatsDropEvents"			},
410 	{ 0, 36, 2, "Dot3StatsFCSErrors"			},
411 	{ 0, 38, 2, "Dot3StatsSymbolErrors"			},
412 	{ 0, 40, 2, "Dot3InPauseFrames"				},
413 	{ 0, 42, 2, "Dot3ControlInUnknownOpcodes"		},
414 	{ 0, 44, 4, "IfOutOctets"				},
415 	{ 0, 48, 2, "Dot3StatsSingleCollisionFrames"		},
416 	{ 0, 50, 2, "Dot3StatMultipleCollisionFrames"		},
417 	{ 0, 52, 2, "Dot3sDeferredTransmissions"		},
418 	{ 0, 54, 2, "Dot3StatsLateCollisions"			},
419 	{ 0, 56, 2, "EtherStatsCollisions"			},
420 	{ 0, 58, 2, "Dot3StatsExcessiveCollisions"		},
421 	{ 0, 60, 2, "Dot3OutPauseFrames"			},
422 	{ 0, 62, 2, "Dot1dBasePortDelayExceededDiscards"	},
423 	{ 0, 64, 2, "Dot1dTpPortInDiscards"			},
424 	{ 0, 66, 2, "IfOutUcastPkts"				},
425 	{ 0, 68, 2, "IfOutMulticastPkts"			},
426 	{ 0, 70, 2, "IfOutBroadcastPkts"			},
427 };
428 
429 static int rtl8366rb_get_mib_counter(struct realtek_priv *priv,
430 				     int port,
431 				     struct rtl8366_mib_counter *mib,
432 				     u64 *mibvalue)
433 {
434 	u32 addr, val;
435 	int ret;
436 	int i;
437 
438 	addr = RTL8366RB_MIB_COUNTER_BASE +
439 		RTL8366RB_MIB_COUNTER_PORT_OFFSET * (port) +
440 		mib->offset;
441 
442 	/* Writing access counter address first
443 	 * then ASIC will prepare 64bits counter wait for being retrived
444 	 */
445 	ret = regmap_write(priv->map, addr, 0); /* Write whatever */
446 	if (ret)
447 		return ret;
448 
449 	/* Read MIB control register */
450 	ret = regmap_read(priv->map, RTL8366RB_MIB_CTRL_REG, &val);
451 	if (ret)
452 		return -EIO;
453 
454 	if (val & RTL8366RB_MIB_CTRL_BUSY_MASK)
455 		return -EBUSY;
456 
457 	if (val & RTL8366RB_MIB_CTRL_RESET_MASK)
458 		return -EIO;
459 
460 	/* Read each individual MIB 16 bits at the time */
461 	*mibvalue = 0;
462 	for (i = mib->length; i > 0; i--) {
463 		ret = regmap_read(priv->map, addr + (i - 1), &val);
464 		if (ret)
465 			return ret;
466 		*mibvalue = (*mibvalue << 16) | (val & 0xFFFF);
467 	}
468 	return 0;
469 }
470 
471 static u32 rtl8366rb_get_irqmask(struct irq_data *d)
472 {
473 	int line = irqd_to_hwirq(d);
474 	u32 val;
475 
476 	/* For line interrupts we combine link down in bits
477 	 * 6..11 with link up in bits 0..5 into one interrupt.
478 	 */
479 	if (line < 12)
480 		val = BIT(line) | BIT(line + 6);
481 	else
482 		val = BIT(line);
483 	return val;
484 }
485 
486 static void rtl8366rb_mask_irq(struct irq_data *d)
487 {
488 	struct realtek_priv *priv = irq_data_get_irq_chip_data(d);
489 	int ret;
490 
491 	ret = regmap_update_bits(priv->map, RTL8366RB_INTERRUPT_MASK_REG,
492 				 rtl8366rb_get_irqmask(d), 0);
493 	if (ret)
494 		dev_err(priv->dev, "could not mask IRQ\n");
495 }
496 
497 static void rtl8366rb_unmask_irq(struct irq_data *d)
498 {
499 	struct realtek_priv *priv = irq_data_get_irq_chip_data(d);
500 	int ret;
501 
502 	ret = regmap_update_bits(priv->map, RTL8366RB_INTERRUPT_MASK_REG,
503 				 rtl8366rb_get_irqmask(d),
504 				 rtl8366rb_get_irqmask(d));
505 	if (ret)
506 		dev_err(priv->dev, "could not unmask IRQ\n");
507 }
508 
509 static irqreturn_t rtl8366rb_irq(int irq, void *data)
510 {
511 	struct realtek_priv *priv = data;
512 	u32 stat;
513 	int ret;
514 
515 	/* This clears the IRQ status register */
516 	ret = regmap_read(priv->map, RTL8366RB_INTERRUPT_STATUS_REG,
517 			  &stat);
518 	if (ret) {
519 		dev_err(priv->dev, "can't read interrupt status\n");
520 		return IRQ_NONE;
521 	}
522 	stat &= RTL8366RB_INTERRUPT_VALID;
523 	if (!stat)
524 		return IRQ_NONE;
525 	while (stat) {
526 		int line = __ffs(stat);
527 		int child_irq;
528 
529 		stat &= ~BIT(line);
530 		/* For line interrupts we combine link down in bits
531 		 * 6..11 with link up in bits 0..5 into one interrupt.
532 		 */
533 		if (line < 12 && line > 5)
534 			line -= 5;
535 		child_irq = irq_find_mapping(priv->irqdomain, line);
536 		handle_nested_irq(child_irq);
537 	}
538 	return IRQ_HANDLED;
539 }
540 
541 static struct irq_chip rtl8366rb_irq_chip = {
542 	.name = "RTL8366RB",
543 	.irq_mask = rtl8366rb_mask_irq,
544 	.irq_unmask = rtl8366rb_unmask_irq,
545 };
546 
547 static int rtl8366rb_irq_map(struct irq_domain *domain, unsigned int irq,
548 			     irq_hw_number_t hwirq)
549 {
550 	irq_set_chip_data(irq, domain->host_data);
551 	irq_set_chip_and_handler(irq, &rtl8366rb_irq_chip, handle_simple_irq);
552 	irq_set_nested_thread(irq, 1);
553 	irq_set_noprobe(irq);
554 
555 	return 0;
556 }
557 
558 static void rtl8366rb_irq_unmap(struct irq_domain *d, unsigned int irq)
559 {
560 	irq_set_nested_thread(irq, 0);
561 	irq_set_chip_and_handler(irq, NULL, NULL);
562 	irq_set_chip_data(irq, NULL);
563 }
564 
565 static const struct irq_domain_ops rtl8366rb_irqdomain_ops = {
566 	.map = rtl8366rb_irq_map,
567 	.unmap = rtl8366rb_irq_unmap,
568 	.xlate  = irq_domain_xlate_onecell,
569 };
570 
571 static int rtl8366rb_setup_cascaded_irq(struct realtek_priv *priv)
572 {
573 	struct device_node *intc;
574 	unsigned long irq_trig;
575 	int irq;
576 	int ret;
577 	u32 val;
578 	int i;
579 
580 	intc = of_get_child_by_name(priv->dev->of_node, "interrupt-controller");
581 	if (!intc) {
582 		dev_err(priv->dev, "missing child interrupt-controller node\n");
583 		return -EINVAL;
584 	}
585 	/* RB8366RB IRQs cascade off this one */
586 	irq = of_irq_get(intc, 0);
587 	if (irq <= 0) {
588 		dev_err(priv->dev, "failed to get parent IRQ\n");
589 		ret = irq ? irq : -EINVAL;
590 		goto out_put_node;
591 	}
592 
593 	/* This clears the IRQ status register */
594 	ret = regmap_read(priv->map, RTL8366RB_INTERRUPT_STATUS_REG,
595 			  &val);
596 	if (ret) {
597 		dev_err(priv->dev, "can't read interrupt status\n");
598 		goto out_put_node;
599 	}
600 
601 	/* Fetch IRQ edge information from the descriptor */
602 	irq_trig = irq_get_trigger_type(irq);
603 	switch (irq_trig) {
604 	case IRQF_TRIGGER_RISING:
605 	case IRQF_TRIGGER_HIGH:
606 		dev_info(priv->dev, "active high/rising IRQ\n");
607 		val = 0;
608 		break;
609 	case IRQF_TRIGGER_FALLING:
610 	case IRQF_TRIGGER_LOW:
611 		dev_info(priv->dev, "active low/falling IRQ\n");
612 		val = RTL8366RB_INTERRUPT_POLARITY;
613 		break;
614 	}
615 	ret = regmap_update_bits(priv->map, RTL8366RB_INTERRUPT_CONTROL_REG,
616 				 RTL8366RB_INTERRUPT_POLARITY,
617 				 val);
618 	if (ret) {
619 		dev_err(priv->dev, "could not configure IRQ polarity\n");
620 		goto out_put_node;
621 	}
622 
623 	ret = devm_request_threaded_irq(priv->dev, irq, NULL,
624 					rtl8366rb_irq, IRQF_ONESHOT,
625 					"RTL8366RB", priv);
626 	if (ret) {
627 		dev_err(priv->dev, "unable to request irq: %d\n", ret);
628 		goto out_put_node;
629 	}
630 	priv->irqdomain = irq_domain_add_linear(intc,
631 						RTL8366RB_NUM_INTERRUPT,
632 						&rtl8366rb_irqdomain_ops,
633 						priv);
634 	if (!priv->irqdomain) {
635 		dev_err(priv->dev, "failed to create IRQ domain\n");
636 		ret = -EINVAL;
637 		goto out_put_node;
638 	}
639 	for (i = 0; i < priv->num_ports; i++)
640 		irq_set_parent(irq_create_mapping(priv->irqdomain, i), irq);
641 
642 out_put_node:
643 	of_node_put(intc);
644 	return ret;
645 }
646 
647 static int rtl8366rb_set_addr(struct realtek_priv *priv)
648 {
649 	u8 addr[ETH_ALEN];
650 	u16 val;
651 	int ret;
652 
653 	eth_random_addr(addr);
654 
655 	dev_info(priv->dev, "set MAC: %02X:%02X:%02X:%02X:%02X:%02X\n",
656 		 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
657 	val = addr[0] << 8 | addr[1];
658 	ret = regmap_write(priv->map, RTL8366RB_SMAR0, val);
659 	if (ret)
660 		return ret;
661 	val = addr[2] << 8 | addr[3];
662 	ret = regmap_write(priv->map, RTL8366RB_SMAR1, val);
663 	if (ret)
664 		return ret;
