xref: /linux/drivers/net/dsa/realtek/rtl8365mb.c (revision 1d5198dd08ac04b13a8b7539131baf0980998032)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Realtek SMI subdriver for the Realtek RTL8365MB-VC ethernet switch.
3  *
4  * Copyright (C) 2021 Alvin Šipraga <alsi@bang-olufsen.dk>
5  * Copyright (C) 2021 Michael Rasmussen <mir@bang-olufsen.dk>
6  *
7  * The RTL8365MB-VC is a 4+1 port 10/100/1000M switch controller. It includes 4
8  * integrated PHYs for the user facing ports, and an extension interface which
9  * can be connected to the CPU - or another PHY - via either MII, RMII, or
10  * RGMII. The switch is configured via the Realtek Simple Management Interface
11  * (SMI), which uses the MDIO/MDC lines.
12  *
13  * Below is a simplified block diagram of the chip and its relevant interfaces.
14  *
15  *                          .-----------------------------------.
16  *                          |                                   |
17  *         UTP <---------------> Giga PHY <-> PCS <-> P0 GMAC   |
18  *         UTP <---------------> Giga PHY <-> PCS <-> P1 GMAC   |
19  *         UTP <---------------> Giga PHY <-> PCS <-> P2 GMAC   |
20  *         UTP <---------------> Giga PHY <-> PCS <-> P3 GMAC   |
21  *                          |                                   |
22  *     CPU/PHY <-MII/RMII/RGMII--->  Extension  <---> Extension |
23  *                          |       interface 1        GMAC 1   |
24  *                          |                                   |
25  *     SMI driver/ <-MDC/SCL---> Management    ~~~~~~~~~~~~~~   |
26  *        EEPROM   <-MDIO/SDA--> interface     ~REALTEK ~~~~~   |
27  *                          |                  ~RTL8365MB ~~~   |
28  *                          |                  ~GXXXC TAIWAN~   |
29  *        GPIO <--------------> Reset          ~~~~~~~~~~~~~~   |
30  *                          |                                   |
31  *      Interrupt  <----------> Link UP/DOWN events             |
32  *      controller          |                                   |
33  *                          '-----------------------------------'
34  *
35  * The driver uses DSA to integrate the 4 user and 1 extension ports into the
36  * kernel. Netdevices are created for the user ports, as are PHY devices for
37  * their integrated PHYs. The device tree firmware should also specify the link
38  * partner of the extension port - either via a fixed-link or other phy-handle.
39  * See the device tree bindings for more detailed information. Note that the
40  * driver has only been tested with a fixed-link, but in principle it should not
41  * matter.
42  *
43  * NOTE: Currently, only the RGMII interface is implemented in this driver.
44  *
45  * The interrupt line is asserted on link UP/DOWN events. The driver creates a
46  * custom irqchip to handle this interrupt and demultiplex the events by reading
47  * the status registers via SMI. Interrupts are then propagated to the relevant
48  * PHY device.
49  *
50  * The EEPROM contains initial register values which the chip will read over I2C
51  * upon hardware reset. It is also possible to omit the EEPROM. In both cases,
52  * the driver will manually reprogram some registers using jam tables to reach
53  * an initial state defined by the vendor driver.
54  *
55  * This Linux driver is written based on an OS-agnostic vendor driver from
56  * Realtek. The reference GPL-licensed sources can be found in the OpenWrt
57  * source tree under the name rtl8367c. The vendor driver claims to support a
58  * number of similar switch controllers from Realtek, but the only hardware we
59  * have is the RTL8365MB-VC. Moreover, there does not seem to be any chip under
60  * the name RTL8367C. Although one wishes that the 'C' stood for some kind of
61  * common hardware revision, there exist examples of chips with the suffix -VC
62  * which are explicitly not supported by the rtl8367c driver and which instead
63  * require the rtl8367d vendor driver. With all this uncertainty, the driver has
64  * been modestly named rtl8365mb. Future implementors may wish to rename things
65  * accordingly.
66  *
67  * In the same family of chips, some carry up to 8 user ports and up to 2
68  * extension ports. Where possible this driver tries to make things generic, but
69  * more work must be done to support these configurations. According to
70  * documentation from Realtek, the family should include the following chips:
71  *
72  *  - RTL8363NB
73  *  - RTL8363NB-VB
74  *  - RTL8363SC
75  *  - RTL8363SC-VB
76  *  - RTL8364NB
77  *  - RTL8364NB-VB
78  *  - RTL8365MB-VC
79  *  - RTL8366SC
80  *  - RTL8367RB-VB
81  *  - RTL8367SB
82  *  - RTL8367S
83  *  - RTL8370MB
84  *  - RTL8310SR
85  *
86  * Some of the register logic for these additional chips has been skipped over
87  * while implementing this driver. It is therefore not possible to assume that
88  * things will work out-of-the-box for other chips, and a careful review of the
89  * vendor driver may be needed to expand support. The RTL8365MB-VC seems to be
90  * one of the simpler chips.
91  */
92 
93 #include <linux/bitfield.h>
94 #include <linux/bitops.h>
95 #include <linux/interrupt.h>
96 #include <linux/irqdomain.h>
97 #include <linux/mutex.h>
98 #include <linux/of_irq.h>
99 #include <linux/regmap.h>
100 #include <linux/if_bridge.h>
101 #include <linux/if_vlan.h>
102 
103 #include "realtek.h"
104 #include "realtek-smi.h"
105 #include "realtek-mdio.h"
106 #include "rtl83xx.h"
107 
108 /* Family-specific data and limits */
109 #define RTL8365MB_PHYADDRMAX		7
110 #define RTL8365MB_NUM_PHYREGS		32
111 #define RTL8365MB_PHYREGMAX		(RTL8365MB_NUM_PHYREGS - 1)
112 #define RTL8365MB_MAX_NUM_PORTS		11
113 #define RTL8365MB_MAX_NUM_EXTINTS	3
114 #define RTL8365MB_LEARN_LIMIT_MAX	2112
115 
116 /* Chip identification registers */
117 #define RTL8365MB_CHIP_ID_REG		0x1300
118 
119 #define RTL8365MB_CHIP_VER_REG		0x1301
120 
121 #define RTL8365MB_MAGIC_REG		0x13C2
122 #define   RTL8365MB_MAGIC_VALUE		0x0249
123 
124 /* Chip reset register */
125 #define RTL8365MB_CHIP_RESET_REG	0x1322
126 #define RTL8365MB_CHIP_RESET_SW_MASK	0x0002
127 #define RTL8365MB_CHIP_RESET_HW_MASK	0x0001
128 
129 /* Interrupt polarity register */
130 #define RTL8365MB_INTR_POLARITY_REG	0x1100
131 #define   RTL8365MB_INTR_POLARITY_MASK	0x0001
132 #define   RTL8365MB_INTR_POLARITY_HIGH	0
133 #define   RTL8365MB_INTR_POLARITY_LOW	1
134 
135 /* Interrupt control/status register - enable/check specific interrupt types */
136 #define RTL8365MB_INTR_CTRL_REG			0x1101
137 #define RTL8365MB_INTR_STATUS_REG		0x1102
138 #define   RTL8365MB_INTR_SLIENT_START_2_MASK	0x1000
139 #define   RTL8365MB_INTR_SLIENT_START_MASK	0x0800
140 #define   RTL8365MB_INTR_ACL_ACTION_MASK	0x0200
141 #define   RTL8365MB_INTR_CABLE_DIAG_FIN_MASK	0x0100
142 #define   RTL8365MB_INTR_INTERRUPT_8051_MASK	0x0080
143 #define   RTL8365MB_INTR_LOOP_DETECTION_MASK	0x0040
144 #define   RTL8365MB_INTR_GREEN_TIMER_MASK	0x0020
145 #define   RTL8365MB_INTR_SPECIAL_CONGEST_MASK	0x0010
146 #define   RTL8365MB_INTR_SPEED_CHANGE_MASK	0x0008
147 #define   RTL8365MB_INTR_LEARN_OVER_MASK	0x0004
148 #define   RTL8365MB_INTR_METER_EXCEEDED_MASK	0x0002
149 #define   RTL8365MB_INTR_LINK_CHANGE_MASK	0x0001
150 #define   RTL8365MB_INTR_ALL_MASK                      \
151 		(RTL8365MB_INTR_SLIENT_START_2_MASK |  \
152 		 RTL8365MB_INTR_SLIENT_START_MASK |    \
153 		 RTL8365MB_INTR_ACL_ACTION_MASK |      \
154 		 RTL8365MB_INTR_CABLE_DIAG_FIN_MASK |  \
155 		 RTL8365MB_INTR_INTERRUPT_8051_MASK |  \
156 		 RTL8365MB_INTR_LOOP_DETECTION_MASK |  \
157 		 RTL8365MB_INTR_GREEN_TIMER_MASK |     \
158 		 RTL8365MB_INTR_SPECIAL_CONGEST_MASK | \
159 		 RTL8365MB_INTR_SPEED_CHANGE_MASK |    \
160 		 RTL8365MB_INTR_LEARN_OVER_MASK |      \
161 		 RTL8365MB_INTR_METER_EXCEEDED_MASK |  \
162 		 RTL8365MB_INTR_LINK_CHANGE_MASK)
163 
164 /* Per-port interrupt type status registers */
165 #define RTL8365MB_PORT_LINKDOWN_IND_REG		0x1106
166 #define   RTL8365MB_PORT_LINKDOWN_IND_MASK	0x07FF
167 
168 #define RTL8365MB_PORT_LINKUP_IND_REG		0x1107
169 #define   RTL8365MB_PORT_LINKUP_IND_MASK	0x07FF
170 
171 /* PHY indirect access registers */
172 #define RTL8365MB_INDIRECT_ACCESS_CTRL_REG			0x1F00
173 #define   RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK		0x0002
174 #define   RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ		0
175 #define   RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE		1
176 #define   RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK		0x0001
177 #define   RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE		1
178 #define RTL8365MB_INDIRECT_ACCESS_STATUS_REG			0x1F01
179 #define RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG			0x1F02
180 #define   RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK	GENMASK(4, 0)
181 #define   RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK		GENMASK(7, 5)
182 #define   RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK	GENMASK(11, 8)
183 #define   RTL8365MB_PHY_BASE					0x2000
184 #define RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG		0x1F03
185 #define RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG			0x1F04
186 
187 /* PHY OCP address prefix register */
188 #define RTL8365MB_GPHY_OCP_MSB_0_REG			0x1D15
189 #define   RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK	0x0FC0
190 #define RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK		0xFC00
191 
192 /* The PHY OCP addresses of PHY registers 0~31 start here */
193 #define RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE		0xA400
194 
195 /* External interface port mode values - used in DIGITAL_INTERFACE_SELECT */
