1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Marvell 88E6xxx Switch Global (1) Registers support 4 * 5 * Copyright (c) 2008 Marvell Semiconductor 6 * 7 * Copyright (c) 2016-2017 Savoir-faire Linux Inc. 8 * Vivien Didelot <vivien.didelot@savoirfairelinux.com> 9 */ 10 11 #include <linux/bitfield.h> 12 13 #include "chip.h" 14 #include "global1.h" 15 16 int mv88e6xxx_g1_read(struct mv88e6xxx_chip *chip, int reg, u16 *val) 17 { 18 int addr = chip->info->global1_addr; 19 20 return mv88e6xxx_read(chip, addr, reg, val); 21 } 22 23 int mv88e6xxx_g1_write(struct mv88e6xxx_chip *chip, int reg, u16 val) 24 { 25 int addr = chip->info->global1_addr; 26 27 return mv88e6xxx_write(chip, addr, reg, val); 28 } 29 30 int mv88e6xxx_g1_wait_bit(struct mv88e6xxx_chip *chip, int reg, int 31 bit, int val) 32 { 33 return mv88e6xxx_wait_bit(chip, chip->info->global1_addr, reg, 34 bit, val); 35 } 36 37 int mv88e6xxx_g1_wait_mask(struct mv88e6xxx_chip *chip, int reg, 38 u16 mask, u16 val) 39 { 40 return mv88e6xxx_wait_mask(chip, chip->info->global1_addr, reg, 41 mask, val); 42 } 43 44 /* Offset 0x00: Switch Global Status Register */ 45 46 static int mv88e6185_g1_wait_ppu_disabled(struct mv88e6xxx_chip *chip) 47 { 48 return mv88e6xxx_g1_wait_mask(chip, MV88E6XXX_G1_STS, 49 MV88E6185_G1_STS_PPU_STATE_MASK, 50 MV88E6185_G1_STS_PPU_STATE_DISABLED); 51 } 52 53 static int mv88e6185_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip) 54 { 55 return mv88e6xxx_g1_wait_mask(chip, MV88E6XXX_G1_STS, 56 MV88E6185_G1_STS_PPU_STATE_MASK, 57 MV88E6185_G1_STS_PPU_STATE_POLLING); 58 } 59 60 static int mv88e6352_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip) 61 { 62 int bit = __bf_shf(MV88E6352_G1_STS_PPU_STATE); 63 64 return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STS, bit, 1); 65 } 66 67 static int mv88e6xxx_g1_wait_init_ready(struct mv88e6xxx_chip *chip) 68 { 69 int bit = __bf_shf(MV88E6XXX_G1_STS_INIT_READY); 70 71 /* Wait up to 1 second for the switch to be ready. The InitReady bit 11 72 * is set to a one when all units inside the device (ATU, VTU, etc.) 73 * have finished their initialization and are ready to accept frames. 74 */ 75 return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STS, bit, 1); 76 } 77 78 /* Offset 0x01: Switch MAC Address Register Bytes 0 & 1 79 * Offset 0x02: Switch MAC Address Register Bytes 2 & 3 80 * Offset 0x03: Switch MAC Address Register Bytes 4 & 5 81 */ 82 int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr) 83 { 84 u16 reg; 85 int err; 86 87 reg = (addr[0] << 8) | addr[1]; 88 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_01, reg); 89 if (err) 90 return err; 91 92 reg = (addr[2] << 8) | addr[3]; 93 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_23, reg); 94 if (err) 95 return err; 96 97 reg = (addr[4] << 8) | addr[5]; 98 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_45, reg); 99 if (err) 100 return err; 101 102 return 0; 103 } 104 105 /* Offset 0x04: Switch Global Control Register */ 106 107 int mv88e6185_g1_reset(struct mv88e6xxx_chip *chip) 108 { 109 u16 val; 110 int err; 111 112 /* Set the SWReset bit 15 along with the PPUEn bit 14, to also restart 113 * the PPU, including re-doing PHY detection and initialization 114 */ 115 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 116 if (err) 117 return err; 118 119 val |= MV88E6XXX_G1_CTL1_SW_RESET; 120 val |= MV88E6XXX_G1_CTL1_PPU_ENABLE; 121 122 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 123 if (err) 124 return err; 125 126 err = mv88e6xxx_g1_wait_init_ready(chip); 127 if (err) 128 return err; 129 130 return mv88e6185_g1_wait_ppu_polling(chip); 131 } 132 133 int mv88e6250_g1_reset(struct mv88e6xxx_chip *chip) 134 { 135 u16 val; 136 int err; 137 138 /* Set the SWReset bit 15 */ 139 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 140 if (err) 141 return err; 142 143 val |= MV88E6XXX_G1_CTL1_SW_RESET; 144 145 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 146 if (err) 147 return err; 