665 	val = addr[4] << 8 | addr[5];
666 	ret = regmap_write(priv->map, RTL8366RB_SMAR2, val);
667 	if (ret)
668 		return ret;
669 
670 	return 0;
671 }
672 
673 /* Found in a vendor driver */
674 
675 /* Struct for handling the jam tables' entries */
676 struct rtl8366rb_jam_tbl_entry {
677 	u16 reg;
678 	u16 val;
679 };
680 
681 /* For the "version 0" early silicon, appear in most source releases */
682 static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_0[] = {
683 	{0x000B, 0x0001}, {0x03A6, 0x0100}, {0x03A7, 0x0001}, {0x02D1, 0x3FFF},
684 	{0x02D2, 0x3FFF}, {0x02D3, 0x3FFF}, {0x02D4, 0x3FFF}, {0x02D5, 0x3FFF},
685 	{0x02D6, 0x3FFF}, {0x02D7, 0x3FFF}, {0x02D8, 0x3FFF}, {0x022B, 0x0688},
686 	{0x022C, 0x0FAC}, {0x03D0, 0x4688}, {0x03D1, 0x01F5}, {0x0000, 0x0830},
687 	{0x02F9, 0x0200}, {0x02F7, 0x7FFF}, {0x02F8, 0x03FF}, {0x0080, 0x03E8},
688 	{0x0081, 0x00CE}, {0x0082, 0x00DA}, {0x0083, 0x0230}, {0xBE0F, 0x2000},
689 	{0x0231, 0x422A}, {0x0232, 0x422A}, {0x0233, 0x422A}, {0x0234, 0x422A},
690 	{0x0235, 0x422A}, {0x0236, 0x422A}, {0x0237, 0x422A}, {0x0238, 0x422A},
691 	{0x0239, 0x422A}, {0x023A, 0x422A}, {0x023B, 0x422A}, {0x023C, 0x422A},
692 	{0x023D, 0x422A}, {0x023E, 0x422A}, {0x023F, 0x422A}, {0x0240, 0x422A},
693 	{0x0241, 0x422A}, {0x0242, 0x422A}, {0x0243, 0x422A}, {0x0244, 0x422A},
694 	{0x0245, 0x422A}, {0x0246, 0x422A}, {0x0247, 0x422A}, {0x0248, 0x422A},
695 	{0x0249, 0x0146}, {0x024A, 0x0146}, {0x024B, 0x0146}, {0xBE03, 0xC961},
696 	{0x024D, 0x0146}, {0x024E, 0x0146}, {0x024F, 0x0146}, {0x0250, 0x0146},
697 	{0xBE64, 0x0226}, {0x0252, 0x0146}, {0x0253, 0x0146}, {0x024C, 0x0146},
698 	{0x0251, 0x0146}, {0x0254, 0x0146}, {0xBE62, 0x3FD0}, {0x0084, 0x0320},
699 	{0x0255, 0x0146}, {0x0256, 0x0146}, {0x0257, 0x0146}, {0x0258, 0x0146},
700 	{0x0259, 0x0146}, {0x025A, 0x0146}, {0x025B, 0x0146}, {0x025C, 0x0146},
701 	{0x025D, 0x0146}, {0x025E, 0x0146}, {0x025F, 0x0146}, {0x0260, 0x0146},
702 	{0x0261, 0xA23F}, {0x0262, 0x0294}, {0x0263, 0xA23F}, {0x0264, 0x0294},
703 	{0x0265, 0xA23F}, {0x0266, 0x0294}, {0x0267, 0xA23F}, {0x0268, 0x0294},
704 	{0x0269, 0xA23F}, {0x026A, 0x0294}, {0x026B, 0xA23F}, {0x026C, 0x0294},
705 	{0x026D, 0xA23F}, {0x026E, 0x0294}, {0x026F, 0xA23F}, {0x0270, 0x0294},
706 	{0x02F5, 0x0048}, {0xBE09, 0x0E00}, {0xBE1E, 0x0FA0}, {0xBE14, 0x8448},
707 	{0xBE15, 0x1007}, {0xBE4A, 0xA284}, {0xC454, 0x3F0B}, {0xC474, 0x3F0B},
708 	{0xBE48, 0x3672}, {0xBE4B, 0x17A7}, {0xBE4C, 0x0B15}, {0xBE52, 0x0EDD},
709 	{0xBE49, 0x8C00}, {0xBE5B, 0x785C}, {0xBE5C, 0x785C}, {0xBE5D, 0x785C},
710 	{0xBE61, 0x368A}, {0xBE63, 0x9B84}, {0xC456, 0xCC13}, {0xC476, 0xCC13},
711 	{0xBE65, 0x307D}, {0xBE6D, 0x0005}, {0xBE6E, 0xE120}, {0xBE2E, 0x7BAF},
712 };
713 
714 /* This v1 init sequence is from Belkin F5D8235 U-Boot release */
715 static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_1[] = {
716 	{0x0000, 0x0830}, {0x0001, 0x8000}, {0x0400, 0x8130}, {0xBE78, 0x3C3C},
717 	{0x0431, 0x5432}, {0xBE37, 0x0CE4}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0},
718 	{0xC44C, 0x1585}, {0xC44C, 0x1185}, {0xC44C, 0x1585}, {0xC46C, 0x1585},
719 	{0xC46C, 0x1185}, {0xC46C, 0x1585}, {0xC451, 0x2135}, {0xC471, 0x2135},
720 	{0xBE10, 0x8140}, {0xBE15, 0x0007}, {0xBE6E, 0xE120}, {0xBE69, 0xD20F},
721 	{0xBE6B, 0x0320}, {0xBE24, 0xB000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF20},
722 	{0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800}, {0xBE24, 0x0000},
723 	{0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60}, {0xBE21, 0x0140},
724 	{0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000}, {0xBE2E, 0x7B7A},
725 	{0xBE36, 0x0CE4}, {0x02F5, 0x0048}, {0xBE77, 0x2940}, {0x000A, 0x83E0},
726 	{0xBE79, 0x3C3C}, {0xBE00, 0x1340},
727 };
728 
729 /* This v2 init sequence is from Belkin F5D8235 U-Boot release */
730 static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_2[] = {
731 	{0x0450, 0x0000}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432},
732 	{0xC44F, 0x6250}, {0xC46F, 0x6250}, {0xC456, 0x0C14}, {0xC476, 0x0C14},
733 	{0xC44C, 0x1C85}, {0xC44C, 0x1885}, {0xC44C, 0x1C85}, {0xC46C, 0x1C85},
734 	{0xC46C, 0x1885}, {0xC46C, 0x1C85}, {0xC44C, 0x0885}, {0xC44C, 0x0881},
735 	{0xC44C, 0x0885}, {0xC46C, 0x0885}, {0xC46C, 0x0881}, {0xC46C, 0x0885},
736 	{0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001},
737 	{0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6E, 0x0320},
738 	{0xBE77, 0x2940}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120},
739 	{0x8000, 0x0001}, {0xBE15, 0x1007}, {0x8000, 0x0000}, {0xBE15, 0x1007},
740 	{0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160}, {0xBE10, 0x8140},
741 	{0xBE00, 0x1340}, {0x0F51, 0x0010},
742 };
743 
744 /* Appears in a DDWRT code dump */
745 static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_ver_3[] = {
746 	{0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0431, 0x5432},
747 	{0x0F51, 0x0017}, {0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0},
748 	{0xC456, 0x0C14}, {0xC476, 0x0C14}, {0xC454, 0x3F8B}, {0xC474, 0x3F8B},
749 	{0xC450, 0x2071}, {0xC470, 0x2071}, {0xC451, 0x226B}, {0xC471, 0x226B},
750 	{0xC452, 0xA293}, {0xC472, 0xA293}, {0xC44C, 0x1585}, {0xC44C, 0x1185},
751 	{0xC44C, 0x1585}, {0xC46C, 0x1585}, {0xC46C, 0x1185}, {0xC46C, 0x1585},
752 	{0xC44C, 0x0185}, {0xC44C, 0x0181}, {0xC44C, 0x0185}, {0xC46C, 0x0185},
753 	{0xC46C, 0x0181}, {0xC46C, 0x0185}, {0xBE24, 0xB000}, {0xBE23, 0xFF51},
754 	{0xBE22, 0xDF20}, {0xBE21, 0x0140}, {0xBE20, 0x00BB}, {0xBE24, 0xB800},
755 	{0xBE24, 0x0000}, {0xBE24, 0x7000}, {0xBE23, 0xFF51}, {0xBE22, 0xDF60},
756 	{0xBE21, 0x0140}, {0xBE20, 0x0077}, {0xBE24, 0x7800}, {0xBE24, 0x0000},
757 	{0xBE2E, 0x7BA7}, {0xBE36, 0x1000}, {0xBE37, 0x1000}, {0x8000, 0x0001},
758 	{0xBE69, 0xD50F}, {0x8000, 0x0000}, {0xBE69, 0xD50F}, {0xBE6B, 0x0320},
759 	{0xBE77, 0x2800}, {0xBE78, 0x3C3C}, {0xBE79, 0x3C3C}, {0xBE6E, 0xE120},
760 	{0x8000, 0x0001}, {0xBE10, 0x8140}, {0x8000, 0x0000}, {0xBE10, 0x8140},
761 	{0xBE15, 0x1007}, {0xBE14, 0x0448}, {0xBE1E, 0x00A0}, {0xBE10, 0x8160},
762 	{0xBE10, 0x8140}, {0xBE00, 0x1340}, {0x0450, 0x0000}, {0x0401, 0x0000},
763 };
764 
765 /* Belkin F5D8235 v1, "belkin,f5d8235-v1" */
766 static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_f5d8235[] = {
767 	{0x0242, 0x02BF}, {0x0245, 0x02BF}, {0x0248, 0x02BF}, {0x024B, 0x02BF},
768 	{0x024E, 0x02BF}, {0x0251, 0x02BF}, {0x0254, 0x0A3F}, {0x0256, 0x0A3F},
769 	{0x0258, 0x0A3F}, {0x025A, 0x0A3F}, {0x025C, 0x0A3F}, {0x025E, 0x0A3F},
770 	{0x0263, 0x007C}, {0x0100, 0x0004}, {0xBE5B, 0x3500}, {0x800E, 0x200F},
771 	{0xBE1D, 0x0F00}, {0x8001, 0x5011}, {0x800A, 0xA2F4}, {0x800B, 0x17A3},
772 	{0xBE4B, 0x17A3}, {0xBE41, 0x5011}, {0xBE17, 0x2100}, {0x8000, 0x8304},
773 	{0xBE40, 0x8304}, {0xBE4A, 0xA2F4}, {0x800C, 0xA8D5}, {0x8014, 0x5500},
774 	{0x8015, 0x0004}, {0xBE4C, 0xA8D5}, {0xBE59, 0x0008}, {0xBE09, 0x0E00},
775 	{0xBE36, 0x1036}, {0xBE37, 0x1036}, {0x800D, 0x00FF}, {0xBE4D, 0x00FF},
776 };
777 
778 /* DGN3500, "netgear,dgn3500", "netgear,dgn3500b" */
779 static const struct rtl8366rb_jam_tbl_entry rtl8366rb_init_jam_dgn3500[] = {
780 	{0x0000, 0x0830}, {0x0400, 0x8130}, {0x000A, 0x83ED}, {0x0F51, 0x0017},
781 	{0x02F5, 0x0048}, {0x02FA, 0xFFDF}, {0x02FB, 0xFFE0}, {0x0450, 0x0000},
782 	{0x0401, 0x0000}, {0x0431, 0x0960},
783 };
784 
785 /* This jam table activates "green ethernet", which means low power mode
786  * and is claimed to detect the cable length and not use more power than
787  * necessary, and the ports should enter power saving mode 10 seconds after
788  * a cable is disconnected. Seems to always be the same.