196 #define RTL8365MB_EXT_PORT_MODE_DISABLE		0
197 #define RTL8365MB_EXT_PORT_MODE_RGMII		1
198 #define RTL8365MB_EXT_PORT_MODE_MII_MAC		2
199 #define RTL8365MB_EXT_PORT_MODE_MII_PHY		3
200 #define RTL8365MB_EXT_PORT_MODE_TMII_MAC	4
201 #define RTL8365MB_EXT_PORT_MODE_TMII_PHY	5
202 #define RTL8365MB_EXT_PORT_MODE_GMII		6
203 #define RTL8365MB_EXT_PORT_MODE_RMII_MAC	7
204 #define RTL8365MB_EXT_PORT_MODE_RMII_PHY	8
205 #define RTL8365MB_EXT_PORT_MODE_SGMII		9
206 #define RTL8365MB_EXT_PORT_MODE_HSGMII		10
207 #define RTL8365MB_EXT_PORT_MODE_1000X_100FX	11
208 #define RTL8365MB_EXT_PORT_MODE_1000X		12
209 #define RTL8365MB_EXT_PORT_MODE_100FX		13
210 
211 /* External interface mode configuration registers 0~1 */
212 #define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0		0x1305 /* EXT0,EXT1 */
213 #define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1		0x13C3 /* EXT2 */
214 #define RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(_extint) \
215 		((_extint) <= 1 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG0 : \
216 		 (_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_SELECT_REG1 : \
217 		 0x0)
218 #define   RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(_extint) \
219 		(0xF << (((_extint) % 2)))
220 #define   RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(_extint) \
221 		(((_extint) % 2) * 4)
222 
223 /* External interface RGMII TX/RX delay configuration registers 0~2 */
224 #define RTL8365MB_EXT_RGMXF_REG0		0x1306 /* EXT0 */
225 #define RTL8365MB_EXT_RGMXF_REG1		0x1307 /* EXT1 */
226 #define RTL8365MB_EXT_RGMXF_REG2		0x13C5 /* EXT2 */
227 #define RTL8365MB_EXT_RGMXF_REG(_extint) \
228 		((_extint) == 0 ? RTL8365MB_EXT_RGMXF_REG0 : \
229 		 (_extint) == 1 ? RTL8365MB_EXT_RGMXF_REG1 : \
230 		 (_extint) == 2 ? RTL8365MB_EXT_RGMXF_REG2 : \
231 		 0x0)
232 #define   RTL8365MB_EXT_RGMXF_RXDELAY_MASK	0x0007
233 #define   RTL8365MB_EXT_RGMXF_TXDELAY_MASK	0x0008
234 
235 /* External interface port speed values - used in DIGITAL_INTERFACE_FORCE */
236 #define RTL8365MB_PORT_SPEED_10M	0
237 #define RTL8365MB_PORT_SPEED_100M	1
238 #define RTL8365MB_PORT_SPEED_1000M	2
239 
240 /* External interface force configuration registers 0~2 */
241 #define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0		0x1310 /* EXT0 */
242 #define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1		0x1311 /* EXT1 */
243 #define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2		0x13C4 /* EXT2 */
244 #define RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(_extint) \
245 		((_extint) == 0 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG0 : \
246 		 (_extint) == 1 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG1 : \
247 		 (_extint) == 2 ? RTL8365MB_DIGITAL_INTERFACE_FORCE_REG2 : \
248 		 0x0)
249 #define   RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK		0x1000
250 #define   RTL8365MB_DIGITAL_INTERFACE_FORCE_NWAY_MASK		0x0080
251 #define   RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK	0x0040
252 #define   RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK	0x0020
253 #define   RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK		0x0010
254 #define   RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK		0x0004
255 #define   RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK		0x0003
256 
257 /* CPU port mask register - controls which ports are treated as CPU ports */
258 #define RTL8365MB_CPU_PORT_MASK_REG	0x1219
259 #define   RTL8365MB_CPU_PORT_MASK_MASK	0x07FF
260 
261 /* CPU control register */
262 #define RTL8365MB_CPU_CTRL_REG			0x121A
263 #define   RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK	0x0400
264 #define   RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK	0x0200
265 #define   RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK	0x0080
266 #define   RTL8365MB_CPU_CTRL_TAG_POSITION_MASK	0x0040
267 #define   RTL8365MB_CPU_CTRL_TRAP_PORT_MASK	0x0038
268 #define   RTL8365MB_CPU_CTRL_INSERTMODE_MASK	0x0006
269 #define   RTL8365MB_CPU_CTRL_EN_MASK		0x0001
270 
271 /* Maximum packet length register */
272 #define RTL8365MB_CFG0_MAX_LEN_REG	0x088C
273 #define   RTL8365MB_CFG0_MAX_LEN_MASK	0x3FFF
274 #define RTL8365MB_CFG0_MAX_LEN_MAX	0x3FFF
275 
276 /* Port learning limit registers */
277 #define RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE		0x0A20
278 #define RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(_physport) \
279 		(RTL8365MB_LUT_PORT_LEARN_LIMIT_BASE + (_physport))
280 
281 /* Port isolation (forwarding mask) registers */
282 #define RTL8365MB_PORT_ISOLATION_REG_BASE		0x08A2
283 #define RTL8365MB_PORT_ISOLATION_REG(_physport) \
284 		(RTL8365MB_PORT_ISOLATION_REG_BASE + (_physport))
285 #define   RTL8365MB_PORT_ISOLATION_MASK			0x07FF
286 
287 /* MSTP port state registers - indexed by tree instance */
288 #define RTL8365MB_MSTI_CTRL_BASE			0x0A00
289 #define RTL8365MB_MSTI_CTRL_REG(_msti, _physport) \
290 		(RTL8365MB_MSTI_CTRL_BASE + ((_msti) << 1) + ((_physport) >> 3))
291 #define   RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(_physport) ((_physport) << 1)
292 #define   RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(_physport) \
293 		(0x3 << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET((_physport)))
294 
295 /* MIB counter value registers */
296 #define RTL8365MB_MIB_COUNTER_BASE	0x1000
297 #define RTL8365MB_MIB_COUNTER_REG(_x)	(RTL8365MB_MIB_COUNTER_BASE + (_x))
298 
299 /* MIB counter address register */
300 #define RTL8365MB_MIB_ADDRESS_REG		0x1004
301 #define   RTL8365MB_MIB_ADDRESS_PORT_OFFSET	0x007C
302 #define   RTL8365MB_MIB_ADDRESS(_p, _x) \
303 		(((RTL8365MB_MIB_ADDRESS_PORT_OFFSET) * (_p) + (_x)) >> 2)
304 
305 #define RTL8365MB_MIB_CTRL0_REG			0x1005
306 #define   RTL8365MB_MIB_CTRL0_RESET_MASK	0x0002
307 #define   RTL8365MB_MIB_CTRL0_BUSY_MASK		0x0001
308 
309 /* The DSA callback .get_stats64 runs in atomic context, so we are not allowed
310  * to block. On the other hand, accessing MIB counters absolutely requires us to
311  * block. The solution is thus to schedule work which polls the MIB counters
312  * asynchronously and updates some private data, which the callback can then
313  * fetch atomically. Three seconds should be a good enough polling interval.
314  */
315 #define RTL8365MB_STATS_INTERVAL_JIFFIES	(3 * HZ)
316 
317 enum rtl8365mb_mib_counter_index {
318 	RTL8365MB_MIB_ifInOctets,
319 	RTL8365MB_MIB_dot3StatsFCSErrors,
320 	RTL8365MB_MIB_dot3StatsSymbolErrors,
321 	RTL8365MB_MIB_dot3InPauseFrames,
322 	RTL8365MB_MIB_dot3ControlInUnknownOpcodes,
323 	RTL8365MB_MIB_etherStatsFragments,
324 	RTL8365MB_MIB_etherStatsJabbers,
325 	RTL8365MB_MIB_ifInUcastPkts,
326 	RTL8365MB_MIB_etherStatsDropEvents,
327 	RTL8365MB_MIB_ifInMulticastPkts,
328 	RTL8365MB_MIB_ifInBroadcastPkts,
329 	RTL8365MB_MIB_inMldChecksumError,
330 	RTL8365MB_MIB_inIgmpChecksumError,
331 	RTL8365MB_MIB_inMldSpecificQuery,
332 	RTL8365MB_MIB_inMldGeneralQuery,
333 	RTL8365MB_MIB_inIgmpSpecificQuery,
334 	RTL8365MB_MIB_inIgmpGeneralQuery,
335 	RTL8365MB_MIB_inMldLeaves,
336 	RTL8365MB_MIB_inIgmpLeaves,
337 	RTL8365MB_MIB_etherStatsOctets,
338 	RTL8365MB_MIB_etherStatsUnderSizePkts,
339 	RTL8365MB_MIB_etherOversizeStats,
340 	RTL8365MB_MIB_etherStatsPkts64Octets,
341 	RTL8365MB_MIB_etherStatsPkts65to127Octets,
342 	RTL8365MB_MIB_etherStatsPkts128to255Octets,
343 	RTL8365MB_MIB_etherStatsPkts256to511Octets,
344 	RTL8365MB_MIB_etherStatsPkts512to1023Octets,
345 	RTL8365MB_MIB_etherStatsPkts1024to1518Octets,
346 	RTL8365MB_MIB_ifOutOctets,
347 	RTL8365MB_MIB_dot3StatsSingleCollisionFrames,
348 	RTL8365MB_MIB_dot3StatsMultipleCollisionFrames,
349 	RTL8365MB_MIB_dot3StatsDeferredTransmissions,
350 	RTL8365MB_MIB_dot3StatsLateCollisions,
351 	RTL8365MB_MIB_etherStatsCollisions,
352 	RTL8365MB_MIB_dot3StatsExcessiveCollisions,
353 	RTL8365MB_MIB_dot3OutPauseFrames,
354 	RTL8365MB_MIB_ifOutDiscards,
355 	RTL8365MB_MIB_dot1dTpPortInDiscards,
356 	RTL8365MB_MIB_ifOutUcastPkts,
357 	RTL8365MB_MIB_ifOutMulticastPkts,
358 	RTL8365MB_MIB_ifOutBroadcastPkts,
359 	RTL8365MB_MIB_outOampduPkts,
360 	RTL8365MB_MIB_inOampduPkts,
361 	RTL8365MB_MIB_inIgmpJoinsSuccess,
362 	RTL8365MB_MIB_inIgmpJoinsFail,
363 	RTL8365MB_MIB_inMldJoinsSuccess,
364 	RTL8365MB_MIB_inMldJoinsFail,
365 	RTL8365MB_MIB_inReportSuppressionDrop,
366 	RTL8365MB_MIB_inLeaveSuppressionDrop,
367 	RTL8365MB_MIB_outIgmpReports,
368 	RTL8365MB_MIB_outIgmpLeaves,
369 	RTL8365MB_MIB_outIgmpGeneralQuery,
370 	RTL8365MB_MIB_outIgmpSpecificQuery,
371 	RTL8365MB_MIB_outMldReports,
372 	RTL8365MB_MIB_outMldLeaves,
373 	RTL8365MB_MIB_outMldGeneralQuery,
374 	RTL8365MB_MIB_outMldSpecificQuery,
375 	RTL8365MB_MIB_inKnownMulticastPkts,
376 	RTL8365MB_MIB_END,
377 };
378 
379 struct rtl8365mb_mib_counter {
380 	u32 offset;
381 	u32 length;
382 	const char *name;
383 };
384 
385 #define RTL8365MB_MAKE_MIB_COUNTER(_offset, _length, _name) \
386 		[RTL8365MB_MIB_ ## _name] = { _offset, _length, #_name }
387 
388 static struct rtl8365mb_mib_counter rtl8365mb_mib_counters[] = {
389 	RTL8365MB_MAKE_MIB_COUNTER(0, 4, ifInOctets),
390 	RTL8365MB_MAKE_MIB_COUNTER(4, 2, dot3StatsFCSErrors),
391 	RTL8365MB_MAKE_MIB_COUNTER(6, 2, dot3StatsSymbolErrors),
392 	RTL8365MB_MAKE_MIB_COUNTER(8, 2, dot3InPauseFrames),
393 	RTL8365MB_MAKE_MIB_COUNTER(10, 2, dot3ControlInUnknownOpcodes),
394 	RTL8365MB_MAKE_MIB_COUNTER(12, 2, etherStatsFragments),
395 	RTL8365MB_MAKE_MIB_COUNTER(14, 2, etherStatsJabbers),
396 	RTL8365MB_MAKE_MIB_COUNTER(16, 2, ifInUcastPkts),
397 	RTL8365MB_MAKE_MIB_COUNTER(18, 2, etherStatsDropEvents),
398 	RTL8365MB_MAKE_MIB_COUNTER(20, 2, ifInMulticastPkts),
399 	RTL8365MB_MAKE_MIB_COUNTER(22, 2, ifInBroadcastPkts),
