xref: /linux/drivers/net/dsa/mv88e6xxx/global1.c (revision 40ccd6aa3e2e05be93394e3cd560c718dedfcc77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Marvell 88E6xxx Switch Global (1) Registers support
4  *
5  * Copyright (c) 2008 Marvell Semiconductor
6  *
7  * Copyright (c) 2016-2017 Savoir-faire Linux Inc.
8  *	Vivien Didelot <vivien.didelot@savoirfairelinux.com>
9  */
10 
11 #include <linux/bitfield.h>
12 
13 #include "chip.h"
14 #include "global1.h"
15 
16 int mv88e6xxx_g1_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
17 {
18 	int addr = chip->info->global1_addr;
19 
20 	return mv88e6xxx_read(chip, addr, reg, val);
21 }
22 
23 int mv88e6xxx_g1_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
24 {
25 	int addr = chip->info->global1_addr;
26 
27 	return mv88e6xxx_write(chip, addr, reg, val);
28 }
29 
30 int mv88e6xxx_g1_wait_bit(struct mv88e6xxx_chip *chip, int reg, int
31 			  bit, int val)
32 {
33 	return mv88e6xxx_wait_bit(chip, chip->info->global1_addr, reg,
34 				  bit, val);
35 }
36 
37 int mv88e6xxx_g1_wait_mask(struct mv88e6xxx_chip *chip, int reg,
38 			   u16 mask, u16 val)
39 {
40 	return mv88e6xxx_wait_mask(chip, chip->info->global1_addr, reg,
41 				   mask, val);
42 }
43 
44 /* Offset 0x00: Switch Global Status Register */
45 
46 static int mv88e6185_g1_wait_ppu_disabled(struct mv88e6xxx_chip *chip)
47 {
48 	return mv88e6xxx_g1_wait_mask(chip, MV88E6XXX_G1_STS,
49 				      MV88E6185_G1_STS_PPU_STATE_MASK,
50 				      MV88E6185_G1_STS_PPU_STATE_DISABLED);
51 }
52 
53 static int mv88e6185_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip)
54 {
55 	return mv88e6xxx_g1_wait_mask(chip, MV88E6XXX_G1_STS,
56 				      MV88E6185_G1_STS_PPU_STATE_MASK,
57 				      MV88E6185_G1_STS_PPU_STATE_POLLING);
58 }
59 
60 static int mv88e6352_g1_wait_ppu_polling(struct mv88e6xxx_chip *chip)
61 {
62 	int bit = __bf_shf(MV88E6352_G1_STS_PPU_STATE);
63 
64 	return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STS, bit, 1);
65 }
66 
67 static int mv88e6xxx_g1_wait_init_ready(struct mv88e6xxx_chip *chip)
68 {
69 	int bit = __bf_shf(MV88E6XXX_G1_STS_INIT_READY);
70 
71 	/* Wait up to 1 second for the switch to be ready. The InitReady bit 11
72 	 * is set to a one when all units inside the device (ATU, VTU, etc.)
73 	 * have finished their initialization and are ready to accept frames.
74 	 */
75 	return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STS, bit, 1);
76 }
77 
78 static int mv88e6250_g1_eeprom_reload(struct mv88e6xxx_chip *chip)
79 {
80 	/* MV88E6185_G1_CTL1_RELOAD_EEPROM is also valid for 88E6250 */
81 	int bit = __bf_shf(MV88E6185_G1_CTL1_RELOAD_EEPROM);
82 	u16 val;
83 	int err;
84 
85 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
86 	if (err)
87 		return err;
88 
89 	val |= MV88E6185_G1_CTL1_RELOAD_EEPROM;
90 
91 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
92 	if (err)
93 		return err;
94 
95 	return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_CTL1, bit, 0);
96 }
97 
98 /* Returns 0 when done, -EBUSY when waiting, other negative codes on error */
99 static int mv88e6xxx_g1_is_eeprom_done(struct mv88e6xxx_chip *chip)
100 {
101 	u16 val;
102 	int err;
103 
104 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STS, &val);
105 	if (err < 0) {
106 		dev_err(chip->dev, "Error reading status");
107 		return err;
108 	}
109 
110 	/* If the switch is still resetting, it may not
111 	 * respond on the bus, and so MDIO read returns
112 	 * 0xffff. Differentiate between that, and waiting for
113 	 * the EEPROM to be done by bit 0 being set.