789  */
790 static const struct rtl8366rb_jam_tbl_entry rtl8366rb_green_jam[] = {
791 	{0xBE78, 0x323C}, {0xBE77, 0x5000}, {0xBE2E, 0x7BA7},
792 	{0xBE59, 0x3459}, {0xBE5A, 0x745A}, {0xBE5B, 0x785C},
793 	{0xBE5C, 0x785C}, {0xBE6E, 0xE120}, {0xBE79, 0x323C},
794 };
795 
796 /* Function that jams the tables in the proper registers */
797 static int rtl8366rb_jam_table(const struct rtl8366rb_jam_tbl_entry *jam_table,
798 			       int jam_size, struct realtek_priv *priv,
799 			       bool write_dbg)
800 {
801 	u32 val;
802 	int ret;
803 	int i;
804 
805 	for (i = 0; i < jam_size; i++) {
806 		if ((jam_table[i].reg & 0xBE00) == 0xBE00) {
807 			ret = regmap_read(priv->map,
808 					  RTL8366RB_PHY_ACCESS_BUSY_REG,
809 					  &val);
810 			if (ret)
811 				return ret;
812 			if (!(val & RTL8366RB_PHY_INT_BUSY)) {
813 				ret = regmap_write(priv->map,
814 						   RTL8366RB_PHY_ACCESS_CTRL_REG,
815 						   RTL8366RB_PHY_CTRL_WRITE);
816 				if (ret)
817 					return ret;
818 			}
819 		}
820 		if (write_dbg)
821 			dev_dbg(priv->dev, "jam %04x into register %04x\n",
822 				jam_table[i].val,
823 				jam_table[i].reg);
824 		ret = regmap_write(priv->map,
825 				   jam_table[i].reg,
826 				   jam_table[i].val);
827 		if (ret)
828 			return ret;
829 	}
830 	return 0;
831 }
832 
833 static int rb8366rb_set_ledgroup_mode(struct realtek_priv *priv,
834 				      u8 led_group,
835 				      enum rtl8366_ledgroup_mode mode)
836 {
837 	int ret;
838 	u32 val;
839 
840 	val = mode << RTL8366RB_LED_CTRL_OFFSET(led_group);
841 
842 	ret = regmap_update_bits(priv->map,
843 				 RTL8366RB_LED_CTRL_REG,
844 				 RTL8366RB_LED_CTRL_MASK(led_group),
845 				 val);
846 	if (ret)
847 		return ret;
848 
849 	return 0;
850 }
851 
852 static inline u32 rtl8366rb_led_group_port_mask(u8 led_group, u8 port)
853 {
854 	switch (led_group) {
855 	case 0:
856 		return FIELD_PREP(RTL8366RB_LED_0_X_CTRL_MASK, BIT(port));
857 	case 1:
858 		return FIELD_PREP(RTL8366RB_LED_0_X_CTRL_MASK, BIT(port));
859 	case 2:
860 		return FIELD_PREP(RTL8366RB_LED_0_X_CTRL_MASK, BIT(port));
861 	case 3:
862 		return FIELD_PREP(RTL8366RB_LED_0_X_CTRL_MASK, BIT(port));
863 	default:
864 		return 0;
865 	}
866 }
867 
868 static int rb8366rb_get_port_led(struct rtl8366rb_led *led)
869 {
870 	struct realtek_priv *priv = led->priv;
871 	u8 led_group = led->led_group;
872 	u8 port_num = led->port_num;
873 	int ret;
874 	u32 val;
875 
876 	ret = regmap_read(priv->map, RTL8366RB_LED_X_X_CTRL_REG(led_group),
877 			  &val);
878 	if (ret) {
879 		dev_err(priv->dev, "error reading LED on port %d group %d\n",
880 			led_group, port_num);
881 		return ret;
882 	}
883 
884 	return !!(val & rtl8366rb_led_group_port_mask(led_group, port_num));
885 }
886 
887 static int rb8366rb_set_port_led(struct rtl8366rb_led *led, bool enable)
888 {
889 	struct realtek_priv *priv = led->priv;
890 	u8 led_group = led->led_group;
891 	u8 port_num = led->port_num;
892 	int ret;
893 
894 	ret = regmap_update_bits(priv->map,
895 				 RTL8366RB_LED_X_X_CTRL_REG(led_group),
896 				 rtl8366rb_led_group_port_mask(led_group,
897 							       port_num),
898 				 enable ? 0xffff : 0);
899 	if (ret) {
900 		dev_err(priv->dev, "error updating LED on port %d group %d\n",
901 			led_group, port_num);
902 		return ret;
903 	}
904 
905 	/* Change the LED group to manual controlled LEDs if required */
906 	ret = rb8366rb_set_ledgroup_mode(priv, led_group,
907 					 RTL8366RB_LEDGROUP_FORCE);
908 
909 	if (ret) {
910 		dev_err(priv->dev, "error updating LED GROUP group %d\n",
911 			led_group);
912 		return ret;
913 	}
914 
915 	return 0;
916 }
917 
918 static int
919 rtl8366rb_cled_brightness_set_blocking(struct led_classdev *ldev,
920 				       enum led_brightness brightness)
921 {
922 	struct rtl8366rb_led *led = container_of(ldev, struct rtl8366rb_led,
923 						 cdev);
924 
925 	return rb8366rb_set_port_led(led, brightness == LED_ON);
926 }
927 
928 static int rtl8366rb_setup_led(struct realtek_priv *priv, struct dsa_port *dp,
929 			       struct fwnode_handle *led_fwnode)
930 {
931 	struct rtl8366rb *rb = priv->chip_data;
932 	struct led_init_data init_data = { };
933 	enum led_default_state state;
934 	struct rtl8366rb_led *led;
935 	u32 led_group;
936 	int ret;
937 
938 	ret = fwnode_property_read_u32(led_fwnode, "reg", &led_group);
939 	if (ret)
940 		return ret;
941 
942 	if (led_group >= RTL8366RB_NUM_LEDGROUPS) {
943 		dev_warn(priv->dev, "Invalid LED reg %d defined for port %d",
944 			 led_group, dp->index);
945 		return -EINVAL;
946 	}
947 
948 	led = &rb->leds[dp->index][led_group];
949 	led->port_num = dp->index;
950 	led->led_group = led_group;
951 	led->priv = priv;
952 
953 	state = led_init_default_state_get(led_fwnode);
954 	switch (state) {
955 	case LEDS_DEFSTATE_ON:
956 		led->cdev.brightness = 1;
957 		rb8366rb_set_port_led(led, 1);
958 		break;
959 	case LEDS_DEFSTATE_KEEP:
960 		led->cdev.brightness =
961 			rb8366rb_get_port_led(led);
962 		break;
963 	case LEDS_DEFSTATE_OFF:
964 	default:
965 		led->cdev.brightness = 0;
966 		rb8366rb_set_port_led(led, 0);
967 	}
968 
969 	led->cdev.max_brightness = 1;
970 	led->cdev.brightness_set_blocking =
971 		rtl8366rb_cled_brightness_set_blocking;
972 	init_data.fwnode = led_fwnode;
973 	init_data.devname_mandatory = true;
974 
975 	init_data.devicename = kasprintf(GFP_KERNEL, "Realtek-%d:0%d:%d",
976 					 dp->ds->index, dp->index, led_group);
977 	if (!init_data.devicename)
978 		return -ENOMEM;
979 
980 	ret = devm_led_classdev_register_ext(priv->dev, &led->cdev, &init_data);
981 	if (ret) {
982 		dev_warn(priv->dev, "Failed to init LED %d for port %d",
983 			 led_group, dp->index);
984 		return ret;
985 	}
986 
987 	return 0;
988 }
989 
990 static int rtl8366rb_setup_all_leds_off(struct realtek_priv *priv)
991 {
992 	int ret = 0;
993 	int i;
994 
995 	regmap_update_bits(priv->map,
996 			   RTL8366RB_INTERRUPT_CONTROL_REG,
997 			   RTL8366RB_P4_RGMII_LED,
998 			   0);
999 
1000 	for (i = 0; i < RTL8366RB_NUM_LEDGROUPS; i++) {
1001 		ret = rb8366rb_set_ledgroup_mode(priv, i,
1002 						 RTL8366RB_LEDGROUP_OFF);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	return ret;
1008 }
1009 
1010 static int rtl8366rb_setup_leds(struct realtek_priv *priv)
1011 {
1012 	struct dsa_switch *ds = &priv->ds;
1013 	struct device_node *leds_np;
1014 	struct dsa_port *dp;
1015 	int ret = 0;
1016 
1017 	dsa_switch_for_each_port(dp, ds) {
1018 		if (!dp->dn)
1019 			continue;
1020 
1021 		leds_np = of_get_child_by_name(dp->dn, "leds");
1022 		if (!leds_np) {
1023 			dev_dbg(priv->dev, "No leds defined for port %d",