400 	RTL8365MB_MAKE_MIB_COUNTER(24, 2, inMldChecksumError),
401 	RTL8365MB_MAKE_MIB_COUNTER(26, 2, inIgmpChecksumError),
402 	RTL8365MB_MAKE_MIB_COUNTER(28, 2, inMldSpecificQuery),
403 	RTL8365MB_MAKE_MIB_COUNTER(30, 2, inMldGeneralQuery),
404 	RTL8365MB_MAKE_MIB_COUNTER(32, 2, inIgmpSpecificQuery),
405 	RTL8365MB_MAKE_MIB_COUNTER(34, 2, inIgmpGeneralQuery),
406 	RTL8365MB_MAKE_MIB_COUNTER(36, 2, inMldLeaves),
407 	RTL8365MB_MAKE_MIB_COUNTER(38, 2, inIgmpLeaves),
408 	RTL8365MB_MAKE_MIB_COUNTER(40, 4, etherStatsOctets),
409 	RTL8365MB_MAKE_MIB_COUNTER(44, 2, etherStatsUnderSizePkts),
410 	RTL8365MB_MAKE_MIB_COUNTER(46, 2, etherOversizeStats),
411 	RTL8365MB_MAKE_MIB_COUNTER(48, 2, etherStatsPkts64Octets),
412 	RTL8365MB_MAKE_MIB_COUNTER(50, 2, etherStatsPkts65to127Octets),
413 	RTL8365MB_MAKE_MIB_COUNTER(52, 2, etherStatsPkts128to255Octets),
414 	RTL8365MB_MAKE_MIB_COUNTER(54, 2, etherStatsPkts256to511Octets),
415 	RTL8365MB_MAKE_MIB_COUNTER(56, 2, etherStatsPkts512to1023Octets),
416 	RTL8365MB_MAKE_MIB_COUNTER(58, 2, etherStatsPkts1024to1518Octets),
417 	RTL8365MB_MAKE_MIB_COUNTER(60, 4, ifOutOctets),
418 	RTL8365MB_MAKE_MIB_COUNTER(64, 2, dot3StatsSingleCollisionFrames),
419 	RTL8365MB_MAKE_MIB_COUNTER(66, 2, dot3StatsMultipleCollisionFrames),
420 	RTL8365MB_MAKE_MIB_COUNTER(68, 2, dot3StatsDeferredTransmissions),
421 	RTL8365MB_MAKE_MIB_COUNTER(70, 2, dot3StatsLateCollisions),
422 	RTL8365MB_MAKE_MIB_COUNTER(72, 2, etherStatsCollisions),
423 	RTL8365MB_MAKE_MIB_COUNTER(74, 2, dot3StatsExcessiveCollisions),
424 	RTL8365MB_MAKE_MIB_COUNTER(76, 2, dot3OutPauseFrames),
425 	RTL8365MB_MAKE_MIB_COUNTER(78, 2, ifOutDiscards),
426 	RTL8365MB_MAKE_MIB_COUNTER(80, 2, dot1dTpPortInDiscards),
427 	RTL8365MB_MAKE_MIB_COUNTER(82, 2, ifOutUcastPkts),
428 	RTL8365MB_MAKE_MIB_COUNTER(84, 2, ifOutMulticastPkts),
429 	RTL8365MB_MAKE_MIB_COUNTER(86, 2, ifOutBroadcastPkts),
430 	RTL8365MB_MAKE_MIB_COUNTER(88, 2, outOampduPkts),
431 	RTL8365MB_MAKE_MIB_COUNTER(90, 2, inOampduPkts),
432 	RTL8365MB_MAKE_MIB_COUNTER(92, 4, inIgmpJoinsSuccess),
433 	RTL8365MB_MAKE_MIB_COUNTER(96, 2, inIgmpJoinsFail),
434 	RTL8365MB_MAKE_MIB_COUNTER(98, 2, inMldJoinsSuccess),
435 	RTL8365MB_MAKE_MIB_COUNTER(100, 2, inMldJoinsFail),
436 	RTL8365MB_MAKE_MIB_COUNTER(102, 2, inReportSuppressionDrop),
437 	RTL8365MB_MAKE_MIB_COUNTER(104, 2, inLeaveSuppressionDrop),
438 	RTL8365MB_MAKE_MIB_COUNTER(106, 2, outIgmpReports),
439 	RTL8365MB_MAKE_MIB_COUNTER(108, 2, outIgmpLeaves),
440 	RTL8365MB_MAKE_MIB_COUNTER(110, 2, outIgmpGeneralQuery),
441 	RTL8365MB_MAKE_MIB_COUNTER(112, 2, outIgmpSpecificQuery),
442 	RTL8365MB_MAKE_MIB_COUNTER(114, 2, outMldReports),
443 	RTL8365MB_MAKE_MIB_COUNTER(116, 2, outMldLeaves),
444 	RTL8365MB_MAKE_MIB_COUNTER(118, 2, outMldGeneralQuery),
445 	RTL8365MB_MAKE_MIB_COUNTER(120, 2, outMldSpecificQuery),
446 	RTL8365MB_MAKE_MIB_COUNTER(122, 2, inKnownMulticastPkts),
447 };
448 
449 static_assert(ARRAY_SIZE(rtl8365mb_mib_counters) == RTL8365MB_MIB_END);
450 
451 struct rtl8365mb_jam_tbl_entry {
452 	u16 reg;
453 	u16 val;
454 };
455 
456 /* Lifted from the vendor driver sources */
457 static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_8365mb_vc[] = {
458 	{ 0x13EB, 0x15BB }, { 0x1303, 0x06D6 }, { 0x1304, 0x0700 },
459 	{ 0x13E2, 0x003F }, { 0x13F9, 0x0090 }, { 0x121E, 0x03CA },
460 	{ 0x1233, 0x0352 }, { 0x1237, 0x00A0 }, { 0x123A, 0x0030 },
461 	{ 0x1239, 0x0084 }, { 0x0301, 0x1000 }, { 0x1349, 0x001F },
462 	{ 0x18E0, 0x4004 }, { 0x122B, 0x241C }, { 0x1305, 0xC000 },
463 	{ 0x13F0, 0x0000 },
464 };
465 
466 static const struct rtl8365mb_jam_tbl_entry rtl8365mb_init_jam_common[] = {
467 	{ 0x1200, 0x7FCB }, { 0x0884, 0x0003 }, { 0x06EB, 0x0001 },
468 	{ 0x03Fa, 0x0007 }, { 0x08C8, 0x00C0 }, { 0x0A30, 0x020E },
469 	{ 0x0800, 0x0000 }, { 0x0802, 0x0000 }, { 0x09DA, 0x0013 },
470 	{ 0x1D32, 0x0002 },
471 };
472 
473 enum rtl8365mb_phy_interface_mode {
474 	RTL8365MB_PHY_INTERFACE_MODE_INVAL = 0,
475 	RTL8365MB_PHY_INTERFACE_MODE_INTERNAL = BIT(0),
476 	RTL8365MB_PHY_INTERFACE_MODE_MII = BIT(1),
477 	RTL8365MB_PHY_INTERFACE_MODE_TMII = BIT(2),
478 	RTL8365MB_PHY_INTERFACE_MODE_RMII = BIT(3),
479 	RTL8365MB_PHY_INTERFACE_MODE_RGMII = BIT(4),
480 	RTL8365MB_PHY_INTERFACE_MODE_SGMII = BIT(5),
481 	RTL8365MB_PHY_INTERFACE_MODE_HSGMII = BIT(6),
482 };
483 
484 /**
485  * struct rtl8365mb_extint - external interface info
486  * @port: the port with an external interface
487  * @id: the external interface ID, which is either 0, 1, or 2
488  * @supported_interfaces: a bitmask of supported PHY interface modes
489  *
490  * Represents a mapping: port -> { id, supported_interfaces }. To be embedded
491  * in &struct rtl8365mb_chip_info for every port with an external interface.
492  */
493 struct rtl8365mb_extint {
494 	int port;
495 	int id;
496 	unsigned int supported_interfaces;
497 };
498 
499 /**
500  * struct rtl8365mb_chip_info - static chip-specific info
501  * @name: human-readable chip name
502  * @chip_id: chip identifier
503  * @chip_ver: chip silicon revision
504  * @extints: available external interfaces
505  * @jam_table: chip-specific initialization jam table
506  * @jam_size: size of the chip's jam table
507  *
508  * These data are specific to a given chip in the family of switches supported
509  * by this driver. When adding support for another chip in the family, a new
510  * chip info should be added to the rtl8365mb_chip_infos array.
511  */
512 struct rtl8365mb_chip_info {
513 	const char *name;
514 	u32 chip_id;
515 	u32 chip_ver;
516 	const struct rtl8365mb_extint extints[RTL8365MB_MAX_NUM_EXTINTS];
517 	const struct rtl8365mb_jam_tbl_entry *jam_table;
518 	size_t jam_size;
519 };
520 
521 /* Chip info for each supported switch in the family */
522 #define PHY_INTF(_mode) (RTL8365MB_PHY_INTERFACE_MODE_ ## _mode)
523 static const struct rtl8365mb_chip_info rtl8365mb_chip_infos[] = {
524 	{
525 		.name = "RTL8365MB-VC",
526 		.chip_id = 0x6367,
527 		.chip_ver = 0x0040,
528 		.extints = {
529 			{ 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
530 				PHY_INTF(RMII) | PHY_INTF(RGMII) },
531 		},
532 		.jam_table = rtl8365mb_init_jam_8365mb_vc,
533 		.jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
534 	},
535 	{
536 		.name = "RTL8367S",
537 		.chip_id = 0x6367,
538 		.chip_ver = 0x00A0,
539 		.extints = {
540 			{ 6, 1, PHY_INTF(SGMII) | PHY_INTF(HSGMII) },
541 			{ 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
542 				PHY_INTF(RMII) | PHY_INTF(RGMII) },
543 		},
544 		.jam_table = rtl8365mb_init_jam_8365mb_vc,
545 		.jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
546 	},
547 	{
548 		.name = "RTL8367RB-VB",
549 		.chip_id = 0x6367,
550 		.chip_ver = 0x0020,
551 		.extints = {
552 			{ 6, 1, PHY_INTF(MII) | PHY_INTF(TMII) |
553 				PHY_INTF(RMII) | PHY_INTF(RGMII) },
554 			{ 7, 2, PHY_INTF(MII) | PHY_INTF(TMII) |
555 				PHY_INTF(RMII) | PHY_INTF(RGMII) },
556 		},
557 		.jam_table = rtl8365mb_init_jam_8365mb_vc,
558 		.jam_size = ARRAY_SIZE(rtl8365mb_init_jam_8365mb_vc),
559 	},
560 };
561 
562 enum rtl8365mb_stp_state {
563 	RTL8365MB_STP_STATE_DISABLED = 0,
564 	RTL8365MB_STP_STATE_BLOCKING = 1,
565 	RTL8365MB_STP_STATE_LEARNING = 2,
566 	RTL8365MB_STP_STATE_FORWARDING = 3,
567 };
568 
569 enum rtl8365mb_cpu_insert {
570 	RTL8365MB_CPU_INSERT_TO_ALL = 0,
571 	RTL8365MB_CPU_INSERT_TO_TRAPPING = 1,
572 	RTL8365MB_CPU_INSERT_TO_NONE = 2,
573 };
574 
575 enum rtl8365mb_cpu_position {
576 	RTL8365MB_CPU_POS_AFTER_SA = 0,
577 	RTL8365MB_CPU_POS_BEFORE_CRC = 1,
578 };
579 
580 enum rtl8365mb_cpu_format {
581 	RTL8365MB_CPU_FORMAT_8BYTES = 0,
582 	RTL8365MB_CPU_FORMAT_4BYTES = 1,
583 };
584 
585 enum rtl8365mb_cpu_rxlen {
586 	RTL8365MB_CPU_RXLEN_72BYTES = 0,
587 	RTL8365MB_CPU_RXLEN_64BYTES = 1,
588 };
589 
590 /**
591  * struct rtl8365mb_cpu - CPU port configuration
592  * @enable: enable/disable hardware insertion of CPU tag in switch->CPU frames
593  * @mask: port mask of ports that parse should parse CPU tags
594  * @trap_port: forward trapped frames to this port
595  * @insert: CPU tag insertion mode in switch->CPU frames
596  * @position: position of CPU tag in frame
597  * @rx_length: minimum CPU RX length
598  * @format: CPU tag format
599  *
600  * Represents the CPU tagging and CPU port configuration of the switch. These
601  * settings are configurable at runtime.
602  */
603 struct rtl8365mb_cpu {
604 	bool enable;
605 	u32 mask;
606 	u32 trap_port;
607 	enum rtl8365mb_cpu_insert insert;
608 	enum rtl8365mb_cpu_position position;
609 	enum rtl8365mb_cpu_rxlen rx_length;
610 	enum rtl8365mb_cpu_format format;
611 };
612 
613 /**
614  * struct rtl8365mb_port - private per-port data
615  * @priv: pointer to parent realtek_priv data
616  * @index: DSA port index, same as dsa_port::index
617  * @stats: link statistics populated by rtl8365mb_stats_poll, ready for atomic
618  *         access via rtl8365mb_get_stats64
619  * @stats_lock: protect the stats structure during read/update
620  * @mib_work: delayed work for polling MIB counters
621  */
622 struct rtl8365mb_port {
623 	struct realtek_priv *priv;
624 	unsigned int index;
625 	struct rtnl_link_stats64 stats;
626 	spinlock_t stats_lock;
627 	struct delayed_work mib_work;
628 };
629 
630 /**
631  * struct rtl8365mb - driver private data
632  * @priv: pointer to parent realtek_priv data
633  * @irq: registered IRQ or zero
634  * @chip_info: chip-specific info about the attached switch
635  * @cpu: CPU tagging and CPU port configuration for this chip
636  * @mib_lock: prevent concurrent reads of MIB counters
637  * @ports: per-port data
638  *
639  * Private data for this driver.