114 	 */
115 	if (val == 0xffff || !(val & BIT(MV88E6XXX_G1_STS_IRQ_EEPROM_DONE)))
116 		return -EBUSY;
117 
118 	return 0;
119 }
120 
121 /* As the EEInt (EEPROM done) flag clears on read if the status register, this
122  * function must be called directly after a hard reset or EEPROM ReLoad request,
123  * or the done condition may have been missed
124  */
125 int mv88e6xxx_g1_wait_eeprom_done(struct mv88e6xxx_chip *chip)
126 {
127 	const unsigned long timeout = jiffies + 1 * HZ;
128 	int ret;
129 
130 	/* Wait up to 1 second for the switch to finish reading the
131 	 * EEPROM.
132 	 */
133 	while (time_before(jiffies, timeout)) {
134 		ret = mv88e6xxx_g1_is_eeprom_done(chip);
135 		if (ret != -EBUSY)
136 			return ret;
137 	}
138 
139 	dev_err(chip->dev, "Timeout waiting for EEPROM done");
140 	return -ETIMEDOUT;
141 }
142 
143 int mv88e6250_g1_wait_eeprom_done_prereset(struct mv88e6xxx_chip *chip)
144 {
145 	int ret;
146 
147 	ret = mv88e6xxx_g1_is_eeprom_done(chip);
148 	if (ret != -EBUSY)
149 		return ret;
150 
151 	/* Pre-reset, we don't know the state of the switch - when
152 	 * mv88e6xxx_g1_is_eeprom_done() returns -EBUSY, that may be because
153 	 * the switch is actually busy reading the EEPROM, or because
154 	 * MV88E6XXX_G1_STS_IRQ_EEPROM_DONE has been cleared by an unrelated
155 	 * status register read already.
156 	 *
157 	 * To account for the latter case, trigger another EEPROM reload for
158 	 * another chance at seeing the done flag.
159 	 */
160 	ret = mv88e6250_g1_eeprom_reload(chip);
161 	if (ret)
162 		return ret;
163 
164 	return mv88e6xxx_g1_wait_eeprom_done(chip);
165 }
166 
167 /* Offset 0x01: Switch MAC Address Register Bytes 0 & 1
168  * Offset 0x02: Switch MAC Address Register Bytes 2 & 3
169  * Offset 0x03: Switch MAC Address Register Bytes 4 & 5
170  */
171 int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
172 {
173 	u16 reg;
174 	int err;
175 
176 	reg = (addr[0] << 8) | addr[1];
177 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_01, reg);
178 	if (err)
179 		return err;
180 
181 	reg = (addr[2] << 8) | addr[3];
182 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_23, reg);
183 	if (err)
184 		return err;
185 
186 	reg = (addr[4] << 8) | addr[5];
187 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_MAC_45, reg);
188 	if (err)
189 		return err;
190 
191 	return 0;
192 }
193 
194 /* Offset 0x04: Switch Global Control Register */
195 
196 int mv88e6185_g1_reset(struct mv88e6xxx_chip *chip)
197 {
198 	u16 val;
199 	int err;
200 
201 	/* Set the SWReset bit 15 along with the PPUEn bit 14, to also restart
202 	 * the PPU, including re-doing PHY detection and initialization
203 	 */
204 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
205 	if (err)
206 		return err;
207 
208 	val |= MV88E6XXX_G1_CTL1_SW_RESET;
209 	val |= MV88E6XXX_G1_CTL1_PPU_ENABLE;
210 
211 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
212 	if (err)
213 		return err;
214 
215 	err = mv88e6xxx_g1_wait_init_ready(chip);
216 	if (err)
217 		return err;
218 
219 	return mv88e6185_g1_wait_ppu_polling(chip);
220 }
221 
222 int mv88e6250_g1_reset(struct mv88e6xxx_chip *chip)
223 {
224 	u16 val;
225 	int err;