1024 				dp->index);
1025 			continue;
1026 		}
1027 
1028 		for_each_child_of_node_scoped(leds_np, led_np) {
1029 			ret = rtl8366rb_setup_led(priv, dp,
1030 						  of_fwnode_handle(led_np));
1031 			if (ret)
1032 				break;
1033 		}
1034 
1035 		of_node_put(leds_np);
1036 		if (ret)
1037 			return ret;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static int rtl8366rb_setup(struct dsa_switch *ds)
1043 {
1044 	struct realtek_priv *priv = ds->priv;
1045 	const struct rtl8366rb_jam_tbl_entry *jam_table;
1046 	struct rtl8366rb *rb;
1047 	u32 chip_ver = 0;
1048 	u32 chip_id = 0;
1049 	int jam_size;
1050 	int ret;
1051 	int i;
1052 
1053 	rb = priv->chip_data;
1054 
1055 	ret = regmap_read(priv->map, RTL8366RB_CHIP_ID_REG, &chip_id);
1056 	if (ret) {
1057 		dev_err(priv->dev, "unable to read chip id\n");
1058 		return ret;
1059 	}
1060 
1061 	switch (chip_id) {
1062 	case RTL8366RB_CHIP_ID_8366:
1063 		break;
1064 	default:
1065 		dev_err(priv->dev, "unknown chip id (%04x)\n", chip_id);
1066 		return -ENODEV;
1067 	}
1068 
1069 	ret = regmap_read(priv->map, RTL8366RB_CHIP_VERSION_CTRL_REG,
1070 			  &chip_ver);
1071 	if (ret) {
1072 		dev_err(priv->dev, "unable to read chip version\n");
1073 		return ret;
1074 	}
1075 
1076 	dev_info(priv->dev, "RTL%04x ver %u chip found\n",
1077 		 chip_id, chip_ver & RTL8366RB_CHIP_VERSION_MASK);
1078 
1079 	/* Do the init dance using the right jam table */
1080 	switch (chip_ver) {
1081 	case 0:
1082 		jam_table = rtl8366rb_init_jam_ver_0;
1083 		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_0);
1084 		break;
1085 	case 1:
1086 		jam_table = rtl8366rb_init_jam_ver_1;
1087 		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_1);
1088 		break;
1089 	case 2:
1090 		jam_table = rtl8366rb_init_jam_ver_2;
1091 		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_2);
1092 		break;
1093 	default:
1094 		jam_table = rtl8366rb_init_jam_ver_3;
1095 		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_ver_3);
1096 		break;
1097 	}
1098 
1099 	/* Special jam tables for special routers
1100 	 * TODO: are these necessary? Maintainers, please test
1101 	 * without them, using just the off-the-shelf tables.
1102 	 */
1103 	if (of_machine_is_compatible("belkin,f5d8235-v1")) {
1104 		jam_table = rtl8366rb_init_jam_f5d8235;
1105 		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_f5d8235);
1106 	}
1107 	if (of_machine_is_compatible("netgear,dgn3500") ||
1108 	    of_machine_is_compatible("netgear,dgn3500b")) {
1109 		jam_table = rtl8366rb_init_jam_dgn3500;
1110 		jam_size = ARRAY_SIZE(rtl8366rb_init_jam_dgn3500);
1111 	}
1112 
1113 	ret = rtl8366rb_jam_table(jam_table, jam_size, priv, true);
1114 	if (ret)
1115 		return ret;
1116 
1117 	/* Isolate all user ports so they can only send packets to itself and the CPU port */
1118 	for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) {
1119 		ret = regmap_write(priv->map, RTL8366RB_PORT_ISO(i),
1120 				   RTL8366RB_PORT_ISO_PORTS(BIT(RTL8366RB_PORT_NUM_CPU)) |
1121 				   RTL8366RB_PORT_ISO_EN);
1122 		if (ret)
1123 			return ret;
1124 	}
1125 	/* CPU port can send packets to all ports */
1126 	ret = regmap_write(priv->map, RTL8366RB_PORT_ISO(RTL8366RB_PORT_NUM_CPU),
1127 			   RTL8366RB_PORT_ISO_PORTS(dsa_user_ports(ds)) |
1128 			   RTL8366RB_PORT_ISO_EN);
1129 	if (ret)
1130 		return ret;
1131 
1132 	/* Set up the "green ethernet" feature */
1133 	ret = rtl8366rb_jam_table(rtl8366rb_green_jam,
1134 				  ARRAY_SIZE(rtl8366rb_green_jam), priv, false);
1135 	if (ret)
1136 		return ret;
1137 
1138 	ret = regmap_write(priv->map,
1139 			   RTL8366RB_GREEN_FEATURE_REG,
1140 			   (chip_ver == 1) ? 0x0007 : 0x0003);
1141 	if (ret)
1142 		return ret;
1143 
1144 	/* Vendor driver sets 0x240 in registers 0xc and 0xd (undocumented) */
1145 	ret = regmap_write(priv->map, 0x0c, 0x240);
1146 	if (ret)
1147 		return ret;
1148 	ret = regmap_write(priv->map, 0x0d, 0x240);
1149 	if (ret)
1150 		return ret;
1151 
1152 	/* Set some random MAC address */
1153 	ret = rtl8366rb_set_addr(priv);
1154 	if (ret)
1155 		return ret;
1156 
1157 	/* Enable CPU port with custom DSA tag 8899.
1158 	 *
1159 	 * If you set RTL8366RB_CPU_NO_TAG (bit 15) in this register
1160 	 * the custom tag is turned off.
1161 	 */
1162 	ret = regmap_update_bits(priv->map, RTL8366RB_CPU_CTRL_REG,
1163 				 0xFFFF,
1164 				 BIT(priv->cpu_port));
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* Make sure we default-enable the fixed CPU port */
1169 	ret = regmap_update_bits(priv->map, RTL8366RB_PECR,
1170 				 BIT(priv->cpu_port),
1171 				 0);
1172 	if (ret)
1173 		return ret;
1174 
1175 	/* Set default maximum packet length to 1536 bytes */
1176 	ret = regmap_update_bits(priv->map, RTL8366RB_SGCR,
1177 				 RTL8366RB_SGCR_MAX_LENGTH_MASK,
1178 				 RTL8366RB_SGCR_MAX_LENGTH_1536);
1179 	if (ret)
1180 		return ret;
1181 	for (i = 0; i < RTL8366RB_NUM_PORTS; i++) {
1182 		if (i == priv->cpu_port)
1183 			/* CPU port need to also accept the tag */
1184 			rb->max_mtu[i] = ETH_DATA_LEN + RTL8366RB_CPU_TAG_SIZE;
1185 		else
1186 			rb->max_mtu[i] = ETH_DATA_LEN;
1187 	}
1188 
1189 	/* Disable learning for all ports */
1190 	ret = regmap_write(priv->map, RTL8366RB_PORT_LEARNDIS_CTRL,
1191 			   RTL8366RB_PORT_ALL);
1192 	if (ret)
1193 		return ret;
1194 
1195 	/* Enable auto ageing for all ports */
1196 	ret = regmap_write(priv->map, RTL8366RB_SECURITY_CTRL, 0);
1197 	if (ret)
1198 		return ret;
1199 
1200 	/* Port 4 setup: this enables Port 4, usually the WAN port,
1201 	 * common PHY IO mode is apparently mode 0, and this is not what
1202 	 * the port is initialized to. There is no explanation of the
1203 	 * IO modes in the Realtek source code, if your WAN port is
1204 	 * connected to something exotic such as fiber, then this might
1205 	 * be worth experimenting with.
1206 	 */
1207 	ret = regmap_update_bits(priv->map, RTL8366RB_PMC0,
1208 				 RTL8366RB_PMC0_P4_IOMODE_MASK,
1209 				 0 << RTL8366RB_PMC0_P4_IOMODE_SHIFT);
1210 	if (ret)
1211 		return ret;
1212 
1213 	/* Accept all packets by default, we enable filtering on-demand */
1214 	ret = regmap_write(priv->map, RTL8366RB_VLAN_INGRESS_CTRL1_REG,
1215 			   0);
1216 	if (ret)
1217 		return ret;
1218 	ret = regmap_write(priv->map, RTL8366RB_VLAN_INGRESS_CTRL2_REG,
1219 			   0);
1220 	if (ret)
1221 		return ret;
1222 
1223 	/* Don't drop packets whose DA has not been learned */
1224 	ret = regmap_update_bits(priv->map, RTL8366RB_SSCR2,
1225 				 RTL8366RB_SSCR2_DROP_UNKNOWN_DA, 0);
1226 	if (ret)
1227 		return ret;
1228 
1229 	/* Set blinking, used by all LED groups using HW triggers.