148 149 return mv88e6xxx_g1_wait_init_ready(chip); 150 } 151 152 int mv88e6352_g1_reset(struct mv88e6xxx_chip *chip) 153 { 154 int err; 155 156 err = mv88e6250_g1_reset(chip); 157 if (err) 158 return err; 159 160 return mv88e6352_g1_wait_ppu_polling(chip); 161 } 162 163 int mv88e6185_g1_ppu_enable(struct mv88e6xxx_chip *chip) 164 { 165 u16 val; 166 int err; 167 168 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 169 if (err) 170 return err; 171 172 val |= MV88E6XXX_G1_CTL1_PPU_ENABLE; 173 174 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 175 if (err) 176 return err; 177 178 return mv88e6185_g1_wait_ppu_polling(chip); 179 } 180 181 int mv88e6185_g1_ppu_disable(struct mv88e6xxx_chip *chip) 182 { 183 u16 val; 184 int err; 185 186 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 187 if (err) 188 return err; 189 190 val &= ~MV88E6XXX_G1_CTL1_PPU_ENABLE; 191 192 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 193 if (err) 194 return err; 195 196 return mv88e6185_g1_wait_ppu_disabled(chip); 197 } 198 199 int mv88e6185_g1_set_max_frame_size(struct mv88e6xxx_chip *chip, int mtu) 200 { 201 u16 val; 202 int err; 203 204 mtu += ETH_HLEN + ETH_FCS_LEN; 205 206 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val); 207 if (err) 208 return err; 209 210 val &= ~MV88E6185_G1_CTL1_MAX_FRAME_1632; 211 212 if (mtu > 1518) 213 val |= MV88E6185_G1_CTL1_MAX_FRAME_1632; 214 215 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val); 216 } 217 218 /* Offset 0x10: IP-PRI Mapping Register 0 219 * Offset 0x11: IP-PRI Mapping Register 1 220 * Offset 0x12: IP-PRI Mapping Register 2 221 * Offset 0x13: IP-PRI Mapping Register 3 222 * Offset 0x14: IP-PRI Mapping Register 4 223 * Offset 0x15: IP-PRI Mapping Register 5 224 * Offset 0x16: IP-PRI Mapping Register 6 225 * Offset 0x17: IP-PRI Mapping Register 7 226 */ 227 228 int mv88e6085_g1_ip_pri_map(struct mv88e6xxx_chip *chip) 229 { 230 int err; 231 232 /* Reset the IP TOS/DiffServ/Traffic priorities to defaults */ 233 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_0, 0x0000); 234 if (err) 235 return err; 236 237 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_1, 0x0000); 238 if (err) 239 return err; 240 241 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_2, 0x5555); 242 if (err) 243 return err; 244 245 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_3, 0x5555); 246 if (err) 247 return err; 248 249 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_4, 0xaaaa); 250 if (err) 251 return err; 252 253 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_5, 0xaaaa); 254 if (err) 255 return err; 256 257 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_6, 0xffff); 258 if (err) 259 return err; 260 261 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_7, 0xffff); 262 if (err) 263 return err; 264 265 return 0; 266 } 267 268 /* Offset 0x18: IEEE-PRI Register */ 269 270 int mv88e6085_g1_ieee_pri_map(struct mv88e6xxx_chip *chip) 271 { 272 /* Reset the IEEE Tag priorities to defaults */ 273 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IEEE_PRI, 0xfa41); 274 } 275 276 int mv88e6250_g1_ieee_pri_map(struct mv88e6xxx_chip *chip) 277 { 278 /* Reset the IEEE Tag priorities to defaults */ 279 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IEEE_PRI, 0xfa50); 280 } 281 282 /* Offset 0x1a: Monitor Control */ 283 /* Offset 0x1a: Monitor & MGMT Control on some devices */ 284 285 int mv88e6095_g1_set_egress_port(struct mv88e6xxx_chip *chip, 286 enum mv88e6xxx_egress_direction direction, 287 int port) 288 { 289 u16 reg; 290 int err; 291 292 err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, ®); 293 if (err) 294 return err; 295 296 switch (direction) { 297 case MV88E6XXX_EGRESS_DIR_INGRESS: 298 reg &= ~MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK; 299 reg |= port << 300 __bf_shf(MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK); 301 break; 302 case MV88E6XXX_EGRESS_DIR_EGRESS: 303 reg &= ~MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK; 