226 
227 	/* Set the SWReset bit 15 */
228 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
229 	if (err)
230 		return err;
231 
232 	val |= MV88E6XXX_G1_CTL1_SW_RESET;
233 
234 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
235 	if (err)
236 		return err;
237 
238 	return mv88e6xxx_g1_wait_init_ready(chip);
239 }
240 
241 int mv88e6352_g1_reset(struct mv88e6xxx_chip *chip)
242 {
243 	int err;
244 
245 	err = mv88e6250_g1_reset(chip);
246 	if (err)
247 		return err;
248 
249 	return mv88e6352_g1_wait_ppu_polling(chip);
250 }
251 
252 int mv88e6185_g1_ppu_enable(struct mv88e6xxx_chip *chip)
253 {
254 	u16 val;
255 	int err;
256 
257 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
258 	if (err)
259 		return err;
260 
261 	val |= MV88E6XXX_G1_CTL1_PPU_ENABLE;
262 
263 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
264 	if (err)
265 		return err;
266 
267 	return mv88e6185_g1_wait_ppu_polling(chip);
268 }
269 
270 int mv88e6185_g1_ppu_disable(struct mv88e6xxx_chip *chip)
271 {
272 	u16 val;
273 	int err;
274 
275 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
276 	if (err)
277 		return err;
278 
279 	val &= ~MV88E6XXX_G1_CTL1_PPU_ENABLE;
280 
281 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
282 	if (err)
283 		return err;
284 
285 	return mv88e6185_g1_wait_ppu_disabled(chip);
286 }
287 
288 int mv88e6185_g1_set_max_frame_size(struct mv88e6xxx_chip *chip, int mtu)
289 {
290 	u16 val;
291 	int err;
292 
293 	mtu += ETH_HLEN + ETH_FCS_LEN;
294 
295 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL1, &val);
296 	if (err)
297 		return err;
298 
299 	val &= ~MV88E6185_G1_CTL1_MAX_FRAME_1632;
300 
301 	if (mtu > 1518)
302 		val |= MV88E6185_G1_CTL1_MAX_FRAME_1632;
303 
304 	return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL1, val);
305 }
306 
307 /* Offset 0x10: IP-PRI Mapping Register 0
308  * Offset 0x11: IP-PRI Mapping Register 1
309  * Offset 0x12: IP-PRI Mapping Register 2
310  * Offset 0x13: IP-PRI Mapping Register 3
311  * Offset 0x14: IP-PRI Mapping Register 4
312  * Offset 0x15: IP-PRI Mapping Register 5
313  * Offset 0x16: IP-PRI Mapping Register 6
314  * Offset 0x17: IP-PRI Mapping Register 7
315  */
316 
317 int mv88e6085_g1_ip_pri_map(struct mv88e6xxx_chip *chip)
318 {
319 	int err;
320 
321 	/* Reset the IP TOS/DiffServ/Traffic priorities to defaults */
322 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_0, 0x0000);
323 	if (err)
324 		return err;
325 
326 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_1, 0x0000);
327 	if (err)
328 		return err;
329 
330 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_2, 0x5555);
331 	if (err)
332 		return err;
333 
334 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_3, 0x5555);
335 	if (err)
336 		return err;
337 
338 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_4, 0xaaaa);
339 	if (err)
340 		return err;
341 
342 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_5, 0xaaaa);
343 	if (err)
344 		return err;
345 
346 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_6, 0xffff);
347 	if (err)
348 		return err;
349 
350 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IP_PRI_7, 0xffff);
351 	if (err)