1230 	 * TODO: make this configurable
1231 	 */
1232 	ret = regmap_update_bits(priv->map, RTL8366RB_LED_BLINKRATE_REG,
1233 				 RTL8366RB_LED_BLINKRATE_MASK,
1234 				 RTL8366RB_LED_BLINKRATE_56MS);
1235 	if (ret)
1236 		return ret;
1237 
1238 	/* Set up LED activity:
1239 	 * Each port has 4 LEDs on fixed groups. Each group shares the same
1240 	 * hardware trigger across all ports. LEDs can only be indiviually
1241 	 * controlled setting the LED group to fixed mode and using the driver
1242 	 * to toggle them LEDs on/off.
1243 	 */
1244 	if (priv->leds_disabled) {
1245 		ret = rtl8366rb_setup_all_leds_off(priv);
1246 		if (ret)
1247 			return ret;
1248 	} else {
1249 		ret = rtl8366rb_setup_leds(priv);
1250 		if (ret)
1251 			return ret;
1252 	}
1253 
1254 	ret = rtl8366_reset_vlan(priv);
1255 	if (ret)
1256 		return ret;
1257 
1258 	ret = rtl8366rb_setup_cascaded_irq(priv);
1259 	if (ret)
1260 		dev_info(priv->dev, "no interrupt support\n");
1261 
1262 	ret = rtl83xx_setup_user_mdio(ds);
1263 	if (ret) {
1264 		dev_err(priv->dev, "could not set up MDIO bus\n");
1265 		return -ENODEV;
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 static enum dsa_tag_protocol rtl8366_get_tag_protocol(struct dsa_switch *ds,
1272 						      int port,
1273 						      enum dsa_tag_protocol mp)
1274 {
1275 	/* This switch uses the 4 byte protocol A Realtek DSA tag */
1276 	return DSA_TAG_PROTO_RTL4_A;
1277 }
1278 
1279 static void rtl8366rb_phylink_get_caps(struct dsa_switch *ds, int port,
1280 				       struct phylink_config *config)
1281 {
1282 	unsigned long *interfaces = config->supported_interfaces;
1283 	struct realtek_priv *priv = ds->priv;
1284 
1285 	if (port == priv->cpu_port) {
1286 		__set_bit(PHY_INTERFACE_MODE_MII, interfaces);
1287 		__set_bit(PHY_INTERFACE_MODE_GMII, interfaces);
1288 		/* REVMII only supports 100M FD */
1289 		__set_bit(PHY_INTERFACE_MODE_REVMII, interfaces);
1290 		/* RGMII only supports 1G FD */
1291 		phy_interface_set_rgmii(interfaces);
1292 
1293 		config->mac_capabilities = MAC_1000 | MAC_100 |
1294 					   MAC_SYM_PAUSE;
1295 	} else {
1296 		/* RSGMII port, but we don't have that, and we don't
1297 		 * specify in DT, so phylib uses the default of GMII
1298 		 */
1299 		__set_bit(PHY_INTERFACE_MODE_GMII, interfaces);
1300 		config->mac_capabilities = MAC_1000 | MAC_100 | MAC_10 |
1301 					   MAC_SYM_PAUSE | MAC_ASYM_PAUSE;
1302 	}
1303 }
1304 
1305 static void
1306 rtl8366rb_mac_config(struct phylink_config *config, unsigned int mode,
1307 		     const struct phylink_link_state *state)
1308 {
1309 }
1310 
1311 static void
1312 rtl8366rb_mac_link_up(struct phylink_config *config, struct phy_device *phydev,
1313 		      unsigned int mode, phy_interface_t interface,
1314 		      int speed, int duplex, bool tx_pause, bool rx_pause)
1315 {
1316 	struct dsa_port *dp = dsa_phylink_to_port(config);
1317 	struct realtek_priv *priv = dp->ds->priv;
1318 	int port = dp->index;
1319 	unsigned int val;
1320 	int ret;
1321 
1322 	/* Allow forcing the mode on the fixed CPU port, no autonegotiation.
1323 	 * We assume autonegotiation works on the PHY-facing ports.
1324 	 */
1325 	if (port != priv->cpu_port)
1326 		return;
1327 
1328 	dev_dbg(priv->dev, "MAC link up on CPU port (%d)\n", port);
1329 
1330 	ret = regmap_update_bits(priv->map, RTL8366RB_MAC_FORCE_CTRL_REG,
1331 				 BIT(port), BIT(port));
1332 	if (ret) {
1333 		dev_err(priv->dev, "failed to force CPU port\n");
1334 		return;
1335 	}
1336 
1337 	/* Conjure port config */
1338 	switch (speed) {
1339 	case SPEED_10:
1340 		val = RTL8366RB_PAACR_SPEED_10M;
1341 		break;
1342 	case SPEED_100:
1343 		val = RTL8366RB_PAACR_SPEED_100M;
1344 		break;
1345 	case SPEED_1000:
1346 		val = RTL8366RB_PAACR_SPEED_1000M;
1347 		break;
1348 	default:
1349 		val = RTL8366RB_PAACR_SPEED_1000M;
1350 		break;
1351 	}
1352 
1353 	if (duplex == DUPLEX_FULL)
1354 		val |= RTL8366RB_PAACR_FULL_DUPLEX;
1355 
1356 	if (tx_pause)
1357 		val |=  RTL8366RB_PAACR_TX_PAUSE;
1358 
1359 	if (rx_pause)
1360 		val |= RTL8366RB_PAACR_RX_PAUSE;
1361 
1362 	val |= RTL8366RB_PAACR_LINK_UP;
1363 
1364 	ret = regmap_update_bits(priv->map, RTL8366RB_PAACR2,
1365 				 0xFF00U,
1366 				 val << 8);
1367 	if (ret) {
1368 		dev_err(priv->dev, "failed to set PAACR on CPU port\n");
1369 		return;
1370 	}
1371 
1372 	dev_dbg(priv->dev, "set PAACR to %04x\n", val);
1373 
1374 	/* Enable the CPU port */
1375 	ret = regmap_update_bits(priv->map, RTL8366RB_PECR, BIT(port),
1376 				 0);
1377 	if (ret) {
1378 		dev_err(priv->dev, "failed to enable the CPU port\n");
1379 		return;
1380 	}
1381 }
1382 
1383 static void
1384 rtl8366rb_mac_link_down(struct phylink_config *config, unsigned int mode,
1385 			phy_interface_t interface)
1386 {
1387 	struct dsa_port *dp = dsa_phylink_to_port(config);
1388 	struct realtek_priv *priv = dp->ds->priv;
1389 	int port = dp->index;
1390 	int ret;
1391 
1392 	if (port != priv->cpu_port)
1393 		return;
1394 
1395 	dev_dbg(priv->dev, "MAC link down on CPU port (%d)\n", port);
1396 
1397 	/* Disable the CPU port */
1398 	ret = regmap_update_bits(priv->map, RTL8366RB_PECR, BIT(port),
1399 				 BIT(port));
1400 	if (ret) {
1401 		dev_err(priv->dev, "failed to disable the CPU port\n");
1402 		return;
1403 	}
1404 }
1405 
1406 static int
1407 rtl8366rb_port_enable(struct dsa_switch *ds, int port,
1408 		      struct phy_device *phy)
1409 {
1410 	struct realtek_priv *priv = ds->priv;
1411 	int ret;
1412 
1413 	dev_dbg(priv->dev, "enable port %d\n", port);
1414 	ret = regmap_update_bits(priv->map, RTL8366RB_PECR, BIT(port),
1415 				 0);
1416 	if (ret)
1417 		return ret;
1418 
1419 	return 0;
1420 }
1421 
1422 static void
1423 rtl8366rb_port_disable(struct dsa_switch *ds, int port)
1424 {
1425 	struct realtek_priv *priv = ds->priv;
1426 	int ret;
1427 
1428 	dev_dbg(priv->dev, "disable port %d\n", port);
1429 	ret = regmap_update_bits(priv->map, RTL8366RB_PECR, BIT(port),
1430 				 BIT(port));
1431 	if (ret)
1432 		return;
1433 }
1434 
1435 static int
1436 rtl8366rb_port_bridge_join(struct dsa_switch *ds, int port,
1437 			   struct dsa_bridge bridge,
1438 			   bool *tx_fwd_offload,
1439 			   struct netlink_ext_ack *extack)
1440 {
1441 	struct realtek_priv *priv = ds->priv;
1442 	unsigned int port_bitmap = 0;
1443 	int ret, i;
1444 
1445 	/* Loop over all other ports than the current one */
1446 	for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) {
1447 		/* Current port handled last */
1448 		if (i == port)
1449 			continue;
1450 		/* Not on this bridge */
1451 		if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge))
1452 			continue;
1453 		/* Join this port to each other port on the bridge */
1454 		ret = regmap_update_bits(priv->map, RTL8366RB_PORT_ISO(i),
1455 					 RTL8366RB_PORT_ISO_PORTS(BIT(port)),
1456 					 RTL8366RB_PORT_ISO_PORTS(BIT(port)));
1457 		if (ret)
1458 			dev_err(priv->dev, "failed to join port %d\n", port);
1459 
1460 		port_bitmap |= BIT(i);
1461 	}
1462 
1463 	/* Set the bits for the ports we can access */
1464 	return regmap_update_bits(priv->map, RTL8366RB_PORT_ISO(port),
1465 				  RTL8366RB_PORT_ISO_PORTS(port_bitmap),
1466 				  RTL8366RB_PORT_ISO_PORTS(port_bitmap));
1467 }
1468 
1469 static void
1470 rtl8366rb_port_bridge_leave(struct dsa_switch *ds, int port,
1471 			    struct dsa_bridge bridge)
1472 {
1473 	struct realtek_priv *priv = ds->priv;
1474 	unsigned int port_bitmap = 0;
1475 	int ret, i;
1476 
1477 	/* Loop over all other ports than this one */
1478 	for (i = 0; i < RTL8366RB_PORT_NUM_CPU; i++) {
1479 		/* Current port handled last */
1480 		if (i == port)
1481 			continue;
1482 		/* Not on this bridge */
1483 		if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge))
1484 			continue;
1485 		/* Remove this port from any other port on the bridge */
1486 		ret = regmap_update_bits(priv->map, RTL8366RB_PORT_ISO(i),
1487 					 RTL8366RB_PORT_ISO_PORTS(BIT(port)), 0);
1488 		if (ret)
1489 			dev_err(priv->dev, "failed to leave port %d\n", port);
1490 
1491 		port_bitmap |= BIT(i);
1492 	}
1493 
1494 	/* Clear the bits for the ports we can not access, leave ourselves */
1495 	regmap_update_bits(priv->map, RTL8366RB_PORT_ISO(port),
1496 			   RTL8366RB_PORT_ISO_PORTS(port_bitmap), 0);
1497 }
1498 
1499 /**
1500  * rtl8366rb_drop_untagged() - make the switch drop untagged and C-tagged frames
1501  * @priv: SMI state container
1502  * @port: the port to drop untagged and C-tagged frames on
1503  * @drop: whether to drop or pass untagged and C-tagged frames
1504  *
1505  * Return: zero for success, a negative number on error.