640  */
641 struct rtl8365mb {
642 	struct realtek_priv *priv;
643 	int irq;
644 	const struct rtl8365mb_chip_info *chip_info;
645 	struct rtl8365mb_cpu cpu;
646 	struct mutex mib_lock;
647 	struct rtl8365mb_port ports[RTL8365MB_MAX_NUM_PORTS];
648 };
649 
650 static int rtl8365mb_phy_poll_busy(struct realtek_priv *priv)
651 {
652 	u32 val;
653 
654 	return regmap_read_poll_timeout(priv->map_nolock,
655 					RTL8365MB_INDIRECT_ACCESS_STATUS_REG,
656 					val, !val, 10, 100);
657 }
658 
659 static int rtl8365mb_phy_ocp_prepare(struct realtek_priv *priv, int phy,
660 				     u32 ocp_addr)
661 {
662 	u32 val;
663 	int ret;
664 
665 	/* Set OCP prefix */
666 	val = FIELD_GET(RTL8365MB_PHY_OCP_ADDR_PREFIX_MASK, ocp_addr);
667 	ret = regmap_update_bits(
668 		priv->map_nolock, RTL8365MB_GPHY_OCP_MSB_0_REG,
669 		RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK,
670 		FIELD_PREP(RTL8365MB_GPHY_OCP_MSB_0_CFG_CPU_OCPADR_MASK, val));
671 	if (ret)
672 		return ret;
673 
674 	/* Set PHY register address */
675 	val = RTL8365MB_PHY_BASE;
676 	val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_PHYNUM_MASK, phy);
677 	val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_5_1_MASK,
678 			  ocp_addr >> 1);
679 	val |= FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_ADDRESS_OCPADR_9_6_MASK,
680 			  ocp_addr >> 6);
681 	ret = regmap_write(priv->map_nolock,
682 			   RTL8365MB_INDIRECT_ACCESS_ADDRESS_REG, val);
683 	if (ret)
684 		return ret;
685 
686 	return 0;
687 }
688 
689 static int rtl8365mb_phy_ocp_read(struct realtek_priv *priv, int phy,
690 				  u32 ocp_addr, u16 *data)
691 {
692 	u32 val;
693 	int ret;
694 
695 	rtl83xx_lock(priv);
696 
697 	ret = rtl8365mb_phy_poll_busy(priv);
698 	if (ret)
699 		goto out;
700 
701 	ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
702 	if (ret)
703 		goto out;
704 
705 	/* Execute read operation */
706 	val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
707 			 RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
708 	      FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
709 			 RTL8365MB_INDIRECT_ACCESS_CTRL_RW_READ);
710 	ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
711 			   val);
712 	if (ret)
713 		goto out;
714 
715 	ret = rtl8365mb_phy_poll_busy(priv);
716 	if (ret)
717 		goto out;
718 
719 	/* Get PHY register data */
720 	ret = regmap_read(priv->map_nolock,
721 			  RTL8365MB_INDIRECT_ACCESS_READ_DATA_REG, &val);
722 	if (ret)
723 		goto out;
724 
725 	*data = val & 0xFFFF;
726 
727 out:
728 	rtl83xx_unlock(priv);
729 
730 	return ret;
731 }
732 
733 static int rtl8365mb_phy_ocp_write(struct realtek_priv *priv, int phy,
734 				   u32 ocp_addr, u16 data)
735 {
736 	u32 val;
737 	int ret;
738 
739 	rtl83xx_lock(priv);
740 
741 	ret = rtl8365mb_phy_poll_busy(priv);
742 	if (ret)
743 		goto out;
744 
745 	ret = rtl8365mb_phy_ocp_prepare(priv, phy, ocp_addr);
746 	if (ret)
747 		goto out;
748 
749 	/* Set PHY register data */
750 	ret = regmap_write(priv->map_nolock,
751 			   RTL8365MB_INDIRECT_ACCESS_WRITE_DATA_REG, data);
752 	if (ret)
753 		goto out;
754 
755 	/* Execute write operation */
756 	val = FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_MASK,
757 			 RTL8365MB_INDIRECT_ACCESS_CTRL_CMD_VALUE) |
758 	      FIELD_PREP(RTL8365MB_INDIRECT_ACCESS_CTRL_RW_MASK,
759 			 RTL8365MB_INDIRECT_ACCESS_CTRL_RW_WRITE);
760 	ret = regmap_write(priv->map_nolock, RTL8365MB_INDIRECT_ACCESS_CTRL_REG,
761 			   val);
762 	if (ret)
763 		goto out;
764 
765 	ret = rtl8365mb_phy_poll_busy(priv);
766 	if (ret)
767 		goto out;
768 
769 out:
770 	rtl83xx_unlock(priv);
771 
772 	return 0;
773 }
774 
775 static int rtl8365mb_phy_read(struct realtek_priv *priv, int phy, int regnum)
776 {
777 	u32 ocp_addr;
778 	u16 val;
779 	int ret;
780 
781 	if (phy > RTL8365MB_PHYADDRMAX)
782 		return -EINVAL;
783 
784 	if (regnum > RTL8365MB_PHYREGMAX)
785 		return -EINVAL;
786 
787 	ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
788 
789 	ret = rtl8365mb_phy_ocp_read(priv, phy, ocp_addr, &val);
790 	if (ret) {
791 		dev_err(priv->dev,
792 			"failed to read PHY%d reg %02x @ %04x, ret %d\n", phy,
793 			regnum, ocp_addr, ret);
794 		return ret;
795 	}
796 
797 	dev_dbg(priv->dev, "read PHY%d register 0x%02x @ %04x, val <- %04x\n",
798 		phy, regnum, ocp_addr, val);
799 
800 	return val;
801 }
802 
803 static int rtl8365mb_phy_write(struct realtek_priv *priv, int phy, int regnum,
804 			       u16 val)
805 {
806 	u32 ocp_addr;
807 	int ret;
808 
809 	if (phy > RTL8365MB_PHYADDRMAX)
810 		return -EINVAL;
811 
812 	if (regnum > RTL8365MB_PHYREGMAX)
813 		return -EINVAL;
814 
815 	ocp_addr = RTL8365MB_PHY_OCP_ADDR_PHYREG_BASE + regnum * 2;
816 
817 	ret = rtl8365mb_phy_ocp_write(priv, phy, ocp_addr, val);
818 	if (ret) {
819 		dev_err(priv->dev,
820 			"failed to write PHY%d reg %02x @ %04x, ret %d\n", phy,
821 			regnum, ocp_addr, ret);
822 		return ret;
823 	}
824 
825 	dev_dbg(priv->dev, "write PHY%d register 0x%02x @ %04x, val -> %04x\n",
826 		phy, regnum, ocp_addr, val);
827 
828 	return 0;
829 }
830 
831 static const struct rtl8365mb_extint *
832 rtl8365mb_get_port_extint(struct realtek_priv *priv, int port)
833 {
834 	struct rtl8365mb *mb = priv->chip_data;
835 	int i;
836 
837 	for (i = 0; i < RTL8365MB_MAX_NUM_EXTINTS; i++) {
838 		const struct rtl8365mb_extint *extint =
839 			&mb->chip_info->extints[i];
840 
841 		if (!extint->supported_interfaces)
842 			continue;
843 
844 		if (extint->port == port)
845 			return extint;
846 	}
847 
848 	return NULL;
849 }
850 
851 static enum dsa_tag_protocol
852 rtl8365mb_get_tag_protocol(struct dsa_switch *ds, int port,
853 			   enum dsa_tag_protocol mp)
854 {
855 	struct realtek_priv *priv = ds->priv;
856 	struct rtl8365mb_cpu *cpu;
857 	struct rtl8365mb *mb;
858 
859 	mb = priv->chip_data;
860 	cpu = &mb->cpu;
861 
862 	if (cpu->position == RTL8365MB_CPU_POS_BEFORE_CRC)
863 		return DSA_TAG_PROTO_RTL8_4T;
864 
865 	return DSA_TAG_PROTO_RTL8_4;
866 }
867 
868 static int rtl8365mb_ext_config_rgmii(struct realtek_priv *priv, int port,
869 				      phy_interface_t interface)
870 {
871 	const struct rtl8365mb_extint *extint =
872 		rtl8365mb_get_port_extint(priv, port);
873 	struct dsa_switch *ds = &priv->ds;
874 	struct device_node *dn;
875 	struct dsa_port *dp;
876 	int tx_delay = 0;
877 	int rx_delay = 0;
878 	u32 val;
879 	int ret;
880 
881 	if (!extint)
882 		return -ENODEV;
883 
884 	dp = dsa_to_port(ds, port);
885 	dn = dp->dn;
886 
887 	/* Set the RGMII TX/RX delay
888 	 *
889 	 * The Realtek vendor driver indicates the following possible
890 	 * configuration settings:
891 	 *
892 	 *   TX delay:
893 	 *     0 = no delay, 1 = 2 ns delay
894 	 *   RX delay:
895 	 *     0 = no delay, 7 = maximum delay
896 	 *     Each step is approximately 0.3 ns, so the maximum delay is about
897 	 *     2.1 ns.
898 	 *
899 	 * The vendor driver also states that this must be configured *before*
900 	 * forcing the external interface into a particular mode, which is done
901 	 * in the rtl8365mb_phylink_mac_link_{up,down} functions.
902 	 *
903 	 * Only configure an RGMII TX (resp. RX) delay if the
904 	 * tx-internal-delay-ps (resp. rx-internal-delay-ps) OF property is
905 	 * specified. We ignore the detail of the RGMII interface mode
906 	 * (RGMII_{RXID, TXID, etc.}), as this is considered to be a PHY-only
907 	 * property.
908 	 */
909 	if (!of_property_read_u32(dn, "tx-internal-delay-ps", &val)) {
910 		val = val / 1000; /* convert to ns */
911 
912 		if (val == 0 || val == 2)
913 			tx_delay = val / 2;
914 		else
915 			dev_warn(priv->dev,
916 				 "RGMII TX delay must be 0 or 2 ns\n");
917 	}
918 
919 	if (!of_property_read_u32(dn, "rx-internal-delay-ps", &val)) {
920 		val = DIV_ROUND_CLOSEST(val, 300); /* convert to 0.3 ns step */
921 
922 		if (val <= 7)
923 			rx_delay = val;
924 		else
925 			dev_warn(priv->dev,
926 				 "RGMII RX delay must be 0 to 2.1 ns\n");
927 	}
928 
929 	ret = regmap_update_bits(
930 		priv->map, RTL8365MB_EXT_RGMXF_REG(extint->id),
931 		RTL8365MB_EXT_RGMXF_TXDELAY_MASK |
932 			RTL8365MB_EXT_RGMXF_RXDELAY_MASK,
933 		FIELD_PREP(RTL8365MB_EXT_RGMXF_TXDELAY_MASK, tx_delay) |
934 			FIELD_PREP(RTL8365MB_EXT_RGMXF_RXDELAY_MASK, rx_delay));
935 	if (ret)
936 		return ret;
937 
938 	ret = regmap_update_bits(
939 		priv->map, RTL8365MB_DIGITAL_INTERFACE_SELECT_REG(extint->id),
940 		RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_MASK(extint->id),
941 		RTL8365MB_EXT_PORT_MODE_RGMII
942 			<< RTL8365MB_DIGITAL_INTERFACE_SELECT_MODE_OFFSET(
943 				   extint->id));
944 	if (ret)
945 		return ret;
946 
947 	return 0;
948 }
949 
950 static int rtl8365mb_ext_config_forcemode(struct realtek_priv *priv, int port,
951 					  bool link, int speed, int duplex,
952 					  bool tx_pause, bool rx_pause)
953 {
954 	const struct rtl8365mb_extint *extint =
955 		rtl8365mb_get_port_extint(priv, port);
956 	u32 r_tx_pause;
957 	u32 r_rx_pause;
958 	u32 r_duplex;
959 	u32 r_speed;
960 	u32 r_link;
961 	int val;
962 	int ret;
963 
964 	if (!extint)
965 		return -ENODEV;
966 
967 	if (link) {
968 		/* Force the link up with the desired configuration */
969 		r_link = 1;
970 		r_rx_pause = rx_pause ? 1 : 0;
971 		r_tx_pause = tx_pause ? 1 : 0;
972 
973 		if (speed == SPEED_1000) {
974 			r_speed = RTL8365MB_PORT_SPEED_1000M;
975 		} else if (speed == SPEED_100) {
976 			r_speed = RTL8365MB_PORT_SPEED_100M;
977 		} else if (speed == SPEED_10) {
978 			r_speed = RTL8365MB_PORT_SPEED_10M;
979 		} else {
980 			dev_err(priv->dev, "unsupported port speed %s\n",
981 				phy_speed_to_str(speed));
982 			return -EINVAL;
983 		}
984 
985 		if (duplex == DUPLEX_FULL) {
986 			r_duplex = 1;
987 		} else if (duplex == DUPLEX_HALF) {
988 			r_duplex = 0;
989 		} else {
990 			dev_err(priv->dev, "unsupported duplex %s\n",
991 				phy_duplex_to_str(duplex));
992 			return -EINVAL;
993 		}
994 	} else {
995 		/* Force the link down and reset any programmed configuration */
996 		r_link = 0;
997 		r_tx_pause = 0;
998 		r_rx_pause = 0;
999 		r_speed = 0;
1000 		r_duplex = 0;
1001 	}
1002 
1003 	val = FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_EN_MASK, 1) |
1004 	      FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_TXPAUSE_MASK,
1005 			 r_tx_pause) |
1006 	      FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_RXPAUSE_MASK,
1007 			 r_rx_pause) |
1008 	      FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_LINK_MASK, r_link) |
1009 	      FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_DUPLEX_MASK,
1010 			 r_duplex) |
1011 	      FIELD_PREP(RTL8365MB_DIGITAL_INTERFACE_FORCE_SPEED_MASK, r_speed);
1012 	ret = regmap_write(priv->map,
1013 			   RTL8365MB_DIGITAL_INTERFACE_FORCE_REG(extint->id),
1014 			   val);
1015 	if (ret)
1016 		return ret;
1017 
1018 	return 0;
1019 }
1020 
1021 static void rtl8365mb_phylink_get_caps(struct dsa_switch *ds, int port,
1022 				       struct phylink_config *config)
1023 {
1024 	const struct rtl8365mb_extint *extint =
1025 		rtl8365mb_get_port_extint(ds->priv, port);
1026 
1027 	config->mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
1028 				   MAC_10 | MAC_100 | MAC_1000FD;
1029 
1030 	if (!extint) {
1031 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1032 			  config->supported_interfaces);
1033 
1034 		/* GMII is the default interface mode for phylib, so
1035 		 * we have to support it for ports with integrated PHY.