352 		return err;
353 
354 	return 0;
355 }
356 
357 /* Offset 0x18: IEEE-PRI Register */
358 
359 int mv88e6085_g1_ieee_pri_map(struct mv88e6xxx_chip *chip)
360 {
361 	/* Reset the IEEE Tag priorities to defaults */
362 	return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IEEE_PRI, 0xfa41);
363 }
364 
365 int mv88e6250_g1_ieee_pri_map(struct mv88e6xxx_chip *chip)
366 {
367 	/* Reset the IEEE Tag priorities to defaults */
368 	return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_IEEE_PRI, 0xfa50);
369 }
370 
371 /* Offset 0x1a: Monitor Control */
372 /* Offset 0x1a: Monitor & MGMT Control on some devices */
373 
374 int mv88e6095_g1_set_egress_port(struct mv88e6xxx_chip *chip,
375 				 enum mv88e6xxx_egress_direction direction,
376 				 int port)
377 {
378 	u16 reg;
379 	int err;
380 
381 	err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, &reg);
382 	if (err)
383 		return err;
384 
385 	switch (direction) {
386 	case MV88E6XXX_EGRESS_DIR_INGRESS:
387 		reg &= ~MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK;
388 		reg |= port <<
389 		       __bf_shf(MV88E6185_G1_MONITOR_CTL_INGRESS_DEST_MASK);
390 		break;
391 	case MV88E6XXX_EGRESS_DIR_EGRESS:
392 		reg &= ~MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK;
393 		reg |= port <<
394 		       __bf_shf(MV88E6185_G1_MONITOR_CTL_EGRESS_DEST_MASK);
395 		break;
396 	default:
397 		return -EINVAL;
398 	}
399 
400 	return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg);
401 }
402 
403 /* Older generations also call this the ARP destination. It has been
404  * generalized in more modern devices such that more than ARP can
405  * egress it
406  */
407 int mv88e6095_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port)
408 {
409 	u16 reg;
410 	int err;
411 
412 	err = mv88e6xxx_g1_read(chip, MV88E6185_G1_MONITOR_CTL, &reg);
413 	if (err)
414 		return err;
415 
416 	reg &= ~MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK;
417 	reg |= port << __bf_shf(MV88E6185_G1_MONITOR_CTL_ARP_DEST_MASK);
418 
419 	return mv88e6xxx_g1_write(chip, MV88E6185_G1_MONITOR_CTL, reg);
420 }
421 
422 static int mv88e6390_g1_monitor_write(struct mv88e6xxx_chip *chip,
423 				      u16 pointer, u8 data)
424 {
425 	u16 reg;
426 
427 	reg = MV88E6390_G1_MONITOR_MGMT_CTL_UPDATE | pointer | data;
428 
429 	return mv88e6xxx_g1_write(chip, MV88E6390_G1_MONITOR_MGMT_CTL, reg);
430 }
431 
432 int mv88e6390_g1_set_egress_port(struct mv88e6xxx_chip *chip,
433 				 enum mv88e6xxx_egress_direction direction,
434 				 int port)
435 {
436 	u16 ptr;
437 
438 	switch (direction) {
439 	case MV88E6XXX_EGRESS_DIR_INGRESS:
440 		ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_INGRESS_DEST;
441 		break;
442 	case MV88E6XXX_EGRESS_DIR_EGRESS:
443 		ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_EGRESS_DEST;
444 		break;
445 	default:
446 		return -EINVAL;
447 	}
448 
449 	return mv88e6390_g1_monitor_write(chip, ptr, port);
450 }
451 
452 int mv88e6390_g1_set_cpu_port(struct mv88e6xxx_chip *chip, int port)
453 {
454 	u16 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST;
455 
456 	/* Use the default high priority for management frames sent to
457 	 * the CPU.