1506  */
1507 static int rtl8366rb_drop_untagged(struct realtek_priv *priv, int port, bool drop)
1508 {
1509 	return regmap_update_bits(priv->map, RTL8366RB_VLAN_INGRESS_CTRL1_REG,
1510 				  RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port),
1511 				  drop ? RTL8366RB_VLAN_INGRESS_CTRL1_DROP(port) : 0);
1512 }
1513 
1514 static int rtl8366rb_vlan_filtering(struct dsa_switch *ds, int port,
1515 				    bool vlan_filtering,
1516 				    struct netlink_ext_ack *extack)
1517 {
1518 	struct realtek_priv *priv = ds->priv;
1519 	struct rtl8366rb *rb;
1520 	int ret;
1521 
1522 	rb = priv->chip_data;
1523 
1524 	dev_dbg(priv->dev, "port %d: %s VLAN filtering\n", port,
1525 		vlan_filtering ? "enable" : "disable");
1526 
1527 	/* If the port is not in the member set, the frame will be dropped */
1528 	ret = regmap_update_bits(priv->map, RTL8366RB_VLAN_INGRESS_CTRL2_REG,
1529 				 BIT(port), vlan_filtering ? BIT(port) : 0);
1530 	if (ret)
1531 		return ret;
1532 
1533 	/* If VLAN filtering is enabled and PVID is also enabled, we must
1534 	 * not drop any untagged or C-tagged frames. If we turn off VLAN
1535 	 * filtering on a port, we need to accept any frames.
1536 	 */
1537 	if (vlan_filtering)
1538 		ret = rtl8366rb_drop_untagged(priv, port, !rb->pvid_enabled[port]);
1539 	else
1540 		ret = rtl8366rb_drop_untagged(priv, port, false);
1541 
1542 	return ret;
1543 }
1544 
1545 static int
1546 rtl8366rb_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1547 				struct switchdev_brport_flags flags,
1548 				struct netlink_ext_ack *extack)
1549 {
1550 	/* We support enabling/disabling learning */
1551 	if (flags.mask & ~(BR_LEARNING))
1552 		return -EINVAL;
1553 
1554 	return 0;
1555 }
1556 
1557 static int
1558 rtl8366rb_port_bridge_flags(struct dsa_switch *ds, int port,
1559 			    struct switchdev_brport_flags flags,
1560 			    struct netlink_ext_ack *extack)
1561 {
1562 	struct realtek_priv *priv = ds->priv;
1563 	int ret;
1564 
1565 	if (flags.mask & BR_LEARNING) {
1566 		ret = regmap_update_bits(priv->map, RTL8366RB_PORT_LEARNDIS_CTRL,
1567 					 BIT(port),
1568 					 (flags.val & BR_LEARNING) ? 0 : BIT(port));
1569 		if (ret)
1570 			return ret;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 static void
1577 rtl8366rb_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1578 {
1579 	struct realtek_priv *priv = ds->priv;
1580 	u32 val;
1581 	int i;
1582 
1583 	switch (state) {
1584 	case BR_STATE_DISABLED:
1585 		val = RTL8366RB_STP_STATE_DISABLED;
1586 		break;
1587 	case BR_STATE_BLOCKING:
1588 	case BR_STATE_LISTENING:
1589 		val = RTL8366RB_STP_STATE_BLOCKING;
1590 		break;
1591 	case BR_STATE_LEARNING:
1592 		val = RTL8366RB_STP_STATE_LEARNING;
1593 		break;
1594 	case BR_STATE_FORWARDING:
1595 		val = RTL8366RB_STP_STATE_FORWARDING;
1596 		break;
1597 	default:
1598 		dev_err(priv->dev, "unknown bridge state requested\n");
1599 		return;
1600 	}
1601 
1602 	/* Set the same status for the port on all the FIDs */
1603 	for (i = 0; i < RTL8366RB_NUM_FIDS; i++) {
1604 		regmap_update_bits(priv->map, RTL8366RB_STP_STATE_BASE + i,
1605 				   RTL8366RB_STP_STATE_MASK(port),
1606 				   RTL8366RB_STP_STATE(port, val));
1607 	}
1608 }
1609 
1610 static void
1611 rtl8366rb_port_fast_age(struct dsa_switch *ds, int port)
1612 {
1613 	struct realtek_priv *priv = ds->priv;
1614 
1615 	/* This will age out any learned L2 entries */
1616 	regmap_update_bits(priv->map, RTL8366RB_SECURITY_CTRL,
1617 			   BIT(port), BIT(port));
1618 	/* Restore the normal state of things */
1619 	regmap_update_bits(priv->map, RTL8366RB_SECURITY_CTRL,
1620 			   BIT(port), 0);
1621 }
1622 
1623 static int rtl8366rb_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1624 {
1625 	struct realtek_priv *priv = ds->priv;
1626 	struct rtl8366rb *rb;
1627 	unsigned int max_mtu;
1628 	u32 len;
1629 	int i;
1630 
1631 	/* Cache the per-port MTU setting */
1632 	rb = priv->chip_data;
1633 	rb->max_mtu[port] = new_mtu;
1634 
1635 	/* Roof out the MTU for the entire switch to the greatest
1636 	 * common denominator: the biggest set for any one port will
1637 	 * be the biggest MTU for the switch.
1638 	 */
1639 	max_mtu = ETH_DATA_LEN;
1640 	for (i = 0; i < RTL8366RB_NUM_PORTS; i++) {
1641 		if (rb->max_mtu[i] > max_mtu)
1642 			max_mtu = rb->max_mtu[i];
1643 	}
1644 
1645 	/* Translate to layer 2 size.
1646 	 * Add ethernet and (possible) VLAN headers, and checksum to the size.
1647 	 * For ETH_DATA_LEN (1500 bytes) this will add up to 1522 bytes.
1648 	 */
1649 	max_mtu += VLAN_ETH_HLEN;
1650 	max_mtu += ETH_FCS_LEN;
1651 
1652 	if (max_mtu <= 1522)
1653 		len = RTL8366RB_SGCR_MAX_LENGTH_1522;
1654 	else if (max_mtu > 1522 && max_mtu <= 1536)
1655 		/* This will be the most common default if using VLAN and
1656 		 * CPU tagging on a port as both VLAN and CPU tag will
1657 		 * result in 1518 + 4 + 4 = 1526 bytes.
1658 		 */
1659 		len = RTL8366RB_SGCR_MAX_LENGTH_1536;
1660 	else if (max_mtu > 1536 && max_mtu <= 1552)
1661 		len = RTL8366RB_SGCR_MAX_LENGTH_1552;
1662 	else
1663 		len = RTL8366RB_SGCR_MAX_LENGTH_16000;
1664 
1665 	return regmap_update_bits(priv->map, RTL8366RB_SGCR,
1666 				  RTL8366RB_SGCR_MAX_LENGTH_MASK,
1667 				  len);
1668 }
1669 
1670 static int rtl8366rb_max_mtu(struct dsa_switch *ds, int port)
1671 {
1672 	/* The max MTU is 16000 bytes, so we subtract the ethernet
1673 	 * headers with VLAN and checksum and arrive at
1674 	 * 16000 - 18 - 4 = 15978. This does not include the CPU tag
1675 	 * since that is added to the requested MTU by the DSA framework.