1036 		 */
1037 		__set_bit(PHY_INTERFACE_MODE_GMII,
1038 			  config->supported_interfaces);
1039 		return;
1040 	}
1041 
1042 	/* Populate according to the modes supported by _this driver_,
1043 	 * not necessarily the modes supported by the hardware, some of
1044 	 * which remain unimplemented.
1045 	 */
1046 
1047 	if (extint->supported_interfaces & RTL8365MB_PHY_INTERFACE_MODE_RGMII)
1048 		phy_interface_set_rgmii(config->supported_interfaces);
1049 }
1050 
1051 static void rtl8365mb_phylink_mac_config(struct phylink_config *config,
1052 					 unsigned int mode,
1053 					 const struct phylink_link_state *state)
1054 {
1055 	struct dsa_port *dp = dsa_phylink_to_port(config);
1056 	struct realtek_priv *priv = dp->ds->priv;
1057 	u8 port = dp->index;
1058 	int ret;
1059 
1060 	if (mode != MLO_AN_PHY && mode != MLO_AN_FIXED) {
1061 		dev_err(priv->dev,
1062 			"port %d supports only conventional PHY or fixed-link\n",
1063 			port);
1064 		return;
1065 	}
1066 
1067 	if (phy_interface_mode_is_rgmii(state->interface)) {
1068 		ret = rtl8365mb_ext_config_rgmii(priv, port, state->interface);
1069 		if (ret)
1070 			dev_err(priv->dev,
1071 				"failed to configure RGMII mode on port %d: %d\n",
1072 				port, ret);
1073 		return;
1074 	}
1075 
1076 	/* TODO: Implement MII and RMII modes, which the RTL8365MB-VC also
1077 	 * supports
1078 	 */
1079 }
1080 
1081 static void rtl8365mb_phylink_mac_link_down(struct phylink_config *config,
1082 					    unsigned int mode,
1083 					    phy_interface_t interface)
1084 {
1085 	struct dsa_port *dp = dsa_phylink_to_port(config);
1086 	struct realtek_priv *priv = dp->ds->priv;
1087 	struct rtl8365mb_port *p;
1088 	struct rtl8365mb *mb;
1089 	u8 port = dp->index;
1090 	int ret;
1091 
1092 	mb = priv->chip_data;
1093 	p = &mb->ports[port];
1094 	cancel_delayed_work_sync(&p->mib_work);
1095 
1096 	if (phy_interface_mode_is_rgmii(interface)) {
1097 		ret = rtl8365mb_ext_config_forcemode(priv, port, false, 0, 0,
1098 						     false, false);
1099 		if (ret)
1100 			dev_err(priv->dev,
1101 				"failed to reset forced mode on port %d: %d\n",
1102 				port, ret);
1103 
1104 		return;
1105 	}
1106 }
1107 
1108 static void rtl8365mb_phylink_mac_link_up(struct phylink_config *config,
1109 					  struct phy_device *phydev,
1110 					  unsigned int mode,
1111 					  phy_interface_t interface,
1112 					  int speed, int duplex, bool tx_pause,
1113 					  bool rx_pause)
1114 {
1115 	struct dsa_port *dp = dsa_phylink_to_port(config);
1116 	struct realtek_priv *priv = dp->ds->priv;
1117 	struct rtl8365mb_port *p;
1118 	struct rtl8365mb *mb;
1119 	u8 port = dp->index;
1120 	int ret;
1121 
1122 	mb = priv->chip_data;
1123 	p = &mb->ports[port];
1124 	schedule_delayed_work(&p->mib_work, 0);
1125 
1126 	if (phy_interface_mode_is_rgmii(interface)) {
1127 		ret = rtl8365mb_ext_config_forcemode(priv, port, true, speed,
1128 						     duplex, tx_pause,
1129 						     rx_pause);
1130 		if (ret)
1131 			dev_err(priv->dev,
1132 				"failed to force mode on port %d: %d\n", port,
1133 				ret);
1134 
1135 		return;
1136 	}
1137 }
1138 
1139 static int rtl8365mb_port_change_mtu(struct dsa_switch *ds, int port,
1140 				     int new_mtu)
1141 {
1142 	struct realtek_priv *priv = ds->priv;
1143 	int frame_size;
1144 
1145 	/* When a new MTU is set, DSA always sets the CPU port's MTU to the
1146 	 * largest MTU of the user ports. Because the switch only has a global
1147 	 * RX length register, only allowing CPU port here is enough.
1148 	 */
1149 	if (!dsa_is_cpu_port(ds, port))
1150 		return 0;
1151 
1152 	frame_size = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
1153 
1154 	dev_dbg(priv->dev, "changing mtu to %d (frame size: %d)\n",
1155 		new_mtu, frame_size);
1156 
1157 	return regmap_update_bits(priv->map, RTL8365MB_CFG0_MAX_LEN_REG,
1158 				  RTL8365MB_CFG0_MAX_LEN_MASK,
1159 				  FIELD_PREP(RTL8365MB_CFG0_MAX_LEN_MASK,
1160 					     frame_size));
1161 }
1162 
1163 static int rtl8365mb_port_max_mtu(struct dsa_switch *ds, int port)
1164 {
1165 	return RTL8365MB_CFG0_MAX_LEN_MAX - VLAN_ETH_HLEN - ETH_FCS_LEN;
1166 }
1167 
1168 static void rtl8365mb_port_stp_state_set(struct dsa_switch *ds, int port,
1169 					 u8 state)
1170 {
1171 	struct realtek_priv *priv = ds->priv;
1172 	enum rtl8365mb_stp_state val;
1173 	int msti = 0;
1174 
1175 	switch (state) {
1176 	case BR_STATE_DISABLED:
1177 		val = RTL8365MB_STP_STATE_DISABLED;
1178 		break;
1179 	case BR_STATE_BLOCKING:
1180 	case BR_STATE_LISTENING:
1181 		val = RTL8365MB_STP_STATE_BLOCKING;
1182 		break;
1183 	case BR_STATE_LEARNING:
1184 		val = RTL8365MB_STP_STATE_LEARNING;
1185 		break;
1186 	case BR_STATE_FORWARDING:
1187 		val = RTL8365MB_STP_STATE_FORWARDING;
1188 		break;
1189 	default:
1190 		dev_err(priv->dev, "invalid STP state: %u\n", state);
1191 		return;
1192 	}
1193 
1194 	regmap_update_bits(priv->map, RTL8365MB_MSTI_CTRL_REG(msti, port),
1195 			   RTL8365MB_MSTI_CTRL_PORT_STATE_MASK(port),
1196 			   val << RTL8365MB_MSTI_CTRL_PORT_STATE_OFFSET(port));
1197 }
1198 
1199 static int rtl8365mb_port_set_learning(struct realtek_priv *priv, int port,
1200 				       bool enable)
1201 {
1202 	/* Enable/disable learning by limiting the number of L2 addresses the
1203 	 * port can learn. Realtek documentation states that a limit of zero
1204 	 * disables learning. When enabling learning, set it to the chip's
1205 	 * maximum.
1206 	 */
1207 	return regmap_write(priv->map, RTL8365MB_LUT_PORT_LEARN_LIMIT_REG(port),
1208 			    enable ? RTL8365MB_LEARN_LIMIT_MAX : 0);
1209 }
1210 
1211 static int rtl8365mb_port_set_isolation(struct realtek_priv *priv, int port,
1212 					u32 mask)
1213 {
1214 	return regmap_write(priv->map, RTL8365MB_PORT_ISOLATION_REG(port), mask);
1215 }
1216 
1217 static int rtl8365mb_mib_counter_read(struct realtek_priv *priv, int port,
1218 				      u32 offset, u32 length, u64 *mibvalue)
1219 {
1220 	u64 tmpvalue = 0;
1221 	u32 val;
1222 	int ret;
1223 	int i;
1224 
1225 	/* The MIB address is an SRAM address. We request a particular address
1226 	 * and then poll the control register before reading the value from some
1227 	 * counter registers.
1228 	 */
1229 	ret = regmap_write(priv->map, RTL8365MB_MIB_ADDRESS_REG,
1230 			   RTL8365MB_MIB_ADDRESS(port, offset));
1231 	if (ret)
1232 		return ret;
1233 
1234 	/* Poll for completion */
1235 	ret = regmap_read_poll_timeout(priv->map, RTL8365MB_MIB_CTRL0_REG, val,
1236 				       !(val & RTL8365MB_MIB_CTRL0_BUSY_MASK),
1237 				       10, 100);
1238 	if (ret)
1239 		return ret;
1240 
1241 	/* Presumably this indicates a MIB counter read failure */
1242 	if (val & RTL8365MB_MIB_CTRL0_RESET_MASK)
1243 		return -EIO;
1244 
1245 	/* There are four MIB counter registers each holding a 16 bit word of a
1246 	 * MIB counter. Depending on the offset, we should read from the upper
1247 	 * two or lower two registers. In case the MIB counter is 4 words, we
1248 	 * read from all four registers.
1249 	 */
1250 	if (length == 4)
1251 		offset = 3;
1252 	else
1253 		offset = (offset + 1) % 4;
1254 
1255 	/* Read the MIB counter 16 bits at a time */
1256 	for (i = 0; i < length; i++) {
1257 		ret = regmap_read(priv->map,
1258 				  RTL8365MB_MIB_COUNTER_REG(offset - i), &val);
1259 		if (ret)
1260 			return ret;
1261 
1262 		tmpvalue = ((tmpvalue) << 16) | (val & 0xFFFF);
1263 	}
1264 
1265 	/* Only commit the result if no error occurred */
1266 	*mibvalue = tmpvalue;
1267 
1268 	return 0;
1269 }
1270 
1271 static void rtl8365mb_get_ethtool_stats(struct dsa_switch *ds, int port, u64 *data)
1272 {
1273 	struct realtek_priv *priv = ds->priv;
1274 	struct rtl8365mb *mb;
1275 	int ret;
1276 	int i;
1277 
1278 	mb = priv->chip_data;
1279 
1280 	mutex_lock(&mb->mib_lock);
1281 	for (i = 0; i < RTL8365MB_MIB_END; i++) {
1282 		struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1283 
1284 		ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
1285 						 mib->length, &data[i]);
1286 		if (ret) {
1287 			dev_err(priv->dev,
1288 				"failed to read port %d counters: %d\n", port,
1289 				ret);
1290 			break;
1291 		}
1292 	}
1293 	mutex_unlock(&mb->mib_lock);
1294 }
1295 
1296 static void rtl8365mb_get_strings(struct dsa_switch *ds, int port, u32 stringset, u8 *data)
1297 {
1298 	int i;
1299 
1300 	if (stringset != ETH_SS_STATS)
1301 		return;
1302 
1303 	for (i = 0; i < RTL8365MB_MIB_END; i++) {
1304 		struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1305 		ethtool_puts(&data, mib->name);
1306 	}
1307 }
1308 
1309 static int rtl8365mb_get_sset_count(struct dsa_switch *ds, int port, int sset)
1310 {
1311 	if (sset != ETH_SS_STATS)
1312 		return -EOPNOTSUPP;
1313 
1314 	return RTL8365MB_MIB_END;
1315 }
1316 
1317 static void rtl8365mb_get_phy_stats(struct dsa_switch *ds, int port,
1318 				    struct ethtool_eth_phy_stats *phy_stats)
1319 {
1320 	struct realtek_priv *priv = ds->priv;
1321 	struct rtl8365mb_mib_counter *mib;
1322 	struct rtl8365mb *mb;
1323 
1324 	mb = priv->chip_data;
1325 	mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3StatsSymbolErrors];
1326 
1327 	mutex_lock(&mb->mib_lock);
1328 	rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
1329 				   &phy_stats->SymbolErrorDuringCarrier);
1330 	mutex_unlock(&mb->mib_lock);
1331 }
1332 
1333 static void rtl8365mb_get_mac_stats(struct dsa_switch *ds, int port,
1334 				    struct ethtool_eth_mac_stats *mac_stats)
1335 {
1336 	u64 cnt[RTL8365MB_MIB_END] = {
1337 		[RTL8365MB_MIB_ifOutOctets] = 1,
1338 		[RTL8365MB_MIB_ifOutUcastPkts] = 1,
1339 		[RTL8365MB_MIB_ifOutMulticastPkts] = 1,
1340 		[RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
1341 		[RTL8365MB_MIB_dot3OutPauseFrames] = 1,
1342 		[RTL8365MB_MIB_ifOutDiscards] = 1,
1343 		[RTL8365MB_MIB_ifInOctets] = 1,
1344 		[RTL8365MB_MIB_ifInUcastPkts] = 1,
1345 		[RTL8365MB_MIB_ifInMulticastPkts] = 1,
1346 		[RTL8365MB_MIB_ifInBroadcastPkts] = 1,
1347 		[RTL8365MB_MIB_dot3InPauseFrames] = 1,
1348 		[RTL8365MB_MIB_dot3StatsSingleCollisionFrames] = 1,
1349 		[RTL8365MB_MIB_dot3StatsMultipleCollisionFrames] = 1,
1350 		[RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
1351 		[RTL8365MB_MIB_dot3StatsDeferredTransmissions] = 1,
1352 		[RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
1353 		[RTL8365MB_MIB_dot3StatsExcessiveCollisions] = 1,
1354 
1355 	};
1356 	struct realtek_priv *priv = ds->priv;
1357 	struct rtl8365mb *mb;
1358 	int ret;
1359 	int i;
1360 
1361 	mb = priv->chip_data;
1362 
1363 	mutex_lock(&mb->mib_lock);
1364 	for (i = 0; i < RTL8365MB_MIB_END; i++) {
1365 		struct rtl8365mb_mib_counter *mib = &rtl8365mb_mib_counters[i];
1366 
1367 		/* Only fetch required MIB counters (marked = 1 above) */
1368 		if (!cnt[i])
1369 			continue;
1370 
1371 		ret = rtl8365mb_mib_counter_read(priv, port, mib->offset,
1372 						 mib->length, &cnt[i]);
1373 		if (ret)
1374 			break;
1375 	}
1376 	mutex_unlock(&mb->mib_lock);
1377 
1378 	/* The RTL8365MB-VC exposes MIB objects, which we have to translate into
1379 	 * IEEE 802.3 Managed Objects. This is not always completely faithful,
1380 	 * but we try out best. See RFC 3635 for a detailed treatment of the
1381 	 * subject.