304 reg |= port << 305 __bf_shf(MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK); 306 break; 307 default: 308 return -EINVAL; 309 } 310 311 return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg); 312 } 313 314 /* Older generations also call this the ARP destination. It has been 315 * generalized in more modern devices such that more than ARP can 316 * egress it 317 */ 318 int mv88e6095_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port) 319 { 320 u16 reg; 321 int err; 322 323 err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, ®); 324 if (err) 325 return err; 326 327 reg &= ~MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK; 328 reg |= port << __bf_shf(MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK); 329 330 return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg); 331 } 332 333 static int mv88e6390_g1_monitor_write(struct mv88e6xxx_chip *chip, 334 u16 pointer, u8 data) 335 { 336 u16 reg; 337 338 reg = MV88E6390_G1_MONITOR_MGMT_CTL_UPDATE | pointer | data; 339 340 return mv88e6xxx_g1_write(chip, MV88E6390_G1_MONITOR_MGMT_CTL, reg); 341 } 342 343 int mv88e6390_g1_set_egress_port(struct mv88e6xxx_chip *chip, 344 enum mv88e6xxx_egress_direction direction, 345 int port) 346 { 347 u16 ptr; 348 349 switch (direction) { 350 case MV88E6XXX_EGRESS_DIR_INGRESS: 351 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_INGRESS_DEST; 352 break; 353 case MV88E6XXX_EGRESS_DIR_EGRESS: 354 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_EGRESS_DEST; 355 break; 356 default: 357 return -EINVAL; 358 } 359 360 return mv88e6390_g1_monitor_write(chip, ptr, port); 361 } 362 363 int mv88e6390_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port) 364 { 365 u16 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST; 366 367 /* Use the default high priority for management frames sent to 368 * the CPU. 369 */ 370 port |= MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST_MGMTPRI; 371 372 return mv88e6390_g1_monitor_write(chip, ptr, port); 373 } 374 375 int mv88e6390_g1_set_ptp_cpu_port(struct mv88e6xxx_chip *chip, int port) 376 { 377 u16 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_PTP_CPU_DEST; 378 379 /* Use the default high priority for PTP frames sent to 380 * the CPU. 381 */ 382 port |= MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST_MGMTPRI; 383 384 return mv88e6390_g1_monitor_write(chip, ptr, port); 385 } 386 387 int mv88e6390_g1_mgmt_rsvd2cpu(struct mv88e6xxx_chip *chip) 388 { 389 u16 ptr; 390 int err; 391 392 /* 01:80:c2:00:00:00-01:80:c2:00:00:07 are Management */ 393 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XLO; 394 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 395 if (err) 396 return err; 397 398 /* 01:80:c2:00:00:08-01:80:c2:00:00:0f are Management */ 399 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XHI; 400 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 401 if (err) 402 return err; 403 404 /* 01:80:c2:00:00:20-01:80:c2:00:00:27 are Management */ 405 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XLO; 406 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 407 if (err) 408 return err; 409 410 /* 01:80:c2:00:00:28-01:80:c2:00:00:2f are Management */ 411 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XHI; 412 err = mv88e6390_g1_monitor_write(chip, ptr, 0xff); 413 if (err) 414 return err; 415 416 return 0; 417 } 418 419 /* Offset 0x1c: Global Control 2 */ 420 421 static int mv88e6xxx_g1_ctl2_mask(struct mv88e6xxx_chip *chip, u16 mask, 422 u16 val) 423 { 424 u16 reg; 425 int err; 426 427 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL2, ®); 428 if (err) 429 return err; 430 431 reg &= ~mask; 432 reg |= val & mask; 433 434 return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL2, reg); 435 } 436 437 int mv88e6185_g1_set_cascade_port(struct mv88e6xxx_chip *chip, int port) 438 { 439 const u16 mask = MV88E6185_G1_CTL2_CASCADE_PORT_MASK; 440 441 return mv88e6xxx_g1_ctl2_mask(chip, mask, port << __bf_shf(mask)); 442 } 443 444 int mv88e6085_g1_rmu_disable(struct mv88e6xxx_chip *chip) 445 { 446 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6085_G1_CTL2_P10RM | 447 MV88E6085_G1_CTL2_RM_ENABLE, 0); 448 } 449 450 int mv88e6352_g1_rmu_disable(struct mv88e6xxx_chip *chip) 451 { 452 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6352_G1_CTL2_RMU_MODE_MASK, 453 MV88E6352_G1_CTL2_RMU_MODE_DISABLED); 454 } 455 456 int mv88e6390_g1_rmu_disable(struct mv88e6xxx_chip *chip) 457 { 458 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_RMU_MODE_MASK, 459 MV88E6390_G1_CTL2_RMU_MODE_DISABLED); 460 } 461 462 int mv88e6390_g1_stats_set_histogram(struct mv88e6xxx_chip *chip) 463 { 464 return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_HIST_MODE_MASK, 465 MV88E6390_G1_CTL2_HIST_MODE_RX); 466 } 467 468 int mv88e6xxx_g1_set_device_number(struct mv88e6xxx_chip *chip, int index) 469 { 470 return mv88e6xxx_g1_ctl2_mask(chip, 471 MV88E6XXX_G1_CTL2_DEVICE_NUMBER_MASK, 472 index); 473 } 474 475 /* Offset 0x1d: Statistics Operation 2 */ 476 477 static int mv88e6xxx_g1_stats_wait(struct mv88e6xxx_chip *chip) 478 { 479 int bit = __bf_shf(MV88E6XXX_G1_STATS_OP_BUSY); 480 481 return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STATS_OP, bit, 0); 482 } 483 484 int mv88e6095_g1_stats_set_histogram(struct mv88e6xxx_chip *chip) 485 { 486 u16 val; 487 int err; 488 489 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val); 490 if (err) 491 return err; 492 493 val |= MV88E6XXX_G1_STATS_OP_HIST_RX; 494 495 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val); 496 497 return err; 498 } 499 500 int mv88e6xxx_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port) 501 { 502 int err; 503 504 /* Snapshot the hardware statistics counters for this port. */ 505 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, 506 MV88E6XXX_G1_STATS_OP_BUSY | 507 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT | 508 MV88E6XXX_G1_STATS_OP_HIST_RX | port); 509 if (err) 510 return err; 511 512 /* Wait for the snapshotting to complete. */ 513 return mv88e6xxx_g1_stats_wait(chip); 514 } 515 516 int mv88e6320_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port) 517 { 518 port = (port + 1) << 5; 519 520 return mv88e6xxx_g1_stats_snapshot(chip, port); 521 } 522 523 int mv88e6390_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port) 524 { 525 int err; 526 527 port = (port + 1) << 5; 528 529 /* Snapshot the hardware statistics counters for this port. */ 530 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, 531 MV88E6XXX_G1_STATS_OP_BUSY | 532 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT | port); 533 if (err) 534 return err; 535 536 /* Wait for the snapshotting to complete. */ 537 return mv88e6xxx_g1_stats_wait(chip); 538 } 539 540 void mv88e6xxx_g1_stats_read(struct mv88e6xxx_chip *chip, int stat, u32 *val) 541 { 542 u32 value; 543 u16 reg; 544 int err; 545 546 *val = 0; 547 548 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, 549 MV88E6XXX_G1_STATS_OP_BUSY | 550 MV88E6XXX_G1_STATS_OP_READ_CAPTURED | stat); 551 if (err) 552 return; 553 554 err = mv88e6xxx_g1_stats_wait(chip); 555 if (err) 556 return; 557 558 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_32, ®); 559 if (err) 560 return; 561 562 value = reg << 16; 563 564 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_01, ®); 565 if (err) 566 return; 567 568 *val = value | reg; 569 } 570 571 int mv88e6xxx_g1_stats_clear(struct mv88e6xxx_chip *chip) 572 { 573 int err; 574 u16 val; 575 576 err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val); 577 if (err) 578 return err; 579 580 /* Keep the histogram mode bits */ 581 val &= MV88E6XXX_G1_STATS_OP_HIST_RX_TX; 582 val |= MV88E6XXX_G1_STATS_OP_BUSY | MV88E6XXX_G1_STATS_OP_FLUSH_ALL; 583 584 err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val); 585 if (err) 586 return err; 587 588 /* Wait for the flush to complete. */ 589 return mv88e6xxx_g1_stats_wait(chip); 590 } 591