1676 	 */
1677 	return 16000 - VLAN_ETH_HLEN - ETH_FCS_LEN;
1678 }
1679 
1680 static int rtl8366rb_get_vlan_4k(struct realtek_priv *priv, u32 vid,
1681 				 struct rtl8366_vlan_4k *vlan4k)
1682 {
1683 	u32 data[3];
1684 	int ret;
1685 	int i;
1686 
1687 	memset(vlan4k, '\0', sizeof(struct rtl8366_vlan_4k));
1688 
1689 	if (vid >= RTL8366RB_NUM_VIDS)
1690 		return -EINVAL;
1691 
1692 	/* write VID */
1693 	ret = regmap_write(priv->map, RTL8366RB_VLAN_TABLE_WRITE_BASE,
1694 			   vid & RTL8366RB_VLAN_VID_MASK);
1695 	if (ret)
1696 		return ret;
1697 
1698 	/* write table access control word */
1699 	ret = regmap_write(priv->map, RTL8366RB_TABLE_ACCESS_CTRL_REG,
1700 			   RTL8366RB_TABLE_VLAN_READ_CTRL);
1701 	if (ret)
1702 		return ret;
1703 
1704 	for (i = 0; i < 3; i++) {
1705 		ret = regmap_read(priv->map,
1706 				  RTL8366RB_VLAN_TABLE_READ_BASE + i,
1707 				  &data[i]);
1708 		if (ret)
1709 			return ret;
1710 	}
1711 
1712 	vlan4k->vid = vid;
1713 	vlan4k->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) &
1714 			RTL8366RB_VLAN_UNTAG_MASK;
1715 	vlan4k->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK;
1716 	vlan4k->fid = data[2] & RTL8366RB_VLAN_FID_MASK;
1717 
1718 	return 0;
1719 }
1720 
1721 static int rtl8366rb_set_vlan_4k(struct realtek_priv *priv,
1722 				 const struct rtl8366_vlan_4k *vlan4k)
1723 {
1724 	u32 data[3];
1725 	int ret;
1726 	int i;
1727 
1728 	if (vlan4k->vid >= RTL8366RB_NUM_VIDS ||
1729 	    vlan4k->member > RTL8366RB_VLAN_MEMBER_MASK ||
1730 	    vlan4k->untag > RTL8366RB_VLAN_UNTAG_MASK ||
1731 	    vlan4k->fid > RTL8366RB_FIDMAX)
1732 		return -EINVAL;
1733 
1734 	data[0] = vlan4k->vid & RTL8366RB_VLAN_VID_MASK;
1735 	data[1] = (vlan4k->member & RTL8366RB_VLAN_MEMBER_MASK) |
1736 		  ((vlan4k->untag & RTL8366RB_VLAN_UNTAG_MASK) <<
1737 			RTL8366RB_VLAN_UNTAG_SHIFT);
1738 	data[2] = vlan4k->fid & RTL8366RB_VLAN_FID_MASK;
1739 
1740 	for (i = 0; i < 3; i++) {
1741 		ret = regmap_write(priv->map,
1742 				   RTL8366RB_VLAN_TABLE_WRITE_BASE + i,
1743 				   data[i]);
1744 		if (ret)
1745 			return ret;
1746 	}
1747 
1748 	/* write table access control word */
1749 	ret = regmap_write(priv->map, RTL8366RB_TABLE_ACCESS_CTRL_REG,
1750 			   RTL8366RB_TABLE_VLAN_WRITE_CTRL);
1751 
1752 	return ret;
1753 }
1754 
1755 static int rtl8366rb_get_vlan_mc(struct realtek_priv *priv, u32 index,
1756 				 struct rtl8366_vlan_mc *vlanmc)
1757 {
1758 	u32 data[3];
1759 	int ret;
1760 	int i;
1761 
1762 	memset(vlanmc, '\0', sizeof(struct rtl8366_vlan_mc));
1763 
1764 	if (index >= RTL8366RB_NUM_VLANS)
1765 		return -EINVAL;
1766 
1767 	for (i = 0; i < 3; i++) {
1768 		ret = regmap_read(priv->map,
1769 				  RTL8366RB_VLAN_MC_BASE(index) + i,
1770 				  &data[i]);
1771 		if (ret)
1772 			return ret;
1773 	}
1774 
1775 	vlanmc->vid = data[0] & RTL8366RB_VLAN_VID_MASK;
1776 	vlanmc->priority = (data[0] >> RTL8366RB_VLAN_PRIORITY_SHIFT) &
1777 		RTL8366RB_VLAN_PRIORITY_MASK;
1778 	vlanmc->untag = (data[1] >> RTL8366RB_VLAN_UNTAG_SHIFT) &
1779 		RTL8366RB_VLAN_UNTAG_MASK;
1780 	vlanmc->member = data[1] & RTL8366RB_VLAN_MEMBER_MASK;
1781 	vlanmc->fid = data[2] & RTL8366RB_VLAN_FID_MASK;
1782 
1783 	return 0;
1784 }
1785 
1786 static int rtl8366rb_set_vlan_mc(struct realtek_priv *priv, u32 index,
1787 				 const struct rtl8366_vlan_mc *vlanmc)
1788 {
1789 	u32 data[3];
1790 	int ret;
1791 	int i;
1792 
1793 	if (index >= RTL8366RB_NUM_VLANS ||
1794 	    vlanmc->vid >= RTL8366RB_NUM_VIDS ||
1795 	    vlanmc->priority > RTL8366RB_PRIORITYMAX ||
1796 	    vlanmc->member > RTL8366RB_VLAN_MEMBER_MASK ||
1797 	    vlanmc->untag > RTL8366RB_VLAN_UNTAG_MASK ||
1798 	    vlanmc->fid > RTL8366RB_FIDMAX)
1799 		return -EINVAL;
1800 
1801 	data[0] = (vlanmc->vid & RTL8366RB_VLAN_VID_MASK) |
1802 		  ((vlanmc->priority & RTL8366RB_VLAN_PRIORITY_MASK) <<
1803 			RTL8366RB_VLAN_PRIORITY_SHIFT);
1804 	data[1] = (vlanmc->member & RTL8366RB_VLAN_MEMBER_MASK) |
1805 		  ((vlanmc->untag & RTL8366RB_VLAN_UNTAG_MASK) <<
1806 			RTL8366RB_VLAN_UNTAG_SHIFT);
1807 	data[2] = vlanmc->fid & RTL8366RB_VLAN_FID_MASK;
1808 
1809 	for (i = 0; i < 3; i++) {
1810 		ret = regmap_write(priv->map,
1811 				   RTL8366RB_VLAN_MC_BASE(index) + i,
1812 				   data[i]);
1813 		if (ret)
1814 			return ret;
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 static int rtl8366rb_get_mc_index(struct realtek_priv *priv, int port, int *val)
1821 {
1822 	u32 data;
1823 	int ret;
1824 
1825 	if (port >= priv->num_ports)
1826 		return -EINVAL;
1827 
1828 	ret = regmap_read(priv->map, RTL8366RB_PORT_VLAN_CTRL_REG(port),
1829 			  &data);
1830 	if (ret)
1831 		return ret;
1832 
1833 	*val = (data >> RTL8366RB_PORT_VLAN_CTRL_SHIFT(port)) &
1834 		RTL8366RB_PORT_VLAN_CTRL_MASK;
1835 
1836 	return 0;
1837 }
1838 
1839 static int rtl8366rb_set_mc_index(struct realtek_priv *priv, int port, int index)
1840 {
1841 	struct dsa_switch *ds = &priv->ds;
1842 	struct rtl8366rb *rb;
1843 	bool pvid_enabled;
1844 	int ret;
1845 
1846 	rb = priv->chip_data;
1847 	pvid_enabled = !!index;
1848 
1849 	if (port >= priv->num_ports || index >= RTL8366RB_NUM_VLANS)
1850 		return -EINVAL;
1851 
1852 	ret = regmap_update_bits(priv->map, RTL8366RB_PORT_VLAN_CTRL_REG(port),
1853 				 RTL8366RB_PORT_VLAN_CTRL_MASK <<
1854 					RTL8366RB_PORT_VLAN_CTRL_SHIFT(port),
1855 				 (index & RTL8366RB_PORT_VLAN_CTRL_MASK) <<
1856 					RTL8366RB_PORT_VLAN_CTRL_SHIFT(port));
1857 	if (ret)
1858 		return ret;
1859 
1860 	rb->pvid_enabled[port] = pvid_enabled;
1861 
1862 	/* If VLAN filtering is enabled and PVID is also enabled, we must
1863 	 * not drop any untagged or C-tagged frames. Make sure to update the
1864 	 * filtering setting.