1382 	 */
1383 
1384 	mac_stats->FramesTransmittedOK = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
1385 					 cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
1386 					 cnt[RTL8365MB_MIB_ifOutBroadcastPkts] +
1387 					 cnt[RTL8365MB_MIB_dot3OutPauseFrames] -
1388 					 cnt[RTL8365MB_MIB_ifOutDiscards];
1389 	mac_stats->SingleCollisionFrames =
1390 		cnt[RTL8365MB_MIB_dot3StatsSingleCollisionFrames];
1391 	mac_stats->MultipleCollisionFrames =
1392 		cnt[RTL8365MB_MIB_dot3StatsMultipleCollisionFrames];
1393 	mac_stats->FramesReceivedOK = cnt[RTL8365MB_MIB_ifInUcastPkts] +
1394 				      cnt[RTL8365MB_MIB_ifInMulticastPkts] +
1395 				      cnt[RTL8365MB_MIB_ifInBroadcastPkts] +
1396 				      cnt[RTL8365MB_MIB_dot3InPauseFrames];
1397 	mac_stats->FrameCheckSequenceErrors =
1398 		cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
1399 	mac_stats->OctetsTransmittedOK = cnt[RTL8365MB_MIB_ifOutOctets] -
1400 					 18 * mac_stats->FramesTransmittedOK;
1401 	mac_stats->FramesWithDeferredXmissions =
1402 		cnt[RTL8365MB_MIB_dot3StatsDeferredTransmissions];
1403 	mac_stats->LateCollisions = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
1404 	mac_stats->FramesAbortedDueToXSColls =
1405 		cnt[RTL8365MB_MIB_dot3StatsExcessiveCollisions];
1406 	mac_stats->OctetsReceivedOK = cnt[RTL8365MB_MIB_ifInOctets] -
1407 				      18 * mac_stats->FramesReceivedOK;
1408 	mac_stats->MulticastFramesXmittedOK =
1409 		cnt[RTL8365MB_MIB_ifOutMulticastPkts];
1410 	mac_stats->BroadcastFramesXmittedOK =
1411 		cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
1412 	mac_stats->MulticastFramesReceivedOK =
1413 		cnt[RTL8365MB_MIB_ifInMulticastPkts];
1414 	mac_stats->BroadcastFramesReceivedOK =
1415 		cnt[RTL8365MB_MIB_ifInBroadcastPkts];
1416 }
1417 
1418 static void rtl8365mb_get_ctrl_stats(struct dsa_switch *ds, int port,
1419 				     struct ethtool_eth_ctrl_stats *ctrl_stats)
1420 {
1421 	struct realtek_priv *priv = ds->priv;
1422 	struct rtl8365mb_mib_counter *mib;
1423 	struct rtl8365mb *mb;
1424 
1425 	mb = priv->chip_data;
1426 	mib = &rtl8365mb_mib_counters[RTL8365MB_MIB_dot3ControlInUnknownOpcodes];
1427 
1428 	mutex_lock(&mb->mib_lock);
1429 	rtl8365mb_mib_counter_read(priv, port, mib->offset, mib->length,
1430 				   &ctrl_stats->UnsupportedOpcodesReceived);
1431 	mutex_unlock(&mb->mib_lock);
1432 }
1433 
1434 static void rtl8365mb_stats_update(struct realtek_priv *priv, int port)
1435 {
1436 	u64 cnt[RTL8365MB_MIB_END] = {
1437 		[RTL8365MB_MIB_ifOutOctets] = 1,
1438 		[RTL8365MB_MIB_ifOutUcastPkts] = 1,
1439 		[RTL8365MB_MIB_ifOutMulticastPkts] = 1,
1440 		[RTL8365MB_MIB_ifOutBroadcastPkts] = 1,
1441 		[RTL8365MB_MIB_ifOutDiscards] = 1,
1442 		[RTL8365MB_MIB_ifInOctets] = 1,
1443 		[RTL8365MB_MIB_ifInUcastPkts] = 1,
1444 		[RTL8365MB_MIB_ifInMulticastPkts] = 1,
1445 		[RTL8365MB_MIB_ifInBroadcastPkts] = 1,
1446 		[RTL8365MB_MIB_etherStatsDropEvents] = 1,
1447 		[RTL8365MB_MIB_etherStatsCollisions] = 1,
1448 		[RTL8365MB_MIB_etherStatsFragments] = 1,
1449 		[RTL8365MB_MIB_etherStatsJabbers] = 1,
1450 		[RTL8365MB_MIB_dot3StatsFCSErrors] = 1,
1451 		[RTL8365MB_MIB_dot3StatsLateCollisions] = 1,
1452 	};
1453 	struct rtl8365mb *mb = priv->chip_data;
1454 	struct rtnl_link_stats64 *stats;
1455 	int ret;
1456 	int i;
1457 
1458 	stats = &mb->ports[port].stats;
1459 
1460 	mutex_lock(&mb->mib_lock);
1461 	for (i = 0; i < RTL8365MB_MIB_END; i++) {
1462 		struct rtl8365mb_mib_counter *c = &rtl8365mb_mib_counters[i];
1463 
1464 		/* Only fetch required MIB counters (marked = 1 above) */
1465 		if (!cnt[i])
1466 			continue;
1467 
1468 		ret = rtl8365mb_mib_counter_read(priv, port, c->offset,
1469 						 c->length, &cnt[i]);
1470 		if (ret)
1471 			break;
1472 	}
1473 	mutex_unlock(&mb->mib_lock);
1474 
1475 	/* Don't update statistics if there was an error reading the counters */
1476 	if (ret)
1477 		return;
1478 
1479 	spin_lock(&mb->ports[port].stats_lock);
1480 
1481 	stats->rx_packets = cnt[RTL8365MB_MIB_ifInUcastPkts] +
1482 			    cnt[RTL8365MB_MIB_ifInMulticastPkts] +
1483 			    cnt[RTL8365MB_MIB_ifInBroadcastPkts] -
1484 			    cnt[RTL8365MB_MIB_ifOutDiscards];
1485 
1486 	stats->tx_packets = cnt[RTL8365MB_MIB_ifOutUcastPkts] +
1487 			    cnt[RTL8365MB_MIB_ifOutMulticastPkts] +
1488 			    cnt[RTL8365MB_MIB_ifOutBroadcastPkts];
1489 
1490 	/* if{In,Out}Octets includes FCS - remove it */
1491 	stats->rx_bytes = cnt[RTL8365MB_MIB_ifInOctets] - 4 * stats->rx_packets;
1492 	stats->tx_bytes =
1493 		cnt[RTL8365MB_MIB_ifOutOctets] - 4 * stats->tx_packets;
1494 
1495 	stats->rx_dropped = cnt[RTL8365MB_MIB_etherStatsDropEvents];
1496 	stats->tx_dropped = cnt[RTL8365MB_MIB_ifOutDiscards];
1497 
1498 	stats->multicast = cnt[RTL8365MB_MIB_ifInMulticastPkts];
1499 	stats->collisions = cnt[RTL8365MB_MIB_etherStatsCollisions];
1500 
1501 	stats->rx_length_errors = cnt[RTL8365MB_MIB_etherStatsFragments] +
1502 				  cnt[RTL8365MB_MIB_etherStatsJabbers];
1503 	stats->rx_crc_errors = cnt[RTL8365MB_MIB_dot3StatsFCSErrors];
1504 	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors;
1505 
1506 	stats->tx_aborted_errors = cnt[RTL8365MB_MIB_ifOutDiscards];
1507 	stats->tx_window_errors = cnt[RTL8365MB_MIB_dot3StatsLateCollisions];
1508 	stats->tx_errors = stats->tx_aborted_errors + stats->tx_window_errors;
1509 
1510 	spin_unlock(&mb->ports[port].stats_lock);
1511 }
1512 
1513 static void rtl8365mb_stats_poll(struct work_struct *work)
1514 {
1515 	struct rtl8365mb_port *p = container_of(to_delayed_work(work),
1516 						struct rtl8365mb_port,
1517 						mib_work);
1518 	struct realtek_priv *priv = p->priv;
1519 
1520 	rtl8365mb_stats_update(priv, p->index);
1521 
1522 	schedule_delayed_work(&p->mib_work, RTL8365MB_STATS_INTERVAL_JIFFIES);
1523 }
1524 
1525 static void rtl8365mb_get_stats64(struct dsa_switch *ds, int port,
1526 				  struct rtnl_link_stats64 *s)
1527 {
1528 	struct realtek_priv *priv = ds->priv;
1529 	struct rtl8365mb_port *p;
1530 	struct rtl8365mb *mb;
1531 
1532 	mb = priv->chip_data;
1533 	p = &mb->ports[port];
1534 
1535 	spin_lock(&p->stats_lock);
1536 	memcpy(s, &p->stats, sizeof(*s));
1537 	spin_unlock(&p->stats_lock);
1538 }
1539 
1540 static void rtl8365mb_stats_setup(struct realtek_priv *priv)
1541 {
1542 	struct rtl8365mb *mb = priv->chip_data;
1543 	struct dsa_switch *ds = &priv->ds;
1544 	int i;
1545 
1546 	/* Per-chip global mutex to protect MIB counter access, since doing
1547 	 * so requires accessing a series of registers in a particular order.
1548 	 */
1549 	mutex_init(&mb->mib_lock);
1550 
1551 	for (i = 0; i < priv->num_ports; i++) {
1552 		struct rtl8365mb_port *p = &mb->ports[i];
1553 
1554 		if (dsa_is_unused_port(ds, i))
1555 			continue;
1556 
1557 		/* Per-port spinlock to protect the stats64 data */
1558 		spin_lock_init(&p->stats_lock);
1559 
1560 		/* This work polls the MIB counters and keeps the stats64 data
1561 		 * up-to-date.