458 	 */
459 	port |= MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST_MGMTPRI;
460 
461 	return mv88e6390_g1_monitor_write(chip, ptr, port);
462 }
463 
464 int mv88e6390_g1_set_ptp_cpu_port(struct mv88e6xxx_chip *chip, int port)
465 {
466 	u16 ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_PTP_CPU_DEST;
467 
468 	/* Use the default high priority for PTP frames sent to
469 	 * the CPU.
470 	 */
471 	port |= MV88E6390_G1_MONITOR_MGMT_CTL_PTR_CPU_DEST_MGMTPRI;
472 
473 	return mv88e6390_g1_monitor_write(chip, ptr, port);
474 }
475 
476 int mv88e6390_g1_mgmt_rsvd2cpu(struct mv88e6xxx_chip *chip)
477 {
478 	u16 ptr;
479 	int err;
480 
481 	/* 01:80:c2:00:00:00-01:80:c2:00:00:07 are Management */
482 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XLO;
483 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
484 	if (err)
485 		return err;
486 
487 	/* 01:80:c2:00:00:08-01:80:c2:00:00:0f are Management */
488 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200000XHI;
489 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
490 	if (err)
491 		return err;
492 
493 	/* 01:80:c2:00:00:20-01:80:c2:00:00:27 are Management */
494 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XLO;
495 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
496 	if (err)
497 		return err;
498 
499 	/* 01:80:c2:00:00:28-01:80:c2:00:00:2f are Management */
500 	ptr = MV88E6390_G1_MONITOR_MGMT_CTL_PTR_0180C200002XHI;
501 	err = mv88e6390_g1_monitor_write(chip, ptr, 0xff);
502 	if (err)
503 		return err;
504 
505 	return 0;
506 }
507 
508 /* Offset 0x1c: Global Control 2 */
509 
510 static int mv88e6xxx_g1_ctl2_mask(struct mv88e6xxx_chip *chip, u16 mask,
511 				  u16 val)
512 {
513 	u16 reg;
514 	int err;
515 
516 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_CTL2, &reg);
517 	if (err)
518 		return err;
519 
520 	reg &= ~mask;
521 	reg |= val & mask;
522 
523 	return mv88e6xxx_g1_write(chip, MV88E6XXX_G1_CTL2, reg);
524 }
525 
526 int mv88e6185_g1_set_cascade_port(struct mv88e6xxx_chip *chip, int port)
527 {
528 	const u16 mask = MV88E6185_G1_CTL2_CASCADE_PORT_MASK;
529 
530 	return mv88e6xxx_g1_ctl2_mask(chip, mask, port << __bf_shf(mask));
531 }
532 
533 int mv88e6085_g1_rmu_disable(struct mv88e6xxx_chip *chip)
534 {
535 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6085_G1_CTL2_P10RM |
536 				      MV88E6085_G1_CTL2_RM_ENABLE, 0);
537 }
538 
539 int mv88e6352_g1_rmu_disable(struct mv88e6xxx_chip *chip)
540 {
541 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6352_G1_CTL2_RMU_MODE_MASK,
542 				      MV88E6352_G1_CTL2_RMU_MODE_DISABLED);
543 }
544 
545 int mv88e6390_g1_rmu_disable(struct mv88e6xxx_chip *chip)
546 {
547 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_RMU_MODE_MASK,
548 				      MV88E6390_G1_CTL2_RMU_MODE_DISABLED);
549 }
550 
551 int mv88e6390_g1_stats_set_histogram(struct mv88e6xxx_chip *chip)
552 {
553 	return mv88e6xxx_g1_ctl2_mask(chip, MV88E6390_G1_CTL2_HIST_MODE_MASK,
554 				      MV88E6390_G1_CTL2_HIST_MODE_RX);
555 }
556 
557 int mv88e6xxx_g1_set_device_number(struct mv88e6xxx_chip *chip, int index)
558 {
559 	return mv88e6xxx_g1_ctl2_mask(chip,