1865 	 */
1866 	if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1867 		ret = rtl8366rb_drop_untagged(priv, port, !pvid_enabled);
1868 
1869 	return ret;
1870 }
1871 
1872 static bool rtl8366rb_is_vlan_valid(struct realtek_priv *priv, unsigned int vlan)
1873 {
1874 	unsigned int max = RTL8366RB_NUM_VLANS - 1;
1875 
1876 	if (priv->vlan4k_enabled)
1877 		max = RTL8366RB_NUM_VIDS - 1;
1878 
1879 	if (vlan > max)
1880 		return false;
1881 
1882 	return true;
1883 }
1884 
1885 static int rtl8366rb_enable_vlan(struct realtek_priv *priv, bool enable)
1886 {
1887 	dev_dbg(priv->dev, "%s VLAN\n", enable ? "enable" : "disable");
1888 	return regmap_update_bits(priv->map,
1889 				  RTL8366RB_SGCR, RTL8366RB_SGCR_EN_VLAN,
1890 				  enable ? RTL8366RB_SGCR_EN_VLAN : 0);
1891 }
1892 
1893 static int rtl8366rb_enable_vlan4k(struct realtek_priv *priv, bool enable)
1894 {
1895 	dev_dbg(priv->dev, "%s VLAN 4k\n", enable ? "enable" : "disable");
1896 	return regmap_update_bits(priv->map, RTL8366RB_SGCR,
1897 				  RTL8366RB_SGCR_EN_VLAN_4KTB,
1898 				  enable ? RTL8366RB_SGCR_EN_VLAN_4KTB : 0);
1899 }
1900 
1901 static int rtl8366rb_phy_read(struct realtek_priv *priv, int phy, int regnum)
1902 {
1903 	u32 val;
1904 	u32 reg;
1905 	int ret;
1906 
1907 	if (phy > RTL8366RB_PHY_NO_MAX)
1908 		return -EINVAL;
1909 
1910 	rtl83xx_lock(priv);
1911 
1912 	ret = regmap_write(priv->map_nolock, RTL8366RB_PHY_ACCESS_CTRL_REG,
1913 			   RTL8366RB_PHY_CTRL_READ);
1914 	if (ret)
1915 		goto out;
1916 
1917 	reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum;
1918 
1919 	ret = regmap_write(priv->map_nolock, reg, 0);
1920 	if (ret) {
1921 		dev_err(priv->dev,
1922 			"failed to write PHY%d reg %04x @ %04x, ret %d\n",
1923 			phy, regnum, reg, ret);
1924 		goto out;
1925 	}
1926 
1927 	ret = regmap_read(priv->map_nolock, RTL8366RB_PHY_ACCESS_DATA_REG,
1928 			  &val);
1929 	if (ret)
1930 		goto out;
1931 
1932 	ret = val;
1933 
1934 	dev_dbg(priv->dev, "read PHY%d register 0x%04x @ %08x, val <- %04x\n",
1935 		phy, regnum, reg, val);
1936 
1937 out:
1938 	rtl83xx_unlock(priv);
1939 
1940 	return ret;
1941 }
1942 
1943 static int rtl8366rb_phy_write(struct realtek_priv *priv, int phy, int regnum,
1944 			       u16 val)
1945 {
1946 	u32 reg;
1947 	int ret;
1948 
1949 	if (phy > RTL8366RB_PHY_NO_MAX)
1950 		return -EINVAL;
1951 
1952 	rtl83xx_lock(priv);
1953 
1954 	ret = regmap_write(priv->map_nolock, RTL8366RB_PHY_ACCESS_CTRL_REG,
1955 			   RTL8366RB_PHY_CTRL_WRITE);
1956 	if (ret)
1957 		goto out;
1958 
1959 	reg = 0x8000 | (1 << (phy + RTL8366RB_PHY_NO_OFFSET)) | regnum;
1960 
1961 	dev_dbg(priv->dev, "write PHY%d register 0x%04x @ %04x, val -> %04x\n",
1962 		phy, regnum, reg, val);
1963 
1964 	ret = regmap_write(priv->map_nolock, reg, val);
1965 	if (ret)
1966 		goto out;
1967 
1968 out:
1969 	rtl83xx_unlock(priv);
1970 
1971 	return ret;
1972 }
1973 
1974 static int rtl8366rb_reset_chip(struct realtek_priv *priv)
1975 {
1976 	int timeout = 10;
1977 	u32 val;
1978 	int ret;
1979 
1980 	priv->write_reg_noack(priv, RTL8366RB_RESET_CTRL_REG,
1981 			      RTL8366RB_CHIP_CTRL_RESET_HW);
1982 	do {
1983 		usleep_range(20000, 25000);
1984 		ret = regmap_read(priv->map, RTL8366RB_RESET_CTRL_REG, &val);
1985 		if (ret)
1986 			return ret;
1987 
1988 		if (!(val & RTL8366RB_CHIP_CTRL_RESET_HW))
1989 			break;
1990 	} while (--timeout);
1991 
1992 	if (!timeout) {
1993 		dev_err(priv->dev, "timeout waiting for the switch to reset\n");
1994 		return -EIO;
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 static int rtl8366rb_detect(struct realtek_priv *priv)
2001 {
2002 	struct device *dev = priv->dev;
2003 	int ret;
2004 	u32 val;
2005 
2006 	/* Detect device */
2007 	ret = regmap_read(priv->map, 0x5c, &val);
2008 	if (ret) {
2009 		dev_err(dev, "can't get chip ID (%d)\n", ret);
2010 		return ret;
2011 	}
2012 
2013 	switch (val) {
2014 	case 0x6027:
2015 		dev_info(dev, "found an RTL8366S switch\n");
2016 		dev_err(dev, "this switch is not yet supported, submit patches!\n");
2017 		return -ENODEV;
2018 	case 0x5937:
2019 		dev_info(dev, "found an RTL8366RB switch\n");
2020 		priv->cpu_port = RTL8366RB_PORT_NUM_CPU;
2021 		priv->num_ports = RTL8366RB_NUM_PORTS;
2022 		priv->num_vlan_mc = RTL8366RB_NUM_VLANS;
2023 		priv->mib_counters = rtl8366rb_mib_counters;
2024 		priv->num_mib_counters = ARRAY_SIZE(rtl8366rb_mib_counters);
2025 		break;
2026 	default:
2027 		dev_info(dev, "found an Unknown Realtek switch (id=0x%04x)\n",
2028 			 val);
2029 		break;
2030 	}
2031 
2032 	ret = rtl8366rb_reset_chip(priv);
2033 	if (ret)
2034 		return ret;
2035 
2036 	return 0;
2037 }
2038 
2039 static const struct phylink_mac_ops rtl8366rb_phylink_mac_ops = {
2040 	.mac_config = rtl8366rb_mac_config,
2041 	.mac_link_down = rtl8366rb_mac_link_down,
2042 	.mac_link_up = rtl8366rb_mac_link_up,
2043 };
2044 
2045 static const struct dsa_switch_ops rtl8366rb_switch_ops = {
2046 	.get_tag_protocol = rtl8366_get_tag_protocol,
2047 	.setup = rtl8366rb_setup,
2048 	.phylink_get_caps = rtl8366rb_phylink_get_caps,
2049 	.get_strings = rtl8366_get_strings,
2050 	.get_ethtool_stats = rtl8366_get_ethtool_stats,
2051 	.get_sset_count = rtl8366_get_sset_count,
2052 	.port_bridge_join = rtl8366rb_port_bridge_join,
2053 	.port_bridge_leave = rtl8366rb_port_bridge_leave,
2054 	.port_vlan_filtering = rtl8366rb_vlan_filtering,
2055 	.port_vlan_add = rtl8366_vlan_add,
2056 	.port_vlan_del = rtl8366_vlan_del,
2057 	.port_enable = rtl8366rb_port_enable,
2058 	.port_disable = rtl8366rb_port_disable,
2059 	.port_pre_bridge_flags = rtl8366rb_port_pre_bridge_flags,
2060 	.port_bridge_flags = rtl8366rb_port_bridge_flags,
2061 	.port_stp_state_set = rtl8366rb_port_stp_state_set,
2062 	.port_fast_age = rtl8366rb_port_fast_age,
2063 	.port_change_mtu = rtl8366rb_change_mtu,
2064 	.port_max_mtu = rtl8366rb_max_mtu,
2065 };
2066 
2067 static const struct realtek_ops rtl8366rb_ops = {
2068 	.detect		= rtl8366rb_detect,
2069 	.get_vlan_mc	= rtl8366rb_get_vlan_mc,
2070 	.set_vlan_mc	= rtl8366rb_set_vlan_mc,
2071 	.get_vlan_4k	= rtl8366rb_get_vlan_4k,
2072 	.set_vlan_4k	= rtl8366rb_set_vlan_4k,
2073 	.get_mc_index	= rtl8366rb_get_mc_index,
2074 	.set_mc_index	= rtl8366rb_set_mc_index,
2075 	.get_mib_counter = rtl8366rb_get_mib_counter,
2076 	.is_vlan_valid	= rtl8366rb_is_vlan_valid,
2077 	.enable_vlan	= rtl8366rb_enable_vlan,
2078 	.enable_vlan4k	= rtl8366rb_enable_vlan4k,
2079 	.phy_read	= rtl8366rb_phy_read,
2080 	.phy_write	= rtl8366rb_phy_write,
2081 };
2082 
2083 const struct realtek_variant rtl8366rb_variant = {
2084 	.ds_ops = &rtl8366rb_switch_ops,
2085 	.ops = &rtl8366rb_ops,
2086 	.phylink_mac_ops = &rtl8366rb_phylink_mac_ops,
2087 	.clk_delay = 10,
2088 	.cmd_read = 0xa9,
2089 	.cmd_write = 0xa8,
2090 	.chip_data_sz = sizeof(struct rtl8366rb),
2091 };
2092 
2093 static const struct of_device_id rtl8366rb_of_match[] = {
2094 	{ .compatible = "realtek,rtl8366rb", .data = &rtl8366rb_variant, },
2095 	{ /* sentinel */ },
2096 };
2097 MODULE_DEVICE_TABLE(of, rtl8366rb_of_match);
2098 
2099 static struct platform_driver rtl8366rb_smi_driver = {
2100 	.driver = {
2101 		.name = "rtl8366rb-smi",
2102 		.of_match_table = rtl8366rb_of_match,
2103 	},
2104 	.probe  = realtek_smi_probe,
2105 	.remove_new = realtek_smi_remove,
2106 	.shutdown = realtek_smi_shutdown,
2107 };
2108 
2109 static struct mdio_driver rtl8366rb_mdio_driver = {
2110 	.mdiodrv.driver = {
2111 		.name = "rtl8366rb-mdio",
2112 		.of_match_table = rtl8366rb_of_match,
2113 	},
2114 	.probe  = realtek_mdio_probe,
2115 	.remove = realtek_mdio_remove,
2116 	.shutdown = realtek_mdio_shutdown,
2117 };
2118 
2119 static int rtl8366rb_init(void)
2120 {
2121 	int ret;
2122 
2123 	ret = realtek_mdio_driver_register(&rtl8366rb_mdio_driver);
2124 	if (ret)
2125 		return ret;
2126 
2127 	ret = realtek_smi_driver_register(&rtl8366rb_smi_driver);
2128 	if (ret) {
2129 		realtek_mdio_driver_unregister(&rtl8366rb_mdio_driver);
2130 		return ret;
2131 	}
2132 
2133 	return 0;
2134 }
2135 module_init(rtl8366rb_init);
2136 
2137 static void __exit rtl8366rb_exit(void)
2138 {
2139 	realtek_smi_driver_unregister(&rtl8366rb_smi_driver);
2140 	realtek_mdio_driver_unregister(&rtl8366rb_mdio_driver);
2141 }
2142 module_exit(rtl8366rb_exit);
2143 
2144 MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
2145 MODULE_DESCRIPTION("Driver for RTL8366RB ethernet switch");
2146 MODULE_LICENSE("GPL");
2147 MODULE_IMPORT_NS(REALTEK_DSA);
2148