1562 		 */
1563 		INIT_DELAYED_WORK(&p->mib_work, rtl8365mb_stats_poll);
1564 	}
1565 }
1566 
1567 static void rtl8365mb_stats_teardown(struct realtek_priv *priv)
1568 {
1569 	struct rtl8365mb *mb = priv->chip_data;
1570 	struct dsa_switch *ds = &priv->ds;
1571 	int i;
1572 
1573 	for (i = 0; i < priv->num_ports; i++) {
1574 		struct rtl8365mb_port *p = &mb->ports[i];
1575 
1576 		if (dsa_is_unused_port(ds, i))
1577 			continue;
1578 
1579 		cancel_delayed_work_sync(&p->mib_work);
1580 	}
1581 }
1582 
1583 static int rtl8365mb_get_and_clear_status_reg(struct realtek_priv *priv, u32 reg,
1584 					      u32 *val)
1585 {
1586 	int ret;
1587 
1588 	ret = regmap_read(priv->map, reg, val);
1589 	if (ret)
1590 		return ret;
1591 
1592 	return regmap_write(priv->map, reg, *val);
1593 }
1594 
1595 static irqreturn_t rtl8365mb_irq(int irq, void *data)
1596 {
1597 	struct realtek_priv *priv = data;
1598 	unsigned long line_changes = 0;
1599 	u32 stat;
1600 	int line;
1601 	int ret;
1602 
1603 	ret = rtl8365mb_get_and_clear_status_reg(priv, RTL8365MB_INTR_STATUS_REG,
1604 						 &stat);
1605 	if (ret)
1606 		goto out_error;
1607 
1608 	if (stat & RTL8365MB_INTR_LINK_CHANGE_MASK) {
1609 		u32 linkdown_ind;
1610 		u32 linkup_ind;
1611 		u32 val;
1612 
1613 		ret = rtl8365mb_get_and_clear_status_reg(
1614 			priv, RTL8365MB_PORT_LINKUP_IND_REG, &val);
1615 		if (ret)
1616 			goto out_error;
1617 
1618 		linkup_ind = FIELD_GET(RTL8365MB_PORT_LINKUP_IND_MASK, val);
1619 
1620 		ret = rtl8365mb_get_and_clear_status_reg(
1621 			priv, RTL8365MB_PORT_LINKDOWN_IND_REG, &val);
1622 		if (ret)
1623 			goto out_error;
1624 
1625 		linkdown_ind = FIELD_GET(RTL8365MB_PORT_LINKDOWN_IND_MASK, val);
1626 
1627 		line_changes = linkup_ind | linkdown_ind;
1628 	}
1629 
1630 	if (!line_changes)
1631 		goto out_none;
1632 
1633 	for_each_set_bit(line, &line_changes, priv->num_ports) {
1634 		int child_irq = irq_find_mapping(priv->irqdomain, line);
1635 
1636 		handle_nested_irq(child_irq);
1637 	}
1638 
1639 	return IRQ_HANDLED;
1640 
1641 out_error:
1642 	dev_err(priv->dev, "failed to read interrupt status: %d\n", ret);
1643 
1644 out_none:
1645 	return IRQ_NONE;
1646 }
1647 
1648 static struct irq_chip rtl8365mb_irq_chip = {
1649 	.name = "rtl8365mb",
1650 	/* The hardware doesn't support masking IRQs on a per-port basis */
1651 };
1652 
1653 static int rtl8365mb_irq_map(struct irq_domain *domain, unsigned int irq,
1654 			     irq_hw_number_t hwirq)
1655 {
1656 	irq_set_chip_data(irq, domain->host_data);
1657 	irq_set_chip_and_handler(irq, &rtl8365mb_irq_chip, handle_simple_irq);
1658 	irq_set_nested_thread(irq, 1);
1659 	irq_set_noprobe(irq);
1660 
1661 	return 0;
1662 }
1663 
1664 static void rtl8365mb_irq_unmap(struct irq_domain *d, unsigned int irq)
1665 {
1666 	irq_set_nested_thread(irq, 0);
1667 	irq_set_chip_and_handler(irq, NULL, NULL);
1668 	irq_set_chip_data(irq, NULL);
1669 }
1670 
1671 static const struct irq_domain_ops rtl8365mb_irqdomain_ops = {
1672 	.map = rtl8365mb_irq_map,
1673 	.unmap = rtl8365mb_irq_unmap,
1674 	.xlate = irq_domain_xlate_onecell,
1675 };
1676 
1677 static int rtl8365mb_set_irq_enable(struct realtek_priv *priv, bool enable)
1678 {
1679 	return regmap_update_bits(priv->map, RTL8365MB_INTR_CTRL_REG,
1680 				  RTL8365MB_INTR_LINK_CHANGE_MASK,
1681 				  FIELD_PREP(RTL8365MB_INTR_LINK_CHANGE_MASK,
1682 					     enable ? 1 : 0));
1683 }
1684 
1685 static int rtl8365mb_irq_enable(struct realtek_priv *priv)
1686 {
1687 	return rtl8365mb_set_irq_enable(priv, true);
1688 }
1689 
1690 static int rtl8365mb_irq_disable(struct realtek_priv *priv)
1691 {
1692 	return rtl8365mb_set_irq_enable(priv, false);
1693 }
1694 
1695 static int rtl8365mb_irq_setup(struct realtek_priv *priv)
1696 {
1697 	struct rtl8365mb *mb = priv->chip_data;
1698 	struct device_node *intc;
1699 	u32 irq_trig;
1700 	int virq;
1701 	int irq;
1702 	u32 val;
1703 	int ret;
1704 	int i;
1705 
1706 	intc = of_get_child_by_name(priv->dev->of_node, "interrupt-controller");
1707 	if (!intc) {
1708 		dev_err(priv->dev, "missing child interrupt-controller node\n");
1709 		return -EINVAL;
1710 	}
1711 
1712 	/* rtl8365mb IRQs cascade off this one */
1713 	irq = of_irq_get(intc, 0);
1714 	if (irq <= 0) {
1715 		if (irq != -EPROBE_DEFER)
1716 			dev_err(priv->dev, "failed to get parent irq: %d\n",
1717 				irq);
1718 		ret = irq ? irq : -EINVAL;
1719 		goto out_put_node;
1720 	}
1721 
1722 	priv->irqdomain = irq_domain_add_linear(intc, priv->num_ports,
1723 						&rtl8365mb_irqdomain_ops, priv);
1724 	if (!priv->irqdomain) {
1725 		dev_err(priv->dev, "failed to add irq domain\n");
1726 		ret = -ENOMEM;
1727 		goto out_put_node;
1728 	}
1729 
1730 	for (i = 0; i < priv->num_ports; i++) {
1731 		virq = irq_create_mapping(priv->irqdomain, i);
1732 		if (!virq) {
1733 			dev_err(priv->dev,
1734 				"failed to create irq domain mapping\n");
1735 			ret = -EINVAL;
1736 			goto out_remove_irqdomain;
1737 		}
1738 
1739 		irq_set_parent(virq, irq);
1740 	}
1741 
1742 	/* Configure chip interrupt signal polarity */
1743 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1744 	switch (irq_trig) {
1745 	case IRQF_TRIGGER_RISING:
1746 	case IRQF_TRIGGER_HIGH:
1747 		val = RTL8365MB_INTR_POLARITY_HIGH;
1748 		break;
1749 	case IRQF_TRIGGER_FALLING:
1750 	case IRQF_TRIGGER_LOW:
1751 		val = RTL8365MB_INTR_POLARITY_LOW;
1752 		break;
1753 	default:
1754 		dev_err(priv->dev, "unsupported irq trigger type %u\n",
1755 			irq_trig);
1756 		ret = -EINVAL;
1757 		goto out_remove_irqdomain;
1758 	}
1759 
1760 	ret = regmap_update_bits(priv->map, RTL8365MB_INTR_POLARITY_REG,
1761 				 RTL8365MB_INTR_POLARITY_MASK,
1762 				 FIELD_PREP(RTL8365MB_INTR_POLARITY_MASK, val));
1763 	if (ret)
1764 		goto out_remove_irqdomain;
1765 
1766 	/* Disable the interrupt in case the chip has it enabled on reset */
1767 	ret = rtl8365mb_irq_disable(priv);
1768 	if (ret)
1769 		goto out_remove_irqdomain;
1770 
1771 	/* Clear the interrupt status register */
1772 	ret = regmap_write(priv->map, RTL8365MB_INTR_STATUS_REG,
1773 			   RTL8365MB_INTR_ALL_MASK);
1774 	if (ret)
1775 		goto out_remove_irqdomain;
1776 
1777 	ret = request_threaded_irq(irq, NULL, rtl8365mb_irq, IRQF_ONESHOT,
1778 				   "rtl8365mb", priv);
1779 	if (ret) {
1780 		dev_err(priv->dev, "failed to request irq: %d\n", ret);
1781 		goto out_remove_irqdomain;
1782 	}
1783 
1784 	/* Store the irq so that we know to free it during teardown */
1785 	mb->irq = irq;
1786 
1787 	ret = rtl8365mb_irq_enable(priv);
1788 	if (ret)
1789 		goto out_free_irq;
1790 
1791 	of_node_put(intc);
1792 
1793 	return 0;
1794 
1795 out_free_irq:
1796 	free_irq(mb->irq, priv);
1797 	mb->irq = 0;
1798 
1799 out_remove_irqdomain:
1800 	for (i = 0; i < priv->num_ports; i++) {
1801 		virq = irq_find_mapping(priv->irqdomain, i);
1802 		irq_dispose_mapping(virq);
1803 	}
1804 
1805 	irq_domain_remove(priv->irqdomain);
1806 	priv->irqdomain = NULL;
1807 
1808 out_put_node:
1809 	of_node_put(intc);
1810 
1811 	return ret;
1812 }
1813 
1814 static void rtl8365mb_irq_teardown(struct realtek_priv *priv)
1815 {
1816 	struct rtl8365mb *mb = priv->chip_data;
1817 	int virq;
1818 	int i;
1819 
1820 	if (mb->irq) {
1821 		free_irq(mb->irq, priv);
1822 		mb->irq = 0;
1823 	}
1824 
1825 	if (priv->irqdomain) {
1826 		for (i = 0; i < priv->num_ports; i++) {
1827 			virq = irq_find_mapping(priv->irqdomain, i);
1828 			irq_dispose_mapping(virq);
1829 		}
1830 
1831 		irq_domain_remove(priv->irqdomain);
1832 		priv->irqdomain = NULL;
1833 	}
1834 }
1835 
1836 static int rtl8365mb_cpu_config(struct realtek_priv *priv)
1837 {
1838 	struct rtl8365mb *mb = priv->chip_data;
1839 	struct rtl8365mb_cpu *cpu = &mb->cpu;
1840 	u32 val;
1841 	int ret;
1842 
1843 	ret = regmap_update_bits(priv->map, RTL8365MB_CPU_PORT_MASK_REG,
1844 				 RTL8365MB_CPU_PORT_MASK_MASK,
1845 				 FIELD_PREP(RTL8365MB_CPU_PORT_MASK_MASK,
1846 					    cpu->mask));
1847 	if (ret)
1848 		return ret;
1849 
1850 	val = FIELD_PREP(RTL8365MB_CPU_CTRL_EN_MASK, cpu->enable ? 1 : 0) |
1851 	      FIELD_PREP(RTL8365MB_CPU_CTRL_INSERTMODE_MASK, cpu->insert) |
1852 	      FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_POSITION_MASK, cpu->position) |
1853 	      FIELD_PREP(RTL8365MB_CPU_CTRL_RXBYTECOUNT_MASK, cpu->rx_length) |
1854 	      FIELD_PREP(RTL8365MB_CPU_CTRL_TAG_FORMAT_MASK, cpu->format) |
1855 	      FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_MASK, cpu->trap_port & 0x7) |
1856 	      FIELD_PREP(RTL8365MB_CPU_CTRL_TRAP_PORT_EXT_MASK,
1857 			 cpu->trap_port >> 3 & 0x1);
1858 	ret = regmap_write(priv->map, RTL8365MB_CPU_CTRL_REG, val);
1859 	if (ret)
1860 		return ret;
1861 
1862 	return 0;
1863 }
1864 
1865 static int rtl8365mb_change_tag_protocol(struct dsa_switch *ds,
1866 					 enum dsa_tag_protocol proto)
1867 {
1868 	struct realtek_priv *priv = ds->priv;
1869 	struct rtl8365mb_cpu *cpu;
1870 	struct rtl8365mb *mb;
1871 
1872 	mb = priv->chip_data;
1873 	cpu = &mb->cpu;
1874 
1875 	switch (proto) {
1876 	case DSA_TAG_PROTO_RTL8_4:
1877 		cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
1878 		cpu->position = RTL8365MB_CPU_POS_AFTER_SA;
1879 		break;
1880 	case DSA_TAG_PROTO_RTL8_4T:
1881 		cpu->format = RTL8365MB_CPU_FORMAT_8BYTES;
1882 		cpu->position = RTL8365MB_CPU_POS_BEFORE_CRC;
1883 		break;
1884 	/* The switch also supports a 4-byte format, similar to rtl4a but with
1885 	 * the same 0x04 8-bit version and probably 8-bit port source/dest.
1886 	 * There is no public doc about it. Not supported yet and it will probably
1887 	 * never be.