560 				      MV88E6XXX_G1_CTL2_DEVICE_NUMBER_MASK,
561 				      index);
562 }
563 
564 /* Offset 0x1d: Statistics Operation 2 */
565 
566 static int mv88e6xxx_g1_stats_wait(struct mv88e6xxx_chip *chip)
567 {
568 	int bit = __bf_shf(MV88E6XXX_G1_STATS_OP_BUSY);
569 
570 	return mv88e6xxx_g1_wait_bit(chip, MV88E6XXX_G1_STATS_OP, bit, 0);
571 }
572 
573 int mv88e6095_g1_stats_set_histogram(struct mv88e6xxx_chip *chip)
574 {
575 	u16 val;
576 	int err;
577 
578 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val);
579 	if (err)
580 		return err;
581 
582 	val |= MV88E6XXX_G1_STATS_OP_HIST_RX;
583 
584 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val);
585 
586 	return err;
587 }
588 
589 int mv88e6xxx_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
590 {
591 	int err;
592 
593 	/* Snapshot the hardware statistics counters for this port. */
594 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP,
595 				 MV88E6XXX_G1_STATS_OP_BUSY |
596 				 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT |
597 				 MV88E6XXX_G1_STATS_OP_HIST_RX | port);
598 	if (err)
599 		return err;
600 
601 	/* Wait for the snapshotting to complete. */
602 	return mv88e6xxx_g1_stats_wait(chip);
603 }
604 
605 int mv88e6320_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
606 {
607 	port = (port + 1) << 5;
608 
609 	return mv88e6xxx_g1_stats_snapshot(chip, port);
610 }
611 
612 int mv88e6390_g1_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
613 {
614 	int err;
615 
616 	port = (port + 1) << 5;
617 
618 	/* Snapshot the hardware statistics counters for this port. */
619 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP,
620 				 MV88E6XXX_G1_STATS_OP_BUSY |
621 				 MV88E6XXX_G1_STATS_OP_CAPTURE_PORT | port);
622 	if (err)
623 		return err;
624 
625 	/* Wait for the snapshotting to complete. */
626 	return mv88e6xxx_g1_stats_wait(chip);
627 }
628 
629 void mv88e6xxx_g1_stats_read(struct mv88e6xxx_chip *chip, int stat, u32 *val)
630 {
631 	u32 value;
632 	u16 reg;
633 	int err;
634 
635 	*val = 0;
636 
637 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP,
638 				 MV88E6XXX_G1_STATS_OP_BUSY |
639 				 MV88E6XXX_G1_STATS_OP_READ_CAPTURED | stat);
640 	if (err)
641 		return;
642 
643 	err = mv88e6xxx_g1_stats_wait(chip);
644 	if (err)
645 		return;
646 
647 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_32, &reg);
648 	if (err)
649 		return;
650 
651 	value = reg << 16;
652 
653 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_COUNTER_01, &reg);
654 	if (err)
655 		return;
656 
657 	*val = value | reg;
658 }
659 
660 int mv88e6xxx_g1_stats_clear(struct mv88e6xxx_chip *chip)
661 {
662 	int err;
663 	u16 val;
664 
665 	err = mv88e6xxx_g1_read(chip, MV88E6XXX_G1_STATS_OP, &val);
666 	if (err)
667 		return err;
668 
669 	/* Keep the histogram mode bits */
670 	val &= MV88E6XXX_G1_STATS_OP_HIST_RX_TX;
671 	val |= MV88E6XXX_G1_STATS_OP_BUSY | MV88E6XXX_G1_STATS_OP_FLUSH_ALL;
672 
673 	err = mv88e6xxx_g1_write(chip, MV88E6XXX_G1_STATS_OP, val);
674 	if (err)
675 		return err;
676 
677 	/* Wait for the flush to complete. */
678 	return mv88e6xxx_g1_stats_wait(chip);
679 }
680