1888 	 */
1889 	default:
1890 		return -EPROTONOSUPPORT;
1891 	}
1892 
1893 	return rtl8365mb_cpu_config(priv);
1894 }
1895 
1896 static int rtl8365mb_switch_init(struct realtek_priv *priv)
1897 {
1898 	struct rtl8365mb *mb = priv->chip_data;
1899 	const struct rtl8365mb_chip_info *ci;
1900 	int ret;
1901 	int i;
1902 
1903 	ci = mb->chip_info;
1904 
1905 	/* Do any chip-specific init jam before getting to the common stuff */
1906 	if (ci->jam_table) {
1907 		for (i = 0; i < ci->jam_size; i++) {
1908 			ret = regmap_write(priv->map, ci->jam_table[i].reg,
1909 					   ci->jam_table[i].val);
1910 			if (ret)
1911 				return ret;
1912 		}
1913 	}
1914 
1915 	/* Common init jam */
1916 	for (i = 0; i < ARRAY_SIZE(rtl8365mb_init_jam_common); i++) {
1917 		ret = regmap_write(priv->map, rtl8365mb_init_jam_common[i].reg,
1918 				   rtl8365mb_init_jam_common[i].val);
1919 		if (ret)
1920 			return ret;
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static int rtl8365mb_reset_chip(struct realtek_priv *priv)
1927 {
1928 	u32 val;
1929 
1930 	priv->write_reg_noack(priv, RTL8365MB_CHIP_RESET_REG,
1931 			      FIELD_PREP(RTL8365MB_CHIP_RESET_HW_MASK, 1));
1932 
1933 	/* Realtek documentation says the chip needs 1 second to reset. Sleep
1934 	 * for 100 ms before accessing any registers to prevent ACK timeouts.
1935 	 */
1936 	msleep(100);
1937 	return regmap_read_poll_timeout(priv->map, RTL8365MB_CHIP_RESET_REG, val,
1938 					!(val & RTL8365MB_CHIP_RESET_HW_MASK),
1939 					20000, 1e6);
1940 }
1941 
1942 static int rtl8365mb_setup(struct dsa_switch *ds)
1943 {
1944 	struct realtek_priv *priv = ds->priv;
1945 	struct rtl8365mb_cpu *cpu;
1946 	struct dsa_port *cpu_dp;
1947 	struct rtl8365mb *mb;
1948 	int ret;
1949 	int i;
1950 
1951 	mb = priv->chip_data;
1952 	cpu = &mb->cpu;
1953 
1954 	ret = rtl8365mb_reset_chip(priv);
1955 	if (ret) {
1956 		dev_err(priv->dev, "failed to reset chip: %d\n", ret);
1957 		goto out_error;
1958 	}
1959 
1960 	/* Configure switch to vendor-defined initial state */
1961 	ret = rtl8365mb_switch_init(priv);
1962 	if (ret) {
1963 		dev_err(priv->dev, "failed to initialize switch: %d\n", ret);
1964 		goto out_error;
1965 	}
1966 
1967 	/* Set up cascading IRQs */
1968 	ret = rtl8365mb_irq_setup(priv);
1969 	if (ret == -EPROBE_DEFER)
1970 		return ret;
1971 	else if (ret)
1972 		dev_info(priv->dev, "no interrupt support\n");
1973 
1974 	/* Configure CPU tagging */
1975 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
1976 		cpu->mask |= BIT(cpu_dp->index);
1977 
1978 		if (cpu->trap_port == RTL8365MB_MAX_NUM_PORTS)
1979 			cpu->trap_port = cpu_dp->index;
1980 	}
1981 	cpu->enable = cpu->mask > 0;
1982 	ret = rtl8365mb_cpu_config(priv);
1983 	if (ret)
1984 		goto out_teardown_irq;
1985 
1986 	/* Configure ports */
1987 	for (i = 0; i < priv->num_ports; i++) {
1988 		struct rtl8365mb_port *p = &mb->ports[i];
1989 
1990 		if (dsa_is_unused_port(ds, i))
1991 			continue;
1992 
1993 		/* Forward only to the CPU */
1994 		ret = rtl8365mb_port_set_isolation(priv, i, cpu->mask);
1995 		if (ret)
1996 			goto out_teardown_irq;
1997 
1998 		/* Disable learning */
1999 		ret = rtl8365mb_port_set_learning(priv, i, false);
2000 		if (ret)
2001 			goto out_teardown_irq;
2002 
2003 		/* Set the initial STP state of all ports to DISABLED, otherwise
2004 		 * ports will still forward frames to the CPU despite being
2005 		 * administratively down by default.
2006 		 */
2007 		rtl8365mb_port_stp_state_set(ds, i, BR_STATE_DISABLED);
2008 
2009 		/* Set up per-port private data */
2010 		p->priv = priv;
2011 		p->index = i;
2012 	}
2013 
2014 	ret = rtl8365mb_port_change_mtu(ds, cpu->trap_port, ETH_DATA_LEN);
2015 	if (ret)
2016 		goto out_teardown_irq;
2017 
2018 	ret = rtl83xx_setup_user_mdio(ds);
2019 	if (ret) {
2020 		dev_err(priv->dev, "could not set up MDIO bus\n");
2021 		goto out_teardown_irq;
2022 	}
2023 
2024 	/* Start statistics counter polling */
2025 	rtl8365mb_stats_setup(priv);
2026 
2027 	return 0;
2028 
2029 out_teardown_irq:
2030 	rtl8365mb_irq_teardown(priv);
2031 
2032 out_error:
2033 	return ret;
2034 }
2035 
2036 static void rtl8365mb_teardown(struct dsa_switch *ds)
2037 {
2038 	struct realtek_priv *priv = ds->priv;
2039 
2040 	rtl8365mb_stats_teardown(priv);
2041 	rtl8365mb_irq_teardown(priv);
2042 }
2043 
2044 static int rtl8365mb_get_chip_id_and_ver(struct regmap *map, u32 *id, u32 *ver)
2045 {
2046 	int ret;
2047 
2048 	/* For some reason we have to write a magic value to an arbitrary
2049 	 * register whenever accessing the chip ID/version registers.
2050 	 */
2051 	ret = regmap_write(map, RTL8365MB_MAGIC_REG, RTL8365MB_MAGIC_VALUE);
2052 	if (ret)
2053 		return ret;
2054 
2055 	ret = regmap_read(map, RTL8365MB_CHIP_ID_REG, id);
2056 	if (ret)
2057 		return ret;
2058 
2059 	ret = regmap_read(map, RTL8365MB_CHIP_VER_REG, ver);
2060 	if (ret)
2061 		return ret;
2062 
2063 	/* Reset magic register */
2064 	ret = regmap_write(map, RTL8365MB_MAGIC_REG, 0);
2065 	if (ret)
2066 		return ret;
2067 
2068 	return 0;
2069 }
2070 
2071 static int rtl8365mb_detect(struct realtek_priv *priv)
2072 {
2073 	struct rtl8365mb *mb = priv->chip_data;
2074 	u32 chip_id;
2075 	u32 chip_ver;
2076 	int ret;
2077 	int i;
2078 
2079 	ret = rtl8365mb_get_chip_id_and_ver(priv->map, &chip_id, &chip_ver);
2080 	if (ret) {
2081 		dev_err(priv->dev, "failed to read chip id and version: %d\n",
2082 			ret);
2083 		return ret;
2084 	}
2085 
2086 	for (i = 0; i < ARRAY_SIZE(rtl8365mb_chip_infos); i++) {
2087 		const struct rtl8365mb_chip_info *ci = &rtl8365mb_chip_infos[i];
2088 
2089 		if (ci->chip_id == chip_id && ci->chip_ver == chip_ver) {
2090 			mb->chip_info = ci;
2091 			break;
2092 		}
2093 	}
2094 
2095 	if (!mb->chip_info) {
2096 		dev_err(priv->dev,
2097 			"unrecognized switch (id=0x%04x, ver=0x%04x)", chip_id,
2098 			chip_ver);
2099 		return -ENODEV;
2100 	}
2101 
2102 	dev_info(priv->dev, "found an %s switch\n", mb->chip_info->name);
2103 
2104 	priv->num_ports = RTL8365MB_MAX_NUM_PORTS;
2105 	mb->priv = priv;
2106 	mb->cpu.trap_port = RTL8365MB_MAX_NUM_PORTS;
2107 	mb->cpu.insert = RTL8365MB_CPU_INSERT_TO_ALL;
2108 	mb->cpu.position = RTL8365MB_CPU_POS_AFTER_SA;
2109 	mb->cpu.rx_length = RTL8365MB_CPU_RXLEN_64BYTES;
2110 	mb->cpu.format = RTL8365MB_CPU_FORMAT_8BYTES;
2111 
2112 	return 0;
2113 }
2114 
2115 static const struct phylink_mac_ops rtl8365mb_phylink_mac_ops = {
2116 	.mac_config = rtl8365mb_phylink_mac_config,
2117 	.mac_link_down = rtl8365mb_phylink_mac_link_down,
2118 	.mac_link_up = rtl8365mb_phylink_mac_link_up,
2119 };
2120 
2121 static const struct dsa_switch_ops rtl8365mb_switch_ops = {
2122 	.get_tag_protocol = rtl8365mb_get_tag_protocol,
2123 	.change_tag_protocol = rtl8365mb_change_tag_protocol,
2124 	.setup = rtl8365mb_setup,
2125 	.teardown = rtl8365mb_teardown,
2126 	.phylink_get_caps = rtl8365mb_phylink_get_caps,
2127 	.port_stp_state_set = rtl8365mb_port_stp_state_set,
2128 	.get_strings = rtl8365mb_get_strings,
2129 	.get_ethtool_stats = rtl8365mb_get_ethtool_stats,
2130 	.get_sset_count = rtl8365mb_get_sset_count,
2131 	.get_eth_phy_stats = rtl8365mb_get_phy_stats,
2132 	.get_eth_mac_stats = rtl8365mb_get_mac_stats,
2133 	.get_eth_ctrl_stats = rtl8365mb_get_ctrl_stats,
2134 	.get_stats64 = rtl8365mb_get_stats64,
2135 	.port_change_mtu = rtl8365mb_port_change_mtu,
2136 	.port_max_mtu = rtl8365mb_port_max_mtu,
2137 };
2138 
2139 static const struct realtek_ops rtl8365mb_ops = {
2140 	.detect = rtl8365mb_detect,
2141 	.phy_read = rtl8365mb_phy_read,
2142 	.phy_write = rtl8365mb_phy_write,
2143 };
2144 
2145 const struct realtek_variant rtl8365mb_variant = {
2146 	.ds_ops = &rtl8365mb_switch_ops,
2147 	.ops = &rtl8365mb_ops,
2148 	.phylink_mac_ops = &rtl8365mb_phylink_mac_ops,
2149 	.clk_delay = 10,
2150 	.cmd_read = 0xb9,
2151 	.cmd_write = 0xb8,
2152 	.chip_data_sz = sizeof(struct rtl8365mb),
2153 };
2154 
2155 static const struct of_device_id rtl8365mb_of_match[] = {
2156 	{ .compatible = "realtek,rtl8365mb", .data = &rtl8365mb_variant, },
2157 	{ /* sentinel */ },
2158 };
2159 MODULE_DEVICE_TABLE(of, rtl8365mb_of_match);
2160 
2161 static struct platform_driver rtl8365mb_smi_driver = {
2162 	.driver = {
2163 		.name = "rtl8365mb-smi",
2164 		.of_match_table = rtl8365mb_of_match,
2165 	},
2166 	.probe  = realtek_smi_probe,
2167 	.remove_new = realtek_smi_remove,
2168 	.shutdown = realtek_smi_shutdown,
2169 };
2170 
2171 static struct mdio_driver rtl8365mb_mdio_driver = {
2172 	.mdiodrv.driver = {
2173 		.name = "rtl8365mb-mdio",
2174 		.of_match_table = rtl8365mb_of_match,
2175 	},
2176 	.probe  = realtek_mdio_probe,
2177 	.remove = realtek_mdio_remove,
2178 	.shutdown = realtek_mdio_shutdown,
2179 };
2180 
2181 static int rtl8365mb_init(void)
2182 {
2183 	int ret;
2184 
2185 	ret = realtek_mdio_driver_register(&rtl8365mb_mdio_driver);
2186 	if (ret)
2187 		return ret;
2188 
2189 	ret = realtek_smi_driver_register(&rtl8365mb_smi_driver);
2190 	if (ret) {
2191 		realtek_mdio_driver_unregister(&rtl8365mb_mdio_driver);
2192 		return ret;
2193 	}
2194 
2195 	return 0;
2196 }
2197 module_init(rtl8365mb_init);
2198 
2199 static void __exit rtl8365mb_exit(void)
2200 {
2201 	realtek_smi_driver_unregister(&rtl8365mb_smi_driver);
2202 	realtek_mdio_driver_unregister(&rtl8365mb_mdio_driver);
2203 }
2204 module_exit(rtl8365mb_exit);
2205 
2206 MODULE_AUTHOR("Alvin Šipraga <alsi@bang-olufsen.dk>");
2207 MODULE_DESCRIPTION("Driver for RTL8365MB-VC ethernet switch");
2208 MODULE_LICENSE("GPL");
2209 MODULE_IMPORT_NS(REALTEK_DSA);
2210